OPTIMIZATION OF ACQUISITION AND PROCESSING PARAMETERS IN SENTINEL LYMPH NODE SCINTIGRAPHY USING SPECT/CT MONTE CARLO SIMULATION

by

Ayşenur Yüksel

B.S. in Industrial Engineering, Istanbul Technical University, 2000

Submitted to the Institute of Biomedical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Biomedical Engineering

> Boğaziçi University 2019

OPTIMIZATION OF ACQUISITION AND PROCESSING PARAMETERS IN SENTINEL LYMPH NODE SCINTIGRAPHY USING SPECT/CT MONTE CARLO SIMULATION

APPROVED BY:

Assoc. Prof. Dr. Albert Güveniş	
(Thesis Advisor)	
Assoc. Prof. Dr. Bora Garipcan	
Assist. Prof. Dr. Mehmet Kocatürk	

DATE OF APPROVAL: 17 May 2019

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor Assoc. Prof. Dr. Albert Güveniş for the continuous support of this study, for his patience, motivation, and immense knowledge.

I would also like to thank to my family and especially to my aunt Nazmiye Taylar for encouraging me throughout this thesis and my life in general.

ACADEMIC ETHICS AND INTEGRITY STATEMENT

I, Ayşenur Yüksel, hereby certify that I am aware of the Academic Ethics and Integrity Policy issued by the Council of Higher Education (YÖK) and I fully acknowledge all the consequences due to its violation by plagiarism or any other way.

Name :

Signature:

Date:

ABSTRACT

OPTIMIZATION OF ACQUISITION AND PROCESSING PARAMETERS IN SENTINEL LYMPH NODE SCINTIGRAPHY USING SPECT/CT MONTE CARLO SIMULATION

Although single photon emission computed tomography/computed tomography (SPECT/CT) systems have been in use to enhance the detection of sentinel lymph nodes SLNs with lymphoscintigraphy, recently no study has focused on optimization of acquisition and processing parameters of SPECT/CT imaging of SLN detection in breast cancer examinations using simulations. The purpose of this study was to carry out SLN detectability optimization with a SPECT Monte Carlo simulation for the first time. SIMIND Monte Carlo simulation program was used to model The Symbia T6; Siemens, Erlangen, Germany SPECT/CT system that was equipped with LMEGP and LEHR collimators. In order to simulate SPECT imaging of a realistic patient with breast cancer, a voxel-based anthropomorphic phantom by ZUBAL torso phantom was constructed. Image reconstructions with or without attenuation and scatter corrections were performed with CASTOR software. Quality of reconstructed images was evaluated according to SLN contrast with respect to background. Reconstruction with attenuation correction was found to be the optimum reconstruction method for both collimators. SPECT imaging with LMEGP collimator yielded competitive results over LEHR collimator in terms of SLN contrast. The results of the study are in agreement with the literature. The method presented in this study will enable optimization of acquisition and processing parameters of SLN SPECT imaging such as different gamma camera(s), collimator settings, patient dimensions, and reconstruction correction methods (attenuation, scatter) in breast cancer examinations realistically, accurately and at a lower cost than physical phantom or patient studies.

Keywords: Anthropomorphic phantom, Attenuation, Breast cancer, Collimator, Monte Carlo Simulation, Scatter, Sentinel lymph node (SLN), SIMIND, SPECT/CT.

ÖZET

SENTİNEL LENF NODU SİNTİGRAFİSİNİN ÇEKİM VE İŞLEME PARAMETRELERİNİN SPECT/CT MONTE CARLO SİMÜLASYONU İLE OPTİMİZASYONU

SPECT/CT görüntüleme, meme kanseri teşhis ve tedavisi sırasında sentinel lenf nodu (SLN) haritalandırmasının iyileştirilmesi için lenfosintigrafiye destek olarak kullanılmakla birlikte literatürde bu konuya odaklı SPECT/CT çekim ve işleme parametrelerinin simülasyon ile optimizasyonu araştırmaları bulunmamaktadır. Bu çalışma, Monte Carlo simülasyonu ile SPECT görüntülemesinde SLN tespitinin optimize edilerek bu alandaki ilk çalışma olmayı amaçlamaktadır. Araştırmada LEHR ve LMEGP kolimatör kullanılan Symbia T6; Siemens, Erlangen, Germany SPECT/CT gama kamera sistemi SIMIND Monte Carlo simulasyon programi ile modellennis, antropomorfik fantom olan ZUBAL torso fantom kullanılarak oluşturulan meme kanserli gerçek bir hastanın SPECT görüntülemesi simüle edilmiştir. Rekonstrüksiyonlardaki attenüasyon ve/veya saçılma düzeltmeleri CASToR aracı ile yapılmış ve görüntü kalitesi gözlemlenen SLN kontrastına göre analiz edilmiştir. Çalışma sonucunda attenüasyon düzeltmesinin her iki kolimatör için en iyi yöntem olduğu saptanmış, SLN kontrast parametresine göre LMEGP kolimatörün LEHR kolimatör kadar iyi sonuçlar verebildiği değerlendirilmiştir. Ulaşılan sonuçlar literatür ile uyumludur. Bu araştırmada sunulan yöntem, meme kanserinde SLN SPECT/CT görüntülemesindeki gama kamera, kolimatör, hasta boyutları ve rekonstüksiyon düzeltme yöntemleri vb. çekim ve görüntü işleme parametrelerinin optimizasyonunun gerçekçi, doğru ve fiziksel fantom ve kilinik çalışmalara göre daha az maliyetli olarak gerçekleştirilebilmesine olanak kılacaktır.

Anahtar Sözcükler: Antropomorfik fantom, Attenüasyon, Kollimator, Meme kanseri, Monte Carlo Simülasyonu, Saçılma, Sentinel Lenf Nodu (SLN), SIMIND, SPECT/CT

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
ACADEMIC ETHICS AND INTEGRITY STATEMENT	iv
ABSTRACT	v
ÖZET	vi
LIST OF FIGURES	iii
LIST OF TABLES	xi
LIST OF SYMBOLS	cii
LIST OF ABBREVIATIONS	iii
1. INTRODUCTION	1
2. METHODS	6
2.1 General Approach	6
2.2 Digital Phantom Construction	7
2.3 Reconstruction	11
2.4 Evaluation and Statistical Analysis	14
3. RESULTS	22
4. DISCUSSION	44
5. CONCLUSIONS	56
5.1 List of publications produced from the thesis	56
APPENDIX A. SUPPLEMENTARY RESULTS	57
REFERENCES	74

LIST OF FIGURES

Figure 2.1	The content of simind.zub file.	9
Figure 2.2	The content of simind.inp file.	10
Figure 2.3	simind.win file including two energy window settings.	12
Figure 2.4	SIMIND Coordinate System.	13
Figure 2.5	CHANGE: Main Page for Input to SIMIND - V6.1.	14
Figure 2.6	Scintillation Camera Parameters - Setup 1.	15
Figure 2.7	Scintillation Camera Parameters - Setup 2.	16
Figure 2.8	Non-homogenous Phantom and SPECT Parameters.	17
Figure 2.9	LEHR Collimator Parameters.	18
Figure 2.10	LMEGP Collimator Parameters.	18
Figure 2.11	Transmission Simulation Parameters.	19
Figure 2.12	Image Parameters and Other Settings.	19
Figure 2.13	Solid State Detector Settings.	20
Figure 2.14	Simulation Flags.	20
Figure 2.15	Illustration of SLN ROI, Background ROI, and IS.	21
Figure 3.1	Simulation #: simind 185, Collimator: LMEGP, Poisson noise	
	added, Slice: $1/60$.	22
Figure 3.2	Simulation #: simind 185, Collimator: LMEGP, Poisson noise	
	added, Slice: $15/60$.	23
Figure 3.3	Simulation #: simind 185, Collimator: LMEGP, Poisson noise	
	added, Slice: $30/60$.	24
Figure 3.4	Simulation #: simind 185, Collimator: LMEGP, Poisson noise	
	added, Slice: $45/60$.	25
Figure 3.5	Simulation #: simind 185, Collimator: LMEGP, Poisson noise	
	added, Slice: $60/60$.	26
Figure 3.6	Simulation #: simind 197, Collimator: LEHR, Poisson noise added,	
	Slice: 1/60.	27
Figure 3.7	Simulation $\#$: simind197, Collimator: LEHR, Poisson noise added,	
	Slice: $15/60$.	28

Figure 3.8	Simulation $\#$: simind 197, Collimator: LEHR, Poisson noise added,	
	Slice: 30/60.	29
Figure 3.9	Simulation $\#$: simind 197, Collimator: LEHR, Poisson noise added,	
	Slice: 45/60.	30
Figure 3.10	Simulation $\#$: simind 197, Collimator: LEHR, Poisson noise added,	
	Slice: 60/60.	31
Figure 3.11	Average SLN Contrasts of Correction Methods applied in SPECT	
	Simulations using the LMEGP Collimator.	31
Figure 3.12	Average SLN Contrasts of Correction Methods applied in SPECT	
	Simulations using the LEHR Collimator.	32
Figure 3.13	Reconstruction #: LMEGP_302, Correction Method: None,	
	MIP image, Contrast: 0.33.	34
Figure 3.14	Reconstruction $\#$: LMEGP_303, Correction Method: Attenua-	
	tion, MIP image, SLN Contrast: 0.43.	35
Figure 3.15	Reconstruction #: LMEGP_304, Correction Method: Scatter,	
	MIP image, Contrast: 0.03.	36
Figure 3.16	Reconstruction #: LMEGP_305, Correction Method: Attenua-	
	tion+Scatter, MIP image, Contrast: 0.29.	37
Figure 3.17	Reconstruction #: LEHR_162, Correction Method: None, MIP	
	image, Contrast: 0.26.	38
Figure 3.18	Reconstruction #: LEHR_163, Correction Method: Attenua-	
	tion, MIP image, Contrast: 0.31.	39
Figure 3.19	Reconstruction #: LEHR_164, Correction Method: Scatter,	
	MIP image, Contrast: -0,12.	40
Figure 3.20	Reconstruction #: LEHR_165, Correction Method: Attenua-	
	tion+Scatter, MIP image, Contrast: 0.16.	41
Figure 3.21	Reconstruction #: LMEGP_298, Correction Method: Attenua-	
	tion, MIP image, and Contrast: 0.54.	42
Figure 3.22	Reconstruction #: LEHR_171, Correction Method: Attenua-	
	tion, MIP image, Contrast: 0.58.	43
Figure A.1	Report of simind185 Simulation performed using the LMEGP	
	Collimator.	64

 $\mathbf{i}\mathbf{x}$

Figure A.2	Report of simind197 Simulation performed using the LEHR Col-	
	limator.	70
Figure A.3	SLN Contrast Results for Reconstructions of Simulations per-	
	formed using the LMEGP Collimator.	70
Figure A.4	Cumulative Average of SLN Contrasts for Reconstructions of	
	Simulations performed using the LMEGP Collimator.	71
Figure A.5	SLN Contrast Results for Reconstructions of Simulations per-	
	formed using the LEHR Collimator.	71
Figure A.6	Cumulative Average of SLN Contrasts for Reconstructions of	
	Simulations performed using the LMEGP Collimator.	71
Figure A.7	SLN Contrast of LMEGP and LEHR Collimators with Attenua-	
	tion Correction.	72
Figure A.8	Cumulative Average of SLN Contrasts for LMEGP and LEHR	
	Collimators with Attenuation Correction.	72

LIST OF TABLES

Table 2.1	Relative Activity Distribution of SLN, IS, and Background in the	
	Zubal Phantom.	8
Table 2.2	IS and SLN Data defined in simind.inp file.	10
Table 2.3	Detector Parameters of Symbia T6; Siemens, Erlangen, Germany.	11
Table 2.4	Crystal Parameters of Symbia T6; Siemens, Erlangen, Germany.	11
Table 2.5	Specifications of LEHR and LMEGP Collimators.	12
Table 3.1	Average SLN Contrasts of Correction Methods applied in SPECT	
	Simulations using the LMEGP and LEHR Collimators.	29
Table 3.2	p values for LMEGP Collimator.	30
Table 3.3	p values for LEHR Collimator.	30
Table 3.4	Average SLN Counts of Correction Methods applied in SPECT	
	Simulations using the LMEGP and LEHR Collimators.	32
Table 3.5	Scatter and Attenuation Correction Effectiveness.	33
Table 3.6	Sensitivity and Penetration Results of the Simulations.	33
Table A.1	SLN Contrast Measurements of Reconstructed Simulations per-	
	formed using the LMEGP Collimator.	57
Table A.2	SLN Contrast Measurements of Reconstructed Simulations per-	
	formed using the LMEGP Collimator (Continued).	58
Table A.3	SLN Contrast Measurements of Reconstructed Simulations per-	
	formed using the LEHR Collimator.	58
Table A.4	SLN Contrast Measurements of Reconstructed Simulations per-	
	formed using the LEHR Collimator (Continued).	64
Table A.5	Penetration and Sensitivity Performance of LMEGP and LEHR	
	Collimators.	73

LIST OF SYMBOLS

\overline{b}	mean count of <i>BackgroundROI</i>
k	scatter factor
p	significance
\bar{s}	mean count of $SLNROI$
#	number

LIST OF ABBREVIATIONS

AC	Attenuation Correction
AT	Include Attenuation Correction
BMI	Body Mass Index
CASToR	Customizable and Advanced Software for Tomographic Reconstruction
CFOV	Collimator Field of View
CT	Computed Tomography
DEW	Dual Energy Window
FWHM	Full Width At Half Maximum
IS	Injection Site
ISs	Injection Sites
LEHR	Low-Energy High-Resolution
LEUHR	Low-Energy Ultra-High-Resolution
LMEGP	Low-to-Medium General-Purpose
MIP	Maximum Intensity Projection
MB	Activity In The phantom
ME	Medium Energy
MLEM	Maximum Likelihood Expectation Maximization
none	Reconstruction without correction
OSEM	Ordered Subset Expectation Maximization
ROI	Region Of Interest
\mathbf{SC}	Scatter Correction
SD	Standard Deviation
\mathbf{SF}	Scaling Factor Scatter
SIMIND	SIMIND Monte Carlo Program
SLN	Sentinel Lymph Node
SLNs	Sentinel Lymph Nodes
SPECT	Single Photon Emission Computed Tomography
ТС	Technetium

versus

 \mathbf{VS}

1. INTRODUCTION

Breast cancer is the most frequent cancer and the leading cause of cancer death among women worldwide [1]. Lymphoscintigraphy identifying sentinel lymph nodes (SLNs) in more than 95% of breast cancer patients is a well established preoperative method for SLN mapping during breast cancer staging and treatment follow-up [2, 3]. For some patients a hidden SLN is non-visualized because of lymphatic drainage may not be predictable, injection site (IS) and SLNs are in close proximity causing the SLNs to be hidden by the scattered radiation of the IS, presence of extra-axillary SLNs, or SLNs not identified on lymphoscintigraphy because of excessive soft tissue attenuation in overweight and obese patient [4]. Single photon emission computed tomography/computed tomography (SPECT/CT) is the supplementary means to conventional planar imaging (lymphoscintigraphy) to increase the success of SLN localization in these cases.

The role of the lymph nodes in the development and spread of cancer is while preventing the spread of tumor cells also promoting the progression of tumor invasion from the lymphatic system to more remote sites [5]. The **SLN** is the first node to which lymphatic drainage and metastasis from the primary tumor occur [6]. When the histological status of the **SLN** is negative, the nodal basin can be predicted as tumor free and unnecessary axillary lymph node dissection is avoided, area of excision is reduced and the life quality of the patient is improved; when it is positive, further dissection of the nodal basin is indicated [5, 7]. Thus early and accurate mapping of all lymph nodes before surgery is clinically essential for the adequate prognosis, therapy, and outcome of breast cancer patients [6, 8].

With improved contrast, spatial resolution, and exact anatomical localization characteristics of SPECT/CT technique combined with lymphoscintigraphy may depict **SLNs**, that were missed on lymphoscintigraphy in up to 14% cases and enhance the visualization of **SLNs** up to 89-100% [9, 10]. On the other hand even both lym-

phoscintigraphy and SPECT/CT techniques are used together for **SLN** mapping it is reported in the literature [6] that there is still a detection failure rate for **SLNs** as 9% for these combined techniques. In addition, while **SLNs** could be detected in lymphoscintigraphy, they sometimes are not visualized in SPECT/CT images [4].

During preoperative **SLN** imaging of breast cancer both lymphoscintigraphy and SPECT/CT have some disadvantages. The **SLNs** are small and have low levels of radioactivity. Most of the radioactivity is up taken by the **IS** which causes decreased detectability of **SLN** because of the scattering of the gamma rays originating from the **ISs** and septal penetration of the collimators [11]. Especially when the **SLNs** are located close to the **ISs**, methods to eliminate or decrease the artifacts caused by **IS** are required [4].

The detection rate of the deeply located **SLNs** decreases because of the attenuation of gamma rays. A faint (small size and/or less activity uptake) **SLN** sometimes does not appear in SPECT/CT images and the detectability of **SLNs** maybe worse than lymphoscintigraphy images. Also image corrections (attenuation, scatter) might even result in image artifacts when **SLNs** are located close to the **ISs** and in some cases attenuation correction might cause an image artifact on the border of the lung and the breast [4].

There are several factors which affect the visibility of the **SLNs** such as the size and preparation of the radiopharmaceutical, injection techniques, the time interval between injection and imaging, gamma camera type and settings, collimator characteristics (resolution, sensitivity, septal penetration), patient age, body mass index (BMI) of the patient, patient displacement maneuvers, techniques for marking and outlining the body of the patient, and image processing and correction parameters [6, 7, 12, 13, 14]. In addition to these there is no standardized **SLN** procedure in the literature, and this may lead variable false-negative and **SLN** identification rates among the various studies [5]. Therefore in order to increase the detectability of **SLNs** there is a need to evaluate the optimum imaging protocols for the SPECT/CT acquisition[7]. It is reported that developing optimum methods for eliminating or reducing the artifacts caused by the **ISs** takes precedence in case of **SLNs** being located close to the **IS** [4].

Phantom studies, in general, are useful for development and improvement of existing and new imaging technologies and protocols. However the anatomic structure, variable scatter, attenuation and nonuniform activity distribution in the upper thoracic region cause very simple realistic phantoms to be insufficient for the studies focused on imaging of breast and associated axillary **SLNs** [15]. In order to offer accurate results for clinical studies realistic anthropomorphic digital phantoms maybe an alternative solution.

Using a **LEHR** collimator is the standard procedure for lymphoscintigraphy and additional SPECT/CT imaging [12]. High-resolution collimators with thinner septa such as **LEHR** collimator are subject to septal penetration and blurred image on the other hand high sensitivity collimators with thicker septa such as **LMEGP** might lead to improved image quality. Collimator selection is a trade off between resolution and sensitivity therefore in order to improve image quality, collimator optimization studies takes precedence for also SPECT/CT systems.

Lerman et al. [8] assessed the role of attenuation correction in improved detection of **SLN** by SPECT/CT for 29 overweight or obese breast cancer patients with non-visualized **SLNs** by planar imaging. They concluded that SPECT/CT with attenuation correction is attributable to better **SLN** image quality.

In their both clinical and physical phantom research Yoneyama et al. [16] investigated the choice of optimum collimators in SPECT/CT imaging system during preoperative **SLN** mapping of breast cancer. They reported that when compared with low-energy high-resolution (**LEHR**) collimator, the lower septal penetration characteristics of low-to-medium-energy general-purpose (**LMEGP**) collimator leading to decreased star-shaped artifact could compensate its lower resolution characteristics disadvantage and result in improved visualization of **SLNs** especially if they are low-

cated close to the **ISs**. They also added that the radioactivity of the **SLN** and its distance from the **IS** affected the **SLN** contrast. According to their phantom study for an **SLN**, 3cm or 6cm away from the **IS**, the image contrast was the best for **LMEGP** collimator. The worst image contrast for both cases belonged to the **LEHR** collimator without lead shield.

Yoneyama et al. [4] in their subsequent study over a group of 55 females with diagnosed breast cancer searched the optimum image correction solution for improving the detectability of the **SLNs** with SPECT/CT imaging. Based on the findings of their previous study, they performed the SPECT/CT imaging with a **LMEGP** collimator instead of a **LEHR** collimator [16]. They concluded that in case of SPECT/CT is used attenuation correction should be performed as it improved the **SLN** detection rate. They also reported that scatter correction should not be performed, because scatter correction caused disappearance of a faint **SLN** in some cases.

Although SPECT/CT systems have been performed to enhance the detection of **SLNs** with lymphoscintigraphy there are limited studies [4, 8, 16] in the literature which focused on the optimization of the **SLN** detectability with SPECT/CT in breast cancer. However these studies are either clinical or physical phantom studies with a visual image interpretation method. Recently no study has focused on optimization of SPECT/CT systems on **SLN** detection in breast cancer examinations using a digital simulation technique.

In order to develop and evaluate especially scatter and attenuation corrections methods for image improvement, Monte Carlo methods and programs with digital phantoms are commonly utilized as important tools for analyzing the effects of nuclear imaging system parameters upon image quality [17, 18]. With an accurate model of the imaging system and a realistic model of the patient geometry and activity distribution Monte Carlo simulations can provide clinically highly realistic images and a real patient like measurements [19].

It is reported in the literature that besides their time, cost and easy to re-

peat/modify advantages over experimental (clinical, phantom) studies, Monte Carlo simulations have the capability of obtaining results that are impossible to be measured experimentally and therefore support the optimization of imaging systems [19].

In order to perform clinically realistic Monte Carlo simulations using digital anthropomorphic phantoms rather than phantoms based on simple geometries enable modeling the organs and structures in the patient body accurately and easily [20].

The purpose of this study is to simulate and optimize the **SLN** detectability in breast cancer with SPECT Monte Carlo Simulation on an anthropomorphic digital phantom.

The study is aimed to evaluate the effects of important parameters such as gamma camera type, collimator type, reconstruction methods (attenuation and scatter correction) of **SLN** imaging during breast cancer diagnosis and treatment accurately, easily, and at a lower cost than physical phantom or patient studies.

This study will be the first study carried out with Monte Carlo simulation using a digital phantom in SPECT/CT **SLN** detectability optimization.

In the **Methods** section of the article digital phantom construction, **SPECT** simulation, image reconstruction, and analysis & evaluation methods implemented in the study are defined. In the **Results** section the outcomes of the study are presented. Main findings of the study are explained in terms of underlying theory and potential errors and compared with results from literature in the **Discussion** section together with the potential clinical applications, benefits, limitations, and future work regarding the study. The purpose, lessons learned, and the importance of the study are restated in the **Conclusions** section. The report is ended with the **Appendix** and **References** sections.

2. METHODS

2.1 General Approach

In order to have a validated simulation and optimization method the main approach of this study was to realistically simulate the physical phantom and clinical studies performed by Yoneyama et al. [4, 16] so far as applicable and evaluate the findings of this study with the results reported in their studies. Missing data for the simulation was obtained from other studies in the literature.

SIMIND Monte Carlo simulation program (SIMIND) version 6.1 [21] was used as the Monte Carlo Program for SPECT camera simulations. In order to simulate a realistic patient **ZUBAL** phantom [22], a voxel-based human male torso anthropomorphic phantom with no arms and legs was used. The **ZUBAL** phantom is one of the most widely used digital phantoms in research and it is also supported in the Monte Carlo program **SIMIND**. In the study, an **IS** and an **SLN** were placed into the phantom by **SIMIND**.

SIMIND simulations were reconstructed with or without attenuation and scatter corrections by Customizable and Advanced Software for Tomographic Reconstruction (CASTOR) software Version 1.0 [23] via a conversion program called smc2castor embedded in SIMIND. Image processing and analysis were performed with ImageJ 1.51k [24].

The Symbia T6; Siemens, Erlangen, Germany SPECT/CT system equipped with low-energy high-resolution (LEHR) and low-to-medium-energy generalpurpose (LMEGP) collimators were modeled by SIMIND.

2.2 Digital Phantom Construction

The **ZUBAL** phantom has $128 \times 128 \times 243$ byte volume with isotropic voxel dimensions of 4mm and consists of a set of 8bit coded images where each voxel has a unique value that can be related to the organ or structure that the voxel belongs to. These coded images can then be used to define either density maps or activity maps provided that the user has appropriate density and activity values [21].

Generally an axillary **SLN** is located at the junction of the fatty breast tissue and chest wall and lateral to or within the borders of the pectoralis minor muscle [6, 25, 26] **SLN** and **IS** were located in the phantom referencing the SPECT/CT images in the studies of Yoneyama and his friends [4, 16].

Yoneyama et al. [16] used **SLNs** with varying activity concentrations and volumes of in their physical phantom study where the minimum **IS:SLN** radioactivity concentration ratio was 25 : 1.

SIMIND enables to create activity maps from **ZUBAL** phantom with a userwritten table in a *.zub file. In this study simind.zub file was used as the activity map where the name, unique code, density value $(g/cm^3 \times 1000)$ and relative activity concentration (MBq/cc) of the organs were defined respectively.

Relative activities of **SLN**, **IS** and **Background** defined in the **ZUBAL** phantom have been defined in Table 2.1.

	Relative Activity
	(MBq/cc)
IS	250
SLN	10
Background	0

 Table 2.1

 Relative Activity Distribution of SLN, IS, and Background in the Zubal Phantom.

According the literature [11] most of the activity injected in the patient is retained in the **IS** therefore the relative activity concentrations of the background of the **SLN** (Background) and whole organs in the **ZUBAL** phantom were ignored and assigned to zero. The content of the **simind.zub** file is illustrated in Figure 2.1.

🗐 simind - Not Defteri	_		×	🧾 simind - Not Defteri	-		×	
<u>D</u> osya Dü <u>z</u> en <u>B</u> içim <u>G</u> öri	ünüm <u>Y</u> ardı	m		Dosya Düzen Biçim Görünüm	<u>Y</u> ardı	m		
== V4.3 Code Section	1 vox_ma	n!====	! ^	long bones	8	1330	0	^
adrenals	21	1025	0	lungs	10	260	0	
bladder	40	1040	0	lymph nodes	27	1030	0	
blood pool	23	1060	0	medulla oblongota	85	1420	0	
bone marrow	26	1030	0	optic nerve	106	1070	0	
brain	2	1040	0	outside phantom	0	0000	0	
cartilage	30	1100	0	pancreas	20	1040	0	
cerebellum	77	1040	0	pelvis	7	1290	0	
cerebral aquaduct	122	1040	0	pharynx	15	1000	0	
cerebral falx	113	1040	0	pons	91	1000	0	
colon	19	1030	0	prostate	35	1045	0	
dens of axis	70	1180	0	rectum	37	1030	0	
diaphragm	39	1030	0	rib cage & sternum	6	1410	0	
esophagus	16	1030	0	sinuses	104	1000	0	
eye	119	1070	0	skeletal muscle	9	1050	0	
fat	22	950	0	skin	1	1090	0	
feces	33	1010	0	skull	4	1610	0	
fluid (bowel)	25	1007	0	small bowel	18	1030	0	
gall bladder	13	1026	0	spinal canal	75	1038	0	
gas (bowel)	24	260	0	spinal cord	3	1038	0	
hard palate	76	1680	0	spine	5	1330	0	
heart	11	1060	0	spleen	31	1060	0	
iaw bone	71	1680	0	stomach	17	1030	0	
kidnev	14	1050	0	teeth	125	1920	0	
lacrimal glands	74	1045	0	testes	34	1040	0	
lens	121	1070	0	thyroid	28	1050	0	
lesion	63	1060	0	tongue	78	1000	0	
liver	12	1060	0	trachea	29	1000	0	
long bones	8	1330	0	uncus(ear bones)	99	1180	0	
and some		2000	~	urine	32	1030	0	¥
< _	-		>	<			>	

Figure 2.1 The content of simind.zub file.

An **IS** with only one axillary **SLN** was placed in digital phantom for analysis simplicity as the tumor cells initially spread through the lymphatic pathway to at least one **SLN**.

According to the voxel size (4mm) limitation, cylindrical **IS** and **SLN** dimensions were chosen in accordance with the physical phantom dimensions defined in the study of Yoneyama et al. [16] namely; 1.6cm (4pixels) in diameter and 0.8cm (2pixel) thick for **IS**; 0.8cm (2pixel) in diameter and 0.8cm (2pixel) thick for **SLN**. **IS** had a 32voxel and **SLN** has a 8voxel volume.

Axillary **SLN** near **IS** was located in the **ZUBAL** phantom in accordance with the SPECT/CT images given in the studies of Yoneyama et al. [4, 16]. The center-tocenter distance of the axillary **SLN** to **IS** was selected as 3cm (7pixels). The distance of axillary **SLN** origin to the body surface was chosen approximately 1.5cm (4pixels). **IS** and **SLN** dimensions, x, y, z coordinates, relative activity, density, cut-off and order of inner distribution of activity data can be added to **ZUBAL** phantom with the **SIMIND *.inp** file. **IS** and **SLN** dimension and activity data given in Table 2.2 was defined and added to **ZUBAL** phantom with **simind.inp** file illustrated in Figure 2.2. A zero density means that the density is given by the original values in the voxels that the ROI occupies. Distribution of activity (cut-off and order) with a zero value indicates that there is a uniform distributed activity in the ROI [27].

Table 2.2IS and SLN Data defined in simind.inp file.

	x	у	Z	x	у	z	Relative
	radius	radius	radius	position	position	position	activity
	(pixel)	(pixel)	(pixel)	(pixel)	(pixel)	(pixel)	(MBq/cc)
IS	2	2	2	90	27	45	250
SLN	1	1	1	88	26	38	10

🗐 simind - Not Defteri —	×
Dosya Dügen Biçim Görünüm Yardım 2.00000 2.00000 2.00000 2.00000 2.00000 0.00000 0.000000	0 ^
<	*

Figure 2.2 The content of simind.inp file.

A patient was assumed to have been injected a 37MBq (1mCi) dose of technetium-99m (^{99m}Tc) around the tumor in the right breast. This injection region around the tumor was called as the injection site **(IS)**. The duration between injection time and SPECT/CT imaging performed after lymphoscintigraphy was taken approximately 6hours (one-half life of ^{99m}Tc) according to the study reports of Yoneyama et al. [4, 16]. or LMEGP parallel-hole collimators was chosen as the SPECT/CT camera system. Detector and crystal parameters of Symbia T6 SPECT/CT system are included in Table 2.3 and Table 2.4.

Intrinsic Spatial Resolution	\leq 3.8 mm
FWHM in CFOV	
Intrinsic Energy Resolution	$\leq 9.9\%$
FWHM in CFOV	

 Table 2.3

 Detector Parameters of Symbia T6; Siemens, Erlangen, Germany.

 Table 2.4

 Crystal Parameters of Symbia T6; Siemens, Erlangen, Germany.

Size	$59.1cm \times 44.5cm$
Diagonal	73.9cm
Thickness	9.5mm

The **LEHR** and **LMEGP** collimator specifications represented by Yoneyama et al. and Inoue, Yusuke et al. in their studies [4, 29] were used in the study as both simulation input and evaluation method of the simulation outputs. These collimator specifications are given in Table 2.5.

While Yoneyama et al. [4, 16] implemented 60 projections in steps of 6° over 360° and performed resolution recovery in their study [4] because resolution correction was not applied during the study, SPECT images were taken with 120 equally spaced projection angles in a 360° stepwise rotation [12]. A time per view of 20s in a 128×128 data matrix and 15% energy window centered on 140 keV were used.

Acquisition of simulation data was simulated for two energy windows using **SIMIND "scattwin"** scoring routine to collect counts and prepare separate images for each window. **Dual energy window (DEW)** method with energy windows namely photo-peak window (129.5 – 150.5 keV for ^{99m}Tc) and low-energy scatter window (92 –

	LEHR	LMEGP
Vendor	Siemens	Siemens
Septa length (mm)	24.05	37.00
Hole diameter (mm)	1.11	2.5
Septa Thickness (mm)	0.16	0.6
Sensitivity @ $10cm/collimator(cpm/kBq)$	5.5	9.2
System resolution FWHM @ 10cm(mm)	7.4	10.4
Penetration @ $140 keV(\%)$	1	< 0.1
Energy at 5% septal penetration (keV)	160	240

 Table 2.5

 Specifications of LEHR and LMEGP Collimators.

129.4keV) were defined according to the tailoring of Sadrmomtaz et al. [30] report with 15% energy window applied in this study. These energy windows were included in simulation by **simind.win** file depicted in Figure 2.3. Scatter image generated for low-energy scatter window was used for scatter correction during reconstruction.

Figure 2.3 simind.win file including two energy window settings.

The coordinate system used in **SIMIND** simulation is illustrated in Figure 2.4. When simulating voxel-based phantoms, the first density/activity image is located towards +X and the last one is located towards -X. In SPECT simulations the camera rotates in the ZY plane either clockwise or counter-clockwise [27].

Figure 2.4 SIMIND Coordinate System.

As distance between the patient and the scintillation camera is important for image resolution and scattering of the photons, attention was given to reduce to the patient-gamma camera distance. Therefore the lowest probable distance was assigned to the **Index 12: Height to Detector Surface** parameter.

SIMIND has two main programs: CHANGE and SIMIND. The imaging system is defined in CHANGE program and SIMIND program performs the simulations and reports the simulation and reconstruction results. Simulation inputs of this study were defined in CHANGE program according to the SIMIND Manual [27] and are given through Figure 2.5-Figure 2.14.

2.3 Reconstruction

In order to obtain results with realistic noise properties, the poisson noise was added to noise-free **SIMIND** SPECT simulation data with **MosaicSuite for ImageJ and Fiji** [31] before reconstruction. **SIMIND** simulations were reconstructed with Customizable and Advanced Software for Tomographic Reconstruction (**CASTOR**) software Version 1.0 [23] by a conversion program called **smc2castor** supported by **SIMIND**.

NGE Program)
CHANGE: MAIN PAGE FOR I	NPUT TO SIMIND - V6.1	
1		
2 - Change some general>		
3 - Change simulation flags>		
4 - Export to a SMC file>		
5 - Import from a SMC file>	simind.smc	
6 - Clear all SMC data>		
7 - Comment sentence>	SY-LEHR SY-LME SIMULATIONS	
8 - Transfer changes to other files>		
9 - Phantom soft tissuefile>	h2o	
10 - Phantom bone tissuefile>	bone	
<pre>11 - Cover materialfile></pre>	al	
12 - Crystal materialfile>	nai	
<pre>13 - Density mapfile></pre>	vox_man	
14 - Source mapfile>	vox_man	
15 - Backscatter materialfile>	lucite	
Select an Index Number		
0		
1		

Figure 2.5 CHANGE: Main Page for Input to SIMIND - V6.1.

Dual energy window with a k - factor(0.5) was chosen as the scatter correction method according to the studies [4, 30, 32, 33, 34, 35] in the literature. The scatter was estimated based on the two energy windows in **simind.win** file illustrated in Figure 2.3. Scatter correction was added to the reconstruction by assigning k - factor(0.5)to the **smc2castor** program **SF: Scaling Factor Scatter** switch as "/SF : 0.5".

Attenuation map of SIMIND generated simulation data was produced by setting Flag15: Save Aligned Density Map of SIMIND CHANGE program to "TRUE" and in order to change the data format of attenuation map the switch in:x22, 5x was added to the SIMIND simulation command line. Attenuation correction was included to the CASTOR reconstruction with AT: Include Attenuation Correction switch of smc2castor program.

CASTOR reconstructions were performed using an iterative method based on a maximum-likelihood expectation-maximization (MLEM) algorithm with 12 iterations and 15 subsets. In the study attenuation and scatter corrections were per-

	SCINTILLA	TION CAMERA PARAMETERS ·	SET	UP 1	
1 - Photon E	nergy		7 >	140.000	
2 - Source:	Half-length	Source	n >	48.600	
3 - Source:	Half-width	Source	n >	0.000	
4 - Source:	Half-height	Source	n >	0.000	
5 - Phantom:	Half-length	Phantomcr	n >	48.600	
6 - Phantom:	Half-width	Phantomcr	n >	0.000	
7 - Phantom:	Half-height	Phantomcr	n >	0.000	
8 - Crystal:	Half-length	/Radiuscm	n >	22.250	
9 - Crystal:	Thickness	cr	n >	0.950	
10 - Crystal:	Half-width.	.[0=Circular]cr	n >	29.550	
11 - Backscat	tering Mater	ial: Thicknesscr	n >	5.000	
12 - Height t	o Detector S	urfacecr	n >	26.500	
13 - Thicknes	s of Cover		n >	0.100	
14 - Phantom	Туре		>	-2.000	
15 - Source	Туре		>	-2.000	
elect an Inde	x Number				

Figure 2.6 Scintillation Camera Parameters - Setup 1.

formed and the other methods such as resolution correction, pixel truncation or gaussian filter were excluded during reconstruction.

For each simulation with either **LEHR** or **LMEGP** collimators, images were reconstructed using 4 different reconstruction choices namely, **attenuation correction**, **scatter correction**, **attenuation+scatter correction** and **no correction (none)**. In order to have comparable **SLN** counts with the study results reported by Yoneyama et al. [16] the **SLN** counts of the poisson noise added simulations were tried to be normalized with **MB: Activity In The Phantom** switch of **smc2castor** program. To assign a default value to **MB** switch for each reconstruction the **SLN** count in the reconstructed image of **LMEGP** without any attenuation or scatter correction was scaled with the regarding count result of Yoneyama et al. [4].

SCINTILLATION CAMERA PARAMETERS - SETU	₽ 2	
16 - Shift Source in x-directioncm >	0.000	
17 - Shift Source in y-directioncm >	0.000	
18 - Shift Source in z-directioncm >	0.000	
19 - Photon Directiondeg >	2.000	
20 - Upper Window ThresholdkeV >	-15.000	
21 - Lower Window ThresholdkeV >	-15.000	
22 - Energy Resolution [140 keV] % >	9.900	
23 - Intrinsic Resolution [140 keV]cm >	0.380	
24 - Emitted Photons per Decay	0.891	
25 - Source ActivityMBq >	370.000	
26 - Number of photon histories * 1E6 >	1.000	
27 - keV/ChannelkeV >	1.000	
28 - Pixel Size in simulated imagecm >	0.400	
29 - SPECT: No of Projections	120.000	
30 - SPECT: Rotation [0=-360,1=-180,2=360,3=180]. >	0.000	
elect an Index Number		

Figure 2.7 Scintillation Camera Parameters - Setup 2.

2.4 Evaluation and Statistical Analysis

The detectability of the **SLN** in reconstructed images was evaluated by the **SLN** contrast with respect to background. **ImageJ** [24] was used to analyze the images. **SLN** region of interest (*SLNROI*) was analyzed from the image slices (namely 29/60, 30/60 or 31/60) in which the mean count of the **SLN** is the highest. *SLNROI* and background (*BackgroundROI*) were decided referencing the study of Yoneyama et al. [16]. As the coordinates and dimensions of **SLN** and **IS** were known values (Table 2.2, Figure 2.2) a $2 \times 2pixel SLNROI$ was placed at the origin of the **SLNs** 3cm away from the center of the **IS** in reconstructed images. *BackgroundROI* was chosen as an area of $5 \times 5pixel$ around the **SLN ROI** and approximately in 3cm from the center of the **IS**. An illustration of **SLN ROI**, **Background ROI**, and **IS** is illustrated on a reconstructed image in Figure 2.15.

SLN contrast was evaluated quantitatively according to the Eq.2.1 used in the study of Yoneyama et al. [16]:

NON-HOMOGENEOUS PHANTOM AND SPECT PARAM	ETERS	
31 - Fixel Size in Density Maps cm >	0.400	
32 - Orientation of the Density Map Phantom >	0.000	
33 - Start Image when reading Density Maps >	1.000	
34 - Number of CT-images	243.000	
35 - Density Limit Defining the Border g/cm3 $>$	0.100	
36 - Shift Density Map Relative Origin (Y-Dir).cm >	0.000	
37 - Shift Density Map Relative Origin (Z-Dir).cm >	0.000	
38 - Step Size for Photon Path Simulationcm >	0.200	
39 - Shift Density Map Relative Origin (X-Dir).cm >	0.000	
40	0.000	
41 - SPECT: Starting Angle degree >	0.000	
42 - SPECT: Orbital Rotation Fraction >	1.000	
43 - Camera Offset in x-directioncm >	0.000	
44 - Camera Offset in y-directioncm >	0.000	
45 - Code Definitions in generic Zubal phantom >	1.000	
elect an Index Number		

Figure 2.8 Non-homogenous Phantom and SPECT Parameters.

$$Contrast = \frac{\bar{s} - \bar{b}}{\bar{s} + \bar{b}} \tag{2.1}$$

Where; \bar{s} : mean count of *SLNROI*, and \bar{b} : mean count of *BackgroundROI*.

In order to increase the sample size and to normalize the randomness effects of the simulations, and to have more dependable results SPECT simulations were repeated for 10 times for both **LEHR** and **LMEGP** collimators resulting in a total of 20 SPECT simulations. The **SLN ROI** and **Background ROI** counts measured and the contrast values calculated for both collimators were averaged and the standard deviations were predicted accordingly. The average contrast results of the total number of 80 images projected with different collimators (**LMEGP**, **LEHR**) and reconstructed with different reconstruction methods were compared with each other and the results of studies of Yoneyama et al. [4, 16]. The average contrast results of the reconstruction methods were compared performing **Wilcoxon signed rank test** -a nonparametric statistical test- with a statistical significance $\alpha = 0.01$.

COLLIMATOR PARAMETERS	SY-LEHR	
46 - Hole Size X cm >	0.111	
47 - Hole Size Y cm >	0.124	
48 - Distance between holes in x-directioncm >	0.016	
49 - Distance between holes in y-directioncm $>$	0.090	
50 - Displacement center hole in x-directioncm >	0.064	
51 - Displacement center hole in y-directioncm >	0.107	
52 - Collimator Thicknesscm >	2.405	
53 - Collimator Routine	1.000	
54 - Hole Shape:2=Cir,3=Hex,4=Rect	3.000	
55 - Type: 0=PA,1=PI,2=CO,3=FB,4=DV,5=SH	0.000	
56 - Distance from collimator to detectorcm >	0.000	
57	0.000	
58	0.000	
59 - Random Collimator Movement (0=no) >	1.000	
60	0.000	
elect an Index Number		

Figure 2.9 LEHR Collimator Parameters.

The effects of scatter correction (SC) and attenuation correction (AC) were evaluated using Eq.2.2 and Eq.2.3 [4].

$$Effect of SC = 100 \frac{The \ counts \ decreased \ by \ SC}{The \ counts \ obtained \ without \ SC}$$
(2.2)

$$Effect of SC = 100 \frac{The \ counts \ increased \ by \ AC}{The \ counts \ obtained \ without \ AC}$$
(2.3)

As an additional verification method of the study the average **Sensitivity** (cpm/kBq) and **Penetration** (%) After collimator parameters of both collimators were calculated according to the related data in **SIMIND** simulation reports. The results were compared with the literature for consistency.

COLLIMATOR PARAMETERS	LMEGP
46 - Hole Size X cm >	0.250
47 - Hole Size Y cm >	0.280
48 - Distance between holes in x-directioncm $>$	0.060
49 - Distance between holes in y-directioncm >	0.244
50 - Displacement center hole in x-directioncm $>$	0.155
51 - Displacement center hole in y-directioncm >	0.262
52 - Collimator Thicknesscm >	3.700
53 - Collimator Routine	1.000
54 - Hole Shape:2=Cir,3=Hex,4=Rect	3.000
55 - Type: 0=PA,1=PI,2=CO,3=FB,4=DV,5=SH>	0.000
56 - Distance from collimator to detectorcm >	0.000
57	0.000
58	0.000
59 - Random Collimator Movement (0=no)>	1.000
60	0.000
elect an Index Number	

Figure 2.10 LMEGP Collimator Parameters.

Although the study was based on a quantitative analysis method, to identify the **SLNs** with a visual evaluation method Maximum Intensity Projection (**MIP**) images of the sample images were generated by **ImageJ** [24].

TRANSMISSION SIMILATION RADAMETER	2	
TRANSMISSION SINULATION PARAMETER.	2	
l - Transmission Photon Energy keV >	0.000	
2 - Transmission Photon Polar Angle degree >	0.000	
3 - Transmission Photon Azimuthal Angle degree >	0.000	
4 - Source Lengthcm >	48.600	
5 - Source Widhtcm >	0.000	
6 - Shift Transmission Source in x-directioncm >	0.000	
7 - Shift Transmission Source in y-directioncm >	0.000	
8 - Shift Transmission Source in z-directioncm >	0.000	
9	0.000	
0 - Transmission Option >	0.000	
9	0.000	
lect an Index Number		

Figure 2.11 Transmission Simulation Parameters.

IMAGE PARAMETERS AND OTHER SETTINGS		
76 - Matrix Size Image I	128.000	
77 - Matrix Size Image J >	128.000	
78 - Matrix Size Density Map I	128.000	
79 - Matrix Size Source Map I	128.000	
80 - Energy Spectra Channels	512.000	
81 - Matrix Size Density Map J	0.000	
82 - Matrix Size Source Map J >	0.000	
83 - Cut-off energy to terminate photon history >	92.000	
84 - Scoring Routine	1.000	
85 - CSV File content	5.000	
86 - Dynamic study	0.000	
elect an Index Number		

 $Figure \ 2.12 \ \ Image \ Parameters \ and \ Other \ Settings.$

SOLID STATE DETECTOR SETTINGS	
91 - Voltage	0.000
92 - Mobility life (electrons)10+3 cm2/V >	0.000
93 - Mobility life (holes)10+3 cm2/V $>$	0.000
94 - Gap (fraction of detector size)	0.000
95 - Detector sizecm >	0.000
96 - Tau - exponential decay constant >	0.000
97 - Hecht Formula (e=0, e+h=1 >	0.000
98 - Energy Resolution model	0.000
99 - Cloud Mobility>	0.000
elect an Index Number	

Figure 2.13 Solid State Detector Settings.

CHANGE Program	-	×
SIMULATION FLAGS - V6.1		
1 - Write Results to the Screen		_
2 - Write Image Matrix to File		
3 - Write Pulse-Height Distribution to File> .FALSE		
4 - Include the Collimator		
5 - Simulate a SPECT StudyTRUE.		
6 - Include Characteristic X-Ray Emission> .FALSE		
7 - Include Backscattering MaterialTRUE.		
8 - Use a Random Sampled Seed Value		
9 - Simulate a Transmission Study		
10 - Include Interactions in the Cover		
<pre>11 - Include Interactions in the Phantom> .TRUE.</pre>		
12 - Include Simulation of Energy Resolution> .TRUE.		
13 - Include Forced Interaction at Crystal Entry> .TRUE.		
14 - Write File Header in INTERFILE V3.3 Format> .TRUE.		
15 - Save Aligned Density Map		
Select an Index Number		
		_

Figure 2.14 Simulation Flags.

Figure 2.15 Illustration of SLN ROI, Background ROI, and IS.

3. RESULTS

The two samples (simind185, simind197) of **SIMIND** SPECT simulations for each collimator (**LEHR**, **LMEGP**) with poisson noise are depicted in Figure 3.1-Figure 3.10.

Figure 3.1 Simulation #: simind185, Collimator: LMEGP, Poisson noise added, Slice: 1/60.

The average **SLN** contrast values $(Mean \pm SD)$ of a total number of 80 reconstructed images are given in Table 3.2 and illustrated in Figure 3.11, Figure 3.12 in terms of collimator type and correction method.

According to Table 3.1 the images projected by **LMEGP** collimator provided that the **SLN** contrast ($Mean \pm SD$) by attenuation correction resulted in the best

Figure 3.2 Simulation #: simind185, Collimator: LMEGP, Poisson noise added, Slice: 15/60.

contrast (0.4 ± 0.1) , followed by the no correction (none) (0.3 ± 0.1) , and the attenuation+scatter correction (0.3 ± 0.2) . The contrast for the scatter correction was the lowest (0.1 ± 0.3) . Significant (p < 0.01) average **SLN** contrast ratio [4 : 1] was obtained between attenuation and scatter correction methods for **LMEGP**. In addition significant differences were observed for **LMEGP** collimator between attenuation-none $(p \pm 0.01)$ and none-scatter (p = 0.01) correction methods (Table 3.2).

SLN contrast results summarized in Table 3.1 for simulations using the **LEHR** collimator presented that with the best value of 0.4 ± 0.1 the attenuation correction method was in the first place, no correction (none) method was the second (0.3 ± 0.1) and attenuation+scatter correction (0.2 ± 0.1) was the third in terms of **SLN** detectability. Scatter correction method with an **SLN** contrast as 0.2 ± 0.3 was the

Figure 3.3 Simulation #: simind185, Collimator: LMEGP, Poisson noise added, Slice: 30/60.

worst among the four image correction methods. An important average **SLN** contrast difference was observed between attenuation and scatter correction methods with a ratio of [2 : 1] for **LEHR** collimator. Statistical significance among attenuation-none, attenuation-scatter, none-scatter reconstruction methods of **LEHR** collimator were observed as p < 0.01 (Table 3.3).

SLN average contrasts for attenuation and no correction (none) corrections methods were observed the same for both **LMEGP** and **LEHR** collimators. No significant statistical difference (p > 0.1) was observed between the two collimators incase of attenuation correction method was performed. **SLN** average contrast ($Mean \pm SD$) and significance values are depicted for **LMEGP** and **LEHR** collimators in Figure 3.11-Figure 3.12:

Figure 3.4 Simulation #: simind185, Collimator: LMEGP, Poisson noise added, Slice: 45/60.

Average counts $(Mean \pm SD)$ of **SLNs** in **LEHR** and **LMEGP** SPECT images according to the reconstruction correction methods are summarized in Table 3.4.

The average **SLN** counts provided by the attenuation correction method was the highest (8749 ± 1347) for simulations using the **LMEGP** collimator, followed by the counts of the attenuation scatter (5374 ± 1610) , and the no correction (none) (4981 ± 198) methods. The scatter correction **SLN** counts were the lowest (2349 ± 1270) (3.4). The simulations using the **LEHR** collimator resulted in the average counts **SLN** given in Table 3.4 regarding the correction method implemented from highest to lowest were attenuation correction (13456 ± 10753) , attenuation+scatter correction $(9411 \pm$ 7816), no correction (none) (7854 ± 6472) , and lastly scatter correction (4750 ± 3927) . The standard deviations of the **SLN** counts in the images projected with **LEHR**

Figure 3.5 Simulation #: simind185, Collimator: LMEGP, Poisson noise added, Slice: 60/60.

collimator are observed considerably higher than their corresponding mean values and the standard deviations with the **LMEGP** collimator.

The effectiveness of both scatter and attenuation correction is summarized in Table 3.5:

According to the data presented in Table 3.5, the scatter correction effectiveness was calculated as 39% when attenuation + scatter correction method was compared with attenuation correction method and as 53% when scatter correction and no correction (none) correction methods were compared. The scatter correction effectiveness average was 46% for **LMEGP** collimator. For **LEHR** collimator these results were 30% and 40% respectively with an average of 35%. Attenuation correction effectiveness

Figure 3.6 Simulation #: simind197, Collimator: LEHR, Poisson noise added, Slice: 1/60.

was calculated comparing the attenuation+scatter with scatter correction methods and attenuation with "none" correction methods. While the corresponding attenuation correction effectiveness were found as 129% and 76% accordingly with an average value as 103% for **LMEGP** collimator, for **LEHR** collimator 98%, and 71% results yielded an average of 85%. It is observed from the effectiveness data presented in Table 3.5 that attenuation correction had higher effect on **SLN** counts than scatter correction. According to the data in Table A.5 average sensitivity and penetration results of the **SIMIND** simulations using the **LMEGP** and **LEHR** collimators are summarized in Table 3.6.

According to Table 3.6 simulations using the **LEHR** collimator resulted in a higher average penetration rate (3.8%) than **LMEGP** collimator (2.5%). On the other

Figure 3.7 Simulation #: simind197, Collimator: LEHR, Poisson noise added, Slice: 15/60.

hand the **SIMIND** simulations reported a higher sensitivity for **LMEGP** collimator (5.5cpm/kBq) than **LEHR** collimator (3.1cpm/kBq) (**MIP**) of reconstructed images samples obtained by **LMEGP** collimator are illustrated in Figure 3.13-Figure 3.16.

(MIP) of reconstructed images samples obtained by LEHR collimator are illustrated in Figure 3.17-Figure 3.20.

(MIP) of reconstructed images with the highest contrasts performed using attenuation correction method for LMEGP and LEHR collimators are illustrated in Figure 3.21 and Figure 3.22.

Figure 3.8 Simulation #: simind197, Collimator: LEHR, Poisson noise added, Slice: 30/60.

 Table 3.1

 Average SLN Contrasts of Correction Methods applied in SPECT Simulations using the LMEGP and LEHR Collimators.

Correction Method	SLN Contrast	SLN Contrast	
	(LMEGP)	(LEHR)	
Attenuation	0.4 ± 0.1	0.4 ± 0.1	
None	0.3 ± 0.1	0.3 ± 0.1	
Scatter	0.1 ± 0.3	0.2 ± 0.3	
Attenuation + Scatter	0.3 ± 0.2	0.3 ± 0.3	

Figure 3.9 Simulation #: simind197, Collimator: LEHR, Poisson noise added, Slice: 45/60.

Table 3.2p values for LMEGP Collimator.

Correction Method	None	Scatter
Attenuation	0.01	< 0.01
None		0.01

 $[\]begin{array}{c} \textbf{Table 3.3} \\ p \text{ values for LEHR Collimator.} \end{array}$

Correction Method	None	Scatter
Attenuation	< 0.01	< 0.01
None		< 0.01

Figure 3.10 Simulation #: simind197, Collimator: LEHR, Poisson noise added, Slice: 60/60.

Figure 3.11 Average SLN Contrasts of Correction Methods applied in SPECT Simulations using the LMEGP Collimator.

Figure 3.12 Average SLN Contrasts of Correction Methods applied in SPECT Simulations using the LEHR Collimator.

 Table 3.4

 Average SLN Counts of Correction Methods applied in SPECT Simulations using the LMEGP and LEHR Collimators.

Correction Method	SLN Count	SLN Count	
	(LMEGP)	(LEHR)	
Attenuation	8749 ± 1347	$13456\ {\pm}10753$	
None	4981 ± 198	7854 ± 6472	
Scatter	2349 ± 1270	4750 ± 3927	
Attenuation+Scatter	5374 ± 1610	9411 ± 7816	

Scatter Correction		Attenuation Correction			
Effecti	veness	Effectiveness			
LMEGP LEHR		LMEGP	LEHR		
39%	30%				
53%	53% 40%				
		129%	98%		
		76%	71%		
	Scatter C Effecti LMEGP 39% 53%	Scatter CorrectionEffectivenessLMEGPLEHR39%30%53%40%	Scatter Correction Attenuation Effectiveness Effection LMEGP LEHR LMEGP 39% 30% 53% 40% 129% 76%		

 Table 3.5

 Scatter and Attenuation Correction Effectiveness.

 Table 3.6

 Sensitivity and Penetration Results of the Simulations.

Collimator	Sensitivity	Penetration (%)
Туре	(cpm/kBq)	After Collimator
LMEGP	5.5	2.5
LEHR	3.1	3.8

Figure 3.13 Reconstruction #: LMEGP_302, Correction Method: None, MIP image, Contrast: 0.33.

Figure 3.14 Reconstruction #: LMEGP_303, Correction Method: Attenuation, MIP image, SLN Contrast: 0.43.

Figure 3.15 Reconstruction #: LMEGP_304, Correction Method: Scatter, MIP image, Contrast: 0.03.

 $\label{eq:Figure 3.17} \textbf{ Reconstruction } \# \text{: LEHR_162, Correction Method: None, MIP image, Contrast: 0.26.}$

Figure 3.18 Reconstruction #: LEHR_163, Correction Method: Attenuation, MIP image, Contrast: 0.31.

Figure 3.19 Reconstruction #: LEHR_164, Correction Method: Scatter, MIP image, Contrast: -0,12.

Figure 3.20 Reconstruction #: LEHR_165, Correction Method: Attenuation+Scatter, MIP image, Contrast: 0.16.

Figure 3.21 Reconstruction #: LMEGP_298, Correction Method: Attenuation, MIP image, and Contrast: 0.54.

Figure 3.22 Reconstruction #: LEHR_171, Correction Method: Attenuation, MIP image, Contrast: 0.58.

4. **DISCUSSION**

It is observed from Table 3.1, Figure 3.11, and Figure 3.12 that attenuation correction resulted in the highest contrast (0.4 ± 0.1) with a significance $p \leq 0.01$ for both collimators (LMEGP, LEHR) when compared with no correction (none) and scatter reconstruction methods. Therefore, attenuation correction can be defined as the optimum reconstruction method for LMEGP and LEHR collimators. Considering the contrast standard deviation (SD) together with the averages, performing no correction is in the second place with a contrast of 0.3 ± 0.1 . There was significant difference between the "none" and scatter correction method ($p \leq 0.01$). Because of the higher SD, attenuation+scatter correction method is in the third place with a contrast value as 0.3 ± 0.2 for **LMEGP** collimator and 0.3 ± 0.3 for **LEHR** collimator. There was no statistically significant difference (p>0.01) observed between attenuation+scatter and other correction methods. Scatter correction yielded significantly $(p \leq 0.01)$ the worst SLN contrasts (0.1 ± 0.3) for LMEGP collimator and 0.2 ± 0.3 for LEHR collimator when compared with other correction methods. These results might mean that attenuation correction is the optimum reconstruction correction method for the SPECT images projected by both **LEHR** and **LMEGP** collimators. It can be further concluded from the study results that without an attenuation correction no significant benefit on **SLN** visualization could be expected from scatter correction alone.

In the comparison of the **SLN** contrasts of **LMEGP** and **LEHR** collimators when the suggested optimum correction method (attenuation correction) is implemented to SPECT images, contrasts were calculated as the same (0.4 ± 0.1) for both collimators after the 10^{th} simulation trial for each collimator. The contrast results of **LMEGP** and **LEHR** collimators have no statistically significant difference (p > 0.1)in case of attenuation correction.

Even if the input parameters are the same for the **SIMIND** simulations performed using these two **LMEGP**, LEHR collimators as a result of the randomness base of the Monte Carlo simulations by each **SIMIND** simulation varying contrast results were obtained. This situation leaded the study to decide the sample size for the simulations (which was decided as 10 simulations per each collimator) and to take the cumulative averages of the **SLN ROI** counts, **SLN Background ROI** counts and contrasts for the total 10 simulations.

The average SLN counts regarding LMEGP and LEHR simulations presented in Table 3.4 are maximum with attenuation correction followed by attenuation+ scatter correction and without any correction method. Scatter correction alone resulted in the least SLN counts for both collimators. The decrease in SLN counts with scatter correction and increase in **SLN** counts with attenuation correction can be called as expected. The SLN counts in images projected by LEHR collimator are higher than the **SLN** counts with **LMEGP** collimator. On the other hand it is also observed from the Table 3.4 that standard deviations of the **SLN** counts in images with **LEHR** collimator are also considerably higher when compared with the standard deviations of the SLN counts with LMEGP collimator. The sequence of average SLN counts of both **LMEGP** and **LEHR** collimators from highest to lowest as attenuation correction, attenuation+scatter correction, no correction (none), and scatter correction respectively is in line with the study of Yoneyama at al |4|. The magnitude of the **SLN** average counts are correlated between the two studies. This is due to the activity normalization applied during reconstruction aiming to have comparable SLN counts and SLN contrasts with the study of Yoneyama at al [4].

Lower and negative contrasts are caused by the higher mean value of **Back-ground ROI** than **SLN ROI**. Even though it is reported that **SLN to background ratio** is at least 10 : 1, being very closed to an **IS** with most of the injected activity might be the reason for these results.

Comparing the contrast results of the attenuation corrected images with attenuation+scatter corrected images for both **LMEGP** and **LEHR** collimators it can be concluded that if attenuation correction is implemented the additional scatter correction implementation might decrease the **SLN** detectability in terms of contrast. In addition higher standard deviation of the contrast values for attenuation+scatter corrected images projected by **LMEGP** and **LEHR** collimators could name attenuation+scatter method less dependable against the choice of no correction (none) method.

It is significant in Table 3.1 that the scatter correction alone has the lowest contrast average and the highest standard deviation for both LMEGP and LEHR collimators 0.1 ± 0.3 and 0.2 ± 0.3 respectively among the total methods (attenuation, none, scatter, and attenuation+scatter). These results suggest that scatter correction alone should not be performed for SLN SPECT imaging when SLNs are located closed to the ISs.

Reconstruction with attenuation correction resulted in the highest contrast values therefore, this method was found to be the optimum reconstruction method for both **LMEGP** and **LEHR** collimators during **SLN** mapping with SPECT/CT.

It can be concluded that the visual interpretation of **MIP** images might not yield confident results. Because even in the attenuation corrected **LMEGP** and **LEHR** images (Figure 3.21, Figure 3.22) with the highest contrasts measured in the study (0.54, 0.58 respectively) the **SLNs** cannot be visually detected precisely in the images. Tsushima, Hiroyuki, et al. [26] reported in their study that image contrast of 0.5 which corresponds to a 3 : 1 **SLN to background ratio** was a suitable threshold level for hot **SLN** detection. The maximum contrast of this study is (0.58) not so higher than the 0.5 threshold therefore the unprecise detection of **SLN** in the study might be regarded as an expected result.

SPECT systems are regarded as photon poor systems [36] as more than 99% of all the photons emitted by an injected radiopharmaceutical are not recorded by the gamma camera and "wasted"; only less than 1% are used for generating the desired image [37]. Therefore increasing collimator sensitivity is a crucial consideration for SPECT imaging. Sensitivity improvement (increased counts) of a collimator is dependent on the larger hole diameter and the smaller septa/hole length. According to the Table 2.5 the hole diameter of the LMEGP collimator (2.70mm) is nearly

2.4 folds of LEHR collimator (1.11mm) on the other hand the septa/hole length of the LMEGP (37mm) collimator is nearly 1.5 times greater that LEHR collimator septa/hole length. The average sensitivity (cpm/kBq) calculated for LMEGP and LEHR collimators are 5.5 and 3.1 respectively which means the sensitivity ratio between LMEGP and LEHR collimators (5.5 : 3.1) is approximately 1.8 (Table 3.6). In Table 2.5 where vendor collimator specifications are given sensitivity (cpm/kBq) of LMEGP collimator (9.2) is 1.7 folds of LEHR collimator (5.5). Sensitivity ratio of the collimators are nearly the same both vendor supplied data and the results of the study. It can be inferred from the septa/hole length, hole diameter input parameters, and the sensitivity results of the collimators that larger hole diameter advantage of LMEGP collimator compensated its longer septa/hole length disadvantage and yielded a better sensitivity value than LEHR collimator.

The higher average SLN counts of the images projected with LEHR collimator compared to those with LMEGP collimator presented in Table 3.4 can be seen as controversial with the collimator sensitivity results presented in Table 3.6. The explanation of this issue is collimator sensitivity results are based on the simulations and the **SLN** counts are based on the reconstructed images. Because Yoneyama et al. [4] presented average counts ($Mean \pm SD$) of **SLNs** in SPECT/CT images projected by **LMEGP** collimator but did not report SLN counts for **LEHR** collimator in their previous study [16]. In this study the SLN counts of the reconstructed images projected with **LMEGP** collimator were normalized to mentioned count data in the study of Yoneyama et al. [4]. This normalization was performed with the activity adjustment index (MB) of the smc2castor program. The same LMEGP collimator specific (MB) switch was used for the reconstruction of the corresponding LEHR collimator projected images. For instance during the reconstructions of the first LMEGP and **LEHR** simulations the same (MB) switch specific to the first **LMEGP** simulation was used. As MB switch has a linear effect on the SLN count outcomes of the reconstructions and contrast value (the focus of our study) is independent of related counts, having a lower sensitivity in Table 3.6 but having higher SLN counts in Table 3.4 should not be seen controversial phenomena for **LEHR** collimator and for the study.

Septal penetration ratio of collimators while increasing the background counts also reduces the contrast. Septal penetration depends on the septal thickness of the collimators and the energy of the emitted photons. As study of interest radionuclide is the same (Tc^{99m}) for both LMEGP and LEHR collimators the septal thickness parameter takes precedence in septal penetration ratio assuming that total number of collimator holes is the same for each collimator. Thicker septal thickness results in reduced septal penetration ratio. According to the collimator specifications data in Table 2.5 the septal thickness of LMEGP collimator (0.6mm) is 3.8 times greater than the septal thickness of LEHR collimator (0.16). According to Table 3.6 calculated penetration ratio of LEHR collimator (3.8%) is 1.5 times greater than the **LMEGP** collimator (2.5%). In Table 2.5 where vendor collimator specifications are given penetration ratio of LEHR collimator (1%) is more than 10 times greater than the **LMEGP** collimator (0.1%. Although Tc^{99m} is classified as low energy photon and might not be expected to be affected by the septal thickness change because of its low energy it can be concluded from this study that larger septal thickness characteristics leading to lower septal penetration of LMEGP collimator might be the reason for improved and competitive SLN contrast results against LEHR collimator with higher septal penetration ratio caused by smaller septal thickness.

Resolution and sensitivity performance of a collimator is inversely proportional. In this study **LMEGP** collimator could compensate their lower resolution characteristics with lower septal penetration and with higher sensitivity and could present competitive **SLN** contrast levels as compared with **LEHR** collimator. The findings concerning collimator sensitivity and penetration are in line with the data presented in Table 2.5.

In this study according the physical phantom study of Yoneyama et al. [16] 1.6cm (4pixels) in diameter and 0.8cm (2pixels) thick cylindrical **IS**; and a 0.8cm (2pixels) in diameter and 0.8cm (2pixels) thick cylindrical **SLN** were modeled. According to the histological data of Farshid, Gelareh, et al. [38] an **SLN** width ranges between 0.5mm and 15mm with a mean of 5.14mm, and an **SLN** length ranges between 0.5mm and 27mm with a mean of 8.47mm. It can be concluded that the **IS** and

SLN dimensions in this study are also in line with the report of Farshid, Gelareh, et al. [38].

The **IS:SLN** activity ratio in this study was selected as 250 : 10 among the **IS:SLN** ratios applied in the study of Yoneyama et al. [16]. 250 : 10 **IS:SLN** ratio complies with the investigation findings of Alqahtani, M. S., et al. [39] declaring that in the majority of the studies 1 : 20, 1 : 50, and 1 : 100 **SLN:IS** activity uptake ratios are used.

Yoneyama et al. [4] reported that the average distance between the SLN and body surface was $2.6 \pm 1.3 cm$ (median2.2cm) in their study. Therefore 1.5 cm SLNbody distance in this study can be regarded as a reasonable distance when compared with their findings. In the same study [4] they measured the average distance of SLN to the IS in their clinical study cohort as $7.6 \pm 2.6 cm$ (median7.3cm). In their previous physical phantom study Yoneyama et al. [16] compared the SLN contrast values of different collimators (LMEGP, LEHR, and ME) for both 3cm and 6cm IS-SLN distances. With the 3cm IS-SLN distance they simulated the effect on contrast for an SLN being closed to and ISs. As non visualization of SLNs concerning their being in close proximity to injection sites is one of the reasons of supplementary SPECT/CT imaging to lymphoscintigraphy is chosen in this study SLN was located close to injection site (3cm). The IS-SLN distance of 3cm also made the results of the study comparable with the results of Yoneyama et al. [16].

Yoneyama et al. [4] correlated the effect of scatter correction in relation with the distance between **SLNs** and **IS** and the effect of attenuation correction regarding the distance between the **SLNs** and the body surface in their clinical study over 55 female patients. From the related graphics in their report [4] it can be deduced that for a 1.5cm distance between **SLN** and body surface the attenuation effect was interpreted as approximately 85% and for a 7cm **SLN-IS** distance the effect of scatter correction was predicted as approximately 40% for **LMEGP** collimator. It can be concluded that both attenuation and scatter correction effectiveness estimated in this study are in close proximity with the study of Yoneyama et al. [4]. According to their physical phantom study Yoneyama et al. [16] suggested that in case of attenuation correction was selected as the image reconstruction correction method, **LMEGP** collimator might result in higher contrast and improve the **SLN** detectability than **LEHR** collimator. In this study with a sample size of 10 **SIMIND** simulations for each collimator (**LMEGP**, **LEHR**) the cumulative average **SLN** contrast (*Mean* \pm *SD*) was calculated the same (0.4 \pm 0.1) for both collimators. As according to the guideline for lymphoscintigraphy and sentinel node localization in breast cancer [12] **LEHR** and **LEUHR** collimators are the only recommended collimators for both lymphoscintigraphy and SPECT/CT imaging because of their high resolution characteristics and suitability for radionuclides with low energy such as Tc^{99m} . This study presented that **LMEGP** collimator could compensate its lower resolution characteristics with its lower septal penetration advantage and could be competitive in terms of **SLN** detectability against **LEHR** collimator. Yoneyama et al. [4] performed resolution correction in their study with **LMEGP** collimator.

In our study as there was no resolution correction capability of the reconstruction program (CASTOR), resolution correction could not be performed. In order to have comparable contrast results with the study of Yoneyama et al. [4] that implemented resolution correction the number of projections were increased [12] to 120 projections instead of the 60 projections implemented in their study.

It can be inferred that it might be probable to have a higher **SLN** contrast with **LMEGP** collimator than **LEHR** collimator if resolution correction could be performed in addition to attenuation correction. It can be summarized that the results of this study are in agreement with the studies performed by Yoneyama et al. [4, 16].

In the literature [6, 12, 40, 41, 42] **SLN** radioactivity uptake quantification is regarded as clinically not required or useful because of naming a lymph node as an **SLN** is not correlated with the amount of the radioactivity uptake in it. Therefore anatomical localization of the radionuclide uptake is more favored than its quantification. However in this study the **SLN** counts of the reconstructed images regarding varying correction methods to be in line with the counts reported in reference study [4] was the primary aim in order to offer comparable results with those in the literature.

In this study an extreme case in which an **SLN** with small activity is located closely to **IS** with high radioactivity (**IS:SLN** activity ratio as 250/10). Because of the scattering of the photons originating from **IS** to the **SLN** in closed proximity average **SLN** contrasts were expected as low. According to the Table 3.1 the average **SLN** contrasts (*Mean* \pm *SD*) of correction methods applied in SPECT simulations using the **LMEGP** and **LEHR** collimators are in the range of $0.1 \pm 0.3 - 0.4 \pm 0.1$. **SLN-to-background** radioactivity ratios in vivo are typically on the order of 3 : 1, 10 : 1, 15 : 1, or even 20 : 1 in the literature [40, 43, 39, 44]. According to the contrast formula (Eq. 2.1) **SLN-to-background** ratios correspond to a contrast value in a range of 0.5 - 0.9. As an extreme case of **SLN** being closed to **IS** was modeled in the study and this case might cause a decrease in the contrast values it can be concluded that the **SLN** contrast results of this study in Table 3.1 might be considered as compatible with the general in vivo **SLN-to-background** ratio in the literature.

Because there is only one **SLN** modeled near an **IS**, a star shaped artifact originating from the scattering of the **IS** similar to the physical phantom study of Yoneyama et al. [16] could not be observed in the study.

High-resolution collimators are recommended for improving lymphoscintigraphy images [40].

There were a number constraints in the study which can be grouped as availability of relevant clinical or phantom study data, the capability of Monte Carlo SPECT simulation (SIMIND) and reconstruction (CASTOR) program, and simulation sample size.

In order to have realistic results from simulation studies adequate, complete, and accurate data representing the real world is a prerequisite. The potential data sources are especially the clinical and phantom studies. In the field of this study (SPECT imaging of axillary **SLNs** in breast cancer) the investigations were limited [4, 16] so the input parameters of SPECT simulations were dependent on these few data in the literature. For example although a dual energy window for scatter correction was referred in their second study [16] the energy windows and the scatter constant (k factor) were not explained. Therefore the range of the scatter windows and the scatter constant were defined in the study by tailoring general literature concerning the dual energy window. Nevertheless as these two studies [4, 16] are complementary with each other the input, method and results presented in their reports affected the outcomes of this study in a positive way. It was observed that the LMEGP collimator is not a common collimator in nuclear imaging and the studies are limited including the investigations of Yoneyama et al. [4, 16]. The nonavailability of the collimator specifications data of LMEGP was overcome by using the low-medium-energy (LME) collimator data given in the study of Inoue, Yusuke, et al. [29] assuming that (LME) and **LMEGP** are most likely the same collimators but only their notations are different in the related studies [4, 16, 29]. In addition **SIMIND** program does not include the LMEGP collimator in its database. LMEGP collimator has been included to the CHANGE according to the **SIMIND** Manual [27]. Because of an inconvenience of **SIMIND** program to define the newly added collimator name in the CHANGE program simulation reports were released with a collimator name as **SY-ME**. As it can be observed in Figure 2.10 and Figure A.1 manual correction of the collimator name as **LMEGP** has been done in these figure and report.

The availability, functional capabilities, easiness, and reputation of simulation tools (programs, phantoms etc) determine how extent the study input data could be modeled and simulated in a sufficient manner. For instance Yoneyama et al. [4, 16] used a fixed attenuation coefficient ($\mu = 0.15 cm^{-1}$) while in this study **SIMIND** used an aligned attenuation map created from a user-specified input file [27]during attenuation correction.

Yoneyama et al. [4] implemented resolution correction in order to have similar resolutions between the **LMEGP** and **LEHR** collimators as resolution of the **LMEGP** collimator is less than **LEHR** collimator. **CASTOR** program had only attenuation and scatter correction capability therefore resolution correction could not be performed and the effect of resolution correction on the **SLN** detectability could not be observed. Even it is a newly released tool and therefore might not be a reputable software at the time of study, using **CASTOR** [23] as a reconstruction tool decision was based on the availability of **SIMIND** conversion program called **smc2castor** which facilitated to reconstruct **SIMIND** simulations [27].

In order to reduce the artifacts in images Yoneyama et al. [4, 16] implemented ordered subset expectation maximization (OSEM) iterative reconstruction algorithm with 12 iterations and 15 subsets. On the other hand in the study image reconstructions were performed by CASTOR program using maximum likelihood expectation maximization (MLEM) reconstruction algorithm with 12 iterations and 15 subsets. OSEM algorithm is a block-iterative version of MLEM developed in order to improve the speed of MLEM algorithms which are computationally intensive. They are the most widely used technique on commercial nuclear medicine computer systems and have been in use for routine clinical practice [45, 46].

The most important limitations of this study were about the phantom used. **SIMIND** Monte Carlo program [19] supports lots of phantom models and the **ZUBAL** [18] torso phantom with no arms and legs is one of the most widely used phantom in research. Although it is very easy to make realistic studies over this anthropomorphic phantom by **SIMIND** as this phantom was created from sets of segmented images of living human males it was very difficult to model a female patient with breast cancer and to locate the **SLN** and **IS** in the phantom because of lack of appropriate breast organ structure in the human male phantom compared to human females. Most of the clinical studies in the literature together with the ones [4, 16] which were the origin of this study are mostly focused on female breast cancer patients. The risk of using a male anthropomorphic phantom could be mitigated with the data reported in the literature [5] that between female and male breasts there was no significant difference.

The second important limiting factor for this study was that the activity uptake of soft tissues such as fat, muscle, skin which spread all over the body cannot be confined around the study of interest. Therefore in this study it was not able to define and implement an **SLN** to background activity ratio for fat and muscle tissues around the axilla and the relative activities in the simind.zub file were zeroized. This the most important constraint of the study which caused to model only **SLN** and **IS** and ignore the activity effects of the surrounding tissue (background) of the **SLN**. Nevertheless because in this study one of the extreme cases (an **SLN** in closed proximity to **IS**) which necessitates additional SPECT/CT imaging to lymphoscintigraphy was modeled, the negative effect of this important constraint was mitigated. As **simind.zub** file is used for both activity and density maps, densities of the organs defined in **simind.zub** file enabled attenuation and scatter corrections even though the relative activities of the organs were ignored and zeroized.

Lastly, the simulation tools are black box solutions therefore even the simulation input can be changed there is no possibility to interfere with the underlying algorithm, physics of these tools and the study results are shaped according to the intrinsic structure of them. Therefore using well-known, reputable simulation tools is of essential importance.

The decision of sample size of a simulation study is influenced by the fluctuations or standard deviations of each simulation run and the time that can be devoted to the study. Because of the randomness nature of Monte Carlo simulations a varying output in spite of the same input is an expected thing. In order to decide on an effective simulation sample size in terms of output data dependability (quality of data) and the elapsed time, cumulative averages of the results were traced after each subsequent simulation and simulations were stopped when cumulative of the averages observed as stable. Even though the more sample means more reliable results considering the time limit 10 simulations for each collimator (LMEGP and LEHR) as a SPECT simulation sample was decided as adequate in this study.

Eliminating or mitigating the limitations experienced in this study might yield more realistic results for the next simulation studies in simulation and optimization of **SLN** mapping with **SPECT** imaging regarding breast cancer. The method presented in this study will enable further Monte Carlo simulation studies with digital anthropomorphic phantoms concerning the optimization of multiple acquisition and processing parameters of **SLN SPECT** imaging such as different gamma camera(s), collimator settings, patient dimensions, and reconstruction correction methods (attenuation, scatter) in breast cancer examinations realistically, accurately and at a lower cost than physical phantom or clinical studies. The dependable results of these simulation studies will support and guide the subsequent patient and phantom studies and increase the effectiveness of their outcomes.

5. CONCLUSIONS

In order to improve the preoperative **SLN** mapping in breast cancer staging using SPECT/CT imaging, the aim of this study was to simulate and optimize **SLN** detectability optimization depending on various reconstruction correction methods (attenuation, scatter) and collimator types (**LMEGP**, **LEHR**) with a SPECT Monte Carlo simulation method for the first time.

In case of an **SLN** in a close proximity to the injection site, attenuation correction alone of SPECT/CT imaging might yield the best **SLN** contrast and scatter correction alone might yield the worst **SLN** contrast. For the same case using an **LMEGP** collimator with less septal penetration characteristics similar **SLN** contrast levels can be achieved against **LEHR** collimator.

The study method validated in this study will enable further Monte Carlo simulations concerning **SLN SPECT** imaging in breast cancer examinations with different gamma camera(s), collimator settings and reconstruction correction methods, and patient variability.

5.1 List of publications produced from the thesis

 Monte Carlo Simulation of Sentinel Lymph Node SPECT/CT, A. Guvenis, A. Yuksel, Life Science and Medicine, International Congress On Biological And Medical Sciences, pp. 72, Oct. 31–Nov. 3,2018.

APPENDIX A. SUPPLEMENTARY RESULTS

Sample SPECT simulation reports (Figure A.1, Figure 39A.2), **SLN** contrast measurements of reconstructed simulations (Table A.1-Table A.4), individual and cumulative averages of **SLN** contrasts for reconstructed simulations (Figure A.3-Figure A.6), the comparison graphs of **SLN** contrast of **LMEGP** and **LEHR** collimators with attenuation correction (Figure A.7, Figure A.8) are appended in this section.

Reconstruction	Evaluation	Simulation #					
${f Methods}$	Parameters	1	2	3	4	5	
Attenuation	\bar{s}	7165	10126	10489	10137	8383	
Correction	\overline{b}	3414	3686	3500	4077	2538	
	Contrast	0.35	0.47	0.50	0.43	0.54	
None	\bar{s}	4915	4879	5490	4891	4832	
	\overline{b}	2690	2309	2274	3028	1546	
	Contrast	0.29	0.36	0.41	0.24	0.52	
Scatter	\bar{s}	1223	2275	3901	923	2882	
Correction	\overline{b}	803	1047	1808	1661	1039	
	Contrast	0.21	0.37	0.37	-0.29	0.47	
$\mathbf{Attenuation} +$	\bar{s}	3588	5827	7289	5710	6887	
Scatter	\overline{b}	1638	1892	3094	2115	2014	
Correction	Contrast	0.37	0.51	0.40	0.46	0.55	

 Table A.1

 SLN Contrast Measurements of Reconstructed Simulations performed using the LMEGP Collimator.

Table A.2

SLN Contrast Measurements of Reconstructed Simulations performed using the LMEGP Collimator (Continued).

Reconstruction	Evaluation		Sim	Cumulative			
${f Methods}$	Parameters	6	7	8	9	10	Average
Attenuation	\bar{s}	8827	9466	7819	8655	6418	8749 ± 1347
Correction	\overline{b}	3536	5778	2986	5436	4353	$3930{\pm}1021$
	Contrast	0.43	0.24	0.45	0.23	0.19	$0.38 {\pm} 0.12$
None	\bar{s}	5145	4891	4973	4892	4898	$4981 {\pm} 198$
	\overline{b}	2568	3992	2090	3598	3034	2713 ± 726
	Contrast	0.33	0.10	0.41	0.15	0.23	$0.30{\pm}0.13$
Scatter	\bar{s}	1759	2199	1305	2037	4987	$2349{\pm}1270$
Correction	\overline{b}	1641	2882	788	2668	3062	$1740 {\pm} 862$
	Contrast	0.03	-0.13	0.25	-0.13	0.24	$0.14{\pm}0.25$
$\mathbf{Attenuation} +$	\bar{s}	4517	5418	1990	6018	6497	$5374{\pm}1610$
Scatter	\overline{b}	2465	4648	1300	4238	4682	2809 ± 1280
Correction	Contrast	0.29	0.08	0.21	0.17	0.16	$0.32 {\pm} 0.16$

 Table A.3

 SLN Contrast Measurements of Reconstructed Simulations performed using the LEHR Collimator.

Reconstruction	Evaluation	Simulation #						
${f Methods}$	Parameters	1	2	3	4	5		
Attenuation	\bar{s}	35057	2695	14893	12448	3567		
Correction	\overline{b}	9096	1485	4181	5607	1698		
	Contrast	0.59	0.29	0.56	0.38	0.35		
None	\bar{s}	21961	1506	9252	7666	1831		
	\overline{b}	6154	1021	2755	3934	1079		
	Contrast	0.56	0.19	0.54	0.32	0.26		
Scatter	\bar{s}	10924	1137	4083	5257	934		
Correction	\overline{b}	3203	851	1566	3719	691		
	Contrast	0.55	0.14	0.45	0.17	0.15		
Attenuation+	\bar{s}	21300	2321	7063	12544	2137		
Scatter	\overline{b}	7300	1298	2437	5528	1174		
Correction	Contrast	0.49	0.28	0.49	0.39	0.29		
SIMIND Monte Carlo Simulation Program V6.1								
--	---	---------------------------------------	--	--	--	--	--	--
InputFile: simind OutputFile:simind185 Phantom(S):h2o Phantom(B):bone	Collima Cover: Crystal BackSca	tor:pb_sb al : nai tt: lucit	SourceFile:smap SourceMap: vox_man DensityMap:vox_man e ScoreFile: scattwin					
PhotonEnergy	140.00	sy-me	PhotonsPerProj					
SourceType	ZubalVoxman	SPECT	Activity					
PhantomType	ZubalVoxman	BScatt	DetectorLenght					
22.250 DetectorWidth	29.550	Random	DetectorHeight					
0.950 UpperEneWindowTresh	150.500	Phantom	Distance to det					
26.500 LowerEneWindowTresh	129.500	Resolut	ShiftSource (X)					
0.000 PixelSize (I)	0.400	Forced	ShiftSource (Y)					
0.000 PixelSize (J)	0.400	SaveMAP	ShiftSource (Z)					
0.000 HalfLength (S)	48.600		HalfLength (P)					
48.600 HalfWidth (S)	0.000		HalfWidth (P)					
0.000 HalfHeight (S)	0.000		HalfHeigh (P)					
0.000 EnergyResolution	9.900		MaxScatterOrder					
10								
GENERAL DATA keV/channel	1.000		Compiler INTEL					
Windows Photons/Ba	0.891		StartingAngle					
0.000 CameraOffect (X)	0.000		CoverThickness					
0.000	0.000		Deskerattermbisk					
5.000	0.000		BackscatterInickn					
MatrixSize (I) 0.380	128		IntrinsicResolut					
MatrixSize (J) 4.320	128		AcceptanceAngle					
Emission type 0.40801E+05	2.000		Initial Weight					
"NN" Scaling factor 512	1.000		Energy Channels					
Photon Exit phantom 92.000	1		CutoffEnergy					

Random number generator: ranMar						
SPECT DATA						
RotationMode	-360.000	Nr of projection				
120						
RotationAngle	3.000	Projection start				
1		,				
- Oubitel furstion	1 000	During this and				
Orbital fraction	1.000	Projection end				
120						
COLLIMATOR DATA FOR BOI	UTINE · Bay-Trac	ring by MC				
CollimatorCode	orine.nay ria	CollimatorTura				
Collimatorcode	sy-me	Collimatoriype				
Parallel						
HoleSize (X)	0.250	Distance (X)				
0.060						
HoleSize (Y)	0.289	Distance (Y)				
0 106		(-/				
Contouch (ft (N)	0 155	Callington office				
CenterShift (X)	0.100	Collimator effic				
0.038						
CenterShift (Y)	0.268	CollimThickness				
3.700						
Hele Shame	Vewegenel	Space Cell2Det				
noie snape	nexagonar	space correct				
0.000						
X-Ray flag	0					
CollDepValue (57)	0.000	CollDepValue (58)				
0.000		-				
CollDervalue (59)	1 000	CollDervalue(60)				
0.000	1.000	corrective (00)				
0.000						
NON-HOMOGENEOUS PHANTO	M DATA					
RotationCentre	65. 65	Bone definition				
1 190	,					
CT Divel size	0 400	Cline thishes a				
CT-Pixel size	0.400	Slice thickness				
0.400						
StartImage	1	No of CT-Images				
243		-				
StepSize	0,200	CTmapOrientation				
0	0.200	cimapolicheación				
0						
MatrixSize (I)	128	MatrixSize (J)				
128						
CenterPoint (I)	65.000	CenterPoint (J)				
65.000		(-7				
Contorpaint (W)	100 500	$Ch \in f+ ph = p + product (V)$				
CenterPoint (K)	122.500	ShiitPhantom (X)				
0.000						
ShiftPhantom (Y)	0.000	ShiftPhantom (Z)				
0.000						
PHANTOM DATA FROM FILE	: simind.zub S	SECTION: 1				

lymph nodes	1.030	0	0.000E+00	0.000E+00	0.000E+00
thyroid	1.050	0	0.000E+00	0.000E+00	0.000E+00
0.0 trachea	1.000	0	0.000E+00	0.000E+00	0.000E+00
0.0 cartilage	1.100	0	0.000E+00	0.000E+00	0.000E+00
0.0	1 060	-	0.0008+00	0.000=+00	0.000=+00
0.0	1.060	0	0.0002+00	0.0005+00	0.000£+00
urine 0.0	1.030	0	0.000E+00	0.000E+00	0.000E+00
feces	1.010	0	0.000E+00	0.000E+00	0.000E+00
testes	1.040	0	0.000E+00	0.000E+00	0.000E+00
0.0 prostate	1.045	0	0.000E+00	0.000E+00	0.000E+00
0.0 rectum	1.030	0	0.000E+00	0.000E+00	0.000E+00
0.0	1 020	0	0.0007.00	0.000=100	0.000=.00
0.0	1.030	0	0.000£+00	0.0002+00	0.000£+00
bladder 0.0	1.040	0	0.000E+00	0.000E+00	0.000E+00
lesion	1.060	0	0.000E+00	0.000E+00	0.000E+00
dens of axis	1.180	0	0.000E+00	0.000E+00	0.000E+00
0.0 jaw bone	1.680	0	0.000E+00	0.000E+00	0.000E+00
0.0 lacrimal glands	1.045	0	0.000E+00	0.000E+00	0.000E+00
0.0	1 020	0	0 0008+00	0 0000-00	0 0008+00
0.0	1.050	0	0.0002+00	0.000£+00	0.000£+00
hard palate 0.0	1.680	0	0.000E+00	0.000E+00	0.000E+00
cerebellum	1.040	0	0.000E+00	0.000E+00	0.000E+00
tongue	1.000	0	0.000E+00	0.000E+00	0.000E+00
medulla oblongo	1.420	0	0.000E+00	0.000E+00	0.000E+00
0.0 pons	1.000	0	0.000E+00	0.000E+00	0.000E+00
0.0	1 180	0	0 0008+00	0 0000+00	0 00000+00
0.0	1.100	č	0.0002.00	0.0002.00	0.0002.00
sinuses 0.0	1.000	0	0.000E+00	0.000E+00	0.000E+00
optic nerve 0.0	1.070	0	0.000E+00	0.000E+00	0.000E+00
cerebral falx	1.040	0	0.000E+00	0.000E+00	0.000E+00
eye 0.0	1.070	0	0.000E+00	0.000E+00	0.000E+00

ORGAN	DENSITY	PIXELS	7	VOLUME (CC)	MBQ	MBQ/CC
skin	1.090		0	0.000E+00	0.000E+00	0.000E+00
0.0 brain	1.040		0	0.000E+00	0.000E+00	0.000E+00
0.0	1 020		0	0 0000-00	0 0008+00	0 0008+00
0.0	1.030		0	0.000£+00	0.0002+00	0.0002+00
skull 0.0	1.610		0	0.000E+00	0.000E+00	0.000E+00
spine	1.330		0	0.000E+00	0.000E+00	0.000E+00
rib cage & ste	r 1.410		0	0.000E+00	0.000E+00	0.000E+00
0.0 pelvis	1.290		0	0.000E+00	0.000E+00	0.000E+00
0.0 long bones	1.330		0	0.000E+00	0.000E+00	0.000E+00
0.0 skeletal muscl	e 1.050		0	0.000E+00	0.000E+00	0.000E+00
0.0 lungs	0.260		0	0.000E+00	0.000E+00	0.000E+00
0.0 heart	1.060		0	0.000E+00	0.000E+00	0.000E+00
0.0 liver	1.060		0	0.000E+00	0.000E+00	0.000E+00
0.0	1 026		0	0 0000-00	0 0008+00	0 0005+00
0.0	1.026		0	0.000£+00	0.0002+00	0.0002+00
kidney 0.0	1.050		0	0.000E+00	0.000E+00	0.000E+00
pharynx 0 0	1.000		0	0.000E+00	0.000E+00	0.000E+00
esophagus	1.030		0	0.000E+00	0.000E+00	0.000E+00
stomach	1.030		0	0.000E+00	0.000E+00	0.000E+00
small bowel	1.030		0	0.000E+00	0.000E+00	0.000E+00
colon	1.030		0	0.000E+00	0.000E+00	0.000E+00
pancreas	1.040		0	0.000E+00	0.000E+00	0.000E+00
adrenals	1.025		0	0.000E+00	0.000E+00	0.000E+00
fat	0.950		0	0.000E+00	0.000E+00	0.000E+00
blood pool	1.060		0	0.000E+00	0.000E+00	0.000E+00
gas (bowel)	0.260		0	0.000E+00	0.000E+00	0.000E+00
fluid (bowel)	1.007		0	0.000E+00	0.000E+00	0.000E+00
0.0 bone marrow 0.0	1.030		0	0.000E+00	0.000E+00	0.000E+00

```
1.070 0 0.000E+00 0.000E+00
 lens
                                                          0.000E+00
0.0
 cerebral aquadu 1.040
                               0 0.000E+00 0.000E+00 0.000E+00
0.0
                                0 0.000E+00 0.000E+00
                                                          0.000E+00
 teeth
                   1.920
0.0
 TUMORS ADDED FROM FILE:simind.inp
                 VOL(cc) MBq MBq/cc CHANGE g/cm3
0.205E+01 0.366E+03 0.179E+03 none
0.512E+00 0.366E+01 0.716E+01 none
 TUMOR VOL(pix) VOL(cc) MBq
  1
         32
   2
           8
_____
                                                     _____
____
 SCATTWIN RESULTS USING WINDOW FILE: simind.win
 Win WinAdded Range(keV) ScaleFactor
       0 129.5 - 150.5 1.00
1 92.0 - 129.4 1.00
  1
  2
  Win Total Scatter Primary S/P-Ratio S/T Ratio Cps/MBq
1 0.404E+07 0.340E+06 0.370E+07 0.919E-01 0.842E-01 0.911E+02
 Win
  2 0.190E+07 0.169E+07 0.203E+06 0.835E+01 0.893E+00 0.427E+02
 Win Geo(Air) Pen(Air) Sca(Air) Geo(Tot) Pen(Tot) Sca(Tot)
      95.93% 2.99% 1.08% 96.01% 2.94% 1.05%
94.55% 3.49% 1.96% 97.10% 1.87% 1.03%
  1
  2
 Win sc 1 sc 2 sc 3 sc 4 sc 5 sc 6 sc 7 sc 8 sc 9 sc10
1 87.5% 10.8% 1.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
  2 59.6% 26.9% 9.6% 2.9% 0.8% 0.2% 0.0% 0.0% 0.0% 0.0%
 Simulation start: 2019:03:08 20:23:07
 Simulation stop : 2019:03:08 20:23:54
 Elapsed time Oh Omin and 47sec
_____
                                  _____
____
 INTERACTIONS IN THE CRYSTAL
 Detector hits....:
                               5214
 Detector hits/sec..:
                               167.
                        0.2906E+06
 Max val in spectra.:
 Max val in images..:
                        0.2288E+04
 Count rate [Total].:
Count rate [Window]:
                         0.6151E+05
                      0.8131E.00
0.3370E+05
-----
____
 PHOTONS AFTER 1) COLLIMATOR AND 2) WITHIN E-WIN
 Geometric....: 96.14% 96.01%
 Penetration...: 2.45% 2.94%
Scatter Collim: 1.41% 1.05%
 X-ray Collim..: 0.00% 0.00%
_____
      _____
 RESULTS FROM ENERGY SPECTRUM
```

```
Compton area in spectrum: 0.3187E+07
                                        5.91% (1SD)
 Photo area in spectrum: 0.4044E+07 14.47% (1SD)
 Pileup area in spectrum: 0.1498E+06 18.14% (1SD)
                        _____
_____
 SCATTER RESULTS IN ENERGY WINDOW
 Scatter/Primary.....: 0.9192E-01
                                       18.67% (1SD)
 Scatter/Total...... 0.8418E-01
 ScatterOrder 1 ....: 87.4965 %
ScatterOrder 2 ....: 10.8105 %
ScatterOrder 3 ....: 1.5326 %
 ScatterOrder 4 ....: 0.1316 %
 ScatterOrder 5 ....: 0.0288 %
                                                  -----
____
 CALCULATED DETECTOR PARAMETERS
 Efficiency [Peak]....:
                             0.5216
                                         14.47% (1SD)
                             0.9520
 Efficiency [Detector]:
 Sensitivity [cps/MBq]:
Sensitivity [cpm/uCi]:
                            91.0740
                           202.1842
 Peak/Compton [Peak]..:
                             53.8347
 Peak/Compton [Area]..:
                              1.2686
 Peak/Total.....:
                              0.5479
 Inifile: simind.ini
 Comment: EMISSION VMAN
                             _____
____
 Command: simind simind185/in:x22,5x/if:2
```

Figure A.1 Report of simind185 Simulation performed using the LMEGP Collimator.

 Table A.4

 SLN Contrast Measurements of Reconstructed Simulations performed using the LEHR Collimator (Continued).

Reconstruction	Evaluation		Sin		Cumulative		
${f Methods}$	Parameters	6	7	8	9	10	Average
Attenuation	\bar{s}	14235	5375	2372	18493	25426	$13456{\pm}10753$
Correction	\overline{b}	8512	3079	1244	7857	6700	$4946 {\pm} 3023$
	Contrast	0.25	0.27	0.31	0.40	0.58	$0.40{\pm}0.13$
None	\bar{s}	8086	3149	1517	10036	13535	$7854 {\pm} 6472$
	\overline{b}	5674	2068	884	5303	4398	$3327{\pm}2032$
	Contrast	0.18	0.21	0.26	0.31	0.51	$0.33 {\pm} 0.15$
Scatter	\bar{s}	7034	480	583	7319	9745	$4750 {\pm} 3927$
Correction	\bar{b}	5672	1717	748	4115	3179	$2546{\pm}1688$
	Contrast	0.11	-0.56	-0.12	0.28	0.51	$0.17 {\pm} 0.33$
${f Attenuation}+$	\bar{s}	10728	811	1548	15526	20136	$9411 {\pm} 7816$
Scatter	\overline{b}	7852	2365	1129	6232	5528	$4084{\pm}2666$
Correction	Contrast	0.15	-0.49	0.16	0.43	0.57	$0.28 {\pm} 0.30$

SIMIND Monte Carlo Simulation Program V6.1							
InputFile: simind OutputFile:simindl97 Phantom(S):h2o Phantom(B):bone	Collima Cover: Crystal BackSca	tor:pb_sb al : nai tt: lucit	SourceFile:smap SourceMap: vox_man DensityMap:vox_man e ScoreFile: scattwin				
PhotonEnergy 8080	140.00	sy-lehr	PhotonsPerProj				
SourceType	ZubalVoxman	SPECT	Activity				
PhantomType 22.250	ZubalVoxman	BScatt	DetectorLenght				
DetectorWidth 0.950	29.550	Random	DetectorHeight				
UpperEneWindowTresh 26.500	150.500	Phantom	Distance to det				
LowerEneWindowTresh 0.000	129.500	Resolut	ShiftSource (X)				
PixelSize (I) 0.000	0.400	Forced	ShiftSource (Y)				
PixelSize (J) 0.000	0.400	SaveMAP	ShiftSource (Z)				
HalfLength (S) 48.600	48.600		HalfLength (P)				
HalfWidth (S) 0.000	0.000		HalfWidth (P)				
HalfHeight (S) 0.000	0.000		HalfHeigh (P)				
EnergyResolution 10	9.900		MaxScatterOrder				
GENERAL DATA							
keV/channel Windows	1.000		Compiler INTEL				
Photons/Bq 0.000	0.891		StartingAngle				
CameraOffset (X) 0.000	0.000		CoverThickness				
CameraOffset (Y) 5.000	0.000		BackscatterThickn				
MatrixSize (I) 0.380	128		IntrinsicResolut				
MatrixSize (J) 2.954	128		AcceptanceAngle				
Emission type 0.40801E+05	2.000		Initial Weight				

"NN" Scaling fa	actor	1.000	Energy Channels
Photon Exit p	phantom	1	CutoffEnergy
92.000			
Random number	generator:	ranMar	
SPECT DATA			
RotationMode		-360.000	Nr of projection
120			AI OI PIOJCOUCH
RotationAngle	2	3.000	Projection start
1			5
Orbital fract	cion	1.000	Projection end
120			
COLLIMATOR DA	ATA FOR ROUT	INE:Ray-Tracing 3	by MC Gallénatarment
Darallal	le	sy-lenr	CollimatorType
HoleSize (X)		0 111	Distance (X)
0.016		0.111	Distance (x)
HoleSize (Y)		0.128	Distance (Y)
0.078			
CenterShift ((X)	0.064	Collimator effic
0.026			
CenterShift ((Y)	0.110	CollimThickness
2.405			
Hole Shape	Н	exagonal	Space Coll2Det
0.000			
X-Ray Ilag	(57)	0 000	CallBarttalua (50)
0 000	(57)	0.000	CollDepvalue (58)
CollDepValue	(59)	1.000	CollDepValue(60)
0.000	(05)	1.000	0011202074140(00)
NON-HOMOGENEC	DUS PHANTOM	DATA	
RotationCentr	ce in the second s	65, 65	Bone definition
1.190			
CT-Pixel size	2	0.400	Slice thickness
0.400		1	
StartImage		Ţ	No of CT-Images
StanSiza		0 200	CTmanOrientation
0 0		0.200	cimaporrentation
MatrixSize	(I)	128	MatrixSize (J)
128	/		(-)
CenterPoint	(I)	65.000	CenterPoint (J)
65.000			
CenterPoint	(K)	122.500	ShiftPhantom (X)
0.000			
ShiftPhantom	(Y)	0.000	ShiftPhantom (Z)
0.000			

PHANTOM DATA FROM FILE: simind.zub SECTION: 1							
ORGAN	DENSITY	PIXELS	VOLUME (CC)	MBQ	MBQ/CC		
skin	1.090	0	0.000E+00	0.000E+00	0.000E+00		
0.0 brain	1.040	0	0.000E+00	0.000E+00	0.000E+00		
0.0 spinal cord	1.038	0	0.000E+00	0.000E+00	0.000E+00		
0.0 skull	1.610	0	0.000E+00	0.000E+00	0.000E+00		
0.0 spine	1.330	0	0.000E+00	0.000E+00	0.000E+00		
0.0 rib cage & ster	1.410	0	0.000E+00	0.000E+00	0.000E+00		
0.0 pelvis	1.290	0	0.000E+00	0.000E+00	0.000E+00		
0.0	1 330	0	0 000F+00	0 00000+00	0 000F+00		
0.0	1 050	õ	0.0008+00	0.0008+00	0.0008+00		
0.0	0.000		0.0002.00	0.0002100	0.0002100		
0.0	0.260	0	0.000E+00	0.000E+00	0.000±+00		
0.0	1.060	0	0.000E+00	0.000E+00	0.000E+00		
liver 0.0	1.060	0	0.000E+00	0.000E+00	0.000E+00		
gall bladder 0.0	1.026	0	0.000E+00	0.000E+00	0.000E+00		
kidney 0.0	1.050	0	0.000E+00	0.000E+00	0.000E+00		
pharynx 0 0	1.000	0	0.000E+00	0.000E+00	0.000E+00		
esophagus	1.030	0	0.000E+00	0.000E+00	0.000E+00		
stomach	1.030	0	0.000E+00	0.000E+00	0.000E+00		
small bowel	1.030	0	0.000E+00	0.000E+00	0.000E+00		
0.0 colon	1.030	0	0.000E+00	0.000E+00	0.000E+00		
0.0 pancreas	1.040	0	0.000E+00	0.000E+00	0.000E+00		
0.0 adrenals	1.025	0	0.000E+00	0.000E+00	0.000E+00		
0.0 fat	0.950	0	0.000E+00	0.000E+00	0.000E+00		
0.0 blood pool	1.060	0	0.000E+00	0.000E+00	0.000E+00		
0.0 gas (bowel)	0.260	0	0.000E+00	0.000E+00	0.000E+00		
0.0	0.200		0.0001.00	0.0002.00	0.0001.00		

fluid (bowel)	1.007	0 0	.000E+00	0.000E+00	0.000E+00
bone marrow	1.030	0	0.000E+00	0.000E+00	0.000E+00
lymph nodes	1.030	0	0.000E+00	0.000E+00	0.000E+00
thyroid	1.050	0	0.000E+00	0.000E+00	0.000E+00
0.0 trachea	1.000	0	0.000E+00	0.000E+00	0.000E+00
0.0 cartilage	1.100	0	0.000E+00	0.000E+00	0.000E+00
0.0 spleen	1.060	0	0.000E+00	0.000E+00	0.000E+00
0.0 urine	1.030	0	0.000E+00	0.000E+00	0.000E+00
0.0 feces	1.010	0	0.000E+00	0.000E+00	0.000E+00
0.0 testes	1.040	0	0.000E+00	0.000E+00	0.000E+00
0.0 prostate	1.045	0	0.000E+00	0.000E+00	0.000E+00
0.0 rectum	1.030	0	0.000E+00	0.000E+00	0.000E+00
0.0 diaphragm	1.030	0	0.000E+00	0.000E+00	0.000E+00
0.0 bladder	1.040	0	0.000E+00	0.000E+00	0.000E+00
0.0	1 060	0	0.00000+00	0.00002+00	0.000±+00
0.0 dene of avie	1 180	ů	0.0002+00	0.0002+00	0.0002+00
0.0	1 600	ů	0.0008+00	0.0008+00	0.0005+00
0.0	1.000	0	0.0002+00	0.0000000000000000000000000000000000000	0.000±+00
0.0	1.045	0	0.000E+00	0.000E+00	0.000E+00
spinal canal 0.0	1.038	0	0.000E+00	0.000E+00	0.000E+00
hard palate 0.0	1.680	0	0.000E+00	0.000E+00	0.000E+00
cerebellum 0.0	1.040	0	0.000E+00	0.000E+00	0.000E+00
tongue 0.0	1.000	0	0.000E+00	0.000E+00	0.000E+00
medulla oblongo 0.0	1.420	0	0.000E+00	0.000E+00	0.000E+00
pons 0 0	1.000	0	0.000E+00	0.000E+00	0.000E+00
uncus(ear bones	1.180	0	0.000E+00	0.000E+00	0.000E+00
sinuses	1.000	0	0.000E+00	0.000E+00	0.000E+00
optic nerve 0.0	1.070	0	0.000E+00	0.000E+00	0.000E+00

```
cerebral falx 1.040 0 0.000E+00 0.000E+00 0.000E+00
0.0
                                 1.070
                                                         0 0.000E+00 0.000E+00 0.000E+00
  eye
0.0
                                                         0 0.000E+00 0.000E+00
                                  1.070
                                                                                                           0.000E+00
  lens
0.0
                                                         0 0.000E+00 0.000E+00
  cerebral aquadu 1.040
                                                                                                           0.000E+00
0.0
                                  1.920
                                                         0 0.000E+00 0.000E+00 0.000E+00
  teeth
0.0
  TUMORS ADDED FROM FILE:simind.inp
   TUMOR VOL(pix) VOL(cc) MBq
                                                                             MBq/cc CHANGE g/cm3
                               VOL(CC) MBq MBq/CC CHANGE
0.205E+01 0.366E+03 0.179E+03 none
0.512E+00 0.366E+01 0.716E+01 none
     1 32
2 8
_____
  ____
  SCATTWIN RESULTS USING WINDOW FILE: simind.win
         WinAdded Range(keV) ScaleFactor
0 129.5 - 150.5 1.00
   Win WinAdded Range(keV)
   1
                           92.0 - 129.4 1.00
    2
                  1
          Total Scatter Primary S/P-Ratio S/T Ratio Cps/MBq
0.227E+07 0.189E+06 0.208E+07 0.906E-01 0.831E-01 0.512E+02
   Win
    1
          0.106E+07 0.942E+06 0.118E+06 0.798E+01 0.889E+00 0.239E+02
     2
   Win Geo(Air) Pen(Air) Sca(Air) Geo(Tot) Pen(Tot) Sca(Tot)
            93.90% 4.72% 1.37% 93.93%
92.03% 4.81% 3.16% 95.88%
                                                                                4.68% 1.39%
    1
                                                                                      2.81%
                                                                                                       1.31%
     2

        Win
        SC 1
        SC 2
        SC 3
        SC 4
        SC 5
        SC 6
        SC 7
        SC 8
        SC 9
        SC10

        1
        87.4%
        10.9%
        1.5%
        0.2%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
        0.0%
____
   Simulation start: 2019:03:13 22:34:25
  Simulation stop : 2019:03:13 22:34:59
  Elapsed time Oh Omin and 34sec
____
          _____
____
  INTERACTIONS IN THE CRYSTAL
   Detector hits.....:
                                                          6105
   Detector hits/sec..:
                                                          238.
                                            0.1650E+06
  Max val in spectra.:
   Max val in images..:
                                              0.1940E+04
   Max val in images..: 0.1940E+04
Count rate [Total].: 0.3452E+05
Count rate [Window]: 0.1894E+05
____
  PHOTONS AFTER 1) COLLIMATOR AND 2) WITHIN E-WIN
   Geometric....: 94.48% 93.93%
  Penetration...: 3.82% 4.68%
  Scatter Collim: 1.70% 1.39%
```

```
X-ray Collim..: 0.00% 0.00%
                                         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
____
  RESULTS FROM ENERGY SPECTRUM
  Compton area in spectrum: 0.1785E+07
Photo area in spectrum: 0.2273E+07
                                               5.91% (1SD)
                                             15.27% (1SD)
 Pileup area in spectrum: 0.8519E+05 13.72% (1SD)
  SCATTER RESULTS IN ENERGY WINDOW
  Scatter/Primary.....: 0.9064E-01
Scatter/Total.....: 0.8310E-01
                                           15.10% (1SD)
  ScatterOrder 1 ....: 87.4344 %
  ScatterOrder 2 ....: 10.8894 %
ScatterOrder 3 ....: 1.4847 %
  ScatterOrder 4 .....: 0.1912 %
ScatterOrder 5 .....: 0.0003 %
                 _____
  ____
          _____
                                                  ------
____
  CALCULATED DETECTOR PARAMETERS
  Efficiency [Peak]...: 0.5221
Efficiency [Detector]: 0.9517
                                             15.27% (1SD)
  Efficiency [Detector]:
  Sensitivity [cps/MBq]:
Sensitivity [cpm/uCi]:
                               51.1872
                             113.6355
  Peak/Compton [Peak]..:
                               66.3845
  Peak/Compton [Area]..:
                                 1.2734
  Peak/Total.....:
                                 0.5486
  Inifile: simind.ini
  Comment: EMISSION VMAN
  _____
                             _____
  Command: simind simind197/in:x22,5x/if:2
```

Figure A.2 Report of simind197 Simulation performed using the LEHR Collimator.

Figure A.3 SLN Contrast Results for Reconstructions of Simulations performed using the LMEGP Collimator.

Figure A.4 Cumulative Average of SLN Contrasts for Reconstructions of Simulations performed using the LMEGP Collimator.

Figure A.5 SLN Contrast Results for Reconstructions of Simulations performed using the LEHR Collimator.

Figure A.6 Cumulative Average of SLN Contrasts for Reconstructions of Simulations performed using the LMEGP Collimator.

Figure A.7 SLN Contrast of LMEGP and LEHR Collimators with Attenuation Correction.

Figure A.8 Cumulative Average of SLN Contrasts for LMEGP and LEHR Collimators with Attenuation Correction.

Collimator	Reference File	Penetration (%)	Sensitivity
			After Collimator
			(cpm/kBq)
LMEGP	simind180.res	2.41	5.55
	simind181.res	2.47	5.46
	simind182.res	2.48	5.46
	simind183.res	2.42	5.45
	simind184.res	2.47	5.44
	simind185.res	2.45	5.46
	simind186.res	2.49	5.45
	simind187.res	2.51	5.46
	simind188.res	2.49	5.42
	simind189.res	2.48	5.47
	LMEGP Average	2.47	5.45
LEHR	simind190.res	3.80	3.08
	simind191.res	3.85	3.07
	simind192.res	3.88	3.07
	simind193.res	3.83	3.06
	simind193.res	3.83	3.06
	simind194.res	3.82	3.07
	simind195.res	3.81	3.07
	simind196.res	3.84	3.06
	simind197.res	3.82	3.07
	simind198.res	3.83	3.07
	simind199.res	3.83	3.08
	LEHR Average	3.43	3.07

 Table A.5

 Penetration and Sensitivity Performance of LMEGP and LEHR Collimators.

REFERENCES

- Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries," *CA: A Cancer Journal for Clinicians*, Vol. 68, pp. 394–424, Nov 2018.
- van der Ploeg, I. M. C., R. A. V. Olmos, B. B. R. Kroon, and O. E. Nieweg, "The hybrid spect/ct as an additional lymphatic mapping tool in patients with breast cancer," World Journal of Surgery, Vol. 32, pp. 1930–1934, Sep 2008.
- van der Ploeg, I. M. C., R. A. V. Olmos, B. B. R. Kroon, E. J. T. Rutgers, and O. E. Nieweg, "The hidden sentinel node and spect/ct in breast cancer patients," *European Journal of Nuclear Medicine and Molecular Imaging*, Vol. 36, pp. 6–11, Jan 2009.
- 4. Yoneyama, H., H. Tsushima, M. Onoguchi, T. Konishi, K. Nakajima, S. Matsuo, D. Kayano, H. Wakabayashi, A. Inaki, and S. Kinuya, "Optimization of attenuation and scatter corrections in sentinel lymph node scintigraphy using spect/ct systems," Annals of Nuclear Medicine, Vol. 29, pp. 248–255, Apr 2015.
- Moncayo, V. M., J. N. Aarsvold, S. F. Grant, S. C. Bartley, and N. P. Alazraki, "Status of sentinel lymph node for breast cancer," *Seminars in Nuclear Medicine*, Vol. 43, pp. 281– 293, Jul 2013.
- Lerman, H., U. Metser, G. Lievshitz, F. Sperber, S. Shneebaum, and E. Even-Sapir, "Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of spect-ct," *European Journal of Nuclear Medicine and Molecular Imaging*, Vol. 33, pp. 329–337, Mar 2006.
- Husarik, D. B., and H. C. Steinert, "Single-photon emission computed tomography/computed tomographyfor sentinel node mapping in breast cancer," *Seminars in Nuclear Medicine*, Vol. 37, pp. 29–33, Jan 2007.
- Lerman, H., G. Lievshitz, O. Zak, U. Metser, S. Schneebaum, and E. Even-Sapir, "Improved sentinel node identification by spect/ct in overweight patients with breast cancer," *Journal of Nuclear Medicine*, Vol. 48, pp. 201–206, Feb 2007.
- 9. Uren, R. F., R. Howman-Giles, D. K. Chung, A. J. Spillane, F. Noushi, D. Gillett, L. Gluch, C. Mak, R. West, J. Briody, and H. Carmalt, "Spect/ct scans allow precise anatomical location of sentinel lymph nodes in breast cancer and redefine lymphatic drainage from the breast to the axilla," *The Breast*, Vol. 21, pp. 480–486, Aug 2012.
- Vercellino, L., J. Ohnona, D. Groheux, A. Slama, P. M. Colletti, S. Chondrogiannis, P. Merlet, M. E. Toubert, and D. Rubello, "Role of spect/ct in sentinel lymph node detection in patients with breast cancer," *Clinical Nuclear Medicine*, Vol. 39, pp. 431– 436, May 2014.
- Mariani, G., L. Moresco, G. Viale, G. Villa, M. Bagnasco, G. Canavese, J. Buscombe, H. W. Strauss, and G. Paganelli, "Radioguided sentinel lymph node biopsy in breast cancer surgery," *Journal of Nuclear Medicine*, Vol. 42, pp. 1198–1215, Aug 2001.
- 12. Giammarile, F., N. Alazraki, J. N. Aarsvold, R. A. Audisio, E. Glass, S. F. Grant, J. Kunikowska, M. Leidenius, V. Moncayo, R. Uren, and W. J. Oyen, "The eanm and smmmi practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer,"

European Journal of Nuclear Medicine and Molecular Imaging, Vol. 40, pp. 1932–1947, Dec 2013.

- Krynyckyi, B. R., C. K. Kim, M. R. Goyenechea, P. T. Chan, Z. Y. Zhang, and J. Machac, "Clinical breast lymphoscintigraphy: optimal techniques for performing studies, image atlas, and analysis of images," *Radiographics*, Vol. 24, pp. 121–145, Jan 2004.
- Lemstra, C., M. Broersma, L. Poot, and P. L. Jager, "Sentinel node detection in patients with breast cancer: low-energy all-purpose collimator or medium-energy collimator?," *Clinical Nuclear Medicine*, Vol. 29, pp. 609–693, Oct 2004.
- Doshi, N. K., M. Basic, and S. R. Cherry, "Evaluation of the detectability of breast cancer lesions using a modified anthropomorphic phantom," *Breast Cancer*, Vol. 2, p. 10, Nov 1998.
- 16. Yoneyama, H., H. Tsushima, M. Kobayashi, M. Onoguchi, K. Nakajima, and S. Kinuya, "Improved detection of sentinel lymph nodes in spect/ct images acquired using a low-to medium-energy general-purpose collimator," *Clinical Nuclear Medicine*, Vol. 39, pp. e1– e6, Jan 2014.
- Brolin, G., K. S. Gleisner, and M. Ljungberg, "Dynamic 99mtc-mag3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and monte carlo simulated scintillation camera imaging," *Physics* in Medicine Biology, Vol. 58, p. 3145, Apr 2013.
- Zubal, G., G. Gindi, M. Lee, C. Harrell, and E. Smith, "High resolution anthropomorphic phantom for monte carlo analysis of internal radiation sources," in [1990] Proceedings Third Annual IEEE Symposium on Computer-Based Medical Systems, pp. 540-547, IEEE, Jun 1990.
- 19. Ljungberg, M., S.E.Strand, and M. King, eds., Monte Carlo calculations in nuclear medicine: Applications in diagnostic imaging, CRC, 2012.
- Polo, I. O., "Evaluation of the scattered radiation components produced in a gamma camera using monte carlo method," *Revista Brasileira de Engenharia Biomédica*, Vol. 30, pp. 179–188, Jun 2014.
- Ljungberg, M., S. E. Strand, and M. A. King, "The simind monte carlo program," Monte Carlo Calculation in Nuclear Medicine: Applications in Diagnostic Imaging, pp. 145–163, 1998.
- Zubal, I. G., C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, "Computerized threeâdimensional segmented human anatomy," *Medical Physics*, Vol. 21, pp. 299– 302, Feb 1994.
- Merlin, T., "Customizable and advanced software for tomographic reconstruction (castor)," 2016.
- Rasband, W. S., ImageJ, Bethesda, Maryland, USA: U. S. National Institutes of Health, 1997-2018. Available: https://imagej.nih.gov/ij/.
- 25. Dickinson, R. L., W. D. Erwin, D. M. Stevens, L. M. Bidaut, M. V. Mar, H. A. Macapinlac, and R. E. Wendt, "Hybrid modality fusion of planar scintigrams and ct topograms to localize sentinel lymph nodes in breast lymphoscintigraphy: Technical description and phantom studies," *International Journal of Molecular Imaging*, 2011.

- 26. Dickinson, R. L., W. D. Erwin, D. M. Stevens, L. M. Bidaut, M. V. Mar, H. A. Macapinlac, and R. E. Wendt, "Hybrid modality fusion of planar scintigrams and ct topograms to localize sentinel lymph nodes in breast lymphoscintigraphy: Technical description and phantom studies," *International Journal of Molecular Imaging*, 2011.
- 27. Ljungberg, M., *The SIMIND Monte Carlo Program Manual.* Available: http://www2.msf.lu.se/simind/download/Simind manual.pdf.
- 28. SIEMENS Symbia T Series System Specifications. Available: https://3.imimg.com/data3/AC/PC/MY-13438971/gamma-camera.pdf/.
- Inoue, Y., Y. Abe, K. Kikuchi, K. Matsunaga, R. Masuda, and K. Nishiyama, "Correction of collimator-dependent differences in the heart-to-mediastinum ratio in 123 i-metaiodobenzylguanidine cardiac sympathetic imaging: Determination of conversion equations using point-source imaging," *Journal of Nuclear Cardiology*, Vol. 24, pp. 1725– 1736, Oct 2017.
- Sadrmomtaz, A., and M. N. Asl, "Reliability of scatter correction methods in spect by setting two energy windows," World Appl Program, pp. 143-149, 2011.
- Group, M., MosaicSuite for ImageJ and Fiji-models, simulation and algorithms for interdisciplinary computing, 2013. Available: Version lines and rt http://mosaic.mpi-cbg. de.
- 32. de Nijs, R., V. Lagerburg, T. L. Klausen, and S. Holm, "Improving quantitative dosimetry in 177lu-dotatate spect by energy window-based scatter corrections," *Nuclear Medicine Communications*, Vol. 35, p. 522, May 2014.
- 33. Jaszczak, R. J., K. L. Greer, J. C. Floyd, C. C. Harris, and R. E. Coleman, "Improved spect quantification using compensation for scattered photons," *Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine*, Vol. 25, pp. 893–900, Aug 1984.
- Ljungberg, M., and S. E. Strand, "Scatter and attenuation correction in spect using density maps and monte carlo simulated scatter functions," *J Nucl Med*, Vol. 31, pp. 1560– 1567, Sep 1990.
- 35. de Nijs, R., V. Lagerburg, T. L. Klausen, and S. Holm, "Improving quantitative dosimetry in 177lu-dotatate spect by energy window-based scatter corrections," *Nuclear Medicine Communications*, Vol. 35, p. 522, May 2014.
- Kijewski, M. F., "Positron emission tomography (pet) and single-photon emission computed tomography (spect) physics," *Handbook of Neuro-Oncology Neuroimaging*, pp. 353– 358, Jan 2016.
- 37. Mettler, J. F. A., and M. J. Guiberteau, *Essentials of Nuclear Medicine Imaging: Expert Consult-Online and Print*, Elsevier Health Sciences, 2012.
- Farshid, G., M. Pradhan, J. Kollias, and P. G. Gill, "Computer simulations of lymph node metastasis for optimizing the pathologic examination of sentinel lymph nodes in patients with breast carcinoma," *Cancer*, Vol. 89, pp. 2527–2537, Dec 2000.
- Alqahtani, M. S., J. E. Lees, S. L. Bugby, L. K. Jambi, and A. C. Perkins, "Lymphoscintigraphic imaging study for quantitative evaluation of a small field of view (sfov) gamma camera," *Journal of Instrumentation*, Vol. 10, pp. 7–11, Jul 2015.

- 40. Kuehn, T., A. Bembenek, T. Decker, D. L. Munz, M. L. Sautter-Bihl, M. Untch, D. Wallwiener, and C. C. of the German Society of Senology, "A concept for the clinical implementation of sentinel lymph node biopsy in patients with breast carcinoma with special regard to quality assurance," *Cancer*, Vol. 103, pp. 451–461, Feb 2005.
- 41. Noguchi, A., M. Onoguchi, T. Ohnishi, T. Hashizume, A. Kajita, M. Funauchi, T. Katsuda, and K. Motomura, "Predicting sentinel lymph node metastasis in breast cancer with lymphoscintigraphy," *Annals of Nuclear Medicine*, Vol. 25, pp. 221–222, Apr 2011.
- 42. Vidal-Sicart, S., O. R. Brouwer, and R. A. Valdé-Olmos, "Evaluation of the sentinel lymph node combining spect/ct with the planar image and its importance for the surgical act," *Revista Espanola de Medicina Nuclear*, Vol. 30, no. 5, pp. 331–337, 2011.
- 43. Bass, S. S., C. E. Cox, C. J. Salud, G. H. Lyman, C. McCann, E. Dupont, C. Berman, and D. S. Reintgen, "The effects of postinjection massage on the sensitivity of lymphatic mapping in breast cancer," *Journal of the American College of Surgeons*, Vol. 192, pp. 9– 16, Jan 2001.
- 44. Mariani, G., M. Gipponi, L. Moresco, G. Villa, M. Bartolomei, G. Mazzarol, M. C. Bagnara, A. Romanini, F. Cafiero, G. Paganelli, and H. W. Strauss, "Radioguided sentinel lymph node biopsy in malignant cutaneous melanoma," *Journal of Nuclear Medicine*, Vol. 43, pp. 811–827, Jun 2002.
- Leong, L. K., R. L. Kruger, and M. K. O. MK, "A comparison of the uniformity requirements for spect image reconstruction using fbp and osem techniques," *Journal of Nuclear Medicine Technology*, Vol. 29, pp. 79–83, Jun 2001.
- 46. King, M., and T. Farncombe, "An overview of attenuation and scatter correction of planar and spect data for dosimetry studies," *Cancer Biotherapy and Radiopharmaceuticals*, Vol. 18, pp. 181–190, Apr 2003.
- 47. Tsushima, H., T. Takayama, H. Kizu, T. Y. T, Y. Shimonishi, K. Kosakai, M. Murai, and M. Onoguchi, "Advantages of upright position imaging with medium-energy collimator for sentinel node lymphoscintigraphy in breast cancer patients," *Annals of Nuclear Medicine*, Vol. 21, p. 123, Feb 2007.