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ABSTRACT

TENSOR ANALYSIS OF NEUROIMAGING DATA

Acquisition of large amounts of data in neuroimaging research requires develop-

ment of new methods that can disentangle the underlying information and reveal the

features related to cognitive processes. This thesis attempts to propose new methods

that favor the multimodality and multidimensionality of the brain data. The main

di�culty for the fusion of imaging modalities is the discrepancies in their spatial and

temporal resolutions as well as the di�erent physiological processes they re�ect. This

problem is addressed by decomposing the EEG and fMRI data cast as tensors on both

common and discriminant subspaces and computing the common spatial pro�le from

the data on the cortical surface. The Granger causality analysis of brain connectivity

is reformulated on tensor space enabling incorporation of tools developed in that area

of research. The �rst approach on this analysis facilitated tensor methods for sparse

representation of the connectivity patterns whereas the second method resolved them

as atomic structures. General theory and computationally e�cient algorithms are pre-

sented. The techniques are illustrated on the simultaneous EEG/fMRI recordings for

the fusion model and on the fast fMRI data for the connectivity analysis. The pro-

posed approaches may have a wide application area ranging from the early diagnosis

of neurological diseases to the brain-computer interface studies.

Keywords: EEG, fMRI, multimodal data fusion, brain connectivity, Granger Causal-

ity, autoregressive processes, tensor decomposition, PARAFAC.
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ÖZET

NÖROGÖRÜNTÜLEMEDE TENSOR ANAL�Z�

Nörogörüntüleme ara³t�rmalar�nda büyük miktarlarda veri toplanmas� bili³sel

süreçlerle ilgili bilginin ayr�³t�r�lmas� için yeni yöntemlerin geli³tirilmesini gerektirmek-

tedir. Bu tez çal�³mas�n�n amac� çok boyutlu ve birden fazla nörogörüntüleme modalite-

sinden elde edilen beyin verisinin i³lenmesine elveri³li yöntemler sunmaktad�r. Nörogö-

rüntüleme modalitelerinin tümle³tirilmesindeki (fusion) en büyük zorluk elde verilerin

uzaysal ve zamansal olarak farkl� bilgiler ta³�mas�d�r. Bu problem, tensörlerle ifade

edilen EEG ve fMRG verisinin hem ortak hem de ayr�k altuzaylarda ayr�³t�r�lmas� ve or-

tak uzaysal pro�lin kortikal yüzeyde do§rudan veriden hesaplanmas� ile a³�lm�³t�r. Ayn�

³ekilde beyin ba§lant�l�l�§�n�n Granger nedensellik analizi de tensör tabanl� bir modelle

ifade edilmi³ ve böylelikle tensör yöntemleri bu problemde kullan�labilmi³tir. Ba§lan-

t�l�l�k analizi için sunulan ilk yakla³�mda tensör yöntemleri kullan�larak ba§lant�l�l�k

örüntüsü seyrekle³tirilmi³tir. �kinci yakla³�mda ise ba§lant� örüntüleri atomsal yap�lara

bölünmü³tür. Genel teori ve hesapsal olarak etkin algoritmalar sunulmu³tur. Öneri-

len teknikler tümle³tirme modeli için e³zamanl� EEG ve fMRG kay�tlar�n�n üzerinde;

ba§lant�l�l�k modelleri için h�zl� çekim fMRG veri seti üzerinde uygulanm�³t�r. Öneri-

len yakla³�mlar�n nörolojik hastal�klar�n erken te³hisinden beyin-bilgisayar arayüzü gibi

uygulamalara kadar geni³ bir alanda kullan�m imkan� olabilir.

Anahtar Sözcükler:EEG, fMRG, çoklu modalite veri füzyonu, beyin ba§lant�l�l�§�,

Granger nedenselli§i, özba§lan�ml� model, tensör ayr�³t�rmas�, PARAFAC
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GC Granger Causality

HALS Hierarchical Alternating Least Squares

HOPLS Higher Order Partial Least Squares

HRF Hemodynamic Response Function

ICA Independent Component Analysis

InI Inverse Imaging
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LORETA Low Resolution Brain Electromagnetic Tomography

M Motor Cortex

MAR Multivariate Autoregressive

M-P Diagram Markov Penrose Diagram

MUA Multiple Unit Activity

N-PLS Multiway Partial Least Squares

N-D N Dimensional

P Diagram Penrose Diagram

PARAFAC Parallel Factors

PCA Principal Component Analysis

PCC Parietal Cortex

PreM Pre-motor Cortex

RSS Residual Sum of Squares

S Somatosensory Cortex

SPM Statistical Parametric Mapping

SVD Singular Value Decomposition

SVM Support Vector Machines

TAR Tensor Autoregressive

TCCA Tensor Canonical Correlation Analysis

TE Echo Time

TR Repetition Time

V Visual Cortex

VFFS Vasoactive Feed Forward Signal
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1. INTRODUCTION

Imaging of the brain function has a wide application area ranging from under-

standing of the cognitive and perceptual processes in the brain and diagnosis of neu-

rological and mental disorders to the design of neural prostheses and brain-computer

interface applications. One of the biggest challenges in this area of research is to de-

velop methods that can handle the complexity of the brain and the type and the size

of the datasets acquired from di�erent imaging modalities.

The human brain serves as a highly interconnected network of on the order of

1011 neurons and 1015 connections between them [1]. This complex network has been

studied at di�erent spatial scales from the microscale that investigates the function of

the single neurons and their synaptic connections to the macroscale that accounts for

the functional and anatomical connectivity between brain regions.

There are several points to consider when addressing the analysis of brain data

[2]:

1. Brain data acquired at any level of organization presents a multidimensional

nature in space and time.

2. Since each modality is an indirect measurement of the underlying dynamical

system, multimodality analysis provides a complementary framework.

3. Each modality is recorded at di�erent spatial and temporal resolutions that

should be handled in the multimodal fusion.

4. The analysis should not only be con�ned to the identi�cation of the brain re-

gions that are specialized on certain functions but also the determination of their

interactions.

Among the large variety of acquisition methods available for investigating the
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brain function, this thesis will focus on two particular modalities: EEG and fMRI. EEG

is a non-invasive technique based on the electrical activity produced by the neuronal

populations in the milliseconds sampling time. The major drawback of the EEG is

the limited spatial resolution which is a result of low number of measurement chan-

nels placed on the scalp and the volume conduction e�ect due to the transmission of

electrical currents in the brain tissue. On the other hand fMRI re�ects the neuronal

activity through metabolic processes whose response evolve slowly compared to the un-

derlying neuronal processes in millimeters spatial scale. The integration of EEG and

fMRI on a common space and/or time scale by merging the superiorities of di�erent

imaging modalities may reveal the complex dynamics of brain functions and neuronal

interactions on a �ner spatiotemporal scale [3, 4, 5]. However as stated in [6] and [7] a

caution should be taken for the fusion. Under certain circumstances these modalities

may not overlap such as oscillatory activity of the neuronal populations represented

by EEG may not lead to an increase in fMRI signal. Conversely, asynchronous neural

activity will not be detected by EEG but by fMRI.

In this study, a novel EEG-fMRI fusion approach based on tensor methods is

presented. This approach has several advantages over the others: 1) The model exploits

the inherent multidimensionality of the multimodal data. 2) EEG and fMRI are fused

on the common spatial extent by projecting the scalp EEG on the cortical surface with

source localization 3) The model takes into account the discrepancies in the neural

origins of the two modalities by calculating the common and individual signatures.

The tensor based approach is also adopted for the identi�cation of the brain

networks in a causal framework. By using the Granger causality analysis, two prob-

lem formulations are presented that may overcome the computational and algorithmic

challenges of the analysis of the high dimensional neuroimaging data.

The organization of the thesis is as follows: Chapters are divided on the basis of

the presentation of tools and application of those tools on the neuroimaging data. In

Chapter 2 the tensor notation and operations that are used throughout the thesis are

introduced. Chapter 3 describes tensor decomposition methods and several data fusion
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techniques based on them. Chapter 4 approaches the EEG/fMRI fusion in the tensor

framework and proposes a coupled tensor matrix factorization model. In Chapter 5,

brain connectivity is described and Granger causality is reformulated embracing the

high dimensionality of neuroimaging data. Finally in Chapter 6 general discussion,

conclusion and future work is presented.
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2. TENSOR NOTATION AND OPERATIONS

In this chapter tensor notation and operations that will be used throughout the

thesis are presented.

2.1 De�nitions

Tensors are the generalization of vectors and matrices to higher dimensions.

The order or mode of a tensor is the number of its dimensions. In this context vectors

are one-dimensional tensors (1-D) denoted by x ∈ RI , matrices are two dimensional

tensors (2-D) denoted by X ∈ RI×J and an N -dimensional tensors (N-D) are denoted

by X ∈ RI1×I2×···×IN . The ith element of a vector is x(i), (i, j)th element of a matrix

is X(i, j) and (i, j, k)th element of a tensor is X (i, j, k).

Columns and rows of matrices are replaced with �bers in tensors. Fiber of a

tensor is represented by �xing all the indices but one. The column of a matrix denoted

by X(i, :) is the mode-1 �ber and the row of a matrix denoted by X(:, j) is the mode-

2 �ber. Slices are de�ned as the two-dimensional sections of a tensor by �xing all

the indices but two. ith horizontal slice of a three dimensional tensor is denoted by

X (i, :, :). Other types of slices of a 3-D tensor are shown in Figure 2.1.

2.2 Tensor Operations

2.2.1 Mode-n Unfolding

Mode-n unfolding of a tensor is the transformation of the tensor X ∈ RI1×···×IN

to a matrix denoted by X(n) ∈ RIn×I1...In−1In+1...IN where mode-n �bers are arranged

to be columns of the resulting matrix [8]. (Refer to Figure 2.2). Tensor element
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Figure 2.1 Illustration of the �bers and slices of the third order tensor X ∈ R5×5×3. (a) Mode-1
�bers. The �ber shown in dark color is X (:, 3, 2). (b) Mode-2 �bers, X (4, :, 2) is in dark color. (c)
Mode-3 �bers, X (4, 3, :) is in dark color. (d) Horizontal slices. The slice shown in dark color is
X (4, :, :). (e) Vertical slices, X (:, 3, :) is in dark color. (f) Frontal slices, X (:, :, 2) is in dark color.

(i1, . . . , iN) corresponds to the matrix element (in, j) , where

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk with Jk =
k−1∏
k=1
k 6=n

Im. (2.1)

2.2.2 Kronecker and Khatri-Rao Products

The Kronecker product is a special type of matrix product. Let A ∈ RI×J and

B ∈ RK×L, then the Kronecker product of A and B is denoted by A⊗B and is of size

IJ ×KL. This operation is shown as
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Figure 2.2 Mode-1 unfolding of a tensor. (a) Third order tensor X ∈ RI×J×3. (b) Mode-1 unfolding
of the tensor X results in a matrix with dimensions I × J · 3.

A⊗B =


A(1, 1)B A(1, 2)B . . . A(1, J)B

A(2, 1)B A(2, 2)B . . . A(2, J)B
...

...
. . .

...

A(I, 1)B A(I, 2)B . . . A(I, J)B

 . (2.2)

The Khatri-Rao product is the columnwise Kronecker product of two matrices.

Let A ∈ RI×J and B ∈ RK×J , then the Khatri-Rao product of A and B is denoted by

A�B and is of size IK × J . Khatri-Rao product is formulated as

A�B =
[
A(:, 1)⊗B(:, 1) A(:, 2)⊗B(:, 2) . . . A(:, J)⊗B(:, J)

]
. (2.3)

2.2.3 Tensor Contraction

Tensor contraction is the multiplication of two tensors over speci�ed common

dimensions. Let X ∈ RI1×···×IN×J1×···×JM and Y ∈ RJ1×···×JM×K1×···×KP . Multi-

plication of X and Y over common dimensions J1, . . . , JM gives the tensor Z ∈
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RI1×···×IN×K1×···×KP . In scalar notation, this is showed as follows:

(
X •{j1,...,jM} Y

)
(i1, . . . , iN , k1, . . . , kP )

=

J1,...,JM∑
j1,...,jM=1

X (i1, . . . , iN , j1, . . . , jM)Y(j1, . . . , jM , k1, . . . , kP ) (2.4)

Outer and inner products can also be represented by using tensor contraction

notation. For the outer product we make use of the singleton dimensions. Adding

singleton dimensions to a tensor does not change the tensor itself: X ∈ RI1×···×IN×1×1

is the same as X ∈ RI1×···×IN . Outer product of the tensors X ∈ RI1×···×IN and

Y ∈ RJ1×···×JM gives a tensor of size I1 × · · · × IN × J1 × · · · × JM and is denoted

elementwise by

(X •{1} Y)(i1, . . . , iN , j1, . . . , jM) = X (i1, . . . , iN , 1)Y(j1, . . . , jM , 1). (2.5)

Inner product of the same size tensors X ,Y ∈ RI1×···×IN is equal to a scalar and de�ned

by

〈X ,Y〉 = (X •{I1,...,IN} Y) =

I1,...,IN∑
i1,...,iN=1

X (i1, . . . , iN)Y(i1, . . . , iN). (2.6)

Square of the norm of a tensor is equal to its inner product with itself :

‖X‖22 = (X •{I1,...,IN} X ) =

I1,...,IN∑
i1,...,iN=1

X (i1, . . . , iN)2 (2.7)

2.2.4 Tensor Concatenation

Tensor concatenation is the merging of the same order tensors in which tensors

are necessarily required to be the same order and have the same dimensions except

the concatenation index. We will de�ne the binary and set operators for the tensor

concatenation. Let X ∈ RI1×···×In−1×J×In+1×···×IN and Y ∈ RI1×···×In−1×K×In+1×···×IN .

Concatenation of X and Y on the Jth and Kth dimensions gives the tensor Z ∈

RI1×···×In−1×J+K×In+1×···×IN . The binary operator for the concatenation is denoted as
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follows:

Z = X |{J |K}Y (2.8)

If the concatenation is applied on a set of tensorsXm ∈ RI1×···×In−1×Jm×In+1×···×IN

over the J thm dimensions for m = 1, . . . ,M , the result is of size I1 × · · · × In−1 × (J1 +

· · ·+ JM)× In+1 and denoted as follows:

Z = [Xm]
{J1|...|JM}
m=1:M . (2.9)

2.2.5 t-Operators

t-Operators are introduced by Kilmer and her group [9] as an extension of linear

algebra tools to tensors. Although there are many t-operators, we will present only the

ones that are related to the context of this thesis.

Before giving details, two matrix types that are used extensively in the de�ni-

tions will be reviewed. If a =
[
a(1) a(2) a(3) a(4)

]T
, then the circulant matrix is

de�ned by

circ(a) =


a(1) a(4) a(3) a(2)

a(2) a(1) a(4) a(3)

a(3) a(2) a(1) a(4)

a(4) a(3) a(2) a(1)

 . (2.10)

Note that a circulant matrix is completely speci�ed by its �rst column. An

important property of circulant matrices is that they can be diagonalized with the

normalized Discrete Fourier Transform (DFT) matrix [10]. Let w be the Mth root of
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unity, w = e−2πi/M , the DFT matrix D ∈ RM×M is de�ned as

D =



1 1 . . . 1

1 w1 . . . wM−1

1 w2 . . . w2(M−1)

...
...

. . .
...

1 wM−1 . . . w(M−1)(M−1)


. (2.11)

If a ∈ RM is a column vector and D ∈ RM×M is the DFT matrix de�ned in Eq.

2.11, then

Dcirc(a)D−1 (2.12)

is a diagonal matrix and its diagonal is equal to the DFT of a, and can be calculated

by using fast fourier transform (FFT), �t(a).

A block circulant matrix can also be created from the slices of a tensor. As an

example, let X ∈ RI×J×K , then a block circulant of size IK × JK is

circ(X ) =


X (:, :, 1) X (:, :, K) . . . X (:, :, 2)

X (:, :, 2) X (:, :, 1) . . . X (:, :, 3)
...

...
. . .

...

X (:, :, K) X (:, :, K − 1) . . . X (:, :, 1)

 . (2.13)

A matrix is called Toeplitz if it has constant values along each diagonal. An

example of a Toeplitz matrix is given below:

T =


T(1, 1) T(1, 2) T(1, 3) T(1, 4)

T(2, 1) T(1, 1) T(1, 2) T(1, 3)

T(3, 1) T(2, 1) T(1, 1) T(1, 2)

T(4, 1) T(3, 1) T(2, 1) T(1, 1)

 (2.14)
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Note that a Toeplitz matrix is completely speci�ed by its �rst column and row.

A Toeplitz matrix can be embedded into a larger size circulant matrix.

We will show the circulant embedding of a block Toeplitz matrix created from

the frontal slices of the tensor X ∈ RI×J×K [11].

embed(X ) =



X (:, :, 1) X (:, :, 2)H · · · X (:, :, 2)

X (:, :, 2) X (:, :, 1) · · · X (:, :, 3)
...

...
. . .

...

X (:, :, K)
...

. . .
...

Φ X (:, :, K)
. . .

...

X (:, :, K)H Φ
. . .

...
... X (:, :, K)H

. . .
...

...
...

. . .
...

X (:, :, 2)H X (:, :, 3)H · · · X (:, :, 1)



(2.15)

where Φ = (X (:, :, K)+X (:, :, K)H)/2. The created matrix is of size I ·(2K)×J ·(2K).

This type of circulant embedding is especially useful for covariance tensors which will

be used in Section 5.4.

The MatVec operator stacks the frontal slices of a tensor to construct a matrix.

This matricization operation is slightly di�erent from the mode-n unfolding. Let X ∈

RI×J×K , then MatVec(X ) gives a tensor of size IK × J :

MatVec(X ) =


X (:, :, 1)

X (:, :, 2)
...

X (:, :, K)

 (2.16)

The fold operation undoes the MatVec operation:

fold(MatVec(X )) = X (2.17)
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2.2.5.1 t-Product. t-product of X ∈ RI×J×K and Y ∈ RJ×L×K denoted by X ?Y

is equal to a tensor of size I × L×K

X ?Y = fold(circ(X ) ·MatVec(Y)). (2.18)

If the tensors that are contracted with t-product are sparse, the computation is

performed as stated in the de�nition. However, if the tensors are dense, then diagonal-

izability property of the circulant matrices can be used and the t-product is calculated

by the DFT matrices as follows:

(DH ⊗ I)((D⊗ I) · circ(X ) · (DH ⊗ I))(D⊗ I) ·MatVec(Y) (2.19)

Transpose of a tensor X ∈ RI×J×K in t-operator concept is de�ned as

X T = fold




X (:, :, 1)T

X (:, :, K)T

...

X (:, :, 2)T



 . (2.20)

A tensorX ∈ RI×I×J is t-orthogonal ifX T ?X = X ?X T = I where I ∈ RI×I×J

is the t-identity tensor whose frontal slice is the identity matrix and others are zero.

t-inverse of a tensor X ∈ RI×I×J is Y ∈ RI×I×J if X ? Y = I and Y ?X = I

where I ∈ RI×I×J is the t-identity tensor as de�ned above.

2.2.5.2 t-SVD. t-SVD factorizes a real valued tensor X ∈ RI×J×K as follows

X = U ?D ? VT (2.21)
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where U ∈ RI,I,K , V ∈ RJ,J,K are t-orthogonal tensors and D ∈ RI×J×K is a tensor

with diagonal faces. t-SVD allows the tensor X to be decomposed as

X =

min(I,J)∑
i=1

U(:, i, :) ?D(i, i, :) ? V(:, i, :)T . (2.22)

As with the usual matrix SVD, t-SVD provides an optimal approximation of a

tensor in the Frobenius norm of the di�erence. (see Theorem 4.3 in [12]).

2.2.5.3 t-Norm. t-norm is a type of tensor nuclear norm and is de�ned in [13] as

‖X‖~ =

min(I,J)∑
i=1

K∑
k=1

D̃(i, i, k) (2.23)

where D̃ is obtained by taking the Fourier transform of the faces of D.

2.3 Tensor Diagrams

We will use Markov-Penrose Diagrams (M-P Diagram) �rst introduced in [2] for

the visual representation of the tensors and tensor models proposed in this thesis. We

will brie�y review this concept in this section.

2.3.1 Penrose Diagrams

Penrose Diagrams (P Diagrams) also known as tensor network diagrams have

been used for the illustration of tensor objects and operations since Penrose [14]. In P

Diagrams tensor objects are the nodes and each line leaving the node is the dimension of

the tensor. The order of a tensor is equal to the number of dangling lines. Mathematical

expressions of vectors, matrices and tensors and their corresponding P diagrams are

shown in Figure 2.3. Nodes representing tensors with random elements are shown as

circles and the ones with constant elements are shown as rectangles.
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Figure 2.3 P Diagrams of (a) a vector x ∈ RI (b) a matrix X ∈ RI×J (c) a tensorX ∈ RI×J×K . Note
that the number of lines leaving a node is equal to the order of the tensor. (d) Tensor with constant
values (e) Nonnegative tensor. Let X ∈ RI×J×K , then X is a nonnegative tensor if X (i, j, k) ≥ 0 for
i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K (f) Orthogonal tensors are depicted with a square bar on the
orthogonal dimension. For the example given, let X ∈ RI×J×K , then X T

(3)X(3) = I. Adapted from

[2].

Some of the tensor operations presented in Section 2.2 are described graphically

in Figure 2.4. Note that complicated mathematical expressions in higher dimensions

can be easily illustrated with the P Diagrams.

2.3.2 Markov-Penrose Diagrams

P-Diagrams are good representation of higher order arrays and operations be-

tween them. However these models do not contain information about the probabilistic

dependency between tensors. In [2], a new type of graphical representation called

as Markov-Penrose Diagram (M-P Diagram) is proposed to incorporate the Directed

Acyclic Graphs (DAGs) [15] with the P Diagrams. In M-P diagrams, undirected links

are used for arithmetic operations between tensors whereas directed arrows signify the
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Figure 2.4 P Diagrams for the contraction and concatenation operators. (a) Contraction operation
is denoted with a black dot. Contraction of X ∈ RI×J×K with Y ∈ RK×L on the Kth dimension gives
Z ∈ RI×J×L. (b) Concatenation operation de�ned on a set. Concatenation of X1 ∈ RI×J1×K with
X2 ∈ RI×J2×K gives Z ∈ RI×J1+J2×K . In the diagram the number of tensors m to be concatenated
is shown explicitly. The dimension on which concatenation takes place changes outside of the bracket,
in this example J =

∑2
m=1 Jm. Adapted from [2].

conditional dependence. By this way, probabilistic models for tensors including impos-

ing a prior distribution on the nodes could be explicitly shown in one diagram. Figure

2.5 shows basic notation in M-P diagrams and two models that compare the DAGs

with the M-P notation. These models are selected as the inverse problems of EEG and

fMRI which will be explored in detail in Chapter 4.

Cichocki has pointed out the correspondence between certain types of tensor

networks and graphical models [16]. In a more detailed analysis, Critch et al. showed

similarities between a special type of tensor networks - matrix product states and Hid-

den Markov Models [17]. On the other hand, Y�lmaz proposed a novel representation of

tensor factorization models that are similar to undirected graphs [18]. M-P Diagrams

di�er from those models by unifying graphical models with the P Diagrams.
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Figure 2.5 M-P Diagrams. (a) An arrow between two tensors indicates a probabilistic dependency
between them. (b) Additive error term is added as a circle on the arrow by using E for tensors and
E for matrices. (c) Prior distribution π(X ) is denoted by a square with an arrow (d) DAG and M-P
graphical notations of the EEG generative model V = KG + EV is shown. V is the EEG signal
measured on the scalp, G is the primary current density and K is the lead �eld matrix. G has a
prior distribution. (e) fMRI generative model B = ΓH+EB is depicted in DAG and M-P notations.
B is the measured BOLD signal, Γ is the vasoactive feedforward signal and H is the hemodynamic
response function.



16

3. TENSOR METHODS

Tensor based methods have become a popular tool for handling the high di-

mensional data in various areas including psychometrics, chemometrics, computer vi-

sion and neuroscience. Since the multiway analysis methods have been introduced

into the neuroimaging literature, they have attracted great attention. From the �rst

application of multiway analysis on the decomposition of EEG signal [19] and link-

ing the EEG and fMRI activity in time [20], the literature in this �eld is expanding

[21, 22, 23, 24, 25, 26, 27].

The main reason for this interest is that multidimensional nature of neuroimag-

ing data constituted by three dimensional space, time, subjects and even trials can

be captured by tensor analysis and underlying structure of data can be represented

by a few numbers of components. Decomposition or factorization methods including

canonical decomposition [28], Tucker [29], multiway partial least squares [30] are widely

used.

Multiway methods are also used for the representation of multivariate functions

for the solution of high dimensional integrals, stochastic and parametric partial dif-

ferential equations, multidimensional convolution in many areas [31]. Recently, new

decomposition methods including tensor train [32] and hierarchical Tucker decompo-

sition [33] are introduced for low rank tensor approximations. These methods provide

high compression rates for high dimensional data and avoid problems in other mul-

tidimensional decomposition methods. These methods are out of the scope of this

thesis.

In this chapter, two well-known decomposition methods and data fusion methods

based on decomposition will be presented.
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3.1 Tensor Decompositions

3.1.1 Parallel Factor Analysis

Parallel factors analysis (PARAFAC) is a decomposition method for higher or-

der arrays which can be considered as a generalization of principal components analysis

(PCA). PARAFAC was independently introduced by Harshmann [28] as Parallel Fac-

tors and Carroll and Chang [34] as Canonical Decomposition. Möcks independently

discovered PARAFAC for event related potentials in which EEG data is organized

as a third order tensor of dimensions channel, time and subject and this version of

PARAFAC was called as Topographic Component Analysis [35]. In the context of brain

imaging, Field and Graupe [36] used PARAFAC to extract consistent ERP components

across channels and between subjects and later Miwakeichi et al. used PARAFAC for

the spectral component extraction [19]. Since then PARAFAC has been used in neu-

roimaging literature extensively (For a review refer to [2, 37]).

Let X ∈ RI1×I2×...×IN , the PARAFAC decomposition of X is stated as

X (i1, i2, . . . , iN) =
R∑
r=1

U1(i1, r)U2(i2, r) . . .UN(iN , r) + E(i1, i2, . . . , iN) (3.1)

where U1 ∈ RI1×R to UN ∈ RIN×R are the factor matrices, R is the number of compo-

nents and E is the error term. Figure 3.1 shows three-dimensional illustration and M-P

Diagram of this model. PARAFAC model can be expressed in the Kruskal notation as

[38]

X = JU1,U2, . . . ,UNK + E . (3.2)

We can write Eq. 3.1 in matrix format by using mode-n unfolding of the tensor

X and Khatri-Rao product of the factor matrices as follows.

X(n) = Un(UN � · · · �Un−1 �Un+1 � · · · �U1)
T + E(n) (3.3)
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Figure 3.1 Graphical representation of the PARAFAC model for a 3-D tensor X ∈ RI×J×K . U1,U2

and U3 are the factor matrices. (a) Three dimensional representation (b) M-P Diagram of the same
model. Latent variables (components) are denoted by circles and the observed variable (tensor) is
denoted by a rectangle.

The PARAFAC model is symmetric and all the factors are treated in the same

sense. The most attractive property of the PARAFAC is the uniqueness of the model.

We refer the uniqueness in the sense of rotational indeterminacy. It is well-known that

in matrix decomposition the factor matrices are not unique. Consider the decomposi-

tion of the matrix Y ∈ RI×J

Y = ABT + E. (3.4)

The same model can be obtained by multiplying A with any non-singular matrix W

and B with the inverse (W−1)T as

Y = AWW−1BT + E. (3.5)

The uniqueness is provided in PCA by imposing orthogonality on the factors and sta-

tistical independency in independent component analysis. However, an R component

PARAFAC model gives unique solutions up to scaling and permutation indetermina-

cies. Scaling ambiguity indicates that the magnitude of the factors is arbitrary whereas

due to permutation ambiguity factors can be reordered without changing the model.

To avoid this confusion, factors of the PARAFAC are scaled to unit norm and the norm
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is absorbed in one of the factors and they are ordered according to the ascending of

their variance.

The classical and the well-known uniqueness condition is shown by Kruskal [38]

based on the k-rank. The k-rank of a matrix A denoted by kA is the largest number

such that every subset of kA columns of A is linearly independent. For the R order

PARAFAC model of a third order tensor X ≈ JA,B,CK the su�cient condition for

the uniqueness is kA + kB + kC ≥ 2R + 2. This condition is generalized for Nth order

tensor in [39] as
∑N

n=1 kUn ≥ 2R+N − 1. For the recent discussions on the uniqueness

conditions see [40, 41].

The factor matrices are found by minimizing the sum of squares of the residuals.

{Û, . . . , ÛN} = arg min
{U,...,UN}

‖X − X̂‖22 (3.6)

PARAFAC model can be solved e�ciently by using a sequential algorithm like

alternating least squares (ALS). In ALS algorithm, at every step all factors except one

are �xed and the problem is solved for that one until all factors are estimated. Since

each step of the ALS is a linear regression, penalization methods can be incorporated

naturally. A modi�cation of ALS is the hierarchical alternating least squares (HALS)

algorithm in which, at each step of ALS, only one of the components of a factor is

estimated, �xing other factors of all components [42].

ALS has been improved with line search at each step [43], though it can con-

verge slowly, especially when the components are collinear. Other methods such as

gradient-based optimization methods [44] and generalized Schur decomposition [45]

have been developed as an alternative to overcome the limitations of ALS. In addition,

probabilistic methods for general tensor factorizations are presented in [46, 47].

For an N-D tensor, ALS algorithm is presented in Figure 3.2.
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in: X ∈ RI1×I2×···×IN

in: model order R � 0

Initialization

for n = 1 to N do

Initialize Un randomly or leading eigenvectors of the unfolded tensor

end for

repeat

for n = 1 to N do

Fix U1, . . . ,Un−1,Un+1, . . . ,UN

G = (UN � · · · �Un+1 �Un−1 · · · �U1)

Un = X(n)G(GTG)†

if n 6= N then

Un ← Un/||Un||2
end if

end for

until ||X − X̂ ||2/||X ||2 < ε

out: Un ∈ RIn×R for n = 1, . . . , N

Figure 3.2 PARAFAC - ALS Algorithm
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3.1.2 Tucker Decomposition

Tucker decomposition can also be considered as an extension of PCA to higher

dimensions. Tucker decomposition was �rst introduced by Tucker in 1966 [29] and has

been used in various areas under di�erent names related to PCA and SVD such as

three-mode PCA, higher order SVD etc.

Let X ∈ RI1×I2×...×IN , the Tucker decomposition is de�ned as

X (i1, i2, . . . , iN)

=

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

G(r1, r2, . . . , rN)U1(i1, r1)U2(i2, r2) . . .UN(iN , rN)

+ E(i1, i2, . . . , iN) (3.7)

where R1, . . . , RN are the number components of the factor matrices U1 ∈ RI1×R1 to

UN ∈ RIN×RN , respectively. G ∈ RR1×R2×···×RN is the core tensor. The core tensor

de�nes the interaction between the factors. In shorthand notation, this model is equal

to

X = JG; U1,U2 . . . ,UNK + E . (3.8)

By using the mode-n unfolding of X and G, the matricized version of Eq. 3.7

is given as

X(n) = UnG(n)(UN ⊗ · · · ⊗Un−1 ⊗Un+1 ⊗ · · · ⊗U1)
T + E(n). (3.9)

PARAFAC can be considered as the special case of the Tucker decomposition

in which the core tensor is super-diagonal and R1 = R2 = · · · = RN . A tensor

G ∈ RI1×I2×···×IN is called as super-diagonal if G(i1, i2, . . . , iN) 6= 0 only if i1 = i2 =

· · · = iN . Unlike PARAFAC, Tucker decomposition does not ensure uniqueness. The

factor matrices can be rotated by multiplying the core tensor with the proper matrix.
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Orthogonality is imposed on the factor matrices for the identi�ability of the model [48].

3.2 Tensor Based Data Fusion

We will review some of the tensor based models used for the fusion of data

generated from multiple sources. Unlike matrix based data fusion methods, tensor

methods can handle heterogeneous datasets i.e. variables with di�erent orders.

3.2.1 Multiway Partial Least Squares

Partial least squares (PLS) is a well-known method that the independent vari-

ables cast in a matrix are decomposed into scores and dependent variables are regressed

on those scores. Multiway PLS (N-PLS) is an extension of matrix based PLS to higher

dimensions [30] in which the independent and dependent variables are decomposed in

such a way that the score vectors have maximal covariance.

Let X ∈ RI×J×K and Y ∈ RI×L×M be two tensors. Then the decomposition

formulations of the N-PLS model based on PARAFAC are given as

X = JT,P,QK + Ex

Y = JU,B,CK + Ey
(3.10)

where P ∈ RJ×R and Q ∈ RK×R are the loadings of X and B ∈ RL×R and C ∈ RM×R

are the loadings of Y .

The objective of this N-PLS model is to �nd latent vectors stacked into T,U ∈

RI×R matrices that satisfy

U = TD + EU . (3.11)
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The objective function of the N-PLS can also be formulated as

f(P,Q,B,C) = arg min
P,Q,B,C

{cov(T,U)}

s. t. X ≈ JT,P,QK, Y ≈ JU,B,CK

‖P‖2 = ‖Q‖2 = ‖B‖2 = ‖C‖2 = 1.

(3.12)

In the multiway PLS, the number of dimensions of dependent and independent

variables may change. For instance X can be a 3-D tensor and y can be a vector. In

that case the covariance between T and y is maximized.

In the decomposition step of the matrix PLS, low-rank and subspace approx-

imation are the same. However, in multiway case these two approximations lead to

di�erent models [49]. The equivalent of the low-rank approximation in higher dimen-

sions is the PARAFAC and the equivalent of the subspace approximation is the Tucker

model. An improved version of N-PLS is suggested in [49] by replacing the PARAFAC

with the Tucker decomposition in Eq. 3.10 that gives a better-�tting model.

Another improvement of N-PLS is the higher order PLS (HOPLS). HOPLS

is a subspace approximation method in which orthogonal Tucker decompositions are

used for the decomposition of both dependent and independent data. Consider two

tensors X ∈ RI1×···×IN and Y ∈ RJ1×···×JM and assume that I1 = J1. In HOPLS, X is

approximated by a sum of rank-(1, L2, . . . , LN) decompositions and Y is approximated

by a sum of rank-(1, K2, . . . , KN) decompositions. The HOPLS model is expressed as

X =
R∑
r=1

JGr, tr,P(1)
r ,P(N−1)

r K + Ex

Y =
R∑
r=1

JDr, tr,Q
(1)
r ,Q(M−1)

r K + Ey

(3.13)

where R is the number of latent vectors. P
(n)
r ∈ RIn+1×Ln+1 and Q

(m)
r ∈ RJn+1×Kn+1

are the loading matrices corresponding latent vector tr. Gr ∈ R1×L2×···×LN and Dr ∈

R1×K2×···×KM are core tensors. To ensure uniqueness, the loading matrices are required
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to be columnwise orthogonal and core tensors to be all-orthogonal. The loading ma-

trices are estimated by maximizing the covariance on the �rst mode C = cov(X ,Y) =

X •{I1} Y with the orthogonality constraints. Details on the estimation and algorithm

can be found in [50].

3.2.2 Tensor Canonical Components Analysis

Since Hotelling's formulation [51] in 1936, canonical correlation analysis (CCA)

has been known and used for searching linear relations between two variables. CCA

�nds the best subspaces i.e. transformations of the variables that the two variables or

arrays have the maximum correlation.

Consider two data matrices X ∈ RI×J and Y ∈ RK×J , CCA algorithm �nds the

transformations u ∈ RI and v ∈ RK that maximize the correlation between x′ = uTX

and y′ = vTY formulated by

max
u,v

E[x′y′]√
E[(x′2)(y′)2]

=
uTXYTv√

uTXXTuvTYYTv
(3.14)

where E is the empirical expectation. Multiple canonical correlations are found up to

R = min(rank(X,Y)) in which new pairs of u and v are orthogonal to the previous

ones.

Tensor CCA (TCCA) is an extension of standard CCA to higher dimensions

that considers two tensors [52]. Since tensors are multidimensional arrays, TCCA

o�ers more possibilities on the number of shared modes. Note that CCA is applied on

the unshared dimension and 3-D tensors can share any single or multiple dimensions.

We will present the single shared mode TCCA proposed in [52, 53] for 3-D

tensors that �nds the canonical transformations for two modes. Let X ∈ RI×J×K and

Y ∈ RL×M×K share the third dimension. In single shared mode TCCA, pairs of linear

transforms u1 ∈ RI ,u2 ∈ RJ and v1 ∈ RL,v2 ∈ RM are found that maximize the
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correlation between projected tensors. This is formulated as

max
u1,u2,v1,v2

=
E[x′y′]√

E[(x′2)(y′)2]
(3.15)

where x′ = X •{I} u1 •{J} u2 and y′ = Y •{L} v1 •{M} v2. The linear transformations

are found by using an alternating algorithm and SVD. For more details refer to [54].

3.2.3 Coupled Tensor Factorization

Coupled tensor factorization (CTF) is the joint decomposition of two or more

tensors in which tensors are coupled on single or multiple nodes. First examples are

found in [55] as linked PARAFAC and in [56] as multiway multiblock models. Later it

is improved by [57] for structured data fusion. Unlike N-PLS or TCCA, CTF �nds the

factors that are shared between tensors. CTF can also be used for the joint factorization

of multiple tensors that are coupled in more than one dimension.

Let X ∈ RI×J×K and Y ∈ RI×L×M , the CTF model for coupling on the �rst

factor is given as

min
{
‖X − JT,A1,A2K‖22 + ‖Y − JT,B1,B2K‖22

}
(3.16)

where T ∈ RI×R is the common factor, A1 ∈ RJ×R and A2 ∈ RK×R are the individual

factors of X and B1 ∈ RL×R and B2 ∈ RM×R are the individual factors of Y . R is the

model order of the PARAFAC.

It is important to note that if one of the arrays is a tensor and the other is

a matrix, the term Coupled Matrix Tensor Factorization (CMTF) is used instead of

CTF. Factors can be estimated by using an alternating algorithm or a gradient based

�rst-order optimization method as described in [57].

In some cases, the common dimension may not be completely coupled but may

only share a few components that will allow common and discriminative subspace de-
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compositions of the tensors. If we continue with the model in Eq. 3.16, the shared

factor T is represented as T = (U|V) as the concatenation of common (U) and dis-

criminative (V) factors for the tensor X . The coupled factor for the tensor Y will be

T = (U|W) as the concatenation of common (U) and discriminative (W) factors. The

objective function takes the form

f(U,V,A1,A2,W,B1,B2) = {‖X − J(U|V),A1,A2K‖22

+ ‖Y − J(U|W),B1,B2K‖22}.
(3.17)

The estimation of factors in this model can be performed with the ALS algo-

rithm. HALS algorithm serves a good option in case of regularization on the common

and discriminant factors of the coupled factor. We used this type of CTF for the

EEG/fMRI fusion on the cortical surface of the brain which will be explained in detail

in Chapter 4.
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4. FUSION OF EEG AND FMRI ON THE CORTICAL

SURFACE

4.1 Electroencephalography

Scalp EEG signals are a direct measure of the brain electric activity by re�ecting

the postsynaptic cortical currents generated by the large pyramidal neurons which are

located perpendicularly to the cortical surface [58]. The temporal resolution of EEG is

high in the 1 to 5 kHz range. However, its spatial resolution is hampered by the small

number of measurement sites (electrodes) and the inherent volume conduction e�ect.

The electrical �elds generated by single neurons are too small to be detected

at the scalp with the EEG. Thus, the main source of the EEG is the volume currents

produced by the temporal and spatial alignment of the pyramidal neurons creating

dipoles in macrocolumns. Even though EEG is directly related to the spatially summed

bioelectrical activity, precisely localizing the neural activity with EEG is not possible

due to the ill-posed inverse problem. Inverse problem is based on the estimation of

source con�guration that might have caused the potential distribution measured from

the surface of an electrically conductive volume, in this case the brain [59]. Ill-posed

nature of inverse problem arises from the determination of high number of unknown

sources (electrical dipoles) from limited and predetermined number of measurement

channels (sensors). For the solution of the inverse problem, the �eld distribution of

a current dipole in the volume conductor that the current propagates is modeled by

using the quasi-static approximation of Maxwell equations. The computation of scalp

potentials for a known set of neural generators is known as the forward problem. The

discretized version of the forward problem is

V = KG + EV (4.1)

where V ∈ RIE×IT is the scalp potential measured by EEG from IE electrodes at IT time

points. K ∈ RIE×ICx is the lead �eld or gain matrix that contains the geometric and
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conductive information about the head volume conductor. Lead �eld matrix projects

ICx sources on the IE electrodes. G ∈ RICx×IT is the primary current density and

E ∈ RIE×IT is the noise at the sensors.

Forward model can be analytically solved if the head volume conductor is as-

sumed as three or four concentric spherical shells with di�erent isotropic conductivities.

The shells represent the brain, the cerebrospinal �uid, the skull and the scalp tissues

[60]. In more realistic head models high resolution anatomical MR image is used to

extract the surface boundaries between the brain, the skull and the scalp. Forward

�elds are calculated by using boundary element method (BEM) assuming isotropy in

each tissue compartment [61]. The other method based on the realistic head model is

the Finite Element Method (FEM). FEM uses DTI images to model the anisotropy in

white matter tracts. Although the numerical methods used in BEM and FEM are com-

putationally demanding algorithms, they o�er more accurate solutions to the forward

models with respect to analytical methods [59].

Estimation of the G is known as the inverse problem. Inverse problem ap-

proaches are grouped as parametric and imaging methods. In parametric methods

sources are modeled as limited number of dipoles - less than the number of sensors -

and the strength and orientation of the dipoles are estimated by using nonlinear meth-

ods. Imaging methods assume that the sources are located on the brain mesh created

by the tessellation of the brain [59]. In this type of method source density is obtained

from

arg min
G

‖V −KG‖22 + π(G). (4.2)

Since the number of sources are much higher than the number of sensors, IE � ICx,

the model in Eq. 4.2 is underdetermined. A penalization term π(G) is applied based

on the anatomical, physiological or mathematical constraints [61]. Figure 4.1 describes

the EEG inverse and forward models.
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Figure 4.1 Illustration of the EEG inverse and forward problems. Forward problem calculates the
distribution of sources on the scalp from a known source con�guration. Inverse problem �nds the
localization of the sources.

4.2 Functional Magnetic Resonance Imaging

By utilizing the spatial power of MR imaging, fMRI indicates indirect neural

activity through oxygen metabolism regulated by the oxygen consumption of the neural

tissue, the cerebral blood �ow and the cerebral blood volume.

fMRI �rst discovered by Ogawa et al. uses an endogenous contrast agent in

the blood, deoxyhemoglobin which is a paramagnetic material [62]. Existence of high

concentration rates of deoxyhemoglobin in blood distorts the MR signal. When a neu-

ral tissue is activated by a stimulus, cerebral blood �ow (CBF) increases towards the

activated region due to a demand on oxygen and other metabolites. The oxygen supply

surpasses the need of the oxygen by the tissues leading an increase in oxyhemoglobin

concentration and a decrease in the deoxyhemoglobin concentration. Finally, the rela-

tive loss in the concentration di�erence of deoxyhemoglobin gives rise to BOLD (blood

oxygen level dependent) signal (refer to Figure 4.2). It is important to note that BOLD

signal is con�ned to the time course of the slowly evolving hemodynamic activity (∼

10 s) while exhibiting a high spatial resolution in the order of millimeters.

The relation of the BOLD signal to neural activity has been a controversial topic.
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By combining electro-physiological recordings with fMRI Logothetis has shown that

the BOLD signal is mostly related to local �eld potentials (LFPs) rather than multiple

unit activities (MUAs) that re�ect spiking of neurons [63]. LFPs are generated by

the extracellular currents of cell assemblies as a result of the postsynaptic potentials.

Due to their low frequency signal content (< 200 Hz), their spatial extent is larger

in comparison to action potentials. It was thought that the excitatory postsynaptic

potentials were the primary source of the LFPs. However recent studies show that the

inhibitory synaptic input may contribute to the LFPs as well [64, 65]. The experiments

on monkeys have shown that the temporal course of BOLD signal closely follows of

LFPs even the MUA has returned to baseline [63, 66].

Figure 4.2 Generation of the BOLD response. Adapted from [67].

The forward model for BOLD is nonlinear. The �rst attempt for modeling the

BOLD response was the balloon model that uses cerebral blood volume and deoxyhe-

moglobin concentration as the state variables, CBF as the input and the BOLD signal

as the output. This nonlinear model has extended by adding the dynamic coupling

of synaptic activity and �ow [68]. More comprehensive models including di�erent cell

types and neuronal activity can be found in [69, 70, 71]. For simplicity, we will assume
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that the forward model of BOLD as linear and use the generative model below [2].

B = ΓH + EB (4.3)

where B ∈ RICx×IT is the BOLD signal measured from ICx voxels at ITδ time points.

Voxel is the smallest volume element of a three-dimensional image. Since the temporal

resolution of BOLD is much smaller than that of the EEG ITδ � IT , we will use

the symbol δ to emphasize the sampling. Γ ∈ RICx×IT is the vasoactive feed forward

signal (VFFS) matrix that links the BOLD signal to neural activity. H ∈ RIT×ITδ is

the hemodynamic response matrix whose rows are constituted by shifting the known

hemodynamic response function at a �ner temporal resolution.

The temporal deconvolution of the fMRI may also be stated as an inverse prob-

lem

arg min
Γ
‖B− ΓH‖22 + π(Γ) (4.4)

where π(Γ) is the prior for the VFFS. Glover used this deconvolution model with the

penalty function π(Γ) = ‖Γ‖22 in the Wiener �lter concept [72] and later Valdes-Sosa

et al. proposed a model based on the π(Γ) = ‖LΓ‖22 where L is the second order

Laplacian operator [3].

4.3 Fusion of EEG and fMRI

The integration of EEG and fMRI on a common space and/or time scale by

merging the superiorities of di�erent imaging modalities, to reveal the complex dynam-

ics of brain functions and neuronal interactions, is one of the major current problems of

the neuroimaging research. The integration of these two imaging modalities will take

the advantage of high temporal resolution of EEG and high spatial resolution of fMRI.

Before giving details in the fusion methods, we want to mention the limitations

of the EEG-fMRI fusion that arise from physiological processes. EEG and fMRI sources
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could be at disparate locations due to distance between neuronal population and vas-

cular tree. Also an increase in BOLD signal does not necessarily mean an increase in

neuronal activity. Neurotransmitter synthesis, glial cell metabolism and maintenance

of the steady-state transmembrane potential also require oxygen consumption. It is

well known that EEG shows the level of synchronization. However hemodynamic ac-

tivity may also be caused by nonsynchronous activity. In theses cases inconsistency

between EEG and fMRI may happen. If the electrophysiological activity is transient, it

might not induce any detectable metabolic activity changes [7]. Large EEG amplitudes

can be produced by epileptic foci while local metabolic signatures may be reduced due

to the reduction in inhibitory activity [73].

Despite limitations of EEG-fMRI fusion, using both modalities gives the possi-

bility of studying �ner spatio-temporal structures of neuronal activity. We can elucidate

more information at the common substrate of EEG and fMRI which would be harder

when using only one modality.

4.4 EEG/fMRI Fusion Methods

There have been fusion studies to comprise the temporal and spatial resolution

of EEG and fMRI for exploring the dynamics of brain functions. Fusion methods can

be classi�ed according to several criteria.

4.4.1 Asymmetrical Versus Symmetrical Fusion

In asymmetrical fusion one modality is used as a prior for the other modality.

To localize the sources of bioelectrical activity measured with EEG, fMRI activation

maps are used as priors for the inverse problem. Liu et al. used prior anatomical and

functional MRI to regularize EEG/MEG inverse problem [74].

EEG to fMRI fusion techniques seek for the fMRI activation regions whose
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response is temporally correlated with the EEG signal. In this method EEG signals

from certain channels which represent expected e�ect in the experiment, are convolved

with the hemodynamic response function and are used as regressors in modeling the

BOLD response after downsampling [75, 76]. One of the application of this method is

to localize the electrical sources of epileptic discharges by using fMRI. Since time of

the epileptic discharges can be easily determined from EEG, regressors are constituted

by the convolution of the EEG signal belonging to the discharge time intervals. These

studies showed decrease in BOLD during slow wave activity whereas an increase during

fast electrical events such as spike and wave discharges [77, 78].

Simultaneous EEG/fMRI studies are also concerned with the hemodynamic cor-

relates of spontaneous activity during resting state. It is well known that during resting

state EEG shows a typical posterior rhythm in frequencies between 8-12 Hz named al-

pha rhythm. In these studies, EEG signals from alpha as well as other frequency bands

are integrated into the general linear model to model the fMRI response with voxel

based analysis. A positive correlation between thalamic BOLD and occipital alpha

oscillations in EEG is observed whereas BOLD activation of occipital-parietal areas

are found to be inversely correlated [79, 80, 81]. Inverse correlation originates from an

increase in BOLD signal in the absence of marked alpha activity [82].

If there is no common substrate for underlying events of EEG and BOLD,

the asymmetrical fusion may lead to serious bias [7]. In contrast symmetrical fusion

methods either by using generative models or by maximizing correlation between EEG

and fMRI, exploit two modalities for �nding common neuronal substrates.

Daunizeau et al. [83] established a generative model for the EEG and BOLD

signals by assuming common spatial pro�les for both modalities. It is assumed that

dipoles generating EEG and hemodynamic response function generating BOLD arise

from a set of active areas that are characterized by temporal coherence. After par-

cellating the cortical surface into anatomically and functionally homogeneous areas,

temporal dynamics of both signals are modeled. This hierarchical generative model is

constituted within a variational Bayesian framework which �nds the expectation of the
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parameter estimates from variational posterior probability distribution functions. Dif-

fering from the other methods, the prior probability of the spatial support parameter

is assumed to be zero and the coupling between EEG and fMRI is learned from data.

The method is also applied to a clinical epilepsy data and it is validated with intra

cranial electro-physiological measurements (detailed results can be found in [83]).

Martinez-Montes et al. accomplished EEG/fMRI fusion by decomposing EEG

and fMRI data as a sum of `atoms' by using multiway partial least squares algorithm

[20]. EEG atoms represent spatial, spectral and temporal signatures whereas fMRI

atoms represent spatial and temporal signatures of the data. These atoms are extracted

by guaranteeing maximal temporal covariance between temporal signatures of EEG

and fMRI. They found similar results with resting state fusion literature: positive

correlation in thalamus and negative correlation in occipital-parietal areas between

EEG and BOLD alpha atoms.

4.4.2 Data Versus Model Driven Fusion

Data driven fusion establish functional connectivities between observables and

seeks temporal or spatial coherence between measured responses of modalities [3]. ICA

based fusion methods are in this category [4]. On the other hand, model driven fu-

sion uses a biophysical modeling and attempts to �nd common neural events for two

modalities. EEG and BOLD signals are predicted through the forward models and

state space equations [3, 84].

4.5 Coupled Tensor Matrix Factorization for the Fusion of EEG

and fMRI

As stated in Section 4.4 symmetrical data fusion approaches use complementary

information of both modalities to unveil the common source of neural activity [83, 85].

We propose a new symmetrical data fusion framework based on the joint decomposition
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of EEG and fMRI on the common and discriminative spatial pro�le.

It has been shown that time evolving spectrum of the EEG captures oscillations

generated by the localized and large scale activity of neuronal populations in spatial

domain through volume conduction [58, 86]. Thus, time-frequency decompositions of

EEG data matrix V ∈ RIE×IT may show the level of synchronous neural activity.

The spectrum of V over all channels can be constituted as a three-dimensional tensor

de�ned over space, time and frequency dimensions by taking the Wavelet or Gabor

transform: S ∈ RIE×IT×IF , IF being the number of frequency points. The PARAFAC

model of the time-varying EEG spectrum decomposes S ∈ RIE×IT×IF into R atoms or

components. In scalar notation, this model is

S(iE, iT , iF ) =
R∑
r=1

MV(iE, r)TV(iT , r)FV(iF , r) + ES (4.5)

where MV ∈ RIE×R is the spatial, TV ∈ RIT×R is the temporal and FV ∈ RIF×R is the

spectral factor or signature.

An equivalent representation of Eq. 4.5 with Kruskal notation which will sim-

plify the equation by making the indices implicit is

S =
q
MV,TV,FV

y
+ ES (4.6)

where the factors are normalized and the scale is absorbed by one of the factors. This

model is �rst applied on an EEG dataset acquired from subjects during the resting

state and during mental arithmetic. Spectral signatures showed an elevated level in

alpha atom for the resting state and in theta atom for the mental arithmetic [19]. In the

same study, source localization that is performed after extracting the spatial signature

MV showed activity in occipital areas for the resting state alpha atom and in frontal

areas for the mental arithmetic task theta atom.

Instead of applying source localization on the identi�ed spatial signatures as in

[19], the decomposition can be directly performed on the source space. The PARAFAC
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model will be

S =
q
KMG,TV,FV

y
+ ES (4.7)

where MG ∈ RICx×R is the source spatial signatures.

For the fusion of the EEG and fMRI, we propose a joint decomposition approach

based on the coupled matrix tensor factorization (CMTF). In this method, as described

in the model in Eq. 4.7 EEG is considered as a three dimensional tensor composed

of spatial, temporal and spectral signatures. Furthermore, by incorporating the EEG

inverse model into the decomposition, EEG spatial signatures are found in the source

space. fMRI is considered as a spatio-temporal two dimensional tensor. Spatial signa-

tures are coupled during decomposition. Unlike conventional CMTF algorithms where

a single dimension is considered to be fully coupled between two datasets, we prefer

to project part of the datasets on a common and discriminative subspace [87]. This

enables us to deal with the cases in which EEG and fMRI sources may di�er [7, 73].

Coupled and uncoupled spatial pro�les are obtained for each modality.

Assume that Meeg is the source spatial factor of the EEG tensor S and Mfmri

is the spatial factor of the fMRI matrix B, in the proposed framework these factors

will be; Meeg = (MC|{RC |RG}MG) and Mfmri = (MC|{RC |RB}MB) where subscript

C is for the common part and subscript G (B) is for the discriminant factor of EEG

(fMRI). RC is the number of common atoms, RB is the number of discriminative atoms

of fMRI, and RG is the number of discriminative atoms of EEG. In this way di�erent

model orders can be assigned to the decomposition of S and B as long as the number

of common components are kept the same i.e. the column number of MC.

In order to match the spatial resolution of EEG and fMRI, the inverse problem

of EEG is included in the tensor decomposition. By using the transformation matrix

- de�ned as the lead �eld matrix, K the spatial factor of EEG is transformed from

sensor space to source space. We assume that EEG and fMRI share the spatial grid

on the cortical surface de�ned by ICx voxels. The EEG spectrum is sampled at IFδ
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frequency points and ITδ same as the temporal points of the fMRI. Table 4.1 describes

the dimensions of the variables.

Table 4.1

Symbols for EEG and fMRI

Symbol De�nition Dimension

S EEG tensor IE × ITδ × IFδ
B fMRI matrix ICx × ITδ
K Lead �eld matrix IE × ICx
L Laplacian matrix ICx × ICx

FV Spectral signature of EEG IFδ ×R1

MC Common spatial signature of EEG and fMRI IE ×RC
MG Discriminant source spatial signature of EEG ICx ×RG
MB Discriminant spatial signature of fMRI ICx ×RB
TV Temporal signature of EEG ITδ ×R1

TB Temporal signature of fMRI ITδ ×R2

General decomposition formulation for S and B is

min
MC,MG,MB,
FV,TV,TB

{
1

2

∥∥∥S − q
K(MC|MG),TV,FV

y∥∥∥2
2

+ γ
1

2

∥∥∥B− q
(MC|MB),TB

y∥∥∥2
2

}
.

(4.8)

Note that we dropped the concatenation indices on the spatial signatures to simplify

the notation.

Furthermore, we impose non-negativity, orthogonality, smoothness and spar-

sity constraints on the spatial factors to ensure uniqueness. The corresponding M-P
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diagram is shown in Figure 4.3 and the problem is stated as:

min
MC,MG,MB,
FV,TV,TB

{
1

2

∥∥∥S − q
K(MC|MG),TV,FV

y∥∥∥2
2

+ γ
1

2

∥∥∥B− q
(MC|MB),TB

y∥∥∥2
2

+ λ1
∥∥MC

∥∥
1

+
1

2
λ2
∥∥LMC

∥∥2 + λ3
∥∥MG

∥∥
1

+
1

2
λ4
∥∥LMG

∥∥2
+ λ5

∥∥MB

∥∥
1

+
1

2
λ6
∥∥LMB

∥∥2}
s.t.(MC|MG)T (MC|MG) = I, (MC|MB)T (MC|MB) = I

MC ≥ 0, MG ≥ 0, MB ≥ 0, FV ≥ 0.

(4.9)

The model in Eq. 4.9 can also be interpreted as the estimation of neuronal

activity through two sources of information with multiple priors. The γ parameter

takes into account the scale di�erence between EEG and fMRI.

Determination of the number of common and discriminant components is a

very important task for the interpretation of the model. Since Eq. 4.9 is a modi�ed

PARAFAC decomposition, methods used for the selection of model order of PARAFAC

can be used. The Core Consistency Diagnostic (Corcondia) is used to verify whether

the core array of PARAFAC is a superidentity tensor. Superidentity property of the

core tensor is a sign for the trilinearity of the tensor and the validity of PARAFAC

model. The maximum number of components providing high Corcondia is taken as the

model order [39]. Although Corcondia can be used to determine the model orders of

EEG and fMRI decomposition model, selection of the number of common components,

RC needs further research. Separate decomposition of two datasets and observation

of spatial factors may give a �rst estimate for RC and the algorithm may be run for

several RC 's.

4.5.1 Estimation of the Signatures of the CMTF

HALS algorithm combined with orthogonality [88] and other penalties is used

for the estimation of the spatial signatures. Remaining factors are estimated in the
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Figure 4.3 Coupled matrix tensor factorization. (a) M-P diagram for the coupled matrix tensor
factorization for EEG/fMRI fusion. The EEG tensor S and the fMRI matrix B are decomposed
simultaneously on common and discriminant spatial subspaces to encompass di�erent physiological
sources. The spatial signature M involves common component MC and two uncommon MG,MB

components. The fMRI spatial signature is (MC|MB) and the temporal signature is TB. For EEG,
the spatial signature of the generators is (MC|MG), the temporal signature is TV, and the spectral
signature is FV. By incorporating the lead �eld matrix K, the model extends the decomposition of
EEG to source space. M-P diagrams of EEG and fMRI are separated for a better visualization. (b)
Explicit representation for the common and discriminative subspaces. Note that the common subspace
is represented with MC.

alternating least squares algorithm.

4.5.1.1 Estimation of the Spatial Signatures. Common spatial signature,

MC, individual spatial signature of EEG, MG and individual spatial signature of fMRI,

MB are estimated by matricizing the Eq. 4.9 as follows:
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min
MC,MG,MB,
FV,TV,TB

{
1

2

∥∥∥S(1) −K(MC|MG)(FV �TV)T
∥∥∥2
2

+ γ
1

2

∥∥∥B− (MC|MB)TB
T
∥∥∥2
2

+ λ1
∥∥MC

∥∥
1

+
1

2
λ2
∥∥LMC

∥∥2 + λ3
∥∥MG

∥∥
1

+
1

2
λ4
∥∥LMG

∥∥2
+ λ5

∥∥MB

∥∥
1

+
1

2
λ6
∥∥LMB

∥∥2}
s.t.(MC|MG)T (MC|MG) = I, (MC|MB)T (MC|MB) = I

MC ≥ 0, MG ≥ 0, MB ≥ 0, FV ≥ 0.

(4.10)

HALS algorithm �ts very well into the coupled factorization since the spatial

signature matrices are divided into common and discriminative atoms in a columnwise

manner. Call P = (FV � TV) and similarly represent P in two subspaces as follows

P = (PC|{RC ,RG}PG). It is clear that

PC = (FV(:, 1 : RC)�TV(:, 1 : RC)) (4.11)

PG = (FV(:, RC + 1 : RC +RG)�TV(:, RC + 1 : RC +RG)) (4.12)

We do the same formulation for fMRI: Q = (QC|{RC ,RB}QB) where

QC = TB(:, 1 : RC) (4.13)

QB = TB(:, RC + 1 : RC +RB). (4.14)

Orthogonality constraint on the nonnegative spatial signatures can be imposed

column-wise [88]. The reason for this is that for a nonnegative matrix X ∈ RI×J ,

orthogonality condition XTX = I can be replaced by 2J column-wise coe�cients:

XTX = I ⇒


X(:, j)TX(:, j) = 1, j = 1, . . . , J ∧
J∑
k 6=j

X(:, k)TX(:, j) = 0, j = 1, . . . , J
(4.15)

where the symbol ∧ is used for the and operator.
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For our case, the orthogonality condition is expressed as follows:

(MC|MG)T (MC|MG) = I ⇒



MC(:, j)TMC(:, j) = 1, j = 1, . . . , RC ∧

MG(:, j)TMG(:, j) = 1, j = 1, . . . , RG ∧
RC∑
k 6=j

MC(:, k)TMC(:, j) = 0, j = 1, . . . , RC ∧
RG∑
k 6=j

MG(:, k)TMG(:, j) = 0, j = 1, . . . , RG ∧
RG∑
k=1

MG(:, k)TMC(:, j) = 0, j = 1, . . . , RC ∧
RC∑
k=1

MC(:, k)TMG(:, j) = 0, j = 1, . . . , RG.

(4.16)

(MC|MB)T (MC|MB) = I ⇒



MC(:, j)TMC(:, j) = 1, j = 1, . . . , RC ∧

MB(:, j)TMB(:, j) = 1, j = 1, . . . , RB ∧
RC∑
k 6=j

MC(:, k)TMC(:, j) = 0, j = 1, . . . , RC ∧
RB∑
k 6=j

MB(:, k)TMB(:, j) = 0, j = 1, . . . , RB ∧
RB∑
k=1

MB(:, k)TMC(:, j) = 0, j = 1, . . . , RC ∧
RC∑
k=1

MC(:, k)TMB(:, j) = 0, j = 1, . . . , RB.

(4.17)

Eq. 4.16 and Eq. 4.17 are uni�ed for MC as

W(j) =

RC∑
k 6=j

MC(:, k) +

RG∑
k=1

MG(:, k) +

RB∑
k=1

MB(:, k) (4.18)

And the orthogonality constraint is formulated as

(W(j))TMC(:, j) = 0, j = 1, . . . , RC . (4.19)

First, we will present the estimation of the common spatial signature MC. Es-

timation of the others will follow. The objective function for the estimation of the j th
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column of MC with the orthogonality constraint can be formulated in Lagrangian as

L(MC(:, j), β1(j)) =

{
1

2

∥∥∥S̃(1) −KMC(:, j) PC(:, j)T
∥∥∥2
2

+ γ
1

2

∥∥∥B̃−MC(:, j)QC(:, j)T
∥∥∥2
2

+λ1‖MC(:, j)‖1 +
1

2
λ2‖L MC(:, j)‖2 + β1(j)(W

(j))TMC(:, j)

}
(4.20a)

where

S̃(1) = S(1) −K

RC∑
k 6=j

MC(:, k)PC(:, k)T −K MGPG
T (4.20b)

B̃ = B−
RC∑
k 6=j

MC(:, k)QC(:, k)T − MBQB
T (4.20c)

β1(j) is the weighting parameter for the orthogonality constraint on the jth column of

MC.

Gradient of the objective function in Eq. 4.20a is found as

∂L
∂MC(:, j)

=
{
−KT S̃(1)PC(:, j) + KTKMC(:, j) PC(:, j)TPC(:, j)− γB̃ QC(:, j)

+γMC(:, j)QC(:, j)TQC(:, j) + λ1MC(:, j) + λ2L
TL MC(:, j) + β1(j)W

(j)
}

(4.21)

Since factors are normalized PC(:, j)TPC(:, j) = 1 and QC(:, j)TQC(:, j) = 1. Then

MC(:, j) is estimated by setting Eq. 4.21 to zero. The estimate is found as follows:

M̂C(:, j) =
[
(KTK + λ2L

TL + γI)
−1

(KT S̃(1)PC(:, j) + γB̃QC(:, j)− λ11− β1(j)W(j))
]
+

(4.22)

where the nonnegativity condition is satis�ed through the function

[x]+ =

x if x ≥ 0

0 if x < 0

(4.23)

We set the regularization parameter for orthogonality constraint as described
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in [88]. Multiplication of Eq. 4.21 by W(j)T (KTK + λ2L
TL + γI)−1 from the left and

noting W(j)TMC(:, j) = 0, the regularization parameter β1(j) is found as follows:

β1(j) =
W(j)T (KTK + λ2L

TL + γI)
−1

(KT S̃(1)PC(:, j) + γB̃QC(:, j)− λ11)

W(j)T (KTK + λ2LTL + γI)−1W(j)
(4.24)

Note that in Eq. 4.22, the size of the matrix to be inverted is ICx × ICx, which

can be very large in real problems. So we use the inversion formula in Chapter 3 of

[89] for the reformulation.

Call (λ2
γ

LTL + I) = RTR and H = (B̃QC(:, j)− λ1
γ

1− β1(j)
γ

W(j)).

R can be found from Cholesky decomposition. Eq. 4.22 will be:

M̂C(:, j) = (KTK + γRTR)−1(KT S̃(1)PC(:, j)T + γH) (4.25a)

= R−1(K̃T K̃ + γI)−1(K̃T S̃(1)PC(:, j)T + γR−TH) (4.25b)

= R−1
{

K̃T (K̃K̃T + γI)
−1

(S̃(1)PC(:, j)T − K̃R−TH) + R−TH
}

(4.25c)

where K̃ = KR−1.

The same matrix manipulation can be used for the computation of the orthog-

onality parameter in Eq. 4.24:

β1(j) =
(W(j))TR−1

{
K̃T (K̃K̃T + γI)

−1
(S̃(1)PC(:, j)T − K̃R−TH) + R−TH

}
1
γ
(W(j))TR−T (I− K̃T (K̃K̃T + γI)

−1
K̃)R−1W(j)

(4.26)

where H = (B̃QC(:, j)− λ1
γ

1).

We skip the derivations of the discriminative signatures since formulation is very

similar to the common one. We present the �nal results.
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Discriminative signature of EEG is estimated as:

M̂G(:, j) =
[
L−1

{
K̃T (K̃K̃T + I)

−1
(S̃(1)PG(:, j)T − K̃L−TH)

}]
+

(4.27a)

where

S̃(1) = S(1) −K

RG∑
k 6=j

MG(:, k)PG(:, k)T −K MCPC
T (4.27b)

W(j) =

RC∑
k=1

MC(:, k) +

RG∑
k 6=j

MV(:, k) (4.27c)

H = −β2(j)W(j) − λ31 (4.27d)

K̃ = KL−1 (4.27e)

Regularization parameter for the orthogonality constraint of the discriminative

signature of EEG is found as:

β2(j) =
(W(j))TL−1

{
K̃T (K̃K̃T + I)

−1
(S̃(1)PG(:, j)T − K̃L−TH)

}
(W(j))TL−1(IICx − K̃T (K̃K̃T + I)

−1
K̃)L−TW(j)

(4.28)

Discriminative signature of the fMRI is estimated as:

M̂B(:, j) =
[
(I + λ6L

TL)
−1

(γB̃QB(:, j)− λ51− β3(j)W(j))
]
+

(4.29a)

where

B̃ = B−
RB∑
k 6=j

MB(:, k)QB(:, k)T − MCQC
T (4.29b)

W(j) =

RC∑
k=1

MC(:, k) +

RDB∑
k 6=j

MB(:, k) (4.29c)

Orthogonality regularization parameter is found as:

β3(j) =
(W(j))T (I + λ6L

TL)
−1

(γB̃QB(:, j)− λ11)

(W(j))T (I + λ6LTL)−1W(j)
(4.30)
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4.5.1.2 Estimation of Other Signatures. Other signatures are estimated from

ALS as follows:

TV = S(2)(FV �K(MC|MG))† (4.31)

FV = S(3)(TV �K(MC|MG))† (4.32)

TB = BT (MC|MB)† (4.33)

The CMTF algorithm is described in Figure 4.4.

4.5.2 Selection of the Model Parameters

Regularization parameters are selected by using Bayesian Information Criterion

(BIC) [90]. For the BIC calculation, the following formula is used

BIC = log(σ̂2) + dof
log(N)

N
(4.34)

where N is the number of observations, dof is the degrees of freedom and σ̂2 is the

error variance estimated from the residual sum of squares (RSS) as: σ̂2 = RSS/N .

BIC formulations for coupled and uncoupled components of the spatial factor

are given as:

BIC(MC) = log

(∥∥∥S − q
K(MC|MG),TV,FV

y∥∥∥2
2

/
(nV + nB)

+γ
∥∥∥B− q

(MC|MB),TB

y∥∥∥2
2

/
(nV + nB)

)
+ dof(MC) log(nV + nB)

/
(nV + nB)

(4.35)

BIC(MV) = log

(∥∥∥S − q
K(MC|MG),TV,FV

y∥∥∥2
2
/nV

)
+ dof(MV) log(nV )/nV

(4.36)
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in: S,B,K,L

in: RC , RV , RB, γ, {λj}6j=1

Initialize: MC,MG,TV,FV,MB,TB

repeat

Set R,PC,PG,QC,QB

for j = 1 to max(RC +RV , RC +RB) do

if j ≤ RC then

Estimate β(j) from Eq. 4.24

Estimate MC(:, j) from Eq. 4.22

MC(:, j)←MC(:, j)/||MC(:, j)||2
end if

if (j > RC) & (j ≤ RC +RV ) then

Estimate β(j) from Eq. 4.28

Estimate MG(:, j) from Eq. 4.27a

MG(:, j)←MG(:, j)/||MG(:, j)||2
end if

if (j > RC) & (j ≤ RC +RB) then

Estimate β(j) from Eq. 4.30

Estimate MB(:, j) from Eq. 4.29a

MB(:, j)←MB(:, j)/||MB(:, j)||2
end if

end for

Estimate TV from Eq. 4.31

TV(:, j)← TV(:, j)/||TV(:, j)||2
Estimate FV from Eq. 4.32

Estimate TB from Eq. 4.33

until ||S − Ŝ||2/||X ||2 < ε & ||B− B̂||2/||B||2 < ε

out: MC,MG,TV,FV,MB,TB

Figure 4.4 CMTF HALS Algorithm
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BIC(MB) = log

(∥∥∥B− q
(MC|MB),TB

y∥∥∥2
2
/nB

)
+ dof(MB) log(nB)/nB (4.37)

where nV and nB are the number of elements in S and B,respectively and dof is the

degrees of freedom computed as in [91]. Hyper-parameters λ1 to λ6 and γ in Eq. 4.9

are found as the minimum of the BIC multidimensional arrays given above.

4.5.3 Optimization of the PARAFAC

Since estimation of the factor matrices of the PARAFAC decomposition is a

nonconvex optimization problem, an algorithm may reach di�erent solutions with dif-

ferent starting points. In the ALS method, the objective function decreases at each

step of the algorithm, but there is no guarantee that global minimum may be reached.

We address the problem heuristically by means of the following approaches:

• running the algorithm with multiple random initial values;

• alternatively using, as a starting point, the eigenvectors of the unfolded tensor to

be �tted [147];

• using a combination of the previous two schemes;

• estimating all runs and retaining the one with the best �t;

• in the case of models with nonnegative factor matrices, using a modi�ed nonneg-

ative double singular value decomposition proposed in [92] for the initial eigen-

analysis;

However, these techniques do not guarantee convergence to the global minima; this is

an area of increased current research [93, 94]. A de�nitive solution might be obtained

by approximating the models here with alternative convex ones.
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4.6 Real Data Analysis

We applied the proposed algorithm on a simultaneously recorded EEG - fMRI

data [95]. In this experiment, �ashing light stimuli in thirteen frequencies in the range

of 6 Hz to 42 Hz were presented in a block design paradigm. For this analysis, data

from 6 Hz stimulation session of one subject is used.

A Philips 1.5 T MR system was used to acquire T2* weighted images

(TR/TE/FA = 2981ms/50ms/90, matrix size = 64 × 64 × 32 axial slices, voxel size

= 3.59 × 3.59 × 4) with a gradient echo EPI sequence. EEG was recorded simultane-

ously by using an MR compatible EEG ampli�er (BrainAmp MR+, Brain Products,

Germany) with 30 channels EEG and 1 channel ECG. The EEG signal was �ltered

between 0.01 and 250 Hz and digitized with a sampling rate of 5 kHz. Gradient and

ballistocardiographic artifacts in the EEG were removed by using average artifact sub-

traction technique implemented in the Brain Analyzer software [96]. All preprocessing

fMRI analyses were performed with SPM5 software [97]. Motion correction, spatial

smoothing with a Gaussian kernel of FWHM 8 mm and a high-pass temporal �ltering

were applied. Images were spatially normalized into a standard space (MNI152, 2mm)

[98].

EEG was down-sampled to 250 Hz and further �ltered with a high-pass �l-

ter with a cuto� frequency at 60 Hz. Afterwards, EEG was segmented in 2981 ms

duration segments and Thomson multitaper method is used to calculate the power

spectrum of each segment [99]. In Thomson multitaper method, DFT is applied on

the time domain signal windowed by the orthogonal Slepian tapers or discrete prolate

spheroidal sequences to decrease the spectral leakage between adjacent frequencies. We

extracted the resting periods of the whole experiment and used for further analysis.

At the end we had an EEG tensor with dimensions 31(channels) × 38(time points) ×

58(frequency points). Lead �eld was computed using a realistic head model with three

homogeneous isotropic conductor boundaries based on the MNI brain atlas [98].

After preprocessing of fMRI, voxels inside the cortical mesh of EEG source space
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were found. Grand mean scaling over the session for the voxels inside the mesh was

performed and BOLD values were normalized to obtain a percentage change. At the

end, we had an fMRI tensor with dimensions 5124(voxels)× 38(time points).

CMTF was initialized with the PARAFAC atoms found from separate decom-

positions of EEG and fMRI. Model orders for two datasets were selected as 2 based

on explained variance and Corcondia measure. Since the power spectrum of EEG was

used, nonnegative tensor decomposition was performed for EEG. We set the number

of common factor to be 1 by examining the initial atoms coming from independent

analysis of two datasets. BIC was employed for the selection of smoothness and spar-

sity regularization parameters and weighting parameter γ. Weighting parameter for

orthogonality constraints were optimized inside the algorithm as suggested in [88]. We

used the same regularization parameters for common and discriminant spatial signa-

tures to decrease the computational load due to exhaustive search over 7 parameters.

Since the number of parameters to be optimized was equal to 3, we searched over

a three-dimensional parameter grid space and best parameters were selected as the

minimum of the BIC volume.

Figure 4.5 shows the spatial, temporal and spectral signatures of the common

atom. Since the two datasets were coupled only in spatial dimension, two temporal

signatures for each modality were obtained. Common spatial signature, shows a clear

activation in occipital areas. This activation is characterized by the alpha activity

peaked at 10 Hz in the corresponding EEG spectral signature (Refer to Figure 4.5(e))

in line with the �ndings in the literature [20, 79, 100]. Pearson's correlation coe�cient

between spectral signatures of EEG and fMRI of this common factor is found to be

-0.3346 with a p-value of 0.04 showing an inverse relation. However, since this value is

not obtained from population statistics, further analysis should be pursued.

Discriminant fMRI atom is shown in Figure 4.6. Spatial signature shows acti-

vation mostly in inferior frontal areas of left and right hemispheres, inferior parietal

and middle temporal areas of right hemisphere, precuneus and caudate. When the

model order of the fMRI is increased these regions are distributed on separate atoms
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Figure 4.5 Common atom extracted from CMTF. (a) and (b) The spatial signatures MC shows
the distribution of activation of the spatial signature on the lateral and medial views of left and right
hemispheres. Activity is localized in the occipital cortex. (c) The fMRI temporal signature of the
common atom TB(:, 1). (d) The EEG temporal signature of the common atom TV(:, 1). (e) The
EEG spectral signature of the common atom FV(:, 1). The 10-Hz peak in the EEG spectral signature
indicates an alpha band activity.

(results not shown). It can be said that discriminant atom of fMRI shows a uni�cation

of resting state networks.

Discriminant EEG atom shows di�used activations in inferior and middle frontal

areas, temporal areas of both hemispheres (Refer to Figure 4.7 (a,b)). Temporal sig-

nature has an intermittent activity as shown in Figure 4.7(c). Spectral signature is

characterized by the well-known (1/frequency) pattern of the resting state EEG, the

energy of the factor decreases towards higher frequency values (Refer to Figure 4.7

(d)). In [100], this pattern is called as ξ process and proposed to re�ect the neural

activity of di�use and correlated generators.

In resting state data of one subject, our algorithm showed promising results.

Common atom is found to be related alpha activity in EEG and spatial signature

showed increased activation in occipital regions. This method still needs validation
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Figure 4.6 Discriminant fMRI atom. (a) and (b) The spatial signature of the discriminant fMRI
atom MB projected on the lateral and medial views of the left and right hemispheres. (c) The temporal
course of the discriminant fMRI atom TB(:, 2). fMRI activity is di�used mostly in the frontal and
temporal regions.

with more subjects and detailed statistical analysis on the relationship between tem-

poral signatures of EEG and fMRI. In this dataset, we used the resting periods of a

stimulation paradigm, which may be reason for absence of EEG rhythms in other fre-

quency bands. Automatic selection of model orders instead of using heuristic methods

still requires e�ort.

Incompatibility between temporal and spatial resolutions of EEG and fMRI

complicates the simultaneous analysis of the two even in the case when there is dis-

crepancy in the neural origins. CMTF of EEG and fMRI on spatial domain improves

this di�culty and also presents the �exibility for searching discriminant sources of neu-

ral activation. We suggest that CMTF analysis can reveal more information about

brain function by exploiting the complementary properties of two modalities.

CMTF is not limited to PARAFAC decomposition and can be modi�ed by using

other decomposition methods, e.g., the Tucker method, to account for the interactions

between the signatures [25, 101, 102]. CMTF di�ers from the linked ICA [103] in the
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Figure 4.7 Discriminant EEG atom. (a) and (b) The spatial signature of the discriminant EEG
atomprojected on the lateral and medial views of the left and right hemispheres MG. A di�used ac-
tivity is revealed. (c) The temporal signature TV(:, 2). (d) The spectral signature FV(:, 2). Energy of
the spectral signature decreases toward higher frequencies showing the ξ process. Spatial distribution
is di�used over temporal and inferior frontal areas. All of the signatures are normalized to the unit
norm.

sense that statistical independence of the spatial signatures is not required and common

pro�les can be divided into two subspaces. Recently, scalable and fast algorithms for

CMTF have been developed and applied on the decomposition of fMRI and behavioral

data [104].
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5. TENSORIAL ANALYSIS OF BRAIN CONNECTIVITY

5.1 Brain Connectivity

Understanding the way how brain processes information requires knowledge

about the functional organization of the brain. There have been two approaches re-

garding the organization. Functional specialization approach is built on the idea that

a brain function can be localised in a cortical area and in the same sense a cortical area

is specialised for some aspects of perceptual or motor processing [105].

Since fMRI gives a full coverage of the brain in a �ner spatial resolution, it is

possible to design experiments to �nd the functional localization of certain brain tasks.

Statistical Parametric Mapping (SPM) is one of the best tools to �nd the brain areas

that are engaged in the task through statistical tests [106]. However identi�cation of

brain regions that are activated in response to experimental manipulation does not

answer the question that how these regions are related.

Functional integration on the other hand explores how large scale neural net-

works and brain regions interact with each other. Functional integration and spe-

cialization are complementary processes in the formation of the brain function. For

example in a study of face processing one may �nd activations in the dorsolateral pre-

frontal cortex, superior parietal cortex and fusiform gyrus. However the coactivation

of these brain regions do not explain how these regions are functionally connected.

One explanation might be top-down connections from the prefrontal cortex to other

regions or bottom-up connections from visual processing in temporal and parietal lobes

to prefrontral cortex. An in�uence from a third region to these regions may also be

possible [107]. In order to answer these questions we need to know how these regions

are functionally integrated.

Functional integration studies give rise to two di�erent connectivity measures in
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the brain: functional and e�ective connectivity. Functional connectivity explores the

quanti�cation of the operational interactions of multiple spatially distinct brain regions

that are engaged simultaneously. Analysis techniques for functional connectivity use

the correlation or covariance of activities derived from the BOLD data [108, 109].

The techniques that are used to reveal networks include ICA [110] and support vector

machines (SVM) [111].

E�ective connectivity is on the other hand de�ned as "the in�uence that one

neural system exerts over another either directly or indirectly" [84]. The key concept

in e�ective connectivity analysis is the causality which could be studied in the view

of temporal precedence or physical in�uences [112]. Wiener-Akaike-Granger-Schweder

(WAGS) in�uence usually termed as Granger Causality (GC) is based on the former

understanding of the causality. If the event A (variable or time series) decreases the

uncertainty in the predictability of the event B, then it is said that A G-causes B.

The second approach of causality is best exempli�ed with the Dynamical Causal

Modeling (DCM). DCM combines neural model with an empirically validated biophys-

ical forward model of the transformation from neuronal activity into a BOLD response

[84]. In this type of modeling, brain is treated as a nonlinear deterministic system

with known inputs and hidden states. By perturbating the system with a known

input, hidden state variables are estimated. In DCM the rate of change in neuronal

state is modeled via a neuronal model. Hemodynamic state equations utilizes Balloon -

Windkessel model [113, 114] to constitute observed BOLD response from �ow-inducing

signal, cerebral blood �ow, cerebral blood volume and deoxyhemoglobin content.

In this thesis we will propose a tensor based autoregressive model for the analysis

of Granger Causality.
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5.2 Granger Causality

In 1956 Wiener introduced a concept of causality based on the temporal prece-

dence of causes to their e�ects [115]. However Granger was the �rst to show an im-

plementation of this idea in econometrics by using linear autoregressive models. Also

Akaike and Schweder had similar works at the time of Granger [116, 117].

Although the �rst practice of GC was on linear vector AR (VAR) processes, it

can also be applied on in�nite order VAR and vector AR moving average models [112].

Nonlinear GC has also been proposed and applied on the neuroimaging data [118].

The application of GC on the neuroimaging data, namely EEG and fMRI brings

several challenges. For EEG, the volume conduction e�ect obscures the real dynamics

of neural activity. Thus for the GC analysis on EEG, the inverse problem stated in

Eq. 4.2 should be taken into account [119]. Vinck et al. describes the complexities of

EEG GC and how to overcome them [120].

For fMRI, the challenge in GC application arises from several factors [121]. First

is the variability of the hemodynamic response function(HRF) across brain regions and

subjects. This can be a described in a simple example: Consider two brain regions X

and Y such that in neuronal level X G-causes Y which can be represented as: X → Y .

However if the latency of the hemodynamic function of X is higher than that of region

Y , GC analysis may �nd a spurious relation as Y → X in the fMRI level. In [122],

simulated BOLD responses are generated by convolving the standard HRF with the

LFPs acquired from the macaque cortex. GC is tested for various hemodynamic and

neuronal delays, sampling time and the signal to noise ratio. It is shown that the

detection of the underlying network with GC is robust to delays and the sensitivity

of GC analysis increases with high sampling rate and high signal to ratio. A similar

�nding is reported in [123] stating when the variability is unlikely to be systematic, GC

can re�ect neural in�uences. It is suggested that higher sampling rates and application

of statistical criteria improve the GC results. Also in [124] it was shown that GC is

invariant to HRF variability on both theoretical and simulation models.
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The second issue is the low pass behavior of the hemodynamic response that

may lead to misidenti�cation of the underlying fast neuronal in�uences. The third

di�culty in fMRI is the low temporal resolution of the data which is typically in the

range 1−3 s. However this issue can be overcome by using ultrafast imaging. Extensive

simulations by Rodrigues and Andrade suggest that the optimal sampling frequency is

around 100 ms [125]. This is also argued experimentally by Lin et al., who employed

a fast fMRI sequence of 100 ms [126] sampling rate. We used this dataset for the GC

analyses described in this chapter.

Now we will turn to the de�nition of the GC. Granger causality can be for-

mulated in the linear regression context. Consider two random values Y1 ∈ RT and

Y2 ∈ RT that are generated by stochastic processes and their values at time t are de-

pendent on their own and the other's past values. The bivariate linear autoregressive

model can be written as

Y1(t) =

p∑
q=1

Aq(1, 1)Y1(t− q) +

p∑
q=1

Aq(1, 2)Y2(t− q) + ε1(t)

Y2(t) =

p∑
q=1

Aq(2, 1)Y1(t− q) +

p∑
q=1

Aq(2, 2)Y2(t− q) + ε2(t)

(5.1)

where ε1(t) and ε2(t) are uncorrelated Guassian white noise. p is the number of lags or

model order, Aq ∈ R2×2 is de�ned for each q time lag that quanti�es the contribution

of lagged observations to the predicted values. If the coe�cients in Aq(1, 2) is not equal

to 0, then it can be said that Y2 Granger causes Y1. If two time series are independent

then Aq(1, 2) = 0 and Aq(2, 1) = 0. Statistical signi�cance of the Granger causality

can be determined by using F-statistic of the null hypothesis Aq(1, 2) [121]. The model

order p can be determined by using Akaike Information Criterion (AIC) [127] or BIC.

The bivariate model in Eq. 5.1 can be extended to a multivariate autoregressive

model (MAR) by using N time series. Let Y ∈ RN×T is constructed by concatenating
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Y1 to YN as follows

Y =


Y1(p+ 1) . . . Y1(T + p)

...
. . .

...

YN(p+ 1) . . . YN(T + p)

 . (5.2)

Similarly the lagged time series are concatenated to form X ∈ Rp·N×T

X =



Y1(p) . . . Y1(T + p− 1)
...

. . .
...

YN(p) . . . YN(T + p− 1)
...

. . .
...

Y1(1) . . . Y1(T )
...

. . .
...

YN(1) . . . YN(T )


. (5.3)

New coe�cients matrix W ∈ RN×p·N is formulated explicitly as follows

W =


A1(1, 1) . . . A1(1, N) . . . Ap(1, 1) . . . Ap(1, N)

...
. . .

...
. . .

...
. . .

...

A1(N, 1) . . . A1(N,N) . . . Ap(1, 1) . . . Ap(N,N)

 . (5.4)

After de�ning the variables, we can write the MAR model as

Y = WX + E (5.5)

Note that this model is a multivariate linear regression. The coe�cient matrix W can

be estimated by using maximum likelihood estimation

Ŵ = arg min
Ŵ

||Y −WX||2. (5.6)

and the ordinary least squares estimate is found as

Ŵ = YXT (XTX)†. (5.7)

However in case of high dimensional datasets e.g. brain data, the number of observa-

tions N is much higher than the number of time points T . In this case, the number of
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parameters to be estimated is p ·N2 + N2+N
2

.

A solution to this problem may be reducing N . For fMRI datasets, a small set of

region of interests (ROI) in the brain can be selected based on anatomical or functional

constraints and the BOLD signal of the voxels inside the ROIs can be averaged. Then

bivariate Granger causality analysis or parameter estimation techniques of multivariate

regression can be performed.

Another approach could be application of regression methods based on selec-

tion of variables to extract the sparse networks. Penalization methods combined with

statistical tests are shown to deal with high dimensional fMRI data in [128].

In this work, we will �rst reformulate GC analysis as a tensor problem and then

propose two tensor based regression methods that will impose sparsity on the tensor

and decomposition level. The �rst method uses the t-norm de�ned in Section 2.2.5

in the Levinson-Durbin context whereas second method incorporates tensor regression

with the PARAFAC.

5.3 Granger Causality as a Tensor Regression

The fMRI data measured from ICx brain sites or voxels at ITδ discrete time

points can be casted as a matrix B ∈ RICx×ITδ as similar in Chapter 4. The MAR

model of the brain data considers the brain as a complex network with voxels/ROIs

to be the nodes. We aim to estimate the direction and weight of the connections

where time series of voxels are modulated by their own past values and past values of

other voxels. We will show that this problem is inherently a tensor problem due to its

multidimensionality in space and time.

To extend the matrix model in Eq. 5.5 to tensor space, we will introduce two

tensors constructed by concatenating the coe�cients and lagged time series matrices

along the time lag dimension, Ilag. By referring the de�nition of lagged time courses in
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Eq. 5.3, the data tensor B ∈ RIlag×ICx×ITδ is constructed by concatenating the lagged

time series along Ilag:

B = [Bt−q]
{1|...|1}
q=1:Ilag

(5.8a)

where

Bt−q =


B(1, Ilag + 1− q) . . . B(1, IT + Ilag − q)

...
. . .

...

B(ICx, Ilag + 1− q) . . . B(ICx, IT + Ilag − q)

 . (5.8b)

The autoregressive coe�cients are also essentially a tensor A ∈ RICx×ICx×Ilag

that is obtained by concatenating Aq matrices along the Ilag dimension.This operation

is stated explicitly as follows

A = [Aq]
{1|...|1}
q=1:Ilag

(5.9a)

where

Aq =


Aq(1, 1) . . . Aq(1, N)

...
. . .

...

Aq(N, 1) . . . Aq(N,N)

 . (5.9b)

Note that in both concatenation operations in Eq. 5.8a and Eq. 5.9a we make

use of the property of tensors that adding singleton dimensions to a tensor will not

change the tensor itself.

Now the tensor AR model can be stated by means of the contraction operator

de�ned in Section 2.2.3

B = A •{ICx,Ilag} B + E. (5.10)

An illustration of the MAR and tensor AR (TAR) is shown in Figure 5.1.
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Figure 5.1 Illustration of matrix and tensor AR models for Ilag = 3. (a) In matrix AR contraction
is performed on ICx · Ilag (b) TAR is formulated by contraction on the ICx and Ilag dimensions.
Concatenation is made explicit by using the same color blocks.

The M-P diagram of this model is given in Figure 5.2. The tensor A can be

found by imposing priors as

Â = arg min
A

{∥∥B−A •{ICx,Ilag} B
∥∥2
2

+ π(A)
}

(5.11)

We will propose two estimation methods one based on t-Product and the other

on PARAFAC decomposition in the subsequent sections. The symbols used throughout

the chapter are listed in Table 5.1.

5.4 Granger Causality with t-Products

We use t-Product operators de�ned in Section 2.2.5 for the estimation of AR

coe�cients. For this, we �rst de�ne the sample covariance tensor R ∈ RICx×ICx×(Ilag+1)
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Figure 5.2 M-P Diagram of the TAR

as

R(iCx, iCx, q) =


1
ITδ

ITδ∑
iTδ=1

B(iCx, iTδ)B(iCx, iTδ) if q = 0

1
ITδ

ITδ∑
iTδ=1

B(q, iCx, iTδ)B(iCx, iTδ) if 0 < q ≤ Ilag

(5.12)

where each horizontal slice of R denoted by R(:, :, q) is an ICx × ICx cross-covariance

matrix.

The Levinson-Durbin equations [129] of the MAR model are presented in ten-

sorial framework as
R(:, :, 0) R(:, :, 1)H · · · R(:, :, Ilag − 1)H

R(:, :, 1) R(:, :, 0) · · · R(:, :, Ilag − 2)H

...
...

. . .
...

R(:, :, Ilag − 1) R(:, :, Ilag − 2)H · · · R(:, :, 0)




A(:, :, 1)

A(:, :, 2)
...

A(:, :, Ilag)

 =


R(:, :, 1)

R(:, :, 2)
...

R(:, :, Ilag)


(5.13)

Note that the �rst term in Eq. 5.13 is a block Toeplitz matrix. By using the

circulant embedding of the Toeplitz matrix, Eq. 5.13 may be written in t-operator
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Table 5.1

Symbols for Granger causality formulation

Symbol De�nition Dimension

B fMRI matrix ICx × ITδ
Bt−q fMRI time series lagged by q ICx × ITδ
B Time lagged data tensor of GC Ilag × ICx × ITδ
A GC connectivity tensor ICx × ICx × Ilag
R Sample covariance tensor of GC ICx × ICx × Ilag
Mr Spatial signature for receiver voxels ICx ×R

Ms Spatial signature for sender voxels ICx ×R

T Temporal signature for GC Ilag ×R

L Laplacian matrix ICx × ICx

notation as follows:

embed(R1)MatVec(A) = MatVec(R2) (5.14)

R1 ?A = R2 (5.15)

where R1 = R(:, :, 0 : Ilag − 1) and R2 = R(:, :, 1 : Ilag). The naïve solution of A is

A = R−11 ?R2 (5.16)

where inverse is actually a t-inverse. However, since R1 is calculated from sample

covariance, this type of solution is not numerically stable. One approach is to regularize

the estimate of R1 with t-norm. This is formulated as

R̂1 = arg min
Λ

{
‖R1 − Λ‖22 + λ ‖Λ‖~

}
. (5.17)

The estimate of R1 is found by using a proper shrinking function applied on the t-

singular values of t-SVD(R1). We preferred to use the function de�ned in [130] since

it was de�ned speci�cally for shrinking sample covariance estimator towards a stable

target. The estimate is found as

R̂1 = U ? ρ(D) ? VT (5.18)
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where ρ operates on the singular values of each face of D ∈ RICx×ICx×Ilag extracted as

d(i) = D(i, i, k). The shrinking function is de�ned as

ρ(d(i)2) =
−ICx +

√
I2Cx + 4λα(ICxd(i)2 + λ(1− α))

2λα
(5.19)

where λ and α are estimated from the data.

Finally, the estimate of A is obtained by

Â = V ? (ρ(D))−1 ? UT ?R2 (5.20)

Figure 5.3 describes the estimation steps explicitly.

5.5 Granger Causality with PARAFAC

As noted previously, one of the challenges in the MAR or TAR modeling of the

fMRI data is the high number of nodes of the network which may lead to spurious con-

nections. Structured sparsity of A is a key concept that can be achieved by imposing a

PARAFAC structure on the connectivity tensor. Recall that PARAFAC decomposition

reveals the high-variance information as factor matrices or signatures.

We shall denote a node as a sender if it in�uences another set of nodes, and as

a receiver if its activity is caused by other nodes. We propose a TAR model in which

connectivity tensor is decomposed into spatial signatures denoting sender and receiver
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in: B, Ilag, λ, α

Normalize B : B = B−mean(B)
var(B)

Calculate the sample covariance tensor from Eq. 5.12

function embed input: X ∈ RI×I×K , output: S ∈ RI×I×2K

S(:, :, 1 : K) = X

S(:, :, K + 1) = 1/2(X (:, :, K) + X (:, :, K)H)

S(:, :, K + 2 : 2K) = X (:, :, K : −1 : 2)H

end function

De�ne R1 = R(:, :, 0 : Ilag − 1) and R2 = R(:, :, 1 : Ilag).

Circulant embedding of R1: R1 = embed(R1)

Circulant embedding of R2: R2 = embed(R2)

R̃1 = fft(R1, [ ], 3) {Fourier transform is applied on the third dimension}

R̃2 = fft(R2, [ ], 3)

for k = 1 to 2Ilag do

[U,D,V] = svd(R̃1(:, :, k))

for i = 1 to ICx do

d(i) = D(i, i)

y(i) = ρ(d(i)2) {Use the de�nition in Eq. 5.19}

D(i, i) =
√

y(i)

end for

Ã(:, :, k) = VD−1UTR̃2(:, :, k)

end for

A = ifft(Ã(:, :, 1 : Ilag), [ ], 3) {Inverse Fourier transform is applied on the third

dimension}

out: A

Figure 5.3 Granger Causality t-Product Algorithm
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nodes and a temporal signature for the lag. This model may be written as

min
Ms,Mr,Mt

{
1

2

∥∥∥B−A •{ICx,Ilag} B
∥∥∥2
2

+ λ1
∥∥Ms

∥∥
1

+
1

2
λ2
∥∥LMs

∥∥2
+ λ3

∥∥Mr

∥∥
1

+
1

2
λ4
∥∥LMr

∥∥2
2

+ λ5
∥∥T∥∥

1
+

1

2
λ6
∥∥LT

∥∥2
2

}
s.t. A =

q
Ms,Mr,T

y
,

Ms ≥ 0, Mr ≥ 0, Ms
TMs = I, Mr

TMr = I

(5.21)

where Ms ∈ RICx×R is the spatial signature for the sender nodes, Mr ∈ RICx×R is the

spatial signature for the receiver nodes and T ∈ RIlag×R is the temporal signature for

causal lags. R is the model order of the PARAFAC model.

In this model, the identi�ability is enhanced by enforcing nonnegativity, orthog-

onality, smoothness, and sparseness for the spatial signatures and a smooth Lasso-type

constraint for the lag signature. In other words, these constraints tend to estimate

smooth patches of voxels on the cortex. Orthogonality and nonnegativity constraints

guarantee that spatial factors can have only one nonnegative element in each row which

can be interpreted as the cluster centroids [131, 132]. In this way, the connected spatial

regions are con�ned to be nonoverlapping patches. This model is the generalization of

clustering in which connectivity tensor is decomposed into sum of rank one triclusters

[133].

The atomic decomposition of the 3-D connectivity tensor for the model of Eq.

5.21 favors a parsimonious model where the number of parameters to be estimated

is (2ICx + Ilag)R. The M-P diagram is shown in Figure 5.4. We will describe the

estimation of the factors and the algorithm implemented.
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5.5.1 Estimation of the Signatures

For the estimation of the signatures, we will introduce the PARAFAC constraint

in Eq. 5.21 as a quadratic penalty term and the objective is written as

min
A,Ms,Mr,T

{
1

2

∥∥∥B−A •{ICx,Ilag} B
∥∥∥2
2

+
λp
2

∥∥A− q
Ms,Mr,T

y∥∥2
2

+ P (λ,Ms,Mr,T)

}
s.t. Ms ≥ 0, Mr ≥ 0, Ms

TMs = I, Mr
TMr = I

(5.22)

where we put all the penalization terms of signatures into function P (λ,Ms,Mr,T).

λp is the weight of the penalization for A to have a PARAFAC decomposition. We

used Alternating Direction Method of Multipliers (ADMM) for the estimation of the

signatures.

Figure 5.4 M-P Diagram of the GC-PARAFAC

5.5.1.1 Alternating Direction Method of Multipliers. The ADMM algo-

rithm was �rst proposed by Gabay et al. and Glowinski et al. in the 1970s [134, 135].

However, it has attracted attention recently due to successful applications on large scale

tensor completion problems with multiple nonsmooth penalization terms [136, 137].
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The ADMM algorithm solves the problem

min
x,y

f(x) + g(y)

s.t. Ax + By = c

(5.23)

where the variables are x ∈ Rn and y ∈ Rm, the matrices are A ∈ Rp×n, B ∈ Rp×m

and c ∈ Rp. The functions f and g are assumed to be convex, though it has been

shown that ADMM also works well with non-convex functions [138]. In this problem

there are two sets of variables with separable objectives. By introducing a Lagrange

multiplier w ∈ Rp for the equality constraint, the augmented Lagrangian function

could be written as

L(x,y,w) = f(x) + g(y) + wT (Ax + By − c) +
ν

2

∥∥Ax + By − c
∥∥2
2
. (5.24)

The ADMM algorithm is given as:

xk+1 = arg min
x

L(x,yk,wk)

yk+1 = arg min
y

L(xk+1,y,wk)

wk+1 = wk + ν(Axk+1 + Byk+1 − c)

(5.25)

where k is the step number. The parameter ν is set inside the algorithm. Note that

by applying sequential optimization, the parameters are decoupled.

5.5.1.2 ADMM Algorithm for GC-PARAFAC. It can be observed that the

�rst two terms in Eq. 5.22 are coupled in the variable A. To decouple these terms, we

introduce a new variable Z ∈ RICx×ICx×Ilag as follows:

min
A,Z,

Ms,Mr,Mt

{
1

2

∥∥∥B−A •{ICx,Ilag} B
∥∥∥2
2

+
λp
2

∥∥Z − q
Ms,Mr,T

y∥∥2
2

+ P (λ,Ms,Mr,T)

}

s.t. A−Z = 0

Ms ≥ 0, Mr ≥ 0, Ms
TMs = I, Mr

TMr = I

(5.26)
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Now, the parameters can be estimated with ADMM. The augmented Lagrangian func-

tion is given as

L(A,Z,Ms,Mr,T) =

{
1

2

∥∥∥B−A •{ICx,Ilag} B
∥∥∥2
2

+
λp
2

∥∥Z − q
Ms,Mr,T

y∥∥2
2

+ P (λ,Ms,Mr,T) +
ν

2

∥∥∥A−Z
∥∥∥2
2

+ W •{ICx,ICx,Ilag} (A−Z)

} (5.27)

where W ∈ RICx×ICx×Ilag is the Lagrange multiplier. ADMM algorithm is given as

follows:

Ak+1 = arg min
A

L(A,Zk,Wk,Ms
k,Mr

k,Tk)

Zk+1 = arg min
Z

L(Ak+1,Z,Wk,Ms
k,Mr

k,Tk)

Ms
k+1 = arg min

Ms

L(Ak+1,Zk+1,Wk,Ms,Mr
k,Tk)

Mr
k+1 = arg min

Mr

L(Ak+1,Zk+1,Wk,Ms
k+1,Mr,T

k)

Tk+1 = arg min
T

L(Ak+1,Zk+1,Wk,Ms
k+1,Mr

k+1,T)

Wk+1 = Wk + ν(Ak+1 −Zk+1)

(5.28)

We will give the ADMM updates in terms of variables as listed in Eq. 5.28.

(i) ADMM update step for A

The gradient of Eq. 5.27 with respect to A is found as

∂L
∂A = −(B−A •B) •BH + ν(A−Z) + W . (5.29)

By setting the gradient to zero, A is found as

Â = (B •BH + νI)−1 • (B •BH + νZ −W). (5.30)

(ii) ADMM update step for Z
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ADMM update of Z is found by �nding the gradient of Eq. 5.27 with respect to Z

∂L
∂Z = λp(Z −Q)− ν(A−Z)−W . (5.31)

where Q =
q
Ms,Mr,T

y
. By setting the gradient to zero, Z is found as

Ẑ =
1

λp + ν
(λpQ + νA + W). (5.32)

(iii) ADMM update step for Ms

The signature matrices of the PARAFAC decomposition are estimated from the func-

tional

L(Ms,Mr,Mt) =

{
λp
2

∥∥Z − q
Ms,Mr,T

y∥∥2
2

+ +λ1
∥∥Ms

∥∥
1

+
1

2
λ2
∥∥LMs

∥∥2
+ λ3

∥∥Mr

∥∥
1

+
1

2
λ4
∥∥LMr

∥∥2
2

+ λ5
∥∥T∥∥

1
+

1

2
λ6
∥∥LT

∥∥2
2

}
s.t. Ms ≥ 0, Mr ≥ 0, Ms

TMs = I, Mr
TMr = I

(5.33)

At this step any type of solver for tensor decompositions can be used. We prefer

to use HALS algorithm as similar to Section 4.5.1, since the constraints are the same

for spatial signatures: nonnegativity, orthogonality, sparsity and smoothness. For the

estimation of temporal signature we will use proximal maps which will be explained

afterwards.

For the estimation of spatial signature Ms, we will use the matricized notation

of PARAFAC. Call G = (T�Mr), Eq. 5.33 may be written as

L(Ms) =

{
λp
2

∥∥Z(1) −MsG
T‖22 + λ1

∥∥Ms

∥∥
1

+
1

2
λ2
∥∥LMs

∥∥2}
s.t. Ms ≥ 0, Ms

TMs = I

(5.34)

The orthogonality constraints can be imposed column-wise in HALS as stated
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in [88]. Orthogonality constraint on Ms is expressed as

Ms
TMs = I ⇒


Ms(:, j)

TMs(:, j) = 1, j = 1, . . . , R ∧
R∑
k 6=j

Ms(:, k)TMs(:, j) = 0, j = 1, . . . , R
(5.35)

Denote W(j) =
R∑
k 6=j

Ms(:, k) then the orthogonality constraint is equal to

(W(j))TMs(:, j) = 0 for j = 1, . . . , R. (5.36)

By incorporating orthogonality constraint in Eq. 5.34 and �xing all columns

except j, we get

L(Ms(:, j)) =

{
λp
2

∥∥Z̃(1) −Ms(:, j)G(:, j)T‖22 + λ1
∥∥Ms(:, j)

∥∥
1

+
1

2
λ2
∥∥LMs(:, j)

∥∥2 + λorth(W
(j))TMs(:, j)

}
s.t. Ms(:, j) ≥ 0

(5.37)

where Z̃(1) = Z(1) −
R∑
k 6=j

Ms(:, k)G(:, k)T and λorth is the regularization parameter

for orthogonality. Note that we did not apply the same subtraction on sparsity and

smoothness inducing penalty functions since they are already operating on the columns.

The gradient of L(Ms(:, j)) with respect to Ms(:, j) is found as

∂L
Ms(:, j)

=
{
− λpZ̃(1)G(:, j) + λpMs(:, j)G(:, j)TG(:, j) + λ11

+ λ2L
TLMs(:, j) + λorthW

(j)
} (5.38)

By setting the gradient to zero, the estimate is found as

M̂s(:, j) =
[(
λpI + λ2L

TL
)−1 (

λpZ̃(1)G(:, j)− λ11− λorthW(j)
)]

+
(5.39)

Inside the algorithm the other factors are normalized to ensure G(:, j)TG(:, j) = 1.
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In order to set the λorth, we multiply Eq. 5.38 with (Wj)T
(
λpI + λ2L

TL
)−1

from the left and use the expression (W(j))TMs(:, j) = 0 to obtain

λorth =
(Wj)T +

(
λpI + λ2L

TL
)−1 (

λpZ̃(1)G(:, j)− λ11
)

(Wj)T + (λpI + λ2LTL)−1 Wj
(5.40)

(iv) ADMM update step for Mr

The estimation of the other spatial signature Mr follows the same procedure. So we

skip the derivations and give the �nal result:

M̂r(:, j) =
[(
λpI + λ4L

TL
)−1 (

λpZ̃(2)H(:, j)− λ31− λorthW(j)
)]

+
(5.41)

where W(j) =
R∑
k 6=j

Mr(:, k), H = (T�Ms) and Z̃(2) = Z(2) −
R∑
k 6=j

Mr(:, k)H(:, k)T

The orthogonality parameter is calculated as

λorth =
(Wj)T +

(
λpI + λ4L

TL
)−1 (

λpZ̃(2)H(:, j)− λ31
)

(Wj)T + (λpI + λ4LTL)−1 Wj
(5.42)

(v) ADMM update step for T

Since orthogonality and nonnegativity are not imposed on the temporal lag signature

T, the estimation procedure is di�erent. The minimizer for T is written as

arg min
T

L(T) = arg min
T

{
λp
2

∥∥Z(3) −TFT‖22 + λ5
∥∥T∥∥

1
+

1

2
λ6
∥∥LT

∥∥2} (5.43)

where a matricized notation for PARAFAC is used and F = (Ms �Mr). Since T is

multiplied by F from the right and by L from the left in Eq. 5.43, estimation of T

is not easy. One method might be the vectorization of Eq. 5.43 and using Kronecker

products which is not favorable since the scale of the problem will be high. Instead, we

prefer to reformulate the problem by introducing a new variable to split the quadratic
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and penalization functions as follows:

arg min
T

L(T) = arg min
T

{
λp
2

∥∥Z(3) −TFT‖22 + λ5
∥∥V∥∥

1
+

1

2
λ6
∥∥LV

∥∥2}
s.t. T−V = 0

(5.44)

where V ∈ RIlag×R is an auxiliary matrix. Note that �rst term of Eq. 5.44 is decoupled

from the rest, thus this problem can be solved with ADMM.

The augmented Lagrangian of the problem in Eq. 5.44 is

F(T) =

{
λp
2

∥∥Z(3) −TFT‖22 + λ5
∥∥V∥∥

1
+

1

2
λ6
∥∥LV

∥∥2 +
τ

2

∥∥T−V
∥∥2
2

+ Y • (T−V)

}
(5.45)

where Y ∈ RIlag×R is the Lagrange multiplier. We will use ADMM-in to emphasize

that this ADMM algorithm is the update step of the outer ADMM.

ADMM-in update step for T

T is estimated from the functional

arg min
T

F(T) = arg min
T

{
λp
2

∥∥Z(3) −TFT‖22 +
τ

2

∥∥T−V
∥∥2
2

+ Y • (T−V)

}
(5.46)

The gradient of the functional with respect to T is

∂F
∂T

=

{
− λpZ(3)F + λpTFTF + τ(T−V) + Y

}
(5.47)

The estimate of T is found by setting the gradient to zero and solving for T

T̂ =
(
λpZ̃(3)F + τV −Y

)(
λpF

TF + τI
)−1

(5.48)

Note that since the dimensions of FTF is R × R, the inverse operation is not compu-

tationally demanding.

ADMM-in update step for V



73

V is estimated from the functional

arg min
V

F(V) = arg min
V

{
τ

2

∥∥T−V
∥∥2
2

+ Y • (T−V) + λ5
∥∥V∥∥

1
+

1

2
λ6
∥∥LV

∥∥2}
(5.49)

The problem in Eq. 5.49 is convex but not di�erentiable due to the L1 norm. We used

proximal gradient ascent estimation of the V as described in [139]. Proximal map of a

function P (x) is de�ned as

proxp(y, λ) = arg min
x

{
1

2
‖x− y‖22

}
+ λP (x) (5.50)

In our problem P (x) = ‖x‖1. The proximal map of the L1 norm is de�ned as follows

proxp(y, λ) = sign(x) [|x| − λ]+ (5.51)

where sign is a function that is equal to 1 if x > 0 and -1 if x < 0.

By using the quadratic approximation of Eq. 5.49, we found V as

V̂ = prox

(
V +

1

L

(
Y + τT− (τI + λ6L

TL)V
)
,
λ6
L

)
(5.52)

where L is the Lipschitz constant found as [139]

L = max eig
(
τI + λ6L

TL
)

(5.53)

The algorithm of the GC-PARAFAC is summarized in Figure 5.5. It is impor-

tant to note that GC analysis with PARAFAC requires a decomposition at each step

of the ADMM algorithm; in this analysis, a "warm start" is used with initial values for

the decomposition set as the factor estimates from the previous step.
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in: B,B,L, R, {λj}6j=1

initialize: Mr,Ms,T

for k = 1 to K do

Estimate A(k+1) from Eq. 5.30

Estimate Z(k+1) from Eq. 5.32

for j = 1 to R do

Estimate λorth of Ms from Eq. 5.40

Estimate Ms
(k+1) from Eq. 5.39

Estimate λorth of Mr from Eq. 5.42

Estimate Mr
(k+1) from Eq. 5.41

end for

L = max eig
(
τI + λ6L

TL
)

repeat

Estimate Tk+1 from Eq. 5.48

Estimate Vk+1 from Eq. 5.52

Y(k+1) = Y + τ(T(k+1) −V(k+1))

until (Primal Residual + Dual Residual) < ε

Qk+1 = JMs,Mr,TK

Wk+1 = W + ν(Ak+1 −Zk+1)

end for

out: A,Ms,Mr,T

Figure 5.5 Granger Causality - PARAFAC ADMM Algorithm
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5.6 Real Data Analysis

We applied the GC t-Product and GC-PARAFAC analyses on the fMRI data

of one subject reported in [126]. In this study, a reversing checkerboard at 8 Hz

was presented that captures the left or right visual hemi�eld. Subjects were required

to press the button with their corresponding hands to right or left visual hemi�eld

stimuli. 500 ms duration stimulus was presented at a randomized onset with a uniform

distribution of inter stimulus intervals in the 3− 16 s range.

fMRI images were acquired using inverse imaging (InI) providing a high tempo-

ral resolution (10 Hz) with whole brain coverage. After collecting the reference scan,

functional scans were acquired by TR= 100 ms, TE= 30 ms and FA= 30. The k -space

InI reconstruction algorithm was used for the estimation of spatial encodings along the

anterior-posterior axis [126].

InI time series of each subject was registered to their cortical surface and then

to a spherical brain. After applying general linear model analysis, �ve functional ROIs

were determined according to the BOLD activation: visual cortex (V), parietal cortex

(PCC), pre-motor cortex (PreM), somatosensory cortex (S) and motor cortex (M).

Each ROI consists of di�erent number of activated voxels. The ROIs are shown in

Figure 5.6. We did not average the time series of the voxels within each ROI for the

analysis contrary to [126]. However, for reporting the results we took the sum of the

ROIs which will be explained below. The mean value and the linear drift of the time

series were removed. At the end we had a fMRI data matrix of size 299 time points

and 1100 voxels.

For the t-Product analysis, we normalized the data as described in Figure 5.3.

Then we calculated the covariance tensor and estimated the connectivity tensor. The

results are reported by taking the sum of the connections between ROIs. The con-

nectivity pattern is depicted in Figure 5.7(a). The method was able to deal with

high-dimensional data having more than 1000 nodes and 20 lags with stable numerical

results. It is also interesting to note that this estimate of connectivity seems to be
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Figure 5.6 Locations of the functional ROIs are depicted on the cortical surfaces of the left and right
hemisperes. The ROIs are selected according the t-values of the mean of the BOLD signal between
4 and 7s after the visual onset. Time courses of the BOLD responses and the estimated neuronal
activity calculated from the deconvolution are shown on the right. Adapted from [126].

much more sensitive than the simple bivariate approach.

For the GC-PARAFAC analysis, a time period of 500 ms corresponding to �ve

time lags was selected as the temporal factor. A graph Laplacian matrix is used as the

smoother matrix L in Eq. 5.21. The model order of PARAFAC was set to 3. Each atom

of receiver Mr and sender Ms signatures extracted from the PARAFAC are grouped

according to ROIs and the sum of each ROI is taken. Figure 5.7(c) shows the existence

of strong bottom-up and weak top-down connections between VC, PCC, M, and S.

There is also lateral information �ow from left to right visual areas. The temporal

atoms, encoded in matrix T, showed an ascending connectivity in�uence, peaking at

the �rst lag (100 ms) and slowly decaying afterwards. Results of all analysis methods

show that there is a predominance in causal directionality emerging from the V and

PCC cortex to the rest of the brain areas.

In this section, we showed that the GC analysis for the brain data is inherently

a tensor problem due to its multidimensionality in space and time. We proposed two
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Figure 5.7 Granger causality in real data. The arrows denote directional dominant �ows of Granger
causality between the visual V, parietal PPC, premotor PreM, somatosensory S, and motor M cortical
regions. (a) The original results were published in [126] and extracted from the Figure 2 of that refer-
ence. This is the dominant information �ow calculated from the di�erence between two unidirectional
Granger estimates among the ROIs. Only connections that have a p-value ≤ 0.05 are shown. (b)
Results using the t-product (c) The resulting three spatial atoms of the connectivity tensor retrieved
by the GC analysis with PARAFAC decomposition. Connectivity maps are generated for each atom
by using directed arrows that are pointed from the cortical regions of senders which have a value
greater than zero to positively active regions of the corresponding receiver signature. Magnitude of
the connectivity is symbolized by the color bar on the right of the �gure.

analysis methods, one based on the regularization of the covariance tensor and the

other on the PARAFAC decomposition of the connectivity tensor. We suggest that the

connection between GC and tensor analysis may lead to the use of other tensor based

methods which are tailored for high-dimensional data.
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6. DISCUSSION, CONCLUSION AND FUTURE WORK

6.1 Discussion

In Chapter 4, a new symmetric multimodal fusion technique is presented and

applied on the simultaneous EEG/fMRI data. In this technique, time varying EEG

spectrum is represented as a 3D tensor with spatial, temporal and spectral dimensions.

fMRI data matrix is formed by using the time courses of the voxels on the cortical

surface. Data coming from EEG and fMRI are decomposed simultaneously by coupling

on the spatial dimension. This technique is summarized as follows:

• Fusion of EEG and fMRI is performed on the cortical surface which requires the

source localization in EEG. This di�ers from other ICA/PARAFAC methods in

which decomposition on the sensor space is followed by the localization in the

source space [19, 140].

• Both common and uncommon spatial sources are identi�ed for two modalities

which enables to assign di�erent model orders on the decomposition models of

both modalities. This approach di�ers from joint-ICA and N-PLS based models

in which model orders are kept the same.

• The identi�ability of the fusion model is enhanced with the sparsity, smoothness,

non-negativity and orthogonality constraints on the spatial factors. The interpre-

tation of these constraints is to �nd a few, smooth and non-overlapping spatial

sources. CMTF inherits the uniqueness of the PARAFAC however under some

circumstances such as low signal-to-noise ratio and correlated factors, it may fail

to identify the real underlying factors [141]. Constrained CMTF may avoid these

problems. The orthogonality constraint may be physiologically demanding in

some cases and can be relaxed [142, 143].

In this thesis, heuristic methods are used for the determination of the model
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orders of the decompositions of EEG and fMRI data tensors as well as the number

of common components. This should be improved by using automatic selection of

the model orders [144, 145]. The selection of the weight parameter γ in Eq. 4.8 is

important since it determines the e�ects of the modalities on the identi�cation of the

common spatial factor MC. We used a rough estimate of this parameter through the

BIC formulation of MC by testing for various values. However, this parameter can be

directly estimated in the alternating algorithm by using probabilistic approaches [146].

An improvement of the fusion model might be modi�cation of the spatial de�-

nition of fMRI. We con�ned fMRI sources on the cortical surface. For the estimation

of the discriminant components of fMRI whole-brain can be used. Furthermore, the

EEG data is modeled as a spectral tensor which diminishes the phase information. As

a future work, complex space-time decomposition can be performed.

In Chapter 5, a tensor AR model is proposed for modeling the causal brain

networks. It is shown that the Granger causality analysis can be formulated within the

tensor framework. Two methods are proposed:

1. Levinson-Durbin equations are reformulated by using t-products. Tensor nuclear

norm is used for the estimation of the inverse of the covariance tensor calculated

from the fMRI data matrix for several temporal lags.

2. Connectivity tensor is represented with the sender and receiver spatial signatures

and a temporal lag signature by using PARAFAC. Both the connectivity tensor

and the signatures are estimated by the ADMM algorithm.

Both of the algorithms could handle the high dimensionality of the data and

�nd a sparse representation of the connectivity patterns. For the �rst method, we used

tensor nuclear norm to �nd a stable estimate of the inverse of the covariance tensor.

An alternative method might be the application of the tensor nuclear norm directly on

the connectivity tensor which will give a lower rank estimate [13].
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6.2 Conclusion

EEG and fMRI are mediated by di�erent physiological processes from neural

activation that lead to di�erences in their spatial and temporal resolutions. Due to the

indirect nature of these signals, inverse problems for each modality should be solved

to cover the interactions between modalities which are intrinsically ill-posed in their

nature.

In this thesis, a general framework for the tensor analysis of multimodal data

fusion and brain connectivity is presented. Detailed descriptions of the models and

algorithms for the proposed approaches are presented. M-P diagrams that unify the

graphical tensor notations with the directed acyclic graphs description of Bayesian

statistical models are used for the illustration of the models.

All of the algorithms developed for this thesis are available at

http://neurosignal.boun.edu.tr/software/tensor.

As the amount of neuroimaging data increase tremendously, methods dealing

with this problem should be developed. Statistical methods based on tensors embraces

the high dimensionality of the multimodal data.

6.3 Future Work

The application area of the proposed fusion method is not limited to the EEG

and fMRI. Other types of data fusion such as DTI with fMRI, electrocortiography with

EEG, or DTI with EEG may be used. As a future work, we will validate our model on

datasets from multiple subjects and other modalities.

All of the proposed methods investigate the brain function on the macro-scale by

using linear models. The generative models proposed are limited and do not include
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biophysical models. It is known that the forward model of fMRI is nonlinear. The

methods can be improved by incorporating nonlinear models as suggested in [2].

For both the fusion and connectivity models, statistical methods for testing the

signi�cance of the results are needed. As a future work, statistical inference in higher

dimensions should be developed.
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THE THESIS
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ceedings of the IEEE, Vol. 103, pp: 1531-1559, 2015.
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B. Bilgiç, H. Gürvit, A. Ademoglu, T. Demiralp, 20th Annual Meeting of the

Organization for Human Brain Mapping, Hamburg, Germany, 2014.

3. Temporal Frequency Responses of Human Geniculate Nucleus and Primary Vi-

sual Cortex in fMRI, A. Bayram, E. Karahan, B. Bilgiç, A. Ademo§lu, T.

Demiralp, 20th Annual Meeting of the Organization for Human Brain Mapping,

Hamburg, Germany, 2014.

4. EEG-fMRI fusion on the cortical surface using Coupled Tensor-Matrix Factor-

ization: A simulation study, E. Karahan, A. D. Deniz Duru, P. A. Valdes-Sosa,

A. Ademo§lu, INCF Neuroinformatics Conference, Stockholm, Sweden, 2013.
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2011.

6. Simultaneous EEG/fMRI Analysis of Steady-State Visual Evoked Responses, E.

Karahan, M. Özker, A. Bayram, Z. Bayraktaroglu, B. Erdo§an, I. Ka³�kç�, C.

Öztürk, A. Ademo§lu, T. Demiralp, 17th Annual Meeting of the Organization for

Human Brain Mapping, Quebec City, Canada, 2011.

7. A Group Study on BOLD Change to the Steady State Visual Stimuli with

Bayesian Inference, M. Sevgi, E. Karahan, A. Bayram, A.D. Duru, C. Öztürk,
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A. Ademo§lu, T. Demiralp, 17th Annual Meeting of the Organization for Human

Brain Mapping, Quebec City, Canada, 2011.
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sual cortex, T. Demiralp, A. Bayram, E. Karahan, B. Bilgiç, N. Tarhan and A.
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10. Hemodynamic correlates of brain electrical oscillations related with working mem-
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Front. Hum. Neurosci. Conf. Abs.: 11th International Conference on Cognitive

Neuroscience, 2011.

11. Steady State Visual Evoked Potential Informed fMRI Analysis for Alpha, Beta
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Volumes Using SVM, A.E. Ercan, E. Karahan, O. Özyurt, C. Öztürk, Proceed-

ings of the 18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010.
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