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ABSTRACT

DEVELOPMENT OF NEURAL NETWORK BASED
ALGORITHM OF ACTIVE ANKLE PROSTHESIS USING

GAIT ANALYSIS DATA

Amputation is the removal of a part or all of a limb due to disease, accident

or trauma and it has a large incidence rate. For example, in the United States, an

average of 500 people loses at least one limb every day, approximately 65% of which is

comprised of lower limb amputations. Since energetically active prostheses are costly,

amputees usually continue with their daily lives using a wheelchair or a passive pros-

thesis. The aim of this study is to determine the optimum sensor needs for an active

ankle prosthesis and to develop an algorithm suitable for this sensor infrastructure.

In the long run, design of a device that is both easy to use and �nancially feasible is

aimed at and the present work is central to that aim. In this context, three neural

networks structures with di�erent inputs were developed to facilitate ankle movement

and their performances were evaluated. The results show that if a device in which only

EMG signals are to be used as network inputs, a total of 5 signals should be collected

from di�erent muscles that are responsible for hip, knee and ankle movements. The

results also show that, if the use of a smaller number of EMG sensors is preferred, it is

necessary to incorporate also a force or torque feedback into the system. In such ap-

plication, three EMG signals collected from tibialis anterior, soleus and gastrocnemius

medialis muscles were shown to su�ce. These �ndings shed an important light to our

understanding of the number and kind of sensor inputs necessary for an active ankle

prosthesis requirements of which can be variable depending on the amputation level of

the patient and the mechanical design �exibility.

Keywords: Electromyography, EMG, Neural Network, Active Ankle Prosthesis.
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ÖZET

YÜRÜME ANAL�Z� VER�LER� KULLANILARAK AKT�F
AYAK B�LE�� PROTEZ�N�N S�N�R A�I TABANLI

ALGOR�TMASININ GEL��T�R�LMES�

Hastal�k, kaza veya travma nedeniyle, bir uzvun tamam�n�n ya da bir k�s-

m�n�n kesilmesi i³lemine ampütasyon denir ve oldukça s�k uygulanmaktad�r. Örne§in,

Amerika Birle³ik Devletleri'nde her gün ortalama 500 insan en az bir uzvunu kaybed-

erken, bunlar�n yakla³�k olarak %65'i alt ekstremite ampütasyonlar�ndan olu³ur. En-

erji tüketimi aç�s�ndan aktif protezlerin maliyetleri yüksek oldu§u için, ampüte insan-

lar tekerlekli sandalye veya pasif bir protezi kullanarak günlük ya³amlar�na devam

etmektedir. Bu çal�³man�n amac�, aktif bir ayak bile§i protezi için optimum sensör

gereksinimlerini belirlemek ve bu sensör altyap�s�na uygun bir algoritma geli³tirmektir.

Uzun vadede, hem kullan�m� kolay hem de mali aç�dan uygulanabilir olan bir cihaz�n

tasarlanmas� amaçlanmaktad�r ve mevcut çal�³ma bu amaca yöneliktir. Bu kapsamda,

ayak bile§i hareketlerinin tahmin edilebilmesi için farkl� giri³lere sahip üç sinir a§�

yap�s� geli³tirilmi³ ve performanslar� de§erlendirilmi³tir. Sonuçlar, sadece elektromiyo-

gra� (EMG) sinyallerinin a§ giri³i olarak kullan�lmas� durumunda, kalça, diz ve bilek

hareketlerinden sorumlu farkl� kaslardan toplam 5 adet sinyalin toplanmas� gerekti§i

göstermi³tir. Sonuçlar ayr�ca, e§er daha az say�da EMG sensörünün kullan�lmas� ter-

cih edilirse, sisteme bir kuvvet veya tork geribildirimi eklemek gerekti§ini göstermi³tir.

Böyle bir uygulamada, tibialis anterior, soleus and gastrocnemius medialis kaslar�ndan

toplanan üç EMG sinyalinin yeterli oldu§u gösterilmi³tir. Bu bulgular, hastan�n am-

pütasyon seviyesine ve mekanik tasar�m esnekli§ine göre, aktif bilek protezinin ihtiyaç

duydu§u sensör miktar�n�n ve sensör tiplerinin belirlenmesinde yol gösterici olmu³tur.

Anahtar Sözcükler: Elektromiyogra�, EMG, Sinir A§lar�, Aktif Ayak Bile§i Protezi.
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1. INTRODUCTION

Along with the exciting and revolutionary technological developments in recent

years, many innovative systems in the �eld of assistive robotics are advanced to restore

legged locomotion for individuals su�ering from lower limb amputations. As �rst ex-

amples of assistive systems, energetically passive prosthetic devices have been in use

for many years. These systems, which are still being used successfully, are practical

tools to enable functional recovery of gait pathologies stemming from many condi-

tions owing to their relative simplicity, low cost, and robust design. Therefore, while

many developments have been made in lower limb prostheses, the majority of commer-

cial lower limb prostheses are passive types. The advanced composites used in these

lightweight devices store energy during controlled dorsi�exion and plantar �exion, and

release the stored energy during powered plantar �exion like the Achilles tendon [1�3].

Although such passive-elastic behavior provides a good approximation to the ankle's

function during slow walking, normal and fast walking require external energy, which

cannot be ful�lled by passive devices. The inherent shortcomings of these devices are

their inability to generate mechanical power, their failure to autonomously adapt to

the user's changing needs, and the lack of sensory feedback that they provide to the

user regarding the status of the limb and of the device. Each of these shortcomings is

required to be resolved for a seamless cognitive and physical interaction between the

device and the user [4�6].

Advancements in actuation, energy storage, miniaturized sensing, automated

pattern recognition and embedded computational technology have led to the devel-

opment of a number of robotic devices for the assistance and restoration of human

locomotion [6]. In the last few decades, researchers have been developing powered

lower limb prostheses to assists normal gait beyond slow walking speeds. Some of

these are size and weight vise comparable to actual human ankle-foot and have the

elastic energy storage, motor power, and battery energy to provide for a day's typi-

cal walking activity [7, 8]. On top of many engineering challenges existing regarding
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the mechanical design of such devices, additional di�culties to be overcome include

control algorithms of these devices to function in concert with the user's remaining

sensory-motor control system.

Skin surface electromyogram (EMG), generated by muscle cells during muscle

contractions, is often used in order to control the assistive robotic systems according

to the user's intention since this directly re�ects the user's muscle activity level in

real time [9, 10]. Owing to the developments in sensory systems, EMG signals can be

easily recorded and classi�ed by embedded systems to make a precise prediction of the

intended motion of a joint in terms of position and moment change [11].

While various modeling methods are being used for EMG classi�cation, the

Hill's muscle model [12], biomimetic models, neural networks, fuzzy logic and genetic

algorithms are the most common ones utilized [13]. Sepulveda et al [14] developed a

neural network with the back propagation algorithm to model the relationship between

muscle activity and joint motion. To predict the position and moment change in the

hip, knee, and ankle, EMG signals from 16 muscles were used as network inputs. In

the later years, Savelberg et al [15, 16] also used an arti�cial neural network approach

based on a back-propagation algorithm to predict cat soleus muscle force by using

only EMG signals. Similarly, Huang et al [17] identi�ed locomotion modes using a

pattern recognition algorithm based on EMG signals, and Zhang et al [18] designed a

feed-forward neural network model to control the ankle exoskeleton using EMG signals

from �ve below-knee muscles.

In other studies carried out in parallel, di�erent algorithmic structures were

developed to predict joint movements. In these studies, additional estimation-making

parameters were added along with EMG signals and used for mechanical control pur-

poses. Kiguchi et al [19] proposed an EMG based impedance control method for an

upper limb power-assist exoskeleton robot. Real-time force and torque feedback signals

collected from sensors were used in addition to EMG signals from 16 muscles to control

the robot in accordance with the user's motion intention. Sup et al [20] designed a

control structure for an electrically powered knee and ankle prosthesis using a load cell
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to measure the sagittal socket interface moment above the knee joint, a custom sen-

sorized foot to measure the ground reaction force at the heel and ball of the foot, and

commercial potentiometers and load cells to measure joint positions and torques. Herr

et al [8] developed a myoelectric-driven, �nite state controller for a powered ankle-foot

prosthesis that modulates both impedance and power output during stance. The de-

veloped system employed both position and force inputs measured local to the external

prosthesis, and myoelectric inputs measured from residual limb muscles. Local pros-

thetic sensing was used to develop two �nite state controllers to produce biomimetic

movement patterns for level-ground and stair descent gaits, while myoelectric signals

were used as control commands to manage the transition between these �nite state

controllers. Fleischer et al [9] proposed a real-time controller for a powered leg orthosis

using a knee angle sensor, six EMG sensors and a force sensor in series with the linear

actuator.

The most crucial part of the assistive robotic systems such as active ankle pros-

thesis is the main algorithm that operates these devices. Although recent studies have

made important contributions to the improvement of these prostheses, there are points

that need to be reconsidered for the development of a low-cost device. Especially, there

are inconsistencies regarding the number of EMG signals used as inputs to running al-

gorithms and from which muscles they are collected.

In this context, the uncertainties about EMG requirement and usage are needed

to be eliminated for the development of a system in which unnecessary sensor usage

would be avoided. Because, EMG sensors are easily a�ected by external and envi-

ronmental e�ects [21], therefore, redundant amount use of these sensors may cause

misleading results in outputs of the algorithm. Furthermore, unneeded use of these

sensors which are being used by being stuck to the body may increase the user discom-

fort in the long-term usage.

Studies and commercial products also show that using force and/or torque feed-

back in addition to EMG signals as system inputs enables stability in the system out-

put [8,9,19,20]. However, since these sensors are expensive items that cause an increase
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in the prosthesis' price, it is needed to �nd the most e�ective neural network structure

that using nothing but EMG signals as input. Therefore, by making a comparison

between two di�erent algorithms in terms of the force and torque feedback integration,

not only comfortable but also low-cost device's algorithm can be constructed.

Transtibial amputations di�er by the area where the limb has been cut o�. In

some patients, amputation is performed near the knee, while in others it is applied to

a region close to the ankle. For this reason, the muscles left in the residual limbs and

the EMG signals' quality varies from patient to patient. The di�erences in amputation

levels can be easily observed from the soleus muscles' condition. If the transtibial

amputation was applied to a place near to the knee, then recording an accurate EMG

signal from the soleus muscle, which is widely used in such system's algorithms, may

not be possible. In this context, algorithms which have same methods and structures

but di�erent from each other in terms of the use of soleus muscle's EMG signal can

provide a �exibility for the development of active ankle prosthesis which can be used

by amputees with di�erent level amputations.

1.1 Human Ankle Biomechanics

Level-ground gait cycle begins with the heel strike and ends with the next heel

strike of the same foot [22]. Mainly, it is divided into two phases: (1) Stance phase is

the part which the foot remains in contact with the ground. It begins with the moment

the heel touches the ground and ends when the same foot is lifted o� the ground. The

stance phase constitutes about 60 percent of the gait cycle. (2) Swing phase is the

part, during which the foot is not in contact with the ground and swings in the air.

The swing phase constitutes about 40 percent of the gait cycle [4, 5]. The phases of a

gait cycle detailed above are shown in Figure 1.1.

According to Shultz et al [24], the stance phase can be divided into four sub-

phases: (1) Heel strike, (2) loading response, (3) mid stance and (4) terminal stance.

High tibialis anterior muscle activities are observed during the heel strike and the
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Figure 1.1 Ankle Position and Moment Change during Gait Cycle [23].

loading response while plantar �exor muscles, gastrocnemius and soleus, play crucial

roles during mid stance and terminal stance sub-phases [25].

Heel strike (initial contact), is a short period of the gait, which begins at

the moment the heel of the leading foot touches the ground. The hip and the knee

are �exed at 20-30 degrees and 0-5 degrees, respectively. The ankle moves from a

neutral position to plantar �exed position with the eccentric contraction of tibialis

anterior [26, 27]. Although this is a momentary posture, it is signi�cant because of its

in�uence on subsequent knee action [28].
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Loading response (foot �at), occupies about 12 percent of the gait cycle. It

begins with initial �oor contact and continues till the foot is lifted for the swing. The

foot comes in full contact with the �oor and body weight is fully transferred onto

the stance limb [28]. The foot drops to 5-10 degrees plantar �exion and the knee are

initiated to 15-20 degrees �exion. Little change in thigh position occurs during the

loading response, the hip moves slowly into extension [26,27].

Mid stance, represent the 12 to 31 percent of the gait cycle. It begins when

the foot leaves the ground and continues as the body weight travels along the length of

the foot until it is aligned over the forefoot. Advancement of the body and limb over

a stationary foot is the functional objective of this gait phase [28]. In mid-stance, the

hip moves from 10 degrees of �exion to extension which allows the trunk to remain

erect while the limb becomes more vertical. The knee reaches maximal �exion and then

begins to extend. The ankle becomes supinated and dorsi�exed to 5 degrees [26, 27].

Terminal stance (heel o�) begins with heel rise and ends when the contralat-

eral foot contacts the ground. Terminal stance occurs from the 31 to 50 percent periods

of the gait. Forward fall by moving the body weight ahead of the forefoot to generate a

propulsive force is the primary objective [28]. 10-20 degrees of hip hyperextension can

be seen while the knee becomes passively �exed to 0-5 degrees because of forwarding

alignment of the body. The ankle supinates and plantar �exes to 0-10 degrees [26,27].

According to Shultz et al [24], the swing phase can be divided into four sub-

phases: (1) Pre swing, (2) initial swing, (3) mid-swing and (4) terminal swing. During

initial swing, mid swing and terminal swing phases, high muscle activities of tibialis

anterior is observed, while gastrocnemius and soleus muscle play a critical role during

pre-swing phase [25].

Pre swing (toe o�), describes the instantaneous point in the gait when the

leading foot leaves the ground. It occurs from the 50 to 62 percent of the gait cycle [28].

The hip loses extension and it is initiated to its natural position. The knee is passively

�exed to 30-40 degrees. There is a rapid ankle plantar �exion to 15-20 degrees [26,27].
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Initial swing (early swing), is one-third of the swing period, from the 62 to 75

percent periods of the gait cycle. It begins the moment the foot leaves the ground and

continues until maximum knee �exion occurs when the swinging extremity is direct to

the body and directly opposite the stance limb. Clearance of the leading limb's foot o�

the ground is the primary objective of this phase [28]. The hip extends to 10-15 degrees

rapidly from its neutral position. The knee �exes to 40-70 degrees for toe clearance of

the �oor and the ankle goes from plantar �exion to dorsi�exion, to end in a neutral

position [26,27].

Mid swing begins following maximum knee �exion and ends when the tibia is

in a vertical position, which occurs from the 75 to 87 percent of the gait cycle [28].

The hip �exes to 25-30 degrees and the ankle becomes dorsi�exed. The knee �exes 60

degrees but then extends approximately 25-30 degrees [26, 27].

Terminal swing is the �nal phase of the gait cycle in which the tibia passes

beyond perpendicular and the knee fully extends in preparation for the next heel strike

[25]. The 30 degrees of hip �exion and dorsi�exed ankle attained in mid-swing is

maintained. Extension of the knee to its natural neutral (0 or -5 degrees) continues

under active control [26,27].

Although the total range of the ankle joint motion approaches 90 degrees [29],

the entire range of ankle motion used during walking is about 30 degrees. As shown in

Figure 1.1, at heel-strike the ankle is slightly plantar�exed and as the body moves over

the supporting foot, the ankle starts dorsi�exion. Just prior to pre-swing, the ankle

once again becomes plantar �exed. During the swing phase, there is a second wave of

dorsi�exion, which ensures clearance between the toes and ground. Towards the end

of the swing phase, the ankle becomes plantar �exed prior to heel-strike [29�31].

The ankle moment variation during the gait is demonstrated in Figure 1.1.

To provide a controlled foot rotation and avoiding foot to slip, dorsi�exion moment

is generated in the heel strike phase. When the foot is �at, in the loading response

phase, an extension moment is increased with the contractions of plantar �exor muscles;
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consequently, the body starts to move forward. Extension moment increase in the

ankle continues until the end of the terminal swing phase. Before the pre-swing phase,

moment starts to decline and along the swing phase moment variation in the ankle

does not occur [32�34].

1.2 Electromyography Signal

EMG is an electrodiagnostic procedure used for recording and evaluating the

electrical activity of skeletal muscles [35] and EMG signal is an electrophysiological

signal that represents the electrical activity generated when skeletal muscles contract

and relax [36]. EMG signal has been extensively studied and applied in areas like

sports training, gait and posture analysis [37], physical therapy [38], rehabilitation [39]

and prosthesis [6, 40].

The central nervous system (CNS) controls muscle contractions and relaxations

by carrying the electrical stimulations from the brain to target muscle [41]. A skeletal

muscle consists of multiple bundles of cells called muscle �bers that are innervated by

a single alpha spinal motor neuron, which is situated in the spinal cord. The motor

neuron and all the muscle �bers compose the smallest functional unit, motor unit

(MU), to describe the neural control of the muscular contraction process (Figure 1.2).

When an MU is electrically activated, an electrical potential called action potential

(AP) is generated and carried from the motor neuron to the target muscle [21, 42,43].

Generated APs emerge at the neuromuscular junction in the middle of the muscle body

and propagate along all muscle �bers. The repetitive �ring of an MU creates a train

of a pulse, which is called motor unit action potential (MUAP) [44]. The temporal

summation of these electrical activities created by each MU is the EMG signal [45].

There are two types of EMG: (1) intramuscular EMG and (2) surface EMG

(sEMG) [47]. Intramuscular EMGs are recorded by invasive electrodes like a monopolar

or concentric needle electrodes, which are inserted through the skin into the target

muscle tissue. Although it is the most accurate way to record the muscle activity, a



9

Figure 1.2 Schematic Representation of a Motor Unit [46].

well-trained physical therapist should be involved in data collection experiments which

can be agonizing [48, 49]. Surface EMG is a non-invasive technique in which a pair

or multiple electrodes are used for recording muscle activity from the skin above the

target muscle. Due to its easy usage, surface electrodes are commonly used in research

studies. Most of the important limb and trunk muscles can be measured by surface

electrodes [45].

Un�ltered and unprocessed raw EMG signal's peak-to-peak amplitude range

from 0 to 10 millivolts and the usable frequency range between 6 and 500 Hz. In

addition to low amplitude, EMG signals can be easily deformed during recording be-

cause of external factors, such as skin tissue characterization, noise, and electrode

movements [21]. Therefore, according to the application, EMG signals need to be

processed. Noises generated by electronics equipment and sources of electromagnetic

radiation can be one to three times greater than the raw signal. These artifacts can

be eliminated by stop band �lters at between 50 and 60 Hz. The interface between

the surface electrodes and skin and the movement of the electrode cables are another

main sources contributing to the motion artifact which can be eliminated by using

low-pass �lters [50]. After �ltration, the signal is recti�ed to turn all the signal values
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integrative. Lastly, to create a linear envelope in the signal in order to evaluate and

process the signal easily, the signal is smoothed [51]. The whole process is shown in

Figure 1.3.

Figure 1.3 EMG Signal Processing [52].

1.3 Neural Networks

Arti�cial neural networks are mathematical models that mimic aspects of the

biological nervous system's operating structure. To understand the arti�cial neural

network, it is a necessity to become familiar with the general properties of the biological

neural system [53].

The fundamental unit of the nervous system is the neuron, which has (1) a nu-

cleus with simple processing abilities, (2) backward extensions called dendrites and (3)

a forward extension called axon [54]. Dendrites are cellular projections whose primary

function is to receive the synaptic signals (electrochemical stimulation) received from

adjacent cells and transmit them to the nucleus that is in the soma (cell body). The

axon is a transmission line, which transfers the output, generated in soma according to

incoming stimulations, to adjacent cells [54]. The output of each neuron is determined

in the nucleus by cellular assessment of received stimulations. If the total excitation ex-

ceeds a threshold value, an action potential is generated to stimulate adjacent neuron,

muscle or gland. Thus, the information is transmitted from one neuron to another [14].
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As in biological neural network, basic building block of every arti�cial neural

network is the arti�cial neuron, which is a simple mathematical function conceived as a

model of biological neurons. Such a model has three layers as shown in Figure 1.4: (1)

multiplication layer is in which the inputs of network are weighted by being multiplied

by their individual weight at the entrance; (2) summation layer is in which previously

weighted inputs and bias are summed; (3) activation layer is in which output of the

sum function is passed through a transfer function, that determines the functional

behavior of the neuron [55].

Figure 1.4 Graphical representation of a simple arti�cial neuron (perception).

Arti�cial neuron given in Figure 1.4 has m number of input signals (x1 through

xm) and weights assigned to these inputs (w1 through wm). Also, one input called bias

(b) with a constant value (typically +1 or -1) is given to improve properties of the

neuron.

Mathematical representation of the arti�cial neuron output is
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y = θ ·
m∑
j=1

(xjwj + b) (1.1)

where θ is the transfer function of the neuron and y is the neural network output.

Even though one single arti�cial neuron is a simple structure in terms of its

working principle and capabilities, an arti�cial neural network constructed by intercon-

nected arti�cial neurons becomes a powerful tool for applications where the complexity

of the data or task makes the design a model or function by hand impracticable like in

robotics applications, including directing manipulators and prosthesis [55,56].

In Figure 1.5, commonly used multilayer feed-forward neural network is

shown. This neural network structure is called multilayer feed-forward; because (1) it

has a layer of processing (i.e., the hidden layer) in addition to the input and output

layer, and (2) output of each neuron from one layer is fed into the inputs of each

neuron in the following layer [57]. Typically, all neurons in a layer are connected with

all neurons at the next layer while ones in the same layer are not interconnected [58].

Neural network shown in Figure 1.5 has three inputs (x1, x2 and x3) and one

output (y). There are three neurons in input layer, two neurons in hidden layer and one

neuron in output layer. Weights for each interconnection, biases and transfer functions

for each neuron are given as w, b and θ, respectively. Analytical description of this

neural network is given in sets of equations Eq. 1.2, 1.3, 1.4 and 1.5.

Outputs of each neuron in input layer are;
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Figure 1.5 Example of a simple multilayer feed-forward arti�cial neural network with one hidden
layer.

y1 = θ1 · (x1w11 + b1)

y2 = θ2 · (x2w21 + b2)

y3 = θ3 · (x3w31 + b3)

(1.2)

Outputs of each neuron in hidden layer are;

y4 = θ4 · (y1w41 + y2w42 + y3w43 + b4)

y5 = θ5 · (y1w51 + y2w52 + y3w53 + b5)
(1.3)

Output of the neuron in output layer is;
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y = θ6 · (y4w61 + y5w62 + b6) (1.4)

Final form of the neural network output based on network inputs and properties

of each neuron in network is;

y = θ6 ·

(
θ4 ·
(
θ1 · (x1w11 + b1) · w41 + θ2 · (x2w21 + b2) · w42+

θ3 · (x3w31 + b3) · w43 + b4

)
· w61+

θ5 ·
(
θ1 · (x1w11 + b1) · w51 + θ2 · (x2w21 + b2) · w52+

θ3 · (x3w31 + b3) · w53 + b5

)
· w62 + b6

)
(1.5)

Analytical description of such a simple feed-forward neural network shows that

optimizing the arti�cial neural networks' parameters by hand is impractical. Therefore,

a variety of learning techniques for multilayer networks are developed while the most

popular one is a supervised learning paradigm called the back-propagation algorithm,

[59, 60]. Parameters of the neural network are determined and set by using training

datasets consisting inputs and desired outputs [61].

The back-propagation algorithm repeats a two-phase cycle: (1) propagation and

(2) weight update [62]. When the input of the training set is presented to the network

whose neuron weights are initially randomized, it is propagated forward through the

network until it reaches the output layer. Then, the output is compared with the target

output using an error function to calculate errors for each neuron in every layer. The

result of the error function is back-propagated from the output layer until the input

layer and the algorithm adjusts the weights of each connection in order to reduce the

errors. After repeating this process for a su�ciently large number of training cycles
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(iterations), the network is converged to a state where the error of the calculations is

very small [63].
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2. METHOD

2.1 Datasets For Development of the Neural Networks

In order to develop, train and test the targeted neural networks, datasets that

consist of EMG signals, ground reaction forces in three axes (anterior-posterior (Fx),

medial-lateral (Fy) and vertical (Fz) direction) and position and moment change of the

ankle joint recorded during gait, were needed. A study with a similar protocol to the

present work, that shares needed data for public use was used for that purpose [64].

Below the approaches of Ferrarin et al., [64] are summarized:

Forty able-bodied subjects participated in that study, were classi�ed into two

age groups:

Adult group: 20 (9 males, 11 females) participants were included (ages vary from

22 to 72 years; mean 43.1 ± 15.4; body mass 68.5 ± 15.8 kg; height 1.71 ± 0.10 m).

Young group: 20 (9 males, 11 females) participants were included (ages vary

from 6 to 17 years; mean 10.8 ± 3.2; body mass 41.4 ± 15.5 kg; height 1.47 ± 0.20 m).

Surface EMG signals were registered from the tibialis anterior (TA), soleus

(SOL), gastrocnemius medialis (GAM), peroneus longus (PL), rectus femoris (RF),

vastus medialis (VM), biceps femoris (BF) and gluteus maximus (GM) muscles using

an 8-channel wireless electromyography, ZeroWire (Aurion, Milano, Italy).

Using a 9 cameras SMART-E motion capture system (BTS, Milano, Italy),

3D kinematics were measured at 60 Hz. While retrore�ective markers were positioned

on the head, upper limbs, trunk, pelvis and lower limbs. Ground reaction forces (GRFs)

were recorded from two force plates (Kistler, Winterthur, Switzerland), at 960

Hz sampling frequency. 3D kinematics, dynamics, and EMG were considered if com-

plete data were available over at least one stride.
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Records were classi�ed according to the gait speeds. (1) Natural speed class

includes records from the trials in which the subjects were instructed to walk at their

natural speed. Walking trials recorded at a later stage when subjects were asked to

perform progressively increasing or decreasing their speed, were further classi�ed based

on walking speed normalized to subject's height (v/h [%BH s−1]):

(2) Very slow speed class for (v/h) < 0.6 s−1;

(3) Slow speed class for 0.6 %BH s−1 ≤ (v/h) < 0.8 %BH s−1;

(4) Medium speed class for 0.8 %BH s−1 ≤ (v/h) < 1 %BH s−1;

(5) Fast speed class for (v/h) ≥ 1 %BH s−1.

Thus, for each of the 40 subjects, �ve datasets (one for each walking class)

considered include EMG signals, ground reaction forces, ankle position and moment

change over a gait cycle. Therefore, two hundred datasets were produced in total.

However, the authors concluded that such high number of datasets was hard to handle.

Therefore, for each age group, �ve averaged datasets for �ve walking classes were

calculated. Consequently, in their database shared, 10 averaged datasets were o�ered

by Ferrarin et al [64].

Simultaneously recorded GRFs and joint moments were normalized to body

mass. EMG signals were treated using recti�cation and low pass �ltering using 5th

order Butterworth with 3 Hz cut-o� frequency. To allow inter-subject and inter-task

comparisons, EMG signals were subjected to intra-subject normalization similarly to

peak dynamic method.

2.2 Training Of The Developed Neural Networks

In the present work, the networks were trained in MATLAB by using Bayesian

regularization back-propagation, which is a network training algorithm that updates

the weight and bias values according to Levenberg-Marquardt optimization. It min-

imizes a linear combination of squared errors and weights and then determines the

correct combination so as to produce a network that generalizes well [65].
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Two neural networks to estimates position and moment change in the ankle

separately were constructed for each type of neural network structure, and these were

trained by the training datasets that generated according to the neural network's input-

output combination. From the database by Ferrari et al. [64], datasets from very slow,

slow, medium and fast speed classes of both young and adult age group were selected

as training datasets. Inputs of these were averaged EMG signals of eight muscles and

averaged GRFs in three axes, outputs were averaged moment and position changes in

the ankle during a gait cycle. Thus, a total of 8 datasets, referred to as averaged inputs,

could be used for network training.

To prevent inadequate network training that could occur due to the limited

amount of data sets, a training protocol was proposed. Via this protocol, new datasets

were generated by manipulating the averaged inputs over their standard deviations

given in the database. Minimum and maximum standard deviations of each data

referred to as the minimum limit input and the maximum limit input, respectively.

To generate new training datasets, a script was written in MATLAB. This script

helped to create randomized inputs between the minimum and maximum limit inputs,

as shown in Figure 2.1 and 2.2. By doing this for each input (EMGs and GRFs) in a

dataset, a randomized input dataset was generated, and consequently, the number

of training datasets increased from 8 to 32 in total by a set of randomized input

datasets (four new datasets from each training datasets). It was hoped that this

protocol would improve the network training e�ciency by increasing the possible input

combinations.

2.3 Proposed Neural Networks

The proposed algorithm is desired to work with minimum error and stability

without requiring an extra mathematical model or process to smooth and improve the

output. Also, since EMG sensors are easily a�ected by external factors and redundancy

of these cause user's discomfort, the development of a system that requires a few of
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Figure 2.1 EMG amplitude of the TA from a randomized input. The red dashed line shows the
maximum limit input of TA's normalized EMG amplitude from adult age group recorded during
medium speed walking, while blue dashed line shows the minimum limit input. On the other hand,
the red solid line shows the averaged input and black solid line shows the generated dataset, which is
randomized around averaged data within the minimum and maximum limit inputs.
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Figure 2.2 Normalized ground reaction force amplitude in vertical direction from a randomized
input. The red dashed line shows the maximum limit input of normalized vertical ground reaction
force from adult age group recorded during medium speed walking while blue dashed line shows the
minimum limit input. On the other hand, the red solid line shows the averaged input and the black
solid line shows the generated dataset, which is randomized around averaged data within the minimum
and maximum standard limit.
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these sensors as possible is important for both system reliability and user comfort.

Therefore, it is aimed to design the most e�ective neural network structure using the

minimum number of EMG as network inputs.

Three neural network structures, which are di�erent from each other in terms

of the number of muscle inputs, developed for these purposes: TYPE I, consisting 6

muscles' activation signals as network inputs; TYPE II, consisting 5 muscles' activa-

tion signals as network inputs; and TYPE III, consisting 3 muscles'activation signals

as network inputs.

First, to evaluate the training protocol e�ectiveness in neural network estima-

tion, two TYPE I neural network structures have been developed:

(1) TYPE ITP− and

(2) TYPE ITP+.

Unlike TYPE ITP−, TYPE ITP+ neural networks were trained according to the

proposed protocol. Since walking is a complicated task where the ankle, knee and

hip joints work in a harmony with each other, inputs of TYPE I were determined to

include EMG signals from main 6 lower leg muscles measured for completeness: (1)

Tibialis Anterior, the dorsi�exor of the ankle. (2) Gastrocnemius Medialis and (3)

Soleus, plantar �exors of the ankle. (4) Rectus Femoris, the extensor of the knee. (5)

Biceps Femoris, the �exor of the knee and (6) Gluteus Maximus, the extensor of the

hip.

The comparison between the two TYPE I neural networks' results demonstrated

that the proposed training protocol provided a signi�cant improvement in position

estimation such that the averaged correlation coe�cient was increased from to 69.79%

±7.26 to 98.70% ±0.67. Therefore, neural networks developed in later stages

were trained with the proposed protocol.

TYPE ITP+ neural network estimation results showed high correlations with the

targets and total errors were in the acceptable range. Accordingly, these results were
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considered as references for the evaluation of other neural networks to be developed,

and it was aimed to build an e�cient one using fewer EMG network inputs.

As it is in TYPE I, the inputs of TYPE IIGRF− neural network were also

determined to include only EMG signals from muscles that are responsible for the

three main joints movements. However, the EMG signal from the soleus muscle was

excluded to test if a neural network structure with a less EMG inputs may be su�cient

for the intended objective. The reason for the selection of soleus muscle is depending

on the level of the amputation, it may not be possible to collect an accurate EMG

signal from it.

TYPE IIGRF− neural network results also showed high correlation with the tar-

gets as in TYPE ITP+, but errors in moment and position estimations were increased.

Nevertheless, the promising high correlation results were motivated for the development

of a network whose inputs are EMG signals obtained only from the muscles under the

knee.

Since dorsi�exors and plantar �exors are the main lower leg muscles that act

on the ankle, inputs of TYPE IIIGRF− were determined to include EMG signals

from only below-knee muscles: (1) Tibialis Anterior, (2) Soleus and (3) Gastrocnemius

Medialis muscles. TYPE IIIGRF− did not show such a high correlation like others, and

also the averaged total error has been considerably increased.

As natural walking, ankle angle and moment changes vary due to the character-

istics of the ground such as friction or slope. Therefore, adding ground reaction forces

as inputs of a neural network were known to a�ect moment and position estimation

positively [8,9,19,20]. Consequently, in the development of the TYPE IIIGRF+ neural

network, in addition to the EMG signals from the speci�ed muscles in TYPE IIIGRF−

neural network, the ground reaction forces in 3 axes were also used as inputs. This

network was developed to measure and demonstrate the e�ectiveness of the ground

reaction forces. In addition, it was wanted to test if a network whose inputs are EMG

signals from the below-knee muscles and ground reaction forces ful�lls the expectations.



22

The proposed neural networks had time delay feed-forward multilayer neural

network architecture, which was a feed-forward network consisting of three layers: an

input layer and one hidden layer with delays followed by an output layer. Time

delay neural networks (TDNN) works on sequential inputs which makes the network

generate an output based on time-varying inputs. As an example, a neuron from the

hidden layer with N data time delay is given in Figure 2.3. It has one input signal (x),

one weight (w) assigned to this input and one output.

Figure 2.3 Representation of a simple neuron with time delay.

Mathematical representation of the neuron output is

y = θ ·
(
x(t)w, x(t− 1)w, x(t− 2)w, ..., x(t−N)

)
(2.1)

where θ is the transfer function of the neuron and y is the neural network output.

The proposed networks had 32 neurons with a nineteen-data-tapped delay in the
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hidden layers. These values were chosen on the basis of previous works and experience

obtained as a result of experiments [14,66]. While the number of neurons in the input

layer varies according to the neural network type (TYPE I - III), for each neural

network type, two neural networks with a single output were developed. One of which

predicted the ankle position and the other of which predicted the ankle moment.

For every neural network, a sigmoidal transfer function was used between in

the hidden layer, because the sigmoidal function is bounded di�erentiable real function

that is de�ned for all real input values and has a positive derivative at each point. In

the output layer, a linear transfer function was used so that the neural outputs could

take on any value. The sigmoidal and linear transfer functions were tansig and purelin

functions from the neural network toolbox of MATLAB as shown in Figure 2.4.

Figure 2.4 Basic representation of one of the proposed neural networks.

2.4 Evaluation Of Neural Networks

Evaluation of the proposed neural networks' performance was planned to carry

out with datasets from natural speed class of young and adult age group which were not

used in training. However, considering that two datasets in total would not be su�cient

for evaluation of neural networks' performance, a set of new datasets listed below was

produced from natural gait speed datasets by changing the EMG amplitudes of TA and

GAM muscles. These muscles were selected because they are the major components of

the ankle movement. Also, their sizes may be variable for each below-knee amputees

so that inter-patient di�erences in the EMG amplitudes may occur.
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• Increased EMG Amplitude of TA: TA's amplitudes from natural speed gait

datasets of both age groups were increased by �fteen percent of standard deviation

range(Figure 2.5).

• Increased EMG Amplitude of GAM: GAM's amplitudes from natural speed

gait datasets of both age groups were increased by �fteen percent of standard

deviation range.

• Decreased EMG Amplitude of TA: TA's amplitudes from natural speed

gait datasets of both age groups were decreased by �fteen percent of standard

deviation range (Figure 2.6).

• Decreased EMG Amplitude of GAM: GAM's amplitudes from natural speed

gait datasets of both age groups were decreased by �fteen percent of standard

deviation range.

• Increased EMG Amplitude of TA & GAM: TA and GAM's amplitudes from

natural speed gait datasets of both age groups were increased by ten percent of

standard deviation range.

• Decreased EMG Amplitude of TA & GAM: TA and GAM's amplitudes

from natural speed gait datasets of both age groups were decreased by ten percent

of standard deviation range.

The test datasets that listed above not only increased the veri�cation accu-

racy in neural network evaluation but also enabled to test the �exibility of networks

against changed muscle activities. The choices of amplitudes of increases or decreases

implemented rely on the previous work done by Sepulveda et al [14].

In order to evaluate the performances of neural networks and make a comparison

among them, a real-time ankle position and moment estimator script was written in

which each neural network type was tested. The following three statistical assessments

were conducted in order to determine whether the networks have been successfully

trained or not: (1) Root mean square error method, which is used for calculating
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Figure 2.5 Normalized EMG Amplitude of Tibialis Anterior Muscle from the "Increased EMG
Amplitude of TA". The red dashed line shows the maximum limit input of TA's normalized EMG
amplitude from adult age group recorded during natural speed walking, while blue dashed line shows
the minimum limit input. On the other hand, the red solid line shows the averaged input and black
solid line shows the derived input.

Gait Cycle (%)
0 10 20 30 40 50 60 70 80 90 100

A
m

pl
itu

de

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Adult - Natural | Decreased Tibialis Anterior

Minimum Limit
Maximum Limit
Averaged
Decreased Input

Figure 2.6 Normalized EMG Amplitude of Tibialis Anterior Muscle from the "Decreased EMG
Amplitude of TA". The red dashed line shows the maximum limit input of TA's normalized EMG
amplitude from adult age group recorded during natural speed walking, while blue dashed line shows
the minimum limit input. On the other hand, the red solid line shows the averaged input and black
solid line shows the derived input.



26

the di�erence between the output signal of the network and the target signal. (2)

Pearson's correlation coe�cient, which is a measure of the linear correlation (de-

pendence) between the output and the target signal. (3) Total error, which is the

summation of absolute errors. The overall evaluation of each neural network type was

made by taking the average of the statistical results obtained from each test datasets

(averaged correlation coe�cient, averaged RMSE and averaged total error).

Real-time position and moment estimates can follow the target in an unstable

manner by �uctuations, and since the total error is the sum of the absolute errors

between the expected and the network result, it gives a clear understanding of the

system's stability. This caused network structures that are di�erent from each other

by their errors despite their correlation values are high. An unstable structure may

cause users to lose balance during walking or walk unnaturally because the output of the

planned algorithm is given directly to the actuators of the mechanical system without

any additional regulation or veri�cation. Therefore, the criterion for the success or

failure of the network structure's output is not only the correlation coe�cient between

the expected but also the sum of errors.
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3. RESULTS

In this section, the position and moment estimation results for each type of

developed neural network structures are shown and detailed. Networks were tested

with test datasets consisted of natural classes of both age groups and ones that were

generated from these classes by changing their TA and GAM muscles' amplitudes.

Statistical results that were calculated based on the expected and obtained results

for the developed network structures are given. The results of these statistical data

are presented graphically on the response of each neural network when the dataset of

natural speed class of young age group is given as input. The reason for choosing this

dataset is that this is the best representation of the averaged total error, RMSE value

and correlation coe�cient for each network type. For each network structure, results

obtained with other datasets are presented in the APPENDIX section.

During the training of TYPE ITP− neural networks, only training datasets have

been used while for other types, within the scope of the proposed training protocol,

randomized input datasets were used. Therefore, in order to evaluate the e�ectiveness

of the proposed training protocol, TYPE ITP+ neural networks with the same structure

as TYPE ITP− were developed.

For the TYPE ITP− networks, the averaged correlation coe�cient between the

position estimation result and the target position could not exceed 69.76% ±7.26. On

the contrary, the averaged correlation coe�cient of TYPE ITP+ which was tested with

the same datasets was calculated as 98.70% ±0.67 (Figure 3.1).

Below, the estimation results are presented in �gures, which include four panels

each: The panels in the �rst-row show real-time position estimation results of the

related neural network structures compared to the expected response, while panels in

the second row show the absolute values of the errors.
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Figure 3.1 Position estimation results of TYPE ITP− and TYPE ITP+ when the natural speed class
dataset from young age group is given as input. TYPE ITP− failed to make a correct estimation for
all along the gait. Due to its design, large errors were observed in �rst 10% of the gait. For the rest,
the network continued to run irregularly, resulting in erroneous results. On the contrary, TYPE ITP+

produced steady and accurate position estimation.

TYPE ITP− and TYPE ITP+ results demonstrated the e�ectiveness of the pro-

posed training protocol. It has signi�cantly improved the correlation coe�cient and

reduced the errors in position estimation. The averaged RMSE and total error in po-

sition estimation for TYPE ITP− neural network have been 10.40 ±1.56 and 894.03

±197.47 degrees. When TYPE ITP+ results were examined, the averaged RMSE and

total error values were observed to decrease to 1.44 ±0.35 and 229.59 ±58.87 degrees.

In addition, the averaged correlation coe�cients were increased from 69.76% ±7.26 to

98.70% ±0.67.

Moment estimator networks of both TYPE I neural networks demonstrated
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high correlation coe�cient result. The averaged correlation coe�cients of TYPE ITP−

and TYPE ITP+ neural networks were calculated as 96.86% ±1.08 and 99.47% ±0.42,

respectively (Figure 3.2). Although the correlation values were high for both, when

the total error and RMSE values were examined, the results of TYPE ITP+ showed

the improving e�ect of the training protocol. In tests of TYPE ITP−, RMSE and total

error were calculated as 0.131 ±0.02 and 15.92 ±4.19 Nm/kg. However, as a result

of the improvements in the �rst 10 percent of the gait, the averaged RMSE and total

error values were decreased to 0.053 ±0.02 and 6.54 ±2.33 Nm/kg in TYPE ITP+.
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Figure 3.2 Moment estimation results of TYPE ITP− and TYPE ITP+ when the natural speed class
dataset from young age group is given as input. As in position estimation, TYPE ITP− failed to make
a steady moment estimation. Due to its design, large errors were observed in �rst 10% of the gait.
Contrary to TYPE ITP−, TYPE ITP+ has produced a result with high accuracy for every stage of
gait.

On the basis of position and moment estimation results, the proposed training

protocol was decided to be used for the training of the neural networks to be developed

during the studies to reduce the number of muscles inputs.
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TYPE IIGRF− and TYPE IIIGRF− neural networks have been designed and de-

veloped to test the possibility of an active ankle prosthesis development that requires

less EMG sensors as system inputs. Considering the possibility that it may not be

possible to collect an accurate EMG signal from the soleus muscle due to the level of

amputation, TYPE IIGRF− neural network structure, in which the EMG signal of soleus

muscle was not used as an input, has been built. On the contrary, for the situations

where a quality signal can be collected from the soleus via surface EMG sensors, TYPE

IIIGRF− networks have been developed where only EMG signals from the below-knee

muscles were used as the network inputs. Evaluation of these two network structures

was carried out based on the results obtained from TYPE ITP+ results.

The averaged correlation coe�cient, RMSE, and total error values obtained

during the position estimation of TYPE ITP+, TYPE IIGRF− and TYPE IIIGRF− are

tabulated in Table 3.1.

Table 3.1

Position estimation results of TYPE ITP+, TYPE IIGRF− and TYPE IIIGRF− obtained from test
datasets.

Averaged RMSE Averaged Total Averaged Correlation

[deg] Error [deg] Coe�cient [%]

TYPE ITP+ 1.44 ±0.35 229.59 ±58.87 98.70 ±0.67

TYPE IIGRF− 1.68 ±0.46 257.17 ±68.09 98.56 ±0.73

TYPE IIIGRF− 5.94 ±0.99 815.92 ±132.84 60.00 ±25.38

When the position estimation results for these network structures are compared,

excluding the EMG signal of the soleus muscle from the network inputs did not make

a signi�cant alteration in the averaged correlation coe�cient and errors. But using the

EMG signals from only the below-knee muscles did not only make a huge increase in

errors but also an enormous decrease in the averaged correlation coe�cient. Similar

results were also obtained during moment estimation (Table 3.2).

Estimation results of TYPE ITP+, TYPE IIGRF− and TYPE IIIGRF− obtained

with the natural speed class dataset from young age group are presented in Figure 3.3,
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Table 3.2

Moment estimation results of TYPE ITP+, TYPE IIGRF− and TYPE IIIGRF− obtained from test
datasets.

Averaged RMSE Averaged Total Averaged Correlation

[Nm/kg] Error [Nm/kg] Coe�cient [%]

TYPE ITP+ 0.053 ±0.02 6.54 ±2.33 99.47 ±0.42

TYPE IIGRF− 0.077 ±0.03 10.10 ±4.39 99.02 ±0.72

TYPE IIIGRF− 0.125 ±0.03 16.71 ±3.53 95.88 ±1.98

3.4 and 3.5. Below, the estimation results are presented in �gures, which include four

panels each: The panel on the upper left shows the position estimation result of the

related neural network structure compared to the expected response, while the upper

right panel shows the moment estimation result in a similar way. Panels on the second

row show the absolute values of the errors in the position and moment estimation.

When the results were analyzed, it was determined that the minimum amount of

EMG signal requirements for a neural network without a force and/or torque feedback,

is �ve. Also, these muscles, whose EMG's are in use, should be the main actuators

of three joints (the hip, the knee, and the ankle) that work in harmony during the

walking.

Since it is known that using the torque and/or force feedback as an algorithm

input improves the output [8, 9, 19, 20], it was wanted to test the network response

whose inputs are EMG signals from tibialis anterior, soleus and gastrocnemius medialis

muscles and ground reaction forces in three axes. For this purpose, TYPE IIIGRF+

neural networks were developed.

To make a performance comparison, the position (Tables 3.3) and moment (Ta-

bles 3.4) estimation results of all the proposed network structures are tabulated.

The results obtained from TYPE IIIGRF+ with the natural speed class dataset

from young age group that was used to compare network performances in the previous
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Figure 3.3 TYPE ITP+ neural networks' position and moment estimation results when the natural
speed class dataset from young age group is given as system input. Total errors calculated during the
position and moment estimations are 154.23 degrees and 3.51 Nm/kg while correlation coe�cients are
99.24% and 99.81%, respectively.
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Figure 3.4 TYPE IIGRF− neural networks' position and moment estimation results when the natural
speed class dataset from young age group is given as system input. Total errors calculated during the
position and moment estimations were 218.24 degrees and 8.01 Nm/kg while correlation coe�cients
were 99.19% and 99.01%, respectively.
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Figure 3.5 TYPE IIIGRF− neural networks' position and moment estimation results when the natural
speed class dataset from young age group is given as system input. Total errors calculated during the
position and moment estimations were 786.63 degrees and 10.64 Nm/kg while correlation coe�cients
were 72.36% and 98.25%, respectively. Comparing with the TYPE ITP+ results errors in position
were increased to 5.10 times while moment estimation total errors were increased to around 3 times.
For position estimation the correlation coe�cient decreased to 72.36% from 99.24% and RMSE value
is increased to 5.97 degrees from 0.98 degrees.
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Table 3.3

Position estimation results obtained using the test datasets.

Averaged RMSE Averaged Total Averaged Correlation

[deg] Error [deg] Coe�cient [%]

TYPE ITP− 10.40 ±1.56 894.03 ±197.47 69.76 ±7.26

TYPE ITP+ 1.44 ±0.35 229.59 ±58.87 98.70 ±0.67

TYPE IIGRF− 1.68 ±0.46 257.17 ±68.09 98.56 ±0.73

TYPE IIIGRF− 5.94 ±0.99 815.92 ±132.84 60.00 ±25.38

TYPE IIIGRF+ 1.01 ±0.19 155.85 ±23.75 99.16 ±0.53

Table 3.4

Moment estimation results obtained using the test datasets.

Averaged RMSE Averaged Total Averaged Correlation

[Nm/kg] Error [Nm/kg] Coe�cient [%]

TYPE ITP− 0.131 ±0.02 15.92 ±4.19 96.86 ±1.08

TYPE ITP+ 0.053 ±0.02 6.54 ±2.33 99.47 ±0.42

TYPE IIGRF− 0.077 ±0.03 10.10 ±4.39 99.02 ±0.72

TYPE IIIGRF− 0.125 ±0.03 16.71 ±3.53 95.88 ±1.98

TYPE IIIGRF+ 0.031 ±0.01 4.10 ±0.88 99.82 ±0.07

sections, are shown in Figure 3.6.

As expected, test results showed a better estimation for both the position and

moment change in the ankle during a gait cycle with TYPE IIIGRF+ neural networks,

compared to other networks. This shows that if the ground reaction forces are wanted

to be used, collecting EMG signals from only the below-knee muscles are enough as

system input. Otherwise, EMG signals from at least �ve muscles need to be collected.



36

Gait Cycle
20 40 60 80 100

P
os

iti
on

(d
eg

re
e)

-60

-40

-20

0

20

Target
NN Result

Gait Cycle
20 40 60 80 100

M
om

en
t

(n
m

/k
g)

-1

-0.5

0

0.5

1

1.5

2

Target
NN Result

Gait Cycle
20 40 60 80 100

P
os

iti
on

 E
rr

or
(d

eg
re

e)

0

20

40

60

80

100

Gait Cycle
20 40 60 80 100

M
om

en
t E

rr
or

(n
m

/k
g)

0

0.2

0.4

0.6

0.8

1

TYPE III
GRF+

 Position and Moment Estimation Results

Test Dataset: Young - Natural

Figure 3.6 TYPE IIIGRF+ neural networks' position and moment estimation results when the
natural speed class dataset from young age group is given as system input. Total errors during the
position and moment estimations were 120.98 degrees and 3.85 Nm/kg while correlation coe�cients
were 99.44% and 99.81%, respectively. Comparing with the TYPE ITP+ results errors in position and
moment estimation were decreased.
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4. DISCUSSION

4.1 Selection Of A Neural Network Structure Based On The

Sensor Infrastructure

The main objective of this study is to develop a neural network based algorithm

for all kind of amputation levels, which makes real-time position and moments estima-

tions of the ankle in a gait cycle and to �nd the minimum requirement of EMG signal

inputs in such algorithms.

The �rst thing conducted within the present study was to increase the neural

network training e�ciency by proposing a neural network training protocol. Test results

showed that neural networks trained without this protocol produced position estimation

with enormous errors in the �rst ten percent of the gait cycle which corresponds to

20 data points. The reason for such a long-lasting large error is these networks have

TDNN structure with nineteen data delays in the hidden layer. Since TDNN works with

sequential inputs, an insu�cient number of training datasets hinder the development

of a neural network which produces the desired performance results at the beginning

of the estimation. The proposed protocol allowed more accurate network training for

this �rst ten percent of the gait cycle by increasing the number of the training dataset.

Three types of neural network di�erent from each other in terms of the number

of EMG inputs were developed. Prelusively, six muscles, which consist the extensor

and the �exor muscles of the hip, knee and ankle joints, are selected as inputs for

the TYPE I neural network structure. It has been observed that the neural networks

in this structure estimate the target position and moment patterns with acceptable

errors. Later, by excluding the soleus, the muscle input number was decreased to �ve

and TYPE II neural networks were developed. Like TYPE I, the outputs of TYPE

II were also satisfactory in terms of errors and correlation coe�cient. However, when

the number of EMG inputs is reduced to three, consisting signals collected from tib-
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ialis anterior, soleus and gastrocnemius medialis muscles, the network outputs showed

enormous errors and low correlation indicating that the desired pattern could not be

followed.

Therefore, the test results show that an algorithm based on a neural network

structure without any force and torque feedback requires the input of EMG signals

from at least �ve of the muscles responsible for the movement of all of the hip, knee

and ankle joints. However, if an algorithm is to be developed that uses only tibialis

anterior, soleus and gastrocnemius medialis muscles' EMG signals as inputs, a force

and/or torque feedback to the system will be needed. To do this, a mathematical model,

which gives a continuous feedback to the main algorithm, can be developed [8,9,19,20].

Otherwise, as done in TYPE IIIGRF+, ground reaction forces can be included into the

neural network as inputs (Tables 3.3 and 3.4) in order to achieve su�cient success.

Sensors are widely used in robotic systems, especially in applications where there

is human and machine interaction. However, contrary to general belief, the present

study showed that the use of more sensors does not always lead to more accurate

outputs or to the development of more stable systems. Therefore, the number of

sensors should be optimized according to the application and needs of the system to be

developed. Likewise, in the development of assistive robotic systems like active ankle

prosthesis, using EMG signals as a continuous control command for prostheses may be

problematic, because of their non-linear and non-stationary characteristic [67]. Also,

considering that �nancial accessibility is one of the priorities in the development of

such systems, the addition of any unnecessary item should be avoided. To avoid these

kinds of problems, this study determined the requirement for a minimum number of

EMG inputs for an algorithm, which makes the real-time estimation of the position

and moment change in the ankle. Thereby, an ideal prosthetic system in terms of cost

and usability can be developed by avoiding the unnecessary use of the EMG sensors.

Active ankle prosthesis' algorithm to be developed, based on the outcomes of

this study, can gain �exibility according to system design, �nancial planning, and

patient situation. If a force or torque sensor cannot be used because of the cost or
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mechanical design di�culties, a minimum amount of EMG input requirement is �ve

for a neural network based algorithm. This �ve EMG signals should also represent the

movement of the three joints which work in harmony during the walking: the hip, knee

and the ankle. On the contrary, if a force or/and torque feedback system can be used,

three EMG inputs collected from tibialis anterior, soleus and gastrocnemius medialis

muscles will be enough for a reliable prosthesis that functions properly. The algorithmic

infrastructure may also be decided according to the amputation level of the patient. For

patients from whom high-quality EMG signals cannot be collected from his/her lower

leg muscles, a prosthesis which works with �ve EMG input can be recommended. In

previous studies, di�erent algorithmic infrastructures with modi�able inputs have been

neither suggested nor developed in order to adapt the system to the patient according

to his/her level of amputation [14,68,69].

In this study, a force feedback method was also tested. Unlike other studies,

the proposed neural network structure is capable to provide high accuracy estimations

with and without a force or torque feedback without a need of an extra mathematical

model or a supportive neural network [17, 52, 70]. The ground reaction forces in three

axes were fed into the algorithm as network inputs in addition to the EMG signals

collected from tibialis anterior, soleus and gastrocnemius medialis muscles, and results

were assessed. This showed that this type of network structure produces more stable

behavior in outputs and improved estimation results (Tables 3.3 and 3.4). Therefore,

the positive e�ect of a force feedback is once again observed, and it is demonstrated that

since a neural network based algorithm ful�lls the needs of active ankle prosthesis, force

feedback can be implemented in the algorithm by using the sensor outputs as network

inputs.

Since transtibial amputations di�er by the region where the limb has been cut

o�, it is essential to develop an algorithm structure for di�erent level amputees. Es-

pecially, the usability of the soleus muscle's EMG signal as neural network input is

directly related to the distance between the knee and the amputation area. Because,

if the amputation was applied to a place near to the knee, then recording an accurate

EMG from the soleus muscle, which is widely used input in such system's algorithms,
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may not be possible because of its location. Therefore, in this study two neural network

structures are proposed for this speci�c need: TYPE IIGRF− and TYPE IIIGRF+. In

TYPE IIIGRF+ soleus muscle is not included as neural network input, on contrary to

the TYPE II. Both of these structures generated position and moment estimation with

high accuracy and low errors. Thus, outcomes of this study provide �exibility in the

development of active ankle prosthesis such that the di�erence in amputation levels is

not a limitation.

While building the shared database, ground reaction forces and EMG signals

were recorded via sensor systems that cannot be embedded into a prosthetic device

because of their size, price, and the intended use. Therefore, in the development of an

active ankle prosthesis, di�erent types of sensors will be needed. More importantly,

to generate position and moment estimations, sensor outputs will be collected and

evaluated using a microprocessor instead of data acquisition system and computer.

Since, compared to microprocessors, these have advantages in terms of speed, resolu-

tion, quality recording, proposed neural network structures and algorithm should be

tested with a component infrastructure that is more suitable for a prosthetic device to

be embedded.

In summary, neural network based algorithms developed in this study showed

that sensor infrastructure of an active ankle prosthesis can vary due to the amputation

level of the user and design limitations. A device in which only EMG signals are used as

network inputs requires 5 signals, collected from di�erent muscles that are responsible

for hip, knee and ankle movements. The EMG input number can be decreased to

3 if only EMG signals are recorded from tibialis anterior, soleus and gastrocnemius

medialis muscles and a force or torque feedback is implemented into the system. These

preliminary �ndings can initiate the development of an advanced active ankle prosthesis

that mimics any ankle movements and can be comfortably used by amputees with all

amputation levels.
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4.2 Limitations And Future Studies

Although this thesis has reported a successful estimation of position and moment

change in the ankle by using a neural network based algorithm; there is more work to

be done to improve the current algorithm. Instead of using a literature based shared

database, a new training database can be built to create an opportunity for developing

an improved algorithm that estimates all kinds of ankle movements. According to the

test results that obtained with the new database, outcomes of this study can be veri�ed,

or to overcome probable de�ciencies an improvement on the current algorithm can be

made. Consequently, a mechanical system that is suitable for the improved algorithm

can be designed and produced.
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APPENDIX A. NEURAL NETWORK RESULTS

In this chapter, neural network outputs for each test dataset are given.

A.1 TYPE ITP− Outputs
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 Position and Moment Estimation Results

Test Dataset: Adult - Natural

Figure A.1 TYPE ITP− output when the 'Natural' speed class dataset of 'Adult' age group is given
as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA

Figure A.2 TYPE ITP− output when the 'Increased EMG Amplitude of TA' speed class dataset of
'Adult' age group is given as input.
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Test Dataset: Adult - Increased EMG Amplitude of GAM

Figure A.3 TYPE ITP− output when the 'Increased EMG Amplitude of GAM' speed class dataset
of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA

Figure A.4 TYPE ITP− output when the 'Decreased EMG Amplitude of TA' speed class dataset of
'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of GAM

Figure A.5 TYPE ITP− output when the 'Decreased EMG Amplitude of GAM' speed class dataset
of 'Adult' age group is given as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA & GAM

Figure A.6 TYPE ITP− output when the 'Increased EMG Amplitude of TA and GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA & GAM

Figure A.7 TYPE ITP− output when the 'Decreased EMG Amplitude of TA and GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Young - Natural

Figure A.8 TYPE ITP− output when the 'Natural' speed class dataset of 'Young' age group is given
as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA

Figure A.9 TYPE ITP− output when the 'Increased EMG Amplitude of TA' speed class dataset of
'Young' age group is given as input.
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Test Dataset: Young - Increased EMG Amplitude of GAM

Figure A.10 TYPE ITP− output when the 'Increased EMG Amplitude of GAM' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of TA

Figure A.11 TYPE ITP− output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of GAM

Figure A.12 TYPE ITP− output when the 'Decreased EMG Amplitude of GAM' speed class dataset
of 'Young' age group is given as input.
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Test Dataset: Young - Increased EMG Amplitude of TA & GAM

Figure A.13 TYPE ITP− output when the 'Increased EMG Amplitude of TA and GAM' speed class
dataset of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of TA & GAM

Figure A.14 TYPE ITP− output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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A.2 TYPE ITP+ Outputs
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Test Dataset: Adult - Natural

Figure A.15 TYPE ITP+ output when the 'Natural' speed class dataset of 'Adult' age group is given
as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA

Figure A.16 TYPE ITP+ output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of GAM

Figure A.17 TYPE ITP+ output when the 'Increased EMG Amplitude of GAM' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of TA

Figure A.18 TYPE ITP+ output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of GAM

Figure A.19 TYPE ITP+ output when the 'Decreased EMG Amplitude of GAM' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of TA & GAM

Figure A.20 TYPE ITP+ output when the 'Increased EMG Amplitude of TA and GAM' speed class
dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of TA & GAM

Figure A.21 TYPE ITP+ output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Natural

Figure A.22 TYPE ITP+ output when the 'Natural' speed class dataset of 'Young' age group is
given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA

Figure A.23 TYPE ITP+ output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of GAM

Figure A.24 TYPE ITP+ output when the 'Increased EMG Amplitude of GAM' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of TA

Figure A.25 TYPE ITP+ output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of GAM

Figure A.26 TYPE ITP+ output when the 'Decreased EMG Amplitude of GAM' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA & GAM

Figure A.27 TYPE ITP+ output when the 'Increased EMG Amplitude of TA and GAM' speed class
dataset of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of TA & GAM

Figure A.28 TYPE ITP+ output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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A.3 TYPE IIGRF− Outputs
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 Position and Moment Estimation Results

Test Dataset: Adult - Natural

Figure A.29 TYPE IIGRF− output when the 'Natural' speed class dataset of 'Adult' age group is
given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of TA

Figure A.30 TYPE IIGRF− output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of GAM

Figure A.31 TYPE IIGRF− output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of TA

Figure A.32 TYPE IIGRF− output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of GAM

Figure A.33 TYPE IIGRF− output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of TA & GAM

Figure A.34 TYPE IIGRF− output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of TA & GAM

Figure A.35 TYPE IIGRF− output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Natural

Figure A.36 TYPE IIGRF− output when the 'Natural' speed class dataset of 'Young' age group is
given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA

Figure A.37 TYPE IIGRF− output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of GAM

Figure A.38 TYPE IIGRF− output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of TA

Figure A.39 TYPE IIGRF− output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of GAM

Figure A.40 TYPE IIGRF− output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA & GAM

Figure A.41 TYPE IIGRF− output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of TA & GAM

Figure A.42 TYPE IIGRF− output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.



63

A.4 TYPE IIIGRF− Outputs
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 Position and Moment Estimation Results

Test Dataset: Adult - Natural

Figure A.43 TYPE IIIGRF− output when the 'Natural' speed class dataset of 'Adult' age group is
given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of TA

Figure A.44 TYPE IIIGRF− output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of GAM

Figure A.45 TYPE IIIGRF− output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA

Figure A.46 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of GAM

Figure A.47 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA & GAM

Figure A.48 TYPE IIIGRF− output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA & GAM

Figure A.49 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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Test Dataset: Young - Natural

Figure A.50 TYPE IIIGRF− output when the 'Natural' speed class dataset of 'Young' age group is
given as input.
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Test Dataset: Young - Increased EMG Amplitude of TA

Figure A.51 TYPE IIIGRF− output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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Test Dataset: Young - Increased EMG Amplitude of GAM

Figure A.52 TYPE IIIGRF− output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of TA

Figure A.53 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of GAM

Figure A.54 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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Test Dataset: Young - Increased EMG Amplitude of TA & GAM

Figure A.55 TYPE IIIGRF− output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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Test Dataset: Young - Decreased EMG Amplitude of TA & GAM

Figure A.56 TYPE IIIGRF− output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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A.5 TYPE IIIGRF+ Outputs
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 Position and Moment Estimation Results

Test Dataset: Adult - Natural

Figure A.57 TYPE IIIGRF+ output when the 'Natural' speed class dataset of 'Adult' age group is
given as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA

Figure A.58 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Increased EMG Amplitude of GAM

Figure A.59 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA

Figure A.60 TYPE IIIGRF+ output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Adult' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Adult - Decreased EMG Amplitude of GAM

Figure A.61 TYPE IIIGRF+ output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Increased EMG Amplitude of TA & GAM

Figure A.62 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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Test Dataset: Adult - Decreased EMG Amplitude of TA & GAM

Figure A.63 TYPE IIIGRF+ output when the 'Decreased EMG Amplitude of TA and GAM' speed
class dataset of 'Adult' age group is given as input.
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Figure A.64 TYPE IIIGRF+ output when the 'Natural' speed class dataset of 'Young' age group is
given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA

Figure A.65 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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Test Dataset: Young - Increased EMG Amplitude of GAM

Figure A.66 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of TA

Figure A.67 TYPE IIIGRF+ output when the 'Decreased EMG Amplitude of TA' speed class dataset
of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Decreased EMG Amplitude of GAM

Figure A.68 TYPE IIIGRF+ output when the 'Decreased EMG Amplitude of GAM' speed class
dataset of 'Young' age group is given as input.
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 Position and Moment Estimation Results

Test Dataset: Young - Increased EMG Amplitude of TA & GAM

Figure A.69 TYPE IIIGRF+ output when the 'Increased EMG Amplitude of TA and GAM' speed
class dataset of 'Young' age group is given as input.
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