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ABSTRACT

MAGNETIC RESONANCE IMAGING BASED
DIFFERENTIAL DIAGNOSIS AND PROGNOSIS OF MILD
COGNITIVE IMPAIRMENT IN PARKINSON’S DISEASE

USING MACHINE LEARNING

Parkinson’s disease mild cognitive impairment (PD-MCI), which is one of the

major risk factors for dementia, is present in 26.7% of PD patients. In this study,

we classified PD-MCI, cognitively normal Parkinson’s disease (PD-CN) and healthy

control (HC) groups based on multimodal magnetic resonance imaging (MRI) using

machine learning methods. We also investigated time dependent changes in PD-MCI

patients through a longitudinal study. 33 PD-MCI, 27 PD-CN and 17 HC participated

in this study. The participants were diagnosed by neurologists according to the neu-

ropsychological test scores and physical examination results. MRI data was obtained

at a 3T Philips clinical MR scanner using a 32-channel head coil. Mean cerebral blood

flow (CBF), arterial blood volume (aBV) and bolus arrival time (BAT) maps obtained

from arterial spin labeling MRI (ASL-MRI), fractional anisotropy (FA) and mean diffu-

sivity (MD) maps obtained from diffusion tensor imaging (DTI), and metabolite peak

ratios obtained from proton MR spectroscopic imaging (1H-MRSI) at various brain

regions were used as features. Various machine learning methods were employed with

appropriate hyperparameters. Random forest recursive feature elimination (RF-RFE)

technique was used for feature selection. For longitudinal analysis, linear mixed ef-

fects model was utilized with age, education, gender, visuospatial disorder status, and

genotype as covariants. The best classification accuracies were 77% for PD-MCI versus

HC, 71% for PD-MCI versus PD-CN, and 86% for PD-CN versus HC. Machine learning

based on multimodal MRI might be helpful in early diagnosis of PD-MCI. Reduced

aBV and FA, and higher MD values were observed in time in PD-MCI. Future studies

will aim to improve the classification of PD-MCI in a larger patient cohort.

Keywords: Parkinson’s disease, mild cognitive impairment, multimodal MRI, ma-

chine learning, lineer mixed effects model.
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ÖZET

PARKİNSON HASTALIĞI HAFİF KOGNİTİF
BOZUKLUĞUNUN MANYETİK REZONANS

GÖRÜNTÜLEME TEMELLİ MAKİNE ÖĞRENME
YÖNTEMLERİYLE TANISI VE PROGNOZU

Parkinson hastalığı hafif kognitif bozukluğu (PH-HKB) demans için büyük

bir risk faktörüdür ve PH’nin %26.7’sinde bulunur. Bu çalışmada, makine öğrenme

yöntemleri kullanılarak Parkinson hastalığı hafif bilişsel bozukluğu (PH-HKB), bilişsel

olarak normal Parkinson hastalığı (PH-KN) ve sağlıklı kontrol (SK) grupları multi-

modal manyetik rezonans görüntülemeye (MRG) dayalı sınıflandırılmıştır. Ek olarak,

boylamsal çalışma ile PD-HKB hastalarında zaman içinde meydana gelen değişiklikler

bulunmuştur. Çalışmaya 33 PH-HKB, 27 PH-KN ve 17 SK katılmıştır. Nöropsikolojik

test ve muayene sonuçlarına göre katılımcılara nörologlar tarafından tanı konulmuş-

tur. MRG verileri, 32 kanallı kafa bobini kullanılarak 3T Philips klinik MR siste-

minde alınmıştır. Atardamar fırıl etiketleme (ASL) yönteminden elde edilen serebral

kan akışı (SKA), atardamar kan hacmi (aKH) ve kan ulaşma zamanı (KUZ) verileri,

difüzyon tensör görüntülemeden (DTG) elde edilen fraksiyonel anizotropi (FA) ve orta-

lama difüzivite (MD) verileri, proton MR spektroskopik görüntülemeden (1H-MRSG)

elde edilen metabolit pik oranları makine öğrenme yöntemlerinde öznitelik olarak kul-

lanılmıştır. Rassal ormanlar kullanarak özçağrılı öznitelik seçimi yapılmıştır. Boylam-

sal analiz için lineer karma model kullanılmıştır ve yaş, eğitim, cinsiyet, genetik bilgileri

ve vizyospasyal bozukluk durumu kovaryant olarak kullanılmıştır. En iyi sınıflandırma

doğrulukları, SK ve PH-HKB için % 77, PH-HKB ve PH-KN için % 71, SK ve PH-

KN için % 86 olarak bulunmuştur. Multimodal MRG verilerine dayalı makine öğren-

mesinin PH-HKB’nin erken tanısında yardımcı olabileceği düşünülmüştür. İlerideki

çalışmalarda, daha büyük hasta popülasyonlarında multimodal MRG temelli PH-HKB

sınıflandırmasının iyileştirilmesi hedeflenmektedir.

Anahtar Sözcükler: Parkinson hastalığı, hafif kognitif bozukluk, multimodal MRG,

makine öğrenme, lineer karma modeller
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1. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disease and it has

both motor and non-motor symptoms [1]. It is the second most common age related

neurodegenerative disease after Alzheimer’s disease (AD). It is estimated that seven

to ten million people worldwide have PD [2]. The disease appears mostly over the age

of 60 years and it is more frequent in men [3]. Motor symptoms of PD involve rest-

ing tremor, rigidity, bradykinesia and postural instability [4]. In U.S. average direct

national cost per PD patient was $22,800 in 2010 and indirect costs (e.g., reduced em-

ployment) were estimated as $10,000 per patient [5]. Mild Cognitive Impairment (MCI)

is an intermediate stage between cognitively normal and dementia patients [6]. It may

include more severe problems with memory, language, judgment, and thinking than

normal age related changes. 26.7% of PD patients meet the criteria for PD-MCI with

a majority going on to develop Parkinson’s disease dementia (PDD) [7]. Medications

are available to treat the symptoms of the disease but unfortunately, a treatment to re-

verse the disease’s effects is unknown. Early detection of the patients who will develop

dementia is important in order to start suitable treatment to slow down the progression

to dementia. Magnetic resonance imaging (MRI) is a non-invasive volumetric imaging

method that doesn’t use ionizing radiation. A single MR scanner can provide both

anatomical and functional details of the tissue of interest by performing more than

one MR modality, such as, functional MRI (fMRI), proton MR spectroscopic imag-

ing (1H-MRSI), arterial spin labeling MRI (ASL-MRI), diffusion tensor MRI (DTI),

T1-weighted and T2-weighted MRI. 1H-MRSI gives information about metabolites of

the brain. In many brain diseases, differences in the levels of these metabolites and/or

their ratios provide diagnostic information. ASL-MRI technique gives details of tissue

perfusion in the brain by labeling the intrinsic diffusible tracer [8]. By the help of

this technique, we get information about cerebral blood flow (CBF), bolus arrival time

(BAT) and arterial blood volume (aBV). DTI gives us information about white mat-

ter connectivity patterns in the brain obtained using the diffusion anisotropy and the

principal diffusion directions [9]. Degree of anisotropy of the diffusion process called
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fractional anisotropy (FA) and measure of the total diffusion within a voxel called mean

diffusivity (MD) maps are obtained from DTI. Machine learning (ML) is the scientific

discipline focusing on how computers learn from data. Usually it is classified into

two branches as supervised and unsupervised learning. ML is being used increasingly

in biomedical science and medicine in classification of patients [10]. Some ML tech-

niques that are used in many research are logistic regression, support vector machines

(SVM), decision trees and k nearest neighbor classifiers (KNN). In this research, we

employed processed multimodal MRI data as predictors to train many types of the

classifiers. In biomedical research, repeated measurements of multiple outcomes are

frequent. Repeated measurements of the same object over time (longitudinal analy-

sis) are correlated to each other. Different types of measurements of the same data

(multivariate analysis) are also correlated to each other. Therefore these correlations

should be taken into account when conducting statistical analysis of multivariate lon-

gitudinal data [11]. In our study, we used multivariate longitudinal data coming from

different MRI modalities measured at two time points that are 1.5 years apart. We

conducted multivariate longitudinal data analysis by using linear mixed effects models

and Wilcoxon signed rank test. In this project, we collected data of cognitively normal

PD (PD-CN), PD-MCI and HC groups using multimodal MRI techniques. Our first

purpose was the classification of PD-MCI, PD-CN and HC with high specificity and

sensitivity based on multimodal MRI data (1H-MRSI, CBF, aBV, BAT, FA, MD). Our

second purpose was the longitudinal analysis of MRI data and neuropsychological test

results to detect changing patterns in PD-MCI.
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2. BACKGROUND

2.1 Parkinson’s Disease

2.1.1 Pathophysiology

Neurons in some regions of substantia nigra producing dopamine diminish in PD

[12]. Dopamine is a neurotransmitter regulating motor functions, hence diminishing

dopaminergic neurons leads to motor dysfunctions in patients. Deprivation of these

dopaminergic neurons firstly occurs in ventrolateral substantia nigra, but as the disease

progresses, the loss becomes widespread [13, 14]. Another change occurring in the brain

is accumulation of an intracellular protein called α-synuclein inside the cytoplasm of

neurons in different regions [15].

2.1.2 Potential Causes

Cause of PD is not fully understood but some patterns are prominent. For

example, exposure to pesticides and brain injury increase the possibility of emergence

of the disease, whereas consuming caffeine and smoking decrease it [16]. Moreover,

the disease is relatively prevalent in some communities. For instance, PD is more

common in Ashkenazi Jews having mutations in genes LRRK2 and GBA [17]. It is

also relatively common in native American, Inuit, and Alaskan native communities.

It is thought that genetic factors and organic pollutants may be risk factors in the

prevalence of the disease in these communities [18].

2.1.3 Symptoms and Diagnosis

Both motor and non-motor symptoms exist in PD. Bradykinesia, rigidity, resting

tremor are examples of motor symptoms [19] and incomplete list of non-motor ones
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includes sleep disorders, cognitive impairment, dementia, hallucination, hyposmia and

depression [20]. Physical examination and neuropsychological tests are performed to

make diagnosis.

2.1.4 Parkinson’s Disease Mild Cognitive Impairment and Dementia

PD-MCI is an intermediate stage between PD-CN and PDD [21]. This stage is

a strong indicator for converting to dementia. Because dementia reduces the quality

of life dramatically, PD-MCI stage should be examined carefully. Risk factors for

evolving to dementia are older age, depression and non-tremor dominant phenotype

[4, 22]. It has also been reported that individuals having visuopatial deficits convert

to dementia in higher rates than the individuals having frontal executive phenotype

[22, 23]. It is revealed that MAPT and COMT genotypes can give information about

cognitive decline in PD patients [24]. Catechol-O-methyltransferase (COMT) gene

produces a dopamine regulating enzyme [25] and microtubule associated protein tau

(MAPT) gene encodes a phosphorylated protein expressed in the brain and it takes

charge in stabilizing the cytoskeleton and axonal transport in neurons [26]. COMT

gene has genotypes of Val/Met, Val/Val, Met/Met and MAPT gene has genotypes

of H1/H2, H1/H1, and H2/H2. Single nucleotide polymorphism at 158. codon of

COMT gene (Val158Met) causes decrease in activity of dopamine transporter enzymes

[27]. Moreover, task based fMRI analyses revealed that individuals having Met/Met

homozygote have less prefrontal activation than individuals having Val/Val homozygote

[28]. On the other hand, subjects having H1/H1 genotype of MAPT gene showed more

cognitive decline than the subjects carrying H2 haplotype [29].

2.1.5 Prognosis of Parkinson’s Disease

Diagnosing PD correctly is a challenging issue. Misdiagnosis rate can be up to

24% in early stages [6]. Motor and non-motor symptoms in late stages result in severe

burden for both patients and relatives giving care, hence early diagnosis is very crucial.
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It is shown in different clinical studies that dopaminergic neurons demolishes severely

before the motor symptoms show up [30, 31]. However, some non-motor symptoms

may show up earlier than the onset of motor symptoms hence giving opportunity

to diagnose PD earlier [6]. Information regarding the prognosis of PD might enable

slowing down the progression of the disease by early intervention. In addition, it might

allow patients for planning their future better and enable healthcare system to work

better by budgeting necessities of the society [21].

2.1.6 Management of the Disease

PD is a non-reversible disease and no medication exists to stop the progression.

However, some medicines are used to alleviate the effects of motor symptoms. Amino

acid L-DOPA is a precursor of dopamine and used in treatment of the motor symp-

toms for a long time [6]. Non-motor symptoms don’t respond to L-DOPA treatment

[20] hence different medications are suggested for them. For example, cholinesterase

inhibitors alleviate cognitive disturbances of PDD patients [32]. In addition, nora-

drenaline precursor droxidopa is used for orthostatic hypotension, anti-muscarinics are

used for incontinence, and pro-kinetic drugs are used for constipation [32, 33].

2.2 Multimodal Magnetic Resonance Imaging

Clinical methods rather than neuroimaging methods are primarily used in diag-

nosing PD. Positron emission tomography (PET) and single photon emission computed

tomography (SPECT) are some imaging techniques utilized conventionally in PD be-

side clinical methods [34]. However, multimodal MRI techniques also give valuable

information about changes in the brains of PD patients. Structural changes and gray

matter atrophy in brains of PD-CN and PD-MCI are unfortunately very subtle in

early stages of the disease. These changes become prominent when motor symptoms

have already been seen in late stages of the disease. Because axonal and synaptic

changes occur in the early stages, examining these changes in white matter can allow
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for diagnosing the disease earlier [21].

2.2.1 Diffusion Tensor Imaging

Diffusion rates of water in brain tissue are not same at every direction. Show-

ing different diffusion rates for different directions is called anisotropy. Based on this

anisotropic characteristic of the tissue, anatomical tracks can be viewed and white

matter integrity can be assessed. DTI technique provides information about axonal

changes in white matter by utilizing principles mentioned above, hence enabling possi-

ble detection of the disease in early stages. Fractional anisotropy map gives information

about degree of anisotropy in each voxel, and mean diffusivity map tells about total

diffusivity in each voxel. These maps calculated from tractography may give valuable

information about white matter changes. FA and MD maps showed that alterations

in white matter is positively correlated with increased cognitive impairment in PD

patients [35, 36, 37].

2.2.2 Arterial Spin Labeling

ASL MRI technique gives opportunity to view perfusion patterns in the brain

without using extrinsic contrast agent. In this technique, endogenous water in arterial

blood is electromagnetically tagged with radiofrequency pulses and then tracked while

it is perfused to different brain regions. We can obtain CBF, aBV and BAT maps

that may give information about alterations of perfusion patterns in the brain. In a

study, it was found that perfusion in cortex decreases in PD patients relative to the

HC [38]. In another study, it was shown that a correlation exist between metabolic

changes observed by fluorodeoxyglucose PET and perfusion patterns observed by ASL

MRI [39].



7

2.2.3 Proton Magnetic Resonance Spectroscopic Imaging

1H-MRSI gives information about peak values of various metabolites inside the

brain. Hydrogens spin in different frequencies in different metabolites and this tech-

nique utilizes this fact. We get different frequency patterns for different metabolites.

Commonly assessed metabolites are N-acetyl aspartate (NAA), choline (Cho), creatine

(Cr), myo-inositol (Ins), glutamine (Gln) and glutamate (Glu). By looking at the peak

values of metabolites or their ratios in different brain regions we may get valuable infor-

mation about the metabolic changes in PD. Unfortunately, getting clean information

from the substantia nigra with MRS is compelling process because of small size, iron

content and location of the region [34]. Despite the fact that some groups claimed that

metabolic alterations exist in substantia nigra of PD patients by using 3T MR system

[40, 41], these findings could not be verified by using neither 4T [42] nor 7T [43] MR

system. In addition, some other studies investigating metabolic changes in substantia

nigra of PD and HC, reported conflicting results about NAA/Cr [44, 45, 46]. For this

reason, examining the metabolites in other regions such as putamen may be an option.

Substantia nigra sends dense dopaminergic afferent projections to this structure thus

investigating putamen may give clues about metabolic changes of PD [47]. However

contradictions still exist among results of different studies investigating putamen. De-

creased NAA/Cr ratio is observed in PD group relative to HC in one study [48], while

other studies suggested that the ratio remains unchanged [49, 50].

2.3 Machine Learning Methods

Machine learning methods are powerful tools that helps us achieve tasks that

cannot be handled by rule based methods [51]. We can feed machine learning algorithms

with data and learn the patterns of this data. Using these patterns, we could classify

new subjects based on their features.
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2.3.1 Logistic Regression

Logistic regression is a linear classification method widely used in machine learn-

ing field. It is one of the simplest methods to understand and implement in machine

learning and many practitioners try it first in classification tasks. In this method, re-

sponse variable or class is tried to be linked by linear combination of input features.

Weighted sum of input features is transformed by logistic or sigmoid function to obtain

class prediction. A sigmoid function is shown in Fig. 2.1 [52]. During training phase,

weights of the input features are "learned" from the data by cost function minimiza-

tion procedure. During testing phase, weighted sum of attributes is calculated and

sigmoid function is used to obtain final prediction output [53]. Equation 2.1 shows the

prediction function for logistic regression. If the class density P(C1|x) is greater than

0.5 the instance is predicted as belonging to class C1, if P(C1|x) is smaller than 0.5

the instance is predicted as in class C2.

P (C1|x) = sigmoid(wTx+ w0) =
1

1 + e−(wT x+w0)
(2.1)

Cross entropy function to minimize in logistic regression is,

E(w,w0|X) = −
∑

ci log(yi) + (1− ci) log(1− yi), (2.2)

where ci is actual class label and yi is predicted class label. We can solve for

feature weights minimizing the cost function by iterative numerical methods. Gradi-

ent descent algorithm is used commonly as an iterative optimization algorithm. In

gradient descent algorithm, partial derivatives of cost function are taken with respect

to each weight parameters. These partial derivatives are multiplied by a learning rate

parameter and added to randomly initialized weight parameters in opposite direction.
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Figure 2.1 Sigmoid function [52]

When we reach to minimum point in cost function, all partial derivatives become zero

and we obtain the solution for weights.

Figure 2.2 shows linear decision boundaries (wx + w0) and the logistic outputs

for 10, 100 and 1,000 updates of weight parameters in gradient descent algorithm for

an example univariate two class case [54].

This two class procedure could be extended to multiclass case by introducing

softmax activation function shown in Eq. 2.3, where K is the number of classes. In

this method, weighted sums of a subject’s features for each class are calculated by

using learned weight parameters specific to each class. Softmax activation function

then takes these weighted sums and use them as exponents of Euler’s number. After

this exponentiation process, the function normalizes the results by dividing with the

sum of all exponentials for that subject [55]. Softmax activation function ensures that

the response for a class will be close to 1 if the weighted sum of the subject’s features

for that class is larger than the others, and close to zero for the other classes.
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Figure 2.2 Logistic regression decision boundaries [54].

yc =
ew

T
c x+wc0∑K

j=1 e
wT

j x+wj0
, c=1,...,K (2.3)

2.3.2 k-Nearest Neighbor Classifier

kNN is one of the simplest algorithms and most of the time it is the one tried first

in classification tasks. Because it is a nonparametric method, we don’t need strong as-

sumptions about the data distribution. The algorithm is based on the assumption that

similar inputs have similar outputs [56]. kNN is an instance based method, because

it makes predictions for new subjects by looking at the similarities of it to the stored

training subjects. In this method, the distances between test subject and all train-
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ing subjects are calculated. Different types of distance measures such as Euclidean,

Mahalanobis or Hamming distance could be used to evaluate similarity [57]. The test

subject is classified according to majority votes of the closest training instances. The

parameter k stands for the number of the closest training instances that vote for the

classification of the new subject, and it should be an odd number to avoid ties. There

are many advantages of this method. It can learn complex models with a simple logic

and robust to noisy training data. Moreover, there is no training phase in this method,

nothing is calculated until the prediction phase. But, the method has some disadvan-

tages. It is computationally expensive and requires large amount of memory to store

all the instances. Additionally, in high dimensional cases, efficiency of the method

deteriorates dramatically.

Choosing the right distance metric is essential in correct implementation of the

method. When correlations exist between input features using Mahalanobis distance

over Euclidian distance is essential. Mahalanobis distance allows capturing these cor-

relation and gives better results [58] as shown in Fig. 2.3. In a space that is spanned by

two features x1 and x2, if Euclidian distance is used to determine the closest training

subjects to the test subject shown with x, the test subject is misclassified as ‘◦’ for

number of neighbors k=3. If Mahalanobis distance is used, it is correctly classified as

‘x’ by means of capturing correlation between features x1 and x2.

Figure 2.3 kNN classification example for different distance metrics [58].
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2.3.3 Support Vector Machines

2.3.3.1 Linear Kernel Support Vector Machines

Support vector machines (SVMs) are useful methods that provide us to con-

struct large margin classifiers. In these methods, finding weight parameters is a convex

optimization problem. These problems could be solved analytically. Numerical meth-

ods such as iterative gradient descent algorithm are no longer needed in this method,

hence we do not worry about learning rates, initialization procedures and convergence

[59]. A hyperplane that separates the subjects to different classes in feature space is

determined by the help of support vectors. Support vectors are some of the subjects

that are in the vicinity of the hyperplane at least by a certain margin. In Figure 2.4,

support vectors are the circled instances. Class that fall into left of the hyperplane has

two support vectors whereas the other class has one support vector [60].

Figure 2.4 Separating hyperplane determined by support vectors of each class [60].

Instances other than support vectors have no contribution in determination of

separating hyperplane hence they could be removed. Introducing maximum margins

provides best hyperplane determination, and a more robust classification against noise.
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In the case of that no linear hyperplane exist to separate the subjects perfectly, a

hyperplane that results in the least error is determined by accounting for the deviations

from the margin. We know that if wTx + w0 > 0, subject x belongs to class 1, if

wTx + w0 < 0, subject x belongs to class 2, and if wTx + w0 = 0, subject x is on the

hyperplane. If we have two arbitrary subjects x1 and x2 on the hyperplane we have,

wTx1 + w0 = wTx2 + w0

(wTx1 − wTx2) = 0

wT (x1 − x2) = 0,

(2.4)

which would indicate that w vector is perpendicular to any vector that lies on

the hyperplane. In SVM, margin is introduced by,

wTx+ w0 > 1 for class C1

wTx+ w0 < −1 for class C2
(2.5)

and these two equations could be reduced to a single equation by adding the

variable ci that equals to 1 for subjects belonging to class C1 and equals to -1 otherwise.

The new equation then becomes,

ci(wTx+ w0) > 1. (2.6)

The equation for support vectors would then be,

ci(wTxs + w0) = 1

ci(wTxs + w0)− 1 = 0
(2.7)
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In Figure 2.5 we can see that the margin we want to maximize equals to the

projection of difference vector of two support vectors from distinct classes to the unit

vector that is perpendicular to the decision boundary. We see that w is perpendicular

to separating hyperplane hence w/|w| is a unit vector that is perpendicular to the

hyperplane.

Figure 2.5 The margin and support vectors of SVM.

The margin of SVM could be defined by the following constraint equation,

= (xsC1 − xsC2) · (w/|w|)

=
(xsC1 · w)− (xsC2 · w)

|w|

=
(1− w0)− (−1 + w0)

|w|

= 2/|w|,

(2.8)

where xsC1·w equals to wTxsC1 = 1−w0 and xC2·w equals to wTxsC2 = −1+w0.

Maximizing 2/|w| is same as minimizing |w|2/2. Because minimizing |w|2/2 is

mathematically more convenient than maximizing 2/|w|, we define margin maximiza-
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tion problem as min |w|2/2 subject to ci(wTx+w0) ≥ 0 for all x. By utilizing Lagrange

multipliers we could solve the constrained minimization problem and find the support

vectors. Then, we could find w parameters that are calculated as weighted sums of

these support vectors.

2.3.3.2 Nonlinear Kernel Support Vector Machines

If the subjects we want to classify is not separable by a linear decision boundary,

input feature space could be transformed by kernel functions. Linear separation could

then be applied in transformed space. Polynomial function kernel, radial basis function

kernel, and hyperbolic tangent function kernel are some examples of the transformation

functions generally used. Kernel functions output the similarity degrees between the

subjects. We use similarity values of an instance to other subjects as new features, in-

stead of using initial input attributes [61]. Figure 2.6 shows an example transformation

by using a radial basis kernel function [62].

Figure 2.6 Input space transformation by applying a radial basis function kernel [62].
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2.3.4 Decision Trees

Decision trees are non-parametric methods mainly used in classification tasks.

A decision tree consists of decision nodes and terminal leaves that are indeed outputs.

Terminal leaves are class information in the case of classification and numerical values

in regression case. In decision nodes, discrimination is made according to feature

values. In univariate decision trees, one feature is used at a decision node, whereas all

features are used at each split in multivariate case. At each node, splits are made to

decrease impurity. If all the subjects fall into one class after the split, it is said that

split is pure and no further split is needed. There are different impurity measures such

as entropy function, Gini index and misclassification error [63]. Figure 2.7 shows an

example decision tree scheme (right) with the resultant decision boundaries that are

orthogonal to each other (left) [64].

Figure 2.7 Decision boundaries and decision tree scheme [64].

In univariate case, features that are closer to the root are more important.

Therefore, we can infer that decision trees can extract features inherently. Some fea-

tures may not be used if they are not useful in decreasing impurity. One important

issue to note is that features having many distinct values are preferred at decision
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nodes, because more branches will be constructed and impurity will be lowered dra-

matically even if that feature doesn’t have predictive power. This could lead to poor

classification performance especially when there is noise. Prepruning and postpruning

techniques are used to solve this problem. Prepruning is when the splitting stops early

before impurity minimization. When a determined percentage of the training data

cannot reach to a node, no further splitting is done in that node. Therefore, the con-

structed tree model generalizes better. On the other hand, postpruning is applied after

the tree is fully constructed. Some portion of the training set (pruning set) is not used

in splitting process to be used in postpruning process. Nodes decreasing the predictive

power of the model are determined by the pruning set. Prepruning method is faster,

but postpruning method usually provides better models. Univariate decision trees are

helpful in interpreting the structure of the data. Rules could be found according to

the splitting structure. In addition, when the splitting structure is found, subjects are

no longer needed to be stored hence leading to less memory usage. It is also possible

to use decision trees as feature extractors. The most informative features found in

decision trees could be used in other models.

2.3.5 Ensemble Methods

Most widely used algorithms in machine learning are reviewed in previous sec-

tions. However, none of these algorithms may give the best accuracy by themselves.

Using these algorithms together in various manners may lead to a higher accuracy. En-

semble models are constructed by combining different learning algorithms to increase

the model performance. Models that constitute an ensemble model are called ‘base

learners’. Base learners should not have very high accuracies, in other words they

should be weak. However, accuracy of each base learner should be greater than 0.5 to

contribute to the overall accuracy [65]. It is advisable to include diverse base learners

in the sense that having different algorithms, various hyperparameters, distinct feature

sets or different training sets. Different algorithms have different assumptions about

the distribution of data, hence including both parametric and nonparametric methods

may be a reasonable option [66]. Using models that are constructed with the same al-
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gorithm but having different hyperparameters may also increase overall accuracy. An

example may be using different kernel functions in SVM models. In addition, when we

have multiple sensors, we would have different feature representations. Additionally,

training different models with different feature sets may be very beneficial. Both the

input dimension, hence complexity per model, decreases by allocating feature sets and

also diverse models could learn the training data from different perspectives. In ad-

dition to choosing base learners with different properties, how to combine these base

learners is another issue. Two main ways of integration are multiexpert combination

and multistage combination [67]. In multiexpert combination, base models work in

parallel, whereas, in multistage combination they work in serial. Voting and stacking

are two commonly used parallel combination schemes and cascading is an example of

serial combination scheme. Voting is the most basic combination way. In this approach,

final result is determined by a linear combination of outcomes of base learners. When

all the weighs equal to 1, we have simple voting scheme. In stacked generalization [68]

technique, weights of base models are learned by a combiner model. The combiner

model should be trained on a different data set other than the training set that is

used to construct base learners. Figure 2.8 shows an example multiexpert combination

scheme (top) and a multistage combination (bottom) [69].

In cascading method, base learners are combined in a sequential way with as-

cending model complexity [70]. If learner in preceding stage is confident about its

prediction the final result is its outcome. When the preceding classifier is not confident

in some of its predictions, these unconfidently classified instances are forwarded to the

next more complex model. In this way, the method tries to confidently classify all the

instances with minimum complexity. Some other widely used ensemble methods are

bootstrap aggregating (bagging) and boosting. In bagging method, different training

subsets that have some common subjects are randomly allocated to train different base

models. However in boosting, weak learners try to a better prediction on incorrectly

classified instances by previous models [71]. Boosting method is effective, but it re-

quires a large amount of training data that gets divided into distinct subsets. Adaptive

boosting (AdaBoost) algorithm [72] that uses same training set repeatedly doesn’t suf-

fer from this problem. In this approach, selecting subjects for next classifier is not
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Figure 2.8 Two main combination schemes of ensemble learners [69]

completely random as in bagging, and the probability changes according to the error

[73]. Ensemble classifiers are powerful models that could overcome complex tasks by

dividing them into simpler ones. However, these models are not very easy to interpret.

2.3.6 Dimensionality Reduction

In machine learning, we seek the simplest model that could explain the struc-

ture. Simple models are more robust to noise and outliers, especially when the dataset

is small. Higher dimensional data increases the model complexity. Therefore, decreas-

ing the dimension of the data without decreasing the model performance is a useful

approach to construct simpler models. Dimensionality reduction techniques could be

used for this purpose. These techniques could be divided into two as feature selection

methods and feature extraction methods. In feature selection methods, subset of initial

feature set is selected that contains most informative features. In feature extraction
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methods, new set of features are created using original feature set. In feature selection,

wrapper methods and filter based methods are used. In wrapper methods, model’s

performance is evaluated for each feature subset. The feature subset leading to the

best model performance is selected. There are many methods to create the feature

subsets. Forward selection is one of the simpler algorithms of wrapper methods. In

this method, feature subset is initially empty. Each feature’s contribution to perfor-

mance is calculated separately. The most informative feature is selected and kept in

the subset. The procedure is repeated for other features and the feature subset grows

until the model performance stops improving. In backward feature selection method,

we start with all of the original features, and discard less informative features one by

one while evaluating the model performance. Feature subset is shrunk until the model

performance is not increasing anymore. We could improve these techniques by allowing

multiple feature addition or removal at a time. This approach may produce a more

optimal feature subset. Because, some features might not improve model performance

individually, but together they might contribute dramatically. By changing number of

added and removed features at each step, we could have more flexible methods. Exam-

ples of these methods are sequential floating forward selection (SFFS) and sequential

floating backward selection [74]. When too many uninformative features are expected,

performing forward selection is more advantageous to decrease computational expense

and time. Recursive feature elimination is another wrapper based feature selection

technique. In this technique, model is initially constructed using all the features and

classifier scores the features according to their contribution to classification. The least

informative feature is removed from the set and the same procedure is repeated until

desired number of features are selected [75]. Feature subsets selected by wrapper meth-

ods extremely depend on the model used in calculation of feature contributions. In

filter methods, feature selection procedure is applied without using any classifiers [76].

Filter methods are faster and computationally less expensive than the wrapper meth-

ods, but less effective in finding most suitable features for a specific model. Conducting

statistical analysis for each individual feature is one of the filter methods. It is fast in

finding the most discriminative individual features, but might miss the features that

increase the model performance when they are used with other features. Correlation

analysis is also another filter method that removes redundant features showing high
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correlation with other features. Highly correlated features carry the same information,

therefore, using only one of them is enough for classification purposes.

2.3.7 Evaluating Model Performance and Hyperparameter Tuning

Evaluating performance is another issue in machine learning. Accuracy is the

most commonly used metric to assess performance. It is the proportion of correctly

classified subjects to total number of subjects. However, we can’t evaluate the model

performance by looking at the accuracy value calculated for the training set. Param-

eters can be learned easily by a complex model and can be fit to the training data

perfectly, but the model may fail to generalize explaining new data outside the train-

ing set. This problem is called ‘overfitting’ to the training set. On the contrary, if a

model is too simple, it can’t even learn the parameters that fit the training data, hence

leading to ‘underfitting’ problem. We should check the accuracy of the model on sepa-

rate datasets other than the training set. These datasets are validation set and test set.

Validation set is used for hyperparameter tuning and test set is used for reporting final

model performance. In any machine learning algorithm, some of the parameters are not

learned from the data but determined by the practitioner. These parameters are called

‘hyperparameters’. Most of these parameters affect the model complexity and should

be chosen by maximizing generalizability power of the classifier. Some examples of hy-

perparameters are regularization parameter in logistic regression and svm, k in nearest

neighbors, learning rate in any algorithm utilizing iterative optimization methods and

gamma in gaussian kernel svm. Choosing these hyperparameters appropriately is es-

sential part of the machine learning model design. Finding best parameters is nothing

but a trial and error method. Model performance is evaluated for each trial on vali-

dation set and the parameter leading to the highest performance is selected. Usually,

there are more than one hyperparameter to tune. For example in gaussian kernel svm,

we need to tune both regularization parameter and gamma parameter which adjust

the influences of training samples in decision boundary determination. We can try

different combinations of these parameters and find the best combination. Grid search

and randomized search are most popular hyperparameter searching techniques [77]. In
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grid search, all combinations of desired values for different hyperparameters are tried,

whereas in randomized search, randomly chosen values for each parameter are tried.

2.4 Longitudinal Analysis

Longitudinal analysis enables to study changing patterns in a group of subjects

over time. There are two main problems about longitudinal data that complicates

the analysis procedure. First the data is inherently correlated, because repeated mea-

surements of the same subjects are analyzed. Second, variances are not homogenous.

Many statistical methods assume that variance is the same along the regression line. If

these issues are not taken into consideration, we make false conclusions. For example,

if we do the analysis as if no correlation exist, we found too large p values for null

hypothesis testing. If we make the analysis by ignoring heterogeneity in variances, we

overestimate the goodness of the fit to the regression line.

2.4.1 Linear Mixed Effects Models

Linear Mixed Effects (LME) Models are powerful statistical methods used both

in cross sectional and longitudinal analyses [78]. Correlations between repeated mea-

surements and heterogeneity of variances are main problems in longitudinal data. In-

troducing random effects solves these problems [78]. In mixed effects model, we have

both fixed effects and random effects. Definitions of fixed effects and random effects

vary according to the purpose of the study. In our case, fixed effects were covariates

and effects that we were interested about. Random effects were the effects we were not

concerned about. Random effect in our case was different participants. If we include

subjects as a variable in the model, we are able to capture the variances derived from

the randomness of the individuals. Therefore, we are able to find variances that are

accounted by fixed effects such as time. Fixed effects parameters are found by max-

imum likelihood estimation, whereas, random effects parameters are estimated using

shrinkage [79].
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A LME model can be shown as [80];

yi = Xiβ + Zibi + ei

bi ∼ N(0, D), ei ∼ N(0, Ri),
(2.9)

where yi is the response of subject i, β vector contains parameters of fixed ef-

fects, bi vector contains parameters of random effects, Xi is a design matrix containing

covariates of subject i, Zi is a design matrix, ei contains within subject random errors,

Ri is a variance-covariance matrix of within subject measurements, and finally Di is

variance-covariance matrix of the random effects. In order to utilize LME models, our

response variable should have normal distribution. Therefore, we have to perform nor-

mality check to our response variables. If some of them don’t have normal distribution,

we can apply data transformation and test for the normality again.

2.5 Literature Review

Some researchers tried to classify PD patients according to their cognitive status

by the help of machine learning algorithms. In classification task, one challenge that

many of the researchers encountered is choosing the most useful features from a vast

number of available features. A previous study used only functional MRI (fMRI) data

of the HC, cognitively normal PD (PD-CN) and PD-MCI [81]. Twenty-one edges (con-

nectivity between each nodes) most frequently chosen across feature selection algorithm

of randomized logistic regression (RLR) and leave one out cross validation (LOOCV)

were selected as features. An accuracy of 80% was achieved in classifying PD-MCI and

PD-CN. In another study, the low level ROI features (gray matter volume, cortical

thickness, etc) and high level correlative features (connectivity between ROIs) were

combined to create multilevel ROI features [82]. Multi kernel SVM algorithm was used

to classify PD patients from HCs. Dimension reduction was performed by using both

filter and wrapper based feature selection methods. 85.78% specificity and 87.79%

sensitivity were attained as a result of using multilevel ROI features. Another study



24

employed features chosen from University of Pennsylvania smell identification test (UP-

SIT) scores, REM sleep behavior disorder screening questionnaire scores (RBDSQ),

biomarkers from cerebrospinal fluid (CSF), and striatal binding ratios (SBR) from

single photon emission computed tomography (SPECT) imaging [83]. After choosing

most discriminatory features, SVM classifier successfully discriminated PD from HC

with a specificity of 95.01% and sensitivity of 97.03%.
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3. MATERIALS and METHODS

3.1 Data Acquisition

In this study, we examined MRI data of 27 PD-CN patients, 33 PD-MCI patients

and 17 HCs collected at Hulusi Behcet Lifesciences Research Center of Istanbul Uni-

versity. Istanbul University Clinical Research Ethics Committee approved our study

protocol and written informed consents were obtained from all the subjects before

participating in this research. Neuropsychological tests (NPTs), genetic analysis for

COMT and MAPT genotypes and MR examinations were performed at baseline for

all the subjects. Longitudinal MRI data were collected only for the patients diagnosed

as PD-MCI at first visit and for the patients converted from PD-CN to PD-MCI at

second visit. For these patients, all NPTs and MRI data acquisition were repeated

after 1.5 years of their first inspection. For the patients diagnosed as PD-CN at first

visit and haven’t converted to PD-MCI according to ACER test score at second visit,

no further data were collected.

3.1.1 MR Data Acquisition

MR examinations of all the participants were carried out at a 3 Tesla clinical

MR system (Philips Medical Systems, Best, Netherlands) using a 32 channel head coil.

MR data acquisition included resting state fMRI (rs-fMRI), 1H-MRSI, T1-weighted,

T2-weighted, ASL, DTI, and T2-weighted fluid attenuated inversion recovery (FLAIR)

MRI, and total scan time was approximately 45 minutes. T1-weighted MRI were

obtained by 3D Fast Field Echo (FFE) imaging (TR=9.1ms, TE=4.2ms, slice thick-

ness 1mm, intersection space 0.3mm). T2-weighted FLAIR (TR=11000, TE=125ms,

TI=2800ms, slice thickness 4mm, intersection space 1mm) were obtained with cor-

responding parameters. DTI images were taken with 32 distinct gradient direction

(TR=5000ms, TE=105ms, matrix size 256x256x40, FOV=440x440x84mm, slice thick-
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ness 2.1mm, b=1000 s/mm2). In addition to these images, 1H-MRSI data were

taken with Point RESolved Spectroscopy (PRESS) sequence using short echo time

(TR=1000ms, TE=35ms, 1000Hz, 1024 points, FOV=160x160x80mm, 10x10x10 voxel

size, scan time 10min). We obtained ASL MRI data with echo planar imaging and

signal targeting with alternating radio frequency pulses (EPISTAR) [84] technique us-

ing eight different inversion time in each slices for a total of six distinct MR slices

(TR=250ms, TE=15.99ms, turning angle 40◦). In Figure 3.1 some of the different

MRI modalities and generated maps that we used in our study are presented.

Figure 3.1 Magnetic resonance imaging modalities used in our study.

3.1.2 Neuropsychological and Genetic Tests

The cognitive status of the subjects were determined by expert neurologists

by conducting neuropsychological tests such as Unified Parkinson’s Disease Rating

Scale (UPDRS), Addenbrooke’s Cognitive Examination Revised (ACER), Mini Men-

tal State Examination (MMSE), Wisconsin Card Sorting Test (WCST), Stroop test,

phonemic fluency test, categorical fluency test, Benton Judgement of Line Orientation

Test (BJLOT), and Geriatric Depression Scale (GDS). Additionally, the performance
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of the subjects in drawing watch, pentagon and cube were assessed. Neurologists finally

performed a physical examination as the last step of the patient visit. Additionally,

blood samples were taken from all the subject to perform genetic analysis to detect

COMT and MAPT genotypes.

3.2 MRI Data Preprocessing

After MRI data acquisition, data were preprocessed and analyzed. MR images

taken from all the subjects were registered to their T2-weighted images, and head

movement and eddy current corrections were made. Parameters generated from the

registration of T2-weighted images to Montreal Neurological Institute (MNI) brain at-

las were used to register ASL, DTI and MRSI images to MNI brain atlas. Carrying

these images to MNI brain atlas is essential to be able to perform voxel based data

analysis, because it aligns the brain regions of all subjects to the same locations in

space. CBF, aBV and BAT maps were created from ASL data using an in-house soft-

ware written in MATLAB (The Mathworks Inc., Natick, MA) [85]. The program fits

the data to general kinetic model using a nonlinear algorithm [86]. The program es-

timates the main magnetization, M0, values for each pixel and maps are calculated

by the help of estimated M0 values. Then the maps were masked by MNI structural

and Harvard-Oxford cortical subcortical structural atlases [87]. 119 different brain

regions were obtained after masking and average of pixel values at each region were

calculated. DTI data were preprocessed in FMRIB Software Library (FSL, Analysis

Group, FMRIB, Oxford, UK) to remove eddy current artefacts and to extract only

brain tissue without eyes, skull and spine. Afterwards FA and MD maps were created

and registered to MNI 152 brain atlas [88]. These maps were multiplied with 48 white

matter (WM) masks generated from John Hopkins University (JHU)-81 WM atlas and

9 masks generated from MNI brain atlas. Pixel values of the remaining regions after

masking were averaged. LCModel [89] was used to quantify 1H-MRSI metabolite con-

centrations. Amount of chemical shift of each metabolite was calculated and corrected.

Chemical shift corrected metabolite concentration maps were created and were overlaid

onto T2-weighted images. FSL was used to register these overlaid maps to MNI152
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brain atlas. MNI structural and Harvard-Oxford cortical and subcortical structural

atlases were used to select 119 different brain regions. Average metabolite concentra-

tion values were calculated in these regions for different metabolites. Metabolite values

of NAA + N-Acetyl-aspartyl-glutamate (NAA+NAAG), Glu+Gln, Ins and Cho were

divided by Cr values [90]. All these values coming from FA, MD, CBF, aBV, BAT,

1H-MRSI were used as features to train ML classifiers.

3.3 Classification with Machine Learning Methods

We had a feature set consisting of multimodal MRI data. Initial feature set

contained 4 different metabolite ratios in 119 brain regions, FA and MD values in 57

brain regions and information of CBF, BAT and aBV values in 119 brain regions. Total

number of features was 947, which was a big number for our case because we had rel-

atively small number of subjects. We first tried to decrease the number of dimensions

by selecting the most informative features. Second, we constructed the classifiers using

scikit-learn v0.19.1 library in Python and Classification Learner Toolbox in MATLAB

R2017b. We used different types of classifiers such as decision trees, SVM, logistic

regression, nearest neighbor and ensemble classifiers. Many different techniques were

tried and best feature selection and classification results were reported. Different fea-

ture selection followed by classifier construction pipelines were performed for classifi-

cation of HC versus PD-CN, HC versus PD-MCI, PD-CN versus PD-MCI, and HC

versus PD-CN versus PD-MCI.

3.3.1 Feature Selection Procedure

When there exist vast amount of features compared to number of subjects,

classifiers are not able to detect useful features easily and give useless models. This

phenomenon is called curse of dimensionality [91]. When an extra feature is added

in model construction, we have to add extra subjects exponentially to ensure that

feature space is dense enough to yield reasonable classification. When we used all
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the features in the set, all the classifiers we tried gave poor results because of this

phenomenon. Therefore, we tried many different feature selection methods, including

SFFS with SVM, RF-RFE, filter based methods such as statistical methods. In order

to find most informative features, we applied feature selection methods many times

with different subject subsets. In this way, we could determine the features that are

selected most of the time. We created different subsets by leaving one patient out,

therefore we obtained number of subject times subsets. The subsets were created in

leave one out manner, because we had small number of subjects, and it was reasonable

to not to decrease subsets any further. Feature selection algorithms were tried in this

manner and RF-RFE technique yielded a stable feature selection. If feature selection

would be performed only in one subject set, selected features might be the ones fitting

randomly to that particular subject set. This is a case of overfitting. The reason

is that large amount of features are tried to be selected by using small number of

subjects. Therefore, selected features might be best for the available dataset but might

be uninformative for general population. If a feature subset is selected consistently at

more than half of the trials from different subject subsets, the probability of overfitting

is now much smaller. Therefore, we can say more confidently that we can select that

particular feature subset. Feature selection procedure was applied to select feature

subsets for four different classification tasks (HC vs PD-CN, HC vs PD-MCI, PD-CN

vs PD-MCI, HC vs PD-CN vs PD-MCI). Within each classification task, the feature

selection procedures were applied for six different feature types (FA, MD, CBF, aBV,

BAT, 1H-MRSI). For each classification task-data type pairs (i.e. HC vs PD-CN -

FA) feature subsets containing 2,3,4 and 5 features were found. Because only RF-RFE

method yielded stable feature selection for some classification task-data type pairs, we

chose this feature selection method. If a feature subset was not consistently selected

at more than half of the trials for a pair, then we admitted that there weren’t any

informative features for that pair and didn’t proceed to the classification step.
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3.3.2 Classification Procedure

Classification procedure was performed both in Python and MATLAB environ-

ment, whereas feature selection procedure was performed only in Python in conjunction

with the classification procedure.

3.3.2.1 Hyperparameter Tuning in Python Environment

As already mentioned before, hyperparameters can’t be learned from the data

and should be specified by the practitioner. Hyperparameter sets were formed for each

classification method. For SVM and logistic regression, we chose candidate hyperpa-

rameter values in a way that the set included the default regularization parameter

value C=1, and minimum and maximum values were very small and very big numbers

respectively (10−24 and 1024). Remaining 8 numbers were distributed evenly in loga-

rithmic scale. We chose values with huge intervals, because we initially expected that

selected C parameter value would converge to a value in the set. If the convergence

would occur then parameter set would be formed again according to the converged

value. However, the convergence didn’t occur and the set was left as initial. The other

hyperparameter that we formed a set was k parameter for kNN classifier. We chose k

values mostly as odd numbers to break the tie. We only included 10 as an even number,

because it was the default value for the kNN classifier in the MATLAB environment.

kNN hyperparameter set contained values of 1, 3, 5, 7, 9 and 10.

After we created the hyperparameter sets we constructed the feature selection

and classifier construction (main procedure) pipeline by using ‘Pipeline’ command.

Pipeline function was essential in the sense that it allowed us to chain multiple pro-

cedures coherently. In the main procedure cross validation should be done to select

the most suitable hyperparameter. We used 5 fold cross validation for hyperparameter

selection. In general, feature selection should be done in the training set and then se-

lected features are used in cross validation sets. In the pipeline these procedures were

performed. First, a single subject was separated for final testing. Next, remaining
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subjects were divided to 5 equal portions. Four portions were used for standardization,

feature selection and training, and one portion was used for testing. Above step was

repeated for each cross validation fold and for each hyperparameter. Mean accuracy

values of all folds for each hyperparameter testing were calculated and hyperparame-

ter yielding the highest cross validation accuracy was selected. Feature selection and

training were performed with all subjects except one that was excluded at first step

by using selected hyperparameter. Final classifier was tested with the single subject

that was separated at the first step. All the procedure above was repeated for another

single patient. Finally, accuracy, sensitivity and specificity values were calculated for

all patients that were tested one by one.

In standardization procedure, all the features were scaled to have zero mean

and unit standard deviation. It should be done in training set and then mean and

standard deviation are found. These mean and standard deviation values should be

used to transform testing data. We used Standardize function in Pipeline to perform

standardization of all features as,

z =
x− µx

σx
(3.1)

In Equation 3.1 x is a feature, µx is mean of the feature and σx is the standard deviation

of the feature.
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Figure 3.2 shows the schematic of model construction and evaluation in Python

environment.

Figure 3.2 The schematic of model construction and evaluation in Python environment.
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3.3.2.2 Classification in MATLAB with Default Parameters

After we performed hyperparameter tuning and evaluated the results in Python

environment, we noticed that selected hyperparameters did not strongly converge to

a single value. However, we observed some trends in selected hyperparameters. In

MATLAB environment, classifiers were constructed with default hyperparameter set-

tings by using most stably chosen features in Python. We used ClassificationLearner

application in MATLAB to construct classifiers. The main advantage of this applica-

tion is that it enables quick results by using only most popular hyperparameters. We

can construct more stable classifiers by utilizing ClassificationLearner application. Two

different kNN classifiers, one with Euclidian distance metric (kNN), and one with Ma-

halanobis distance metric (kNN*), were utilized along with other classifiers like SVM,

bagged trees and logistic regression.

We used 10 fold cross validation, because it is the default value in the application.

The smallest group in the classification was HCs with 17 subjects. We paid attention to

include at least one subject from the smallest group in each fold. In this way accuracy,

sensitivity and specificity values were more meaningful because at least one subject

from HC could be tested in each fold. In 10 fold cross validation, data were split into

10 nearly equal parts. Proportion of subjects belonging to different groups was nearly

preserved in each fold. One fold was separated for testing and remaining subjects were

used for training. This procedure was repeated for each fold and thus each subject

was predicted once. Accuracy, specificity and sensitivity values were calculated by

using predictions and true response variables. MATLAB code was generated from the

application to perform the above procedure 100 times utilizing a for loop. In this

way, we obtained 100 different splitting for 10 fold cross validations. As a result, each

subject was predicted 100 times in different splitting patterns. Finally, we obtained

hundred accuracy, sensitivity and specificity values. Mean and standard deviations

were calculated to get final accuracy, sensitivity and specificity values. Figure 3.3

shows the schematic of model construction and evaluation in MATLAB.
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Figure 3.3 The schematic of model construction and evaluation in MATLAB environment.

3.4 Longitudinal Analysis

Multimodal MRI data acquisition, neuropsychological tests and physical exam-

ination were repeated for 24 PD patients. Only one patient was evolved to PD-MCI

from PD-CN. That patient was excluded from the longitudinal analysis in order to

examine the changing patterns over time of patients initially diagnosed as PD-MCI.

Longitudinal analysis was conducted for multimodal MRI data using linear mixed

effects model in MATLAB. Because linear mixed effects model requires data to be nor-

mally distributed, normality check was performed by using Shapiro-Wilk test. Random

intercept fixed slope design was utilized and education, gender, age, visuospatial disor-

der status, and genetic information (MAPT and COMT) were added as covariates in

the model. Subject variable containing patient identity was used as random effect and

time variable that we want to analyze the effect of was used as fixed effect. Multiple
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comparison corrections for P values were made using Holms method. Equation 3.2

depicts our longitudinal analysis model.

y ∼ 1+V S+age+time+COMT+MAPT+gender+education+(1|subject) (3.2)

In addition to multivariate MRI data analysis, neuropsychological test results

were also analyzed. Normality check was performed for test results, and we noticed

that some of the test results were not normally distributed. Therefore Wilcoxon signed

rank test was utilized and multiple comparison correction was applied.
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4. RESULTS

4.1 Machine Learning Results

4.1.1 Feature Selection Results

In feature selection procedure we found that some of the feature sets were se-

lected more consistently than others (Table 4.1). Glu+Gln of caudate was selected

both for three groups and HC vs PD-CN classifications. aBV of right planum tem-

porale and right superior posterior temporal gyrus regions were selected both for all

groups and PD-CN vs PD-MCI classifications. NAA+NAAG of left superior posterior

temporal gyrus was selected for HC vs PD-CN classification. FA of body of corpus

callosum, left cerebral peduncle and right tapetum were selected for HC vs PD-MCI

classification. Lastly, GPC+PCh of left lateral superior occipital cortex was selected

for all groups classification.

Table 4.1
Selected features for classification purposes.

Classification Biomarker Region

aBV Right Planum Temporale

HC vs PD-CN vs PD-MCI aBV Right Superior Temporal Gyrus, posterior division

Gpc+Pch Left Lateral Occipital Cortex, superior division

Glu+Gln Caudate

HC vs PD-CN
Glu+Gln Caudate

NAA+NAAG Left Superior Temporal Gyrus, posterior division

FA Body of Corpus Callosum

HC vs PD-MCI FA Left Cerebral Penducle

FA Right Tapetum

PD-CN vs PD-MCI
aBV Right Planum Temporale

aBV Right Superior Temporal Gyrus, posterior division
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4.1.2 Classification Results Produced in Python Environment

We observed that some of the hyperparameters were selected more commonly.

For example, in classification of PD-CN vs PD-MCI with kNN, hyperparameter N was

tuned. 10 was selected as the best hyperparameter for this classification in 37.2% of the

trials. In classification of the HC vs PD-MCI with logistic regression, regularization

parameter C was tuned. 10−8 was selected as the best value for the hyperparameter C,

but it was selected as the best only in 16% of the trials. Random forest yielded best

classification performance for HC vs PD-CN (accuracy=74%) and PD-CN vs PD-MCI

(accuracy=66%) classifications. Linear SVM gave the best result for HC vs PD-MCI

classification (accuracy=71%).

Table 4.2
The classification results of HC vs PD-CN in Python.

HC vs PD-CN Accuracy Sensitivity Specificity

kNN 0.55 0.66 0.33

Logistic Regression 0.64 0.70 0.53

Random Forest 0.74 0.85 0.53

Table 4.3
The classification results of HC vs PD-MCI in Python.

HC vs PD-MCI Accuracy Sensitivity Specificity

kNN 0.60 0.69 0.44

Logistic Regression 0.71 0.78 0.56

Linear SVM 0.71 0.75 0.62

Table 4.4
The classification results of PD-CN vs PD-MCI in Python.

PD-CN vs PD-MCI Accuracy Sensitivity Specificity

kNN 0.59 0.59 0.59

Random Forest 0.66 0.66 0.67
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4.1.3 Classification Results Produced in MATLAB

As mentioned before, any classification was performed 100 times to obtain more

reliable results, therefore we reported mean and standard deviation of these repetitive

classification results. First we classified the three groups of HC, PD-CN and PD-

MCI. The accuracy of three groups classifications were 0.91± 0.05 for HC, 0.65± 0.06

for PD-CN, and 0.64 ± 0.05 for PD-MCI groups. The best classifier leading to these

accuracy values was constructed by Random Under Sampling Boosted (RUSBoosted)

Trees using default values. These accuracy values were not high enough, therefore we

performed pairwise two class classifications.

Table 4.5
The classification results of HC vs PD-CN in MATLAB.

HC vs PD-CN Accuracy Sensitivity Specificity

Bagged Trees 0.86± 0.03 0.88± 0.04 0.82± 0.06

Logistic Regression 0.79± 0.01 0.85± 0 0.69± 0.03

Linear SVM 0.80± 0.01 0.85± 0 0.70± 0.03

kNN 0.78± 0.03 0.78± 0.03 0.79± 0.06

kNN* 0.78± 0.03 0.77± 0.04 0.79± 0.06

Table 4.6
The classification results of HC vs PD-MCI in MATLAB.

HC vs PD-MCI Accuracy Sensitivity Specificity

Bagged Trees 0.77± 0.03 0.85± 0.03 0.62± 0.06

Logistic Regression 0.74± 0.02 0.85± 0.03 0.53± 0.03

Linear SVM 0.76± 0.02 0.89± 0.02 0.51± 0.02

kNN 0.79± 0.03 0.84± 0.03 0.69± 0.06

kNN* 0.77± 0.03 0.81± 0.04 0.70± 0.05

For the HC vs PD-CN and PD-CN vs PD-MCI classifications, bagged trees

yielded the best accuracy (86% and 71%), sensitivity (88% and 73%) and speci-

ficity (82% and 69%) results (Tables 4.5 and 4.6). kNN method resulted in best

performance for HC vs PD-MCI classification (accuracy=77%, sensitivity=85%, and

specificity=62%) (Table 4.7). kNN and kNN* yielded similar performance in all cases.
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Table 4.7
The classification results of PD-CN vs PD-MCI in MATLAB.

PD-CN vs PD-MCI Accuracy Sensitivity Specificity

Bagged Trees 0.71± 0.03 0.73± 0.04 0.69± 0.04

Logistic Regression 0.51± 0.02 0.78± 0.02 0.18± 0.05

Linear SVM 0.50± 0.02 0.84± 0.04 0.09± 0.04

kNN 0.69± 0.01 0.69± 0.02 0.68± 0.03

kNN* 0.66± 0.02 0.67± 0.03 0.64± 0.03

4.2 Longitudinal Analysis Results

The variables showing statistically significant differences between the two time

points are reported in Figures 4.1, 4.2, 4.3 and 4.4. Line orientation test result was

analyzed using Wilcoxon signed rank test whereas other variables were analyzed with

linear mixed effects model. Estimated beta parameters for second time points were

2.42x10−5 (P=3.59x10−7) in temporal lobe, 3.85x10−5 (P=4.69x10−5) in middle cere-

bellar peduncle, 2.66x10−5 (P=1.18x10−4) in thalamus, and 2x10−5 (P=1.39x10−4) in

parietal lobe for MD. All these estimated beta parameters were positive, indicating

an increase in MD values. It is also shown in Fig. 4.1 that MD values increased at

the second time point. Estimated beta parameters for second time points were -0.03

(P=6.49x10−7) for right inferior cerebellar peduncle and -0.02 (P=1.60x10−5) for right

medial lemniscus for FA. In this case estimated parameters were negative, indicating

a decrease in FA values in time, which is also visible in Fig. 4.2. Lastly, estimated

beta parameter was -0.04 (P=5.46x10−5) for aBV at middle frontal gyrus at second

time point, indicating a decrease of aBV in time (Fig. 4.3). According the results of

the signrank test, line orientation test performance decreased over time for PD-MCI

patients (P=1.6x10−3) (Fig. 4.4).
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Figure 4.1 MD values increased over time for PD-MCI patients at temporal lobe (P=3.59x10−7),
at middle cerebellar penducle (P=4.69x10−5), at thalamus (P=1.18x10−4) and at parietal lobe
(P=1.39x10−4).

Figure 4.2 FA values decreased over time for PD-MCI patients at right inferior cerebellar peduncle
(P=6.49x10−7) and at right medial lemniscus (P=1.60x10−5).
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Figure 4.3 aBV values decreased over time for PD-MCI patients at middle frontal gyrus
(P=5.46x10−5).

Figure 4.4 Line orientation test performance decreased over time for PD-MCI patients
(P=1.6x10−3).
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5. DISCUSSION

In this study, first, we classified HC, PD-CN and PD-MCI with various machine

learning techniques. Furthermore, we performed longitudinal analysis for some patients

in PD-MCI group to see the effect of time on multimodal MRI data and neuropsycho-

logical test results. Our results indicated that PD-MCI, PD-CN and HC groups could

be classified with reasonable accuracy. As line orientation test performance decreased

over time, we observed a concurrent increase in MD and decrease in FA and aBV in

some brain regions.

In classification part, we obtained some feature sets using the feature selection

algorithms. Majority of these selected features were reasonable for our classification

tasks. For example, in classification of HC vs PD-MCI, we selected FA values of body

of corpus callosum, left cerebral peduncle and right tapetum. Body of corpus callosum

allows communication of the two hemispheres. According to a study [92], PD patients

had lower FA values and higher MD values than HC at the body of corpus callosum.

They also concluded that as the disease progressed, these differences increased between

PD and HC groups. In our data, we also observed this trend. Another study [93] sug-

gested that compression of the cerebral peduncle by cerebral artery might result in PD.

Cerebral peduncles refine motor movements, therefore changes in these tracks may give

information in the classification. Tapetum may also give information about PD status

of an individual. It enables hemispheric connection of prefrontal cortex. Prefrontal cor-

tex is important in decision making and planning cognitive behavior [94]. Therefore,

alterations in tapetum may affect prefrontal cortex connection and result in problems

in cognitive behaviors which is common in PD-MCI. In classification of HC vs PD-CN,

Glu+Gln of caudate and NAA+NAAG of left superior posterior temporal gyrus were

selected as features. Caudate is well known for regulating motor movements [95]. Glu

and Gln metabolites are neurotransmitters that take a role in signal transmission at

synapses. However, high Glu may result in glutamate toxicity and possibly contribute

to the development of PD [96]. In our data we saw that, Glu values were higher in
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PD-CN than HC. Left superior posterior temporal gyrus is responsible for phonolog-

ical processes [97]. An association with PD couldn’t be found for this region at the

literature. In classification of PD-CN vs PD-MCI, right planum temporale which is

responsible for language functions [98] and right superior posterior temporal gyrus as-

sociated with insight based problem solving [99] were selected. However, association

of these regions with PD couldn’t also be found in the literature. In addition to cau-

date, right planum temporale and right superior posterior temporale gyrus; left lateral

superior occipital cortex were selected. According to a study [100], decrease in corti-

cal thickness of left lateral superior occipital cortex was observed in PD patients. An

increase of Cho in this region might be due to cellular degeneration.

We examined the classification results and see a clear pattern of that tree based

models and kNN models generally yielded better classification performance. Logistic

regression and linear SVM have linear decision boundaries whereas with tree based

and kNN methods nonlinear decision boundaries could be constructed. Groups may

be classified better with models having nonlinear decision boundaries in feature space.

Another reason might be utilization of random forest in feature selection. RF-RFE

might have contributed to better performance of tree based methods.

In MATLAB environment, models that were constructed were more stable and

resulted in better classification performance. This might be derived from the fact

that we tried to perform feature selection and hyperparameter tuning jointly using

large feature set and small number of subjects. Although we could select the same

feature sets in most of the trials, selected feature sets varied with different subject

subsets leading to unstable hyperparameter tuning. When we fixed the feature sets

in MATLAB and used default hyperparameters we obtained better results. In three

group classification, RUSBoosted tree method yielded the best accuracies. This might

be expected, because this method is very suitable for data having class imbalance in

multiclass classification.

We compared our results with the results of the studies in the literature. We

examined three studies [81, 82, 83]. In all these studies, subject sets were larger than
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our study. For example in the first study [81] 38 HC, 60 PD-CN and 35 PD-MCI were

included. fMRI was used, and 21 brain connectomics out of 30,135 were selected and

used as features. 80% accuracy was achieved in PD-CN vs PD-MCI classification with

SVM. In the second study [82], 69 PD and 103 HC were included. 30 low level features,

such as WM volume, and high level features, which was connectivity between regions,

selected from 3393 possible ones were used as features. 85.78% accuracy was attained

with multi-kernel SVM in classification of HC vs PD-CN. In the last study [83], 183

HC and 401 PD were included. The features were composed of SPECT measures and

smell and sleep based test scores. 11 features selected from 13 with statistical tests were

used in SVM and resulted in an accuracy of 96.40%. Our result for classification of HC

vs PD-CN is very close to the results of the second study, but lower than the results

of the last study. All these studies had an advantage of a larger patient population.

However, first and second studies had a lot of features in the initial set. This makes

it difficult to select stable and reliable feature subsets to be used in the classification.

All these studies attained best results with SVM based models, whereas, we attained

our best results with tree based and kNN based methods.

We found that line orientation test scores decreased over time. This test mea-

sures visuospatial performance of the participants. We also found statistically sig-

nificant MRI based biomarker changes over time in some brain regions of PD-MCI

patients. MD value increased in temporal lobe, middle cerebellar peduncle, thalamus

and parietal lobe. Temporal lobe is associated with object perception and recognition

[101]. In addition, according to a study [102] atrophy occurs in medial temporal lobe

in PDD patients. Middle cerebral peduncle is responsible of refining movements and

motor control [103]. Thalamus is associated with memory and visual consciousness

[104], and parietal lobe is related with visuospatial abilities. Increase in MD value may

indicate atrophy progression over time in these regions. In addition to changes in MD

values, we observed decrease in FA values in right inferior cerebellar peduncle and right

medial lemniscus. Inferior cerebellar peduncle is also associated with regulating motor

control as middle cerebellar peduncle [103]. Right medial lemniscus is responsible for

sense of proprioception. Decrease in FA values might be a sign of atrophy in these

regions. Lastly, we observed a decrease in aBV for middle frontal gyrus. This region is
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important in working memory [105]. Decrease in aBV may indicate possible blood flow

changes in this region. As a result, these changes are mostly related to visuospatial

tasks, motor control and memory tasks, moreover changes in biomarkers indicate pos-

sible atrophy and reduced blood flow. This might be expected for PD-MCI patients.

Health status of these patients are expected to deteriorate. Although we only found a

statistically significant change in line orientation test results, other neuropsychological

test results may follow the decreasing pattern if we repeat the same tests after another

18 months.
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6. CONCLUSION

In this project, we were able to combine information from multimodal MRI for

classification of HC, PD-CN and PD-MCI. We also observed that multimodal MRI

provides quantitative information about changes occurring in the brain during the

course of PD. The number of participants was rather low, and the number of features

were relatively high in our study. This situation was the main challenge in constructing

stable classifiers. However, we still managed to define some prominent biomarkers.

Findings of this study encouraged us to include more subjects and repeat the same

procedure to increase the classification performance. Moreover, we expect that some

of the patients will evolve to PDD. Therefore, if we repeat the study in the future, we

could examine the MRI pattern changes in later stages of PD-MCI.
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APPENDIX A. Software Packages

1. MATLAB (https://www.mathworks.com/downloads/)

2. Jupyter Notebook (https://www.anaconda.com/download/)
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