
COMPARISON OF MACHINE LEARNING ALGORITHMS
FOR BLOOD GLUCOSE PREDICTION ON AIDA

SIMULATOR

by

Doğugün Özkaya

B.S. in Computer Engineering, Boğaziçi University, 2011

Submitted to the Institute of Biomedical Engineering

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Biomedical Engineering

Boğaziçi University

2018

ii

COMPARISON OF MACHINE LEARNING ALGORITHMS
FOR BLOOD GLUCOSE PREDICTION ON AIDA

SIMULATOR

APPROVED BY:

Assoc. Prof. Dr. Albert Güveniş

(Thesis Advisor)

Prof. Dr. Burak Güçlü

Assoc. Prof Dr. Murat Sarı

DATE OF APPROVAL:

iii

ACKNOWLEDGMENTS

I would like to thank Assoc. Prof. Dr. Albert Güveniş for his expert advice,

encouragement and guidance throughout this extensive project.

iv

ACADEMIC ETHICS AND INTEGRITY STATEMENT

I, Doğugün Özkaya, hereby certify that I am aware of the Academic Ethics

and Integrity Policy issued by the Council of Higher Education (YÖK) and I fully

acknowledge all the consequences due to its violation by plagiarism or any other way.

Name : Signature:

Date:

v

ABSTRACT

COMPARISON OF MACHINE LEARNING ALGORITHMS
FOR BLOOD GLUCOSE PREDICTION ON AIDA

SIMULATOR

Predicting blood glucose (BG) values has an increasing interest along with the

recent progress in processing capacity of computers and spreading of mobile devices.

Inspired from existing research studies, this study aims to use a BG simulator program,

AIDA, to generate BG values and make predictions. Thus, comparing results to existing

studies has directed this objective to provide an in-silico testing. Other points in

using a simulator instead of real patient data is that it is easy to collect data, and

it disregards external factors like pregnancy or stress. For estimates with prediction

horizons (PH) with 15,30 and 60 minutes, support vector regression (SVR), decision

tree regression, Gaussian process regression, k-NN regression, random forest regression

and for neural networks: recurrent neural network (RNN) with long short-term memory

(LSTM) unit and neuro-fuzzy network and feed-forward neural network (FFNN)have

been employed. Among multiple algorithms neuro-fuzzy network (ANFIS) has the

best results with RMSE values of 1.19 mg/dl, 2.53mg/dl and 5.81mg/dl for 15,30

and 60 minutes prediction horizons (PH). The audience for this paper is the research

community who works on BG prediction and looking for ways to design a model for

an algorithm for their selected set of inputs. This study presents a guide to selecting

an algorithm and build a model for in silico simulation. This research can be extended

to real world data or converted into a tool to create benchmark tests for models with

given features and hyperparameters.

Keywords: Diabetes Mellitus, Machine Learning, AIDA, Blood Glucose Prediction.

vi

ÖZET

AIDA SİMÜLATÖRÜ ÜZERİNDE KAN ŞEKERİ TAHMİNİ
İÇİN MAKİNE ÖĞRENMESİ ALGORİTMALARININ

KIYASLANMASI

Kan şekeri değeri tahmini, makine öğrenme tekniklerinin yaygınlaşması ve

günümüz bilgisayarlarının ve akıllı cihazların kapasitelerinin artmasıyla ilgi çeken konu-

lardan biri haline geldi. Bu çalışmada amaç, benzer çalışmalardan esinlenerek, AIDA

simülatörü ile elde edilen verilerle kan şekeri tahmini yapmak. Bu doğrultuda hedef,

sanal ortamda test yapılmasını sağlamak oldu. Simülatör kullanılmasının, veri topla-

manın kolay ve hızlı olması, hamilelik, stres gibi çevresel etmenleri göz ardı etmesi gibi

faydaları da mevcut. Tahminler, test anının 15, 30 ve 60 dakika sonrasındaki değerleri,

destekçi vektör makinesi, karar ağacı, Gauss süreci, k-en yakın komşu, rastgele orman

ve sinir ağları arasından da ileri ilerleyen, bulanık ve tekrarlayan yapay sinir ağları

algoritmalarıyla gerçekleştirildi. Bu çalışmanın sonucunda bulanık sinir ağı, 15, 30 ve

60 dakikalık tahminlerde sırasıyla 1.19mg/dl, 2.53mg/dl ve 5.81mg/dl kök-ortalama

karesel hata değerleri ile en iyi sonuca ulaştı. Bu makalenin hedef kitlesi, kan şek-

eri tahmini üzerinde çalışacak ve elinde girdilere ve performans kriterlerine göre etkili

bir model seçmeye çalışan araştırma grupları olarak düşünülmektedir. Bu çalışma,

bilgisayar ortamında test amaçlı model oluşturulması için bir rehber olma özelliği taşı-

maktadır. Aynı zamanda bağlamı gerçek hasta verisi özellikleri kullanılarak kıyaslama

testleri yapılması doğrultusunda da genişletilebilir.

Anahtar Sözcükler: Diyabet, Makine Öğrenmesi, AIDA, Kan Şekeri Tahmini.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

ACADEMIC ETHICS AND INTEGRITY STATEMENT iv

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF SYMBOLS . xiv

LIST OF ABBREVIATIONS . xv

1. INTRODUCTION . 1

2. MATERIALS AND METHODS . 4

2.1 Dataset . 4

2.1.1 AIDA Simulator . 4

2.1.2 Data Collection via AIDA . 5

2.2 Model Definitions . 7

2.2.1 Support Vector Regression . 7

2.2.2 Feed Forward neural Network 8

2.2.3 Recurrent Neural Network . 9

2.2.4 Decision Tree Regression . 9

2.2.5 Random Forest Regression . 10

2.2.6 k Nearest Neighbour Regression 10

2.2.7 Neuro-Fuzzy Networks . 10

2.2.8 Gaussian Process Regression . 11

2.3 Implementation Details . 13

2.3.1 Support Vector Regression . 14

2.3.2 Feed Forward Neural Network 14

2.3.3 Recurrent Neural Network (LSTM) 15

2.3.4 Decision Tree Regression . 16

2.3.5 Random Forest Regression . 17

2.3.6 k-Nearest Neighbour Regression 17

viii

2.3.7 Neuro-Fuzzy Network (Aadaptive Neuro-Fuzzy Inference System) 18

2.3.8 Gaussian Process Regression . 18

3. RESULTS . 20

4. DISCUSSION . 54

5. CONCLUSION . 59

REFERENCES . 60

ix

LIST OF FIGURES

Figure 2.1 Support vector classification: the points lying on the boundaries

are called support vectors, and the middle of the margin is the

optimal separating hyperplane. 8

Figure 2.2 Schematic representation of the FFNN model layers. 15

Figure 2.3 Schematic representation of the LSTM model layers. 16

Figure 3.1 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

ANFIS. 25

Figure 3.2 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using ANFIS. 25

Figure 3.3 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

decision tree regression. 26

Figure 3.4 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using decision tree regression. 26

Figure 3.5 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

FFNN. 27

Figure 3.6 Predicting BG values 15 minutes ahead from 00:00 to 00:00 in

next day using FFNN. 27

Figure 3.7 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

Gaussian process regression. 28

Figure 3.8 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using Gaussian process regression. 28

Figure 3.9 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

k-NN regression. 29

Figure 3.10 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using k-NN regression. 29

Figure 3.11 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

random forest regression. 30

Figure 3.12 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using random forest regression. 30

x

Figure 3.13 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

LSTM. 31

Figure 3.14 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using LSTM. 31

Figure 3.15 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using

support vector regression. 32

Figure 3.16 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next

day using support vector regression. 32

Figure 3.17 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

ANFIS. 33

Figure 3.18 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using ANFIS. 33

Figure 3.19 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

decision tree regression. 34

Figure 3.20 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using decision tree regression. 34

Figure 3.21 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

FFNN. 35

Figure 3.22 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using FFNN. 35

Figure 3.23 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

Gaussian processreg ression. 36

Figure 3.24 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using Gaussian process regression. 36

Figure 3.25 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

k-NN regression. 37

Figure 3.26 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using k-NN regression. 37

Figure 3.27 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

random forest regression. 38

Figure 3.28 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using random forest regression. 38

xi

Figure 3.29 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

LSTM. 39

Figure 3.30 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using LSTM. 39

Figure 3.31 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using

support vector regression. 40

Figure 3.32 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next

day using support vector regression. 40

Figure 3.33 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

ANFIS. 41

Figure 3.34 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using ANFIS. 41

Figure 3.35 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

decision tree regression. 42

Figure 3.36 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using decision tree regression. 42

Figure 3.37 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

FFNN. 43

Figure 3.38 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using FFNN. 43

Figure 3.39 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

Gaussian process regression. 44

Figure 3.40 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using Gaussian process regression. 44

Figure 3.41 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

k-NN regression. 45

Figure 3.42 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using k-NN regression. 45

Figure 3.43 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

random forest regression. 46

Figure 3.44 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using random forest regression. 46

xii

Figure 3.45 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

LSTM. 47

Figure 3.46 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using LSTM. 47

Figure 3.47 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using

support vector regression. 48

Figure 3.48 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next

day using support vector regression. 48

Figure 3.49 Comparison of Prediction Error During 12 Hours of Prediction

for Ordinary Data vs Stress-Test Data. 52

Figure 3.50 Comparison of Prediction Error During 24 Hours of Prediction

for Ordinary Data vs Stress-Test Data. 53

xiii

LIST OF TABLES

Table 2.1 The initial data extracted from AIDA simulator. 7

Table 2.2 The structure and example of the reordered dataset. 7

Table 3.1 Prediction errors in terms of RMSE(mg/dl) for 15 minutes pre-

diction horizon. 20

Table 3.2 Performing times of predictions of 15 minutes in seconds during

12 and 24 hours of prediction periods. 21

Table 3.3 Prediction errors in terms of RMSE(mg/dl) for 30 minutes pre-

diction horizon. 22

Table 3.4 Performing times of predictions of 30 minutes in seconds during

12 and 24 hours of prediction periods.. 23

Table 3.5 Prediction errors in terms of RMSE(mg/dl) for 60 minutes pre-

diction horizon. 24

Table 3.6 Performing times of predictions of 60 minutes in seconds during

12 and 24 hours of prediction periods. 24

Table 3.7 The prediction errors of algorithms in RMSE (mg/dl) on 60 min-

utes prediction horizon with stress test data. 49

Table 3.8 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 15 minutes ahead, during 12 hours period. 49

Table 3.9 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 15 minutes ahead, during 24 hours period. 50

Table 3.10 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 30 minutes ahead, during 12 hours period. 50

Table 3.11 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 30 minutes ahead, during 24 hours period. 51

Table 3.12 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 30 minutes ahead, during 12 hours period. 51

Table 3.13 Clarke’s error grid analysis, MARD AND CC values of algorithms

for predictions of 30 minutes ahead, during 24 hours period. 52

xiv

LIST OF SYMBOLS

aij Description of aij

k Covariance Function

x Input Variable of First Observation

x′ Input Variable of Second Observation

σ Variance of the Random Variable

l Length Value for Covariance Function

y

N Noise Function

δ Kroenecked Delta Function

K Result of Kernel Function over Input Variable

K∗ Similarity of the Training Values to Test Values

K∗∗ Test Values among Each Other

y Training Target Values

y∗ Test Target Values

y∗ Estimation over Test Target Values

xv

LIST OF ABBREVIATIONS

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificail Neural Network

AR Accurate Readings

ARIMA Autoregressive Model with Moving Average

BE Benign Error

BG Blood Glucose

BGL Blood Glucose Level

CC Correlation Coefficient

CGM Continuous Glucose Meter

CH Carbohydrates

DM Diabetes Mellitus

DTR Decision Tree Regression

EE Erroneous Errors

EGA Error Grid Analysis

FFNN Feed-Forward neural Network

FIS Fuzzy Inference System

GP Gaussian Process

GPR Gaussian Process Regression

HH Hour

IDE Integrated Development Environment

KNN k-Nearest Neighbour

LSTM Long Short-Term Memory

MARD Mean Absolute Relative Difference

ML Machine Learning

MM Minute

MSE Mean Square Error

NIR Near-infrared spectroscopy

NN Neural Network

xvi

k-NNR k-Nearest Neighbour Regression

PH Prediction Horizon

PPG Photoplethysmography

RBF Radial Basis Function

RFR Random Forest Regression

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SOM Self-Organizing Map

SVM Support Vector Machine

SVR Support Vector Regression

WFNN Wavelet Fuzzy Neural Network

WHO World Health Organization

1

1. INTRODUCTION

Blood glucose(BG) level prediction is a highly trending topic where researchers

aim to find the BG values of a patient in the future based on external and internal

inputs. This task is crucial for Type 1 Diabetes Mellitus(T1DM) patients who cannot

produce insulin in their bodies and depend on external insulin. Since there is not a

permanent solution for this disease, they try to regulate their lifestyles to manage their

disease. For this purpose, predicting the BG value plays a key role in alerting them and

helping them to take precautions. Also, it will be easier for both patient and clinician

to decide insulin amount with a reliable prediction mechanism.

Continuous glucose meters(CGM) provide continuous readings of BG values

and provide detailed insight about the BG variations. Using the data from a CGM

device which collects data with a 5 minutes interval is efficient in prediction with time

series analysis. The efficiency of linear models increases with the recursive approaches.

Autoregressive model with moving average(ARIMA) is a useful and powerful estimator

in this context [1]. Introducing exogenous variables such as blood pressure, cholesterol,

low-density lipoprotein cholesterol and high-density lipoproteins produced results with

increased accuracy [2].

Although exogenous variables are very helpful for increasing prediction accuracy,

they cause high dimensionality and non-linearity. In this case a more flexible and

accurate method is needed. Also, linear regression models need physiological responses

of body to insulin and glucose intake, where it is hard to represent them in a mobile

device. Overcoming this, SVR can be used with multivariate inputs such as BG value,

plasma insulin, CH amount and physical activities. Including those inputs resulted

with an increase in the accuracy both in short and long term [3]. SVR models can also

be used for single input from CGM of a T1DM patient [4].

As the multivariate inputs are preferred for increased accuracy, more flexible

2

models are needed to make predictions. Artificial neural networks are very useful in

that manner. Their flexible structure and lower spatial complexity compared to SVR,

makes them accurate even in a wide range of patient cases. Neural networks can

be used in both standalone prediction tools and CGMs with different architectures

and multiple inputs. Their greatest advantage is that they make good predictions in

hypoglycaemic and hyperglycaemic ranges better than other techniques [5] - [6]. Archi-

tectural structures of neural networks are not only limited to unidirectional networks.

Recurrent neural networks make quite effective and accurate predictions on simulator

data, prepared by AIDA simulator which have multivariate time series characteristics

[7].

The high number of studies in the BG prediction also brings about the need to

compare and review those studies. These will not only give a list of existing studies, but

also will provide insights about algorithms, their input spaces and their performances.

Kavakiotis et al. prepared a review study which does not only include only blood

glucose prediction, but also diagnosis, genetic and environment related studies [8]. For

the BG prediction topic, in particular, Oviedo et al. compiled prediction studies and

classified them as data-oriented, physiological-oriented and control-oriented [9].

Comparing multiple algorithms is also important for researchers who want to

conduct experiments on BG prediction. So far it is shown that SVR outperforms

autoregressive model with physiological inputs like CH intake, insulin intake and glu-

cose dynamics [10]. In another attempt to compare FFNN, wavelet fuzzy neural net-

work(WFNN), self-organizing map(SOM) and linear regression, SOM has shown best

result and FFNN and WFNN also outperformed linear regression [11].

These comparative studies carry out only a limited number of algorithms. Al-

though they provide useful insights, some of them fail to use the same data or feature

space in all of the methods. This brings about the need to develop a benchmark test

with an extensive number of algorithms. This is what this study aims to accomplish.

The comparison will be based on accuracy in root mean squared error(RMSE), predic-

tion time and reliability metrics such as: Clarke‘s error grid analysis, mean absolute

3

relative difference(MARD) and correlation coefficient(CC).

During prediction studies, one of the greatest challenges is collecting error free

and noise free data. In this study, to emphasize the effectiveness of simulated data,

AIDA simulator is used. The AIDA is a tool that takes metabolic inputs which is

specific to patient cases, along with behavioural inputs like food and insulin intake

and produces a time series of BG values in 15 minutes intervals for 24 hours. With

the synthetic data generated, we will be able to prepare a benchmark dataset for all

parametric and non-parametric algorithms. The predictions will try to approximate

BG values in 15, 30 and 60 minutes ahead of current time.

4

2. MATERIALS AND METHODS

2.1 Dataset

2.1.1 AIDA Simulator

The main tool for the data collection is AIDA blood glucose simulator. AIDA

is a software, ultimately intended for the use of clinical personnel as a decision sup-

port system [12]. More specifically it can be described as a tool for simulating a BG

distribution, based on insulin and CH intake along with patient specific conditions.

The software first developed in 1991 and can be downloaded from internet. It is also

available online since 1996 [13].

The system has a compartmental structure. A single extracellular structure,

which receives glucose from intestines and produces in liver. And two compartments

for active and plasma insulin activities which assume that patients cannot produce

insulin internally. In this case external injection is the only available source of insulin

[14] - [15].

The model runs on several parameters. Those parameters can be categorised

into two, one is patient specific parameters and the other is input based parameters.

Patient specific parameters are, renal threshold of glucose, renal function, hepatic and

peripheral insulin sensitivities and body weight (kg). For the case scenarios, each

patient has their specific parameters. Input based parameters are CH amount in the

meals, short and intermediate acting effective insulin amounts in grams. Short acting

insulins have their onset around 0.5-3 hours, and last up to 24 hours, and their peaks

is experienced around 2-16 hours. The onset of intermediate acting insulins is 0.5-3

hours, and last 24 hours, while have their peak around 2-16 hours.

The model has its limitations also. The software is not intended for real world

5

patient simulation, therapy planning and glycaemic prediction [16]. Thus, the usage

is limited to teaching and research purposes. Those limitations are brought out from

several facts. The changes in renal threshold because of age and counter-regulatory

hormones like Glucagon at low levels of BG were not included in the model. Physical

activity and stress level are constant throughout simulation which may affect the blood

glucose values [7]. Besides those limitations, AIDA is a powerful and popular simulation

tool and has been used in several studies as a mean of data collection [4].

2.1.2 Data Collection via AIDA

Data collection is done through the online version of AIDA. The online version

of AIDA has the same running principle as the downloadable version [14]. For online

version there are 40 case studies of T1DM patients. We have selected a single patient

case for the research. While selecting cases one of the main concerns was the use

of insulin type. The effect of long acting insulin lasts up to 36 hours. Since AIDA

produces 24 hours results, the effect of long acting insulin overflows to hours before the

intake.

The main setback of AIDA is that it produces BG values for a single 24-hour

period. This causes the evening and night activities to influence the BG in the morning.

This assumes a day is a cycle of the same activities. To avoid that, the carbohydrate

intake and insulin intake is limited between 13:00 and 19:00. So, in the mornings,

the simulation will have a more euglycemic property. The meals are taken at 13:30

and 19:00 with 15 minutes variations. Short acting insulins are taken before the meals

around 15 and 30 minutes. One of the long insulins are taken before the first meal,

and the other one is after the second meal by 15 to 30 minutes. Thus, the fluctuations

between midnight and morning BG values have been minimized, so simulating several

days are seemed to be sequential.

To examine a stress test, an alternative dataset has been generated. The aim is

to see how the models response to sharp changes and extreme BG values. As mentioned

6

above the CH and insulin intake amounts and times are regular. This helps AIDA to

produce reasonable values throughout a day and values around beginning and end of

the days are similar. So there is no sharp transitions around midnight. To prepare

a dataset for the stress test, the simulated data should have extreme changes during

transitions between days and extreme values throughout the day. For this purpose CH

intake instances are increased to 6, and insulin amounts are modified and sometimes

insulin intake is skipped. So sharp decreases like 100 mg/dl in 15 minutes or having

BG value over 250 mg/dl over several hours have been observed. This dataset has

been reordered with the same methodology and has the same features with the data

previously described. In this case, since first CH and insulin intake starts at 07:15, the

dataset reformatted in such a way that, day starts at 07:00 and ends in next day at

07:00.

Since the current study employs many different machine learning algorithms,

a standard dataset is collected, then reshaped according to needs of each model. 30

days of data were collected in the form of vectors for each measurement in 15 minutes.

Each point has the information of the CH and insulin amount and current BG values

at that time. For real world experiments, data cleaning is a necessity to utilise sparse

data and to avoid corrupted or null data. Since data is formed of simulation output,

the need to clean data was no longer a concern.

In order to use the collected data as inputs, the data have to be modified into a

time-step format. The initial data is formed of the columns: current time, CH amount,

short acting insulin and intermediate acting insulin, and the current BG value. If there

is a CH or insulin intake in any given time, the amount is used as the value, otherwise

it is 0. Dataset was reordered into points of timesteps which contain properties of

the previous readings, and the next BG value in the prediction horizon as the target

value. Thus, the previous values of CH and insulin can affect the outcome in the

model. The initial data and this structure can be visualized in the Table 2.1 and Table

2.2 respectively. For different prediction horizons: 15, 30 and 60 minutes, 3 different

datasets have been created.

7

Table 2.1
The initial data extracted from AIDA simulator.

Columns of Initial Data Collected from AIDA Column Unit

Hour HH:mm

CH,amount grams

Short Acting Insulin Amount grams

Long Acting Insulin Amount grams

Current BG mg/dl

Table 2.2
The structure and example of the reordered dataset.

Columns Time Window Current Time Target

Time t-8 (12:00) t-7 (12:15) . . . t (14:00) t+4 (15:00)

BGL (mg/dl) 90.91 90.61 . . . 94.28 93.22

CH amount (grams) 0 25 . . . 0 -

Short Acting Insulin (grams) 4 0 . . . 0 -

Long Acting Insulin (grams) 12 0 . . . 0 -

2.2 Model Definitions

2.2.1 Support Vector Regression

Before starting to explain Support Vector Regression, it is compulsory to clarify

the principle of support vector machines. SVMs were first introduced in 1995 by Cortes

& Vapnik for binary classification purpose. The idea is basically looking for the optimal

separating hyperplane between the two classes by maximizing the margin between the

closest points of classes as in the Figure 2.1 [17].

The support vector regression technique is, to find a function that has the most

deviation from the observed targets for the training data around a separating hyper-

plane. Since the data used in this study is nonlinear, the optimisation problem becomes

finding the flattest function in feature set [18].

8

Figure 2.1 Support vector classification: the points lying on the boundaries are called support
vectors, and the middle of the margin is the optimal separating hyperplane.

2.2.2 Feed Forward neural Network

FFNNs are specific types of Artificial neural networks (ANNs) which are in-

spired by real neurons in brain and used for computation and ML tasks [19]. These

networks consist of several neurons (processing units), each generate an output from

their activation function by recalculating their connection weights with incoming input.

The neurons in input layer are activated from external data while neurons in hidden

layers are given input data from previous layers. Output layers are fed with data from

internal neurons and yield ultimate output.

Input neurons get activated by sensors perceiving the environment, other neu-

rons get activated by weighted connections from previously active neurons. The learn-

ing is achieved by the objective of finding weights which make the NN generate the

optimum output [20]. A FFNN is a special shaped NN that consists of three layers,

input, hidden and output layers. In any given layer, each neuron is connected to a

neuron in the next layer [21].

9

2.2.3 Recurrent Neural Network

Long Short-Term Memory: Recurrent neural networks have the topology in

which connections coming from the neurons of output and intermediate layers return

to previous layers to form a directed graph. This allows the network to process data

that has temporal characteristics. This can be interpreted as a memory in an additional

state [22]. For this study long-short term memory (LSTM) network is used as RNN

model. This allows the model to keep the previous readings of BG in its memory. To

describe shortly, an LSTM has memory cells that have looping connections onto them.

It also has an additional unit to merge old and new data and has a multiplication unit

to achieve to forget task [23].

2.2.4 Decision Tree Regression

Decision trees are structures that recursively divide data into partitions based

on a set of rules that define each branch or node in the tree. A decision tree divides data

into subsets from root to leaves to have the best possible data in the nodes in terms

of homogeneity (purity) [24]. In this term, purity is the situation that each leaf has

elements of the same class. Although this technique is generally used for classification

tasks, it can be used for regression in order to make predictions on numerical values,

also known as recursive partitioning. To define, decision tree regression is a method to

predict numeric values of a dependant variable. Instead of classifying the data, here,

objective is to minimize an optimization criterion to find the difference between target

values and means of the 2 groups recursively. To avoid overfitting, the tree is pruned

by criteria that uses tree size as a penalizing factor. So, unlike parametric models, that

calculate coefficient for input, this algorithm calculates the relative importance of the

input set, internally [25].

10

2.2.5 Random Forest Regression

Random forest classifier is an ensemble algorithm which basically reflects the

collective decision of multiple different trees. The data is distributed over that collection

of trees with bootstrapping aggregation, which randomly selects subsets of the data of

which attributes are picked with attribute bagging. Then within these subtrees, the

average of the decisions of related trees is calculated [26]. Random forests can also be

extended for the purpose of regression. Since random forests are a collection of decision

trees, the regression task runs on them. The methodology is same as explained in the

decision tree regression: calculating relative importance of predictors by converging an

optimization criterion to minimum [27].

2.2.6 k Nearest Neighbour Regression

k-nearest neighbour classification (k-NN), is based on the idea to find a target

pattern to achieve clustering in terms of labels. k-NN assigns the majority vote of the

data sample to target point [28]. This unsupervised non-parametric technique is also

extended to regression for this study. A similar approach to classification, the sample

mean (or trimmed mean, or some other statistics) of the numerical target of k nearest

neighbours is calculated with some distance function, like Euclidian, or Minkowski [29].

2.2.7 Neuro-Fuzzy Networks

As the name suggests this hybrid approach combines fuzzy logic with neural

networks. Essentially, it is a neural network whose hidden layer is a fuzzy inference

system (FIS). Such a model is trained to determine the most appropriate membership

function for the FIS [30]. The input is fuzzified by rules and mapped to a membership

function. Then the output is given out as a fuzzy set and with defuzzification unit,

converted into crisp outputs again [31]. There are two main approaches for this model,

one is Mamdani FIS, which produces an output of fuzzy set and have a substantial

11

computational burden; the other one is Sugeno FIS, which is computationally efficient

and produces linear or constant outputs [31].

2.2.8 Gaussian Process Regression

Gaussian process regression, is another non-parametric supervised algorithm.

By definition it can be summarised such that it extends Gaussian distributed multivari-

ate inputs to infinite dimensionality. Formally, a Gaussian process can be summarized

such as: a posterior data generates data, located over some prior domain such that

it follows multivariate Gaussian distribution. To describe the regression process, it is

better to understand the role of Gaussian process in mapping input and output. To

start with, the covariance of 2 observations can be shown as:

k(x, x′) = σ2
fe

[
−(x−x′)2

2l2

]
(2.1)

where l is the length value to give flexibility to this relation. And for a general

representation of observation as a function of input, it is formulated as:

y = f(x) +N(0, n2) (2.2)

where N is the noise function. To add the noise in the covariance function, Kroenecked

delta function sigma is used.

k(x, x′) = σ2
fe

[
−(x−x′

)2

2l2

]
+ σ2

nδ(x, x
′
) (2.3)

And for regression, covariance function is calculated for all possible combinations

12

of these points.

K =

k(x1, x1) . . . k(x1, xn)

...

k(xn, x1) . . . k(xn, xn)

 (2.4)

K∗ =
[
k(x∗,x1) k(x∗,x2) . . . k(x∗,xn)

]
(2.5)

K∗∗ = k(x∗, x∗) (2.6)

In GP modelling, the data can be represented as a sample of multivariate Gaus-

sian distribution which can be formulized as: y
y∗

 ∼ N
(
0,

K KT
∗

K∗ K∗∗

) (2.7)

In terms of conditional probability, it can be rewritten as:

y∗|y ∼ (K∗K
−1y,K∗∗ −K∗K−1KT

∗) (2.8)

Then the best estimation for target value is:

y∗ = K∗K
−1y (2.9)

And its variance is:

var(y∗) = K∗∗ −K∗K−1KT
∗ (2.10)

For short, GP regression defines a prior over functions, which can be converted

into a posterior over functions once we have seen some data. The Gaussian process

regression uses this mentality to produce a distribution over functions. The functions

13

mentioned here are used to generate a posterior distribution with prior distribution and

some observed training data [32]. The data is also converted via covariance functions

and used in a normal distribution to generate those functions.

2.3 Implementation Details

The collected data is split into two parts, training and test sets. The first 20

days of the dataset is used for training the model. The remaining 10 days is used for

testing. Thus, for each model the data have been split into train and test datasets with

the ratio of 67% to 33%. The aim for testing is to evaluate how well the model has

been trained with unseen data. The performances of test sets have been checked with

the RMSE between observed simulation values and predicted values. RMSE is selected

because it is more useful for the situations where larger differences are undesirable.

This is mainly because of, the square is calculated at first. It is not steady like mean

absolute error. Following testing and validations, predictions are performed over 12

and 24-hour subsets of data. Then the trained models predicted the BG values in 15,

30 and 60 minutes of PH. Prediction success is measured with root mean squared error

(RMSE).

Following the testing, validations of the models have been implemented with

K-fold cross validation technique. The dataset is split into k parts of which k-1 parts

are used for training and remaining one is used for testing. This method is repeated

for k times in a circular manner. K=3 has been selected for the number of folds. The

success criteria of the models have been measured with coefficient of determination as

the scoring parameter to observe the relation between observed values from simulation

and predicted values. According to this criterion the result can be between 0 and 1. 1

is the perfect score, and as it gets closer to 0 it indicates that the relationship between

two vectors gets weaker. If it has a negative value, it means, there is no connection

between those compared vectors.

14

2.3.1 Support Vector Regression

For this algorithm, sci-kit learn 0.19.1 library with python 3.6 is used. For

development Pycharm community edition was used as IDE. matplotlib library of python

has been used for plotting results of the model. For Support Vector Regression, SVR

class of scikit-learn library was used with the following hyper-parameters:

• kernel: RBF (radial basis function)

• C: 1000

• gamma: kernel coefficient for RBF: 0.1

• epsilon: 0.2

The data is split into 2 parts as input parameters and resulting BG value. For

each prediction horizon, BG values for 15, 30 or 60 minutes after any given time, have

been selected as the output. And for the previous 2 hours, all the features are used as

input vectors. Then the data is scaled between 0 and 1 to avoid any of the features to

suppress any other to affect the outcome significantly

2.3.2 Feed Forward Neural Network

For the implementation of the neural network, keras 2.1.1 library with python

3.6 is used. Keras is a machine learning library which runs on tensorflow, in order

to provide an abstraction over the low-level tensorflow library. The implementation

was conducted on pycharm IDE. Plotting for the visual control of predicted and actual

blood glucose, matplotlib was used. For the cross validation, KerasRegressor class of

the scikit-learn library was used.

For the sake of eliminating the effect of any of the features over any other, the

input features are scaled between 0 and 1. Feature set includes CH intake amount,

15

short and intermediate acting insulin amounts and BG values for the 120 minutes time

window. The target is the BG value in the prediction horizon.

The input layer of the neural network has 31 neutrons and has a single output.

The hidden layers visualized in Figure 2.2 has the following structure:

• Dense layer, neuron count: 31, activation function: relu()

• Dense layer, neuron count: 155, activation function: relu()

• Dense layer, neuron count: 62, activation function: relu()

The loss function for the model has been selected as MSE, because the out-

put has single output. Adam (Adaptive momentum) optimisation technique was used

because of its superior performance over other techniques, during gradient descent [33].

Figure 2.2 Schematic representation of the FFNN model layers.

2.3.3 Recurrent Neural Network (LSTM)

The implementation of this model is completed with keras 2.1.1 library with

python 3.6. For visual confirmation during development matplotlib is used and the

cross validation is completed with KerasRegressor class of the scikit-learn, as in the

FFNN development.

The same procedure applies here also. The data is split into training and test

sets and sliced into input and output with first 31 and the last columns, successively. A

distinctive property of the LSTM is that it accepts input in a 3D shape in which features

are shaped as “sequences”, “timesteps”, and “dimensions”. Sequences correspond to each

data point in the dataset. Timesteps are the sequential states that data points are

16

stored. Dimensions correspond to the properties/columns of the data points [34]. The

input features of dataset used in this study is 2D in nature. In order to convert into

the 3D shape, a dimension is added in the second axis. Thus, the data has the same

number of sequences, single time-step and same number of columns as before.

The input features picked for this algorithm are CH intake amount, short and

intermediate acting insulin amounts and BG values in 120 minutes prior to the current

timestep in the corresponding data point. In short, the same feature set with the FFNN

experiment is used. This input is sent to LSTM network via an input layer with the

shape of (1,31), corresponding to the dimensions (timesteps, dimensions). Following

layers are an LSTM layer with 62 neurons and in the same shape with input layer.

This layer propagates results with an output size of 62. The output layer has an input

size of 62 and an output size of 1. This network is visualised in Figure 2.3 for more

clear understanding.

The loss function of network is mean absolute error and Adam optimizer is used

for the sake of both performance and decreased implementation complexity.

Figure 2.3 Schematic representation of the LSTM model layers.

2.3.4 Decision Tree Regression

The implementation of the model was conducted with python 3.6 and sci-kit

learn 0.19.1. DecisionTreeRegressor class of sci-kit enables the development of this

model on a higher level.

The CH intake amount, intermediate and short acting insulin amounts and

previous BG values in 120 minutes are picked and scaled between 0 and 1. And the

last column is spared as the output vector.

17

Prepared data is used to train DecisionTreeRegression model of which maximum

depth is 60. The min_weight_fraction_leaf parameter which controls the ratio of the

sum of all weights of all inputs to be at leaves, is set to be 0.02 to keep tree size

under control. The criterion of split quality is determined by the mean squared error.

This parameter is the determiner of the split in order to achieve purity in leaves. For

classification tasks, purity means, having the same class of elements in one branch, but

for regression, it separates elements according to the averages.

2.3.5 Random Forest Regression

Instead of implementing random forest regressor by explicitly combining multi-

ple decision tree regressors, RandomForestRegressor class of sci-kit learn library was

used and it was more compact, easy and convenient. The input scaling was between

0 and 1, slicing (first 31 columns as inputs and last column as output) and splitting

were completed in the same way with other algorithm experiments.

The model is built with maximum depth of 10 and MSE as splitting criterion.

Like in the regression trees, the critical parameter here is maximum depth. The per-

formance increases as it increases, up to some point (10 for this case), because of the

overfitting.

2.3.6 k-Nearest Neighbour Regression

The implementation environment and libraries are same with the Decision Tree

Regression and Random Forest Regression. For this technique, KNeighborsRegressor

class in scikit-learn is used. This model is built with number of neighbours parameter as

10. Other significant parameters are left default. Euclidean distance metric parameter,

and uniform weights for predictions are selected. The data is scaled, sliced, and split

in the same manner with the preceding algorithms.

18

2.3.7 Neuro-Fuzzy Network (Aadaptive Neuro-Fuzzy Inference System)

Different from other techniques, MATLAB R2017a and its ANFIS library is

preferred for this part of the study. This is mainly due to lack of a reliable ANFIS

library in python and the abstraction that MATLAB provides.

The data has the same pre-processing for training-test separation and input-

output slicing as in all of the other algorithms. Grid partitioning was used as the

clustering method for defining membership functions and fuzzy rules. This method

generates membership functions for uniformly partitioned inputs and create a single-

output fuzzy system.

The ANFIS model has been trained with training set with uniform radii of 0.5

for the optimum result, after a series of experiments, which specifies the influence of

the input on data.

2.3.8 Gaussian Process Regression

This model was developed with python 3.6, sci-kit learn 0.19.1 and matplotlib

libraries. Data slicing and splitting is same with the previous models. To build the

model, GaussianProcessRegressor class of sci-kit library was used. The kernel function

for the regressor was radial basis function (RBF). In fact, RBF is the squared exponen-

tial kernel. Since data is generated via simulation, a noise kernel has not been added.

RBF is smooth in terms of distribution since it can have mean square derivatives in all

orders, The RBF parameters are:

• length_scale: The length scale of the kernel which gives flexibility for calculating

the covariance function: 10

• length_scale_bounds: sets lower and upper bound for length_scale.: 0.01, 100

19

This kernel is used as parameter for the GaussianProcessRegressor. Also, alpha

value is set to 0.15 to define a subset for the model validation.

20

3. RESULTS

For each of the models, which produced results for this study, predictions were

made over periods for 12 and 24 hours. 12 hours prediction period starts at 00:00 and

ends at 12:00 while the period that lasts 24 hours starts at 12:00 and ends at 12:00

on the next day. For both periods, trained models predicted BG values for prediction

horizons of 15, 30 and 60 minutes.

The evaluation of the models relies on predictive performances. To measure it,

the error between prediction and observed BG values from simulation are calculated

by RMSE.10 separate days of data, which is unseen by the models during training are

used. This method also helped to compare the performance of the models among each

other.

Table 3.1
Prediction errors in terms of RMSE(mg/dl) for 15 minutes prediction horizon.

Algorithm 12 hours 24 hours R2

Decision Tree Regression 1.60 ± 0.35 4.04 ± 1.84 0.97

FFNN 1.53 ± 0.68 3.22 ± 1.63 0.98

Gaussian Process Regression 0.97 ± 0.83 4.54 ± 1.72 0.97

k-NN Regression 2.75 ± 0.59 7.20 ± 2.50 0.94

Random Forest Regression 0.53 ± 0.15 2.80 ± 0.96 0.98

Recurrent Neural Network: LSTM 1.14 ± 0.77 2.56 ± 096 0.96

Support Vector Regression 0.46 ± 0.19 3.00 ± 0.94 0.98

Neuro-Fuzzy Network 0.26 ± 0.06 1.19 ± 0.32 0.99

To get a brief idea about the results, it may be concluded that, for 12 hours

which starts at midnight and ends at noon, all models have better results. That is due

to the absence of noisy effect of the carbohydrate and insulin. Since the BG values do

not quickly respond to those inputs, it is hard for models to predict their effects. This

leads predictions that spread to 24 hours to have worse predictive power as expected.

21

Table 3.2
Performing times of predictions of 15 minutes in seconds during 12 and 24 hours of prediction

periods.

Algorithm 12 hours 24 hours

Decision Tree Regression 0.00035 0.00042

FFNN 0.00096 0.00126

Gaussian Process Regression 0.26568 3.45250

k-NN Regression 0.00340 0.00583

Random Forest Regression 0.00138 0.00078

Recurrent Neural Network: LSTM 0.00109 0.00167

Support Vector Regression 0.00336 0.00559

Neuro-Fuzzy Network 0.00111 0.00129

For the 24 hours case, the prediction set starts at 12:00 and ends at 12:00, on the next

day. The prediction power gets poorer during the active time between 13:00 and 20:00.

Analysing the effects of prediction horizons, it is shown that as the prediction

horizon increases the RMSE increases and coefficient of determination decreases, from

15 minutes to 60 minutes. Those can be observed better in Table 3.1, 3.3 and 3.5.

To investigate results more closely, for all of the prediction horizons, ANFIS has

the best results for the dataset prepared in this study. As a numerical performance,

it scored with RMSE values of 0.26mg/dl, 2.19mg/dl for 15 minutes. The result pair

for 30 minutes and 60 minutes of prediction horizons are 0.60mg/dl & 2.53mg/dl and

1.56mg/dl & 5.81mg/dl respectively. These are best results among all of the algorithms.

This algorithm has the best r-squared error value of 0.99 for 15 and 30 minutes PH,

and 0.95 for 60 minutes PH.

This carefully extracted data with certain conditions have been the basis for our

study. To point the significance of the influence of the conditions, a random amount

of carbohydrates and absence of insulin occasionally were used to create an alternative

dataset. This distorted dataset has been subject to algorithms developed in this study.

22

Table 3.3
Prediction errors in terms of RMSE(mg/dl) for 30 minutes prediction horizon.

Algorithm 12 hours 24 hours R2

Decision Tree Regression 2.24 ± 1.03 6.78 ± 2.42 0.93

FFNN 1.43 ± 0.77 4.97 ± 2.00 0.95

Gaussian Process Regression 1.35 ± 0.98 5.03 ± 2.08 0.95

k-NN Regression 2.79 ± 1.09 8.97 ± 2.82 0.91

Random Forest Regression 1.45 ± 0.71 3.81 ± 1.81 0.96

Recurrent Neural Network: LSTM 1.88 ± 0.50 3.99 ± 1.85 0.94

Support Vector Regression 0.84 ± 0.39 5.19 ± 2.15 0.96

Neuro-Fuzzy Network 0.60 ± 0.14 2.53 ± 0.45 0.99

The results of these can be viewed in Table 3.7.

Calculating RMSE to observe the performance of models is useful for evaluating

them. In addition, certain statistics are used to measure the reliability of the results.

The reliability refers to the compliance of predictions with blood glucose meters. For

this purpose, mean absolute relative difference (MARD) and correlation coefficient are

calculated. Also, Clarke's error grid analysis is performed to test this compliance.

Clarke's error grid analysis is a tool produced to measure reliability of BG predictions.

Table 3.8 - 3.13 gives information about EGA outputs in terms of accurate readings

(AR), benign errors (BE), and erroneous errors (EE), MARD and CC.

The results of our study are compared to the results obtained from the stress

test data to see the limitations of our models. For prediction duration of 12 hours, the

accuracy order had minor changes. As seen in Figure 3.49, ANFIS still has the best

accuracy, however random forest regression performed very poorly. This alteration lost

its effect on 24-hour predictions as can be seen in Figure 3.50. ANFIS still has the best

result and followed by FFNN, GPR and SVR.

Prediction times of algorithms were compared as another criterion of perfor-

mance. As seen in Table 3.2, 3.4, and 3.6 DTR has the best results. It is notifiable

23

Table 3.4
Performing times of predictions of 30 minutes in seconds during 12 and 24 hours of prediction

periods..

Algorithm 12 hours 24 hours

Decision Tree Regression 0.00036 0.00011

FFNN 0.00071 0.00113

Gaussian Process Regression 0.28525 0.24094

k-NN Regression 0.0031 0.00771

Random Forest Regression 0.00143 0.00161

Recurrent Neural Network: LSTM 0.00110 0.00164

Support Vector Regression 0.00331 0.00642

Neuro-Fuzzy Network 0.00099 0.00154

that ANFIS has the second-best time and combining this with its accuracy, this al-

gorithm stands out. On the other hand, Gaussian process regression has the worst

time in all prediction horizons for both 12 and 24 hours periods. This is due to the

nature of the model: it tries to find the best distribution of functions, and it is also

non-parametric.

24

Table 3.5
Prediction errors in terms of RMSE(mg/dl) for 60 minutes prediction horizon.

Algorithm 12 hours 12 hours R2

Decision Tree Regression 3.73 ± 1.64 13.08 ± 3.38 0.83

FFNN 3.15 ± 0.98 8.31 ± 2.71 0.88

Gaussian Process Regression 2.12 ± 0.84 8.49 ± 2.72 0.89

k-NN Regression 2.84 ± 1.07 12.81 ± 3.40 0.82

Random Forest Regression 1.79 ± 1.18 10.06 ± 3.01 0.90

Recurrent Neural Network: LSTM 3.02 ± 1.28 7.69 ± 2.65 0.85

Support Vector Regression 1.75 ± 1.11 6.34 ± 2.03 0.89

Neuro-Fuzzy Network 1.56 ± 0.49 5.81 ± 2.01 0.95

Table 3.6
Performing times of predictions of 60 minutes in seconds during 12 and 24 hours of prediction

periods.

Algorithm 12 hours 24 hours

Decision Tree Regression 0.00015 0.00012

FFNN 0.00078 0.00108

Gaussian Process Regression 0.25854 0.24542

k-NN Regression 0.00432 0.00655

Random Forest Regression 0.00299 0.00302

Recurrent Neural Network: LSTM 0.00112 0.00169

Support Vector Regression 0.00678 0.00350

Neuro-Fuzzy Network 0.00115 0.00134

25

Figure 3.1 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using ANFIS.

Figure 3.2 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using ANFIS.

26

Figure 3.3 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using decision tree regression.

Figure 3.4 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using decision tree
regression.

27

Figure 3.5 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using FFNN.

Figure 3.6 Predicting BG values 15 minutes ahead from 00:00 to 00:00 in next day using FFNN.

28

Figure 3.7 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using Gaussian process
regression.

Figure 3.8 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using Gaussian
process regression.

29

Figure 3.9 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using k-NN regression.

Figure 3.10 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using k-NN
regression.

30

Figure 3.11 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using random forest regres-
sion.

Figure 3.12 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using random
forest regression.

31

Figure 3.13 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using LSTM.

Figure 3.14 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using LSTM.

32

Figure 3.15 Predicting BG values 15 minutes ahead from 00:00 to 12:00 using support vector
regression.

Figure 3.16 Predicting BG values 15 minutes ahead from 00:00 to 00:00 next day using support
vector regression.

33

Figure 3.17 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using ANFIS.

Figure 3.18 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using ANFIS.

34

Figure 3.19 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using decision tree regression.

Figure 3.20 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using decision
tree regression.

35

Figure 3.21 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using FFNN.

Figure 3.22 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using FFNN.

36

Figure 3.23 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using Gaussian processreg
ression.

Figure 3.24 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using Gaussian
process regression.

37

Figure 3.25 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using k-NN regression.

Figure 3.26 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using k-NN
regression.

38

Figure 3.27 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using random forest regres-
sion.

Figure 3.28 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using random
forest regression.

39

Figure 3.29 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using LSTM.

Figure 3.30 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using LSTM.

40

Figure 3.31 Predicting BG values 30 minutes ahead from 00:00 to 12:00 using support vector
regression.

Figure 3.32 Predicting BG values 30 minutes ahead from 00:00 to 00:00 next day using support
vector regression.

41

Figure 3.33 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using ANFIS.

Figure 3.34 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using ANFIS.

42

Figure 3.35 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using decision tree regression.

Figure 3.36 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using decision
tree regression.

43

Figure 3.37 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using FFNN.

Figure 3.38 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using FFNN.

44

Figure 3.39 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using Gaussian process
regression.

Figure 3.40 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using Gaussian
process regression.

45

Figure 3.41 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using k-NN regression.

Figure 3.42 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using k-NN
regression.

46

Figure 3.43 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using random forest regres-
sion.

Figure 3.44 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using random
forest regression.

47

Figure 3.45 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using LSTM.

Figure 3.46 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using LSTM.

48

Figure 3.47 Predicting BG values 60 minutes ahead from 00:00 to 12:00 using support vector
regression.

Figure 3.48 Predicting BG values 60 minutes ahead from 00:00 to 00:00 next day using support
vector regression.

49

Table 3.7
The prediction errors of algorithms in RMSE (mg/dl) on 60 minutes prediction horizon with stress

test data.

Algorithm 12 hours 24 hours R2

Decision Tree Regression 22.05 27.13 0.79

FFNN 11.27 18.64 0.77

Gaussian Process Regression 11.89 19.30 0.87

k-NN Regression 26.02 32.87 0.78

Random Forest Regression 18.36 26.10 0.91

Recurrent Neural Network: LSTM 12.60 19.80 0.85

Support Vector Regression 12.49 20.37 0.88

Neuro-Fuzzy Network 9.78 14.88 0.90

Table 3.8
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 15 minutes

ahead, during 12 hours period.

Algorithms AR BE MARD CC

DTR 100% 0% 1.37% 0.99774

FFNN 100% 0% 0.92% 0.99957

GPR 100% 0% 0.86% 0.99929

k-NNR 100% 0% 0.98% 0.99610

RFR 100% 0% 0.37% 0.99976

RNN 100% 0% 1.31% 0.99953

SVR 100% 0% 0.42% 0.99982

ANFIS 100% 0% 0.28% 0.99994

50

Table 3.9
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 15 minutes

ahead, during 24 hours period.

Algorithms AR BE MARD CC

DTR 100% 0% 2.92% 0.98944

FFNN 100% 0% 3.43% 0.99527

GPR 100% 0% 2.27% 0.99268

k-NNR 100% 0% 4.03% 0.98088

RFR 100% 0% 1.80% 0.99508

RNN 100% 0% 1.82% 0.99563

SVR 100% 0% 1.81% 0.99471

ANFIS 100% 0% 0.91% 0.99908

Table 3.10
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 30 minutes

ahead, during 12 hours period.

Algorithms AR BE MARD CC

DTR 100% 0% 1.96% 0.99680

FFNN 100% 0% 1.06% 0.99926

GPR 100% 0% 1.17% 0.99876

k-NNR 100% 0% 1.09% 0.99615

RFR 100% 0% 0.78% 0.99835

RNN 100% 0% 2.02% 0.99885

SVR 100% 0% 0.76% 0.99947

ANFIS 100% 0% 0.60% 0.99973

51

Table 3.11
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 30 minutes

ahead, during 24 hours period.

Algorithms AR BE MARD CC

DTR 98.958% 1.041% 4.39% 0.97163

FFNN 100% 0% 3.08% 0.98702

GPR 100% 0% 3.40% 0.98426

k-NNR 98.958% 1.041% 4.98% 0.96824

RFR 100% 0% 2.51% 0.99072

RNN 100% 0% 2.77% 0.98920

SVR 100% 0% 3.22% 0.98444

ANFIS 100% 0% 1.90% 0.99585

Table 3.12
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 30 minutes

ahead, during 12 hours period.

Algorithms AR BE MARD CC

DTR 100% 0% 2.95% 0.99083

FFNN 100% 0% 1.91% 0.99684

GPR 100% 0% 2.05% 0.99791

k-NNR 100% 0% 1.32% 0.99679

RFR 100% 0% 1.14% 0.99777

RNN 100% 0% 3.19% 0.99811

SVR 100% 0% 1.60% 0.99803

ANFIS 100% 0% 0.28% 0.99994

52

Table 3.13
Clarke’s error grid analysis, MARD AND CC values of algorithms for predictions of 30 minutes

ahead, during 24 hours period.

Algorithms AR BE MARD CC

DTR 95.833% 4.166% 8.62% 0.89537

FFNN 96.875% 3.125% 6.67% 0.94366

GPR 97.916% 2.083% 5.97% 0.95364

k-NNR 98.958% 1.041% 7.26% 0.92988

RFR 95.833% 4.166% 5.77% 0.93892

RNN 97.916% 2.083% 4.65% 0.95983

SVR 97.916% 2.083% 6.34% 0.94135

ANFIS 98.958% 1.041% 0.91% 0.99908

Figure 3.49 Comparison of Prediction Error During 12 Hours of Prediction for Ordinary Data vs
Stress-Test Data.

53

Figure 3.50 Comparison of Prediction Error During 24 Hours of Prediction for Ordinary Data vs
Stress-Test Data.

54

4. DISCUSSION

In this study, the recent literature and machine learning applications on blood

glucose prediction have been reviewed. We compared those machine learning algo-

rithms among themselves with the input, fed from simulation program AIDA. The

data consisted of CH intake amount, insulin intake amount, and blood glucose mea-

surements from the simulator.

All models have good scores for nocturnal periods, however as the results are

further investigated, ANFIS, support vector regression and random forest regression

have the best results among others. And as the prediction period spreads out to 24

hours, the prediction power decreases. This decrease also occurs in the increase of

prediction horizon.

In order to see the comparison of the algorithms among each other, grouping

will provide a lot of help. Structurally, they can be divided into parametric and,

non-parametric algorithms. Parametric algorithms are neural network type of algo-

rithms, RNN, FFNN and ANFIS. k-NN regression, decision tree regression, random

forest regression, Gaussian process regression and SVR are non-parametric algorithms.

Parametric algorithms are briefly the ones that have finite number of parameters, or

parameters are not influenced by the distribution of data. On the contrary, non-

parametric models do not meet those conditions.

Among the parametric models, neural networks, ANFIS have the best result

because of the learning method. Instead of optimising learning parameters on nodes,

using fuzzy logic rules to learn, leads to faster convergence of model on training data.

Although this model has an asymptotic O(n) time complexity, it has an exponential

spatial complexity, which makes it very demanding in terms of memory. LSTM and

FFNN has better spatial complexity than ANFIS, however worse time complexityO(n2)

where n roughly denotes to number of nodes.

55

Non-parametric models have their best results with SVR followed by random

forest regression. Although random forest regression provides a powerful prediction

performance, it loses its effectiveness on unseen target values and inputs. This is why

it was outperformed by SVR. SVR also had better accuracy than another method

that employs RBF as kernel, Gaussian prediction regressor. This is mainly because

of that the Gaussian process regression produces some randomisation over the model

parameters given the input data, which is not suitable for the simulation data which

has no noise. Comparing SVR to k-NN regression, k-NN had higher errors in predic-

tions. Although it is a powerful regression method, this poor accuracy is caused by

the dimensionality of the data which is high for k-NN to fit well. The reason that

SVM performed better in prediction times is because of its computational complexity

compared to Gaussian process regression, O(n2) and O(n3) respectively.

We presented a way to compare algorithms on a unified simulation dataset for

specific patients. The good sides of using simulation data can be listed as follows:

1. Provides simplicity and increases accuracy by eliminating external factors like:

stress, exercise, illness, pregnancy and glucose detector noise

2. AIDA allows fast and easy BGL data extraction

3. Helps to encourage perform in-silico testing with different patient cases, and

clinical trial with real patient data will be warranted.

Besides the simulation advantages, this study has its strengths in:

1. Providing selection criteria for ML algorithms by generating accuracy and run-

time analytics of several algorithms.

2. Applying different prediction horizons, prediction periods, reliability metrics on

an extended number of algorithms will provide a management mechanism for the

patients using CGMs

56

3. Comparison of parametric, non-parametric and neural network algorithms for

patient specific cases.

The standardization of the data has its advantage in providing a distribution

of BG values with a pattern. To investigate the effect of this standardization and

pattern on the algorithms, we also made a sample run with stress test data with a 60

minutes PH. According to this experiment, as can be seen in Table 3.7, the order of the

performance of the algorithms have not changed except for random forest regression.

This is due to the tree based algorithms are not accurate with outlier data. Also

there has been a visible loss in prediction accuracy. The decrease in accuracy indicate

that using simulation data for patient specific cases, makes it easier to monitor BG

fluctuations and make better predictions.

In order to prove that the results produced by the models comply with the blood

glucose meter standards, MARD, and EGA results are investigated and reflected in

Table 3.8 - 3.13. According to these results, accurate readings must be over 95% and

MARD values must not exceed 10% [35] - [36]. Predictions of 15 minutes ahead for all

models have AR of 100%. Decision tree regression and k-NN regression has the worst

AR for 30 and 60 minutes predictions as expected. Same applies to MARD also.

However, it is a setback that this study could not be extended to real world data

and extra features (physical activity, stress level, etc.), although this is not the scope

for simulation dataset. Another point might be missed through this study is that the

frequency of the blood glucose measurements. Conventional CGMs take measurements

with 5 minutes, and our simulation produces measurements in every 15 minutes. Also,

the simulation cannot generate data with effects like physiological factors, pregnancy

etc.

We aimed to keep development platforms same for all of the algorithms. How-

ever, absence of a useful library for ANFIS in python, has directed us to use MATLAB

and its neuro-fuzzy network library to accomplish this task. Since libraries are ab-

57

straction over the actual algorithms, developer can only fine-tune hyperparameters.

Thus, there remains a blank point in equalizing the computing conditions on which

algorithms run.

Comparing our study to its inspiring pioneers [4] - [7] - [11], we have expanded

the covering area with number and diversity of algorithms. We also improved the

results in terms of accuracy. Our study has better results compared to real world

patient data studies as expected. For support vector machine regression, in the 60

minutes prediction horizon, best acquired result is 7.14mg/dl in terms of RMSE [3].

For this algorithm our study has RMSE of 6.34 mg/dl. However, our study had worse

performance compared to a similar study over AIDA with recurrent neural networks,

with 3.02mg/dl to 2.70mg/dl in terms of RMSE. And the ANFIS model as a neuro-

fuzzy network has better performance than the wavelet fuzzy neural network for 30

minutes PH where we predicted 2.53 mg/dl and Pappada et al. predicted with RMSE

of 15.64mg/dl. For 60 minutes PH, the RMSE results are 5.81 mg/dl (ANFIS) to 25.5

mg/dl (WFNN) [11]. For FFNN, our study also has the better result than real world

examples [5] - [6] - [11].

Our comparison study has been able to produce outcomes for the blood glucose

prediction along with the increasing interest in machine learning. The findings can be

listed as:

1. Running machine learning algorithms on data generated from AIDA is applicable

for in silico studies. This will work as a preliminary test for the real-world cases.

2. This paper suggested a lookup mechanism for the feature selection and model

building guide for the predictive studies.

3. Proving the fact that using Gaussian process regression as a supervised machine

learning model with multivariate inputs. Showing that it can compete with other

algorithms in terms of accuracy is also encouraging for future use.

58

We are also able to make a contribution to clinicians who are working over T1DM

patients by providing a BG prediction tool to foresee the situation of the patients. In a

practical approach, the results of this study help patients by predicting their BG values

given their food and insulin intakes. This will alert patients before having serious

consequences caused by hypoglycaemia or hyperglycaemia, and also direct them to

manage their lifestyles better.

For the future studies, models we investigated might be extended to real world

data, as it is the biggest disadvantage of this study. Thus, the effect of new features

on models could be observed. Since our main concern is making a comparison with

common machine learning techniques, a platform which will present every model and

their results, according to prediction horizon and feature set would be useful for the

researchers in this domain. Also future researchers who want to benefit from this study

should use it not only as a look-up table but also a way to use synthetic data for this

domain.

Similar review studies are either comparing certain algorithms or compilation of

several studies on blood glucose prediction. Combining and getting beyond both ap-

proaches, we both reproduced techniques used on recent studies with simulation dataset

and compared them to original results for short term predictions. For the practical use

of the patients, they can make predictions over given prediction horizons and take

precautions for hypoglycaemic and hyperglycaemic situations before occurring.

59

5. CONCLUSION

Following our experiments and results we reached multiple conclusions. One of

them is that using AIDA for blood glucose prediction gave out similar results to studies

that use real world values. Comparing the machine learning algorithms in this study, we

have found out that ANFIS is the best algorithm in terms of accuracy performance and

decision tree regression is the fastest in predicting time due to its structure that holds

predefined averages in leaves. In order to test the limits of the models built, we trained

them with a dataset which has immediate changes and contains extreme cases, and

observed that, although the prediction errors have increased, the order of performance

did not change. Considering these we get to the point that using such a simulator with

regression models is an appropriate approach for blood glucose prediction domain.

Furthermore the outcomes of this study has been narrowed to comparison of GPR and

SVR and submitted to ICIETS2018 conference to be held in Karnaraka India [37].

60

REFERENCES

1. Eren-Oruklu, M., A. Cinar, L. Quinn, and D. Smith, “Estimation of future glucose con-
centrations with subject-specific recursive linear models,” Diabetes Technology & Thera-
peutics, Vol. 11, no. 4, pp. 243–253, 2009.

2. Huzooree, G., K. K. Khedo, and N. Joonas, “Glucose prediction data analytics for diabetic
patients monitoring,” in Next Generation Computing Applications (NextComp), 2017 1st
International Conference on, pp. 188–195, IEEE, 2017.

3. Georga, E. I., V. C. Protopappas, D. Ardigò, M. Marina, I. Zavaroni, D. Polyzos, and
D. I. Fotiadis, “Multivariate prediction of subcutaneous glucose concentration in type 1
diabetes patients based on support vector regression,” IEEE Journal of Biomedical and
Health Informatics, Vol. 17, no. 1, pp. 71–81, 2013.

4. Reymann, M. P., E. Dorschky, B. H. Groh, C. Martindale, P. Blank, and B. M. Es-
kofier, “Blood glucose level prediction based on support vector regression using mobile
platforms,” in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th
Annual International Conference of the, pp. 2990–2993, IEEE, 2016.

5. Pappada, S. M., B. D. Cameron, P. M. Rosman, R. E. Bourey, T. J. Papadimos,
W. Olorunto, and M. J. Borst, “Neural network-based real-time prediction of glucose in
patients with insulin-dependent diabetes,” Diabetes Technology & Therapeutics, Vol. 13,
no. 2, pp. 135–141, 2011.

6. Zecchin, C., A. Facchinetti, G. Sparacino, and C. Cobelli, “How much is short-term
glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content
information to cgm data? a proof-of-concept study,” Journal of Diabetes Science and
Technology, Vol. 10, no. 5, pp. 1149–1160, 2016.

7. Robertson, G., E. D. Lehmann, W. Sandham, and D. Hamilton, “Blood glucose prediction
using artificial neural networks trained with the aida diabetes simulator: a proof-of-
concept pilot study,” Journal of Electrical and Computer Engineering, Vol. 2011, p. 2,
2011.

8. Kavakiotis, I., O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda,
“Machine learning and data mining methods in diabetes research,” Computational and
Structural Biotechnology Journal, Vol. 15, pp. 104–116, 2017.

9. Oviedo, S., J. Vehí, R. Calm, and J. Armengol, “A review of personalized blood glucose
prediction strategies for t1dm patients,” International Journal for Numerical Methods in
Biomedical Engineering, Vol. 33, no. 6, 2017.

10. Plis, K., R. C. Bunescu, C. Marling, J. Shubrook, and F. Schwartz, “A machine learning
approach to predicting blood glucose levels for diabetes management.,” in AAAI Work-
shop: Modern Artificial Intelligence for Health Analytics, no. 31, pp. 35–39, 2014.

11. Zarkogianni, K., K. Mitsis, E. Litsa, M.-T. Arredondo, G. Fico, A. Fioravanti, and K. S.
Nikita, “Comparative assessment of glucose prediction models for patients with type 1
diabetes mellitus applying sensors for glucose and physical activity monitoring,” Medical
& Biological Engineering & Computing, Vol. 53, no. 12, pp. 1333–1343, 2015.

12. Lehmann, E., and T. Deutsch, “Aida2: A mk. ii automated insulin dosage advisor,”
Journal of Biomedical Engineering, Vol. 15, no. 3, pp. 201–211, 1993.

61

13. Lehmann, E., and T. Deutsch, “A physiological model of glucose-insulin interaction in
type 1 diabetes mellitus,” Journal of Biomedical Engineering, Vol. 14, no. 3, pp. 235–242,
1992.

14. Lehmann, E. D., “Experience with the internet release of aida v4. 0-http://www. diabetic.
org. uk/aida. htm-an interactive educational diabetes simulator,” Diabetes Technology &
Therapeutics, Vol. 1, no. 1, pp. 41–54, 1999.

15. Lehmann, E., and T. Deutsch, “A physiological model of glucose-insulin interaction,” in
Engineering in Medicine and Biology Society, 1991. Vol. 13: 1991., Proceedings of the
Annual International Conference of the IEEE, pp. 2274–2275, IEEE, 1991.

16. Lehmann, E., I. Hermanyi, and T. Deutsch, “Retrospective validation of a physiological
model of glucose-insulin interaction in type 1 diabetes mellitus,” Medical Engineering &
Physics, Vol. 16, no. 3, pp. 193–202, 1994.

17. Hornik, K., D. Meyer, and A. Karatzoglou, “Support vector machines in r,” Journal of
statistical software, Vol. 15, no. 9, pp. 1–28, 2006.

18. Smola, A. J., and B. Schölkopf, “A tutorial on support vector regression,” Statistics and
Computing, Vol. 14, no. 3, pp. 199–222, 2004.

19. vanGerven, M., and S. Bohte, “Artificial neural networks as models of neural information
processing: Editorial on the research topic artificial neural networks as models of neural
information processing,” Frontiers in Computational Neuroscience, Vol. 11, p. 114, 2017.

20. Schmidhuber, J., “Deep learning in neural networks: An overview,” Neural Networks,
Vol. 61, pp. 85–117, 2015.

21. Svozil, D., V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer feed-forward neural
networks,” Chemometrics and Intelligent Laboratory Systems, Vol. 39, no. 1, pp. 43–62,
1997.

22. Graves, A., M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A
novel connectionist system for unconstrained handwriting recognition,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 31, no. 5, pp. 855–868, 2009.

23. Gers, F. A., J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction
with lstm,” Neural Computation, Vol. 12, no. 10, pp. 2451–2471, 2000.

24. Friedl, M. A., and C. E. Brodley, “Decision tree classification of land cover from remotely
sensed data,” Remote Sensing of Environment, Vol. 61, no. 3, pp. 399–409, 1997.

25. Rathore, S. S., and S. Kumar, “A decision tree regression based approach for the number
of software faults prediction,” ACM SIGSOFT Software Engineering Notes, Vol. 41, no. 1,
pp. 1–6, 2016.

26. Pal, M., “Random forest classifier for remote sensing classification,” International Journal
of Remote Sensing, Vol. 26, no. 1, pp. 217–222, 2005.

27. Adusumilli, S., D. Bhatt, H. Wang, P. Bhattacharya, and V. Devabhaktuni, “A low-cost
ins/gps integration methodology based on random forest regression,” Expert Systems with
Applications, Vol. 40, no. 11, pp. 4653–4659, 2013.

28. Kramer, O., “K-nearest neighbors,” in Dimensionality Reduction with Unsupervised Near-
est Neighbors, pp. 13–23, Springer, 2013.

62

29. Altman, N. S., “An introduction to kernel and nearest-neighbor nonparametric regression,”
The American Statistician, Vol. 46, no. 3, pp. 175–185, 1992.

30. Abraham, A., “Adaptation of fuzzy inference system using neural learning,” in Fuzzy
Systems Engineering, pp. 53–83, Springer, 2005.

31. Jang, J.-S., “Anfis: adaptive-network-based fuzzy inference system,” IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 23, no. 3, pp. 665–685, 1993.

32. Ebden, M., et al., “Gaussian processes for regression: A quick introduction,” The Website
of Robotics Research Group in Department on Engineering Science, University of Oxford,
2008.

33. Kingma, D. P., and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

34. Greff, K., R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “Lstm:
A search space odyssey,” IEEE Transactions on Neural Networks and Learning Systems,
Vol. 28, no. 10, pp. 2222–2232, 2017.

35. Parkes, J. L., S. L. Slatin, S. Pardo, and B. H. Ginsberg, “A new consensus error grid to
evaluate the clinical significance of inaccuracies in the measurement of blood glucose.,”
Diabetes Care, Vol. 23, no. 8, pp. 1143–1148, 2000.

36. Bailey, T. S., “Clinical implications of accuracy measurements of continuous glucose sen-
sors,” Diabetes Technology & Therapeutics, Vol. 19, no. S2, pp. S–51, 2017.

37. Doğugün Özkaya, A. G., “Using simulation generated synthetic data for benchmark testing
of blood glucose prediction algorithms,” Submitted to IEEE Sponsored Innovations in
Engineering, Technology and Sciences, ICIETS2018 conference to be held in Karnaraka
India, on dates 20th-21st September 2018, 2018.

