
MODELING AND CLUSTERING ANALYSIS OF

PULMONARY CRACKLES

by

Mete YE��NER

B.S., in Physics, Bogazici University, 1999

M.S., in Biomedical Science, Bogazici University, 2002

Submitted to the Institute of Biomedical Engineering

in partial ful�llment of the requirements

for the degree of

Doctor

of

Philosophy

Bo§aziçi University

June 2008



ii

MODELING AND CLUSTERING ANALYSIS OF

PULMONARY CRACKLES

APPROVED BY:

Assoc.Prof. Yasemin P. Kahya . . . . . . . . . . . . . . . . . . .

(Thesis Advisor)

Prof. Ay³�n B. Ertüzün . . . . . . . . . . . . . . . . . . .

Prof. Ahmet Ademo§lu . . . . . . . . . . . . . . . . . . .

Prof. Yekta Ülgen . . . . . . . . . . . . . . . . . . .

Prof. Günseli K�l�nç . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: June 16, 2008



iii

ACKNOWLEDGMENTS

I, �rstly, appreciate Prof. Yasemin P. Kahya for playing key role in both go-

ing over obstacles during my dissertation process and opening new windows (not Mi-

crosoft's) to the light of the unique solutions. Inspiring from the words of F. Bloch who

is one of PhD students of W. Heisenberg, I can say that I have watched "`the spirit of

research" through the opened windows.

Secondly, thanks to the members of our laboratory, i.e. Koray Çiftçi and Ipek

�en for their supports while we all simultaneously face with the similar problems during

our studies and experiments.

I appreciate Prof. Ahmet Ademo§lu, Prof. Ay³�n B. Ertüzün and Prof. Yekta

Ülgen for completing the de�ciencies of my studies by their worthy advices.

I thank Prof. Gunseli Kilinc, MD, from Istanbul University Cerrahpasa Medical

School and Sibel Yurt, MD, from Yedikule Teaching Hospital for Chest Diseases and

Thoracic Surgery for their guidance and advices on data acquisition and diagnosis of

pulmonary disorders of patients.

At the end, it is beyond the domain of the words to thank the supports and the

contributions of my family in the all stages of my life.



iv

ABSTRACT

MODELING AND CLUSTERING ANALYSIS OF
PULMONARY CRACKLES

The objective of this study is to perform two complementary analyses of pul-

monary crackles, i.e. modeling and clustering, in order to interpret crackles in time-

frequency domain and also determine the optimal number of crackle types and their

characteristics using the modeling parameters. Since the crackles are superimposed on

background vesicular sounds, a preprocessing method for the elimination of vesicular

sounds from crackle waveform is also proposed for achieving accurate parameteriza-

tion. The proposed modeling method, i.e. the wavelet network modeling, interprets

the transient structure of crackles in the time-frequency space with a small number

of components using the time-localization property of wavelets. In modeling analysis,

complex Morlet wavelets are selected as transfer functions in the hidden nodes due to

both their similarity with the crackle waveforms and their �exibility in the modeling

process. Clustering analysis of crackles probe the discrepancies found among the studies

related with the crackle types and their corresponding characteristics. Since, in these

studies, crackles are classi�ed according to the auditory perception of the observers,

there are inconsistencies found in the labeling of the same crackle. To overcome the

inherent subjectivity, the crackles are classi�ed in an unsupervised method using the

EM clustering analysis. In this method, it is assumed that the crackle data can be in-

terpreted with the multivariate Gaussian mixture model and, therefore, crackle clusters

distribute normally in the feature spaces. The results strongly suggest the existence of

a third crackle type, medium, in addition to the commonly used two types, i.e. �ne

and coarse. Moreover, the extracted characteristics of crackle types o�er additional

features for the computerized crackle-based analysis of pulmonary disorders.

Keywords: Lung Sounds, Pulmonary Crackles, Crackle Types, Wavelet Networks,

Signal Modeling, EM Clustering, Vesicular Sound Elimination
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ÖZET

SOLUNUM SES� ÇITIRTILARININ MODELLENMES� VE
ÖBEKLEME ANAL�Z�

Bu çal�³man�n hede�, solunum ç�t�rt�lar�n�n birbirini tamamlayan iki analizi

olan modelleme ve öbeklemeyi gerçekle³tirerek ç�t�rt�lar� zaman-s�kl�k uzay�nda ifade

etmek ve ç�t�rt� türlerinin en uygun say�s�n� ve özelliklerini belirlemektir. Ç�t�rt�lar�n

ardalandaki vesikular sesin üzerine eklenmesi nedeniyle, parametreleme analizini do§ru

yapabilmek için, ç�t�rt� sinyalinden vesikular sesin temizlenmesi amac�yla bir ön-i³lem

yöntemi de önerilmi³tir. Önerilen modelleme yöntemi olan dalgac�k a§lar� ile mo-

delleme, dalgac�k enerjisinin zaman uzay�ndaki deri³iminden faydalanarak daha az

bile³en ile ç�t�rt�n�n geçici yap�s�n� zaman-s�kl�k uzay�nda ifade etmektedir. Model-

leme analizinde, kompleks Morlet dalgac�klar�, hem Morlet dalgac�§� ile ç�t�rt�n�n dalga

³ekillerinin benzerli§inden hem de modellemedeki esnek performans�ndan dolay� sakl�

dü§ümlerde transfer fonksiyonu olarak kulan�lm�³t�r. Öbekleme analizi ç�t�rt�lar�n

tür say�lar� ve bunlar�n özellikleri hakk�nda yap�lan çal�³malar�n tutars�zl�§� nedeni

ile yap�lm�³t�r. Bu çal�³malarda ç�t�rt�lar gözlemcilerin duysal alg�lamalar�na göre

s�n��and�r�ld�§�ndan, ayn� ç�t�rt�y� etiketlemede farl�l�klar ortaya ç�kmaktad�r. Bu öznel-

li§in üstesinden gelebilmek için, ç�t�rt�lar EM öbekleme analiziyle yönlendirmesiz olarak

s�n��and�r�lm�³t�r. Bu yöntemde ç�t�rt� verisinin çok-de§i³kenli Gauss kar�³�m modeli

olarak ifade edilebilece§i ve böylece ç�t�rt� öbeklerinin bile³en uzaylar�nda normal bir

da§�l�m gösterece§i öngörülmü³tür. Sonuçlar genellikle kullan�lan iki tür olan ince ve

kal�n ç�t�rt�lar�n yan�nda üçüncü bir tür olan orta ç�t�rt�n�n varl�§� konusunda güçlü

deliller sunmaktad�r. Buna ek olarak, ç�t�rt� türlerinin nitelendirilmesi, solunum rahat-

s�zl�klar�n�n ç�t�rt� tabanl� bilgisayar analizine yeni ö§eler önermi³tir.

Anahtar Sözcükler: Solunum Sesleri, Solunum Ç�t�rt�lar�, Ç�t�rt�lar�n Türleri, Dal-

gac�k A§lar�, Sinyal Modelleme, EM Öbekleme, Vesikular Sesin Temizlenmesi
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1. INTRODUCTION

Auscultation of pulmonary sounds with a stethoscope is a common, inexpensive

and noninvasive method in the diagnosis of respiratory disorders. However due to the

inherent subjectivity of the method arising from lack of quanti�able, objective param-

eters in the evaluation of pulmonary sounds and shortcomings arising from limited

frequency response of the stethoscope, it is regarded of low diagnostic value and its

�ndings are further veri�ed by other tests. Over the last 30 years, with the advance-

ments in computer technology and digital signal processing �eld, the digital acquisition

of pulmonary sounds with better sound transducers and computer hardware and the

analysis of pulmonary sound waveform using advanced signal processing techniques

have become an established research area. An extensive overview of pulmonary sound

research is given in various review articles [20, 51, 65, 37]. The research on analysis

of pulmonary sounds aims to parameterize sound data and correlate these parameters

with common respiratory disorders.

The pulmonary sounds are believed to be produced due to air turbulence in the

airways of the lungs although the exact mechanism of sound generation is still unknown.

The changes in the lung structure that occur in some pathological conditions change

the spectrum of sounds heard over the chest wall and may further cause the presence

of additional abnormal sounds [20, 51, 65]. Pulmonary sounds are roughly divided into

two classes, vesicular sounds (VSs) and adventitious sounds. VSs are the respiratory

sounds heard over the chest wall and are synchronous with air �ow in the airways.

Their frequency spectra may change with the location of auscultation on the chest wall

and with pathological conditions [21, 40, 59, 8]. Adventitious sounds, on the other

hand, are additional sounds which usually occur with respiratory disorders. Both in

literature and in this thesis, pulmonary sounds, respiratory sounds, lung sounds and

breath sounds have been used interchangeably.

Crackles are discontinuous type of adventitious sounds that occur in pathological
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Figure 1.1 A phonopneumogram that presents lung sound and �ow (dashed line) signals simultane-
ously. Crackles are superimposed upon V Ss of a male patient with pneumonia. (b) Time expanded
waveform of a part of the lung sound signal that includes CC and FC.

conditions and are superimposed on VSs (Figure 1.1). Crackles are explosive and

transient in character, and occur frequently in cardio-respiratory diseases, being useful

indicators in their diagnosis [17, 49, 19, 54]. Criteria for a crackle waveform have

been suggested by Murphy et al. [47] as being a transient containing 3 to 16 baseline

crossings with the amplitude of its largest peak greater than twice the amplitude of

the background VSs. The waveform is expected to have a sharp onset de�ection which

is followed by de�ections of progressively wider baseline crossings. The duration of a

crackle is less than 20 ms and its frequency range is from 100 to 2000 Hz or even higher

[20, 54]. The timing and pitch of crackles are usually correlated with diseases such as

pneumonia, bronchiectasis, �brosing alveolitis and asbestosis [49, 55, 66, 72, 53, 33, 69].

A typical crackle waveform may be depicted in Figure 1.1.

Crackles are generally classi�ed as �ne and coarse crackles according to their
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Table 1.1

Representative crackle parameter values (ms) for �ne and coarse crackle classes as suggested by
di�erent groups [13, 23, 24, 25, 26]. For comparison, Hoevers' set of parameters are converted to

Murphy's using Eq. 4.1.

duration and waveform, however a third class, medium, is occasionally used by some

researchers [21, 34, 3, 27]. The discriminants between the crackle types are not obvi-

ous. There is a discrepancy among di�erent groups in their classi�cation of crackles.

A crackle which is classi�ed as �ne according to one study may be classi�ed as coarse

according to another. This inconsistency is clearly seen in Table 1.1 where representa-

tive parameter values for two classes of crackles, namely coarse (CC) and �ne (FC),

as recommended by di�erent groups, [47, 5, 26, 45, 64] are summarized. A crackle

which is classi�ed as coarse according to American Thoracic Society (ATS) de�nition,

for instance, would be classi�ed as �ne according to Computerized Respiratory Sound

Analysis Research Group (CORSA).

Crackles have been traditionally detected with stethoscopes in auscultation and

this approach has been a source of great variability among observers. Interobserver

disagreement on the assessment of crackles as either �ne, medium or coarse was re-

ported to be 53% among three observers in a work by Hudson et al. [27]. Similarly, in

a study by Piirila et al. [56], agreement on the �neness and coarseness of crackles was

around 60% among two observers. With the development of computerized systems for

digitization and recording of pulmonary sounds mainly for pulmonary sound research,

parameterization of crackles for a more objective description and classi�cation have

been attempted and various di�erent sets of parameters have been used by di�erent

groups. Among these, the most popular have been two main studies by Murphy et

al. [47] and Hoevers et al. [26]. In the study of Murphy et al., two parameters have

been used to de�ne crackles, mainly the Initial De�ection Width (IDW ) which is the

duration of the �rst de�ection of the crackle and the Two-Cycle Duration (2CD) which
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Figure 1.2 Commonly used parameters of crackles are shown on CC acquired from a patient with
pneumonia. Two parameters de�ned by Murphy et al.: Initial de�ection width (IDW ) and two-
cycle duration (2CD). Four parameters de�ned by Hoevers and Loudon: Largest de�ection widths
(LDW1−4).

is the duration of the �rst two cycles of the crackle. Hoevers and Loudon, on the other

hand, have preferred four parameters to classify crackles, mainly, Largest De�ection

Width (LDW1) which is the largest de�ection of the crackle and the Widths of its First

Three Right and Left Neighbors (LDW2−4). The two types of parameterization are

depicted in Figure 1.2. The parameters associated with quantization of crackles are

exclusively time domain parameters based on zero-crossings of the waveform. These

parameters do not bear information on the morphology of the waveform and su�er

from background noise.

Crackles which are superimposed upon lung sounds are usually distorted with

the background signal, especially in pathological conditions [32]. When parameters to

characterize and quantify the morphology of crackles such as initial de�ection width

(IDW ) or two-cycle duration (2CD) are extracted, the presence of background signal

modulates the waveform of crackles such that the researchers are misled about the

values of quanti�able crackle parameters. The �ner the crackle is, the stronger the
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e�ect of the artifact will be. To analyze crackles more accurately, the background

signal which is mainly the VSs should be eliminated. However there is no a-priori

information on the frequency band of the background signal which is a�ected by the

type of pathology of the lung, by the phase of the occurrence of the crackle within the

respiratory cycle and by the location of the recording microphone and of the crackle

which has a wide frequency range. Moreover, the frequency components of crackles

which range from 100 Hz to 2 kHz and the frequency spectra of background lung

sounds which concentrate up to 250 Hz overlap [65]. There have been studies on the

elimination of VSs [50, 23, 42, 41] but the aim of these studies was to detect the presence

of a crackle waveform without taking crackle waveform distortion into consideration.

In this study, the aim is to study the characteristics of pulmonary crackles with

a view to �nd the optimum number of clusters and to �nd the boundaries between the

clusters that correspond to de�ning the characteristics of each crackle type. To this

end, an algorithm to eliminate the VSs with minimal distortion of crackle waveform

is developed. Then, wavelet networks have been employed to automatically depict the

crackle waveform with only a small set of meaningful parameter values as is necessary

for typical discrimination tasks. The parameters extracted from the parameters ob-

tained from the wavelet network have been used along with the traditional parameters

in clustering experiments based on maximum likelihood, Expectation-Maximization

(EM) algorithm to probe the question of whether a third type of pulmonary crackles

does exist and also what the typical crackle parameter values for each type are.

The database, in this study, consisted of nearly three thousand crackles recorded

from thirteen di�erent subjects with various pulmonary disorders. These sounds were

acquired from fourteen di�erent microphone locations on the posterior chest wall of

each subject.

In Chapter 2, a �ltering method is proposed for VS elimination based on the

estimation of cut-o� frequency for each crackle such that the waveforms of crackles will

be minimally distorted by the �ltering operation while VSs are optimally eliminated.

To achieve a minimal distortion in the crackle waveforms, a distortion metric is de�ned
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on the correlation between waveforms in raw and �ltered signal. The optimal cut-o�

frequency is estimated by an iterative process while the distortion metric is used as

the factor to determine where the process should be stopped. After determining an

optimal cut-o� frequency for each crackle, a regression analysis is employed to predict

the cut-o� frequency with respect to the spectral components of crackles to reduce

computational cost especially for online processes.

In Chapter 3, the �ltered crackle waveforms are modeled using wavelet networks

(WNs). Wavelets are useful for the interpretation of transient signal since they have

�nite energy concentrated in a time interval. Moreover, the wavelet families that are

used in the interpretation can be selected according to the characteristics of the target

signal. The WNs give the opportunity to interpret the target signals using wavelets

by an iterative process. WN used in the study has a neural network structure with a

single hidden layer that employs the wavelets in their hidden nodes as transfer function.

The complex Morlet (cM) wavelet is selected for modeling since its waveform is similar

to the crackle waveform and is �exible for the iterative modeling process. Due to the

relative simplicity of the crackle waveform, WNs with up to two hidden nodes are

adequate for modeling. Single-node WN interprets the high-energy components of

crackle waveform whereas double-node WN models the expanding waveform of the

crackle with lower error. The conventional parameters of crackles are de�ned on the

zero-crossings of the crackle waveform whereas the WNs yields parameters that both

interpret the crackles in time-frequency domain and contains the information for a

faithful regeneration of the modeled crackle waveforms.

The clustering analysis of crackles in the feature spaces that are constructed

using conventional and WN parameters is described in Chapter 4, where the exist-

ing discrepancy in the crackle literature on the characteristics of crackle types and

even on the number of crackle types is probed. In the studies related with crackle

classi�cation, the crackles are labeled according to the auditory perception of the ob-

servers. The subjectivity in the labeling analysis causes the di�erences in the typical

parameters of crackle types even if the number of crackle types is accepted as two. To

overcome this subjectivity problem, an unsupervised classi�cation method is employed



7

to determine the optimal number of crackle types and their parametric characteristics.

Expectation-Maximization (EM) method is used to cluster the crackle distribution on

the parametric spaces such that the data is assumed to be generated by Gaussian

mixture densities and therefore each crackle type to distribute normally in parametric

spaces. Therefore, the labels of crackles and the parameters of crackle clusters that

maximize the likelihood of the data are determined as optimal for the selected number

of crackle types. Bayesian Inference Criterion (BIC) and Akaike Information Criterion

(AIC) are used as indicators to determine the optimum number of crackle types. The

results provide supportive evidence for the existence of a third crackle type, medium,

in addition to the commonly-used two types, i.e. �ne and coarse.

The main contributions of this thesis are outlined below:

• A new preprocessing and �ltering algorithm based on a distortion metric is pro-

posed and tested on the simulated crackles with an aim to remove the vesicular

sounds from the crackle waveforms.

• A new approach to parameterize pulmonary crackles is proposed in which wavelet

network modeling of pulmonary crackles is employed, using Morlet wavelets for

the �rst time for this signal. The features extracted from this model are used to

represent pulmonary crackles, exhibiting a distinctly di�erent approach from the

conventional methods based on zero-crossings of the crackle waveforms. Conse-

quently, new parameter sets for crackle representation are proposed.

• An unsupervised classi�cation of crackles is realized for the �rst time. To this

e�ect, clustering analysis based on expectation maximization method is imple-

mented on real data.

• The existence of a third crackle type, namely medium, is tested for the �rst time

using the clustering experiments. The validation of its existence is realized for the

�rst time, using both the conventional parameters and the proposed parameters

of this study.

• The mean values of all features of �ve di�erent parameter sets of di�erent crackle
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types for both two and three-type cases have been de�ned, for the �rst time,

based on the results of the clustering experiments.

The complementary studies explained in the three chapters render new opportu-

nities for computer-based analysis of pulmonary sounds based on crackles. The crackles

representing crackle types can be generated using parameters of wavelet modeling and

can be used as crackle atoms for detecting on the pulmonary sound signal using match-

ing pursuit method. The models can be �ne-tuned on the detected crackle waveforms

in order to interpret the waveform with minimal error. Therefore, we can determine

the crackle characteristics of the pulmonary sound signal, i.e. the pitch, numbers and

the location on the respiratory cycle of crackles. Using the advantages of simultaneous

acquisition of the pulmonary sounds using the multi-channel DAQ system, the localiza-

tion and severity of pulmonary disorders in the thorax can be estimated. Conclusions

drawn in this study are detailed in Chapter 5.
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2. ELIMINATION OF VESICULAR SOUNDS FROM

PULMONARY CRACKLE WAVEFORMS

Pulmonary crackles and their parameters are very useful in the diagnosis of pul-

monary disorders. A new automatic method has been proposed for the elimination of

background VSs from crackle signal with a view to introduce minimum distortion to

crackle parameters. A region of interest (ROI) is designated and a distortion metric

based on the correlation between raw and �ltered waveforms in that region is de�ned.

Filter cut-o� frequency is estimated based on the distortion metric. To reduce compu-

tational cost, a regression analysis is also realized which predicts a new �tted cut-o�

frequency from the estimated cut-o� frequency. As a comparison basis, wavelet �lter-

ing is also applied on the same data. The algorithm is validated on simulated crackles

superimposed on recorded VSs with results indicating that �ltering is achieved with

minimal distortion of crackle parameters. The algorithm is also applied on real crackles

from subjects with various respiratory disorders. The results show the extent of the

e�ect of VSs on crackle parameters, emphasizing the signi�cance of proper �ltering in

crackle studies.

In Section 2.1, the material including the data acquisition system, the database

of real crackles used and the description of simulated data are presented. The method-

ology and the evaluation metrics used in building �lters are given in Section 2.2 while

results are presented in Section 2.3.

2.1 Material

Fourteen air-coupled electret microphones (SONY ECM44-BPT) placed on the

posterior chest wall and a pneumotachograph (Validyne CD379) were used to record

the pulmonary sounds and the air�ow simultaneously in order to synchronize on the

inspiration-expiration phases. Low-noise preampli�ers, 8th order Butterworth low-
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Figure 2.1 The components of the DAQ System, i.e. 14 air-coupled microphones, a box containing
ampli�ers and �lters, a �ow-meter and DAQ Card embedded in a laptop computer.

pass �lters with 4 kHz cut-o� frequency and 6th order Bessel high-pass �lters with

80 Hz cut-o� frequency were used in order to minimize frictional noise and heart

sound interference with minimal phase distortion and for an anti-aliasing �lter. The

preprocessed signals were digitized with a 12-bit ADC Card (National Instruments

DAQCard-6024E) at a 9.6 kHz sampling rate and stored by means of a notebook

computer (DELL Inspiron 2650). The DAQ system is depicted in Figure 2.1 and

described in detail in Sen and Kahya [63].

These records were acquired at Istanbul University Cerrahpasa Medical School

and Yedikule Teaching Hospital for Chest Diseases and Thoracic Surgery by members

of our laboratory with the guidance of a physician specialized in pulmonary medicine.

Informed consent was taken from the subjects before recordings. The lung sounds

were acquired from 13 subjects with obstructive and/or restrictive respiratory disor-

ders. From these records, 2811 crackles were visually detected from time expanded

waveform [47] of lung sounds by two independent observers for �ltering experiments.

The database of crackles consisted of a wide range of crackle frequencies from coarse

to �ne.
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Simulated crackles were also used to verify the performance of the proposed

�ltering method. Two crackles representing FCs and CCs are generated with a function

de�ned by Kiyokawa et al. [34] such that crackle waveform (y(t)) is de�ned as a product

of a progressively wider sinusoidal function (y0(t)) and a modulating function (m(t))

that concentrates energy at the beginning of crackle waveform:

y(t) = m(t)y0(t) (2.1)

m(t) = 0.5(1 + cos[2π(t0.5 − 0.5)]) (2.2)

y0(t) = sin(4πtα) (2.3)

where α = log(0.25)/ log(t0) and t0 is �rst zero-interception time of crackle waveform

that may be interpreted as the ratio of IDW/2CD. Simulated crackles have two cycles

and their parameters are determined according to Sovijarvi et al. [64] such that FC

has (IDW : 1ms, 2CD: 5ms) or (LDW1: 1.23ms, LDW4: 5ms) and CC has (IDW :

2ms, 2CD: 10ms) or (LDW1: 2.47ms, LDW4: 10ms). The crackle simulation function

and the simulated crackles crackles are depicted in Figure 2.2.

Simulated crackles are superimposed on V Ss recorded from 31 healthy nonsmok-

ing subjects with no reported pulmonary disease history. Subjects are maneuvered such

that they breathe with a �ow rate of approximately 1 L/s. Single respiratory cycle that

consists of an inspiratory and an expiratory phase is used for each healthy subject. The

cycle is divided into 256-sample non-overlapping segments and CC and FC are super-

imposed on each VS window separately. This approach guarantees that both FC and

CC are superimposed at each subphase (early, mid and late inspiration and expira-

tion) of VS. The 256-sample VS window that crackle is superimposed on is de�ned as

"crackle window (CW )". The same terminology is used for the extracted pathological

lung sound window that includes a real crackle.

The relative amplitude of superimposed crackles with respect to background

VS is determined according to the threshold of hearing for broadband masking noise.
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Figure 2.2 (a) Components of a generated CC. A crackle (y(t) : solid line) is the product of a
progressively wider sinusoidal function (y0(t): dotted line) and modulating function (m(t) : dashed
line) where t0 is a parameter for controlling the ratio of IDW/2CD and the morphology of the
generated crackle. (b) FC → IDW : 1ms and 2CD : 5ms. (c) CC → IDW : 2ms and 2CD : 10ms.

According to psychoacoustics [77], the frequency components of test sounds should be

approximately 20 dB higher than those of masking noise for frequencies less than 1

kHz. A similar understanding is used in Murphy's de�nition of crackles in relation

to VS [46]. Accordingly, we applied a novel method in superimposing crackles on VS

such that for each window the average power of the simulated crackle at its 3dB (or

half power) bandwidth is 20 dB higher than that of VS at the same frequency interval.

The VS elimination method was written in the MATLAB R© programming environment

(Version 7.3.0 (R2006b)) and was implemented on an Intel R© Pentium R© D 3.0 GHz

Processor.

2.2 Methodology

The method for �ltering the V Ss from the crackle signal comprises of �rst

selecting the region of interest for each crackle, then estimating fc for each crackle



13

based on the de�ned distortion metric and �nally �ltering each crackle with the f estc .

In order to reduce the computational cost in estimating fc for each crackle, a curve

�tting algorithm using cPS% of each crackle is applied to predict fc with minimum

error, namely, f fitc . The method is applied on both data set of real crackles and that

of simulated crackles superimposed on recorded VS.

Crackles in a respiratory cycle belonging to the same subject usually have di�er-

ent durations and frequency content therefore fc of the high-pass �lter applied on each

crackle in the proposed method depends on spectral characteristics of that crackle. It

is particularly important that a standard rule is used in de�ning the location and the

boundaries of the crackle to be �ltered. ROI of CW is de�ned to be used in the power

spectral estimation and distortion calculation by considering that ROI should include

2CD of a crackle that is equivalent to LDW4. The peak of LDW1 of a crackle is used

as the reference point for selection of ROI. This reference point renders the automatic

processing of the crackle possible once it is detected [26]. Due to the presence of back-

ground vesicular signal, the use of zero-crossings as reference points may be misleading

thus local minima and local maxima, known as local extrema, are considered in order to

select start-end points of ROI. The second extremum before and the third extremum

after the peak of LDW1 are appointed as the start-end points of a region that includes

2CD. The selection of the ROI is depicted in Figure 2.3. ROI is determined from raw

CW before �ltering and the same region is used for the �ltered CW .

The main criterion in selecting fc for the high-pass �lter of a crackle is to intro-

duce minimum distortion to the shape of the crackle waveform during �ltering. Conse-

quently a distortion metric is de�ned and the frequency domain is scanned in ascending

order until the designated distortion threshold (DT ) amount in crackle waveform is

reached.

The distortion metric chosen for this method is related to the correlation coe�-

cient (Rxr,xf
) between crackle waveforms in raw and �ltered signals. For N-length raw
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Figure 2.3 Region of interest (ROI) for the calculation of distortion amount. ROI is between 2nd
extremum before and 3rd extremum after peak of LDW1.

(xr) and �ltered (xr) signals, Rxr,xf
is de�ned as

Rxr,xf
=

∑N−1
n=0 (xr,n − x̂r)(xf,n − x̂f )

(N − 1)srsf
(2.4)

where x̂ is the mean, x̂ = (1/N)
∑N−1
n=0 xn, and s is the standard deviation, s = [(1/(N−

1))
∑N−1
n=0 (xn − x̂)2]1/2.

Since the same intervals of samples from raw and �ltered signal are used to

calculate Rxr,xf
, �ltering should not yield a phase distortion. To accomplish zero-

phase �ltering, the output of �lter is reversed and �ltered again. A 6th order digital

high-pass Butterworth �lter is used since its �at frequency response and its order is

convenient for supplying slope greater than 18dB.oct−1 [68]. The forward-backward

process doubles the �lter order [43]. The process of taking the correlation coe�cient

inherently �lters out the dc component of the signals. Moreover the contribution of

di�erences in zero crossings which are in fact signi�cant in case of crackle parameters is

much less than that of higher amplitudes. To enhance the contribution of zero-crossing,
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Figure 2.4 The mean of absolute error rates (mAERs) between crackle waveform parameters after
�ltering and their reference values. AERs are calculated for the parameters of both FC and CC
according to 1%-10% DT s.

the absolute values of raw and �ltered signals in the respective ROIs are taken before

the calculation of the correlation coe�cient. The distortion metric, D, is de�ned as

D(%) = (1−Rxr,xf
) · 100% (2.5)

A lower limit for the correlation coe�cient is calculated using the simulated

crackles whose parameters are known. To include all phases, a complete healthy respi-

ratory cycle is divided into 256-sample segments where the number of segments is 70.

Simulated FCs and CCs are superimposed on each segment as described before. The

absolute error rates (AERs) between parameters of simulated (pRef ) and �ltered (pi)

crackles are used to indicate the performances of di�erent DT s. AER is de�ned as

AER(%) =
|pi − pRef |

pRef
· 100% (2.6)

where |.| represents the absolute value.

Mean values of AERs (mAERs) are calculated for IDW and 2CD parameters

of FC and CC and the common performance of DT s are evaluated by taking the
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Figure 2.5 Block diagram for the calculation of the distortion metric

average of mAER results. The reference values (pRef ) for IDW and 2CD of FC are

1ms and 5ms, respectively, whereas those of CC are 2ms and 10ms, respectively. The

best performance (minimum mAER) is reached at 6% and 8% DT s for IDW and 2CD

of FCs whereas at 3% and 7% DT s for IDW and 2CD of CCs. The best common

performance is reached at 6% DT at which averaged mAER is minimum and therefore

6% DT is used as the optimum threshold for the determination of fc resulting in a

lower limit of 0.94 for the correlation coe�cient. The graphs of mean of absolute error

rates for crackle waveform parameters versus DT values are depicted in Figure 2.4.

The block diagram for the calculation of the distortion metric, D, is depicted in Figure

2.5.

Instead of scanning frequency domain with a constant step-size where the spec-

tral attributes of the crackle are not considered, the step size is determined according

to the cumulative power spectrum (cPS) of ROI. The cPS% are employed as cut-o�

frequencies with a 1% step size, therefore, the higher the power of ROI at a frequency

interval is, the smaller an increase in fc will be at frequency domain. Thus the reso-

lution of the step-size is increased at frequencies where the spectral components of a

crackle exhibit higher power. cPS is de�ned as normalized cumulative summation of

power spectral density (PSD) that is estimated for N -length sequence x0, x1, . . . , xN−1
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using periodogram method as

PSD(jw) = (1/N)|
N−1∑
n=0

xne
−jwn|2 (2.7)

cPS(jwk) =
k∑

n=0

PSD(jwn)/
M−1∑
n=0

PSD(jwn) (2.8)

where M equals to (N/2) + 1 or (N + 1)/2 for even or odd N , respectively.

Since PSD indicates the power of the data sequence at a particular frequency,

cumulative power spectrum indicates the proportion of the energy up to a certain

frequency to total energy. In the algorithm for the estimation of fc, cPS%s are tested in

ascending order until DT is reached. The highest cPS% at which the distortion amount

is less than DT is appointed as f estc for the CW . The procedure for fc estimation is

presented in Figure 2.6.

The algorithm described above is applied on each crackle separately. Compu-

tational cost of determination of fc may be too high in real-time applications which

may involve further processing of lung sound data. Thus a compromise may be jus-

ti�ed where a lower computational cost with higher distortion is achieved. Therefore

repetitive �ltering operation of the crackle waveform by scanning cPS% until DT is

reached may be avoided if a relationship between optimum fc and cPS% is found. The

search for this relationship is carried out by exploring the minimum error between the

f estc and the f fitc as given below.

Since the relationship between f estc and cPS% may be curvilinear, polynomial

regression models are carried out to �t this relationship. A response variable (y) may

be expressed using P th-degree polynomial in one independent variable (x) as

y =
p∑
p=0

βpx
p + ε = ŷ + ε (2.9)

where βp is the unknown regression coe�cient, ε is the residual and ŷ is the �tted

value. In our problem, x, y and ŷ substitute cPS%, f estc , and f fitc respectively. In
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Figure 2.6 Block diagram for fc estimation
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regression analysis, βp is estimated using the least squares method such that the sum

of the residuals (E) is minimized. E is de�ned for N samples as

E =
N∑
i=1

ε2
i (2.10)

εi = yi − ŷi = yi −
p∑
p=0

βpx
p (2.11)

To determine the optimum degree of the polynomial, coe�cient of multiple

determination (R2) that is de�ned as the ratio between the regression sum of squares

(SSR) and the total corrected sum of squares (SST ) is used as global statistics to assess

the model �tting [44],

R2 = SSR/SST = 1− SSE/SST (2.12)

SST =
N∑
i=1

(yi − ȳ)2 (2.13)

SSR =
N∑
i=1

(ŷi − ȳ)2 (2.14)

where SSE =
∑N
i=1 (yi − ŷi)2 is the error sum of squares, ŷ is predicted value and ȳ is

grand mean.

Although the adjusted form of coe�cient of determination (R2
adj) is generally

preferred to penalize the increase in the degree of polynomials using the degrees of

freedom as divisor of sum of squares in calculation of statistic, it can only work ideally

for small sample size. However the decrease in the error degrees of freedom (n− p) by

increasing the model order causes very small changes in R2 statistic when sample size

is large (n� p). R2
adj is calculated as

R2
adj = SSR/SST = 1− SSE/(n− p)

SST/(n− 1)
(2.15)
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where n and p are the number of samples and the polynomial degree in regression,

respectively. The total and error degrees of freedom are (n−1) and (n−p), respectively.

In our problem, n is 11192 and 2811 for simulated and real crackles whereas p changes

in the range 1− 8.

R2 is calculated for the 1st − 20thcPS% using the 1st − 8th degree polynomials,

as depicted in Figure 2.7. The regressions for all eight polynomials have the maximum

R2 statistic at the 3rd cPS% for both simulated and real crackles. R2 statistics at

3rdcPS% are depicted according to polynomial degree in the small windows in Figure

2.7 and the knee of curves is at 3rd and 4th degree polynomials for simulated and real

crackles, respectively. Therefore, the cut-o� frequencies that are predicted based on

3rd cPS% using 3rd and 4th degree polynomials are used to reduce the computational

cost of the �ltering algorithm.

To compare the proposed VS elimination algorithm with a familiar method,

wavelet �ltering is also performed on both simulated and real data. For optimum

performance, the correlation between wavelet waveform and crackles should be high

therefore 3rd order Daubechies' wavelet with six-coe�cient �lters is used as the mother

wavelet in multi-resolution analysis of CW s. Since its asymmetric and sharp-de�ecting

waveform resembles the crackle waveform, this wavelet was used in a previous study

on crackle detection carried out in our laboratory [58].

To address the main frequency components of VS within the 0-200 Hz band,

the 5th level discrete wavelet decomposition is applied on the CW s with frequency

components between 0-4800 Hz. Therefore, the signal is decomposed into six wavelet

components within the frequency bands: 2400-4800 Hz, 1200-2400 Hz, 600-1200 Hz,

300-600 Hz, 150-300 Hz, and 0-150 Hz. To remove the wavelet components within

a frequency band including major VS components, a null-vector is replaced with the

wavelet component in the reconstruction of the signal. The simulated CC and FC

are employed to evaluate the performance of the methods. The peak frequencies of

simulated CC and FC are 200 Hz and 400 Hz, respectively and the half-power bands

of CC and FC are 135-270 Hz and 270-540 Hz, respectively. Thus the 6th wavelet
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Figure 2.7 Coe�cient of determination (R2) of regression analysis using 1st-8th degree polynomials
according to cPS% of simulated and real crackles. The peaks of the R2 curves are at the 3rd cPS%

for both simulation and real crackle analysis. R2 of all eight polynomials at the 3rd cPS% is depicted
in the small �gures. The knees of the curves are at the 3rd and 4th degree polynomials for simulated
and real crackles, respectively.
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Figure 2.8 Subphases of a respiratory cycle. The semi-cycles of a respiratory cycle, i.e. inspiratory
and expiratory cycles, are divided into three clinical sub-phases, i.e. early, mid and late, according
to the amount of inspired or expired volume corresponding to the area under the �ow curve. The
numbers of extracted windows of each sub-phase are shown for this �ow curve.

component within 0-150 Hz band overlaps with the frequency component of simulated

CC. In wavelet component elimination, 6th wavelet components are removed and the

variation in the crackle waveform is observed. To evaluate the performance of wavelet

�ltering, absolute error rates (AERs) on crackle parameters are calculated.

2.3 Results

The quantitative evaluation of the proposed algorithm is �rst performed on

simulated crackles of known parameters. Results for both �lters with f estc and f fitc

are obtained and compared with results of wavelet �ltering. After the veri�cation on

simulated data, the algorithm is applied on recorded data set of crackles which are

already distorted with V Ss with untraceable true parameter values. Consequently,

instead, the changes in scatter plots of real crackle parameters are demonstrated. As

a �nal step, a sensitivity analysis of crackle parameters to �lter cut-o� frequencies is

carried out with an aim to justify the purpose of this study.
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Table 2.1

Number of VS segments used as background sounds for simulated crackles

In evaluating the VS elimination algorithm, simulated crackles of known pa-

rameters, which are superimposed on di�erent temporal phases of a respiration cycle

and are therefore distorted, are used. Two types of crackles are simulated and superim-

posed on V Ss of a full cycle from each subject. Since timing of crackles in a respiratory

cycle is one of the main characteristics of pulmonary disorders in diagnosis, the results

are classi�ed according to the clinical sub-phases, i.e. early, mid, late inspiration and

expiration. These phases are de�ned according to the inspired and expired air vol-

ume during respiration corresponding to the area under the �ow curve in our study,

representing complementary 30%, 40% and 30% portion of the respired air volume,

respectively. The de�nitions of subphases of a respiration cycle are depicted in Figure

2.8. The number of VS segments used for background signal for simulated crackles of

each respiratory subphase is given in Table 2.1.

The V Ss are divided into non-overlapping 256-sample segments and crackles

are located at the end of the �rst quarter of each window. The results from simulated

crackles consist of two parts i.e. for f estc and f fitc . The simulated FC has an IDW of

1 ms and 2CD of 5 ms whereas the simulated CC has an IDW of 2 ms and 2CD of

10 ms. The waveforms and their corresponding frequency spectra at each step of the

proposed algorithm are depicted in Figure 2.9 and 2.10.

f estc is obtained using the DT de�ned on each crackle. To lower the compu-

tational cost, �ltering is also performed using the �tted cut-o� frequencies. Wavelet

�ltering is also applied on the same data for a comparison basis. Each algorithm is

quantitatively evaluated by comparing the values of the true crackle parameters, i.e.

IDW and 2CD, with those of superimposed (raw) crackles that have undergone dis-
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Figure 2.9 The waveforms and frequency spectra for a simulated �ne crackle at each step of algorithm,
i.e. (1) crackle simulation, (2) superimposition of the simulated crackle on VS window, �ltering of
the crackle using (3) fest

c and (4) ffit
c . The �gures on the left for each class show the crackles in the

time domain whereas those on the right show frequency responses of ROIs with respective cPSs and
of CW s. The resulting crackle parameters are given on the �gures of VS windows and fest

c and ffit
c

on the �gures of frequency responses.
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Figure 2.10 The waveforms and frequency spectra for a simulated coarse crackle at each step of
algorithm.
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Table 2.2

AERs for FCs according to IDW and 2CD through the VS elimination algorithm with respect to
sub-phases, i.e. early, mid, late inspiration and expiration. The 1st row indicates AER after

superimposing simulated FCs on V Ss. The 2nd row shows AER after wavelet �ltering (WF ) by
eliminating 6th wavelet component. The 3rd and 4th rows show AER after �ltering using fest

c and
ffit

c .

Table 2.3

AERs for CCs according to IDW and 2CD through the VS elimination algorithm with respect to
sub-phases of respiratory cycle.

tortion due to background VS and those of �ltered crackles. The mean distortion of

crackle parameters due to V Ss and the results of three �lters are summarized in Tables

2.2, 2.3 and 2.4. In Table 2.2, mean value of the distortion amount of FC parameters

in di�erent subphases of the respiratory cycle is given whereas the results of the same

evaluation for CCs are given in Table 2.3. In Table 2.4, the variations in parameters for

FCs and CCs are summarized based on the inspiration and expiration, respectively.

When simulated crackles are superimposed on VS, the resulting distortions for IDW

for FCs and CCs are in the range 87.5%-99.4% (0.88ms-0.99ms) and 45.9%-58.1%

(0.92ms-1.06ms), respectively whereas AERs of 2CD for FCs and CCs are in the

range 42.7%-67.7% (2.14ms-3.39ms) and 17.0%-26.8% (1.70ms-2.68ms), respectively.
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Table 2.4

Average AERs for FCs and CCs according to IDW and 2CD through the VS elimination algorithm
with respect to semi-cycles, i.e. inspiration and expiration.

Table 2.5

Processing times of calculating fest
c and ffit

c for a single crackle.

Wavelet �ltering reduces this distortion to around 40% and 20% for IDW and

2CD of FCs, respectively. For CCs, the distortion after wavelet �ltering reduces to

12% and 14% for IDW and 2CD, respectively. In the proposed method, the overall

performance is at least twice better than the wavelet �lter. The inspiratory performance

is higher than expiratory performance for both FCs and CCs. Although the variations

change with di�erent subphases of the respiration cycle, the mean error is less than

8.4% for �lters with f estc . The variations in FCs are slightly greater that those of

CCs. AERs for IDW and 2CD of FCs are in the range 6.0%-9.0% (0.06ms-0.09ms)

and 7.8%-13.3% (0.39ms-0.67ms), respectively whereas AERs for IDW and 2CD of

CCs are in the range 5.2%-6.2% (0.10ms-0.12ms) and 5.9%-8.2% (0.59ms-0.82ms),

respectively.

As expected, when f fitc is used in �ltering, the error rates increase slightly in

the range by 0.3% - 2.7%. However when the reduction in computational cost is

considered, the use of f fitc is justi�ed especially in real-time analysis as the following

analysis indicates. The processing times from calculating PSD of ROI to determination
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of fc for the two algorithms are given in Table 2.5.

As indicated in Table 2.5, using f fitc decreases computational time by almost

ten-fold which is especially important for real-time applications where a large number

of crackles is to be processed. After the veri�cation on the simulated crackles, the

proposed method is applied to real data set consisting of 2811 crackles recorded from

13 subjects with varying respiratory diseases. Two samples of recorded and �ltered

crackles with their corresponding PSDs are depicted in Figure 2.11 and 2.12.

In order to see the e�ect of �ltering on the crackle parameters, crackles from

one subject with pneumonia and one with COPD were used. Their scatter plots and

histograms showing the ratio of IDW and 2CD before and after �ltering are depicted

in Figure 2.13. The changes of crackle parameters of real data including 2811 crackles

after �ltering with f estc and f fitc are depicted in Figure 2.14. The peaks of the histogram

appear at 0.004 and -0.002 which correspond to the ratios of 1.010 and 0.996. In both

histograms, the ratio of crackles with 2CD elongation to those with shortening due

to V Ss is two to one as expected. The range of change in parameters extends up to

10-fold for a small number of crackles.

High precision is necessary in determining fc that eliminates the background VS.

To investigate this requirement of precision, the sensitivity of crackle waveform to cut-

o� frequencies is demonstrated based on crackle parameters. Simulated FC and CC

superimposed on one full respiratory cycle of V Ss are used to measure the distortion

of the waveform with respect to known reference values of crackle parameters.

fc at which minimum AER is achieved is de�ned as optimum fc (f optc ) for

each experiment. To observe the e�ect of �ltering using the neighbors of f optc as fc,

the frequencies within ±25% neighborhoods of f optc are used as fc and the mean of

AERs are calculated for each neighbor percentage frequency. Separate simple linear

regressions are performed on the mean AERs of the neighbor percentage frequencies

for the lower and higher frequency range with respect to the f optc . Plots of AERs

of IDW and 2CD for both FCs and CCs with respect to percentage frequency are
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Figure 2.11 The procedure of VS elimination algorithm applied on a real �ne crackle. The procedure
has three steps: Extraction of CW and determining ROI (on the 1st row), and �ltering using fest

c

(on the 2nd row) and ffit
c (on the 3rd row). The �rst columns show the CW s whereas the second and

third columns show PSDs of ROIs and CW s, respectively. The cPSs of raw crackles are depicted in
the �gures of PSD of ROI. The values of crackle parameters before and after �ltering are indicated
on the �gures of CW s.



30

Figure 2.12 The procedure of VS elimination algorithm applied on a real coarse crackle.
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Figure 2.13 Crackle parameters belonging to two subjects with pneumonia (left) and COPD (right)
before (red square) and after (blue circle) �ltering using fest

c . The histograms in the second and third
�gures show the ratios between raw and �ltered parameters in logarithmic scale that indicate the
variations in parameters via �ltering.

Figure 2.14 The ratios between raw and �ltered crackle parameters using fest
c (left) and ffit

c (right)
in a logarithmic scale. Zero- and Zero+ represent the ratios of negative and positive values, respectively
and thus indicate whether raw crackle parameters are lower or higher than �ltered crackle parameters.
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Figure 2.15 fc sensitivities of crackle parameters.

depicted in Figure 2.15. The slopes of the linear curves represent the sensitivity of the

crackle waveforms to lower and higher cut-o� frequencies since sensitivity is de�ned as

AER change per percentile of f optc .

The f optc represents the fc at which the elimination of VS is performed with

highest success therefore the slope for lower frequencies demonstrates the behavior of

parameters until optimum elimination of the V Ss is achieved. Thus it can be stated

that the errors depict the e�ect of presence of VS. The slope for higher frequencies

demonstrates the behavior of parameters after the elimination of the V Ss therefore the

error stems from the waveform distortion based on �ltering out of crackle components.

Table 2.6 summarizes the sensitivities of both IDW and 2CD for FCs and

CCs for frequencies lower and higher than f optc . For lower frequencies, IDW and 2CD

sensitivities of FCs are 1.197 and 0.621 (11.97 µs/pof and 31.05 µs/pof), respectively,

whereas those of CCs are 1.129 and 0.400 (22.58 µs/pof and 40.00 µs/pof) respec-

tively. "pof" stands for percentile of f optc . IDW represents higher-pitch components
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Table 2.6

fc sensitivities of crackle waveforms for lower (LF ) and higher (HF ) frequencies according to AER
and corresponding error in time.

of crackles and is proportionally more a�ected by V Ss since its duration is smaller

than 2CD. Therefore, as expected, IDW sensitivity is higher than 2CD sensitivity for

lower frequencies. On the other hand, 2CD sensitivity is higher than IDW sensitivity

for higher frequencies since 2CD represents lower -pitch components of crackles. The

sensitivity �gures for IDW and 2CD of FCs are 0.050 and 0.113 (0.50 µs/pof and

5.65 µs/pof), respectively, whereas those for CCs are 0.159 and 0.291 (3.18 µs/pof

and 29.10 µs/pof), respectively.

Sensitivities for higher frequencies for both parameters and for both crackle

types are lower than sensitivities for lower frequencies since the distortions at lower

frequencies stem from V Ss whereas losing some frequency components of the crackle

waveform causes the distortion at higher frequencies.

As the analysis shows, the crackle parameters are very sensitive to fc and if

correct values of parameters are to be extracted from crackle waveform, the design of

the �lter for removing VS should be carried out with maximum care.
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3. MODELING OF PULMONARY CRACKLES USING

WAVELET NETWORK

In this chapter, the aim of the study is to automatically depict the crackle

waveform with only a small set of meaningful parameter values as is necessary for

typical discrimination tasks and to this end, WNs have been employed. WNs can be

used as signal modeling tools and are based on a speci�c network structure where the

nodes are described by wavelet functions [76, 25, 14, 24, 12, 28]. They are especially

useful in representing nonstationary, time-varying signals. Wavelet functions have been

utilized in the studies related to pulmonary crackles, particularly in detecting these

nonstationary signals within the background of VSs [57, 23, 52, 1, 30, 73, 63, 29]. In

this study, however, wavelet functions, namely complex Morlet wavelet, are used at

the nodes of a network to model the crackle and thus obtain parameters from that

model that are relevant to the pulmonary sound research. Single-node and double-

node networks have been employed on a dataset of pulmonary crackles from a wide

range of frequency spectrum with the double node modeling rendering smaller modeling

error. The model is shown to represent the morphology of the crackle waveform with

�ve parameters per node. The parameters extracted from the WN models have been

used along with the traditional parameters in a two-class clustering experiment with a

view to compare the correspondence between diverse crackle parameter sets and crackle

types.

3.1 Methodology

3.1.1 Wavelet Network Modeling

A WN used for modeling has a neural network structure that performs wavelet

functions as transfer functions in their hidden nodes instead of sigmoid functions that

are employed in conventional multi-layer perceptrons (MLP ). A wavelet, in de�nition,
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has a �nite energy that is concentrated in a time interval [10]. Therefore, fewer nodes

are used in the interpretation of transient signals with WN as compared to MLP [75],

in a similar manner of radial basis functions that use Gaussian functions as transfer

functions. Moreover, the wavelet function can be selected according to the character-

istics of target signals to reduce the number of nodes in signal interpretation. In our

application, the cM wavelet function is employed to model the pulmonary crackles due

to both the similarities between the waveforms of the crackles and the cM function

and the �exibility of the cM function in the modeling process. The cM function (h(t))

is de�ned as

h(t) = exp(−t2/2 + jω0t) (3.1)

where ω0 is a constant of modulating frequency that equals to 5.33. To improve the

estimation of the target signal with smaller number of nodes, the modulating frequency

((ω)) is not employed as a constant but rather as a variable.

The employed wavelet network having a single-hidden-layer structure with K-

nodes is depicted in Figure 3.1. The estimated signal (x̂(t)) in the output node is the

weighted summation of the wavelet functions in the hidden nodes and is interpreted as

x̂(t) =
K∑
k=1

wkh(
t− bk
ak

) (3.2)

where wk is a weight factor and h(.) is the wavelet function with scaling (ak) and time

shifting (bk) parameters for the kth-node. Substituting the cM function into Eq. 3.2

and converting it into the real notation, the estimated signal is interpreted as

x̂(t) =
K∑
k=1

[
wcos,k cos(ωk

t− bk
ak

) + wsin,k sin(ωk
t− bk
ak

)

]
exp

(
−0.5(

t− bk
ak

)2

)
(3.3)

where wcos,k and wsin,k are the weight factors of cosine and sine terms of the kth-node,

respectively. Thus, the contribution of each node to the output node is the weighted

sum of sine and cosine terms that are windowed by the exponential function, i.e. the

Gaussian window. bk and a2
k are the center and the variance of the Gaussian window,

respectively, whereas ωk and ak are the parameters related to the spectral components
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Figure 3.1 The structure of wavelet network with single hidden layer

of the output signal. Moreover, wcos,k and wsin,k correlate with the ratios of de�ection

amplitudes therefore the morphology of the signal. Note that the cosine portion of

the signal is in phase whereas the sine portion is π/2 degrees out of phase with the

Gaussian window.

In the modeling process, the modeling error (ε) for an N-sample target signal

(x(t)) is de�ned with the least square point of view as

ε =
N∑
i=1

[x(ti)− x̂(ti)]
2 (3.4)

Learning rules in the iterative process of modeling are de�ned on the partial

derivatives of the error with respect to the �ve variables, i.e. ∂ε/∂ak, ∂ε/∂bk, ∂ε/∂ωk,

∂ε/∂wcos,k and ∂ε/∂wsin,k that are described as following formulas in the study of

Dickhaus et al. [2]. Instead of ∂L/∂ak, the partial derivatives ∂L/∂a
−1
k are preferred

in the modeling in order to reduce the complexity of the calculation and, therefore, the

computational cost.

∂ε

∂wcos,k
= −

N∑
i=1

R.C.E (3.5)

∂ε

∂wsin,k
= −

N∑
i=1

R.S.E (3.6)
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∂ε

∂a−1
k

= −
N∑
i=1

[R.E.(ti − bk) (−wcos,k(F.C − ωk.S)− wsin,k(F.S + ωk.C))] (3.7)

∂ε

∂bk
= −

N∑
i=1

[
R.E.

1

ak
(wcos,k(F.C + ωk.S) + wsin,k(F.S − ωk.C))

]
(3.8)

∂ε

∂ωk
= −

N∑
i=1

[R.E.F.(−wcos,k.S + wsin,k.C)] (3.9)

where C = cos(ωk
t−bk
ak

), S = sin(ωk
t−bk
ak

), E = exp
(
−0.5( ti−bk

ak
)2
)
, R = x(ti) − x̂(ti),

and F = ti−bk
ak

.

In trying to minimize the modeling error, di�erent initial points are selected in

the space of ak and ωk to overcome the local minima problem. The initial value for bk

is selected as the midpoint of the target signal whereas wcos,k and wsin,k are initialized

as zero.

3.1.2 Model-based Clustering

The consistency between the WN parameters and the conventional parame-

ters of crackles is analyzed according to the distribution and localization of crackles

in the respective parameter spaces of WN and conventional methods. The crackles

are generally categorized into two groups, i.e. �ne and coarse, however there is no

golden standard to discriminate the two groups. Therefore, the classi�cation analysis

of crackles is performed in an unsupervised manner and the percentage of true-matching

of labeling according to conventional and WN parameters are then calculated. In this

clustering analysis, it is assumed that the data is a multivariate normal mixture, and

therefore the crackles distribute according to the probability densities of their groups

[4, 18]. The expectation maximization algorithm [13] based on the maximization of

the data likelihood is performed to di�erentiate the crackle groups and thus determine

the crackle labels. The details are described in the next chapter.
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Figure 3.2 Error rates of crackle modeling using single- and double-node WN according to median
frequencies of crackles. The small �gure at the upper-right corner shows the number of crackles at
the corresponding frequency interval.

3.2 Results

Since conventional crackle parameters are de�ned on the �rst two cycles (2CD)

of the crackle waveform, modeling with WNs is also performed on this region. WNs

with single-node engage the node to interpret two cycles together whereas the two

nodes in the double-node WN model the �rst and second cycles separately. Therefore,

the expanding waveform of the crackle can be represented by double-node WN with

lower modeling error whereas single-node WN represents peak frequency component

of crackle since the learning rules work iteratively to reduce the square of the error.

However, the computational cost of modeling with double-node WN is approximately

twice that of single node WN .

Error rate (ER) is de�ned as the ratio between the energies of residual (error)

signal and target signal and is calculated for the N-sample target signal as

ER =

∑N
i (xi − x̂i)2∑N

i x
2
i

.100% (3.10)
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Figure 3.3 The waveforms of target (solid line) and estimated (dotted line) signals. One sample
from each coarse and �ne crackle having the median frequency between 200-250Hz and 700-750Hz
frequency band is selected. The signals estimated using single- and double-node WN are shown in the
�rst and second rows, respectively.

The ERs categorized according to the spectral components of crackles are de-

picted in Figure 3.2 to observe the performance of modeling using single- and double-

node WN with a view to emphasize the performance di�erence of modeling between

that of coarse and �ne crackles. In the �gure, ERs are grouped according to the me-

dian frequency of cumulative power spectrum of crackles. The median frequency of

cPS corresponds to 50% of the total energy.

The performances of double-node WN lie in the band of 1.5-3.6% error rate

whereas the error rates of single-node WN range from 2.8% to 10.0%. The average

error rates for single- and double- nodes are approximately 6.5% and 2.5%, respectively.

The di�erence between average performances of single- and double-node WNs stems

mainly from high error rates of single-nodeWN for modeling crackles with low median
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Figure 3.4 Clustering of crackle samples according to the four feature sets, i.e. Murphy, Hoevers,
single and double-node WN . The ellipses represent the covariances of two-multivariate clusters, i.e.
�ne and coarse in (a), (b) and (d). The curves in (c) represent the likelihood of the two clusters. The
dashed lines are the discriminants between the clusters that separate the feature spaces into �ne and
coarse subspaces. (b) For comparative observation of separation of spaces using Hoevers with Murphy
feature sets, the four features of Hoevers are projected into two features that correspond to the IDW
and 2CD. In scatter plots, one third of samples are shown to reduce ink-to-noise ratio.

frequency, corresponding to coarse crackles. The reason for this lower performance is

illustrated in Figure 3.3 where the performances of single and double-node WN on

one �ne and one coarse crackle with median frequencies in the range of 200-250Hz and

700-750Hz, respectively, are observed, pointing to the relatively high ER in modeling

a coarse crackle with a single node WN , namely, 11.4% ER as opposed to 1.9% ER of

a double node WN . The corresponding ERs for a �ne crackle, on the other hand, are

1.2% and 0.9%, respectively. In other words, crackles with coarse spectral components

have proportionally more expanding waveforms than �ne crackles. Since each node of

WN has monophonic transfer function and the modeling error optimization is made

in the least square sense, single-node WN represents the spectral component of the

target signal with peak energy.

To observe the consistency between conventional parameterization methods and
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Table 3.1

Confusion matrices for clustering analysis of �ne and coarse crackles using four feature sets. The
confusion matrices on the diagonal of the table shows the numbers of samples labeled as �ne and
coarse crackles. The right o�-diagonal elements of the tables are the confusion matrices that show
the true and false matching of labeling according to di�erent feature sets. The left o�-diagonal

elements of the table are the accuracies of labeling that is de�ned as the ratios of true-matching to
the total number of crackles. (F: Fine and C: Coarse)

WN in representing crackle type, distribution of crackle parameters in feature spaces

are analyzed using model-based clustering as described in the methodology section. If

there is a consistency between the two feature sets that are constructed using di�erent

parameterization methods, a crackle will belong to the same cluster, irrespective of

which feature set is used.

Figure 3.4 shows the distribution of crackle samples in the di�erent feature

spaces and the separation of the feature spaces into two subspaces for �ne and coarse

crackles. The dashed lines show the boundaries between the two crackle groups. The

expanding nature of the crackle waveforms with decreasing median frequency which

accounts for the higher error rate for single WN modeling can further be depicted

in Fig. 5d where the distribution of the central frequencies of the �rst and second

cycles of the crackle as obtained from double node WN modeling is shown. The

means of central frequencies of the �rst and second cycles of the coarse cluster are

approximately 300Hz and 200Hz, respectively whereas those of both cycles of the �ne

cluster are approximately 700Hz.
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Table 3.1 shows the true-matching of labeling according to clustering analysis

shown in Figure 3.4. The diagonal elements of the confusion matrices are the numbers

of the true-matched crackles whereas the o�-diagonal elements are the false-matched

according to the corresponding two feature sets. For instance, 1391 of 1615 coarse

labeled crackles of Hoevers are true-matched whereas 224 of 1615 crackles are labeled

as �ne using double-node WN .

The left o�-diagonal elements of the table represent the percentages of cluster-

ing analysis matching accuracies using di�erent feature sets. The matching accuracy

calculated using the elements of confusion matrices is de�ned as the ratio of the sum-

mation of diagonal elements of confusion matrices to the total number of elements. It

is observed that the matching accuracies between single-node WN and conventional

parameters are lower than those of double-node WN due to the loss of information in

modeling using single-node WN . It should be noted that the parameters of the two

conventional methods are linearly dependent.
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4. MODEL-BASED CLUSTERING OF PULMONARY

CRACKLES

The objective of this chapter is to probe the existence of a third crackle type,

medium, besides the traditionally accepted types, namely, �ne and coarse crackles and,

furthermore, to explore the representative parameter values for each crackle type. A set

of clustering experiments have been conducted on pulmonary crackles to this end. A

model-based clustering algorithm, the EM algorithm, is used and the resulting cluster

numbers are validated with BIC. The raw crackle data are preprocessed using the

algorithm which has been described in detail in Chapter 2. Five di�erent feature sets

are extracted from the preprocessed crackle samples, two of which are conventional

parameters derived from the zero-crossings of crackle waveforms. The third feature

set corresponds to the spectral components of the crackles whereas the remaining two

sets are derived from a single- and double-node WN modeling. The results of the

clustering experiments demonstrate strong evidence for the existence of a third crackle

type. Moreover, the labels yielded by clustering experiments using di�erent feature sets

match for roughly 80% or more of the crackle samples, resulting in similar representative

crackle parameter values of the three clusters for all feature sets.

4.1 Methodology

4.1.1 Feature extraction

Feature sets are constructed based on zero-crossings and frequency spectra of

crackle waveforms. Since conventional parameters are de�ned on the �rst two cycles

of crackle waveform, all feature sets are extracted from this part of the waveform for

standardization. For selecting the region of interest of the crackle waveforms from

pulmonary sound data, the peak of LDW1 is used as a reference point to overcome the

di�culty in the determination of the exact beginning of crackle waveform on VS signal
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[26]. The features employed in this study correlate closely with auditory perception

used in auscultation, which senses frequency components [15].

The feature sets can be categorized into two groups according to time domain

and frequency domain. The �rst group consists of the two conventional feature sets de-

�ned on zero-crossings. Murphy's two parameters, i.e. IDW and 2CD, constitute the

�rst feature set whereas the second one consists of Hoevers' four parameters, LDW1−4.

The relationship between the two sets is described as

IDW = LDW3 − LDW2 and 2CD = LDW4 (4.1)

It is clear that the �rst feature set is linearly dependent on the second feature set.

The third feature set is extracted from the spectral components of the crack-

les and comprise of lower and upper quartile frequencies of cPS. cPS is de�ned as

normalized cumulative summation of PSD that is estimated for N-length time array

using the periodogram method as shown in Eq. 2.8. Normalized cPS indicates the

fractional energy contained up to a certain frequency whereas PSD indicates the power

of the signal at a particular frequency. The lower and upper quartile frequencies of

cPS correspond to 25% and 75% of total energies.

The features in the fourth and �fth sets are extracted from the model parameters

of crackles using WNs with a single and double node, respectively [73]. WNs have a

neural network structure that performs wavelets as transfer functions in their nodes

as described in the previous chapter. The wavelet functions achieve localization on a

space using a single node in the like manner as Gaussian functions used in radial basis

functions. Moreover, a proper wavelet function resembling the target waveform can

be selected from wavelet families to achieve modeling with fewer nodes in the network

structures. In this study, cM wavelet function is preferred to model crackles due to

both the similarities between the waveforms of a crackle and the real part of cM and

the �exibility of the Morlet function in modeling. The total number of parameters from

each node is �ve, i.e. scaling (ak), time-shifting (bk), modulating frequency (ωk), and
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weight factors of cosine and sine parts. For the clustering analysis, only the frequency-

based parameters, i.e. ak and ωk, are employed to obtain the crackle clustering results

that can both interpret the auditory perception and be comparable with the other

feature sets. The weight factors of cosine and sine include additional information, e.g.

the ratios of de�ection magnitudes, and this redundant information may scramble the

clusters, thus, the weight factors are excluded from the feature set. Moreover, the

time-shifting parameter does not bear any information correlated with the type of the

crackle, therefore it is not used in the clustering algorithm, as well. Finally, a single

parameter, i.e. central frequency (CF ), is employed from each node k which combines

two parameters and is calculated using ak and ωk as

CFk = ωk/2πak (4.2)

Since the targeted crackle waveform consists of only two cycles, up to two hidden

nodes are adequate to model the waveform. The CF calculated using single node

interprets the common CF of crackle waveform whereas using double nodes o�ers to

model the progressively wider waveform of crackles with a lower error. Each node is

employed on one cycle of crackle waveform therefore the CFs of the �rst and second

cycles can be calculated and the widening of the waveform based on the CFs can be

observed.

4.1.2 Clustering Method

The analysis of the sample distribution in the feature space is made according

to the probabilistic approach. In this case, it is assumed that the data may be inter-

preted with a multivariate probabilistic mixture model and the members of the clusters

distribute according to the density function of their own cluster model. Therefore, the

analysis is reduced to a problem of looking for the parameters of the density functions.

However, since there is a lack of information about which cluster the samples belong

to, the parameters cannot be calculated directly. The labels of the samples and the

parameters of the density functions are estimated by maximizing the likelihood of the
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samples that is de�ned for N samples and G clusters as

`(θ|x1, x2, . . . , xN) =
N∏
1

G∑
1

τkp(xi|θk) (4.3)

where p(xi|θk) and θk are probability density and parameters of kth cluster (Ck), re-

spectively whereas τk is the prior probability that a sample belongs to Ck.

EM algorithm [13] is a commonly-used method to estimate the maximum likeli-

hood of the samples that are considered to be composed of observed (xi) and unobserved

(zi) variables. In our problem, the features acquired from crackles and the labels of the

crackles are observed and unobserved variables, respectively. EM algorithm consists

of iterative calculation of two steps. In the E-step, the expected value of the likelihood

of the samples is computed according to the observed values and current model pa-

rameters. The yield of this step is the estimated labels of samples. In the M-step, the

model parameters that maximize the expected value of the likelihood are estimated. If

it is assumed that clusters have multivariate Gaussian distributions, in the E-step, the

labels will be estimated as

ẑik ←
τk|Sk|−1/2exp[−(1/2)(xi −mk)

TS−1
k (xi −mk)]∑G

j=1 τj|Sj|−1/2exp[−(1/2)(xi −mj)TS
−1
k (xi −mj)]

(4.4)

where mk and Sk are the mean and the covariance matrix of Ck, respectively. Although

zik gets the value of 1 if xi belongs to Ck and 0 if not, ẑik equals to the posterior

probability that xi belongs to Ck and can get values between 0 and 1 [4]. In the

M-step, the estimated values of the parameters for normal mixtures are calculated as

mk ←
∑
i

ẑikxi/
∑
i

zikxi (4.5)

Sk ←
∑
i ẑik(xi −mk)(xi −mk)

T∑
i ẑik

(4.6)

τk ← (1/N)
∑
i

ẑik (4.7)



47

The distributions of the clusters can be considered to be either spherical or

nonspherical in shape and/or equal or unequal in size depending on the application

[18]. Making a preference such as assuming spherical cluster distributions of equal

size would reduce the number of parameters of covariance matrices and consequently

convergence time, however the limitations on the cluster distributions may degrade the

performance of the clusterer especially in the case of dissimilar cluster distributions.

Therefore, constraining assumptions are not made on the covariance matrices of clusters

to allow maximal �exibility in model distributions.

The unconstrained covariance matrices have G(d(d+1)/2) independent variables

for d-dimensional data, hence the convergence time of the algorithm is high. Therefore,

a simpler method that yields appropriate initial values for the EM algorithm, which

is sensitive to the initial values, is performed before EM . K-means algorithm is a

partitioning algorithm which works according to the reconstruction error that is de�ned

on the distances of the members of clusters to the means of their own clusters. From

k-means to EM algorithm, the shapes of clusters change from spherical form to elliptic

form. It should be noted that k-means algorithm is equivalent to the EM algorithm

if the covariance matrices of the clusters are equal and proportional to the identity

matrix [11]. Therefore, using k-means before EM , some spheres are placed on the

distribution of the samples with lower performance and lower computational time and

then the spheres are stretched to elliptical form for higher performance. In other words,

the coarse work is initially done by the k-means whereas the �ne work is performed by

the EM algorithm. Since k-means algorithm is also sensitive to the initial values, the

operation is replicated ten times and then the solution with minimum reconstruction

error is used as initial values in the EM algorithm.

The optimum number of clusters (Gopt) is determined after estimating the cluster

parameters for the values of G, 1, 2, . . . , Glimit. BIC [60] is selected since, in the model-

based partitioning applications, it has good performance [18, 71]. BIC is estimated

based on log likelihood of data as

BICG = log`(θ̂G)− (Np,G/2) logN (4.8)
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Figure 4.1 Block Diagram of the Clustering Algorithm. Murphy and Hoevers feature sets are in
time domain whereas feature sets of quartiles and central frequencies are in frequency domain.

where θG represent the estimated cluster parameters, i.e. mean and variance for normal

distributions, when the number of clusters is selected as G. Np,G is the total number

of estimated independent variables of the parameters corresponding to the summation

of Gd and G(d(d+1)/2) variables from the mean vectors and the covariance matrices,

respectively [60, 71]. The optimum is the number of clusters at which maximum BIC

is reached. The clustering algorithm is summarized in Figure 4.1.

4.2 Results

The parameterization of the crackle waveforms based on zero-crossing, spectral

components and WN modeling yields �ve feature sets. The features belonging to these

sets are listed in Table 4.1.

Clustering experiments are performed on all of the feature sets separately and

BIC values are compared to determine the optimum number of crackle clusters that

convey representative feature values. The cluster likelihood densities and BIC values
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Table 4.1

A description of feature sets.

Figure 4.2 The scatter plots of feature samples and isoprobability contours of likelihood densities of
clusters estimated using EM algorithm according to the feature sets in time domain, i.e. Murphy in the
�rst row and Hoevers in the second row. BIC values are depicted in the last column. To comparatively
observe the cluster distributions, converted versions of four features of Hoevers corresponding to two
features of Murphy are used in the �gures whereas the clustering analysis is performed using all the
four features. Blue square, red circle, black diamond marks represent the samples labeled as �ne,
coarse and medium crackles, respectively. (One third of the samples are shown to reduce ink-to-noise
ratio.)
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Figure 4.3 Estimated likelihood densities of clusters and BIC values according to the feature sets in
frequency domain, i.e. quartile frequencies (the �rst row), central frequencies obtained from modeling
using WN with single (the second row) and double (the third node) node.

of clusters are depicted in Figure 4.2 and Figure 4.3. The means of the clusters are the

centers of the densities whereas the shape and orientation of isoprobability contours

depend on the covariance matrices of clusters. Since unconstrained covariance matrices

are employed in the clustering analysis, the shape and orientations of densities can

be �exible and diverse for di�erent clusters. For instance, for Murphy feature set

in both the two- and three-cluster cases, '�ne' cluster distributes over smaller area

with skewed and elongated shape whereas the 'coarse' cluster has wider ellipsoidal

distribution. Therefore, the coarse crackles, which distribute over larger areas with

lower density than �ne crackles, can be labeled more accurately with unconstrained

covariance matrices.

BIC values of the clustering analysis using di�erent feature sets imply that

there may exist one more cluster in addition to the �ne and coarse crackle clusters.

BIC values of clustering experiments performed on three feature sets, namely Murphy,

quartiles and WN double node feature sets, reach the maximum value at the three-
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Table 4.2

Mean feature values of the clusters

cluster case, having lower values for the two-cluster case. For the Hoevers set, the BIC

values for the two and three-cluster cases are close to each other, being higher for three

clusters although the maximum BIC value is reached at �ve clusters. The maximum

BIC value is at the two-cluster case for WN single node feature set. This disparity

may be due to loss of information when a crackle, which is composed of progressively

widening cycles, is modeled with a single node with larger modeling error compared

to that of a double node. To validate the optimum cluster number, AIC which has a

tendency to overestimate number of clusters, in contrast to BIC which has a tendency

to underestimate, was also calculated and similar results regarding number of clusters

were found for each feature set.

The mean values of features that depict the representative crackle of each cluster

are listed in Table 4.2, indicating that clusters using di�erent feature sets represent

resembling crackle waveforms for each crackle type. As mentioned, Murphy parameters

are linearly dependent on Hoevers. For the two-cluster case, corresponding IDW and

2CD values of Hoevers features for the �ne cluster are 0.97 ms (2.39-1.42) and 3.02

ms, respectively whereas Murphy are 0.93 ms and 2.93 ms. For the coarse clusters,

using the same conversion, Hoevers features have the corresponding values of 1.89 ms
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Figure 4.4 Waveforms of the crackles in the 20-nearest neighborhood of the means of the clusters
estimated from �ve feature sets. The typical waveforms of clusters are depicted for two- and three-
cluster analysis.

and 8.18 ms whereas, Murphy values are 1.86 ms and 7.93 ms, respectively. For the

three-cluster case, �ne, medium and coarse clusters have the IDW and 2CD values of

0.97 ms and 3.00 ms, 1.25 ms and 5.08 ms, 2.23 ms and 9.84, respectively, according

to Hoevers whereas Murphy values are 0.87 and 2.85, 1.31 and 4.78, 2.26 and 10.02,

respectively.

Moreover, the CFs can be approximately estimated using 2CD values by the

relation of CF ← 1/2CD. The estimated CFs using Murphy mean values of clusters

are 683 Hz and 252 Hz for the two clusters whereas they are 701.8Hz, 418.4Hz and

199.6Hz for the �ne, medium and coarse clusters. A similar comparison between the

mean of the lower and upper quartile frequencies and CFs can be made where they

are 689.9 Hz and 302.9 for the two-cluster case and 712.3 Hz, 476.1 Hz and 237.5

Hz for the three-cluster case. As these �gures demonstrate, clusters have comparable

crackle parameter values regardless of the feature set. To better visualize the typical

crackle waveforms corresponding to each cluster, 20 nearest crackles to the mean of
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Table 4.3

Confusion matrices for (a) two- and (b) three-cluster analyses. The confusion matrices on the
diagonal of the table shows the numbers of samples labeled as �ne, medium and coarse crackles. The
o�-diagonal confusion matrices show the true and false matching of labeling according to di�erent

feature sets. (F: Fine, M: Medium and C: Coarse)

each cluster are plotted in Figure 4.4. These plots, representative waveforms for each

type of crackle, i.e. �ne, medium and coarse, likewise, display similar characteristics

irrespective of which feature set is used.

The confusion matrices that indicate the matching of labeling results of clus-

tering experiments using di�erent feature sets are shown in Table 4.3. In confusion

matrices, each comparison between two feature sets is interpreted as 2-to-2 and 3-to-3

matrices for two- and three-cluster cases, respectively. Each table consists of 5-to-5

matrices of these confusion matrices. The confusion matrices on the diagonals of ta-

bles show the number of cluster members labeled using the corresponding feature sets.
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Table 4.4

Accuracies of clustering results that are the ratios between the numbers of true-matched samples to
the total number of samples.

There are, for instance, 1025 �ne, 659 medium, and 1027 coarse crackles in the dataset

resulting from clustering experiments using Hoevers feature set. The o�-diagonal con-

fusion matrices of tables indicate the matching between clustering using two di�erent

feature sets. The values on the diagonal of a confusion matrix show the number of true

matched crackles whereas the o�-diagonal values indicate false matching. For example,

560 of 659 medium labeled crackles of Hoevers are true-matched whereas 31 and 68 of

659 medium crackles are labeled as �ne and coarse, respectively, using Murphy set.

The accuracies in Table 4.4 indicate the true-matching ratios between feature

sets. The accuracies are de�ned as the ratio of the sum of the quantities on the diagonal

of a confusion matrix to the total number of crackles, namely 2711. For two-cluster

case, true matching between clustering experiments on four feature sets is achieved for

more than 88% of crackles reaching maximum value 95.7%. For the fourth feature set,

namely single node wavelet model, lower �gures such as 83.3% are realized, owing to

the relatively higher modeling error. For the three-cluster case, true matching rate is

also high ranging between 79.8% and 87.6%, except for the single node wavelet model

whose rate is between 76.0% and 83.2%.
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5. CONCLUSIONS

A new automatic method has been proposed in Chapter 2 for the elimination

of background VSs from crackle signal with minimum distortion of crackle parameters

which are important in the diagnosis of respiratory disorders. A region of interest is

designated and a distortion metric based on the correlation between raw and �ltered

waveforms in that region is de�ned. Cut-o� frequency is estimated based on the DT

metric. Furthermore, to reduce computational cost, a regression analysis is realized

which predicts a new cut-o� frequency, �tted cut-o� frequency, from estimated cut-o�

frequency based on percentiles of cPS of the crackle signal. As a comparison basis,

wavelet �ltering is also applied on the same data.

The algorithm is validated on simulated crackles with known parameters which

are superimposed on recorded VSs from healthy subjects and have, therefore, deformed

parameters. A very low error rate is achieved in �ltered crackles with estimated cut-o�

frequency for both FCs and CCs. The error rate results of �ltering with �tted cut-o�

frequency were slightly higher with almost ten times faster computational time, a result

which justi�es slightly higher error rate for a much smaller computational cost. Both

�lters perform at least twice better than wavelet �lters.

The application of the algorithm on real crackles from subjects with various

respiratory disorders also showed how transformed the crackle parameters were after

the method was applied thus emphasized the signi�cance of the shape of the waveform

in crackle studies. The algorithm is promising since it renders itself to computerized

analysis of pulmonary sounds with the �nal aim of building a diagnosis system. A

sensitivity analysis made on the crackle parameters indicates the signi�cance of proper

�ltering in view of parameter values which are essential in such a diagnosis system.

In Chapter 3, crackles are modeled in time-frequency domain using the WNs.

Wavelets not only have the oscillating waveform like sinusoid signals with variable
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frequency but also have �nite energy that is concentrated in a time interval. Wavelets,

therefore, have the ability of representing a transient signal with lower number of

components. In our application, WN-based parameterization o�ers the advantage of

coding crackles with a relatively small number of parameters that can be used to

faithfully regenerate them without the loss of waveform morphology. In other words,

crackles can be interpreted in time and frequency domains using WN modeling by

representing the signal with WN parameters whose number equals to �ve times the

number of WN nodes. In our study, minimal error rates have been obtained for a wide

range of crackle types with two node WNs. Moreover the extracted features from WN

model parameters have been shown to be consistent with the more conventionally used

parameters based on zero-crossings in two-class clustering experiments.

In the future, as an extension of the study in Chapter 3, some speci�c base

wavelets (atoms) may be de�ned based on the characteristics of crackle types and

may be employed in the detection of the crackles in the pulmonary sound signals

using the matching pursuit method [39]. The �ne tuning of the parameters can be

performed using WN after the detection. Therefore, the computerized crackle-based

analysis of pulmonary disorders can be achieved with the information of localization

and classi�cation of the crackle.

In Chapter 4, a set of clustering experiments have been carried out on a database

of pulmonary crackles with an aim to probe the existence of a third crackle type,

medium, besides the traditionally accepted types, namely, �ne and coarse crackles.

Moreover, the representative parameter values for each crackle type have been explored.

A model based clustering algorithm, the EM algorithm, is used and the resulting cluster

numbers are validated with BIC. Five di�erent feature sets are extracted from the

preprocessed crackle samples, two of which are conventional parameters that have

been suggested by Murphy et al. and Hoevers et al. and that are derived from the

zero-crossings of crackle waveforms. The third feature set corresponds to the spectral

components of the crackles whereas the remaining two sets are derived from a single-

and double-node WN modeling.
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The results of the clustering experiments demonstrate strong evidence for the

existence of a third crackle type. Moreover, the labels yielded by clustering experiments

using di�erent feature sets match for roughly 80% or more of the crackle samples, re-

sulting in similar representative crackle parameter values for all feature sets. For the

time-domain parameters, namely IDW and 2CD, approximate values are 2.2 ms and

10.0 ms for coarse crackles, 1.3 ms and 5.0 ms for medium crackles and �nally, 0.9 ms

and 3.0 ms for �ne crackles. These results correlate closely with ATS de�nitions which

classify crackles with 2CD value of approximately 10 ms as coarse and crackles with

2CD of less than 5 ms as �ne. This study clusters the unde�ned zone in ATS standards

as medium. For the frequency domain parameters, approximate values for the central

frequencies are 200 Hz, 400 Hz and 700 Hz for coarse, medium and �ne crackles, respec-

tively. Since the crackle classi�cation algorithm employed in this study is unsupervised,

this method makes the evaluation of crackles more objective, rendering this approach

to be used in computerized analysis of pulmonary sounds. In future studies, various

pulmonary pathologies may be correlated with the three di�erent crackle types and

the �ndings may be utilized in constructing databases with the �nal aim of building a

computerized diagnosis system.
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APPENDIX A. THE RESPIRATORY SYSTEM AND THE

LUNGS

A.1 The Respiratory System

Most of the body cells consume oxygen and generate carbon dioxide in energy

production. The function of the respiratory system is to supply oxygen from external

environment and remove carbon dioxide from body. The oxygen - carbon dioxide

exchange (respiration) is accomplished by following complementary processes: (1) the

expiration of the air with high carbon dioxide concentration and inspiration of the

air with high oxygen concentration from environment, (2) the gas exchange between

pulmonary capillaries and alveoli, named external respiration, (3) the oxygen-carbon

dioxide transport in blood, and (4) the gas exchange between the tissue cells and

blood, named internal respiration [38, 61]. The �rst two processes are carried out by

conductive airways and the lungs. The journey of inspired air starts from nasal or oral

cavity and continue through the pharynx, the larynx, the trachea, the bronchi, and the

lungs as shown in Figure A.1.

A.2 The Lungs

The lungs are cone-shaped organs located in the thoracic cavity. They extend

from the diaphragm to a point about 2.5 cm above of the clavicle. They are enclosed

by double-layer pleural membrane whose outer layer is attached to the wall of thoracic

cavity and inner layer is attached to the lungs. The lungs are divided into lobes by

deep, oblique �ssures. There are three lobes, i.e. superior, middle and inferior, in the

right lung whereas two lobes, i.e. superior and inferior, in the left lung. Each lobe is

divided into lobules that are ten in the right lung and nine in the left lung.
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Figure A.1 The respiratory system (http://www.medem.com)

Figure A.2 The lungs and tracheobronchial tree
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A.3 Bronchial Tree

The trachea is divided into right and left primary bronchi that contain C-shaped

cartilage like the trachea. Each bronchus gives rise to secondary bronchus for each lobe

and each secondary bronchus subdivided into tertiary bronchus for each lobule. Tertiary

bronchi continue to subdivide into bronchioles, terminal bronchioles and respiratory

bronchioles, gradually. Respiratory bronchiole gives rise to alveolar ducts that are

surrounded by many alveoli and alveolar sacs. The structure depicted in Figure A.2

acquired from http : //training.seer.cancer.gov. The branching structure from the

trachea up to terminal bronchioles is named the bronchial tree. Oxygen - carbon

dioxide exchange between pulmonary capillaries and air does not occur in the bronchial

tree. The main location of the gas exchange is in the alveoli although some occurs in

the alveolar ducts and respiratory bronchioles [61, 67].

The structure of the upside-down tree changes as the branching becomes more

extensive. The cartilage layers in trachea replace incomplete cartilage rings in primary

bronchi and disappear gradually in subdivided airways. There is no cartilage in small-

est bronchioles. As the amount of cartilage decreases, the amount of smooth muscle

increases.
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APPENDIX B. THE PULMONARY DISEASES WITH

AUSCULTATION FINDINGS

There are many types of pulmonary diseases. In this section, some diseases that

can be diagnosed via auscultation are brie�y described. Some of these diseases, i.e.

interstitial pulmonary �brosis and sarcoidosis, cause a reduction the expansion ability

of the lungs and a decrease in the total amount of air that the lungs can hold. A

disease in this class is named restrictive diseases. Some diseases, i.e. asthma, chronic

bronchitis, emphysema, COPD, and bronchiectasis, give rise to a reduction in the

amount and the rate of the air that can be expired. A disease in this class is named

obstructive diseases.

B.1 Asthma

Asthma is an in�ammatory disease that a�ects the airways. In�ammation makes

inside walls of airways sensitive, thus they respond strongly to allergenic and irritat-

ing e�ects. When asthma attack occurs, the bronchioles are constricted due to the

contraction of bronchial smooth muscles and tenacious mucus is produced [9]. The

phenomena cause the reduction of air�ow. The characteristics of asthma are wheezing,

cough, shortness of breath and chest tightness.

B.2 Emphysema

Emphysema has two types, i.e. panlobular and centrilobular. Panlobular em-

physema is a condition characterized by the destruction of the wall between alveoli or

air ducts which gives rise to permanent abnormal enlarged air spaces. This reduces

the interaction surface between blood and air. The elasticity of lung tissues is reduced

and the ability of stretch and recoil of the lungs is impaired. Panlobular emphysema
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is characterized by a hyper in�ated chest. In centrilobular emphysema, the respira-

tory bronchioles are destroyed [31]. The air is trapped within the alveoli due to the

bronchial collapse during expiration and the gas exchange cannot be accomplished.

The symptoms of emphysema are shortness of breath and cough.

B.3 Chronic Bronchitis

Chronic bronchitis is a condition where the in�ammation in the lining of bronchi

occurs, reducing air�ows and secreting tenacious mucus. The disease is de�ned by the

prolonged mucus-producing cough. The in�ammation gives rise to scarring of the line

of bronchi. There is a gradual process that starts with prolonged irritation of the

bronchial tubes and accompanied by excessive mucus secretion, then continues with

thickening of walls of bronchi and increasing of cough, and concludes with the structural

changes and the scarring in the bronchi.

B.4 Chronic Obstructive Pulmonary Diseases (COPD)

COPD is referred to an airway obstruction that is a various combination of

chronic bronchitis, emphysema and asthma. These diseases concur frequently and it is

di�cult to decide on which disease leads the obstruction. The interrelationship between

these three diseases is depicted in Figure B.1 acquired from [9].

B.5 Bronchiectasis

The characteristics of bronchiectasis are the destruction and in�ammation of

bronchial wall, damage of ciliated cells and increase of mucus secretion that is shown

in Figure B.2 acquired from http : //www.merck.com. The elasticity of bronchial wall

reduces and bronchi become wider. The destructed walls promote mucus production
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Figure B.1 the Interrelationship between asthma, chronic bronchitis, emphysema and COPD. Shaded
area represents subjects with COPD.

Figure B.2 The e�ects of bronchiectasis on airways and bronchial walls

that obstructs airways and accumulates bacteria. The infection in the upper airways

can extend to the lower airways and alveoli, leading to pneumonia and scarring. There

are three types of bronchiectasis, i.e. cylindrical, varicose and cystic. The cylindrical is

most common and reversible. The airways dilate slightly. In the varicose, some parts

of bronchial walls extend and are destructed. The cystic is most severe and produces

ballooning in the bronchi. The symptoms of bronchiectasis are coughing, shortness of

breath, weakness and abnormal chest sounds.
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B.6 Interstitial Pulmonary Fibrosis

The terms interstitial pulmonary �brosis, interstitial lung diseases and pul-

monary �brosis are generally used to describe the same condition. The term "in-

terstitial" comes from the interstitium that is the name of the tissue between alveoli.

"Fibrosis" means scarring. There are probably 130 - 200 related diseases that are called

pulmonary �brosis and show similar characteristics. They all begin with in�ammation

and lead to scarring (�brosis). The in�ammation in�uence various parts of the lungs,

i.e. the walls of bronchioles (bronchiolitis), the walls of alveoli (named alveolitis), and

pulmonary capillaries (named vasculitis). The symptoms are breathlessness during

exercise and a dry cough.

B.7 Sarcoidosis

Sarcoidosis is characterized by in�ammation and the presence of granulomas,

small areas of in�amed cells. Granulomas may appear on walls of alveoli, bronchial

wall and lymph node in the chest. Sarcoidosis reduces lung volume and elasticity of

lung tissues. Its symptoms are a dry cough, shortness of breath and wild thoracic pain.

B.8 Pneumonia

Pneumonia is infection or in�ammation of the lungs caused by a bacterium,

a virus or a fungus. Pneumonia is classi�ed as two types according to the location

of appearance in the lungs. Lobar pneumonia appears on a lobe of the lungs whereas

bronchial pneumonia a�ects both lungs. The symptoms are shortness of breath, cough,

fever, chill and increase in mucus production.
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APPENDIX C. AUSCULTATION AND ADVENTITIOUS

SOUNDS

Respiratory sounds consist of all sounds related to respiration, e.g. breath

sounds, adventitious sounds, cough sounds, snoring sounds, and sounds which stem

from the respiratory muscles. Voiced sounds during breathing are not included in res-

piratory sounds [64]. Respiratory sounds can distinctively indicate the healthy and

pathological conditions and they have been used for diagnosis since ancient times.

Especially after the invention of the stethoscope by Laennec, the importance of auscul-

tation in diagnosis has increased. He describes the breath sounds heard over the chest

as "a distinct murmur corresponding to the �ow of air into and out of air cells" [36].

However, the origin of the sounds is not completely certain and, probably, multiple

mechanisms are involved. The lung sounds cannot be generated by lung itself if there

is no air�ow. The turbulence of the air at the level of bronchi probably induces them.

Because the gas velocity decreases and is at less than critical level to induce turbulence,

the air�ow is silent in smaller bronchi [65]. Pasterkamp et al. [51] reported the major

types and characteristics of respiratory sounds as in Table C.1.

C.1 Normal Lung Sounds

The respiratory sounds of healthy subject heard over the chest are named "nor-

mal lung sounds". The peak frequency of normal lung sounds is usually below 100 Hz

and it is very di�cult to distinguish them from muscular and cardiovascular sounds.

The energy of normal lung sounds decrease sharply between 100 and 200 Hz; however,

they can still be detected at about 1000 Hz using sensitive microphones [51].
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Table C.1

Major categories of pulmonary sounds [2].

C.2 Adventitious Sounds

In pathological conditions, additional respiratory sounds (called adventitious

sounds) are superimposed over the normal lung sounds. They are divided into two

main groups, namely transient and continuous adventitious sounds. The transient

sounds, crackles, are explosive sounds heard mostly during inspiration rather than

during expiration. The continuous adventitious sounds, namely wheeze and rhonchus,

are musical and sinusoidal sounds.

C.2.1 Crackles

Crackles are discontinuous type of adventitious sounds that occur in pathological

conditions and are superimposed on normal breath sounds. Crackles are explosive and

transient in character, and occur frequently in cardio-respiratory diseases [54]. They

generally start with a sharp de�ection and continue with a damped and progressively
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wider sinusoidal wave [46]. Their duration is less than 20ms and their frequency range

is from 100 to 2000 Hz or even higher [20, 48]. They are distinguished into two types,

i.e. �ne and coarse. The former are related with interstitial lung diseases, whereas the

latter are generally associated with obstructive diseases. The generating mechanism

of crackles is not known with certainty. There are two assumptions for the source of

energy to generate crackles: (1) pressure equalization [17] and (2) change in elastic

stress ([19] after explosive opening of small airways that are abnormally closed by

surface forces because of pathological dysfunction.

C.2.2 Wheezes

Wheezes are continuous type of adventitious sounds. Since their waveforms are

sinusoidal, they also called musical. According to guidelines of a project of European

Union, the dominant frequency components of wheezes are generally higher than 100

Hz whereas their durations are higher than 100 ms [64]. Wheezes can show monophonic

and polyphonic frequency characteristics.

American Thoracic Society (ATS) nomenclature [5] divides continuous adven-

titious sounds into two categories, i.e. wheeze and rhonchus. Wheezes are higher-pitch

and their dominant frequencies are de�ned as higher than 400 Hz whereas dominant fre-

quency components of rhonchi are de�ned as lower than 200 Hz. The source of wheezing

sound is assumed to be oscillating airway walls. Grotberg and Davis [22] modeled the

generating mechanism and concluded that wheeze generation is correlated with air�ow

threshold. Although air�ow should reach a critical value for generating wheeze, the

reaching critical value does not always generate a wheeze.

Since lung tissue behaves like low-pass �lter in lung sound transmission [70],

wheezes with high frequency components can be auscultated better over the trachea

than at the chest wall. As reported by Sovijarvi et al. [65], in the studies performed

by Baughman and Loudon [7, 6], the dominant highest frequency of wheezes auscul-

tated from the chest wall is 710 Hz. Furthermore, Fenton et al. [16] state that the
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wheezes with the peak frequency at 870 and 940 Hz can be auscultated over the tra-

chea, although they are not audible at the chest wall. Fenton at al. use lung sounds

simultaneously acquired from the trachea and the chest wall in their study.
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APPENDIX D. THE LOCATIONS OF THE

MICROPHONES ON THE POSTERIOR CHEST WALL

Pulmonary sound signals are recorded using 14 air-coupled electret microphones.

They are embedded in capsules that supply air cavity between skin and microphones.

The air cavity is designed to be sensitive to the spectral components of pulmonary

sounds [35]. The locations of microphones at the chest are determined according to the

advices given by clinicians. The microphones are located according to the locations

used in clinical auscultation from the posterior chest wall. Seven microphones are

located at each left and right side of the chest wall symmetrically around the spine

that is depicted in Figure D.1. The �gure is acquired from Sen's MS Thesis [62].

The �rst two microphones at the top are located at the level of the clavicles. The

other microphones are located according to the �rst two microphones. The distance

between the �rst two microphones is 6 cm. The distances between microphones in

the nearby spine are enlarged gradually and, in base, the distance reaches 12 cm.

The distance between two adjacent microphones at the same level is adjusted as 6 cm

whereas the distance between microphone levels is 7 cm. The details of DAQ system

are described in [62].

Figure D.1 The microphone locations on the posterior chest wall
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