
 

 

EVALUATION OF FORCE-VELOCITY CHARACTERISTICS OF 

QUADRICEPS MUSCLES BY MEANS OF  

PEAK TORQUE-ANGULAR VELOCITY RELATIONSHIP 

 DURING KNEE EXTENSION AND FLEXION  

 

by 

 

 

Abdulaziz Akkılık 

 

B.S., E.E., Istanbul Technical University, 2004 

 

 

 

Submitted to the Institute of Biomedical Engineering 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

in 

Biomedical Engineering 

 

 

 

Boğaziçi University 

September 2008 

 

 

 

 

 



ii 
 

 

 

 

EVALUATION OF FORCE-VELOCITY CHARACTERISTICS OF 

QUADRICEPS MUSCLES BY MEANS OF  

PEAK TORQUE-ANGULAR VELOCITY RELATIONSHIP 

 DURING KNEE EXTENSION AND FLEXION  

 

 

APPROVED BY: 

 

 

Assistant Prof. Dr. Burak Güçlü          ………………………. 
                        (Thesis Advisor) 
 

Prof. Dr. Sabri Altıntaş                         ………………………. 

 

Assistant Prof. Dr. Can Yücesoy          ………………………. 

  

 

 

 

 

 

DATE OF APPROVAL: 15 September 2008 

 

 

 

 

 

 



iii 
 

 

ACKNOWLEDGEMENTS 

 

 I would like to express my sincere thanks to my thesis supervisor, Assistant Prof. 

Dr. Burak Güçlü. He provided me with necessary support, advice, facilities and enthusiasm 

required to successfully complete this thesis. I would like to thank to Prof. Dr. Ali Haydar 

Demirel, who provided me with valuable support throughout the experiments. I also would 

like to thank PhD Physio. Selda Başar for her support and assistance in the experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

ABSTRACT 

 

EVALUATION OF FORCE-VELOCITY CHARACTERISTICS OF 

QUADRICEPS MUSCLES BY MEANS OF  

PEAK TORQUE-ANGULAR VELOCITY RELATIONSHIP 

 DURING KNEE EXTENSION AND FLEXION  

 

 In this thesis, an experiment, which shows that there is a relationship between 

theoretical force-velocity characteristics of a muscle fiber and experimental peak torque-

angular velocity characteristics of quadriceps muscle contraction using CYBEX NORM 

isokinetic dynamometer, is presented. First, the equations of force-velocity relationship for 

muscle fiber contraction were derived using a special cross-bridge theory. Then, during the 

experiments, the subject performed knee extension and flexion movements with different 

angular velocities. In this way, peak torque values at different angular velocities were 

obtained during eccentric, isometric and concentric contraction of quadriceps muscles. 

Finally, it was observed that the theoretical curve of force-velocity for muscle fiber 

contraction could fit the experimental data showing the relationship of peak torque-angular 

velocity for quadriceps muscles quite well. As a result, although many parameters were not 

controlled during the experiments, force-velocity curve of the muscles was applicable for 

different conditions. 

 

Keywords: peak torque, angular velocity, force, isometric contraction, concentric 

contraction, eccentric contraction, isokinetic dynamometer.   
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ÖZET 

 

DİZ UZATMA VE BÜKME SIRASINDAKİ TEPE TORK-AÇISAL HIZ 

İLİŞKİSİ YARDIMIYLA KUADRİSEPS KASLARININ KUVVET-HIZ 

KARAKTERİSTİĞİNİN İNCELENMESİ 

 

 Bu tezde, bir kas lifinin kasılmasının teorik hız-kuvvet karakteristiği ile bir CYBEX 

NORM izokinetik dinamometresi yardımı ile elde edilmiş kuadriseps kaslarının 

kasılmasına ait deneysel tepe tork-açısal hız karakteristiğinin arasındaki ilişkiyi göstermesi 

amaçlanan bir deney çalışması sunulmaktadır. Öncelikle, bir kas lifinin kasılmasının 

kuvvet-hız karakteristiğini gösteren denklemler özel bir aktomyozin köprü teorisi 

yardımıyla elde edildi. Daha sonra, deney bölümünde, farklı açısal hızlarda diz uzatma ve 

bükme hareketleri gerçekleştirildi. Bu şekilde, farklı açısal hızlarda izometrik, eksentrik ve 

konsentrik olarak kasılan kuadriseps kaslarına ait tepe tork değerleri ölçüldü. Kuadriseps 

kaslarının kasılmasının tepe tork-açısal hız ilişkisini gösteren deneysel sonuçların, teorik 

olarak elde edilen bir kas lifinin kasılmasına ait kuvvet-hız eğrisine çok benzediği görüldü. 

Sonuç olarak, deneyler sırasında birçok parametre kontrol edilmemesine rağmen, 

kasılamaya ait kuvvet-hız eğrisi farklı durumlara uygulanabildi.  

 

Anahtar Sözcükler: tepe tork, açısal hız, kuvvet, izometrik kasılma, konsentrik kasılma, 

eksentrik kasılma, izokinetik dinamometre. 
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1. INTRODUCTION 

 

Unlike a simple elastic body, muscle is able to adjust its force to precisely match the 

load that is experienced during shortening. This remarkable property of muscle is based on 

the fact that active force continuously adjusts to the speed at which the contractile system 

moves. Thus, when the load is small, the force produced by the muscle is made 

correspondingly small by increasing the speed of shortening appropriately. Conversely, 

when the load is high, the active force is raised to an equivalent level by decreasing the 

shortening speed sufficiently [1]. The fact that there exists a given relation between load 

and velocity of shortening in muscle was first demonstrated by Fenn & Marsh [2]. Hill [3] 

further characterized the force-velocity relation in frog skeletal muscle and pointed out the 

importance of this parameter for understanding the basic mechanisms of muscle 

contraction. 

 The idea that this mechanical behavior of muscle could be explained in terms of the 

dynamics of the cross bridge population was introduced by A.F. Huxley [4]. More 

precisely, he proposed a specific cross bridge model that could account for the steady-state 

force velocity and energetic relationships discovered by A.V. Hill [3]. According to this 

plausible idea, muscle shortens when interdigitating filaments of fixed length increase their 

overlap by sliding past one another.  

Lacker and Peskin [5] proposed a particular cross bridge theory similar to Huxley’s 

but not quite the same. They explored a new method for testing the cross bridge hypothesis 

within the context of a class models similar in spirit to A.F. Huxley’s 1957 scheme [4]. 

Detailed properties of the cross bridge were determined uniquely by a systematic 

mathematical technique that employed data from macroscopic muscle contracting at a 

constant velocity. The method was tested and applied using data of A.V. Hill [3]. The 

derived cross bridge properties were used to predict transients obtained when tetanically 

stimulated muscle was subjected to sudden changes in load. 

In this thesis, the particular cross-bridge theory proposed by Lacker and Peskin was 

basically examined. All force-velocity curves and equations were obtained with the help of 
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this muscle model during shortening and lengthening of the muscle. The experiment of 

knee extension and flexion movements was executed to obtain peak torque values of knee 

extensors -quadriceps muscles- with varying angular velocity of the movement. The 

experimental results obtained from quadriceps muscles by the help of CYBEX NORM 

isokinetic dynamometer was compared with the force-velocity curve of the muscle 

acquired theoretically in the cross-bridge theory. As a result, the experimental data was 

fitted by the curve defined by the equations found in the cross-bridge theory. 

 Whereas the experimental data shows the relationship between the angular velocity 

and the peak torque obtained during quadriceps muscles contraction, in the theory of 

Lacker and Peskin, the relationship between linear velocity and force of a muscle fiber 

contraction is discussed. Peak torque was assumed as a measure of strength. As angular 

velocity and linear velocity values were normalized to their maximum values during the 

comparison, it was thought that angular velocity and linear velocity would have the same 

effects on the results. Therefore, this thesis aimed to evaluate force-velocity characteristics 

of quadriceps muscles by help of peak torque-angular velocity relationship during knee 

extension and flexion.  
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2. MUSCULAR SYSTEM 

 

2.1 Muscle Structure 

The function of muscle is to allow movement and to produce body heat. In order to 

achieve this, muscle tissue must be able to contract and stretch. Contraction occurs via a 

stimulus from the nervous system. There are three types of muscle tissue; smooth, cardiac 

and skeletal.  

Skeletal muscle by definition is the muscle which is involved in the voluntary 

movement of the skeleton. It is also called striated muscle as the fibers, which are made up 

of many cells, are composed of alternating light and dark stripes, or striations. Skeletal 

muscle can also be contracted without conscious control, for example in sudden 

involuntary movement [6]. 

 

Figure 2.1 Gross to molecular structure of muscle [6]. 

Actin    Myosin 

Nucleus  Muscle fiber 
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Skeletal muscle is composed of cells that have specialized functions. They are 

called muscle fibers, due to their appearance as a long cylindrical shape plus numerous 

nuclei. Their lengths range from 0.1 cm to 30 cm with a diameter from 0.01 cm to 0.001 

cm. Within these muscle fibers are even smaller fibers called myofibrils. These myofibrils 

are made up of thick and thin threads called myofilaments. The thick myofilaments are 

called myosin and the thin myofilaments are called actin. Myosin and actin filaments, as 

well as regions where the two overlap, form repeating light and dark bands in each 

sarcomere. These thick and thin filaments are linked at regular intervals by cross-bridges 

made from extensions of the myosin molecules Figure 2.1 shows a progression from the 

gross to the molecular structure of muscle [6]. 

In each sarcomere, thin myofilaments extend in from each end. Thick myofilaments 

are found in the middle of the sarcomere and do not extend to the ends. Because of this 

arrangement, when skeletal muscle is viewed with a microscope, the ends of a sarcomere 

(where only thin myofilaments are found) appear lighter than the central section (which is 

dark because of the presence of the thick myofilaments). Thus, a myofibril has alternating 

light and dark areas because each consists of many sarcomeres lined up end-to-end. This is 

why skeletal muscle is called striated muscles (i.e., the alternating light and dark areas look 

like stripes or striations). The light areas are called the I-bands and the darker areas the A-

bands. Near the center of each I-Band is a thin dark line called the Z-line (or Z-membrane 

in Figure 2.2). The Z-line is where adjacent sarcomeres come together and the thin 

myofilaments of adjacent sarcomeres overlap slightly. Thus, a sarcomere can be defined 

as the area between Z-lines [7].  

 

Figure 2.2 Sarcomere structure [7]. 
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Smooth muscle tissue is so called because it does not have striations and therefore 

appears smooth under a microscope. It is also called involuntary because it is controlled by 

the autonomic nervous system. Unlike skeletal muscle, it is not attached to bone. It is found 

within various systems within the human body, for example the circulatory, the digestive 

and respiratory. Its main difference from skeletal muscle is that its contraction and 

relaxation are slower. Also, it has a rhythmic action which makes it ideal for the gastro-

intestinal system. The rhythmic action pushes food along the stomach and intestines [6]. 

Cardiac muscle, as the name implies, is found only in the heart. Under a microscope 

the fibers have a similar appearance to skeletal muscle. However, the fibers are attached to 

each other via a specialized junction called an 'intercalated disc'. The main difference 

between skeletal and cardiac muscle is that cardiac muscle has the ability to contract 

rhythmically on its own without the need for external stimulation. This of course is of high 

priority in order that the heart may pump for 24 hour/day. When cardiac muscle is 

stimulated via a motor end plate, calcium ions influx into the muscle fibers. This results in 

contraction of the cardiac muscle. The intercalated discs help synchronize the contraction 

of the fibers. Without this synchronization the heart fibers may contract independently, 

thus greatly reducing the effectiveness of the muscle in pumping the blood around the body 

[6]. 

 

2.2 Mechanism of Muscle Contraction 

Control of muscle is achieved via the nervous system. Nerves are attached to 

muscle via a junction called the motor end plate. Shown in Figure 2.3 is a diagrammatic 

representation of a motor end plate [6]. 

 

Figure 2.3 Motor end plate [6]. 

Axon terminal branch 

Nerve axon 

Muscle fiber 

(muscle cell) 

Muscle fiber 

nucleus 
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Muscle has an all or none phenomenon. In order to contract, it has to receive a 

stimulus of a certain threshold. Below this threshold muscle will not contract; above this 

threshold muscle will contract but the intensity of contraction will not be greater than that 

produced by the threshold stimulus. 

The mechanism of contraction can be explained with reference to Figure 2.4. A 

nerve impulse travels down the nerve to the motor end plate. Calcium diffuses into the end 

of the nerve. This releases a neurotransmitter called acetylcholine, a neural transmitter. 

Acetylcholine travels across the small gap between the end of the nerve and the muscle 

membrane. Once the acetylcholine reaches the membrane, the permeability of the muscle to 

sodium (Na
+
) and potassium (K

+
) ions increases. Both ions are positively charged. However, 

there is a difference between permeability for the two ions. Na
+
 enters the fiber at a faster rate 

than the K
+
 ions leave the fiber. This results in a positive charge inside the fiber. This change 

in charge initiates the contraction of the muscle fiber [6]. 

The mechanism of contraction also involves the actin and myosin filaments which, in a 

relaxed muscle, are held together by small cross bridges. When the muscle is stimulated, 

the introduction of calcium released from sarcoplasmic reticulum in muscle cells breaks these 

cross bridges and allows the actin to move using ATP as a fuel. Relaxation of muscle occurs 

via the opposite mechanism. The calcium breaks free from the actin and myosin and enables 

the cross bridges to reform. Recently there has been a new theory of muscle contraction. This 

suggests that the myosin filaments rotate and interact with the actin filaments, similar to a 

corkscrew action, with contacts via the cross bridges. The rotation causes the contraction of 

the muscle [6]. 

 

Figure 2.4 Mechanism of muscle contraction [6]. 
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3. MUSCLE MECHANICS 

 

3.1 Cross-Bridge Dynamics 

Researchers from 1930 to 1960 sought to understand the mechanism of muscle 

contraction. The "contracting filament hypothesis" proposed that the filaments themselves 

contract. Electron microscope observations, however, did not support this hypothesis. 

Neither the thick nor thin bands changed in length when the muscle contracted. Only the 

degree of overlap between thick and thin filaments changed. Huxley alternatively proposed 

the Sliding Filament Model, suggesting muscle contraction results as the cross bridges 

linking the actin and myosin molecules pull the filaments over one another (Figure 3.1) [7]. 

 

Figure 3.1 The structures of thin and thick filaments [7]. 

 According to Huxley’s idea, the cross-bridges, arm like projections from the thick 

filaments connect and disconnect with the thin filaments in response to the composition of 

their chemical environment. Immediately after such a connection is established, a chemical 

reaction occurs that puts the cross-bridge into a strained configuration. The cross-bridge 

then pulls the thin filament toward the center of the sarcomere. A second chemical reaction 

leads to breakage of the cross-bridge connection to the thin filament. This is referred to as 

the cross-bridge cycle [8]. 

The smooth contraction of the sarcomere is brought about by the combined activity 

of the entire cross-bridge population. The events of attachment and detachment occur 

essentially at random and independently in different cross-bridges. The chemical 

environment of the sarcomere governs the mean attachment and detachment rates. On the 
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other hand, the motions of the attached cross-bridges are coordinated since these motions 

are determined by the sliding velocity of the filaments. The sliding velocity is the same for 

all of the cross-bridges in a sarcomere. As the sliding of the filament carries the cross-

bridge away from its initial configuration, the strain of that configuration is relieved, and 

the force on the thin filament is reduced. At higher velocities of shortening, this happens 

faster. Thus, the muscle develops smaller forces at higher velocities of shortening. This 

effect explains, qualitatively at least, the form of the force-velocity curve determined 

below [9]. 

3.2 The Force-Velocity Curve 

An important property of muscle is the relationship between the force � which it 

generates and the velocity � of its shortening. Observations of muscle under tension reveal 

a relationship between force and shortening speed like that shown in Figure 3.2 [8]. 

 
Figure 3.2 Relationship between force and shortening velocity [9]. 

The force-velocity curve characterizes a muscle in a constant contractile state. Such 

a state can be achieved in an isolated muscle by rapid, repetitive electrical stimulation. In 

life, a constant contractile state is achieved by sending a steady stream of nerve impulses to 

signal the muscle to contract. A muscle in a constant contractile state (and within a certain 

range of lengths) shortens at a rate that is determined by the load (or force) at the ends of 

the muscle. It is this relationship that is depicted in Figure 3.2.  

 Two important points on the force-velocity curve are its intercepts with the 

coordinate axes: When � = 0, the muscle shortens at its maximum velocity, ���� . As the 

load is increased, the velocity of shortening gets smaller, until the isometric force, �	, is 

reached, at which the muscle cannot shorten (� = 0).  
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A.V. Hill was first to notice that the experimental force-velocity curves are closely 

fitted by an equation of the form � =  
 (�	  −  �) / (� + �)                                              (3.1) 

where �	 is the isometric force, and � and 
 are constants that can be determined from the 

experimental data.  �	 is the force at which contraction does not occur at the same time [8]. 

From the equation above, ����  can be determined by setting � = 0 and solving for �. The 

result is  ����= 
�	�.                                                           (3.2) 

 While Hill’s Equation (3.1) supports the experimental force-velocity curves closely 

for shortening, the speed of lengthening is much smaller than would be expected from an 

extrapolation of Hill’s Equation to the negative velocity region. If the force applied to the 

muscle rises above a threshold, the muscle increases length very rapidly. In other words 

when the force is greater than 1.8 �	, the muscle gives. This means that the muscle behaves 

as if it loses its ability to resist stretching (Figure 3.3). 

 
Figure 3.3 Force-velocity curves for both shortening and lengthening [10]. 

 In general, it is observed that if a muscle is shortening rapidly it cannot generate as 

much force as when it is stationary, and even a greater force is required to stretch an active 
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muscle. Figure 3.4 tries to make this clear. The maximum weights can be lifted change 

during bench pressing in different situations. The maximum weight can be lifted off the 

chest rapidly is quite low. The maximum weight lifted slowly is somewhat higher, and the 

maximum weight maintained the height of is higher still. An even higher weight will force 

the trainer to lower it slowly. This relates exactly to graph in Figure 3.3. A muscle 

applying force without shortening is known as an isometric contraction. A muscle 

applying force and shortening is a concentric contraction. A muscle applying force but 

being extended anyway is performing an eccentric contraction [11].  

 

Figure 3.4 An example for force-velocity relationship of the muscle [11]. 

Concentric muscle activity is what it is typically thought about muscles doing. It is 

not cared much about isometric activity but it is used all the time to maintain posture. 

Eccentric muscle activity is also common and is often used at the ends of activities to slow 

down movements and is obviously used in situations when energy is being lost such as 

walking down stairs or landing from a jump. Figure 3.5 shows some examples [11]. 
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Figure 3.5 Examples of concentric and eccentric muscle activity [11]. 
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4.  MUSCLE MODEL FORMULATION  

 

4.1 Cross-Bridge Theory of Lacker and Peskin 

According to this theory [8], an attached cross-bridge has an equilibrium 

configuration in which it exerts no force on the thin filament and � denotes the 

displacement from this equilibrium configuration measured along the thin filament (Figure 

4.1).  

 

Figure 4.1 Cross-bridge dynamics [8]. 

�(�) is the force on the thin filament when the displacement of the cross-bridge is 

equal to �. Obviously, �(0)  =  0, since � = 0 is the equilibrium configuration of an 

attached cross-bridge, and that �(�) is an increasing function of �. And, �	 is the number 

of cross-bridges in a half sarcomere. These entire cross bridges are effectively in parallel 

(their forces add), and all of the half sarcomeres are effectively in series (their lengths add). 

Accordingly, the force on the ends of the muscle if all cross-bridges are attached and have 

displacement � would be �	 �(�). 
In general, the different cross-bridges have different values of � and so, cross-

bridge population is described by the population-density function �(�) defined by 

� �(�)������ .                                                           (4.1) 

The integral of �(�) between the borders �� and �� gives the fraction of bridges with 

displacement �. The total fraction of bridges that are attached is given by 

 � = � �(�)�� � 1���                                                   (4.2) 
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The force on the ends of the muscle, �, is also given by an integral over the cross-bridge 

population: 

   � = �	 � �(�) �(�)�����                                                  (4.3) 

 The cross-bridge cycle consists of attachment, sliding and detachment. The key 

assumption is that cross-bridge population is in a steady state. So, these three process rates 

must balance in this steady state. Meanwhile, it is assumed that all cross bridges form their 

attachments in a certain configuration � =  >  0.          

 Attachment rate is proportional to the number of bridges that are available for 

attachment at any given time. So, this rate can be written as " �	 (1 − �), where the 

constant " is called rate constant for attachment and has units of time-1. 

 Sliding rate is the shortening velocity of the thin filament relative to the thick 

filament and satisfies the equation ��/�# = −$ and also, $ = �/2& where � is the 

macroscopic velocity of shortening for the whole muscle and & is the number of 

sarcomeres that are connected in series to make up the muscle. 

 Finally, the rate of detachment can be written as ' �	 �. This rate is proportional to 

the number of attached bridge and ' is called the rate constant for bridge detachment. If all 

attention is restricted to those bridges that have � in some particular interval, (��, ��), then 

the number of such bridges (per half sarcomere) is  

 �	 � �(�)������                                                        (4.4) 

and the rate at which these bridges break is 

' �	 � �(�)������ .                                                     (4.5)   

To find �(�), an interval of �, �	 � � �  , is selected. Since cross-bridges are 

formed at � =   and are moved by sliding in the direction of decreasing �, it is important 

that �(�)  =  0 for � >  . Within this interval, three rates must balance (Figure 4.2). This 

gives the equation 

" �	 (1 − �) =  ' �	  � �(�) ��)�*  + $ �	 �(�	) .                              (4.6) 
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" �	 (1 − �) is attachment rate of the new bridges, ' �	  � �(�) ��)�*  is breaking rate of 

the attached cross-bridges in the interval of �	 � � �   .  $ �	 �(�	)  is sliding rate at � = �	. 

 
Figure 4.2 Balance state in the interval �	 � � �   [8]. 

 This integral equation (4.6) for � can be used to derive both a differential equation 

that holds for � �   , and a boundary condition that holds at � =   . To get the 

differential equation, Equation (4.6) is differentiated with respect to �	. The result is         0 =  − ' �(�	)  + $ (��/ ��)(�	).                                           (4.7) 

This equation can be written more simply as $ (��/ ��) =  ' �.                                                   (4.8) 

Solutions of this equation have the form �(�) =  �( ) +��('(� −  )/$).                                      (4.9) 

The constant �( ) in Equation (4.9) is not yet determined, however. Besides, Equation 

(4.9) is valid only when � �   . For � >   , �(�)  =  0. 
An equation is derived for �( ), using Equation (4.6) and setting �	 =   . The 

result below is acquired.  " (1 − �) =  $  �( )                                                 (4.10) 

This equation asserts that new bridges are carried away from � =    as fast as they are 

formed. 

 Unfortunately, Equation (4.10) does not quite determine �( ) since � is still 

unknown. Integrating Equation (4.9) from −∞ to  , it is found that 

� = � �(�) ��)�� =  $ �( ) / '.                                       (4.11) 
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This gives another relationship between � and �( ), so Equations (4.10) and (4.11) can be 

solved as a pair of linear equations in these two unknowns. The result is  � =  " / (" + ')                                                       (4.12) �( )  =  " ' / ($(" + '))                                               (4.13) 

so that for � �                                               �(�) =  " ' +��('(� −  )/$)/[$(" + ')]                             (4.14) 

and �(�) = 0 if � >  . This result is plotted in Figure 4.3 using the values in Table 4.1 for 

two different sliding velocities $.  

Table 4.1  

Symbols used in the cross bridges theory and their values [14]. 

 

 

 

But, for Figure 4.3,   is assumed as 15 nm. For low $, selected as 300 nm/s, the bridges 

are clustered near � =   , whereas for high $, selected as 900 nm/s, they are more spread 

out in the direction of negative �.   

 
Figure 4.3 Population density function, �(�) for shortening. 

Symbol Value Unit Meaning of symbol " 14 1/s rate constant for attachment of bridges ' 126 1/s rate constant for detachment of bridges ��  4 pN constant in �(�) �	  10000 - number of cross-bridges in a half sarcomere / 0.322 1/nm constant in �(�)   5 nm displacement of newly attached bridges $ - nm/s velocity of  the thin filament relative to the thick filament � - pN force on the ends of the muscle 
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Having determined the behavior of the cross-bridge population, the equation for the 

force-velocity curve is calculated. From Equation (4.3), it is obtained that   

� =  ["'/($(" + '))] � �	�(�)+��('(� −  )/$))�� ��.                        (4.15) 

To proceed further, �(�), the force exerted by a single cross-bridge in 

configuration �, is needed. If �(�) is assumed as below (Figure 4.3), �(�) = ��(+��(/�) − 1)                                        (4.16) 

 
Figure 4.4 The force exerted by a single cross-bridge, �(�). In the graph, the values in Table 4.1 are     

used. �(�) = 0 for � >   and �(�)  → –�� as � → −∞. 
and substituted in Equation (4.15), evaluating the integral,  � =  [" �	 ��/( " + ')][((+2) − 1) − (/$/'))/(1 + (/$/'))]                  (4.17)                      

the formula for the force-velocity curve is obtained. Solving for /$/', /$/' =  [(" �	 �� /( " + '))(+2) − 1) − �]/[� +  " �	 ��/( " + ')]            (4.18) 

is acquired. This has the same form as the empirical force-velocity curve in Equation (3.1). 

Since the velocity � at the ends of the muscle is related to $ according to � = 2&$, as 

indicated before  � =  
(�	  −  �) / (� + �)                                            (4.19) 

where the constants �	, 
, and � are now given by the formulae �	 = (" �	 �� /( " + '))(+2) − 1)                                      (4.20) 
 =  2& '//                                                                 (4.21) � = " �	 ��/( " + ')                                                 (4.22) 

Since  ���� = 
�	/�,  
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  ���� =  (2& '//) (+2) − 1)                                        (4.23) 

is obtained substituting the variables.       

As a result, Peskin and Lacker have thus derived the empirical force-velocity curve 

from a particular model of cross-bridge dynamics, and determined the relationship between 

the microscopic properties of the model cross-bridges and macroscopic constants of the 

muscle [8]. The formula for the isometric force, �	, can be explained by the observation 

that all of the attached cross-bridges have the configuration � =   and $ = 0. Thus, the 

force exerted by each of these bridges is �( ) =  ��(+��(/ ) − 1). Since the number of 

attached bridges is " �	/( " + '), �	,  is given by Equation (4.20). 

The maximum velocity of shortening is determined by setting � = 0. This means 

that the negative forces exerted by the cross-bridges with � � 0 balance the positive forces 

exerted by the cross-bridges with � > 0. The velocity at which this occurs is independent 

of overall size of the cross-bridge population. So, ����  is independent of " �	. 

It is interesting to contrast the behavior of �	 and ����  with respect to the 

parameter ', which is the rate of detachment of cross-bridges. Increasing ' decreases �	 

by decreasing the number of attached bridges. When ' increases, ����  increases, however, 

because rapid detachment prevents most bridges from sliding into negative values of � 

where they would oppose shortening. A muscle with high ' is fast but weak; a muscle with 

low ' is slow but strong [8]. 

All the equations till here belong to Lacker and Peskin. After that point, I 

performed all following derivations in the next parts by the help of the Cross-Bridge 

Theory of Lacker and Peskin. During this process, some assumptions were changed. 

4.1.1 Linear Force-Velocity Curve 

Lacker and Peskin assumed that the force exerted by a single cross bridge in 

configuration �, �(�) = ��(+��(/�) − 1).                                            (4.24) 

If it is assumed that �(�)  =  3� and �(�) is substituted in (4.15), evaluating the integral  � = �	" 3 ( − $/')/ (" + ')                                        (4.25) 

is obtained. Solving for � = 2&$, the equation   
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� =   2&' – [�(" + ')2&'/ �	" 3]                                     (4.26) 

is acquired. It is seen that the formula for the force-velocity curve while �(�)  =  3� leads 

to a linear force-velocity curve. Also, the equations  ���� =   ' 2&                                                        (4.27) �	 =  �	 " 3  / (" + ')                                               (4.28) 

are acquired. In fact, noticing that   �(�)  =  3� is a limiting case of an exponential spring; 

the same results are obtained. That is,  ��(+2� − 1)  =  ��/�(+2� − 1)//� →  3�                                 (4.29) 

as / →  0, �� → ∞, but with ��/ = 3. Having this observation, if the corresponding limit 

in Equation (4.19) through Equation (4.23) is taken, the same results above are obtained. 

4.2   Cross Bridge Theory While Stretching  

 When a force greater than the isometric force, �	, is applied to a muscle, the muscle 

stretches at a velocity depending on the applied force. To prove this event mathematically, 

making the same assumptions that were made above for shortening, some changes should 

be made for stretching.  

Stretch is treated as a negative velocity of shortening ($ � 0). Cross-bridges still 

form at � =  , but now they are carried into the region � >   by sliding process. So, � =  0 for � �   , and the equation that replaces Equation (4.6) is 

∝ (1 − �) = ' � �(�)���*) − $ �(�	).                                  (4.30) 

This integral equation (4.30) for � can be used to derive both a differential equation 

that holds for � >   , and a boundary condition that holds at � =   . To get the 

differential equation, Equation (4.30) is differentiated with respect to �	. The result is        

  0 =  ' �(�	) − $ (��/ ��)(�	)                                      (4.31) 

This equation can be written more simply as $ (��/ ��)  =  ' �                                                   (4.32) 

Solutions of this equation have the form �(�) =  �( ) +��('(� −  )/$).                                        (4.33) 

The constant �( ) in Equation (4.33) is not yet determined, however. Besides, Equation 

(4.33) is valid only when � >   . For � �   , �(�)  =  0. 
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An equation is derived for �( ), going back to Equation (4.30) and setting �	 =  . 

The result is  " (1 − �) =  − $  �( )                                                   (4.34) 

which asserts that new bridges are carried away from � =    as fast as they are formed. 

 Unfortunately, Equation (4.34) does not quite determine �( ) since � is still 

unknown. Integrating Equation (4.33) from   to ∞, it is acquired that � =  − $ �( ) / '                                                      (4.35) 

This gives another relationship between � and �( ), so Equations (4.34) and (4.35) can be 

solved as a pair of linear equations in these two unknowns. The result is  � =  " / (" + ')                                                          (4.36) �( )  =  − " ' / ($(" + '))                                                  (4.37) 

so that for � >                                               �(�) =  − " ' +��('(� −  )/$)/[$(" + ')]                              (4.38) 

and �(�) = 0 if � �  . This result is plotted in Figure 4.5 according to the values in the 

Table 4.1, for two different sliding velocities $. For low $, the bridges are clustered near � =   , whereas for high $ they are more spread out in the direction of positive �. 

 
Figure 4.5 Population density function, �(�), during stretching 

Having determined the behavior of the cross-bridge population, the equation for the 

force-velocity curve is calculated. From the Equation (4.3), the equation below is obtained 

integrating from   to ∞. 

� = 5−" ' �� �	 ($(" + ')]⁄  � (exp (/�)�) − 1: ;exp ;<(��))= >> ��.           (4.39) 
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After evaluating the integral, the equation for force-velocity curve in the interval          − '// �  $ �  0 is found � =  [" �	 ��/( " + ')][((+2) − 1) − (/$/'))/(1 + (/$/') )].              (4.40)                 

 
Figure 4.6 Force-velocity curve for positive and negative velocities of shortening 

 

4.3 Cross Bridge Theory during Muscle Yielding 

As seen above (Figure 4.6), the part of the force velocity curve for stretch, negative 

velocity of shortening ($ � 0), predicts infinite force at a finite velocity, $ =  − '//. This 

is very unrealistic. In fact, muscles yield when the applied force is greater than 1.8 �	. That 

is, there is a maximum force that the muscle can sustain.  

 To explain this kind of behavior, the cross-bridge model should be modified by 

assuming that bridges inevitably break if they reach a configuration � = ?, where ? >  . 

This has no effect on the force-velocity curve for shortening, but it does influence the 

force-velocity curve of lengthening, since all of the integrals now extend over the integral 

( , ?) instead of ( , ∞). 

 The Equation (4.30), written for cross bridge population in a steady state, does not 

change. Therefore, the equations for �(�), from Equation (4.33) to Equation (4.34) are 

valid for yielding. �, the total fraction of bridges that are attached, is defined in Equation 
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(4.2). As �(�)  = 0 for � �   and � > ?, the new equation is � = � �(�)��@) . Evaluating 

the integral, it is found that                                             

� = �( ) ;=<> ;exp ;<(@�))= > − 1>.                                         (4.41) 

Using Equations (4.41) and (4.34), the equation below is acquired:  �( ) = "'/[$("(exp ('(? −  )/$) − 1) − ') ].                            (4.42) 

This Equation (4.42) is put in Equation (4.33), the equation for �(�). Having determined 

the behavior of the cross-bridge population, the equation for the force- velocity curve is 

acquired integrating the Equation (4.3) from   to ?  

� = �	 �( )�� � (exp(/�) − 1) exp ;<(��))= > ��.@)                            (4.43) 

After evaluating the integral,  

�∗ = ;�B CD∗>EFGH(I∗)JFGHJKL K(FGH(I∗)MC)N∗OMCO
(FGH(I∗)MC)N∗LC � P�Q; K(FGH(I∗)MC)N∗>B�R

S(P�Q()∗)��);P�Q; K(FGH(I∗)MC)N∗>��� CD∗>T                (4.44) 

is acquired as a formula for the force-velocity curve of lengthening after the last change on 

the model. This result is expressed in terms of the dimensionless variables �∗ =  �/�	, $∗ = $/$���  = (/$)/['(+��( ∗) − 1)] and in terms of dimensionless parameters U∗ =  "/',   ∗ =  / , and  V =  /(? −  ).  
Here, �	 is isometric force, defined in Equation (4.20) and $��� is the maximum 

velocity of contraction at end of a sarcomere, obtained dividing Equation (4.23) by 2&. As 

Equation (4.23) is the maximum velocity of contraction at the ends of whole muscle, it is 

divided by  2& to get $���. Besides, as it is known that � = 2&$, it is accepted that  $/$���  = �/���� . 

 To sketch the behavior of the force velocity curve for shortening and lengthening 

together, the force-velocity equation for shortening, Equation (4.17) is rewritten in terms of �∗, $∗, and  ∗. Then the equation below is obtained: 

�∗ = ; P�Q()∗)=∗(P�Q()∗)��)B� − 1> /(exp( ∗) − 1).                            (4.45) 

In Figure 4.7, the force-velocity curves defined above are plotted while U∗ =   ∗ = V =  1 for both shortening and lengthening. As seen in the figure, the change on the 

model for lengthening prevents the unrealistic situation in Figure 4.6. Here, it is obvious 
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that there is a maximum force that the muscle can sustain. According to the Figure 4.7, this 

value is about 1.6 �	. This value can change if different values of U∗,   ∗and V are selected. 

Here, it is important to show that there is maximum force that the muscle can sustain. 

 
Figure 4.7 Force-velocity curve (�∗-$∗)for both shortening and lengthening. 

The cross-bridge model was thus modified by assuming that bridges inevitably 

break if they reach a configuration � = ?, where ? >  . Consequently, a finite maximum 

force is obtained in Figure 4.7. In other words, as �(�), population density function is 

defined between � =   and � = ?, a maximum force that a muscle can sustain is acquired. 

But, in Figure 4.6, force goes to ∞ at a finite velocity of lengthening as �(�) goes from � =   to � = ∞.  
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5. EXPERIMENTAL METHODS 

 

5.1 Subjects  

One male volunteer was used as a subject in the experiments. The age of the subject 

was 26 and the weight of the subject was 61 kg. The experiments did not pose any harm 

and they adhered to the US National Institutes of Health ethical guidelines for testing 

human subjects. The subject did not have any muscular or articular problems that could 

interfere with the experiments. The right leg of the subject was used to measure the desired 

parameters during the experiments. 

5.2 Materials  

 A CYBEX NORM isokinetic dynamometer was used during the experiments. 

Contralateral limb stabilizer, knee/hip adapter, knee/hip pad and lumber cushion were used 

as additional parts of isokinetic dynamometer. This dynamometer could execute three 

types of contraction; isokinetic, isotonic and isometric contractions. In the experiments, 

isokinetic eccentric, isokinetic concentric and isometric contraction types were executed by 

the help of isokinetic dynamometer. 

 
 

Figure 5.1 CYBEX NORM Isokinetic Dynamometer 
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The movements of knee extension and flexion were done by the subject while 

sitting at the chair during the experiments. The isokinetic dynamometer could adjust the 

angular velocity of the movement and show the torque forming during the movement. In 

this way, the contraction velocity and force of the quadriceps muscles (Figure 5.2) of the 

subject were measured in terms of angular velocity and peak torque.  

 
 

Figure 5.2 The Quadriceps Muscles, also called knee extensors [15]. 

It is known that torque is caused by force applied about an axis of rotation. It is an 

instantaneous measurement, taken by the CYBEX NORM isokinetic dynamometer at 

every half-degree in the range of motion. The equation for torque is: 

Torque = Force x Distance                                             (5.1)                               

where distance indicates the perpendicular distance from the input of force to the center of 

rotation. Because the CYBEX NORM isokinetic dynamometer measures torque directly at 

the center of rotation, the force and distance components are not measured (Figure 5.3). 

For this experiment, the force resulting in all torques was the force occurring at the 

quadriceps muscles. Consequently, it was assumed that the torque measured by the system 

was proportional to the force occurring at the quadriceps muscles of the subject. Besides,    

the amount of torque that can be produced is related to musculotendinous tension levels, 

joint contact forces and, in some cases, joint translation forces. These points were 

neglected for the experimental measurements [13]. 
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During the experiments, the peak torque values were observed as peak torque is 

indicative of maximum muscular tension capability [13]. These torques were produced by 

the tension of the right quadriceps muscles of the subject on the rotation axis, in other 

words at the right knee of the subject.  

 

Figure 5.3 Extension and flexion patterns with isokinetic dynamometer [13] 

 

5.3 Procedure 

 

The subject performed knee extension and flexion sessions five times a day. The 

experiment lasted eight weeks taking measurements at only one day for each week. All the 

measurements were conducted by the same experimenter to avoid inter-tester variability. 

Subject was positioned on an adjustable chair and secured to the equipment with straps 

across the trunk, hip and thigh. The alignment between the dynamometer rotational axis 

and the knee joint rotation axis was checked at the beginning of each trial. Range of 

motion was set at 10
0
- 90

0
 (0

0
 corresponding to knee fully extended). Before each test the 

gravity compensation procedure was performed according to the manufacturer’s 

instructions. The subject was instructed to push as hard as possible against a shin pad 

secured to the distal tibia. The shin pad was attached about 5 cm proximal to the lateral 

malleoulus by using a strap. The subject was asked to position his arms across the chest 

with each hand clasping the opposite shoulder during the maximal effort trials. On-line 

visual feedback of the instantaneous dynamometer torque was provided to the subject on a 

computer screen. 



26 

 

For each knee extension-flexion movement, subject was first asked to make a trial 

repetition of the movement. Each movement for different angular velocities was repeated 

two times. The higher peak torque was selected between the results for analyses. For both 

concentric and eccentric repetitions, subject was instructed to push ⁄ resist as hard and as 

fast as possible and to complete the full range of motion. For each contraction mode and 

velocity, subject recovered passively for 30 seconds between the measurements. The 

CYBEX NORM software consistently indicated visually and verbally the duration of the 

rest phases. Three types of contraction were respectively executed by the subject: 

isometric, concentric and eccentric contractions.   

During isometric contraction; calf of the subject was hold at different degrees from 

00 to 900 by the help of the dynamometer. The subject pushed his calf against the shin pad 

as hard as possible during 5 seconds. At each degree, peak torque values were measured 

and among these values, maximum peak torque was accepted as the peak torque during 

isometric contraction. In this way, the length of the muscle did not change and the peak 

torque of the movement, in other words, the force formed by the quadriceps muscles, was 

found. 

Second, the concentric contraction was executed. During this type of contraction, 

the subject moved his calf from 90
0
 to 0

0
 with different angular velocities supported by the 

isokinetic dynamometer. These angular velocities were respectively 50, 100, 150, 200, 

300, 350, 400 and 450 degree/second. Higher angular velocities were not supported by the 

isokinetic dynamometer, and the subject could not move his calf with higher angular 

velocities. The quadriceps muscles of the subject shortened during this movement. The 

angular velocity of the movement was accepted as shortening velocity of the quadriceps 

muscles. At each angular velocity, the peak torque forming as a result of the motion was 

measured by the isokinetic dynamometer and was shown on the screen of the computer. 

Finally, the quadriceps muscles of the subject contracted eccentrically. At this time, 

the movement was at the opposite direction according to concentric contraction. The calf 

of the subject was moved from 00 to 900 with different angular velocities by the isokinetic 

dynamometer. The subject tried to stop the movement with his all power at each time. As a 

result of the subject’s resistance against to the movement, torque occurred and the peak 

torque during the movement was measured by the system. The angular velocity was 
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between 0 and 300 degree/second and it was raised 10 degree/second at each contraction. 

The maximum angular velocity supported by the system was 300 degree/second. 
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6. RESULTS 

 

 

6.1 Results of the Experiment 

Isometric contraction was executed at different degrees at the range of motion 

between 0
0
 and 90

0
. At each angle, peak torque values were noted (Table 6.1). Among 

these values, the peak torque value was accepted as 214 Nm. This value was called as T0, 

the maximum torque that can be produced by the quadriceps muscles when they 

isometrically contract. At this table, force-length characteristics of the muscle are seen. It 

can be thought that while the calf is at the position of 45
0
, the length of the quadriceps 

muscles is about resting length, I0, where the maximum number of cross-bridges forms. 

Table 6.1 

The peak torque values for different calf positions at the range of motion. 
 

Position Peak torque 

15
0 

103 Nm 

30
0 

150 Nm 

45
0 

214 Nm (T0) 

60
0 

195 Nm 

75
0 

187 Nm 

90
0 

173 Nm 

Secondly, the peak torque values were listed for each different angular velocity 

during the concentric contraction. It is seen that peak torque decreases as the angular 

velocity of the movement increases (Table 6.2).  

For angular velocities higher than 350 degree/second, peak torque does not change 

significantly. As a reason, it was assumed that subject cannot push his calf with angular 

velocities higher than 350 degree/second. Consequently, maximum angular velocity, ωmax, 

was accepted as 350 degree/second. Besides, the peak torque and angular velocity values 

were respectively normalized to T0, peak torque during isometric contraction, and ωmax.  
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Table 6.2 
The peak torque values for different angular velocities during concentric contraction 

 

No 
Peak Torque T 

(Nm) 

Angular speed  ω 

(°/sec) 
T/T0 ω/ωmax 

1 214 0 (isometric) 1.000 0.000 

2 183 50 0.855 0.143 

3 148 100 0.692 0.286 

4 107 150 0.500 0.429 

5 78 200 0.364 0.571 

6 49 250 0.229 0.714 

7 47 300 0.220 0.857 

8 23 350 (max. speed) 0.107 1.000 

9 20 400 
  

10 22 450 
  

 

Finally, the peak torque values were evaluated during the eccentric contraction 

(Table 6.3). All peak torque values and angular velocities were normalized to T0 and ωmax 

respectively.  

The angular velocities were shown with a minus sign, showing that the quadriceps 

muscles extend and the movement is at the opposite direction according to concentric 

contraction. It is seen that all peak torque values except the values at the angular 

velocities of 290 and 300 degree/second are above the peak torque value of isometric 

contraction, T0. Maximum and minimum peak torque values for eccentric contraction are 

respectively 1.243 T0 and 0.958 T0. The peak torque reaches the highest value at -0.429 

ωmax. In general, the peak torque firstly increases until the angular velocity reaches about   

-0.3 ωmax. After that point, the peak torque remains about 1.2 T0. When the angular velocity 

approaches to -0.8 ωmax, the peak torque starts to decrease. For the velocities higher than    

-0.8 ωmax, the value of peak torque remains under isometric contraction level. The object 

could not resist against these angular velocities higher than -0.8 ωmax.  
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Table 6.3 

The peak torque values for different angular velocities during eccentric contraction 

 

No 
Peak Torque T 

(Nm) 

Angular speed ω 

(°/sec) 
T/T0 ω/ωmax 

1 205 -300 0.958 -0.857 

2 205 -290 0.958 -0.829 

3 226 -280 1.056 -0.800 

4 245 -270 1.145 -0.771 

5 252 -260 1.178 -0.743 

6 257 -250 1.201 -0.714 

7 255 -240 1.192 -0.686 

8 259 -230 1.210 -0.657 

9 258 -220 1.206 -0.629 

10 252 -210 1.178 -0.600 

11 257 -200 1.201 -0.571 

12 250 -190 1.168 -0.543 

13 255 -180 1.192 -0.514 

14 251 -170 1.173 -0.486 

15 260 -160 1.215 -0.457 

16 266 -150 1.243 -0.429 

17 255 -140 1.192 -0.400 

18 260 -130 1.215 -0.371 

19 264 -120 1.234 -0.343 

20 255 -110 1.192 -0.314 

21 261 -100 1.220 -0.286 

22 252 -90 1.178 -0.257 

23 250 -80 1.168 -0.229 

24 257 -70 1.201 -0.200 

25 246 -60 1.150 -0.171 

26 232 -50 1.084 -0.143 

27 225 -40 1.051 -0.114 

28 230 -30 1.075 -0.086 

29 220 -20 1.028 -0.057 

30 222 -10 1.037 -0.029 
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Figure 6.1 The graph of normalized peak torque-angular velocity for quadriceps muscles 

The graph above shows the relationship between normalized angular velocity and 

peak torque of the quadriceps muscles during the experiments (Figure 6.1). According to 

this graph, all peak torque values during concentric contraction are smaller than peak 

torque during isometric contraction. For eccentric contraction, peak torque values -except 

two values- are higher than these of both isometric and concentric contraction. 

6.2 Force-Velocity Curve & Experimental Data Comparison 

 After acquiring the graph of the relationship between angular velocity and torque 

for muscle contraction as an experimental data (Figure 6.1), the result was compared with 

the theoretical force-velocity curves and equations for muscle contraction in the cross-

bridge theory suggested by Lacker and Peskin [5]. There were two different equations of 

the relationship between velocity and force for muscle contraction. One of them was for 

isometric and concentric contraction, the other was for eccentric contraction. 

 First, the experimental data for isometric and concentric contraction was compared 

with theoretic force-velocity curve. Equation (4.45), as seen below,   

�∗ = ; P�Q()∗)=∗(P�Q()∗)��)B� − 1> /(exp( ∗) − 1)                                     (6.1) 
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shows the relationship between force and velocity for isometric and concentric contraction. 

Using Curve Fitting Tool interface in MATLAB, experimental data was fitted by a curve 

defined by Equation (4.45) (Figure 6.2). 

 
Figure 6.2 The experimental data and fitting curve for isometric and concentric contraction 

As a result of fitting, the parameter  ∗ was found as 0.2027 (Table 6.4). This 

parameter was used in the equation for eccentric contraction with the same value, as the 

same muscles were used for all contraction types. The variables �∗ and $∗ in the equation 

were accepted as T/T0 and ω/ωmax respectively. 

Table 6.4 

Results for the curve fitting the experimental data during isometric and concentric contraction. 

 

Coefficients (with 95% confidence bounds):  ∗= 0.2027  (-0.06416, 0.4696) 

Goodness of Fit 

SSE (sum of squared error) 0.02069 

R-square 0.9719 

Adjusted R-square 0.9719 

RMSE (Root Mean Squared Error) 0.05437 

 

 Secondly, the experimental data for eccentric contraction was fitted by a curve 

defined by Equation (4.44), as seen below (Figure 6.3). 
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�∗ = ;�B CD∗>EFGH(I∗)JFGHJKL K(FGH(I∗)MC)N∗OMCO
(FGH(I∗)MC)N∗LC �P�Q; K(FGH(I∗)MC)N∗>B�R

S(P�Q()∗)��);P�Q; K(FGH(I∗)MC)N∗>��� CD∗>T                 (6.2) 

This equation gives the relationship between force and velocity during eccentric 

contraction. Taking the value of  ∗ as same as in the first fitting, the variables  U∗ and V 

were found as 14.92 and 0.1041 respectively from the fitting results (Table 6.5).   

 
Figure 6.3 The experimental data and fitting curve for eccentric contraction 

For both fittings, curves were acquired with Nonlinear Least Squares Method using 

Curve Fitting Tool in MATLAB. As SSE and RMSE get closer to 0 and R-square and 

Adjusted R-square get closer to 1, the fitting becomes better. These values in Table 6.4 and 

6.5 were acquired selecting the best goodness of fit among all curves obtained by changing 

fit options in Curve Fitting Tool of MATLAB. 

Table 6.5 

Results for the curve fitting the experimental data during eccentric contraction. 

 

Coefficients (with 95% confidence bounds): 
 ∗= 0.2027 (fixed at bound) U∗= 14.92 (-2.558, 32.4) V= 0.1041 (0.08055, 0.1277) 

Goodness of Fit 

SSE (sum of squared error) 0.04255 

R-square 0.769 

Adjusted R-square 0.7607 

RMSE (Root Mean Squared Error) 0.03898 
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7. DISCUSSION 

 

As mentioned before, the cross-bridge theory suggested by Lacker and Peskin 

shows the relationship between linear contraction velocity and the force generated on the 

ends of the muscle during contraction [8]. In the thesis, knee extension and flexion 

movements were executed with different angular velocities during experiments. In this 

way, quadriceps muscles were shortened and stretched with different linear velocities. 

Beside, measuring the peak torque for each different velocity during the contraction, the 

maximum force generated on the ends of quadriceps muscles was obtained. Consequently, �∗ and $∗ in Equations (4.44) and (4.45) were respectively accepted as T/To and ω/ωmax 

measured during the experiments. At the results of experiments, it was found that �∗ − $∗ 

characteristics of the muscle fiber contraction and T/To - ω/ωmax characteristics of 

quadriceps muscles contraction have similar properties. Such a good fitting between two 

different characteristics was very amazing. Because, many researches show that even if we 

control joint motion by fixing the joint for isometric contraction or rotating it at a constant 

speed for concentric and eccentric contractions, muscle fiber behavior cannot be derived 

easily [24, 25, 26, 27]. 

First, force-velocity characteristics of the muscle contraction were obtained for a 

muscle fiber, while peak torque-angular velocity relationship was acquired for whole 

quadriceps muscles. The force resulting in the peak torque was generated by whole 

quadriceps muscles and also biceps femoris muscles during the experiments. 

Musculotendinous tension levels, joint contact forces and, in some cases, joint translation 

forces also affect the torque measured by the experimental system. Lieb and Perry [18] 

reported that the Vastus Lateralis, one of the four quadriceps muscles, makes the greatest 

contribution to the force produced by the quadriceps muscles from 90
0
 flexion to 0

0
 

extension but that the degree of contribution by each muscle to knee extension varies with 

the knee joint angle. These effects on peak torque were neglected during experiment. But, 

the normalized peak torque, T/To, and angular velocity, ω/ωmax, values were used to plot 

the graphs. Therefore, it was thought that this normalization operation probably reduced 

the effects of the neglected factors on the results.  
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Second, torque is multiplication of force and the perpendicular distance from the 

input of force to the center of rotation. Therefore, it does not mean that the peak torque 

always shows the point where the maximum force is generated by the muscle when the 

perpendicular distance, in other words moment arm, changes [11]. Previous studies showed 

that the joint angle at which the peak torque was observed was found to shift distally in the 

range of motion as the angular velocity increases [16, 19, 20]. Moreover, moment arm 

changes as a function of knee joint angle and angular velocity [21]. In this way, peak 

torque values are measured and compared at different muscle lengths [17]. Because of that, 

some researchers have claimed that instead of peak torque values, torque should be 

evaluated at constant muscle length over different angular velocities. They have assumed 

that changes in the joint angle are equivalent to changes in the muscle length and to 

changes in the length of muscle fibers. They have proposed angle specific torque for knee 

extension for studying force-velocity characteristics of human muscles [22, 23]. Neglecting 

these approaches, peak torque-angular velocity relationship was used to evaluate force-

velocity characteristics of quadriceps muscles. 

In spite of all assumptions and neglected factors, force-velocity characteristics of 

quadriceps muscles were evaluated by means of peak torque-angular velocity relationship 

during knee extension and flexion. Although some researchers have questioned this 

method [22, 23], recent studies concluded that the evaluation of force-velocity 

characteristics of knee extensor muscles from isokinetic testing should be done by means 

of peak torque rather than the angle specific torque like in the present study [24, 25]. 

Reeves et al. [26] demonstrated that a constant fiber length cannot be assumed from the 

same joint angle during concentric contractions of different angular velocities. Many 

studies showed that the angle specific condition would not be equivalent to identical 

muscle fiber length, but rather to unequal muscle fiber length [24, 25]. Even, Kawakami et 

al. [24] suggested that muscle fibers were at the same length at different peak-torque 

angles and velocities stating that the change in muscle-tendon unit length (muscle length) 

by peak-torque angle shift was almost exactly matched by series elastic component 

elongation. They obtained that result during isokinetic and isometric knee extension. The 

experimental peak torque-angular velocity relationship obtained from isokinetic and 

isometric knee extension of the present study is in line with previous studies [24, 25].  
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According to the results, it was seen that there is a similarity between the 

theoretical �∗ − $∗ characteristics of the muscle contraction and the experimental 

T/To−ω/ωmax characteristics of muscle contraction. The experimental data could be fitted 

well in the form of Equations (4.44) and (4.45) which were obtained for the  �∗ − $∗  
characteristics of the muscle contraction in cross-bridge theory (Figure 7.1). For concentric 

and isometric contraction, when the experimental data is fitted by the curve defined by 

Equation (4.45), the dimensionless parameter  ∗ = / , was found as 0.2027. This 

parameter was used in Equation (4.44) with the same value, as eccentric contraction was 

executed by the same muscles. When the experimental data for eccentric contraction was 

fitted by the curve defined by Equation (4.44), the dimensionless parameters; U∗ = "/' 

and V = /(? −  ) were found as 14.92 and 0.1041 respectively.  

 

Figure 7.1 Experimental data and fitting curve defined by force velocity equation in cross bridge theory 

These results shows that "/' ≅ 15 and ? ≅ 1.5  . In other words, rate constant for 

attachment of the cross bridges, ", is 15 times bigger than rate constant for detachment of 

the cross bridges, ' for the quadriceps muscles in the experiments. Recalling that all cross-

bridges are assumed to form their attachments in a certain configuration � =  , the results 

show that cross-bridges inevitably break when they reach the configuration � = 1.5  .  
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It is seen that there is a significant difference between experimental data and 

theoretical fitting curve after the angular velocity of eccentric contraction reaches -0.8 

ωmax. As mentioned before, the subject tried to stop the movement during eccentric 

contraction. For slow angular velocities, the subject was accomplished about completing 

the full range of motion. But, for higher angular velocities than -0.8 ωmax, the subject could 

not complete the full range of motion resisting as hard as possible. In the experiment, the 

movement was affected not only by muscles but also by joints and tendons. These factors 

limited the maximum lengthening velocity of the quadriceps muscles. Therefore, peak 

torque values started to decrease after reaching the angular velocity -0.8 ωmax. In fact, some 

experimental results show that force level of the muscles remains about the peak level even 

if they are lengthened with a velocity higher than 2 ����  [12]. But, in these experiments, 

isolated muscles were used and there was no factor limiting the contraction of the muscles. 

As the fitting curve at Figure 7.1 shows the behavior of these isolated muscles, peak torque 

remains about 1.2 T0 for angular velocities higher than -0.8 ωmax. Besides, it is seen that 

maximum torque during eccentric contraction is about 1.2 To, although some research 

shows that strength of the muscles increases up to 1.6 �	 [12].  Eccentric actions in situ 

produce force far smaller than its physiological limit predicted by the experiments with 

isolated fibers.   

Although the experimental data could be fitted well in the form of Equations (4.44) 

and (4.45) which were obtained for the  �∗ − $∗  characteristics of the muscle fiber 

contraction in cross-bridge theory, the value of  U∗ = "/' is not in line with physiological 

data for the eccentric contractions [14]. This problem confronts the concept that force-

velocity characteristics can be evaluated by means of peak torque-angular velocity 

relationship during eccentric contraction, in this study, for knee flexion. Reeves and Narici 

[26] demonstrated that muscle fascicles contracted quasi-isometrically, independent of 

angular velocity during eccentric muscle actions. They measured the isokinetic torque at a 

constant joint angle at different angular velocities. These results show that for the eccentric 

contraction, it is better to use angle specific torque instead of peak torque to evaluate the 

force-velocity characteristics of knee extensor muscles.   

This thesis can be improved by studying on angle specific torque-angular velocity 

relationship during knee extension and flexion. The experimental data is fitted by 

theoretical force-velocity curve. The new values of variables in force-velocity equation are 
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compared with those of in this study. Beside, maximum shortening velocity for the 

quadriceps muscles should be higher to obtain more accurate results. In this study, 

maximum angular velocity, 350 degree/second, represents only 50% of the estimated 

maximal shortening velocity for knee extensors [23]. 

In conclusion, it was very surprising that the experimental data showing peak 

torque-angular velocity relationship of quadriceps muscles during knee extension and 

flexion could be fitted by the force-velocity curve of a muscle fiber contraction quite well. 

The present study suggests that peak torque values should be analyzed during isometric 

and concentric contractions and angle specific torque should be used during eccentric 

contractions to evaluate the force-velocity characteristics of the quadriceps muscles. 
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APPENDIX A. MATLAB CODES 

 

A.1 MATLAB Code for Population-Density Function Y(Z)  

alpha=14;            % /s  probability per unit time for attachment 

beta=126;            % /s  probability per unit time for detachment 

A=5;                    % nm displacement of newly attached crossbridge 

v=900;                 % nm/s shortening velocity 

%  v is negative for lengthening   

x=[-50:A];            % nm the interval of  x 

%  this interval replaces with  [A:50] during lengthening 

u=[alpha*beta/(v*(alpha+beta))]*exp(beta*(x-A)/v);   % the equation for �(�) 

%  this equation replaces with [-alpha*beta/(v*(alpha+beta))]*exp(beta*(x-A)/v) during    

%  lengthing 

plot(x,u); 

A.2 MATLAB Code for Population-Density Function [(Z)  

GAMMA=0.322    %  /nm   constant used in the fuction �(�)  

p1=4                       %  /pN   constant used in the fuction �(�)  

A=5                        %   nm   displacement of newly attached crossbridge 

x1=linspace(-20,A); 

p_1=zeros(1,length(x1)); 

for i=1:length(x1) 

    p_1(i)=p1*(exp(GAMMA*x1(i))-1);     % the equation for �(�) 

end 

plot (v1,p_1); 

 

 



40 

 

A.3 MATLAB Code for  \∗ − ]∗ Curve during Shortening 

A=1;                                   % dimensionless parameter in �∗ − $∗ equation 

p_1=linspace(0,1,10000);   % the interval of �∗ 

 v1=zeros(1,length(p_1)); 

 for i=1:length(p_1) 

    v1(i)=((exp(A)/((p_1(i)*(exp(A)-1))+1))-1)/(exp(A)-1);   % �∗ − $∗ equation 

end   

plot(v1,p_1); 

A.4 MATLAB Code for  \∗ − ]∗ Curve during Lengthening 

v2=linspace(-1,0,10000);    % the interval of $∗ 

p_2=zeros(1,length(v2)); 

w=1;                                    % dimensionless parameter in �∗ − $∗ equation 

r=1;                                      % dimensionless parameter in �∗ − $∗ equation 

A=1;                                    % dimensionless parameter in �∗ − $∗ equation 

for i=1:length(v2) 

p_2(i)=((1+1/r)/(exp(A)-1))*(1/(exp(w/(v2(i)*(exp(A)-1)))-1-

1/r))*(((exp(A)*(exp(w+(w/(v2(i)*(exp(A)-1))))-1))/(v2(i)*(exp(A)-1)+1))-

exp(w/(v2(i)*(exp(A)-1)))+1);  % �∗ − $∗ equation 

  end 

plot(v2,p_2) 
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