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ABSTRACT

A HYBRID BIOLOGICAL/IN SILICO NEURAL NETWORK
BASED BRAIN-MACHINE INTERFACE

Brain-machine interfaces (BMIs) aim to improve the lives of individuals with

neurological disease or injury, by opening new information transfer channels between

brain tissue and prosthetic actuators. In a majority of the BMI work, the data acquired

from the motor cortex neurons are decoded into user's intended prosthetic actions by

some "optimized" input-output mathematical model. Although this approach is quite

sound, the information processing principles used are fundamentally di�erent from

those of natural neural circuits. In this thesis, we propose a novel, neurally-inspired

design approach; the BMI controller consists of spiking model neurons and receives

simulated synaptic inputs from extracellularly recorded neurons. The controller there-

fore forms a hybrid biological/in silico neural network with the neuronal circuits of the

user's brain. In order to ful�ll the challenging real-time requirements of the present

design approach, we �rst developed the Bioinspired Model Development Environment

(BMDE). The BMDE, implemented on a hard real-time system, signi�cantly facili-

tates BMI model development processes with powerful online data visualization tools

while satisfying the strict timing constraints of the proposed design approach. Using

the BMDE, we realized a novel, adaptive BMI controller which consists of in silico

striatal medium spiny neurons, each receiving simulated synaptic inputs from extra-

cellularly recorded motor cortex neurons. By implementing a reward-modulated spike

timing-dependent plasticity rule and a winner-takes-all mechanism, the BMI controller,

based on real-time closed-loop simulations, achieves perfect target reach accuracy for

a two target reaching task in one dimensional space. Using this design approach and

the BMDE, new generation BMI controllers that better mimic brain circuits can be

developed. Moreover, by investigating the interactions between biological and in silico

neural networks during neuroprosthetic control tryouts new neuroscienti�c insights con-

cerning motor control and learning can be obtained.

Keywords: Neuroprosthetics, Motor Cortex, Synaptic Plasticity Model.
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ÖZET

H�BR�T B�YOLOJ�K/�N S�L�CO S�N�R A�I TEMELL� B�R
BEY�N-MAK�NE ARAYÜZÜ

Beyin-makine arayüzleri (BMA) beyin dokusu ile protetik hareket düzenekleri

aras�nda yeni bilgi iletim kanallar� açarak nörolojik hastal�k veya yaralanmaya maruz

kalm�³ bireylerin ya³amlar�n� iyile³tirmeyi hede�er. BMA çal�³malar�n�n ço§unda, mo-

tor korteksten al�nan veri kullan�c�n�n gerçekle³tirmeyi hede�edi§i protetik eylemlere

baz� "eniyilenmi³" girdi-ç�kt� matematiksel modeller kullan�larak dönü³türülür. Bu

yakla³�m çok güvenilir olsa da, kullan�lan bilgi i³leme prensipleri do§al sinirsel dev-

relerinkinden temelde farkl�d�r. Bu tezde, yeni, sinir devrelerinden esinlenen bir tasar�m

yakla³�m� önermekteyiz; BMA kontrolcüsü model nöronlardan olu³makta ve elektro�z-

yolojik yöntemlerle aktivitesi kaydedilen nöronlardan benzetilen sinaptik girdiler al-

maktad�r. Dolay�s�yla, kontrolcü kullan�c�n�n beyin devreleri ile bir hibrit biyolo-

jik/ in silico sinir a§� olu³turmaktad�r. Bu tasar�m yakla³�m�n�n zorlu gerçek-zaman

gereksinimlerini kar³�lamak için, öncelikli olarak Biyoesinlenmi³ Model Geli³tirme Or-

tam� (BMDE)'n� geli³tirdik. Gerçek-zamanl� bir sistem üzerinde meydana getirilmi³

olan BMDE önerilen tasar�m yakla³�m�n�n s�k� zamanlama ³artlar�n� yerine getirmenin

yan� s�ra güçlü çevrimiçi veri görselle³tirme araçlar�yla BMA model geli³tirme i³lem-

lerini önemli ölçüde kolayla³t�rmaktad�r. BMDE'yi kullanarak her biri gerçek mo-

tor korteks nöronlar�ndan benzetilen sinaptik girdiler alan in silico striatum orta-

boy dikenli nöronlar�ndan olu³an bir BMA kontrolcüsü geli³tirdik. BMA kontrolcüsü,

gerçek-zamanl� benzetimler temelinde, bir ödülle de§i³en vuru zamanlamas�na ba§l�

sinaptik plasitisite kural�n� ve bir "kazanan hepsini al�r" mekanizmas�n� uygulayarak

tek boyutlu uzayda iki farkl� hedefe kusursuz ³ekilde ula³ma ba³ar�m�n� göstermek-

tedir. Bu tasar�m yakla³�m�n� ve BMDE'yi kullanarak beyni daha iyi taklit edebilen

BMA kontrolcüleri geli³tirilebilir; nöroprotetik kontrol denemeleri s�ras�nda biyolojik

ve in silico sinir a§lar� aras�ndaki etkile³imler gözlemlenerek motor kontrol ve ö§ren-

meye ili³kin yeni sinirbilimsel bilgiler elde edilebilir.

Anahtar Sözcükler: Nöroprotez, Motor Korteks, Sinaptik Plastisite Modeli.
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1. INTRODUCTION

1.1 Neuroprosthetics Overview

Research for neuroprosthetics, or brain-machine interfaces (BMIs), have recently

allowed tetraplegic individuals to control a robotic arm [1, 2] or a computer cursor [3]

directly with their motor cortical activity. These clinical trials have been important

proof-of-concept demonstrations for restoring the lost motor functions of the central

nervous system using brain implantable devices. Even though such seminal devices

have enabled the patients to manipulate their environment through prosthetic move-

ments, further research is still ongoing to deliver seamless, robust and high performance

solutions.

First intentional neuroprosthetic control was achieved in 1960s through neuronal

operant conditioning, in which the subject (a rat) was rewarded when the activity of

an extracellularly recorded neuron increased without any overt movement [4, 5]. In

1980s, Georgopoulos et al. showed in monkeys that there is an almost linear relation-

ship between �ring rates of some motor cortical neurons and arm movement directions

in a center-out reaching task [6, 7]. The same group also demonstrated that a neu-

ronal population vector, yielded by summation of the contribution of each neuron to

the movement direction, can be used to accurately predict the hand trajectory from

the neural recordings [8]. This decoding method is named as population vector algo-

rithm (PVA). In 1999, Chapin et al. showed in rats that recordings from the neuronal

populations can be utilized for closed-loop control of a robotic arm in one-dimensional

space without any explicit limb movement [9]. In this study, principal components

analysis method was used to reduce the dimension of the neural data and the �rst

principal component was fed into a recurrent arti�cial neural network to control the

one-degree-of-freedom robotic actuator. In 2002, Taylor et al. showed on non-human

primates that a 3D neuroprosthetic device could be manipulated in real-time using the

recordings from the motor cortex. They also showed that the target reach success of
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the BMI user (the monkey) was higher in the closed-loop control mode than that in the

open-loop mode while the same decoding algorithm (PVA) was utilized in both cases

[10]. In closed-loop mode a visual feedback was provided to the user online and in

the open-loop mode the trajectories were created o�ine from cortical signals recorded

during hand-controlled cursor movements. In 2003, Carmena et al. utilized a Wiener

�lter to transform neural activity patterns into prosthetic actions and reported that

the directional tuning properties of the neurons in the motor-related cortical areas were

modi�ed in the brain control mode as prosthetic control sessions proceeded [11]. After

these signi�cant contributions to the neuroprosthetic research, numerous works were

realized to further boost the decoding performance using di�erent input-output models

[12, 13, 14, 15]. Since the structure of the motor cortical areas and activity patterns

of cortical neurons continuously change through neuroplasticity [16, 17, 18, 19, 20], in

some of these works the goal was to develop coadaptive decoders [21, 22, 23, 24, 25, 26]

capable of modifying their model parameters to respond to the dynamics of tuning

functions of motor cortical neurons.

In spite of these advancements, neuroprosthetic systems still lack self-adaptation.

In other words, decoder calibration by a caregiver or an external feedback signal is still

required. In addition, conventional decoders still cannot identify when to keep the pros-

thetic arm stationary (idle state) and when to manipulate it for reaching (active state)

[27]; the reaching trials are manually initiated by the experimenter or the prosthetic

user through physical movements. However, in a real clinical setting, the paralyzed

individual will need to be able to manipulate the prosthesis only when he/she intends

to use it. Consequently, according to the current state-of-the-art, precision, speed and

robustness of prosthetic movements are still far from those of natural motor movements

[28, 29].

1.2 Neurally-Inspired BMI Design - The Objective

As mentioned in the previous section and shown in Figure 1.1, conventional neu-

roprosthetic systems have been designed from the perspective of input-output mathe-



3

Figure 1.1 Conventional closed-loop BMI control architecture. An input-output model projects
high-dimensional neural vector into low-dimensional control signal vector.

matical modeling; the main design motivation has generally been to �nd a mathemat-

ical model which optimally maps motor cortical activity to user's intended prosthetic

actions. In addition, a spike binning process (Figure 1.2) is performed in order to

provide cortical �ring rate inputs to the utilized model or decoder. However this pro-

cess leads to loss of information encoded by spike timing. In this context, information

processing principles of these systems, based on an input-output model or transform,

are fundamentally di�erent from those of natural neural circuits.

In the present dissertation, it is argued that the BMI controllers could be formed

from a more biologically plausible design perspective using spiking neural networks

(SNNs). In such a control paradigm, the SNN consists of biologically plausible model

neurons and receives simulated synaptic inputs from the extracellularly recorded corti-

cal neurons. The controller therefore forms a hybrid biological/in silico neural network

with the neuronal circuits of the user's brain. Its outputs are then used in manipu-

lating a neuroprosthesis (Figure 1.3). Using this approach, the dynamics of the model

neurons could be investigated during neuroprosthetic control experiments while they

are directly interacting with real neurons. Moreover, novel neuroprosthetic control al-

gorithms which are inspired by the neuronal circuits of the brain structures could be

developed.
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Figure 1.2 Spike-binning to provide �ring rate inputs to the BMI decoder.

Despite o�ering promising methods for computational neuroscience and BMI

research, SNN-based neuroprosthetic control paradigm requires powerful and purpose-

speci�c platforms which are capable of 1) real-time SNN simulation, 2) providing bi-

ologically realistic synaptic interactions between real and in silico neurons and 3)

manipulating a robotic actuator according to the spike outputs of in silico neurons in

real-time. In this context, the main motivation of the work in the present study is to

address these requirements of SNN-based neuroprosthetic design and show the proof-

of-concept for the present approach by developing a brain machine interface (BMI)

control algorithm which is inspired by the dynamic synaptic interactions between the

motor cortex and striatum neurons. The present work does not attempt to compete

with the control performance of existing input-output model-based neuroprosthetic sys-

tems. The focus of the present work is to demonstrate the feasibility of building hybrid

biological-in silico neural networks for neuroprosthetic control and shift the neuropros-

thetic design philosophy for development of brain-inspired control architectures. We

believe that this novel, SNN-based design approach has the potential to bring several

advantages in neuroprosthetic system control, adaptation and implementation. Firstly,

the information encoded by spike timing could be used at the input layer of the SNN-
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based BMI controller. Secondly, spike timing plays a critical role in neuroplasticity [30],

which is essential in neuroprosthetic learning [31]. Therefore, the SNN-based BMI con-

trollers updating their parameters by simulating mechanisms of spike timing-dependent

plasticity might have superior adaptation performance than existing �ring-rate based

neuroprosthetic systems. Thirdly, implementation of the SNN-based BMI controllers

into neuromorphic chips [32, 33] can enable delivery of fully implantable, ultra low

power neuroprosthetic systems for paralyzed patients. In addition, the SNN-based de-

sign approach can also be bene�cial in the �eld of neuroscience. The interactions of

real neurons with model neurons could be investigated during neuroprosthetic control

experiments and these investigations can provide new insights into the information

processing principles in the motor cortex during neuroprosthetic control and learning.

Figure 1.3 Principal components of BMI paradigm based on building a hybrid biological-in silico
neural network. A spike sorting utility continuously acquires neural signals from the brain through
extracellular recordings and extracts the timestamps of the spikes generated by real neurons. The
spike events are then streamed to the biologically plausible model neurons as 'virtual' synaptic inputs
and these inputs trigger further information processing in the spiking neural network (SNN). Finally,
the prosthetic control module translates the spike event outputs of the SNN into prosthetic command
signals for manipulation of the neuroprosthesis.
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1.3 Overview of the Dissertation

Chapter 1 summarizes current state-of the art in motor neuroprosthetic design

and the design perspective of neuroprosthetic systems. The novel, biologically inspired

BMI controller design concept which is brought by the work in the present dissertation

is also described.

Chapter 2 explains our established, low-cost techniques to perform chronic extra-

cellular recordings from the rat motor cortex, which enabled us to see the requirements

of development process of a biologically plausible BMI controller.

Chapter 3 presents the hardware and software components of the Bioinspired

Model Development Environment (BMDE) which enables online data visualization

while realizing the simulated synaptic interactions between the biological and in silico

neurons and control of a robotic arm. This chapter also describes the in-house built

robot and experimental environment controller, the control hardware.

Chapter 4 includes a brief overview of the motor and basal ganglia system and

the role of striatum in the cortico-basal ganglia circuit. This chapter demonstrates the

control architecture of the bioinspired BMI (the B-BMI), which is designed by utilizing

the information processing principles and neuroanatomy of the corticostriatal circuit.

Chapter 5 demonstrates the proof-of-concept for the B-BMI by studying its con-

vergence properties using real-time closed-loop simulations, in which the extracellular

recordings from the motor cortex neurons are imitated by a hardware-based, exter-

nal neural signal synthesizer. The closed-loop simulations also involved a behavioral

paradigm implemented on the BMDE and interacting with the experimental environ-

ment through external triggers.

Chapter 6 shows the real-time performance pro�les of the BMDE while running

only the B-BMI and a stress test, which includes simultaneous running of the B-BMI

and simulating 150 medium spiny neurons. These performance pro�les provide an
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idea about usability of the BMDE in development more sophisticated BMI controllers

which based on a higher number of neurons or more complex neuroprosthetic control

parameters.

Chapter 7 lists the novel contributions of the work in this dissertation and

implications of them in helping paralyzed people. Future improvements in the BMDE

and B-BMI are also presented in this chapter.
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2. EXTRACELLULAR RECORDING FROM BEHAVING

RAT

Prior to starting the studies for development of a BMI control algorithm, we

concentrated on developing robust techniques for chronic extracellular recordings from

the rat motor cortex. We built an experimental environment so that rats can perform

motor tasks and we can verify the position of recording electrodes in the primary motor

cortex area in the rat brain. Simultaneous to the e�orts for experimental environment

construction, we implemented the software and hardware required for neural recordings.

2.1 Techniques for Chronic Extracellular Recordings

Electrophysiology hardware is required in order to perform extracellular record-

ings from the brain. The hardware consists of microelectrode assemblies, signal �lters

and ampli�ers. Figure 2.1 demonstrates the components utilized in our laboratory

to enable 32 channel (spike-only) recordings. We utilize a 32 channel signal ampli�er

(PRA3) produced by Plexon Inc. (TX, USA) and a data acquisition device (PCIe-

6259) provided by National Instruments (TX, USA). The software for digital signal

�ltering and recordings are developed by us in the laboratory and will be explained

in Chapter 3 by introducing the Bioinspired Model Development Environment. The

microwire arrays are also assembled in the laboratory using a technique we developed

(Chapter 2.1.1).

2.1.1 Microwire Array Production

Microwire arrays (MWAs) are the intermediaries between the electronic and

brain circuits. They are used for recording extracellular multi-unit spike activity from

the neuronal populations. Te�on insulated platinum-iridium (%90-%10) wires with a
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Figure 2.1 Generic components of an electrophysiological recording system.

diameter of 25.4 µm (A&M Systems Co, USA) are used in our experiments.

In the production process of the MWAs, spooled microwires are cut into 12

cm segments. Thereafter, two Kelly hemostats are clipped to each end of the curved

wire segments. The position of the upper hemostat is �xed and the lower hemostat is

allowed to be manually rotated until the wire becomes straight [34]. The straightened

wires are then cut into 4 pieces to be aligned on the jig seen in Figure 2.2A. To build

the jig, we use a microscope slide and two stainless steel templates produced by a

printed circuit board (PCB) stencil manufacturer (BEK Lazer Elektronik, Istanbul).

The stainless steel templates have slots with a spacing of 250 µm (Figure 2.2C). The

width of each slot is identical and 50 µm. These templates are vertically mounted onto

two opposite sides of the microscope slide so that the previously straightened wires can

be aligned in parallel through their slots. A piece of paper on which parallel lines are

printed with a distance of 250 µm is placed under the microscope slide to guide the
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wire alignment process.

Figure 2.2 The rig for assembling microwire array. A) Side view of the rig. Two stainless steel
templates are mounted on both sides of the microscope slide. B) Top view of the rig. C) The
chamfers of the stainless steel template under microscope (40X zoom).

Eight insulated Pt/Ir wires for recording and one uninsulated tungsten wire to

be used as a reference electrode are put into proper positions within the slots of the

template of the jig, and a drop of dental acrylic is poured to the center of wires to

stabilize the position of all wires. After dental acrylic sets, the wires are carefully

removed from the template without disturbing their positions. Hereupon, the acrylic

holding the wires is glued onto a PCB. A small connector (Omnetics 8o50m-10P, USA)

is also soldered on this PCB to enable in vivo recordings (Figure 2.3). Finally the

wires are soldered to the appropriate paths on the PCB and a ground wire is added to

the MWA to be soldered to a ground screw placed into the skull of the rat during the

implantation surgery.

Figure 2.3 Eight-channel MWA. A) PCB & connector for the MWA. B) Assembled MWA, C)
Channels of the MWA under microscope (40X zoom). The left most wire is the tungsten uninsulated
tungsten wire used as a reference electrode.

To �nalize the microwire preparation process, the tips of the wires of MWA

are cut using sharp scissors to make the length of the wires equal. By using an

impedance measurement device (World Precision Instruments - Omega-Tip Z, FL,
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USA), the impedance of each wire is veri�ed to be around 0.7-1.2 MΩ at 0.5 KHz in

saline solution.

2.1.2 Microwire Array (MWA) Implantation

The caudal motor cortex forelimb area (Figure 2.4) has been shown to be pre-

dictive of limb movements and exhibits neuronal activity modulations for the control

of a neuroprosthesis without physical movements [9, 31].Therefore, we have primarily

targeted this area for neural recordings for developing BMI controllers. The in-house

built, single row, 8 channel MWAs (Figure 2.3) are bilaterally implanted in this area

using a stereotaxic apparatus. During the surgery, we adjust the depth of the MWAs

to record from layer V of the motor cortex (Figure 2.5), which mainly includes large

pyramidal neurons projecting to the spinal cord and the striatum [35].

Figure 2.4 Motor areas in the rat brain based on electrical microstimulation. A) General motor
map (from [36]). B) Detailed map of the forelimb area (from [16]).

The MWA is lowered into the brain as slowly as possible to minimize distress to

the brain tissue until reaching a depth of approximately 1.2 mm [37]. After veri�cation
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of MWA position with electrophysiological monitoring, the surface of the brain is sealed

using cyanoacrylate glue [31]. Four screws are mounted onto the skull. Dental cement

is poured over the skull and around the screws to �x the position of the MWAs.

Figure 2.5 Layers of the primary motor cortex in the rat [37]. a) Micrograph, b) Reconstruction
through image processing, c) Number of cells in layers, d) Size of the cells.

2.2 Building the Experimental Environment

Neuroprosthetic research requires not only powerful hardware and software plat-

forms for development of control algorithms but also applicable behavioral paradigms

which enable in vivo experimentation of the proposed control algorithms. In order to

enable motor neuroprosthetic control research, we built an experimental environment,

which mainly consists of mainly two components. The �rst component is an operant

conditioning box while the second is a robotic arm which moves outside of the box,

in the robotic workspace. The environment in this work was designed to be used in

future in vivo BMI experiments. In this scenario, the rat is planned to be used as a

paralyzed patient model.
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In the experimental environment, the cage includes two levers, a water receptacle

and an infrared beam (Figure 2.6). The robotic arm actuates a Guide LED in one

dimensional space, to left and right. In the cage there are two LEDs and, in the

robotic workspace, there are two Target LEDs (TLs). The box is made of Plexiglas so

that the rat can see the robotic workspace.

Figure 2.6 Experimental environment including a robotic arm.

2.3 Moving Attention of the Rat to the Robotic Workspace

The robotic arm was placed into the experimental environment as a neuropros-

thesis. In order to investigate the neural activity of the rat in a two lever choice task

and validate the usability of the experimental environment for neuroprosthetic control

experiments, we implemented a behavioral paradigm as in [38].

In the paradigm, the rat initiates a trial by a nose poke through the IR beam
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Figure 2.7 Representative top view of the experimental environment for a two lever choice task.

(Figure 2.8). Once the trial starts, randomly selected Target LED (TL), the Cage

LED (CL) at the same side as TL and Guide LED (GL) are turned on. Without any

latency after trial start, the GL, mounted on the tip of the robotic arm, moves toward

the selected TL with a randomly selected speed and reaches it in 0.9-1.5 s. The rat

is rewarded (0.03 ml water) only when it continuously presses the correct lever for

50 ms after GL reaches the TL. Here the correct lever is the lever which is in the

same direction as the turned-on TL or CL. In this paradigm, the changing speed of GL

encourages attention of the rat. The rat can minimize the task energy by synchronizing

lever press with the arrival of the GL to the target. Whenever the rat makes a wrong

lever choice, a brief tone is presented and the trial is terminated. When a trial ends,

all the LEDs are turned o� and GL moves back to the default position in the middle

of the Target LEDs. As the rat increases its success rate in tasks, the CL is removed

from experimental paradigm and the attention of rat is gradually moved to TL and

GL, to robotic workspace. When the rat's accuracy exceeds an inclusion criterion of

80%, the shaping process is terminated and the rat is implanted with microelectrode

arrays. Prior to the neural recordings, rats are given two weeks to recover from the

surgery.
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Figure 2.8 Rat training task.

2.4 Validating In Vivo Recording Techniques

Since the work in this dissertation was mainly focused on developing a brain-

inspired neuroprosthetic control algorithm and a platform for designing such neuro-

prosthetic processors, we did not systematically investigated the interactions in the

tissue-Pt/Ir electrode interface or report the well-known neural correlates of a lever

press movement. There are a number of signi�cant works that present these aspects of

neuroprosthetic research [9, 39]. In this context, we mainly performed the recordings

to validate our surgical, recording and spike processing techniques for development of

the Bioinspired Model Development Environment (BMDE, Chapter 3) and the corti-

costriatal circuit-inspired brain-machine interface control algorithm (B-BMI).

Figures 2.9 through 2.11 show the plot of chronic recordings obtained from one

rat using the techniques presented in Chapter 2.1. The data were recorded during two

lever choice trials as explained in the Chapter 2.3. The upper plot in each �gure shows

the (band-pass �ltered) neural signal recorded from one channel during left lever press.

The plot in the middle demonstrates the spike activity for the right lever press in the

same behavioral paradigm. Vertical black lines in these plots indicate the time point

for the trial initiation and y-axis demonstrates the signal amplitude. Vertical green and

red lines indicate the time of trial termination by a correct lever press. The lowermost

graph in each �gure shows the �ring rate estimate of one of the units isolated from

the corresponding recording channel. Firing rate estimates were evaluated using non-

overlapping 100 ms bins, based on 25 trials for each target side. The red lines indicate

the �ring rate estimate for a left lever press and the green lines show the �ring rate
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estimate for the right lever press. Vertical black lines in these graphs point the trial

initiation time and vertical blue lines show the average of the trial termination times

evaluated based on all 50 trials.

In Figure 2.11 we can see the strong inhibition for a left lever press (vertical red

line) and extreme excitation for the right lever press (vertical green line) for one chan-

nel of the recordings. The motor cortex forelimb area was validated through in vivo

recordings from several rats. The experience acquired from these recordings and be-

havioral experiments has been signi�cantly useful in the design and the implementation

of the BMDE and the bioinspired brain machine interface control algorithm (B-BMI).

By bilaterally implanting the presented 8 channel Pt/Ir microwire array (a total of 16

channels) and using the presented surgical techniques, we were able to isolate 10-12

units from the recordings even 8-10 months after surgery. We believe utilization of an

automatic micropositioner which is capable of penetrating the microwire arrays very

slowly (with a step size of 1-2 µm per second) will boost the microelectrode array yield,

the number of isolated units per channel per microelectrode array.
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Figure 2.9 Neural recording for a two-lever choice task (excitation for left lever press).
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Figure 2.10 Neural recording for a two-lever choice task (excitation for right lever press).
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Figure 2.11 Neural recording for a two-lever choice task (excitation for right lever press).
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3. BIOINSPIRED MODEL DEVELOPMENT

ENVIRONMENT (BMDE)

During the development of the rodent behavioral environment, we simultane-

ously implemented the hardware and software platforms for conducting the behavioral

experiments and the development of neuroprosthetic control algorithms. As mentioned

in the motivation section of this dissertation (Chapter 1.2), we focused on the develop-

ment of neurally-inspired BMI controllers which operate by simulating spiking model

neurons. Since this neuroprosthetic control paradigm is fundamentally distinct from

those of traditional input-output model-based systems (Figure 1.1), we �rst needed to

design a novel, practical and �exible research platform which enables real-time neural

network simulations, establishment of simulated synaptic connections between the real

neurons and the model neurons and real-time control of a robotic arm in accordance

with the outputs of the simulated neurons (Figure 1.3).

Our research for development of bioinspired BMI control algorithms necessitated

not only satisfying the real-time constraints for biological/in silico neuronal network

interactions but also enabling visualization of dynamics of both real and in silico

neurons. Here the dynamics for real neurons include their spike waveforms and spiking

patterns. The dynamics of in silico neurons include membrane potentials, synaptic

weights and spiking patterns. In this sense, we sought for computing systems which

enable both real-time information processing and execution of graphical user interfaces.

Consequently, we decided to utilize a quad-core personal computer (PC) and equip it

with the Real-time Application Interface (RTAI, www.rtai.org). We call this PC-based

platform `Bioinspired Model Development Environment (BMDE)'.
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3.1 Real-time Application Interface (RTAI)

RTAI is an open-source, hard real-time extension for Linux operating system

[40]; it guarantees strict timing constraints of real-time applications while also al-

lowing execution of standard Linux features and services (e.g. window system, key-

board/mouse inputs, �le system, Linux applications etc.) in the same system. In order

to achieve this, RTAI handles the Linux operating system as a lowest priority task and

enables (highest priority) real-time tasks to preempt Linux services whenever needed.

As a consequence, no unexpected delays occur in execution of the real-time (RT) tasks

and standard Linux services are run only when no RT task is executing in the system

Figure 3.1. From the point of the user, working of the system remains the same as in

a standard Linux operating system [40].

Figure 3.1 Time-share between a RT task and standard Linux services/applications. RT task
preempts applications whenever needed. Vertical black lines indicate execution times of the RT task.
Green boxes represent the time period in which RT task is run. No unexpected delay or interruption
occurs in its execution. Standard Linux services are allowed to run when no RT task is running (shown
by blue boxes).

Based on these features of RTAI, we developed the BMDE to provide an all-in-

one solution for in vivo neuronal modeling studies; it is equipped with both RT tasks

and non-time critical applications. While the RT tasks guarantee the timing con-

straints for biological-in silico neuronal interactions through simulated synapses and

real-time SNN simulations, the non-time critical applications enable live visualization

of experimental data and execution of graphical user interfaces (GUIs) for management

of the behavioral experiments. Thus, the experimenter is able to monitor the spiking

activity patterns and dynamics of the simulated neurons online while the RT tasks are
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performing the time critical operations in the background.

3.2 Generic Software Architecture of the BMDE

The design philosophy of the BMDE aims to combine the �exibility of software-

based real-time signal processors and SNN simulators with powerful hardware resources

around a standalone personal computer. As illustrated in Figure 3.2, the BMDE mainly

executes �ve RT tasks which present a framework for implementation of bioinspired,

SNN-based control algorithms and behavioral paradigms for in vivo modeling studies.

These tasks are: 1) spike sorting, 2) SNN simulation, 3) prosthetic control, 4) digital

input-output (DIO) control and 5) experiment control tasks. In this section, we brie�y

explain the role of these tasks; more detailed explanation about how each task works

will be given in Chapter 5 by demonstrating the implementation of a corticostriatal

circuit-inspired brain-machine interface control algorithm (B-BMI).

Figure 3.2 Generic real-time tasks and hardware components of the BMDE. The BMDE is im-
plemented around a desktop PC. The real-time tasks are spike sorting, SNN simulation, prosthetic
control, digital input-output (DIO) control and experiment control tasks. Electrophysiology hardware
provides analog neural signal inputs to the data acquisition board. The prosthetic and digital input-
output (DIO) control tasks communicate with the control hardware through an RS-232 interface card.
The direction of �ow of communication between real-time tasks are shown using arrows. The formats
and contents of the messages are given in Appendix A.
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3.2.1 Spike Sorting Task

The spike sorting task of the BMDE works in conjunction with a data acquisition

(DAQ) device to acquire and process the analog neural signals provided by a standard

extracellular neural recording system consisting of microelectrode assemblies, signal

�lters and ampli�ers Figure 2.1. In the BMDE, the DAQ device (National Instruments,

PCIe-6259) is con�gured to perform continuous analog-to-digital conversion (ADC)

with a sampling rate of 31.25 KHz per channel and the spike sorting task executes

the signal processing routines for extracting single-unit spikes through the neural data

provided by the DAQ device. For each detected single-unit spike, the spike sorting task

delivers an event to the postsynaptic neurons of the SNN simulation task of the BMDE

to provide simulated synaptic interactions between biological and in silico neurons.

In order to extract the single unit spikes from the recordings, the spike sorting

task �lters the neural signals by a 4th order Butterworth digital band-pass �lter (cut-

o� frequency = 400Hz-8KHz), up-samples the �ltered neural data to 62.5 KHz by

cubic interpolation to improve spike alignment performance, detects the neural spikes

by level thresholding and performs spike sorting by Gaussian template matching [41].

The thresholds and templates for spike detection and sorting are manually determined

by the experimenter using the spike sorting GUI of the BMDE (Figure 3.3). The single-

unit spike templates are formed using the waveform of at least sixty detected spikes,

each of which is represented by eighteen data points. In the BMDE, each single-unit

which is isolated from a recording channel is modeled with a multivariate Gaussian

distribution, N(µ,Σ). The likelihood of the each detected spike given a particular

single-unit or class Ci is [42]:

p(x|Ci) =
1

(2π)d/2|Σi|1/2
exp

[
− 1

2
(x− µi)TΣ−1i (x− µi)

]
(3.1)

where x is the d-dimensional spike data vector (d=18), µi and Σi are mean and covari-

ance matrix for unit Ci, respecitvely. The detected spikes are classifed into up to three

units.
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Figure 3.3 Snapshot from the spike sorting GUI during in vivo recording.

3.2.2 SNN Simulation Task

The SNN simulation task executes every 2 ms and performs numerical integra-

tions to evaluate the dynamics of the neurons in the SNN. In the present implementa-

tion of the BMDE, there are two SNN simulation tasks each of which are assigned to

a di�erent CPU core (Table 3.1) and simulates half the neurons in the SNN. Thus, it

becomes possible to allocate two cores of the CPU for computationally intensive SNN

simulations. For implementation of the SNN, we utilize Izhikevich's simple neuron

model, which is capable of exhibiting the rich dynamic repertoire of real neurons with

simple di�erential equations [43, 44, 45]. For numerical integrations for simulation of

the SNN, we utilize the Parker-Sochacki integration method [46, 47]. The method pro-

vides double precision in the numerical integrations with a simulation time applicable

in the BMDE. The pseudo-code for the routines of SNN simulation task (and other

real-time tasks of the BMDE) is located in Appendix B section of this dissertation.
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3.2.3 Prosthetic Control Task

The prosthetic control and the DIO (digital input-output) control tasks operate

in cooperation with the in-house built, microcontroller-based (Microchip, PIC18F4520)

control hardware, which enables the control of the experimental environment compo-

nents by its embedded software modules (i.e. the servo control module and the TTL

(Transistor-Transistor Logic) control module). To achieve the communication with the

control hardware, the BMDE utilizes a commercially available generic RS-232 interface

controller which transmits and receives data at 115.2 Kbaud per second.

The prosthetic control task is the intermediary between SNN simulation tasks

and the servo control module of the control hardware. It bu�ers the spike events

received from the output layer of the SNN and translates them into pulse width com-

mands to be handled by the servo control module. The servo control module then drives

the three actuators or joints of a customized version of Lynxmotion AL5D robotic arm

(Swanton, VT, Figure 3.4) and returns the angle values of the joints through the same

interface. By receiving the joint angles of the robotic arm, the prosthetic control task

calculates the Cartesian position of the tip of the arm by forward kinematics [48].

Figure 3.4 Side view (left) of the customized Lynxmotion robotic arm and its dimensions (right).
The red arrows in the �gure indicates the location of the joints of the robotic arm.



26

3.2.4 Digital Input-Output (DIO) Control Task

The DIO control task receives the status of the digital inputs from experimental

environment through the TTL control module of the control hardware and determines

if the time to trigger an event is expired for a digital input. For instance, if a lever is

pressed for a certain amount of time, it can trigger an event (successful lever press) and

send it to experiment control task to request a trial initiation. In addition, it delivers

digital outputs to the TTL control module to alter the binary state of the experimental

environment components (e.g., turn LED o�, release reward etc.).

3.2.5 Experiment control task

The experiment control task is the management center of the behavioral experi-

ments. By receiving messages from the prosthetic and DIO control tasks, it decides if a

trial should be initiated, ended, rewarded etc. In addition, it informs the downstream

tasks (i.e., SNN simulation, DIO control and prosthetic control tasks) about the deci-

sions it made so that they take action to apply the requirements of the experimental

paradigm.

3.3 Assigning Real-time Tasks to Speci�c CPU Cores

To utilize the system resources e�ciently, each RT task of the BMDE is assigned

to run on a particular core of the CPU (Intel i7-950, Table 1). These tasks communicate

with each other using the shared memory feature of the RTAI and the messaging

libraries developed in this work.
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Table 3.1

The RT tasks of the BMDE and CPU core assignments.

RT Task CPU Core Task Period

Spike Sorting 0 512 µs

SNN Simulation 1 & 2 2 ms

Prosthetic Control 3 2 ms

Experiment Control 3 2 ms

DIO Control 3 2 ms

3.4 Data Visualization and Recording in the BMDE

In order to facilitate the SNN-based BMI control studies, the BMDE was also

equipped with non-time critical applications to provide GUIs and online data visual-

ization tools for enabling the management process of the experiments. For the im-

plementation of the GUIs, we utilized open-source GTK+ libraries (www.gtk.org). In

addition, using the GtkDatabox libraries (sourceforge.net/projects/gtkdatabox), we

implemented online data visualization utilities which provide live display of the con-

tinuously changing signals (e.g. neural signals, dynamics of in silico neurons, neuronal

spike trains etc.).

The GUI for the spike sorting process enables the con�guration of the DAQ

device and visualization of the acquired neural signals through a software-based oscil-

loscope. It also provides visualization tools for determination of the thresholds and

templates for spike sorting process (Figure 3.3). The GUI related to the SNN sim-

ulation allows the user to build a neural network consisting of spiking neurons and

visualize the dynamics of the neurons and spiking activity patterns of the real neurons

during the behavioral experiments. The other GUIs provide the software forms for

adjustment of the parameters related to the management of the experiments (e.g. for

submitting the maximum duration of a trial, the length of a valid lever press, etc.) and

handle online data recording utilities which periodically save experimental data to the

hard drive of the system.
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3.5 Real-time Neuronal Interaction in the Hybrid Neural Net-

work

To provide biologically realistic synaptic interactions between real and in silico

neurons in the bioinspired neuroprosthetic control paradigm, the synaptic delays be-

tween these neurons need to be deterministic and in the order of several milliseconds.

In other words, excessively high and continuously varying delays in transmission of

spike events between real and simulated neurons might disrupt the information en-

coded by timing of the spikes in the hybrid biological/in silico neural network and

reduce the performance reliability and reproducibility of the BMI controller. In this

context, it is crucial to deterministically extract the time of the single-unit spikes from

the neural recordings and deliver them to the post-synaptic in silico targets with con-

sistent synaptic delays. To this end, in implementation of the BMDE, we utilized the

open-source DAQ card drivers and application programming interfaces (APIs) provided

by the COMEDI (Linux Control and Measurement Device Interface, www.comedi.org)

project and the DAQ-related APIs provided by the RTAI developers (www.rtai.org).

Using these drivers and APIs, it is possible to bypass the interrupt management layers

of the standard Linux kernel [40] and provide deterministic responses to the hardware

interrupts of the DAQ device; a high priority RT task can be immediately executed

whenever the DAQ device generates an interrupt subsequent to acquiring precon�g-

ured amount of samples. Thence, in the case of recording of extracellular neural signals,

the executed RT task can deterministically extract the time of the spikes through the

acquired signals.

In the BMDE, the 32-channel DAQ board is con�gured to perform continuous

ADC at a sampling rate of 31.25 KHz per channel and deliver all on-board bu�ered data

to the system memory whenever 16 samples for each channel are acquired; the period

for delivery of the data to system memory corresponds to 512 µs. After transmission

of the data to the system memory, the DAQ device generates a hardware interrupt and

the spike sorting task is executed in response to this interrupt to detect the single-unit

spikes through the recordings. To extract the single-unit spikes, it 1) �lters the neural
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Figure 3.5 An example of spike event delivery between the tasks of the BMDE. SpSo: spike sorting
task, Sim0 & Sim1: SNN simulation tasks, PrCo: prosthetic control task. The execution times of
tasks are shown by the ticks on time axes. The tasks are periodically triggered. Task period for SpSo
is 512µs, and 2 ms for Sim0, Sim1 and PrCo as shown in Table 3.1. Their executions do not have
to be synchronous. In the present example, a neural spike time (tspike) is determined according to
the lowest peak of the spike waveform through the extracellular recordings. A synaptic event for this
spike is scheduled and delivered to the post-synaptic in silico neurons to be handled at tspike+∆tv
and tspike+∆tw. After being depolarized, the neuron simulated by Sim1, but not the one simulated
by Sim0, generates a spike at tse and then events are scheduled for tse+∆tm and tse+∆th to be
handled by Sim0 and PrCo, respectively. Since the neuron simulated by Sim1 is inhibitory, it leads
to hyperpolarization in the post-synaptic neuron simulated by Sim0.

signals by a 4th order Butterworth digital band-pass �lter (cut-o� frequency = 400Hz-

8KHz), 2) up-samples the �ltered neural data to 62.5 KHz by cubic interpolation to

improve spike alignment performance, 3) detects the neural spikes by level thresholding

and 4) performs spike sorting by Gaussian template matching [41]. After performing

these steps, the spike sorting task �nally timestamps the detected single-unit spikes

according to the lowest peak of their waveform and schedules synaptic events for the

post-synaptic in silico targets (Figure 3.5). The SNN simulation tasks then sort the

incoming synaptic events in the time domain and sequentially handle these events to

evaluate the dynamics of the in silico cells. Consequently, biologically realistic synaptic

interactions between real and in silico neurons are realized in the BMDE. More details
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about the methods for simulating the SNN will be given in Chapter 5.

3.6 The Control Hardware

The control hardware (Figure 3.2) was developed around a microcontroller (Mi-

crochip, PIC18F4520). The schematic diagram for the control hardware is given in

Appendix C. Its embedded software code was written in C programming language

(pseudocode is given in Appendix D) and compiled using Microchip-C18 compiler. In

the development process of the control hardware, we utilized the Microchip In-Circuit

Debugger (ICD) 2. The communication between the BMDE and the microcontroller

is realized through the RS-232 standard with a data transmission rate of 115.2 Kbaud

per second.

In order to perform the control of the robotic arm and the experimental envi-

ronment components, the BMDE delivers the 10-byte message (shown in Figure 3.6)

to the control hardware every 26 ms.

Figure 3.6 The format of the message delivered by the BMDE to the control hardware.

The message starts with a `P' character to inform the control hardware that a

message delivery by the BMDE is initiated (INIT_MSG) and two-byte End of Message

(EOM) indicates that the message delivery is complete. These bytes are also used for

error check in the messaging between the BMDE and the control hardware. The

byte corresponding to TTL_CMD is prepared by the DIO control task of the BMDE

and includes the commands to alter the binary state of the experimental environment

components. Each bit of the TTL_CMD message corresponds to the binary state of

one of the experimental environment components. According to the status of the bits

of the TTL_CMD, the TTL control module of the control hardware, for instance, turns
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the LEDs on/o� or releases a water reward through controlling a solenoid valve etc.

The 2-byte pulse width commands (SERVO_0, SERVO_1 and SERVO_2) are

prepared by the prosthetic control task of the BMDE. The servo control module of the

control hardware handles these messages to manipulate the Lynxmotion robotic arm

by delivering pulse width signals to its servo motors. The pulse widths for servo motor

control are accurately applied using the timer interrupt services of the microcontroller

(MCU).

Transmission of the 10-byte message shown in Figure 3.6 to the control hardware

triggers the execution of the code related to servo control and TTL control modules of

the control hardware. In other words, when there is no message from the BMDE, the

control hardware stays idle and does not process any output related to the robotic arm

or (binary-stated) experiment environment components. When a message is received,

it is processed by the modules of the control hardware as explained in the previous

paragraphs. When the message processing is complete, 1) the servo control module

measures the joint angles of the servo motors of the robotic arm using analog-to-digital

converter (ADC) module of the microcontroller (MCU), 2) the TTL control module

monitors the input pins (pin 34 and 35 shown in the schematic diagram in Appendix

C) of the MCU to detect the binary status of experimental environment components

such as cage levers or infrared beam sensors. Whenever these processes are complete,

the control hardware transmits a 10-byte message (shown in Figure 3.7) to the BMDE

through the RS-232 interface.

Figure 3.7 The format of the message from the control hardware to the BMDE.

The message starts with a `P' character to inform the control hardware that a

message delivery by the BMDE is initiated (INIT_MSG) and two-byte End of Message

(EOM) indicates that the message delivery is complete. The byte corresponding to

TTL_STATUS includes the binary state of the experimental environment components
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and is handled by the DIO control task of the BMDE. The 2-byte data corresponding

to the joint angles of the robotic arm (SERVO_0, SERVO_1 and SERVO_2) are

processes by the prosthetic control task of the BMDE to evaluate the position of the

tip of the robotic arm.
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4. BMI CONTROLLER INSPIRED BY THE

CORTICOSTRIATAL CIRCUIT

The BMDE described in this dissertation has been developed to enable imple-

mentation of biologically plausible neuroprosthetic systems which perform the control

of a robotic arm by simulating the neuronal dynamics of the motor system circuits

(Figure 4.1). On the way to designing large scale models of circuits of the motor

system, it would be logical to start by generating a BMI control algorithm which is

based on a limited number of spiking neurons and is inspired by information processing

principles in motor-related circuits. Thus, it would be possible to build more complex,

larger scale models as our understanding of information processing principles in the

neural circuits improves using neurally-inspired, SNN-based BMI controllers in in vivo

neuroprosthetic control experiments. In this context, we are interested in developing

a BMI control algorithm which is inspired by the motor corticostriatal circuit since 1)

this circuit plays a key role in motor performance, motor learning and reinforcement

learning [49, 50], and 2) the striatum, as the input structure of the basal ganglia circuit,

is considered to have a prominent role in action or motor program selection [51]. In

this section, a brief overview of motor system is presented, the neurophysiology of the

corticostriatal circuit (CSC) is described and a SNN-based BMI controller is introduced

for one-dimensional control of a robotic arm.

4.1 Motor System

Major brain regions involved in the motor system are the cerebral cortex, the

basal ganglia, the cerebellum, the brain stem and the spinal cord. Since most neuro-

prosthetic systems are designed to mimic voluntary movements (rather than involun-

tary movements) through a robotic arm, it is convenient to focus on brain structures

involved in the preparation, planning and execution of motor behaviors. For a volun-

tary movement, the command signals originate in the association areas of the cerebral

cortex. The movement, subsequently, is planned in the cortex, the basal ganglia and
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the lateral portions of the cerebellum; electrophysiological recordings show that these

areas are activated prior to execution of the movement [52]. The motor cortex, later

on, executes movements through the corticospinal tract. The cerebellum and the basal

ganglia, receiving inputs from the cortex, modulate motor cortical activity through the

loops involving the thalamus and the brain stem, without any direct output to the

spinal cord (Figure 4.1). Instead, these structures signi�cantly in�uence the processing

of motor control by modulating the output of the pathways ending in the spinal cord,

such as the cortex and the brain stem [53].

Figure 4.1 The motor system components (RF: reticular formation, VN: vestibular nuclei, M1:
primary motor cortex, S1: primary somatosensory cortex, 5: parietal cortex area 5, BG: basal ganglia,
C: cerebellum, RN: red nucleus, V1:primary visual cortex, 7: region of posterior parietal cortex, dPM:
dorsal premotor cortex, SMA: supplementary motor area, PF: prefrontal cortex, adapted from [54]).
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The spinal cord receives inputs from the motor cortical areas (i.e. primary,

supplementary and premotor cortex) for execution of voluntary movement. Other

cortical areas (i.e. parietal lobe and the primary somatosensory area) also project

to the spinal cord (40% of all corticospinal axons in the human). In addition, other

projections to spinal cord originate from the brain stem structures (i.e. vestibular

nuclei, reticular formation, red nucleus and superior colliculus) and are related to

posture and motor coordination [52].

4.2 Basal Ganglia System

The basal ganglia comprise four nuclei and play a major role in voluntary move-

ment through the complex anatomical loops, which involve the thalamus and the cere-

bral cortex (Figure 4.2). The four nuclei of the basal ganglia system are: the striatum,

the globus pallidus, the subthalamic nucleus and the substantia nigra. The globus pal-

lidus is composed of two compartments, namely pallidus interna and externa, and these

compartments have di�erent functions in the basal ganglia system. In addition, sub-

stantia nigra also consists of substantia nigra pars reticulata and substantia nigra pars

compacta. Substantia nigra pars compacta includes dopaminergic neurons projecting

to striatum modulating motor activity and synaptic plasticity.

The output centers of the basal ganglia (i.e. globus pallidus interna (GPi) and

substantia nigra pars reticulata (SNr)) are tonically active and continuously inhibit the

thalamus. In this context, basal ganglia appear to apply a powerful brake on voluntary

movements. This inhibition is selectively disinhibited by projections from the striatum.

Therefore, the striatum, entry point of the basal ganglia circuitry, has a prominent role

about which action or motor program should be executed [51].

The striatum is the largest component of the basal ganglia circuitry. It is mainly

composed of GABAergic medium spiny neurons (MSNs, approximately 95% in the rat

[55]). The MSNs primarily receive excitatory synaptic inputs from the cortical areas

and the thalamus (80% of all synapses in the striatum), and project their axons to
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the other nuclei of the basal ganglia [56]. The collateral branches of these axons,

additionally, form inhibitory connections between these projection neurons. Other

inhibitory synapses to the MSNs come from the other nuclei of the basal ganglia, local

cholinergic and GABAergic interneurons [57].

The striatal MSNs are separated into two types according to the relative pro-

portions of D1- and D2-type dopamine receptors they express. These subpopulations

of MSNs project to di�erent nuclei of the basal ganglia [58]:

D1-type MSNs prominently deliver their axons to 1) substantia nigra pars retic-

ulata (SNr) and 2) to globus pallidus interna (GPi, not shown in Figure 4.2). The

neurons of the SNr and GPi, which are mainly inhibitory, then project to the thala-

mus.

D2-type MSNs send their axons to globus pallidus externa (GPe), which has

an inhibitory e�ect on subthalamic nucleus (STN) and the STN neurons excite SNr

through glutamatergic synapses.

Figure 4.2 Major basal ganglia system interconnections in the rodent brain (GPe: external globus
pallidus, STN: subthalamic nucleus, SNr: substantia nigra pars reticulata, from [59]).
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The projections of these two di�erent types of MSNs (D1 and D2 type MSNs)

modulate the cortical activity through antagonistically working direct and indirect

pathways as shown in Figure 4.2. In the presence of dopamine, the excitability of the

D1-type MSNs increases, and the net excitatory e�ect of the direct pathway on the

cerebral cortex is augmented. In contrast, the presence of dopamine inhibits D2-type

MSNs and reduces the net inhibitory e�ect of the indirect pathway on the cerebral

cortex. In this scenario, the net activity in the cerebral cortex increases and the motor

behavior is promoted through the corticospinal and the corticobulbar tracts. On the

contrary, the absence of dopamine in the striatum enhances the inhibitory e�ect of

the indirect pathway on the cortex and leads to attenuated movement. In this sense,

dopamine maintains the balance between the direct and indirect pathway activation in

the cortico-basal ganglia-thalamic system and plays a key role in motor control. The

substantia nigra pars compacta (SNc) is the midbrain structures involved in the basal

ganglia system and providing dopaminergic inputs to the MSNs of the striatum. The

loss of dopaminergic neurons in this structure leads to pathologies such as Parkinson's

disease [60].

4.3 Corticostriatal Plasticity

Corticostriatal plasticity plays a critical role in motor [49, 61] and neuropros-

thetic skill learning [31]. In addition to its excitatory and inhibitory e�ects on striatal

MSNs, dopaminergic inputs from the substantia nigra modulate the synaptic plasticity

in the corticostriatal synapses [62, 63]. In fact, the presence of dopamine is essential for

occurrence of spike-timing-dependent plasticity [64], including both long-term potenti-

ation (LTP) and long-term depression (LTD). Such requirement for synaptic plasticity

in the corticostriatal pathway is characterized by the `three-factor rule': For induction

of LTP, bursts of dopaminergic neurons, correlated presynaptic and postsynaptic ac-

tivity is necessary. On the contrary, low levels of dopamine combined with correlated

pre- and postsynaptic activity can leads to LTD [62, 65].

The phasic changes in dopaminergic neuronal activity, which may lead to LTP
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Figure 4.3 Glutamatergic inputs from the cortex and dopaminergic inputs from substantia nigra pars
compacta or ventral tegmental area to medium spiny neurons (MSNs) of the striatum. Dopaminergic
inputs modulate the plasticity in the glutamatergic synapses [66].

and LTD in the corticostriatal synapses [62, 67], was presented by Shultz and colleague's

experiments several decades ago [68, 69]. These phasic changes were shown to encode

the di�erence between the reward predicted and the actual reward received, namely

reward prediction error. If a reward is unexpectedly delivered, then the activity of the

dopaminergic neurons increases phasically (positive reward prediction error). In con-

trast, when an expected reward is not delivered, then the tonic activity of dopaminergic

neurons phasically decreases (negative reward prediction error). Such phasic changes

in dopamine levels in the striatum may modulate the synaptic plasticity during motor

learning tasks [49].

In the context of motor performance, some dopaminergic neurons in substantia

nigra pars compacta (SNc) increase their activities during execution of arm movements.

However, these neurons do not present such response when a reward is delivered. In

contrast, the activity pattern of some other dopaminergic neurons in the SNc is not

related to motor movements. Instead, these neurons respond to reward delivery [70, 71]

by phasic increase in their activities. Further research is required to improve the

understanding of how such di�erences in activity patterns of dopaminergic neurons are

integrated into motor performance and learning [49, 72].
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In addition to the signi�cant contributions to the scienti�c knowledge related

to cellular mechanisms of corticostriatal plasticity and reward signaling property of

dopaminergic neurons, Koralek et al. has recently showed in rodents that the involve-

ment of striatum and occurrence of corticostriatal plasticity is essential in neuropros-

thetic learning [31]. During learning the control of a neuroprosthesis, strong relations

between the activities of primary motor cortical and striatal neurons develop, and

striatal neurons exhibit strong target-related �ring rate modulations including both

excitation and inhibition in late phase of learning. In addition, disrupting the devel-

opment of plasticity in the corticostriatal pathway impairs learning neuroprosthetic

skills [31]. These �ndings demonstrate that the striatum is involved in learning and

performing not only physical skills [61] but also neuroprosthetic skills.

4.4 Membrane Properties of Medium Spiny Neurons

The medium spiny neurons (MSNs) have a threshold for activation and very

low activity pro�le during resting conditions. They express inward-recti�er K+ (Kir)

conductances, which remain open at hyperpolarized membrane potentials but close if

the neuron becomes depolarized [51]. Therefore, MSNs present a prominent bistable

behavior: MSNs tend to stay in a silent hyperpolarized state (`down-state') as long as

they do not receive a strong excitatory input. However, when they are excited, K+

current is deactivated and they remain in depolarized `up-state', which is close to �ring

threshold, for a prolonged period [44].

4.5 The Bioinspired BMI Controller

Based on the neuroscienti�c knowledge related to bistable membrane potential

properties of the striatal MSNs and dopamine-dependent plasticity of corticostriatal

synapses [51, 73], we generated the Bioinspired BMI controller (B-BMI) to realize

a two-target center-out reaching task in one dimensional space (Figures 4.5 & 4.6).
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Figure 4.4 Two-state membrane potential dynamics of MSNs in vivo [44].

In the B-BMI, the living (extracellularly recorded) motor cortex units are partially

connected to the in silico MSNs through simulated excitatory synapses. The MSNs

are then reciprocally connected through strong lateral inhibitory synapses to build a

mechanism for winner-take-all (WTA) competition, a form of which has often been used

in computational models of basal ganglia to characterize neural information processing

in the striatum [74, 75, 76].

In the present control paradigm, the MSN with the highest spike count is se-

lected as the winning neuron and the prosthetic action (moving to the left or right)

corresponding to that neuron is applied by the base servomotor of the robotic arm in

one-dimensional space. The spike counts of the MSNs are calculated by binning the

generated spikes every 26 milliseconds with a sliding 104 ms time window. In case of

equality among the spike count of the MSNs, no winning neuron is selected and no

prosthetic action is taken by base servomotor of the robotic arm (remain stationary).

The model MSNs of the BMI controller are described using the equations of

Izhikevich's simple neuron model [44]. The synaptic interactions are provided by fast

conductance-based synaptic currents [77] as in [47]:

Cv′ = (�v − vr)(v − vt)− u− η(v − Eη)− γ(v − Eγ) (4.1)
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Figure 4.5 Control architecture of the B-BMI which implements a model of synaptic interactions
between motor cortex and striatal medium spiny neurons (MSNs). The SNN consists of two MSNs
which receive simulated excitatory synaptic inputs from the extracellularly recorded motor cortex
units. The MSNs are reciprocally connected to each other through inhibitory synapses. The prosthetic
control module monitors the spiking activity of the MSNs and determines the one with the highest
�ring rate as the winning neuron. The action corresponding to the winning neuron is applied by the
digital base servomotor (Joint 1) of the robotic arm in one dimensional space. A global reward signal
modulates the weights of the excitatory synapses between the motor cortex and medium spiny neurons
through a reward-modulated spike-timing-dependent plasticity rule.

u′ = a(bv − u) (4.2)

where v is membrane potential, u is membrane recovery variable, vr is resting membrane

potential, vt is threshold potential, C is membrane capacitance, a is a constant which

describes time scale of u, b is a constant which describes the sensitivity of u, k is a

scaling constant, η and γ are total excitatory and inhibitory synaptic conductances,

respectively. Eη and Eγ represent excitatory and inhibitory synaptic reversal potentials.

Arrival of a synaptic event from biological or in silico presynaptic neuron leads to a

step-wise increase in the appropriate conductance variable; η→η+wi for an excitatory
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Figure 4.6 Side view and joints of the customized Lynxmotion AL5D robotic arm (left) and its
representative top view in closed-loop control (right). Two opposite targets, represented with red
LEDs, were located on the same plane to be reached by the robotic arm moving around its �rst joint
(base servomotor) in one dimensional space.

event and γ→γ+wi for an inhibitory event, where wi is the conductance value or

`weight' of the i-th synapse of the neuron. When there is no incoming event, the total

conductance values decay with time constants τη and τγ:

η′ = −η/τη (4.3)

γ′ = −γ/τγ (4.4)

When the membrane potential exceeds a voltage peak (vpeak), i.e. the neuron generates

a spike, the membrane potential and membrane recovery variable are reset as follows:

if v ≥ vpeak, then

{
v ← c

u ← u+ d
(4.5)

The neuron model parameters for the MSNs are a = 0.01, b = -20, c = -55 mV, d =

150, C = 50 pF, k = 1, vr= -80 mV, vt = -25 mV, vpeak= 40 mV [44]. The reversal

potentials are Eη = 0 mV, Eγ = -110 mV and the time constants for conductance values

are τη = 6 ms and τγ = 20 ms. The synaptic delays between the M1 units and the

MSNs are selected from a uniform distribution between 3-5 ms and the delays between

MSNs are selected from a uniform distribution ranging from 2.5-3.0 ms.
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Learning in the network (or adaptation in the controller) is provided by reward-

modulated spike-timing-dependent plasticity (STDP), where a global reward signal

leads to long-term potentiation (LTP) or depression (LTD) in the excitatory synapses

[78]. The weight (wij) of the synapse between the i-th motor cortex unit and the j-th

MSN are updated every 26 ms as follows:

wij(t+ 1) = wij(t) + ∆wij (4.6)

∆wij = µwij(t)r(t)eij(t) (4.7)

where µ is the learning rate, eij(t) is the binary-stated (0 or 1) eligibility trace which

is triggered when the post-synaptic node j �res after the pre-synaptic node i within a

time window of 40 ms and is terminated 100 ms after being triggered [79, 80, 81, 82].

r(t) is the current global reward signal evaluated as follows:

r(t) = (1− R̄k)S(t) (4.8)

where S(t) is the sensory error (-1 or +1) which represents the consistency or discrep-

ancy between the user's expected movement direction and the actual robotic action.

The sensory error is extracted from the movements of the robotic actuator every 26 ms

and determines the sign of the global reward signal r(t). If the tip of the robot moves

towards the currently selected target, the value of S(t) is 1, otherwise -1. R̄k is the

positive reward estimate (successful target reach estimate) for the k-th target and is

calculated at the end of each trial as a running mean [83]:

R̄k(nk) = (1− 1

m
)R̄k(nk − 1) +

1

m
RT (4.9)

where nk is the trial number for the corresponding target, RT is the binary reward

variable which indicates if the trial is ended with successful target reach or not (1 or

0). m is the width of the averaging window.

After updating all synaptic weights using Eq. 4.6, `homeostatic synaptic plastic-

ity' rule [84, 85, 86] is utilized to stabilize the excitability of the MSNs; the excitatory



44

synaptic weights are normalized so that the sum of all weights of excitatory synapses

to the j-th MSN is kept at a constant value W :

wij(t+ 1) =
wij(t+ 1)

Σiwij(t+ 1)
W (4.10)

In addition, the weight of the excitatory synapses is limited by a maximum value

(wmax) in order to avoid excessive increase in a synaptic weight. The value of wmax is

determined as follows:

wmax = α(W/Nj) (4.11)

where Nj is the total number of excitatory synapses to the j-th MSN. α is a scaling

constant which is greater than 1 and determines the amount of the di�erence between

wmax and the average of the weights of the excitatory synapses to the j-th MSN.
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5. PROOF-OF-CONCEPT VIA REAL-TIME

CLOSED-LOOP SIMULATIONS

To validate the practicality of the BMDE and study the performance of the

B-BMI, we performed real-time closed-loop simulations which involved a behavioral

paradigm and an external, hardware-based neural signal synthesizer. The neural signal

synthesizer and the behavioral paradigm were designed to realize a full system test in

which all the software and hardware modules of the BMDE are utilized. The closed-

loop simulation paradigm also demonstrates an example of how to develop a bioinspired

BMI controller using the BMDE.

5.1 Real-time Closed-loop Simulation Platform

In the closed-loop simulation paradigm, the model striatal neurons of the BMI

controller are simulated by the SNN simulation tasks of the BMDE and extracellu-

lar recordings from primary motor cortex (M1) neurons are simulated by the neural

signal synthesizer. The synthesizer, implemented using a microcontroller (Microchip

PIC18F4520), provides simulated neural signals to the analog inputs of the DAQ hard-

ware of the BMDE through its output pins (Figure 5.1). Each output pin of the

synthesizer is associated with a synthetic M1 neuron and when a synthetic neuron

generates a spike, the corresponding pin of the microcontroller produces an inverted

100-µs-duration pulse.

As in previous studies in which closed-loop simulations were utilized for devel-

opment of reinforcement learning-based neuroprosthetic control algorithms [25, 87, 88],

the synthetic neurons were created to reproduce the directional tuning properties of

real M1 neurons. In the synthesizer, there are three cortical neuronal ensembles, each

of which consists of six M1 neurons (Figure 5.2). The neurons of the �rst ensemble

are tuned to the `left' and the ones belonging to the second ensemble are tuned to the



46

Figure 5.1 Closed-loop simulation platform for the B-BMI. The signal synthesizer (Synt-A) generates
Poisson-distributed (inverted) pulse signals to simulate extracellular recordings from 18 primary motor
cortex (M1) neurons and provides inputs for 18 analog channels of the DAQ device. SNN simulation
task simulates the striatal MSNs of the B-BMI, which receive synapses from M1 neurons of Synt-A.
A button press provides external input for the TTL control module to initiate a trial. Synt-A receives
inputs from TTL control module to adjust the �ring rates of the M1 neurons according to the selected
target or the out-of-trial (baseline) status.

`right' direction. Additionally, the neurons of the remaining ensemble are tuned to `no

direction' as uncorrelated neurons have been observed in in vivo neuroprosthetic con-

trol experiments [25, 89, 90]. The M1 neurons of the signal synthesizer are connected

to the in silico striatal MSNs through simulated synapses as explained in Figure 3.5;

using the spike sorting task of the BMDE, the spikes extracted from the recordings

are delivered to the in silico MSNs as synaptic events. As shown in Figure 5.2, two

thirds of the synthetic neurons are connected to only one MSN and remaining one third

are connected to both MSNs. Note that, in this con�guration, some neurons with di-

rectional tuning are connected to only one MSN which represents the action towards

the opposite direction (e.g. neuron 2 in Figure 5.2 is tuned to left but connected only
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to right action MSN.). Thus, the M1 neurons, regardless of directional tuning, are

partially connected to the MSNs through simulated excitatory synapses.

Figure 5.2 Tuning map of the M1 neurons of Synt-A (B: baseline, L: left, R: right direction)
and neural network architecture for the neuroprosthetic control algorithm in closed-loop simulations.
Red/green lines indicate synaptic connections between M1 neurons and left/right action MSNs.

In order to simulate the directional tuning properties of the motor cortical neu-

rons, we programmed the synthesizer to produce Poisson-distributed spikes according

to the tuning map shown in Figure 5.2. To provide the random numbers for the Pois-

son spike generation process, we utilized a 32-bit linear congruential pseudo-random

generator [91]:

x(s+ 1) = 1664525x(s) + 1013904223 (5.1)

where x is the generated 32-bit number, s is the number of the iteration and x(0)=0.

The Poisson spike generation process is run every 2 ms for each synthetic neuron. The

plot in the right panel in Figure 5.3 is a snapshot from the spike sorting GUI of the
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BMDE while it was plotting the (digital band-pass �ltered) waveforms of the neural

spikes acquired from a channel of the signal synthesizer. Throughout the simulations,

the synthesizer continuously generates spikes according to the baseline �ring rate es-

timates of the neurons. When a trial starts, it begins to apply the directional tuning

properties of the neurons according to the selected target.

Figure 5.3 The snapshots from the spike sorting GUI of the BMDE showing the isolated spike
waveforms recorded from an awake rat which was chronically implanted with a microwire array in the
forelimb area of the M1 (left) and spike waveforms acquired from the neural signal synthesizer (right).

5.2 The Behavioral Paradigm for Closed-loop Simulations

According to behavioral paradigm (Figure 5.4), each trial starts by an external

digital input (i.e. button press) which is provided by the experimenter at arbitrary

times. When the button is pressed for 26 ms, the DIO control task of the BMDE

(Figure 5.1) senses the external input through the TTL control module of the con-

trol hardware and sends a `trial start request' message to the experiment control task,

the management center of the behavioral experiments. After receiving the trial start

request, the experiment control task selects a target (left or right) randomly and ini-

tiates a trial by delivering a message to the SNN simulation, the DIO control and the

prosthetic control tasks. The `trial start' message also includes the information regard-

ing the selected target side (i.e. left or right). Thence, 1) the SNN simulation task,

simulating the striatal MSNs, determines the value of the positive reward estimate
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(R̄k) corresponding to the selected target to apply Eq. 4.6 throughout the trial, 2) the

prosthetic control task sets the Cartesian coordinates of the selected target to sense

whether the target is acquired during a trial, 3) the DIO control task commands the

TTL control module to turn the target LED on (Figure 4.6) and provides the input for

the neural signal synthesizer. According to the input from the TTL control module,

the neural signal synthesizer starts to generate the neural activity pattern related to

the selected target (Figure 5.2).

Figure 5.4 Behavioral paradigm for the closed-loop simulations.

Forty milliseconds after a trial initiates, the prosthetic control task starts to

periodically handle the spike events received from the SNN simulation tasks. Every 26

ms, it calculates the spike counts of the MSNs with a sliding 104-ms time window and

selects the neuron with the highest spike count as the winning neuron, whereupon it

applies the action corresponding to the winning neuron by delivering a command to

the servo control module of the control hardware. This command rotates the (digital)

base servomotor of the robotic arm -1/+1 degrees for the winning left/right actions

or keeps it stationary in case of equality among the spike count of the MSNs. Six

milliseconds after delivering the pulse width command, the prosthetic control task

receives the angle values of the joints through the servo control module and determines
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the Cartesian position of the tip of the arm by forward kinematics. If the tip of

the robot moves towards the selected target in the last movement step (26 ms), the

prosthetic control task sends a positive sensory error (S(t)=1) message to the SNN

simulation task. If not, it delivers a negative sensory error (-1). Based on the sensory

error messages received from the prosthetic control task, the SNN simulation tasks

periodically update the weights of the plastic synapses by applying Eq. 4.6.

Based on the Cartesian position of the tip of the robotic arm, the prosthetic

control task periodically checks if the correct or wrong target is reached within the

maximum trial duration (i.e. 3 s). If the correct (selected) target is reached, the

prosthetic control task sends a `reward request' message to the experiment control

task. If the wrong (opposite) target is reached by the robotic arm, a `punishment

request' message is delivered to the experiment control task. By receiving such a

request message, the experiment control task ends a trial by sending a message to the

SNN simulation, DIO control and prosthetic control tasks. The message to the SNN

simulation tasks includes the information related to correct or wrong target reach so

that it can update the positive reward estimate for the selected target, R̄k, by applying

Eq. 4.9. The message to the DIO control task cancels the inputs to the target LED

and the neural signal synthesizer. Thus, the synthesizer starts to generate the baseline

spiking activity for the simulated cortical neurons. Finally, by receiving the `trial end

message', the prosthetic control task directs the robotic arm back to its default position

in the middle of the targets to prepare it to be used in the next trial.

In addition to the trial end messages, a trial is also terminated by the experiment

control task when it is not completed by a correct or wrong target reach event within

the maximum trial duration. When there appears a trial timeout, the experiment

control task sends the `trial end message' to the downstream modules as in wrong

target reach case. Thus, the positive reward estimate for the selected target, R̄k, is

decreased, DIO control task cancels the input to the neural signal synthesizer and the

prosthetic control task directs the robotic arm back to the default position. At the end

of each trial, a refractory period of 2 s is applied to allow the robotic arm to reach its

default position and let the data writing processes to create new data folders for the
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recordings related to the next trial.

Throughout the closed-loop simulations, i.e., during the trials and inter-trial

periods, the spike sorting task is always enabled to extract the spike events from the

acquired data using the methods explained in Chapter 3.2.1 and schedule synaptic

events for the post-synaptic in silico neurons. Additionally, throughout the closed-

loop simulations, the SNN simulation tasks evaluate the dynamics of the in silico cells

and deliver the generated spike events to the prosthetic control task with a transmission

delay of 3 ms (Figure 3.5). The prosthetic control task sorts the incoming events in

the time domain and processes them only when the robotic control is enabled after a

trial initiation.

For the simulation of the SNN, Parker-Sochacki (PS) method [46] is applied with

the techniques presented by Stewart & Bair [47] so that full-double precision accuracy

is achieved in the numerical integrations. Whenever the SNN simulation tasks are

triggered by timer interrupts, they perform numerical integrations for the di�erential

equations describing the synaptic interactions and neuronal dynamics in the system

(Eq. 4.1-4.4). For the integrations, the global step size is set to 250 µs. Prior to

realizing integration for a global time step, the incoming synaptic events are sorted in

the time domain. As PS method allows, the global integration step size is split into local

substeps separated by the incoming synaptic events (if there is any) and integration

for a global step size is realized through a single 250-µs-step or multiple substeps,

accordingly. Whenever a spike is generated by a neuron, an event is scheduled for

the postsynaptic neuron and the prosthetic control task (Figure 3.5) with nanosecond

precision, which is the precision of the system time provided by RTAI.

5.3 Learning Performance of the Bioinspired BMI Controller

Prior to starting the experiment to test the learning performance of the cor-

ticostriatal circuit-inspired BMI controller (B-BMI), we determined the total weight

of the excitatory synapses to the MSNs, W in Eq. 5.1, and the weight of the lateral



52

inhibitory synapses between the MSNs to provide a winner-take-all functionality in

the network. While the Synt-A was generating baseline spike activity according to

the tuning map shown in Figure 5.2, we empirically set the value of W to 110 nS to

provide a baseline �ring rate of approximately 2-5 Hz for the MSNs. The weight of the

inhibitory synapses, which were non-plastic throughout the experiment, was set to a

value of 40 nS to provide strong lateral inhibition between the MSNs. The weight of

the excitatory synapses to the MSNs was equal to each other at the beginning of the

experiment and was continuously updated during the trials. The learning rate (µ) in

Eq. 4.7 was 0.02 throughout the trials.

Figure 5.5 Raster of the spikes and change in joint angle modi�ed by the outputs of the MSNs during
the �rst trial. Upper plot shows the time of the spikes generated by Synt-A units (blue) for a selected
left target and those by the MSNs (red) in response to the spike pattern generated by Synt-A. Note
that the �rst six neurons of the Synt-A were tuned to left. The strong lateral inhibition between the
MSNs can be realized through the activity pattern of the MSNs. Lower plot presents the trajectory of
the robotic actuator. The blue trace indicates the joint angle values sent to the base servomotor of the
robotic arm and the orange trace indicates its actual trajectory. Vertical dashed lines in both plots
show the button press time to initiate a trial. Continuous black ones represent the time on which the
robot control was enabled. Horizontal red/green lines present the position of the left/right targets in
terms of the joint angle corresponding to the base servomotor of the robotic arm.
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Figure 5.5 shows the raster plot of the spikes generated by the Synt-A and the

MSNs during the �rst trial of the experiment. Prior to the trial, the Synt-A generated

baseline spike activity. Upon initiation of the trial by a button press, the left target

was selected by the experiment control task of the BMDE and the Synt-A started to

produce the activity pattern for the left direction as it had been programmed to imitate

the tuning properties of motor cortex neurons (Figure 5.2). The synaptic weights of the

excitatory synapses to the MSNs were updated based on the sensory error extracted

every 26 ms from the one-dimensional movements of the robotic arm. The trial was

not rewarded since the robotic arm did not acquire the target within the maximum

trial length of 3 seconds.

The learning performance of the B-BMI is shown in Figure 5.6. As the controller

was naïve at the beginning of the experiment, all synaptic weights were equal and the

positive reward (successful target reach) estimate for each target (R̄k) was zero. In this

con�guration, depending on the learning rate (0.02), perfect target reach accuracy was

achieved after two unsuccessful trials. The positive reward estimate for each target

climbed to `1' and the synaptic weights of the MSNs converged at around trial 40.

In order to test the generalization performance of the B-BMI, at trial 50, we

reversed the directional tuning map of the motor cortex units; i.e., the tuning property

of the units for left direction was switched to be generated for the right direction, and

vice versa. In addition, the �ring rate estimate of the units for the baseline activity

remained the same. In this reversal learning paradigm, from the view of the MSNs,

the task was to update the synaptic weights e�ectively to regain the perfect target

reach accuracy. From Figure 5.6D, we can see a dramatic increase in the percent of

the erroneously selected actions in trial 50. As the target reach accuracy of the control

algorithm decreased, the reward estimate for the targets also diminished. At trial 69,

target reach accuracy of the algorithm started to increase again and corresponding

reward estimate value for the selected target was updated accordingly. As the reward

estimate for the targets rose, the error in selected actions declined. At around trial

120, the synaptic weights converged to their �nal values and stayed there until the end

of the experiment (Figure 5.7).
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Figure 5.6 Learning performance of the B-BMI. (A) Target reach performance. The selected target
for each trial is represented by red stems (L for left trial and R for right trial) and the blue stems
shows if the target was acquired (1) or not (0) within maximum trial length. (B) The positive reward
estimate related to each target at the end of the trials (red for left, green for right target reach-related
positive reward estimate). (C) The length of the trials. The wrong or correct target reach ends the
trial before its maximum allowed length (3 seconds). (D) The percent of the selected actions which
does not direct robotic arm towards the selected target (in other words, the trajectory error rate). At
trial 77, 100% target reach accuracy was regained for the reversed tuning map.

In order to investigate the e�ect of learning rate in learning speed, we reinitiated

the experiment with the same parameters as in the previous experiment except for

the learning rate in Eq. 4.7; we increased it from 0.02 to 0.1. As shown in Figure

5.8, with the higher learning rate, perfect target reach accuracy was achieved in the

�rst trial since the B-BMI continuously learns within the trials. As in the previous

experiment, the tuning map of the motor cortex units was reversed in order to test the

generalization performance of the B-BMI. At trial 62, it regained perfect target reach

accuracy as shown in Figure 5.8A.

We also monitored the weights of the excitatory synapses to the MSNs with the

higher learning rate. In this setting, the convergence in synaptic weights was achieved

earlier than the previous experiment (see Figures 5.7 & 5.9). At trial 50, the tuning

map of the motor cortex units was reversed. Synaptic weights were re-updated to
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Figure 5.7 The weight of the excitatory synapses of the left (A) and right (B) action MSNs at the
beginning of each trial. Convergence in synaptic weights was achieved at around trial 40 by updating
the synaptic weights. At trial 50, the tuning map of the motor cortex units was reversed. Synaptic
weights were re-updated to regain perfect target reach accuracy.

regain perfect target reach accuracy.

5.4 Discussion

We proposed a novel BMI controller (B-BMI) which is inspired by the synap-

tic interactions between the motor cortical and striatal medium spiny neurons. The

controller utilizes two model medium spiny neurons (MSNs), each of which represents

one of two prosthetic actions and competes with the other through strong lateral in-

hibition. The total weights of the excitatory synapses to each MSN and the weight

of the lateral inhibitory synapses were optimized to realize a winner-take-all mecha-

nism. In the present system, if the total excitatory weights to the MSNs are set to

an excessively low value, the MSNs will not be able to reach �ring rates which will

be su�cient to suppress the activity of the other MSN. In contrast, if the total ex-

citatory weights to the MSNs are set to an extremely high value without increasing

the weights of the lateral inhibitory synapses, the strength of the lateral inhibition

will not be su�cient to smother the activity of the other MSN. Thus, the weights of

the synapses in the system should be adjusted to create a winner-take-all operation,

which enables selective weight update for the eligibility-tagged synapses to one winning

(active) postsynaptic neuron. The GUIs of the BMDE have been signi�cantly useful
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Figure 5.8 Learning performance of the B-BMI when learning rate is increased from 0.02 to 0.1.
(A) Target reach performance. The selected target for each trial is represented by red stems (L for
left trial and R for right trial) and the blue stems shows if the target was acquired (1) or not (0)
within maximum trial length. (B) The positive reward estimate related to each target at the end of
the trials (red for left, green for right target reach-related positive reward estimate). (C) The length
of the trials. The wrong or correct target reach ends the trial before its maximum allowed length
(3 seconds). (D) The percent of the selected actions which does not direct robotic arm towards the
selected target (in other words, the trajectory error rate). At trial 62, 100% target reach accuracy
was regained for the reversed tuning map.

to visualize the membrane potential dynamics of the MSNs online and optimize the

synaptic weight parameters for building a winner-take-all mechanism prior to starting

experiments. In this con�guration, the winner-take-all operation actually sharpens the

output patterns of the competing MSNs. In addition, bistable membrane potential

dynamics of the MSNs enhances the hysteresis e�ect (Schmitt-trigger-like behavior)

of the lateral inhibition in the present winner-take-all operation. The MSNs in the

system are mostly inactive in the out-of-trial status (in down-state) and when a trial

is initiated, the activity of winning neuron signi�cantly increases by a transition to

up-state.

Learning (or adaptation) in the present controller was achieved by reward-

modulated spike-timing-dependent plasticity. The synapses leading to correlated pre-

and postsynaptic activity were tagged using eligibility traces. A positive global reward
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Figure 5.9 The weight of the excitatory synapses of the left (A) and right (B) action MSNs at the
beginning of each trial when learning rate is increased from 0.02 to 0.1. Convergence in synaptic
weights was achieved at around trial 20 by updating the synaptic weights.

signal, which may represent a phasic increase in dopamine concentration in the vicinity

of MSNs, led to LTP in the eligibility-tagged synapses [67]. In contrast, a negatively

signed global reward signal, which may characterize a phasic depression in the activ-

ity of the dopaminergic neurons, caused LTD in the tagged synapses [62, 92]. In the

present system, the sign of the global reward signal (r(t)) was determined by the sen-

sory error (S(t)), which was extracted from the movements of the robotic arm. The

robotic movements towards the currently selected target led to an increase in reward

expectancy and a positive global reward signal, and opposite-direction movements trig-

gered a negative reward signal. Additionally, reaching behavior towards each target

was treated as a di�erent task to be learned and the system held a separate positive

reward (successful target reach) estimate value (R̄k) for each task [78]. As the reward

estimates increased by acquisition of the correct targets in consecutive trials, the mag-

nitude of the global reward signal (r(t)) was degraded [93] so that the synaptic weights

were automatically stabilized when perfect target reach accuracy was ensured for each

target (Figures 5.6-5.9). Learning speed and convergence characteristics of the synap-

tic weights in the present model can be modi�ed by changing the learning rate (µ) in

Eq. 4.7 and the reward estimate averaging window size (m) in Eq. 4.9.

In the present study, the units of the neural signal synthesizer (Synt-A) sim-

ulated the spiking behavior of motor cortical (excitatory) regular spiking neurons.

During the inter-trial periods, the units generated baseline activity which was charac-
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terized by low frequency spike trains and, during the trials, the units with directional

tuning increased their spiking activity according to selected target [94] (Figure 5.2).

As it is possible to distinguish the (excitatory) regular spiking units from (inhibitory)

fast spiking ones through electrophysiological recordings [94, 95], we foresee that it will

be possible to provide arti�cial excitatory synaptic inputs to the simulated MSNs from

the cortical regular spiking units during future in vivo neuroprosthetic control studies.

In addition, throughout the closed-loop simulations, the tuning map for the units of

the neural signal synthesizer was static; the tuning properties of the units did not alter

by experienced rewards. Since the motor cortex neurons have the capability to adapt

their activity patterns for e�cient control of neuroprostheses [31, 96], we expect that

cortical neuroplasticity will have a positive e�ect on the performance of the developed

B-BMI [20].

In the B-BMI, we utilized strong lateral inhibitory synapses between the MSNs

in order to create a winner-take-all type competition. In reality, however, the equilib-

rium potential for Cl- (considered to correspond to Eγ in Eq. 4.1) in the MSNs is higher

than the resting membrane potential. In fact, it is close to that of the up-state. Thus,

the GABAergic inputs through the axon collaterals between the MSNs assist the up-

state [97]. The inhibitions for the MSNs are thought to mainly come from feed-forward

fast spiking interneurons which are small in number and stronger in inhibitory e�ect

[98]. These neurons are called feed-forward since they receive excitatory input from

the cortical areas and deliver their axons to MSNs. The other component which sig-

ni�cantly a�ects the excitability of the MSNs is the dopaminergic projections from the

substantia nigra pars compacta and the ventral tegmental area. While the activation of

D1 receptors on the MSNs facilitates transition from down-state to up-state, activation

of D2 receptors makes them less sensitive to excitatory inputs [99]. In the B-BMI, such

e�ects of GABAergic inputs from neighboring MSNs and fast-spiking interneurons, and

dopaminergic inputs from midbrain structures are not considered. Instead, we built an

adaptive BMI controller which is inspired by the dopamine-dependent plasticity in the

corticostriatal synapses and utilizes the bistable (up & down states) behavior of the

medium spiny neurons. Development of action selection (a function often attributed

to basal ganglia, whose entry point is the striatum) mechanisms [100, 101] which are
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based on biologically realistic models of corticostriatal or cortico-basal ganglia circuit

and utilize them as a BMI controller is a matter of further research.
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6. PERFORMANCE PROFILES OF THE BMDE

6.1 Stress Test Methods

In order to evaluate the real-time computational capacity of the BMDE for its

future uses in the design of more complex BMI controllers which utilizes a higher of neu-

rons or simulation parameters, we developed and implemented a stress test paradigm.

In this paradigm, we utilized the same closed-loop simulation setup (Chapter 5.1)

and the behavioral paradigm (Chapter 5.2) as the one used in studying the conver-

gence properties of the B-BMI. While the B-BMI was implemented on the BMDE,

we additionally inserted 150 MSNs into the SNN and connected an extra neural sig-

nal synthesizer (Synt-B) to the remaining 14 channels of the DAQ board (Figure 6.1).

These additional neurons and the signal synthesizer had no function in neuroprosthetic

control; they were added into the closed-loop simulation platform only for stressing the

hardware and software resources of the BMDE while the proposed controller, the B-

BMI, was learning the control of the robotic arm. In this scenario, the additional

MSNs received inputs both from Synt-A and Synt-B through probabilistically con-

nected excitatory synapses (connection probability = 0.66, the synaptic delays were

selected from a uniform distribution ranging from 3-5 ms.). Moreover, these neurons

were connected to each other through inhibitory synapses with a connection probabil-

ity of 0.2; the transmission delays were selected from a uniform distribution between

2.5-3.0 ms. Consequently, each of the additional MSNs received approximately a total

of 50 synapses from each other and from the signal synthesizers. Throughout the stress

tests, each unit of the Synt-B continuously generated Poisson-distributed spikes with

an estimated �ring rate of 80 Hz independent from trial initiation or termination.
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Figure 6.1 The stress test platform. For the stress test, an additional 14 channel neural signal
synthesizer (Synt-B) and 150 MSNs are added into the closed-loop simulation paradigm shown in
Figure 5.1. These MSNs receive inputs from Synt-A and Synt-B through probabilistically connected
synapses, but do not provide any output which can a�ect the operation of the B-BMI.

6.2 Results

In order to evaluate the performance of the BNDE, we ran two test cases: Firstly,

we ran the B-BMI using the closed-loop simulation methods explained in Chapter 5.1

(`only B-BMI paradigm'). Secondly, we ran the stress test paradigm explained in

Chapter 6.1 (`B-BMI+150 MSNs'). Each test case was run for two hours while online

visualization and data recording tools of the BNDE were enabled. For each test case,

500 trials were performed on the system. During the tests, the spike sorting task

ran template matching algorithm for three templates for each channel. One template

was generated based on the spike waveform produced by the neural signal synthesizers

(Figure 5.3) and the remaining two were produced by applying a sinusoidal waveform

to the input channels of the DAQ hardware. Additionally, at trial 50 of each test, the

tuning map for the motor cortex units were reversed as mentioned in the Chapter 5.3.
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At the end of both tests, the SNN simulation task and the prosthetic control task

did not miss any spike event generated by the neural signal synthesizers (Synt-A&B)

and the SNN simulation tasks; all spike events extracted by the spike sorting task were

processed by the SNN simulation tasks on their scheduled time and prosthetic control

task handled all spike events in the corresponding time bin (Figure 5.3). During these

tests, we observed execution times of the RT tasks and deviations in their periods

(i.e. jitters) in order to evaluate the real-time performance of the system. Based on

measurements through 100,000 consecutive execution cycles, average jitter for the tasks

triggered by the timer interrupts of the system (i.e. all tasks except for spike sorting

task) was less than 1 µs, with a maximum of 20-25 µs. For the spike sorting task,

which was triggered by the interrupts of the DAQ hardware, the average jitter was

approximately 9 µs, with a maximum of 110-120 µs. Despite occurrence of such jitters

in execution of the spike sorting task, the times of the spikes could be deterministically

determined through the recordings since the precon�gured interrupt generation period

(512 µs) and the number of samples per DAQ period (16 samples per channel) were

known in the system.

Table 6.1 presents the average and maximum execution times of the RT tasks

during both tests based on 100,000 execution cycles. From the table, we can see that

increasing the number of the MSNs for the stress test also increased the execution

time of the SNN simulation tasks. As expected, by addition of the Synt-B into the

simulation platform for the stress test paradigm, the average execution time for the

spike sorting task also increased due to operation of template matching algorithm for

additional 14 DAQ channels. However, the execution time for other tasks was not

signi�cantly a�ected by such increases since they were run on di�erent cores of the

CPU.

During running only the B-BMI and the stress test paradigm, the BMDE

recorded 1) the timestamps of the spikes generated by both the biological and in silico

neurons, 2) the input and output events related DIO control task, 3) the pulse width

commands sent to the servo control module, 4) joint angle values received from the

servo control module and 5) the statistics related to the experiments. At the end of
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Table 6.1

Execution times of the RT tasks during running only the B-BMI and the stress test.

Stress Test

B-BMI Only (B-BMI + 150 MSNs)

RT Task
Average Maximum Average Maximum Task Period

(µs) (µs) (µs) (µs) (µs)

Spike Sorting 59 145 71 188 512

SNN Simulation 0 7 22 767 1614 2000

SNN Simulation 1 7 20 770 1578 2000

Prosthetic Control 5 55 6 61 2000

Experiment Control 2 31 2 28 2000

DIO Control 3 15 3 15 2000

the performance test for the B-BMI, the BMDE recorded 48 MB of data. In the case

of the stress test, as the number of the spiking units was increased by an addition of

a neural signal synthesizer (Synt-B) and 150 MSNs to the SNN simulator, the BMDE

recorded 1.18 GB of data in two hours. During the stress tests, the average spiking

activity per simulated MSN was approximately 41 Hz.

During the performance tests for running only the B-BMI and the stress test

paradigm, we were able to monitor the plot of the dynamics of the MSNs and raster

of the spike events generated by the neural signal synthesizers (Synt A&B). Figure 6.2

shows a snapshot from the GUI of the BMDE while it was plotting the raster of the

spikes online during the 462nd trial of the stress test. Additionally, Figure 6.3 shows

the snapshot of the GUI while plotting the dynamics of three manually selected MSNs

during the same trial. The uppermost graph in Figure 6.3 illustrates the membrane

potential dynamics of the MSN which corresponds to the left prosthetic action and the

graph in the middle presents those of the MSN corresponding to the right prosthetic

action. Finally, the bottom graph shows the high-frequency spiking activity of one of

the 150 MSNs added into the system for the stress tests. The green vertical lines in

Figures 6.2 & 6.3 mark the timepoint on which the control of the robotic actuator

was enabled and the red lines indicate the timepoint on which the trial was ended by
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Figure 6.2 Raster plot of the spikes generated by Synt-A&B during 462nd trial of the stress test.
The �rst six rows present the tuned activity of the neurons simulated by the Synt-A. Last 14 rows
re�ect the activity pattern of the high-frequency spiking neurons of the Synt-B.

acquisition of the right target. Even though the GUIs are capable of plotting 3-second

history of the raster of the spikes and the neuronal dynamics, we took the snapshot

of the same 1.5 second-portion of the visualized part in order to provide a higher

resolution image here. The time interval between the vertical dashed lines in Figures

6.2 & 6.3 is 300 milliseconds and the voltage di�erence between the horizontal dashed

lines in Figure 6.3 is 30 mV.
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6.3 Discussion

In the present work, one of our goals was to implement a platform capable of

creating simulated synaptic connections from extracellularly recorded neurons to model

neurons for development of SNN-based BMI controllers. Since the software-based SNN

simulations provide a �exible method for investigating the behavior of the neuronal cir-

cuits, we preferred to develop this platform around a desktop PC. In order to guarantee

the strict timing constraints of the real-time SNN simulations and biological/in silico

neuronal interactions, we used RTAI, a real-time extension for Linux operating system.

Utilization of RTAI provided several bene�ts in establishment process of the model-

ing environment. First, it enabled development of real-time applications which are

equipped with powerful GUIs capable of live visualization of the spiking activity of

the biological and in silico neurons (Figures 6.2 & 6.3). Second, by the support of the

COMEDI drivers, the RTAI provides deterministic response to the interrupts of a DAQ

device. Thus, the neural data acquired from the brain or neural signals synthesizers

(Figure 5.3) could be processed in real-time. Third, since the RTAI provides serial

port drivers, it became possible to perform the control of a robotic actuator accord-

ing to the outputs of a SNN which was trained using the position-related feedbacks

received from the actuator. Finally, the use of the open-source software provided by

RTAI and COMEDI projects signi�cantly decreased the costs in establishment of the

in vivo modeling environment presented here.

The other motivation for this study was to validate the real-time performance

of the BMDE for its use in animal experiments. In order to test all its implemented

software components, we connected an external, hardware-based neural signal synthe-

sizer to the analog input channels of the DAQ hardware and developed the Bioinspired

BMI controller (B-BMI) using the simulated cortical inputs provided by the signal

synthesizer. During the development process, the B-BMI was interfaced with a robotic

arm operating in real-world. Using the behavioral paradigm presented in Figure 5.4,

which involved external binary inputs (e.g. button press) to initiate neuroprosthetic

control trials and outputs to indicate the position of the targets (e.g. LED targets),

the system learned the control of the robotic arm for a two target reaching task in one
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dimensional space. In these simulations, the spike sorting task of the BMDE sorted

the detected spikes into one of three synthetic units by applying the Gaussian template

matching algorithm presented in Chapter 3.2.1. In addition to the real-time closed-loop

simulations realized using the neural signal synthesizers, the classi�cation performance

of the Gaussian template matching-based spike sorting utility of the system was also

validated by performing in vivo neural recordings from the rat motor cortex (Figure

5.3). Thus, we con�rmed the real-time performance of the BMDE for its use in future

in vivo neuroprosthetic control experiments.

Since we plan to utilize the BMDE in the long run for development of large scale

models of motor-related circuits consisting of large number of neurons, we examined

its performance by a stress test paradigm involving simulation of 150 neurons which

received dense synaptic connections from each other and the spiking units of the signal

synthesizers (Chapter 6.1). Throughout the stress test, the BMDE was capable of

manipulation of the neuroprosthesis using the B-BMI while simulating additional 150

MSNs without missing any spike event generated by the neural signal synthesizers or

the simulated MSNs.

Since the COMEDI project provides drivers for a variety of DAQ boards, the

BMDE can be implemented using products of other vendors as long as the drivers for

those boards support adequate sampling frequency for spike sorting. In addition, the

DAQ boards should be capable of being programmed to deliver on-board bu�ered data

to the system memory periodically and generate an interrupt at the end of data delivery

process so that the spike sorting task can be triggered in response to the interrupts.

Moreover, the DAQ device which is to be utilized should be capable of bu�ering an

adequate amount of samples into its on-board memory and deliver them to the system

memory at an appropriate frequency; if the data transmission period, and the resultant

interrupt generation period, for the DAQ device is too low, then the GUIs of the system

might be unusable due to consumption of the system resources for processing these

excessively frequent high priority hardware interrupts. We determined an appropriate

period (512 µs corresponding to 16 scans) for the DAQ interrupt generation in the

BMDE so that all the components of the system worked smoothly.
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In the present implementation of the BMDE, we used a quad-core PC and

assigned the SNN simulation process to two cores of the CPU. As the software archi-

tecture of the BMDE and RTAI allows the SNN to be simulated by multiple RT tasks

assigned to di�erent cores of the CPU, the number of neurons which can be simulated

by the system can be improved by utilization of CPUs consisting of a higher number of

cores. Additionally, in the present study, we performed SNN simulations with double-

precision integration accuracy using the Parker-Sochacki method. By sacri�cing the

accuracy in numerical integrations, higher number of neurons can be simulated in the

system using well-known integration methods such as Euler and Runge-Kutta methods

[47]. As a further improvement, since the RTAI and COMEDI libraries enable utiliza-

tion of multiple DAQ devices on a single PC, additional DAQ devices can be inserted

into the system so that the number of units isolated from the neural recordings can

be increased to provide a higher number of synaptic connections to the model neurons

from the real neurons.
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Figure 6.3 Dynamics of the MSNs during 462nd trial of the stress test in response to the spike
events presented in Figure 6.2. When the trial was started and the robot control was enabled (vertical
green line), the MSN corresponding to right action was activated by the increasing activity of the
simulated motor cortex units (graph in the middle) and suppressed the activity of the left action
MSN (uppermost graph) through lateral inhibition. At the end of the trial by successful target reach
(vertical red line), the MSNs returned to their baseline activities with the decrease in the activities of
the presynaptic motor cortex units. The bottom graph represents the neuronal dynamics of one the
MSNs which were added into SNN for the stress test paradigm.
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7. CONCLUSIONS

7.1 Novel Contributions

The work in this dissertation brings a novel, bioinspired motor neuroprosthetic

design approach, which is based on building simulated synaptic connections between

real neurons and model neurons. In order to ful�ll the challenging real-time require-

ments of this approach, we �rst implemented the Bioinspired Model Development En-

vironment (BMDE). Using this BMDE, we developed a novel BMI controller (the

B-BMI).

The BMDE (presented in Chapter 3) provides a low-cost, all-in-one and ex-

tendible solution for the development of new, bioinspired neuroprosthetic systems capa-

ble of realizing the control of a robotic arm through building hybrid biological/in silico

neural networks. In the hybrid neural network, extracellularly recorded real neurons

are connected to the model neurons via simulated (virtual) synaptic connections us-

ing extracellular recording techniques. While time-critical biological-in silico neuronal

interactions and neuroprosthetic control are realized in the background, the BMDE

allows the neuroprosthetic designer to visualize the dynamics of the hybrid neural net-

work online and manage the behavioral experiments through graphical user interfaces

(GUIs). In this way, it enables the designer to optimize the parameters of the hy-

brid neural network during neuroprosthetic control experiments. It also supports spike

data recording related to real and simulated neurons for analyzing the dynamics of

the BMI controller. Using the features of the BMDE, we developed the bioinspired

BMI controller (the B-BMI), based on utilization of two model striatal medium spiny

neurons.

The BMDE was shown to be capable of simulating 150 Izhikevich neurons (each

receiving approximately 50 synapses) in real-time with double-precision integration

accuracy while running the B-BMI and manipulating the robotic arm. This perfor-
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mance pro�le indicates that the BMDE can support more sophisticated SNN-based

BMI control algorithms. Since the BMDE was developed on RTAI, which is a real-

time extension for Linux operating system, it can be modi�ed easily to run on a wide

variety of PC hardware platforms.

The control architecture of the neuroprosthetic system (the B-BMI), described

in this dissertation (Chapter 4), is fundamentally distinct from those of conventional

systems. Most of the conventional neuroprosthetic systems are designed from the per-

spective of input-output mathematical modeling; the main design motivation is gener-

ally to �nd a mathematical model or transform which optimally maps motor cortical

activity into user's intended prosthetic actions. In these systems, a `spike binning'

preprocess is also performed to provide cortical �ring rate inputs to the input-output

model used and this preprocessing leads to loss in the information encoded by timing

of the spikes. In contrast, in the present system, the control of the neuroprosthesis

is realized in a more biologically plausible manner. Cortical spike events are directly

forwarded to the model striatal neurons through simulated synapses without any pre-

processing. There is no spike binning therefore the neural information provided by

spike timing [102, 103, 104] at the input stage of the BMI controller is lossless. Adap-

tation or learning in the present system is realized by simulating a possible mechanism

of corticostriatal plasticity; a reward signal, modeling phasic changes in dopaminer-

gic signaling in the striatum, is used to update the weights of the eligibility-tagged

synapses between the motor cortical and model striatal neurons. In conclusion, the

proposed control algorithm brings a novel and more biologically plausible approach for

neuroprosthetic design.

7.2 Implications

The work in this dissertation aims to shift the design approach for BMI con-

trollers from standard input-output modeling to building hybrid neural networks, where

real neurons are coupled to in silico (model) neurons through simulated synapses to

provide more biologically plausible neuroprosthetic control. The present design ap-
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proach can enable us to develop new BMI controllers which are inspired by the circuits

of the brain. Since these bioinspired control algorithms, built on model neurons, can

directly receive excitatory/inhibitory or other type of simulated synaptic inputs from

the brain circuits, these systems have the potential to interact with the nervous tissue

better than the conventional neuroprosthetic systems. In conventional systems, for

example, the type of the neurons from which extracellular recordings are performed is

not an important design concern. However, in the B-BMI, the extracellularly recorded

motor cortical regular spiking (excitatory) neurons can be selectively and partially

connected to the model MSNs through simulated excitatory synapses as in natural

corticostriatal circuit. Moreover, the synaptic weights between these neurons can be

updated by modeling a possible mechanism of STDP in the corticostriatal circuit.

Investigating the simulated synaptic interactions between the real motor cortex

neurons and model striatal neurons during a neuroprosthetic control task can provide

new insights into the information processing principles in the neuronal circuits involved

in motor control and learning.

The bioinspired BMI, presented in this dissertation, is capable of continuously

adapting its parameters in order to guarantee perfect target reach accuracy in one

dimensional space for a two target center-out reaching task. Its design is based on

co-adaptation of two intelligent systems: 1) the B-BMI and 2) the brain. The B-BMI

is capable of changing the weights of its simulated synapses to provide adaptation to

changing activity patterns of the motor cortex neurons. In this paradigm, the motor

cortex neurons can also change their activity patterns to improve the neuroprosthetic

control performance. In other words, two intelligent agents share the same goal and

aims to adapt themselves to the changing conditions of each other. Learning rate in

Eq. 4.7 determines the bias of the adaptation between these systems. When it is

decreased, the contribution of the brain, by neuroplasticity, will be more pronounced

in the neuroprosthetic control. In contrast, increasing the learning rate will boost the

adaptability of the B-BMI.

In a clinical setting, the B-BMI does not require a training data set due its adap-
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tation feature. On the other hand, most conventional systems require a training data

set since, in general, they use supervised learning methods. Using only one external

reward signal to the B-BMI can be su�cient to accurately control a neuroprosthesis.

If such a reward signal can be identi�ed from the brain tissue of the patient, then the

B-BMI can be a fully autonomous system.

The Bioinspired Model Development Environment (BMDE) is capable of live vi-

sualization of neuronal dynamics of in silico neurons, and spike patterns and waveforms

of real neurons while time critical biological-in silico neuronal interactions and control

of the robotic arm is realized in the background. The real-time tasks of the BMDE

(Figure 3.2) provide a framework for development of neuroprosthetic controllers. In

this context, their content can be modi�ed according to the requirements of the BMI

controller and the behavioral paradigm.

The number of simultaneous SNN simulation tasks can be increased using a

system equipped with a CPU with a higher number of cores. We developed the GUIs

required for development of the B-BMI; new GUIs can easily be modi�ed for di�erent

neuroprosthetic development applications.

7.3 Future Directions

We presented the BMDE as a practical and powerful platform for developing

biologically inspired neuroprosthetic systems. Additionally, we proposed a novel BMI

controller which was designed on the BMDE using real-time closed-loop simulations.

Performance pro�les of these simulations, involving a behavioral paradigm and an

external neural signal synthesizer, not only show that the BMDE is capable of creating

simulated synaptic connections from real neurons to in silico neurons during behavioral

experiments but also present an important proof-of-concept for biologically plausible

neuroprosthetic control. In this context, the BMDE and the proposed BMI controller

(the B-BMI) can be utilized in future in vivo neuroprosthetic control experiments and

the interactions between real motor cortical and model medium spiny neurons can
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be investigated. The simulated synaptic interactions between cortical and in silico

medium spiny neurons during neuroprosthetic control can provide new and signi�cant

knowledge about spike timing properties of the neurons in the primary motor cortex

[102, 104, 105, 106].

Adaptation in the proposed controller is realized in a biologically plausible man-

ner using a reward-modulated spike-timing-dependent plasticity rule; a reward signal,

modeling phasic changes in dopaminergic signaling in the striatum, is used to update

the weights of the synapses leading to correlated pre- and postsynaptic activity. If such

a reward signal can be identi�ed from the dopaminergic neuronal activity or dopamine

concentration in the vicinity of corticostriatal synapses [107], a fully self-learning, au-

tonomous BMI controller, which does not require any external training signal, can be

implemented. Further research is required to investigate the dopaminergic activity

during neuroprosthetic control and learning.

Figure 7.1 Reward signal, extracted directly from the brain, for autonomous neuroprosthetic adap-
tation.
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In the proposed B-BMI, neural decoding is realized by building a winner-takes-

all (WTA) mechanism, by connecting the striatal medium spiny neurons with strong

lateral inhibitory synapses. The B-BMI, based on WTA, essentially performs action

selection, a function also often ascribed to basal ganglia. Developing a biologically

realistic model of the striatum or basal ganglia was out of the scope of the work in this

dissertation; we proposed the B-BMI as a neuroprosthetic controller which is inspired

by the motor corticostriatal circuit. Development of a realistic model of the corticos-

triatal or cortico-basal ganglia circuit for action selection and utilization of this model

in controlling a neuroprosthesis requires further research. As it supports simulation of

150 MSNs (with double precision integration accuracy), we believe that more biologi-

cally plausible BMI controllers can be developed using the BMDE. In addition, for the

development of more realistic models, the optimal number of extracellularly recorded

neurons must be determined. The number of neural recording channels in the BMDE

can be increased using COMEDI driver libraries, which support insertion of additional

data acquisition boards into the system.

The number of simultaneous SNN simulation tasks can be increased using a

system equipped with a CPU with a higher number of cores. We developed the GUIs

required for development of the B-BMI; new GUIs can easily be modi�ed for di�erent

neuroprosthetic development applications.

We developed the BMDE around RTAI. Since RTAI is a real-time extension for

Linux operating system, the BMDE can be implemented on various platforms equipped

with more powerful CPUs. In fact, by utilization of RTnet (Hard Real-Time Networking

for Real-Time Linux, www.rtnet.org), multiple PCs could be connected to each other

through hard real-time network protocols to simulate a large-scale SNN in real-time

to control a neuroprosthesis using biologically realistic models of the motor-related

neuronal circuits.

Since the model neurons are event-driven computing units, their utilization

in neuroprosthetic design can enable development of bidirectional BMIs. RTAI and

COMEDI libraries utilized in developing the BMDE also support hard real-time con-
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trol of the digital outputs of data acquisition devices. Therefore, using the BMDE, it

would be possible to control some optical [108] or electrical stimulation [109] devices

through the digital output channels of the data acquisition device. The spike outputs

of the SNN simulation task of the BMDE could then be used to stimulate the brain

tissue for developing bidirectional BMIs as shown in Figure 7.2.

Figure 7.2 Implementation of electrical and/or optical stimulation on the BMDE for development
of bi-directional neuroprosthetic systems.



76

APPENDIX A. MESSAGE FORMATS BETWEEN

REAL-TIME TASKS OF THE BMDE

Directions of �ow of messages between the real-time tasks of the BMDE are

shown in Figure 3.2. In this section, the format and content of the messages between

these tasks are listed.

From spike sorting task to SNN simulation task:

Microwire Array Microwire Array Isolated Unit

Number Channel Number Number

Microwire Array Number: Microwire arrays are de�ned using the GUI of the BMDE

and each microwire array has a number starting from 0.

Microwire Array Channel Number: Number of channels in a microwire array is also

set using the system GUI. Each channel has a number starting from 0.

Isolated Unit Number: The detected neural spikes from a channel of a microwire array

are sorted into up to 3 units. Each unit has a number starting from 0. The spike

sorting task delivers this message to SNN simulation task whenever it extracts and

sorts a spike from the neural recordings.

From SNN simulation task to prosthetic control task:

Layer Number Neuron Group Neuron

Number Number Number
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The in silico network in the system consists of network layers which include

neuron groups formed by identical type of neurons. For instance, the in silico network

in the corticostriatal circuit-inspired neuroprosthetic control (Chapter 4.5) consists of

two network layers. Each layer comprises of one neuron group including medium spiny

neuron types. Each neuron group includes one medium spiny neuron.

Whenever a spike generated in the output layer of the in silico network (or in

other words in the SNN), the SNN simulation task delivers the above message to the

prosthetic control task to be converted into prosthetic movements.

Figure A.1 Generic in silico neural network architecture in the BMDE. Each neuron group includes
same type of neurons.

From prosthetic control task to SNN simulation task:

Message Time Message Type Additional Info

Message Time: Delivery time of the message in nanoseconds. It is provided by reading

the system time just before forming and sending the message.

Message Type: The messages are handled by the SNN simulation task according its

type. Some examples of available message types:
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PROSTHETIC_CTRL_2_NEURAL_NET_MSG_REINFORCEMENT

PROSTHETIC_CTRL_2_NEURAL_NET_MSG_START_TRIAL

Additional Info: A value is also included in additional information part of the message.

For instance, PROSTHETIC_CTRL_2_NEURAL_NET_MSG_REINFORCEME-

NT message is delivered with the sign of (negative (-1) or positive (+1)) the reinforce-

ment.

From DIO control task to experiment control task:

Message Time Message Type Additional Info

Message Type: The (request) messages are handled by the experiment control task

according its type and decisions are made by the experiment control task according to

the experimental paradigm. Some examples of available message types:

DIO_CTRL_2_EXP_CTRL_MSG_START_TRIAL_REQUEST

DIO_CTRL_2_EXP_CTRL_MSG_REWARD_REQUEST

DIO_CTRL_2_EXP_CTRL_MSG_PUNISHMENT_REQUEST

DIO_CTRL_2_EXP_CTRL_MSG_END_TRIAL_REQUEST

Additional Info: It is placed into this message but not used currently. It can be used

in future implementations with addition of new message types.

From prosthetic control task to experiment control task:

Message Time Message Type Additional Info
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Message Time: Delivery time of the message in nanoseconds.

Message Type: The (request) messages are handled by the experiment control task

according its type. Some examples of available message types:

PROSTHETIC_CTRL_2_EXP_CTRL_MSG_REWARD_REQUEST

PROSTHETIC_CTRL_2_EXP_CTRL_MSG_PUNISHMENT_REQUEST

PROSTHETIC_CTRL_2_EXP_CTRL_MSG_END_TRIAL_REQUEST

PROSTHETIC_CTRL_2_EXP_CTRL_MSG_REACHED_TARGET

PROSTHETIC_CTRL_2_EXP_CTRL_MSG_REACHED_WRONG_TARGET

Additional Info: It is placed into this message but not used currently. It can be used

in future implementations with addition of new message types.

From prosthetic control task to experiment control task:

Message Time Message Type Additional Info

Message Time: Delivery time of the message in nanoseconds.

Message Type: The (request) messages are handled by the experiment control task

according its type. Some examples of available message types:

EXP_CTRL_2_DIO_CTRL_MSG_START_TRIAL

EXP_CTRL_2_DIO_CTRL_MSG_END_TRIAL

EXP_CTRL_2_DIO_CTRL_MSG_RELEASE_REWARD

EXP_CTRL_2_DIO_CTRL_MSG_RELEASE_PUNISHMENT

EXP_CTRL_2_DIO_CTRL_MSG_START_RECORDING

EXP_CTRL_2_DIO_CTRL_MSG_STOP_RECORDING

EXP_CTRL_2_DIO_CTRL_MSG_CANCEL_RECORDING

Additional Info: It is used, for instance, with EXP_CTRL_2_DIO_CTRL_MSG_S-

TART_TRIAL message type to inform the DIO control task about the selected target
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(left or right).

From experiment control task to prosthetic control task:

Message Time Message Type Additional Info

Message Time: Delivery time of the message in nanoseconds.

Message Type: The (request) messages are handled by the experiment control task

according its type. Some examples of available message types:

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_START_TRIAL

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_TRIAL_TIMEOUT

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_END_TRIAL

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_START_RECORDING

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_STOP_RECORDING

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_CANCEL_RECORDING

EXP_CTRL_2_PROSTHETIC_CTRL_MSG_CHANGE_TARGET

Additional Info: It is used, for instance, with EXP_CTRL_2_PROSTHETIC_ CTR-

L_MSG_START_TRIAL message type to inform the prosthetic control task about

the selected target (left or right) so that the prosthetic control task informs the exper-

iment control task when it reaches correct or wrong target.
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APPENDIX B. PSEUDOCODES FOR REAL-TIME TASKS

OF THE BMDE

The Spike Sorting Task:

initialize_rt_task ();

assign_rt_task_to_cpu_0 ();

con�gure_daq_card (); // for continuous ADC and interrupt delivery for every 16

scans.

initiate_daq_process ();

t_task = rt_get_time_ns(); // read system time to evaluate latency in DAQ inter

rupt generation.

wait_daq_interrupt ();

t_latency = rt_get_time_ns() - t_task - 512µs; // evaluate latency in DAQ inter

rupt generation. 512us is the time to acquire 16 scans for each channel.

while (1)

{

wait_daq_interrupt ();

t_task = rt_get_time_ns(); // read system time to evaluate times of sorted

spikes.

for (i=0; i<number_of_daq_channels; i++)

{

detect_spikes_via_level_thresholding (i);

if (spike_detected)

{

run_template_matching_for_spike_sorting();

evaluate_spike_time ();

schedule_synaptic_event_for_postsynaptic_in_silico_target

_neuron(); // deliver detected single− unit spike to the SNN simulation task.

} } }
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The SNN Simulation Task:

initialize_periodic_rt_task (); // the task period is 2 ms.

assign_rt_task_to_cpu_x (); // x is 1 or 2 according to the number

of SNN simulation task. There are two SNN simulation tasks running on diffe

rent CPU cores.

t = rt_get_ time_ns(); // get current CPU time in nanoseconds.

t_prev = t; // keep current cpu time

while (1)

{

rt_task_wait_period(); // suspend task until next period.

t = rt_get_ time_ns(); // read current system time in nanoseconds.

handle_messages_from_experiment_control_task();

handle_messages_from_prosthetic_control_task();

simulate_network_by_numerical_integration (t_prev, t); // apply Parker−

Sochacki integration method between t_prev and t.

t_prev = t;

}

void simulate_network_by_numerical_integration (RTIME t_prev, RTIME t)

// RTIME is of type long long int to represent system time in nanoseconds.

{

time = t_prev;

while (time < t) // integrate for a step

{

sort_synaptic_events(); // sort scheduled events both from real and in

silico neurons.

step_end = time+delta_t; // delta_t is the integration step size of

0.25 ms.

if (step_end >= t)

break;
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HANDLE_EVENTS:

t_event = get_next_synaptic_event_time();

if (t_event < step_end)

{

// then there is a synaptic event corresponding to the current

integration step

update_synaptic_conductance_values();

integrate_step(time, t_event) // integrate with a step− size

of t_event− time

time = t_event;

goto HANDLE_EVENTS;

}

integrate_step (time, step_end);

time = step_end;

}

integrate_step (time,t);

}

void integrate_step (RTIME t_prev, RTIME t)

{

ps_integrate(t_prev,t); //integration using Parker−Sochacki method for a

step between t_prev and t.

if (v > v_peak) //spikegenerated.

{

spike_time = evaluate_spike_time (); // detect spike time where v =

v_peak using Newton−Raphson method.

schedule_event_for_post_synaptic_neurons();

if (output_neuron) // if the simulated neuron is an output layer neuron

{

schedule_event_for_proshetic_control_task();

}

update_neuron_params(spike_time); // update u and conductance
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values where v = v_peak.

ps_integrate(spike_time,t); // integrate for the after − spike

(remaining) part.

}

}
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The Prosthetic Control Task:

initialize_periodic_rt_task (); // the task period is 2 ms.

assign_rt_task_to_cpu_3 ();

while (1)

{

rt_task_wait_period(); // suspend task until next period.

handle_messages_from_gui_of_prosthetic_control_task (); // messages

from graphical user interface (GUI) settings prosthetic control are realized via

GUI.

handle_messages_from_experiment_control_task (); // trial start, end

etc.

bu�er_spike_events_delivered_by_snn_simulation_task();

if (data_transmission_time_to_control_hardware) // deliver pulse width

commands to control hardware every 26 ms.

{

bin_spikes_from_SNN_simulation_task ();

determine_robotic_action_according_to_spike_counts ();

deliver_pulse_width_command_to_control_hardware ();

}

if (data_receive_time_from_control_hardware) // read message from the

control hardware 10 ms after delivering the pulse width command.

{

read_message_received_from_control_hardware ();

evaluate_joint_angles_and_robot_tip_position ();

if (target_reach) // if one of the targets is acquired.

{

transmit_message_to_experiment_control_task ();

}

}

}
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The Digital Input-Output (DIO) Control Task:

initialize_periodic_rt_task (); // the task period is 2 ms.

assign_rt_task_to_cpu_3 ();

while (1)

{

rt_task_wait_period(); // suspend task until next period.

handle_messages_from_gui_of_dio_control_task (); // messages from

graphical user interface (GUI). settings for experimental environment

components are realized using GUI.

handle_messages_from_experiment_control_task (); // trial start, trial

end, start data recording etc.

determine_ binary_states_of_experiment_environment_output_components

(); // state of LEDS, solenoid valve etc.

write_state_of_outputs_to_memory (); // the prosthetic control task will

read and deliver them to control hardware while sending its pulse width commands.

read_message_received_from_control_hardware ();

determine_ binary_states_of_experiment_environment_input_components ();

deliver_request_message_to_experiment_control_task ();

}
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The Experiment Control Task:

initialize_periodic_rt_task (); // the task period is 2 ms.

assign_rt_task_to_cpu_3 ();

while (1)

{

rt_task_wait_period(); // suspend task until next period.

handle_messages_from_gui_of_experiment_control_task (); // messages

from graphical user interface (GUI). settings for experimental paradigm (e.g.

trial duration) and data recording initation/termination for all tasks are realized

using GUI.

handle_messages_from_dio_control_task (); // e.g. trial start request.

handle_messages_from_prosthetic_control_task (); // e.g. target acquired.

check_time_related_conditions_of_experimental_paradigm (); // e.g. trial

timeout?

transmit_message_to_ dio_control_task (); // e.g. trial start/end data

recording start/end etc.

transmit_message_to_ prosthetic_control_task (); // e.g. trial start/end data

recording start/end etc.

transmit_message_to_ snn_simulation_task (); // e.g. trial start/end data

recording start/end etc.

}
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APPENDIX C. SCHEMATIC DIAGRAM OF THE

CONTROL HARDWARE

The schematic diagram of the control hardware is available in the following page.
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APPENDIX D. PSEUDOCODE FOR THE CONTROL

HARDWARE

con�gure_microcontroller();

while (1)

{

wait_rx_interrupt(); // wait for a message from the BMDE through

RS − 232 port message is periodically received every 26 ms.

parse_message_for_servo_and_ttl_control_modules();

apply_servo_pulse_width_command_signals() ; // drive three servo

motors of the robotic arm.

set_the_binary_state_of_experiment_environment_components(); // turn

on/off LEDS etc.

measure_servo_angles(); // read joint angles of the rob. arm through

analog − to− digital conversion.

read_status_of_binary_stated_experiment_environment_components();

// read status of levers etc.

form_message_to_bmde();

deliver_message_to_bmde(); // via RS − 232 port

}
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APPENDIX E. GRAPHICAL USER INTERFACES OF THE

BMDE

The graphical user interfaces (GUIs) of the Bioinspired Model Development

Environment (BMDE) are available in the next pages.



92

F
ig
u
r
e
E
.1

S
p
ik
e
so
rt
in
g
g
ra
p
h
ic
a
l
u
se
r
in
te
rf
a
ce
.
S
n
a
p
sh
o
t
ta
ke
n
d
u
ri
n
g
in
v
iv
o
re
co
rd
in
g
fr
o
m

aw
a
k
e
ra
t
im
p
la
n
te
d
in

th
e
p
ri
m
a
ry

m
o
to
r
co
rt
ex

fo
re
li
m
b

a
re
a
.



93

F
ig
u
r
e
E
.2

S
p
ik
e
so
rt
in
g
g
ra
p
h
ic
a
l
u
se
r
in
te
rf
a
ce
.
S
n
a
p
sh
o
t
ta
k
en

d
u
ri
n
g
re
co
rd
in
g
th
e
o
u
tp
u
ts
o
f
th
e
n
eu
ra
l
si
g
n
a
l
sy
n
th
es
iz
er
.
T
h
e
�
rs
t
sp
ik
e
te
m
p
la
te

w
a
s

g
en
er
a
te
d
b
y
se
le
ct
in
g
th
e
sp
ik
e
w
av
ef
o
rm

s
re
la
te
d
to

n
eu
ra
l
si
g
n
a
l
sy
n
th
es
iz
er
.
T
h
e
o
th
er

tw
o
te
m
p
la
te
s
w
er
e
g
en
er
a
te
d
b
y
a
p
p
ly
in
g
si
n
u
so
id
a
l
w
av
ef
o
rm

to
th
e
a
n
a
lo
g
in
p
u
t
ch
a
n
n
el
s
o
f
th
e
d
at
a
a
cq
u
is
it
io
n
h
a
rd
w
a
re
.



94

F
ig
u
r
e
E
.3

G
ra
p
h
ic
a
l
u
se
r
in
te
rf
a
ce

fo
r
m
o
n
it
o
ri
n
g
ra
st
er

o
f
th
e
sp
ik
es

ex
tr
a
ct
ed

fr
o
m

re
co
rd
in
g
s.

T
h
e
sn
a
p
sh
o
t
ta
ke
n
d
u
ri
n
g
4
6
2
n
d
tr
ia
l
o
f
th
e
st
re
ss

te
st

p
re
se
n
te
d
in

C
h
a
p
te
r
6
.1
.
T
h
e
�
rs
t
si
x
ro
w
s
p
re
se
n
t
th
e
tu
n
ed

a
ct
iv
it
y
o
f
th
e
n
eu
ro
n
s
si
m
u
la
te
d
b
y
th
e
S
y
n
t-
A
.
L
a
st

1
4
ro
w
s
re
�
ec
t
th
e
a
ct
iv
it
y
p
a
tt
er
n
o
f

th
e
h
ig
h
-f
re
q
u
en
cy

sp
ik
in
g
n
eu
ro
n
s
o
f
th
e
S
y
n
t-
B
.
T
h
e
g
re
en

ve
rt
ic
a
l
li
n
e
m
a
rk
s
th
e
ti
m
ep
o
in
t
o
n
w
h
ic
h
th
e
co
n
tr
o
l
o
f
th
e
ro
b
o
ti
c
a
ct
u
a
to
r
w
a
s
en
a
b
le
d
a
n
d

th
e
re
d
li
n
e
in
d
ic
a
te
s
th
e
ti
m
ep
o
in
t
o
n
w
h
ic
h
th
e
tr
ia
l
w
a
s
en
d
ed

b
y
a
cq
u
is
it
io
n
o
f
th
e
ri
g
h
t
ta
rg
et
.
T
h
e
ti
m
e
in
te
rv
a
l
b
et
w
ee
n
th
e
v
er
ti
ca
l
d
a
sh
ed

li
n
es

is
3
0
0

m
il
li
se
co
n
d
s
a
n
d
th
e
v
o
lt
a
g
e
d
i�
er
en
ce

b
et
w
ee
n
th
e
h
o
ri
zo
n
ta
l
d
a
sh
ed

li
n
es

is
3
0
m
V
.



95

F
ig
u
r
e
E
.4

D
y
n
a
m
ic
s
o
f
th
e
M
S
N
s
d
u
ri
n
g
4
6
2
n
d
tr
ia
l
o
f
th
e
st
re
ss

te
st

(p
re
se
n
te
d
in

C
h
a
p
te
r
6
.1
)
in

re
sp
o
n
se

to
th
e
sp
ik
e
ev
en
ts

p
re
se
n
te
d
in

F
ig
u
re

E
.3
.

W
h
en

th
e
tr
ia
l
w
a
s
st
a
rt
ed

a
n
d
th
e
ro
b
o
t
co
n
tr
o
l
w
a
s
en
a
b
le
d
(v
er
ti
ca
l
g
re
en

li
n
e)
,
th
e
M
S
N

co
rr
es
p
o
n
d
in
g
to

ri
g
h
t
a
ct
io
n
w
a
s
a
ct
iv
a
te
d
b
y
th
e
in
cr
ea
si
n
g

a
ct
iv
it
y
o
f
th
e
si
m
u
la
te
d
m
o
to
r
co
rt
ex

u
n
it
s
(g
ra
p
h
in

th
e
m
id
d
le
)
a
n
d
su
p
p
re
ss
ed

th
e
a
ct
iv
it
y
o
f
th
e
le
ft
a
ct
io
n
M
S
N

(u
p
p
er
m
o
st

g
ra
p
h
)
th
ro
u
g
h
la
te
ra
l

in
h
ib
it
io
n
.
A
t
th
e
en
d
o
f
th
e
tr
ia
l
b
y
su
cc
es
sf
u
l
ta
rg
et

re
a
ch

(v
er
ti
ca
l
re
d
li
n
e)
,
th
e
M
S
N
s
re
tu
rn
ed

to
th
ei
r
b
a
se
li
n
e
a
ct
iv
it
ie
s
w
it
h
th
e
d
ec
re
a
se

in
th
e
a
ct
iv
it
ie
s

o
f
th
e
p
re
sy
n
a
p
ti
c
m
o
to
r
co
rt
ex

u
n
it
s.

T
h
e
b
o
tt
o
m

g
ra
p
h
re
p
re
se
n
ts

th
e
m
em

b
ra
n
e
d
y
n
a
m
ic
s
o
f
o
n
e
th
e
M
S
N
s
w
h
ic
h
w
er
e
a
d
d
ed

in
to

S
N
N

fo
r
th
e
st
re
ss

te
st

p
a
ra
d
ig
m
.
T
h
e
g
re
en

ve
rt
ic
a
l
li
n
e
m
a
rk
s
th
e
ti
m
ep
o
in
t
o
n
w
h
ic
h
th
e
co
n
tr
o
l
o
f
th
e
ro
b
o
ti
c
a
ct
u
a
to
r
w
a
s
en
a
b
le
d
.
T
h
e
ti
m
e
in
te
rv
a
l
b
et
w
ee
n
th
e
v
er
ti
ca
l

d
a
sh
ed

li
n
es

is
3
0
0
m
il
li
se
co
n
d
s
a
n
d
th
e
v
o
lt
a
ge

d
i�
er
en
ce

b
et
w
ee
n
th
e
h
o
ri
zo
n
ta
l
d
a
sh
ed

li
n
es

is
3
0
m
V
.



96

APPENDIX F. THE LIST OF PUBLICATIONS

ORIGINATED FROM THE PRESENT DISSERTATION

WORK

F.1 Publications in Journals

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., Toward building hybrid biological/in

silico neural networks for motor neuroprosthetic control, Frontiers in Neurorobotics,

9:8, 2015.

F.2 International Conference Proceeding Papers

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., A workstation for development of

brain machine interfaces using spiking neural networks, Proceedings of the International

Conference on Neurorehabilitation (ICNR 2012), Converging Clinical and Engineering

Research on Neurorehabilitation, Toledo, Spain. Pages: 623-627, 2012.

F.3 International Conference Abstracts

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., Towards brain machine interfaces

operating with spike-based models of neurons, Neuroscience 2014, Washington DC,

USA, 2014.

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., A real-time spiking neural net-

work simulator combined with online spike sorting software, Neuroscience 2012, New

Orleans, USA, 2012.
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Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., BlueSpike: Neural data acquisition,

recording and online spike sorting software, Neuroscience 2011, Washington DC, USA,

2011.

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., A real-time data acquisition and

neural spike processing platform for brain machine interface engineering experiments,

Neuroscience 2010, San Diego, USA, 2010.

F.4 National Conference Proceeding Papers

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., Real-time neural network simu-

lation software for brain machine interface engineering, 17th National Conference on

Biomedical Engineering (BIYOMUT 2012), Istanbul, Turkey, 2012.

Serbes, G., Kocatürk, M, Gülçür, H. Ö., Ayd�n, N., Extracellular spike detection

with resonance based signal decomposition, 20th Signal Processing and Communica-

tions Applications Conference (SIU 2012), Fethiye, Turkey, 2012.

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., BlueSpike: Online neural spike

sorting software for brain machine interface engineering experiments, 16th National

Conference on Biomedical Engineering (BIYOMUT 2011), Antalya, Turkey, 2011.

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., Chronic recordings from rat mo-

tor cortex for developing neural prostheses, 15th National Conference on Biomedical

Engineering (BIYOMUT 2010), Antalya, Turkey, 2010.
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Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., A real-time simulation study for a

biomimetic brain machine interface, 12th National Neuroscience Congress (USK 2014),

Istanbul, Turkey, 2014.

Kocatürk, M., Gülçür, H. Ö., Canbeyli, R., A low-cost microelectrode array for

brain-machine interfacing, 10th National Neuroscience Congress (USK 2011), Istanbul,

Turkey, 2011.

Bayat, F.K., Kocatürk, M., Gülçür H. Ö., Canbeyli, R., Correlated activity de-

coding of motor cortical spike recordings using spike �ring rate estimates, 10th National

Neuroscience Congress (USK 2011), Istanbul, Turkey, 2011.
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