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wledge all the consequences due to its violation by plagiarism or any other way.

Name : Signature:

Date:



v

ABSTRACT

OPTIMIZING THE ACCURACY OF TUMOR
SEGMENTATION IN PET FOR RADIOTHERAPY

PLANNING USING BLIND DECONVOLUTION METHOD

Tumor segmentation accuracy greatly affects the effectiveness of radiotherapy

procedures. Maximizing the segmentation accuracy has high medical significance in

order to deliver the highest radiation dose to the target volume while protecting the

healthy tissues. This dissertation aims to present an optimized method to minimize

errors in the automated segmentation of tumors in PET images. Blind deconvolution

was implemented in a region of interest encompassing the tumor with an iteration num-

ber determined from Contrast-to-Noise Ratios. The images were resampled. Several

automatic segmentation algorithms were tested on three datasets: phantom, simulated

geometric lesions inserted in real images, and simulated clinical images with real hete-

rogeneous tumors for which ground truth was known. The volumes of the tumors were

0.49-26.34 cc, 0.64-1.52 cc, and 40.38-203.84 cc respectively for the three datasets. The

widely available software tools MATLAB, MIPAV, and ITK-SNAP were used. With

the use of the active contour with classification technique, the mean errors were reduced

from 95.85% to 3.37%, from 815.63% to 17.45%, and from 32.61% to 6.80% for all the

lesions of the phantom dataset, the simulated dataset, and the large lesions of the clini-

cal PET dataset respectively. The computational time was reduced by a factor of more

than 10 by the use of region-of-interest-based deconvolution. Contrast-to-Noise Ratio

and Region-of-Interest based deconvolution have the potential to improve delineation

accuracy for different sizes of homogeneous and heterogeneous tumors. Improvement is

very important for smaller tumors. The algorithm may provide reduced computational

time with respect to full deconvolution and can be implemented using widely available

software tools.

Keywords: PET, medical image segmentation, image restoration, blind deconvolu-

tion, radiotherapy planning.
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ÖZET

RADYOTERAPİ PLANLAMASI İÇİN PET TÜMÖR
SEGMENTASYON DOĞRULUĞUNUN KÖR

DEKONVOLÜSYON METODU İLE OPTİMİZE EDİLMESİ

Tümör segmentasyon doğruluğu, radyoterapinin etkinliğini büyük ölçüde et-

kiler. Segmentasyon doğruluğunun artması, sağlıklı dokuları korurken hedef hacime

en yüksek radyasyon dozunu sağlamak için önemlidir. Bu tez, PET tümör segmenta-

syon hatalarını minimize edebilecek bir yöntem sunmayı amaçlamaktadır. Bu nedenle,

tümör bölgelerinde, Kontrast-Gürültü oranları ile parametreleri optimize edilen kör

dekonvolüsyon metodu kullanılmıştır. 3-boyutlu görüntüler üzerinde dekonvolüsyon

öncesinde yeniden örnekleme yapılmıştır. Gerçek tümör hacimleri bilinen, üç veri seti

üzerinde (fantom, klinik PET görüntüleri içerisine yerleştirilmiş küçük tümörler ve

simüle edilmiş klinik PET görüntüleri), çeşitli otomatik bölütleme algoritmaları test

edilmiştir. Kullanılan tümörlerin hacimleri, üç veri seti için sırasıyla 0.49-26.34 cc,

0.64-1.52 cc ve 40.38-203.84 cc arasında değişmektedir. Görüntü işlemede yaygın olarak

kullanılan MATLAB, MIPAV ve ITK-SNAP yazılımları kullanılmıştır. Ölçülen orta-

lama hacim hataları, sınıflandırma tekniğine sahip aktif kontur segmentasyon metodu

ile fantomun tüm lezyonları için ortalama %95.85’ten %3.37’ye, klinik PET görüntüleri

içerisine yerleştirilmiş simüle geometrik lezyonlar için %815.67’den %17.45’e ve büyük

lezyonlara sahip klinik PET görüntüleri için %32.61’den %6.80’e düşmüştür. Tümör

temelli dekonvolüsyon metodunun kullanımıyla hesaplama süresi ortalama 10 kattan

fazla azalmıştır. Kontrast-Gürültü oranı ve tümör dayalı dekonvolüsyon, farklı boyut-

lardaki homojen ve heterojen tümörler için segmentasyon doğruluğunu geliştirme po-

tansiyeline sahiptir. İyileştirme, küçük tümörler için çok önemlidir. Algoritma, tüm

görüntünün dekonvolüsyonuna göre düşük hesaplama süresi sağlamakta ve yaygın ola-

rak kullanılan yazılım araçları ile uygulanabilmektedir.

Anahtar Sözcükler: PET, tıbbi görüntü bölütleme, görüntü iyileştirme, kör dekon-

volüsyon, radyoterapi planlaması.
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1. INTRODUCTION

Radiation therapy is one of the most important treatment methods. It uses

several types of ionizing radiation such as x-rays, gamma rays or electron beams to

kill cancer cells or to prevent the spread of them. Ultimately, its aim is to remove the

cancer tissues by damaging the DNA of these cells doing the least harm to the healthy

tissues [1, 2].

Radiation Treatment Planning (RTP) consists of many levels which are patient

data acquisition and simulation, volume delineation, treatment time, optimization, plan

evaluation and quality assurance. This treatment planning begins with procedures for

identifying and localizing volumes of tumor cells. Therefore, volume segmentation

process plays a crucial role among these steps for RTP and is generally based on

getting information from imaging modalities such as Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI).

However, current trends in RTP have led to the increased use of [18F]-2-Deoxy-

2-fluoro-d-glucose Positron Emission Tomography (18F-FDG PET) images to identify

metabolic tumor volume [3]. It is of utmost importance to be able to determine the

volume of a tumor in an accurate way in order to deliver the highest radiation dose

to the target volume while protecting the healthy tissues so that the curative outcome

of the treatment planning process can be improved and the chance of survival of the

patient can be increased [4].

1.1 Motivation

Volume delineation is generally carried out by manually drawn contours around

lesions. In addition, several automatic and semi-automatic tumor delineation techni-

ques have been proposed and used in clinical settings. However these techniques have
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varying accuracy and their performance is affected by intrinsic and/or extrinsic fac-

tors, i.e., image acquisition and reconstruction, artifacts, noise, patient-related factors,

tracer uptake, and imaging system itself.

If the tumor size is less than 2 or 3 times the spatial resolution of the PET

imaging system (∼5 mm), the tumor is seen larger than its real size within the re-

constructed image. This distortion is known as the Partial Volume Effect (PVE)

which stems from the result of the convolution of the real object and the Point Spread

Function (PSF) of the system [5]. PVE causes errors in tumor radiopharmaceutical up-

take measurements and segmentation processes. Therefore, maximizing segmentation

accuracy is still an unresolved problem despite its high medical significance.

1.2 Aims

This dissertation aims to study the impact of the PVE on the accuracy of

segmentation algorithms and to optimize the accuracy with respect to best parameters

of the post-reconstruction based Partial Volume Correction (PVC) technique (the blind

deconvolution method) under varying tumor sizes and Signal to Background Ratio

(SBR) conditions. Therefore, the primary motivation is fundamentally to help guide

medical professionals in making better segmentation that will ultimately benefit their

patients.

1.3 Contributions

It is very important to enhance images for varying tumor shapes, sizes, and acti-

vity distributions in order to obtain accurate and precise volume segmentation. There-

fore, we improved the accuracy of the various PET segmentation algorithms for volume

quantification in PET images combining two methods (the local blind deconvolution

and the resampling method). Very few studies have been conducted to investigate the
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effect of blind deconvolution on PET segmentation methods based on the evaluation

of best deconvolution parameters. The issues that will answer the following questions

will be identified as the original/innovative aspects of our study.

1. How can PET tumor segmentation accuracy be improved by using a post-reconstruction-

based restoration method with a lower computational cost without knowing the

real object itself and the distortion function of the system (PSF)?

2. Which segmentation methods will yield minimum segmentation errors depending

on the restoration and lesion characteristics?

3. Is there a relationship between restoration parameters and Contrast-to-Noise

Ratio (CNR) in terms of lesion characteristics?

4. What set of deconvolution parameters will ensure accurate and robust delineation

for the best segmentation method?

5. What is expected from a delineation methodology for PET and/or PET/CT?

1.4 Outline of the Thesis

This dissertation is composed of six chapters, each of them dealing with different

aspects of the study. The motivation and aim of the study were explained in Chapter 1.

Chapter 2 is subdivided into three parts and presents the theoretical background and

most recent developments. Part 1 describes PET segmentation methods and explains

the relevant literature. Part 2 deals with the PVE and presents recent studies on PVC

methods. In Part 3, the blind deconvolution technique and its implementation were

being investigated. Materials and methods of the study were given in Chapter 3. Im-

plementation strategy of the blind deconvolution method, the segmentation techniques

used, and their evaluation criteria were explained in detail in subsections of Chapter

3. Chapter 4 concentrates on the results obtained from three datasets. Reviews of the

findings, the comparison of results with recent literature studies, and limitations of the
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study were given in Chapter 5. Finally, the dissertation is concluded in Chapter 6 by

emphasizing the significance of the findings and future works.
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2. BACKGROUND AND RELATED WORKS

There is a large volume of published studies describing the role of the PVE in

quantification of radioactivity in nuclear medicine images. In addition, several cor-

rection algorithms have been developed to prevent the PVE, to enhance image quality,

and to obtain accurate and precise measurements of tracer uptake in tumors. The first

section of this chapter will present PET image segmentation methods and examine

relevant literature studies. The second section of this chapter will focus on the PVE.

Finally, the last section of this chapter will explain and examine the blind deconvolution

method and recent developments.

2.1 PET Image Segmentation Methods

The tools for RTP have been amended, but the basic volume delineation process

remains mostly the same [1]. Delineation of lesion volume is generally carried out by

physicians using image segmentation techniques or manually drawn contours around

lesions. Therefore, the latter substantially depends on the experience of the physician

and causes intra-observer and inter-observer variability. Simple manual thresholding,

which is normally used to segment a PET tumor, is not appropriate due to the lack

of standardized value. Such automated tumor delineation methods as thresholding,

region growing, classifiers, clustering, edge detection, Markov random field models,

deformable models, and many other methods have been reviewed in [6, 7].

In their literature survey, Foster et al. have classified the PET image segmen-

tation methods as manual, thresholding-based, stochastic- and learning-based, region-

based, boundary-based, and joint segmentation methods [6]. In the following, current

literature is given to describe recently developed PET tumor segmentation algorithms.

In each subsection of this part, a brief overview of segmentation techniques and lite-

rature studies will be presented. Also, these studies will be examined further in Table



6

2.1 in terms of segmentation results.

2.1.1 Thresholding method

Thresholding method is the most widely used segmentation method thanks to

its simplicity and efficiency in the RTP. A Threshold value (T ) is determined and

compared with image pixel or voxel intensity value (I (x)) to classify two regions as

lesion and background within an image.

Lesion = T [I(x)] =

 1, I (x) ≥ T

0, I (x) < T
(2.1)

The intrinsic and extrinsic factors may cause fuzziness in the lesions’ boundaries. The-

refore, identifying the optimal threshold value is critical for better delineation.

The literature cites three types of threshold selection methods (fixed, adaptive,

and iterative thresholding method). Despite the widely used thresholding values (the

Standardized Uptake Value (SUV) of 2.5 and the 40 - 43% of SUVmax), there is no

consensus among researchers [6]. Threshold values may not be adequate, particularly

for small lesions, if they can not be adjusted for foreground and background regions.

Therefore, several groups of researchers adapted the optimum threshold value drawing

upon various metrics such as the estimated mean foreground and background intensity

(Nestle’s method), SBR (Daisne’s method), SUV (Schaefer’s method), and lesion physi-

cal parameters [8–15]. It appears from Table 2.1, most researchers drew on at least one

thresholding technique to test their new segmentation methods developed [4, 16–26].

These studies have shown that although the thresholding method is simple and effective

in terms of applicability and time, its performance is not superior compared with new

segmentation methods.



7

2.1.2 The stochastic and learning-based methods

The stochastic models use statistical differences in intensity distribution between

tumor uptake and surrounding normal tissues. The Gaussian Mixture Model (GMM),

the Expectation Maximization (EM) algorithm, and the Hidden Markov Models are

the most widely used methods for image segmentation approach. Hatt et al. developed

a new segmentation algorithm, called Fuzzy Locally Adaptive Bayesian (FLAB), based

on the Gaussian mixtures of the object and Bayesian statistics [17]. They compared

the FLAB technique with other segmentation methods and found that their method

showed better performance on segmentation of phantom and clinical images.

In another study, they developed a three classes FLAB method for segmentation

of heterogeneous and irregular lesion volumes [18]. They reported that the 3-FLAB

method is better than the other methods (the Adaptive Thresholding (AT) methods,

the Fuzzy C-Means (FCM), and the FLAB). However, none of the segmentation met-

hods used have resulted in a reasonable estimate for volumes of lesions smaller than

20 mm in diameter.

In a further study, they evaluated the robustness and repeatability of the FLAB

method and compared with the FCM and various thresholding methods [19]. This

method had considerably better performance than the other methods even in nonu-

niform and small lesions (Mean CE%±SD%: 8.7%±4.5%). Another phantom study

compared the FLAB segmentation method with the various thresholding algorithms

(fixed thresholding (T40% and T50%), adaptive thresholding (AT40 and AT50), and

contrast oriented (CT) methods) [25]. Firouzian et al. recommended that CT and

AT40/AT50 are the best choices for all lesion sizes compared with the FLAB method.

Learning methods are techniques developed to estimate dependency on data in

pattern recognition. Based on a set of extracted features from images, the learning task

discriminates against tracer uptakes between the lesion and surrounding normal tissue

voxels. Supervised (classification) and unsupervised (clustering) learning methods are

used in this process. Supervised learning is used to estimate unknown mapping from
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known labeled samples, i.e., it needs training data. In unsupervised learning, only input

samples are given to the learning system, i.e., this method does not require training

data.

Commonly used classifiers include K-Nearest Neighbor (KNN), Artificial Neu-

ral Network (ANN), and Support Vector Machine (SVM). These methods have seen

limited applications in PET. On the other hand, clustering methods have shown more

promise for segmentation of PET tumors. Among the stochastic and learning-based

segmentation methods, the spectral clustering, the FCM, the K-Means algorithm, and

the EM algorithm are the frequently used clustering methods.

As seen in Table 2.1, segmentation of phantom, simulated and clinical lesions

have been carried out using the FCM method and other segmentation techniques [17–

20, 23]. Dewalle-Vignion et al. developed a new segmentation method (Possibility

Theory based method) and compared it with the FCM and other methods [20]. They

reported that their method resulted in better segmentation performance compared to

other methods (the FCM, fixed thresholding, and adaptive thresholding) for phantom

and simulated lesions. The FCM yielded higher errors compared to others. In the

studies of Hatt et al. [17–19], they used the FCM method and thresholding methods

to compare with their new segmentation method (the FLAB method). Their results

showed that the FCM method has higher accuracy than thresholding methods, but

lower than the FLAB method. Similarly, in the study of Zaidi et al. [23], they found

that the FCM method provided better results than the thresholding method (Schaefer’s

method).

2.1.3 Region-based method

The region-based method consists of the Region Growing (RG), the Graph-Cut,

and the Random Walk methods [6]. In the RG, the initial seed location, the mean

and the standard deviation of voxel intensities in lesion regions are the main concern

for accurate segmentation of lesions. The algorithm starts at an initial seed point
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and determines the lesion boundary by connecting this starting point with the nearby

voxels depending on similarities of lesion voxels.

In 2008, Li et al. published a paper in which they used region growing algorithm

with active contour model to accurately delineate a lesion in PET image [27]. They

reported that the combined method showed better performance than iterative threshold

method in terms of volume estimation accuracy for the volume of tumors less than 6

mL. Despite prior results, the RG method may not be sufficient for segmentation of

the lesions with heterogeneous uptake distributions and higher level of noise.

2.1.4 The boundary based method

The boundary based method is classified into the gradient based method and the

level set/active contour method. The first method uses information provided by gra-

dient differences between the lesion and the background for the segmentation task [7].

Therefore, boundaries or edges of the object should provide adequate discrimination

from the background regions. In general, edges of small tumors are more blurry than

larger ones due to the PVE, noise and reconstruction artifacts. Thus, iterative decon-

volution algorithms, and simple edge or ridge detectors such as Sobel, Prewitt, and

Roberts filters are implemented before clustering analysis.

The Gradient-based Watershed segmentation method (GRADWT) was first app-

lied by Geets et al. on PET images [16]. They compared the segmentation performance

of the GRADWT method with the SBR dependent threshold method (Daisne’s met-

hod) for with and without denoising and deblurring processes. They observed that the

GRADWT method performed better segmentation results than the threshold method.

The volume error percentage value (VE%) ranged from 20% to 10% for the smallest

to the largest sphere (their volumes range from 2.1 mL to 92.9 mL). In another study,

Cheebsumon et al. compared the GRADWT method with the fixed, the adaptive, and

the iterative thresholding methods using phantom and simulated data [4]. Unlike Geets

et al, they reported that the contrast oriented thresholding method (the Schaefer’s
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method) showed superior performance compared to others in terms of segmentation

accuracy for lesions bigger than 20 mm in diameter.

The active contour model is a technique that evolves a contour using internal and

external energy functions until it reaches the boundary of the object. Internal energy

is a smoothing force derived from an object’s geometry. External energy is an image

force that moves the contour inward and outward directions to fit on the objects where

the edges exist. Chan et al. redesigned the external energy function using regional

information of the image for the Active Contour Without Edges (ACWE) method

[28]. Khamwan et al. integrated the shifted-optimal thresholding into the ACWE

method and compared its segmentation performance with manual, thresholding, and

the ACWE methods [21]. The results are presented in Table 2.1. Their proposed

automated method improved the segmentation accuracy and precision of the PET

tumors compared to others. In another study, Abdoli et al. modified the ACWE

method using anisotropic diffusion filtering and contourlet transform on PET images

[29]. Moreover, they compared this method with the thresholding, the FCM, and the

FCM-SW methods. In contrast to Zaidi et al. [23], they concluded that their proposed

method has superior performance than other three methods in tumor segmentation.

The studies presented thus far indicate that the active contour methods used

are highly operator dependent, therefore Zhuang et al. developed a new automated

active contour segmentation method using histogram FCM clustering and textural

information. This method forces the contour without user defined parameters for

detection of the object’s boundaries [26]. As can be seen from Table 2.1, their proposed

method provided better results compared to the thresholding and the counterlet active

contour methods in terms of the DSC (0.71) and the CE% (54%) except the VE%

(11%).
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2.1.5 Segmentation Evaluation Metrics

The extent to which a delineation method is suitable, i.e., whether it is applicable

or not for specified cases, is measured through validation studies depending on the set of

images included and quality criteria. Therefore, validation is an important step in this

process and is carried out by simulations, phantoms, or patient data. Various figures

of merit can evaluate the efficiency of delineation methods. The simplest measurement

is comparing the volume of a delineated lesion with its true value, and it is measured

by Volume Error Percentage (VE%) as shown in Eq. 2.2:

V E% = |Vmeasured − Vtrue|
Vtrue

× 100 (2.2)

where Vmeasured is the measured lesion volume and Vtrue is the true lesion volume [16].

However, volume overlap measurement should be done to prevent complications

in case of equal volumes. The Jaccard Index (JI) [24], the Classification Error (CE) [17],

and the Dice’s Similarity Coefficient (DSC) [23] are commonly used evaluation metrics

related to the amount of correctly and incorrectly segmented voxels for interested

objects. Eq. 2.3 and Eq. 2.4 show the calculation of the JI value and the DSC

respectively.

JI = (Vseg ∩ Vtrue)
(Vseg ∪ Vtrue)

(2.3)

DSC = 2(Vseg ∩ Vtrue)
(Vseg) + (Vtrue)

(2.4)

(Vseg ∩ Vtrue) is the number of voxels inside both segmented and ground truth regions,

(Vseg) is the number of voxels inside the segmented region and (Vtrue) is the number of

voxels inside the ground truth region. The JI and the DSC have a value between 0 (no

overlapping voxels between two regions) and 1 (two areas are completely overlapped).
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Table 2.1 Literature studies about PET image segmentation methods.

Literature

Studies
Data Segmentation Methods

Evaluation

Metrics
Notes

Cheebsumon et

al. (2011) [4]

1)Nema IQ Phantom Data with 6 spheres (Size: 10-37 mm,

SBR: 5 and 9).

2)Simulation Data: Computer generated image of thorax

with 5 lesions (Size: 10-50 mm, SBR: 4, 8, and 12), Lesions

are segmented before and after smoothing (Gaussian Kernel:

5, and 7 mm) and denoising (edge preserving bilateral filter)

processes.

1)Fixed thresholding (T41%,

T50%, T70% )

2)Adaptive thresholding (AT41,

AT50, AT70)

3)Contrast oriented method

(VOISchaefer)

4)Background-subtracted rela-

tive threshold level method

(VOIRTL)

5)Gradient based watershed

method (GradWT)

6)SUV2.5

VE%

1) Tumor delineation accuracy improved with denoising and smoothing.

2) The VOISchaefer method is the best for the spheres larger than 20

mm in size.

Dewalle-Vignion

et al. (2011) [20]

1)Nema IQ Phantom Data with 6 spheres (Size: 10-37 mm,

SBR: 4.3 and 8.9) / Matrix size: 128x128x75 / Voxel size:

5.47x5.47x3.27 mm3 / Rec: OSEM, 2 it, 21 subsets / 6 mm

Gaussian smoothing.

2)Simulation Data: Lesions (Volume: 0.7-56.45 mL) with

uniform tracer distributions are simulated by GATE simula-

tion platform. / Matrix size: 144x144x87 / Rec: OSEM, 5 it,

10 subsets.

3)Clinical Data: Patient’s anatomopathological data (Vol:

6.58-40.82 mL)

1)Possibility Theory based seg-

mentation

2)T42%

3)Contrast oriented method

(Nestle’s method)

4)Daisne’s method

5)FCM

1)VE%

2)DSI

3)CE

1)Nema IQ Phantom:

For all spheres included except the sphere size of 10 mm, VE%s of the

possibility theory based segmentation are 19.75%±9.94% and 15.45%±

6.96% at SBR of 4.3 and 8.9, respectively.

2) Simulation Data:

24.08% ± 30.38% for SUV=2.5

15.70% ± 18.71% for SUV=4.5

11.85% ± 11.48% for SUV=6

(results from the possibility theory based segmentation)

3) Clinical Data:

The FCM method gives unsatisfactory results compared with others.

The T42% performs better results for higher SUV value compared with

others (due to less noise). The Nestle’s, the Daisne’s, and the Possibi-

lity Theory-based segmentation methods yield about 23% segmentation

errors.

Firouzian et al.

(2014) [25]

1)Nema IQ Phantom Data with 6 spheres (Size: 10-37 mm,

SBR: 4 and 8) / Matrix sizes: 200x200 and 400x400 / Voxel

sizes: 4.073x4.073x2.027 mm3 and 2.036x2.036x2.027 mm3 /

Rec: 4 types of rec. alg. / Counts: 3.107 and 6.107

2)Synthetic Phantoms:

The first phantom consists of 7 spheres (Size: 7-37 mm). The

second phantom includes spheres with necrotic core (Size: 7-37

mm). The third phantom contains 6 lesions of irregular shapes

from real patient data.

1)Fixed thresholding (T40%,

T50%)

2)Adaptive thresholding (AT40,

AT50)

3)Contrast oriented method

(CT)

4)FLAB

1)VE%

2)SI

1)Nema IQ Phantom:

For all spheres, CT is the best one. The VE% is 5.56% ± 24.34%.

2) For small spheres (<17 mm):

CT, AT40, and AT50 have given sensible results.

3) For images with irregular tumor shapes:

AT40 is the best after using Gaussian filter: SI=0.61, VE%=14.83% ±

49.39%

Continued on next page



13

Table 2.1 – Continued from previous page
Literature

Studies
Data Segmentation Methods

Evaluation

Metrics
Notes

Geets et al.

(2007) [16]

1)Computer generated phantom images:

Cylindrical phantom with 5 spheres (Sizes: 20-46 mm, Vol:

4.19-50.97 mL, SBR: 6) / Matrix size: 128x128x47 / Denoi-

sing and deblurring are implemented using the edge preserving

filter and the constrained iterative deconvolution.

2)Lucite phantom images:

Cylindrical phantom with 6 spheres (Vol: 2.1-92.9 mL, SBR:

1.5-15) / Matrix size: 128x128x47 / Rec: 3D OSEM

3)Patient images:

7 patients with squamous cell carcinoma / Ground truth: De-

lineated by pathologists.

1)The Gradient-based waters-

hed (GradWT)

2)Thresholding method (The

Daisne’s method: SBR dependent

threshold method)

1)VE%

2)Regression

curves.

3)Mean

volume.

1)On the first dataset, the VE% values ranged from 13.98% to 3.16%

without deblurring, and -3.17% to 1.81% with deblurring for smallest

to largest sphere.

2)On the second dataset, the VE% ranged from 20% to 10% for

smallest to largest sphere.

3)On the third dataset, the gradient-based method was the best

compared with the thresholding method. (R2 = 0.88, and 0.67 for the

gradient-based method and the thresholding method, respectively.)

Hatt et al.

(2009) [17]

1)Nema IQ Phantom:

The data includes 6 spheres (Size: 10-37 mm, SBR: 4 and 8) /

Voxel sizes: 2x2x2 mm3 and 4x4x4 mm3 / Rec: 3D RAMLA /

Philips Gemini PET Scanner / Spatial Res: 4.9 FWHM at the

center of FOV / Ground Truth: CT image / 1,2, and 5 min.

list-mode time frames.

2)Clinically Realistic Data:

GATE simulation platform simulates 3 lesions which have non-

uniform activity distributions and shapes. Lesions are located

in the lung. / Voxel sizes: 2x2x2 mm3.

Lesion 1: Size: 41 mm, SBR: 6:1

Lesion 2: Size: 29 mm, SBR: 5:1

Lesion 3: Size: 15 mm, SBR < 2:1

1)Fixed thresholding (T42%)

2)FCM

3)FHMC

4)FLAB

1)VE%

2)CE

1)Results of phantom lesions with the 4x4x4 mm3 voxel size at

the SBR of 4:1

The 10-mm lesion: T42%, FCM, FHMC, and FLAB: >100% error

The 13-mm lesion: T42%, FCM, and FHMC: >100% / FLAB: 0-10%

(5min), 10-20% (2min)

The 17-mm lesion: T42%: >100% / FCM: ≈30% / FHMC: 20-30%

/ FLAB: <10%

The 22-mm lesion: T42%: ≈30% / FCM, FHMC, and FLAB: <10%

The 37-mm lesion: T42%: 10-20% / FCM, FHMC, and FLAB: <10%

2) Clinical Image Results:

Lesion 1: T42%: 40-50% / FCM: 30-40% / FHMC, and FLAB: <10%

Lesion 2: T42%, FCM, FHMC, and FLAB: <10%

Lesion 3: T42%: >50% / FCM: 20-30% / FHMC: 10-20% / FLAB:

<10%

Hatt et al.

(2010) [18]

1)Simulated Tumors:

20 realistic tumors which have irregular shapes with uniform

and nonuniform uptake distributions are simulated by GATE

for PET/CT scanners. Rec.: OPL-EM with 7 it. and 1 subsets

/ Vox. size: 4x4x4 mm3 and 2x2x5 mm3 / Ground truth:

Manual delineation by nuclear medicine experts.

2)Clinical Data:

18 lung tumors of patients. / Size: 15-90 mm / Rec: OSEM

with 4 it. and 8 subsets / Vox. size: 5.31x5.31x5.31 mm3 /

Ground truth: Histologic examination.

1)Adaptive thresholding (AT,

Nestle’s method)

2)FCM

3)FLAB

4)3-FLAB

CE

Although 3-FLAB is better than the other methods, none of the met-

hods have given sensible results for lesions smaller than the size of 20

mm.

Error rates for overall tumors:

AT: 20±12%

FCM: 17±14%

FLAB: 15±11%

3-FLAB: 9±8%

Continued on next page
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Table 2.1 – Continued from previous page
Literature

Studies
Data Segmentation Methods

Evaluation

Metrics
Notes

Hatt et al.

(2011) [19]

1)Phantom Data:

Data consists of 6 spheres (Size: 10-37 mm, SBR: 4 and 8).

/ Voxel sizes: 2x2x2 mm3 and 4.3x4.3x4.25 mm3 / 4 scanner

types / Rec: 3D RAMLA, TF ML-EM, and FORE-OSEM /

Scan durations: 1, 2, and 5 min.

For repeatability study:

1)Ten tumors obtained from realistically simulated PET scans.

Voxel size: 4x4x4 mm3.

2)Clinical images:

4 esophagus lymphomas

4 follicular lymphomas

3 NSCLC

1)Manual Delineation

2)Fixed Thresholding

(T42%, T50%)

2)Adaptive Thresholding

(Daisne’s method)

3)FCM

4)FLAB

CE

The 10 mm sphere is excluded from the study because of the lower

contrast.

Accuracy: Mean of CE%

Robustness: SD of CE%

Repeatibility: To segment an image for several times. (This was done

for only second dataset.)

1)For all spheres (13-37 mm):

The FLAB method is the most accurate and robust: 8.7±4.5%. The

T42% method is the least accurate and robust: 42.6±51.6%

2) For repeatability study:

The AT, the FCM, and the FLAB methods showed good variability

results (<5%) compared with manual delineation (5-35%).

Khamwan et al.

(2012) [21]

1)Nema IQ Phantom:

Phantom data consists of 6 spheres. (Size: 10-37 mm, SBR: 4,

8, 12, and 16) / Matrix size: 256x256 with 4 mm slice thickness

/ Rec: OSEM, 4 it, 8 subsets / 5 mm Gaussian smoothing /

Siemens Biograph PET/CT Scanner / 3D acq. mode.

2)Clinical Data:

Clinical data includes ten patient images of oesophageal can-

cer.

1)Manual segmentation

2)Otsu’s method

3)Active contour with shifted

optimal thresholding (The pro-

posed method)

4)Active contour without edges

(ACWE)

1)VE%

2)Dice coeffi-

cient (DC)

Volume errors are given with respect to various sphere sizes for the

segmentation methods used.

Their proposed method improved the accuracy and precision of the PET

tumor delineation compared with others. For the proposed automated

method, the following lists show the segmentation volume errors of the

phantom spheres at SBR of 4.

10 mm lesion: 35%

13 mm lesion: 33%

17 mm lesion: 22.5%

22 mm lesion: 16.5%

28 mm lesion: 12.2%

37 mm lesion: 6.5%

Onoma et al.

(2014) [24]

1)Phantom Data:

8 homogeneous spherical lesions (Volume: 0.99-97.3 mL, SBR:

2, 3.4, 4.9, 6,3, and 7.7) / Matrix size: 168x168x75 / Voxel size:

4.1x4.1x2 mm3/ Rec: AWOSEM, 4 it, 8 subsets / Gaussian

smoothing with the FWHM of 5 mm / FOV: 162 mm / spatial

resolution: 6.8 at the center of the FOV.

2)Simulation Data:

4 heterogenous spherical lesions (Size: 12, 29, 57, 90 mm).

3) Clinical Data:

14 images of the patients with NSCLC. Medical experts classi-

fied the six lesions as homogenous (volume: 1.9-37.7 mL) while

the rest as heterogenous (volume: 20.8-135.8 mL).

1)Fixed Thresholding (T40%)

2)Adaptive Thresholding (AT)

3)FLAB

4)Random Walk (RW)

5)3D Locally Adaptive Random

Walk (3D-LARW): The proposed

method

1)VE%

2)CE

3)Jaccard

Index (JI)

1)Phantom Results: The best adaptive parameter is determined by

comparing volume errors for the LARW method. The 3D-LARW is the

best one for segmentation. The best VE% is obtained for the largest

sphere (9.2±3.8%). For the smallest sphere, the VE% is 48.4±22.2%.

2)Simulation Data Results: Similarly, the proposed method is the

best compared to others. The CE%s are (10-20%) for the smallest one

and (5-10%) for other lesions.

3)Clinical Data: Overlap measurement of the segmented lesions is

compared with the medical expert’s delineation using the JI metric.

For heterogeneous lesions, the proposed method showed statistically

better results than the other methods. However, it is not statistically

significant for the homogeneous lesions.

Continued on next page
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Table 2.1 – Continued from previous page
Literature

Studies
Data Segmentation Methods

Evaluation

Metrics
Notes

Prieto et al.

(2012) [22]

Phantom Data:

6 homogeneous spherical lesions (Size: 10-31 mm, SBR: 2, 4,

and 8) / 2 different PET Tomographs: Siemens PET/CT and

Philips PET Scanners.

For the Siemens PET/CT Scanner:

Voxel size: 5.3x5.3x3.4 mm3/ Matrix size: 128x128x47 / Rec:

OSEM, 2 it, 8 subsets

For the Philips PET Scanner:

Voxel size: 1x1x1 mm3/ Matrix size: 128x128x120 / Rec: 3D

RAMLA

1)Fixed Thresholding (T42%)

2)Twelve automatic threshol-

ding algorithms which are based

on clustering, histogram shape, ob-

ject attribute, entropy, spatial in-

formation, and local image charac-

teristics.

1)VE%

2)CE

3)1-DSI

Four of the twelve methods provided better results than the standard

clinical thresholding algorithm (T42%). Three of these four methods

are based on clustering: Ridler, Yanni, and Otsu. Another method,

Ramesh, is based on the histogram shape characteristics of the image.

Average results of the three metrics were given as 9.8, 10.1, 11, 16.4,

and 18.9 for Ridler, Ramesh, Otsu, Yanni and the T42%, respectively.

Zaidi et al.

(2012) [23]

Clinical Data:

Clinical data consists of 7 patient images of the T3-T4 squa-

mous cell carcinoma (including heterogeneous activity distri-

butions). Images were acquired by Siemens PET Scanner.

Image Reconstruction: 3D AW-OSEM with 8 it. and 4 subsets.

Full correction steps are implemented for all images. The cor-

rected data are denoised using 3D bilateral filter. The Land-

weber’s iterative algorithm is used to deblur images after de-

noising step. The mean value of the tumors’ volume is 15.15

mL (4.3-32.92 mL).

1)Thresholding methods

(Black’s, Biehl’s, T40%, Nestle’s,

and Schaefer’s method)

2)Active Contour Method

3)Stochastic Expectation

4)FCM

5)FCM-Spatial Wavelet Met-

hod (FCM-SW)

1)VE%

2)CE%

3)DSC

1)All thresholding methods without Schaefer’s method and the Expec-

tation Maximization method overestimated the average lesion volume.

2)The reference volumes are obtained from the histological specimens.

The mean reference volume is 15.15 mL.

3)The Schaefer’s method underestimated the average volume. However,

the error rate (-31.9%) is lower than the other thresholding methods.

The FCM, active contour, and the FCM-SW methods provided better

results than the others (35.6%, 27.2%, and -5.9%, respectively).

4)The FCM-SW has the highest accuracy in terms of overlap measure-

ment.

Zhuang et al.

(2016) [26]

1)Phantom Data:

A Cardiac-Torso (XCAT) Phantom consists of ten realistic

tumors with heterogenous activity distributions. SBR: 8, 9,

and 10. / Volume: 3.46-41.44 mL. / Matrix size: 288x288 /

Voxel size: 2.13x2.13x3.27 mm3 / Reconstruction: OSEM for

the scanner type GE Discovery PET/CT.

2)Clinical Data:

It consists of 6 images of pharyngolaryngeal squamous cell car-

cinoma tumors and 10 images of NSCLC tumors. Lesion volu-

mes ranged from 4.03 to 32.92 mL and 1.12 to 46.28 mL for the

first and second data sets, respectively. Ground truth volumes

are determined by surgically resected specimens. SBRs ranged

from 2.2 to 21.1. The mean SBR value is 7.98±5.83.

1)Schaefer’s Thresholding Method

(ST)

2)The Contourlet based Active

Contour Algorithm (CAC)

3)The Automatic Segmentation

using Active Contour Method (The

proposed method: MASAC)

1)VE%

2)CE%

3)DSC

The proposed method (MASAC) compared with the CAC and the ST

method.

1)Phantom Results:

The ST method provided lower VE% but higher CE% compared to

the other two methods. The MASAC and the CAC methods are more

reliable than the ST method. VE%s are -8%, 17%, and 13% for the ST,

the CAC, and the MASAC methods, respectively. In the same order,

the DSCs are 0.76, 0.91, and 0.89; and the CE%s are 47%, 20%, and

19%.

2)Clinical Study Results:

The proposed method (MASAC) provided better results in terms of the

DSC (0.71) and the CE% (54%). However, the CAC method is the best

in terms of the VE% (8%).
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2.2 Partial Volume Effect

In an ideal case, if we were able to eliminate all image degrading factors such as

the limited spatial resolution of the system, the sampling grid size, noise, and motion;

an image of the object would be as close as possible to its actual shape as shown

in the Figure 2.1 (a). However, these degradations cause blurry edges and decrease

the signal intensity and contrast of the object in the acquired image as illustrated in

Figure 2.1 (b) and (c). Hence, a small object, whose size is smaller than 2 or 3 times

the spatial resolution of the system, is seen as larger and weaker than it actually is.

This phenomenon is known as the Partial Volume Effect (PVE) [5].

Ideal case Real case

(a)

(c)

(b)
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Figure 2.1 The intensity profile of the real object (ideal case) (a), and acquired image (real case)
(b). Note that in real case, the intensity profile is seen as larger and weaker than it actually is due to
the PVE (c).

A major reason for the PVE is the finite spatial resolution of the imaging system.

PET scanner characteristics, designs, and PET reconstruction processes have led to

inevitable distortions. If a cold object is placed into a hot background, some of the

background signals spill into the object’s region. Conversely, if a hot object is placed

into a cold background, part of the object’s signals spills out to the background regions

as shown in Figure 2.1 (c). Indeed, this effect is basically a consequence of the limited

spatial resolution of the scanner.

Another reason for the PVE is the limited sampling grid size. When a voxel of

an image is represented by partially filled radiotracers from two or more regions such

as tumor, lung, liver, and muscle tissues; mean signal intensity values of these regions
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are assigned to their voxels. Therefore, signal intensities at these voxels are reduced

by tissue fraction effect as illustrated in Figure 2.2. As far as pixel size and spatial

resolution are concerned, anatomical imaging modalities are better than PET and

SPECT imaging. However, this effect can cause some sort of quantitative measurement

errors even for CT and MRI.

Figure 2.2 An ideal object (a), and its acquired image (b). Note that signal intensity is reduced due
to the limited sampling grid size in (b) (tissue fraction effect).

Jomaa et al. [30], Erlandsson et al. [31], and Bettinardi et al. [32] presented com-

prehensive reviews of the PVE in PET tumor imaging. They investigated the causes

of the PVE and explained the available Partial Volume Correction (PVC) methods.

PVC methods can be applied either during or post-reconstruction processes and

classified into region and voxel-based correction techniques. Amongst the region-based

methods, Recovery Coefficient (RC), which is the ratio of PET measured radioactivity

concentrations to actual radioactivity concentrations, is a widely used technique [33].

Clinically, it is generally impossible to know actual radioactivity concentrations; so

look-up table or other imaging modalities (CT and/or MRI) have been used for RC

correction method. The other method used for more than 2 structures in images is

the Geometric Transfer Matrix (GTM) correction. PVE has been corrected using this

method either working with PET raw data in the sinogram or in the image domain [34].

Amongst the voxel-based correction methods, recovery of the spatial resolu-

tion of the system can be achieved using image reconstruction, deconvolution, multi-

resolution approach, and anatomical imaging. Thus far, several studies have attempted

to evaluate the impact of deconvolution techniques in terms of RC and Standardized
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Uptake Value (SUV) during reconstruction or post-reconstruction process [35–42].

Rizzo et al. implemented Lucy-Richardson (LR) deconvolution to improve PET

spatial resolution using a known PSF which was measured from the imaging system

during the reconstruction process [35]. They concluded that using the LR deconvolu-

tion algorithm led to an improvement in image enhancement. However, they did not

consider the optimum deconvolution parameters. Moreover, no quantitative results

were emphasized in terms of measured volume.

Teo et al. used an iterative deconvolution technique based on Van Cittert’s met-

hod. This method was conducted on the reconstructed images obtained from phantom,

simulated, and clinical data [36]. A Gaussian function with the Full Width at Half Max-

imum (FWHM) of 6.5 mm was used for the PVC method. The efficiency of the method

was measured using recovery coefficients. They determined the stopping iteration value

of 4 using simulated data only without considering noise and background effects. In

addition, they implemented a known PSF size (Gaussian function) with FWHM of 6.5

mm for the recovery process.

Tohka et al. used two types of PVC method (deconvolution-based and MRI-

based PVC) on simulated data [37]. The data consisted of 16 simulated dynamic
11C-Raclopride PET brain images. The performance of each correction method was

compared in terms of bias and variance of the Binding Potential, Root Mean Square

Error (RMSE) of the time-activity curves, Contrast Recovery Coefficient (CRC), and

Coefficient of Variation (CoV). They found that the Reblurred Van Cittert deconvolu-

tion algorithm performed a better performance compared to others.

Kirov et al. used a post-reconstruction PVC method (3D MLEM algorithm)

based on iterative deconvolution for phantom, simulated, and clinical data [38]. The

performance of the correction method was examined using activity profiles and the

mean CRC. Their method improved the quantification accuracy without increasing

noise in the background. However, the method was not tested for large lesions with

heterogeneous activity distributions.
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Barbee et al. implemented the post-reconstruction based iterative PVC method

on phantom and clinical data using expectation maximization algorithm with spatially

variant and invariant PSF [39]. The performance of the correction method was tested

using the RC method. They found that the spatially varying PVC method improved

RCs. They used a known PSF in the correction method using a point source at various

radial distances from the center of the scanner’s Field of View (FOV).

Hoetjes et al. implemented reconstruction-based, image-based (Richardson-

Lucy deconvolution and Van Cittert deconvolution), and mask-based PVC methods

on phantom and simulated data [40]. The performance of the correction methods was

examined using the RC and the SUV. All methods recovered true activity within 20%

for phantom and simulated lesion volumes equal to and larger than 1 cc. The SUV

improvement varied from 5% to 80% depending on the lesion volumes. The isotro-

pic Gaussian PSF was used in the reconstruction process for the reconstruction-based

method. This correction method indicated better performance compared to others.

Hatt et al. used iterative deconvolution (Richardson-Lucy) algorithms with

wavelet denoising (Bayesshrink filter) on PET images [41]. The performance of the

correction method was tested using SUV values (SUVmax, SUVmean, and SUVpeak),

Metabolically Active Tumor Volume (MATV), and Total Lesion Glycolysis (TLG).

The MATV was measured using the FLAB method before and after the correction

process. They reported that the PVC method increased all types of SUV values, but

these differences are not statistically significant. Slight decreases were observed for the

MATV and the TLG after the PVC method, but this alteration is not significant. In

addition, they implemented the correction on large clinical lesions (40±30 cc) only.

In another study, Merlin et al. investigated the effect of the LR deconvolution

algorithm using various denoising filters [42]. At first, LR deconvolutions with Bay-

esShrink and BlockShrink methods were conducted on reconstructed phantom images.

In the second step, the LR method with and without denoising was implemented before

and after reconstruction using a measured PSF. Performance of the correction methods

was measured with the Contrast Recovery (CR) and the Relative Standard Deviation
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(RSD). Four small spheres of the reconstructed phantom data with SBR of 8:1 were

deconvolved by using LR algorithm with and without denoising at 1, 3, 6, and 9 itera-

tions. CR and RSD values showed that integrated LR method into the reconstruction

with a known PSF performed better performance compared to others.

These studies have shown that iterative PVC methods with a known or measu-

red PSF function improve resolution and contrast at the expense of increasing noise.

However, these improvements were examined for specific types of lesions using only

RC, activity profiles and/or SUV values. In the next section, the blind deconvolution

method which uses an unknown object and a PSF function will be investigated for the

restoration of PET images.

2.3 Image Restoration with Blind Deconvolution

A digital image is described mathematically as a combination of the real image,

the PSF, and the noise. In other words, it is composed of the noise, and the convolution

of the real image by the system’s PSF as shown in Eq. 2.5, where g(x, y, z), f(x, y, z),

H(x, y, z), and n(x, y, z) indicate respectively the blurred 3-D image, the real image,

the PSF of the system, and the additive noise.

g(x, y, z) = f(x, y, z) ∗H(x, y, z) + n(x, y, z) (2.5)

Image deconvolution is a restoration technique that recovers the real image from the

blurred image with or without known information about the real image, the blur-

ring factor of the imaging system, and the noise. Figure 2.3 displays a general image

restoration procedure. Various techniques have been developed in order to restore un-

distorted images, such as no-neighbors methods, neighboring methods, linear methods,

nonlinear methods, statistical methods, and blind deconvolution methods [43]. The

iterative blind deconvolution method has extensive usage because of its computational

simplicity and its robustness in the reduction of noise [44,45].
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Figure 2.3 Schematic illustration of a general image restoration process.

Although the blind deconvolution has been widely used in microscopic and as-

tronomical images, there has been limited use on medical images. In addition, few

studies have examined the effect of the blind deconvolution method on segmentation

accuracy of the PET lesions [46]. In their study, Guvenis et al. investigated the ef-

fects of the restoration on lesion delineation using four interactive methods and manual

delineation. The present thesis includes 3D local deconvolution, resampling and is a

continuation of an earlier work by the authors [46].

In another study, Li et al. applied integrated total variation semi-blind de-

convolution and Mumford-Shah segmentation with multiple regularization methods on

phantom and clinical data [47]. The proposed method was compared with various

PET segmentation methods. Better performance was obtained for different sphere

sizes and SBRs using phantom data. Similarly, better results were obtained for the

non-Hodgkin’s lymphoma and esophageal cancer lesions. Although their method per-

formed better, high computational costs may be induced if there are more optimal

solutions than one.

In another study, Koc et al. conducted image restoration in 3D lesions to com-

pensate for blurring effects resulting from the PVE and used thresholding for tumor

delineation on a limited phantom dataset [48]. Their results showed that the local

blind deconvolution, together with resampling, improved the segmentation accuracy of

small lesions. The computation time was also significantly reduced.
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There remains a need for an additional study to find the most appropriate PET

image segmentation method that can maximize segmentation accuracy for various le-

sion characteristics at a lower computational cost together with the best deconvolution

parameters. To fill this gap, this thesis develops an alternative approach by combining

post-reconstruction local deconvolution and resampling methods. Five segmentation

techniques, Adaptive Thresholding (AT), Maximum Entropy Thresholding (MET), Re-

gion Growing (RG), Active Contour with Classification (ACWC), and Fuzzy C-Means

Clustering (FCM) were used to quantify the lesion volumes of the phantom, simulated,

and clinical PET images before and after the restoration.

The Region-of-Interest (ROI) and post-reconstruction approach to deconvolu-

tion may have several potential advantages over the deconvolution of the entire 3D

image: First, the PSF is considered fixed only for a small region. Second, computatio-

nal time may be reduced considerably due to a small volume deconvolution since only

an ROI around the tumor can be considered in post-reconstruction. Third, deconvo-

lution is carried out for any residual PVE that might remain after reconstruction for

a particular tumor region. PSF estimation errors during reconstruction may also be

avoided. Furthermore, it is expected that the best iteration number may be estima-

ted using the highest Contrast to Noise Ratio (CNR). Therefore, by using both CNR

and ROI based deconvolution, it is expected to significantly increase delineation accu-

racy while reducing computational time and implementation complexity. This may,

therefore, lead to practical value in busy PET clinics.
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3. MATERIAL AND METHODS

3.1 Data

In order to quantify the volume of the tumors, we drew upon three different

datasets: the physical phantom, the simulated whole body 18F-FDG PET oncology

images, and the clinical patient data.

3.1.1 Dataset 1: The Phantom Data

To evaluate volume accuracy, a National Electrical Manufacturers Association

image quality phantom (NEMA NU-2 IQ), containing six spheres with diameters of 10

mm, 13 mm, 17 mm, 22 mm, 28 mm, and 37 mm, was scanned by a GE Discovery

STE-16 PET/CT scanner (16-row MDCT). Spheres and phantom were filled with Ge-

68 concentration at fixed SBR of 4:1 with the initial background activity level set to

be equivalent to 15 mCi in a 70 Kg patient. The activity level of the background

and hot spheres were measured as 0.44 µCi/ml and 1.75 µCi/ml respectively. The

phantom images were obtained using a 3D mode in a 5-minute acquisition with the

reconstruction method, i.e., the 3D ordered subset expectation maximization (3D-

OSEM) method with 28 subsets, 8 iterations, and 7 mm smoothing filter. The matrix

size was 128x128x47 voxels for each image and the voxel size was 2.73x2.73x3.27 mm3.

The CT data of the phantom consisted of 63 slices with 512x512 pixels. Each voxel had

a size of 0.68x0.68x2.5 mm3. Detailed descriptions of the phantom images are available

in the study of Clark et al. [49] and the reference [50].

Table 3.1 provides ground truth volumes (the nominal sphere volumes, the active

epoxy volumes in spheres, and the manually segmented CT volumes) for spherical le-

sions of the phantom. These volumes are used as reference volumes to compare the

efficiency of segmentation methods before and after the restoration process. Active
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epoxy volumes and manually segmented CT volumes were used for volume measure-

ment and overlap measurement, respectively. The central slices of the PET, CT, and

manually segmented lesions are presented in Figure 3.1.

10 mm

(a) (b) (c)

13 mm

17 mm

22 mm 28 mm

37 mm

Figure 3.1 The central slices of the PET (a), CT (b), and manually segmented lesions (c). Note that
volume measurement error of each segmentation technique is calculated before and after restoration
with respect to reference volumes obtained from active epoxy volume values and manually segmented
CT volumes.

Table 3.1
Ground truth sphere volumes of the phantom data.

Sphere Nominal Active epoxy Manually Segmented

sizes (mm) volumes (mL) volumes (mL) CT volumes (mL)

37 26.52 26.34 25.28

28 11.49 11.23 11.47

22 5.58 5.43 5.38

17 2.57 2.39 2.54

13 1.15 1.10 1.22

10 0.52 0.49 0.48

3.1.2 Dataset 2: The Realistic Simulated Whole Body 18F-FDG PET On-

cology Images

Another source of data was the realistic 3-D whole body 18F-FDG PET oncology

images obtained from the OncoPET DB database [51, 52]. To begin with, a patient

was modeled based on the Zubal phantom with activity concentrations in the interested

organs acquired from a series of 70 clinical cases. Then, tumors were modeled as 3D

spherical lesions of the real lymphoma patients. Finally, the realistic PET images were

generated using the PET-SORTEO Monte Carlo simulation platform that was valida-

ted for the geometry of the ECAT EXACT HR+ scanner. Images were reconstructed
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with the Attenuation-Weighted (AW)-OSEM algorithm using six iterations and 16 sub-

sets; and are subsequently post-filtered with a Gaussian isotropic smoothing function

of 8 mm. Each image had a voxel size of 5.0625x5.0625x2.425 mm3 and a matrix size of

128x128x375 voxels. Lesions with diameters of 10.5 mm and 14 mm at two SBRs of 4:1

and 10:1 are illustrated in Figure 3.2. The performance of the segmentation algorithms

after deconvolution was also evaluated using this dataset (worst-case scenario).

14 mm, SBR: 10 14 mm, SBR: 4
10.5 mm, SBR: 10

10.5 mm, SBR: 4

(a) (b) (c) (d)

Figure 3.2 The coronal slices of 3-D whole-body 18F-FDG PET images with the lesion size of 14
mm at SBR of 10:1 (a), the lesion size of 14 mm at SBR of 4:1 (b), the lesion size of 10.5 mm at SBR
of 10:1 (c), and the lesion size of 10.5 mm at SBR of 4:1 (obtained from the reference [48]).

3.1.3 Dataset 3: Clinically Relevant Large Tumors with Irregular Shapes

and Non-uniform Activity Distributions

The last source of PET/CT data was obtained from six patients of an oncology

database [53]. This database was generated using the GATE Monte Carlo simula-

tion platform based on the Philips PET/CT Allegro/Gemini scanner. NURBS based

cardiac-torso (NCAT), and Zubal phantoms were used to create two realistic lung

tumors, one lymphoma, three brain tumors inside relevant organs. Each data was

acquired within two minutes of acquisition time per bed position, and resultant sino-

gram data were reconstructed using the STIR software with two iterations. The matrix

size was 128x128x57 voxels with a voxel size of 4x4x3.15 mm3. In addition, a Gaussian

smoothing filter of 5 mm was implemented on images after the reconstruction step. All

the simulated tumors had arbitrary shapes with heterogeneous activity distributions

and thereby resembled clinical images. The tumor volumes of the six patients ranged
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from 40.38 mL to 203.84 mL as shown in Table 3.2. The visual illustration of the six

tumors and their ground truth masks are demonstrated in Figure 3.3.

Patient 1 Patient 2 Patient 3

Patient 4 Patient 5 Patient 6

Figure 3.3 The visual illustration of the central slices in tumors and ground truth masks obtained
from the Dataset 3.

Table 3.2
Ground truth volumes of the Dataset 3.

Anthropomorphic models Tumor Regions Tumor volumes (mL)

Patient 1 NCAT Lung 40.38

Patient 2 NCAT Lung 203.84

Patient 3 Zubal Lymphoma 65.6

Patient 4 Zubal Brain 196.35

Patient 5 Zubal Brain 53.89

Patient 6 Zubal Brain 57.15

3.2 The Local Extraction Method: Cropping

The spatial resolution of the PET imaging system is the highest at the center

of the scanner’s FOV and deteriorates towards the edge of the FOV, i.e., the PSF

spatially varies from center to the edge of the FOV [54]. Therefore, the tumor regions

have been locally extracted to compensate for the spatially varying PSF. Table 3.3

presents the information of the extracted tumor regions.
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Table 3.3
Physical properties of the locally extracted regions.

Lesions
Extracted

Regions (Voxels)

Voxel Sizes

(mm3)
D

at
as

et
1

37 mm

25x25x25 2.73x2.73x3.27

28 mm

22 mm

17 mm

13 mm

10 mm

D
at

as
et

2 14 mm, SBR: 10

15x15x25 5.06x5.06x2.43
14 mm, SBR: 4

10 mm, SBR: 10

10 mm, SBR: 4

D
at

as
et

3

patient 1 19x16x15

4x4x4

patient 2 32x26x34

patient 3 24x28x26

patient 4 27x23x20

patient 5 35x27x18

patient 6 17x16x25

3.3 Resampling

In general, nuclear medicine images have a larger voxel volume than CT and

MRI images. The real shape of a PET lesion and its activity distributions may be

accurately recovered by matching resampled PET image voxels with its ground truth

segmentation map of high-resolution anatomical images. In addition, it may be possible

to avoid errors originating from the segmentation of non-cubic voxels in original images.

Furthermore, the resampling process enables us to use various initial PSF kernels in

the deconvolution process depending on varying spatial distortions. Therefore, a res-

ampling step was added in order to obtain a finer version before deconvolution [55,56].

This step also served to obtain cubical voxels using the trilinear interpolation method

with the freely available MIPAV software [57,58].
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3.4 Blind Deconvolution

As shown in Figure 2.3, blind deconvolution is an image restoration technique

that aims to recover the real image (f) from a noisy blurred image (g) when the blur-

ring function (H) and the real image (f) are unknown. This restoration method was

performed using the following MATLAB deconvblind function:

[J, PSF ] = DECONV BLIND(I, INITPSF,NUMIT ), (3.1)

where J is the estimate of the real image (f), PSF is the final estimate of the blurring

function (H), I is the blurred image (g), INITPSF is the initial estimate of the blurring

function (H) of the system which is a 3-D array with the same class as the input

image (I) containing values of 1, and NUMIT is the number of iterations needed [59].

The function restores the image (I) using the Accelerated Damped Lucy-Richardson

Algorithm and iteratively estimates both the deblurred image J, i.e., the real image

(f), and the PSF, i.e., the blurring function (H) [45,60].

The output of the restoration process depends on the initial PSF size and the

number of iterations. Each iteration includes two cycles, and each cycle includes a

single Lucy Richardson step as shown in Figure 3.4.

Figure 3.4 General iterative blind deconvolution method based on the Lucy-Richardson Algorithm.

In the first cycle, at kth iteration, a new PSF (Hk
i+1) is estimated from Eq.
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3.2 using a restored object (fk−1) and PSF (Hk
i ) obtained from k-1 blind iteration

and previous R-L iteration (i), respectively. In the second cycle of the same blind

iteration (k), the true object (fk
i+1) is estimated from Eq. 3.3 using the PSF (Hk)

and the restored image (fk
i ) obtained from the output of the first cycle and previous

R-L iteration (i), respectively. As a result, the loop is repeated to find best estimation

of the true image (J), and the system blurring function (PSF) for a given iteration

number (NUMIT).

Hk
i+1(x, y, z) =

[(
g(x,y,z)

Hk
i (x,y,z)∗fk−1(x,y,z)

)
∗ fk−1(−x,−y,−z)

]
Hk

i (x, y, z). (3.2)

fk
i+1(x, y, z) =

[(
g(x,y,z)

fk
i (x,y,z)∗Hk(x,y,z)

)
∗Hk(−x,−y,−z)

]
fk

i (x, y, z). (3.3)

Too many iterations may produce more ringing artifacts than less iterations

and cause visually worse deblurred images. Therefore, the edgetaper function is used

to reduce ringing artifacts before calling the deconvblind function. In the function,

only two parameters (the initial PSF size (INITPSF) and the number of iteration

(NUMIT )) were used to carry out the restoration process. Default values are used

for all other parameters (DAMPAR, WEIGHT, and READOUT ). The restored image

is strongly affected by the size of the initial PSF and the number of iteration. The

optimum initial PSF size and the iteration value used are explained in the following

subsection.

3.4.1 Determination of the Initial PSF Size and the Iteration Value

In the PET Imaging system, the spatial resolution of the reconstructed images

varies between FWHMs of 5 mm and 8 mm. If this spatial distortion function is

assumed to be iso-gaussian, its FWHM equals to 2.35 times of σ, and about 99.7%

of the PSF data falls into the tail size of 6σ on image grid domain. Therefore, the

initial PSF sizes used in the restoration process were calculated using Eq. 3.4 for each

FWHM of 5, 6, 7, and 8 mm. As a result, initial PSF sizes of 13, 15, 17, and 21 mm in

3 dimensions were obtained to subsequently be used in the deconvolution process for
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each calculated amount of distortions of 12.8, 15.3, 17.9 and 20.4 mm, respectively.

Initial PSF Size(x, y, z) = 6 · FWHM(x, y, z)
2.35 (3.4)

Once the initial PSF kernels were calculated, the restoration process was per-

formed for a fixed iteration value of 1, and the best PSF kernel of each image was

determined with respect to the highest CNR value. Then, the best number of iterati-

ons was found between varying iteration values (1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 40, and

50) to arrive at the highest CNR value. The original and restored phantom lesions of

17 mm in size and their 3-D surface plots of the central slices are illustrated in Figure

3.5.

Before Deconvolution After Deconvolution

(a) (b)

Best Initial PSF Size
(13x13x13)

Restoration
Process

Best Iteration Value
(4)

The Spherical Phantom Lesion (Size: 17 mm and SBR: 4:1)

Figure 3.5 The central slice of the phantom lesion with size of 17 mm at SBR of 4:1 and its 3D
surface plot before deconvolution (a), and after deconvolution (b).

3.5 Quantitative Evaluation Criterion for the Best PSF Size

and Iteration Value

The best restoration can be achieved using optimum initial PSF sizes and ite-

ration values. Determination of the PSF size and stopping iteration value may be

problematic without the true image of the object. Therefore, CNR has been incorpo-

rated in our study to evaluate appropriate deconvolution parameters [60,61].
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As shown in Eq. 3.5, contrast component of each image was calculated by

measuring the difference of the mean activity within the lesion volume of interest

(VOI) (Lmean) and the background VOI (Bmean). The noise component (STDB) was

defined as the standard deviation of the activity within the background VOI.

CNR = Lmean −Bmean

STDB

(3.5)

The lesion VOI and the background VOI were formed automatically using the

level-set algorithm of the MIPAV software [58, 62]. While the lesion VOI was set to

completely cover the lesion, the background VOI covered background regions around

the lesion as shown in Figure 3.6.

Selection of 
Lesion VOI

Masking of 
Lesion VOI

Lesion VOI Background VOI

(a) (b)

Figure 3.6 The lesion VOI was selected on the central slice of the phantom lesion with size of 17
mm at SBR of 4:1 (a), and a 3-D lesion VOI and a 3-D background VOI were formed to evaluate
convergence rate of the deconvolution processes (b).

As previously stated, the performance of the deconvolution process highly de-

pends on two parameters (the initial PSF size and the iteration value). Best parameter

values were determined by comparing the experimental results of the CNR obtained

from the original and restored images. The following steps summarize how the best

deconvolution parameters were determined experimentally by using CNR method for

each lesion.

• First, the lesion VOI which covers the entire lesion was generated automatically

using the level-set contouring method of the MIPAV software on the central slice

of the original resampled image.
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• Second, the minimum pixel intensity of this lesion VOI was determined and

then used as a threshold level for further 3-D segmentation of the lesion and

background regions.

• After the segmentation process, 3-D lesion and background masks were con-

structed and used as support regions to evaluate CNR values of the original and

restored images for varying parameters, i.e., these maps are frozen and used as

the fixed support regions to evaluate the amount of enhancement on the restored

images for each PSF kernel and iteration value.

• Then, the best PSF kernel was first determined in terms of the highest CNR

value for a fixed iteration value of one as shown in Table 3.4.

• Finally, the best iteration number was found using the highest CNR value for

fixed support regions as presented in Table 3.6. The CNR value increased up to

the highest level with increasing iteration and then started to decrease after a

certain level. For each lesion, the point where the reduction began was recorded

as the best threshold for the iteration.

Table 3.5 summarizes the parameters measured and the experimental results

of the CNR obtained from the original and restored images. These results indicate

that for all datasets, CNR increases after deconvolution. Higher CNR is known to be a

factor in segmentation accuracy [63]. In the next section, the effect of the deconvolution

on segmentation accuracy was investigated using various PET segmentation methods.
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Table 3.4
CNR values of the original and restored images at fix iteration value of 1.

Original and Deconvolved Images

Lesions
Original

image

PSF

(13x13x13)

PSF

(15x15x15)

PSF

(17x17x17)

PSF

(21x21x21)

D
at

as
et

1

37 mm 13.55 20.99 21.25 21.40 21.44

28 mm 12.68 22.55 22.73 22.75 22.39

22 mm 11.54 24.38 24.52 24.43 23.62

17 mm 10.01 21.76 21.68 21.34 20.26

13 mm 8.09 18.65 18.30 17.83 16.88

10 mm 4.99 11.05 10.64 10.24 9.65

D
at

as
et

2 14 mm, SBR: 10 8.53 13.07 13.21 13.21 12.88

14 mm, SBR: 4 5.29 8.29 8.31 8.27 8.05

10 mm, SBR: 10 4.28 7.64 7.76 7.76 7.49

10 mm, SBR: 4 4.52 7.59 7.59 7.51 7.25

D
at

as
et

3

patient 1 5.30 7.73 7.76 7.81 7.93

patient 2 7.74 9.33 9.37 9.40 9.45

patient 3 5.43 6.87 6.92 6.97 7.05

patient 4 9.41 12.21 12.50 12.78 13.28

patient 5 7.82 9.70 9.87 10.04 10.33

patient 6 6.41 8.39 8.51 8.61 8.75

Table 3.5
Best parameter and CNR values for various lesions.

CNR

Lesions
PSF Size

(voxels)

Iteration

Number
Original Restored

D
at

as
et

1

37 mm 21x21x21 2 13.55 22.04

28 mm 17x17x17 3 12.68 25.12

22 mm 15x15x15 3 11.54 26.83

17 mm 13x13x13 4 11.01 24.52

13 mm 13x13x13 7 8.09 23.35

10 mm 13x13x13 10 4.99 15.27

D
at

as
et

2 14 mm, SBR: 10 17x17x17 15 8.53 21.92

14 mm, SBR: 4 15x15x15 15 5.29 11.74

10 mm, SBR: 10 17x17x17 15 4.28 15.27

10 mm, SBR: 4 15x15x15 20 4.52 13.03

D
at

as
et

3

patient 1 21x21x21 1 5.30 7.93

patient 2 21x21x21 2 7.74 9.51

patient 3 21x21x21 3 5.43 7.18

patient 4 21x21x21 2 9.41 13.95

patient 5 21x21x21 3 7.82 10.91

patient 6 21x21x21 3 6.41 9.44
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Table 3.6
CNR values of the original and restored images at various iteration values for given best PSF kernels.

Original and Deconvolved Images

Lesions
Original

image
1 it. 2 it. 3 it. 4 it. 5 it. 7 it. 10 it. 15 it. 20 it. 30 it. 40 it. 50 it.

D
at

as
et

1

37 mm 13.55 21.44 22.04 21.35 20.18 19.03 17.25 14.31 10.18 8.01 5.59 4.21 3.57

28 mm 12.68 22.75 24.35 25.12 24.90 24.23 22.42 19.46 15.01 12.33 9.98 7.80 5.91

22 mm 11.54 24.52 26.02 26.83 26.71 26.09 24.20 21.30 16.86 13.23 9.02 6.86 5.67

17 mm 10.01 21.76 23.05 24.13 24.52 24.43 23.47 21.32 17.69 14.81 11.31 9.11 7.69

13 mm 8.09 18.65 19.87 21.19 22.14 22.77 23.35 22.93 20.56 17.76 13.51 10.95 9.31

10 mm 4.99 11.05 11.85 12.79 13.57 14.19 14.98 15.27 14.49 13.24 10.96 9.53 8.55

D
at

as
et

2 14 mm, SBR: 10 8.53 13.21 14.45 15.91 17.17 18.28 19.98 21.45 21.92 21.12 18.45 17.13 16.54

14 mm, SBR: 4 5.29 8.31 8.92 9.55 10.09 10.55 11.22 11.71 11.74 11.38 10.50 9.56 8.49

10 mm, SBR: 10 4.28 7.76 8.79 9.91 10.79 11.56 12.88 14.24 15.27 15.14 13.79 12.87 12.00

10 mm, SBR: 4 4.52 7.59 8.22 8.89 9.47 9.99 10.87 11.83 12.71 13.03 12.75 12.34 12.04

D
at

as
et

3

patient 1 5.30 7.93 7.84 7.62 7.44 7.28 6.92 6.54 6.23 5.92 5.09 4.58 4.27

patient 2 7.74 9.45 9.51 9.48 9.40 9.29 9.07 8.74 8.27 7.86 7.18 6.69 6.32

patient 3 5.43 7.05 7.17 7.18 7.13 7.06 6.92 6.69 6.31 5.93 5.12 4.56 4.23

patient 4 9.41 13.28 13.95 13.88 13.28 12.55 7.13 6.01 4.66 3.82 7.79 8.23 0.00

patient 5 7.82 10.33 10.78 10.91 10.81 10.60 10.10 9.39 8.46 7.74 6.95 6.32 5.82

patient 6 6.41 8.75 9.21 9.44 9.42 9.26 8.74 7.72 6.46 5.77 4.96 4.34 3.86
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3.6 Segmentation Methods

In section 2.1, a brief overview of the relevant literature on PET image seg-

mentation techniques was reviewed and explained. As was mentioned in section 2.1,

PET image segmentation methods have been classified as manual, thresholding-based,

stochastic and learning-based, region-based, boundary-based, and joint segmentation

methods. Different segmentation algorithms representing these classes have been se-

lected for measurement of all original and restored volumes. The AT and the MET

were used to represent a group of thresholding-based segmentation method, the RG

was implemented to represent a group of region-based segmentation method, and the

ACWC and the FCM method were used to represent a group of stochastic and lear-

ning based segmentation method. The AT, the MET, the RG, and the FCM clustering

method were applied using the MIPAV software [62]. The ACWC method is based on

the operation principle of Random Forests algorithm provided in the ITK-SNAP soft-

ware [64, 65].The following subsections explain these segmentation methods and their

implementation procedures in detail.

3.6.1 Adaptive Thresholding Method

The literature cites three types of threshold selection methods: fixed, adaptive,

and iterative thresholding method. The SUV value of 2.5 and the 40 - 50% of the

SUVmax value are the most widely used thresholding values within the fixed threshol-

ding method. However, there is no consensus among researchers on using a particular

thresholding method. Therefore, several groups of researchers have attempted to find

the optimum threshold value in adaptive and iterative ways.

We implemented the AT method on original and restored images using Eq. 3.6.

A threshold level for each lesion was found by calculating 42% of the difference of mean

voxel intensities of lesion and background regions,

Threshold = (Lmean −Bmean) ∗ 42% +Bmean, (3.6)
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where Lmean is the mean intensity of the lesion VOI, and Bmean is the mean intensity of

the background VOI. If the threshold percentage cannot be adjusted for foreground and

background regions, it may be inappropriate in particular for small lesions. Therefore,

in an attempt to determine small target volume (< 20 mm) 42% of the mean intensity

difference was substituted by 50%. The calculated threshold values for segmentation

of the lesions are displayed in Table 3.7.

Table 3.7
Threshold intensity values for adaptive segmentation algorithm.

Threshold Values

Lesions Original images Restored images

D
at

as
et

1

37 mm 23017 24689

28 mm 21658 23732

22 mm 20068 22277

17 mm 20079 23691

13 mm 19820 25570

10 mm 17534 23713

D
at

as
et

2 14 mm, SBR: 10 4058 8397

14 mm, SBR: 4 12658 17756

10 mm, SBR: 10 4143 9666

10 mm, SBR: 4 12633 20755

D
at

as
et

3

patient 1 0.155 0.164

patient 2 0.445 0.471

patient 3 0.087 0.099

patient 4 0.135 0.140

patient 5 0.078 0.092

patient 6 0.160 0.177

3.6.2 Maximum Entropy Thresholding

The MET depends on the entropy of the histogram. It maximizes the entropy

between the lesion (white pixels) and the background (black pixels). An image is

divided into two classes (lesion and background) using the calculated threshold level.

If an image consists of N pixels, i=1,2,.....,N, with gray levels (gi), then the entropy of
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each region is calculated separately with normalized histogram using Eq. 3.7.

H = −
N∑

i=1

gi

N∑
i=1

gi

log
gi

N∑
i=1

gi

(3.7)

Finally, the optimum threshold level is determined by maximizing the entropy of these

two classes [66]. For all original and restored images, automatic threshold selection

and segmentation processes were performed using the MIPAV software.

3.6.3 Region Growing Method

Region growing is a simple and flexible method based on the evaluation of the

gray level of pixels or other characteristic properties of the local structures. The algo-

rithm starts with a manually placed starting seed point, and segments pixels regarding

homogeneity conditions of neighborhood pixels, i.e., it basically depends on the homo-

geneity and the seed point. The segmented region must have greater homogeneity than

its boundaries in order to be segmented successfully. If more than one lesion will be

segmented in an image, several seed points have to be placed in interested regions.

In this part, MIPAV software was used to segment the lesions in original and

restored images. To perform the segmentation process automatically, two operations

were performed. First, a seed point was defined on the image before segmentation.

Then, the growing criterion from this seed point to edges of the image was determined.

The center of mass value (seed point) of each lesion was calculated using the minimum

threshold intensity values obtained from Table 3.7. All seed points acquired from the

center of mass calculation are illustrated in Table 3.8.

Limiting the growing regions from these seed points is crucial for accurate seg-

mentation of the lesion VOI. Generally, it has been achieved manually by setting upper

and lower limits of the pixel intensities. Using a narrow range of intensity levels may

cause underestimated lesion volume. Conversely, high-intensity intervals may cause

overestimated lesion VOI. Therefore, varying delta values which changed according to
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Table 3.8
Measured seed point locations in pixels and intensities for original and restored images.

Original Images Restored Images

Lesions Seed Locations Intensity Seed Locations Intensity

D
at

as
et

1

37 mm 11x12x11 55881 32x34x38 77716

28 mm 12x10x11 50013 33x27x38 85213

22 mm 12x11x11 46374 33x30x38 81220

17 mm 11x12x12 40123 32x34x39 71890

13 mm 12x11x12 36378 32x32x39 67995

10 mm outside the lesion 13081 32x40x38 45677

D
at

as
et

2 14 mm, SBR: 10 7x5x11 5703 40x29x28 28898

14 mm, SBR: 4 7x6x11 18427 37x33x28 41409

10 mm, SBR: 10 outside the lesion 4708 36x32x29 25834

10 mm, SBR: 4 7x6x11 16201 37x36x27 46229

D
at

as
et

3

patient 1 9x7x6 0.415 38x29x26 0.542

patient 2 14x13x20 1.176 59x53x83 1.280

patient 3 14x16x15 0.203 56x63x58 0.236

patient 4 12x10x9 0.392 49x40x39 0.340

patient 5 20x12x10 0.267 81x50x40 0.397

patient 6 7x6x13 0.506 29x24x52 0.720

the growing region were drawn upon using the software feature. Figure 3.7 presents

visual illustrations of the seed points’ locations and segmented regions of the lesion size

of 17 mm for original and restored images.

(a) (b)

int: 40123
loc: 11x12x12

int: 71890
loc: 32x34x39

Figure 3.7 Seed point selection and 3-D region growing segmentation of the spherical phantom lesion
with size of 17 mm at SBR of 4:1 for original image (a), and restored image (b).
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3.6.4 Active Contour with Classification Method

Active contour with classification method is a semi-automatic segmentation

technique which consists of two stages: the pre-segmentation phase and active con-

tour phase. The first phase addresses the supervised learning method (classification

process) in which the speed image has been generated from the given input image

before active contour segmentation. In the second phase, 3-D segmentation of the le-

sion has been accomplished using the active contour method. These two methods and

segmentation procedures are explained in the following two paragraphs.

In the classification process, lesion and normal tissues were defined manually

with a closed contour on the given image for mapping unknown regions as shown in

Figure 3.8 (b). Afterward, Random Forests classification method was implemented for

defined regions to produce speed image with intensities in a range [-1,1] as illustrated

in Figure 3.8 (c) and (d). The white color region represents lesion voxels, and the blue

color region represents background voxels, i.e., voxels of healthy tissues in the speed

image. After completing this pre-segmentation phase, the 3-D segmentation process is

completed with the evolution of the placed contour in the lesion VoI.

The second step of the segmentation process starts with initialization, i.e., the

3-D contour is placed on the lesion VoI in the speed image and proceed to initialize

evolving contour as displayed in Figure 3.8 (d). The initial contour moves in an image

under the influence of the internal and external forces according to the Caselles et al.

formulation as shown in Eq. 3.8

F = αgI − βκgI − γ(∇gI
~N), (3.8)

where the first term, αgI , is the outward direction force; κ is the mean curvature of the

contour; gI is the speed function; α, β, and γ are weights; ~N is the unit vector normal

to the contour; and the last term, γ(∇gI
~N), is the inward direction force [67].

Evolution of the initialized contour was iteratively executed and controlled by
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setting up parameters, α = 1, β = 0.2, and γ = 0, as illustrated in Figure 3.8 (e)

and (f). After completing the contour evolution step, the 3-D volume of the lesion was

measured. These two methods and segmentation maps have been carried out using the

ITK-SNAP software with Random Forests algorithm [65,68].

17 mm lesion

(a)

Closed contours
of the regions

BackgroundLesion

(b)

Speed image

Supervised
classification

(c)

Contour initialization

(d)

Contour evolution

(e)

Active contour
segmentation

(f)

3-D segmented
volume

(g)

Figure 3.8 Active contour segmentation with classification method of the spherical phantom lesion
with size of 17 mm at SBR of 4:1 for the restored image.

3.6.5 Fuzzy C-Means Segmentation Method

The Fuzzy C-Means segmentation is an unsupervised method which uses only

input sample without training data. This method identifies the centroid of each cluster

iteratively by minimizing the weighted distance between the observed data and its
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cluster center as shown in Eq. 3.9,

J =
∑
k∈Ω

c∑
i=1

µq
ik ‖xk − vi‖2 , (3.9)

where µq
ik is a membership value at pixel location k for class i, q is the weighting factor

that controls the influence of the membership values on the result, xk is the observed

intensity at location k, vi is the center of the cluster i, c is the number of the clusters,

and ‖xk − vi‖2 is a distance measure between the object xk and the centroid vi [62,69].

The FCM segmentation consists of four steps. The first step of the segmentation

involves determination of the number of desired classes c, the weighting factor q, the

limiting value ∈, and the initial assignment of the membership function µq
ik. When the

smaller q is chosen, it causes the membership value to be less effective in classification

and leads to sharper segmentation results. In practice, the value of 2 is usually chosen

for q. In our study, input images were locally extracted from whole images and included

only lesion and background regions. Therefore, both the number of classes and the

desired exponent value were chosen as 2. The limiting value is the end tolerance level

which indicates when convergence is reached. The default value of 0.01 was selected

for segmentation of all datasets.

In the second step, the algorithm calculates the centroid of the clusters, vi, using

membership values as shown in Eq. 3.10 for the single channel case.

vi =

∑
k∈Ω

µq
ikxk∑

k∈Ω
µq

ik

(3.10)

The third step involves updating the membership function (µq
ik) according to

the rule for all objects that do not match a cluster center (xk 6= vi):

µik = ‖xk − vi‖−
2

q−1

c∑
j=1
‖xk − vj‖−

2
q−1

; (3.11)

otherwise, algorithm sets the value of the membership function to 0 if i is not equal to
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j, and 1 if i is equal to j.

In the final step, the difference between two fuzzy partition matrices of the

successive loops was determined to evaluate changes in the assignment of the objects

to the cluster centers. If the difference is below a defined limit value ∈, then the

algorithm stops, otherwise, a new iteration is started. The main weakness of this

algorithm is the huge computational effort. Therefore, when using this algorithm, the

number of objects and the number of features should not be too large.

3.7 Error Evaluation Metrics

Evaluation of the segmentation plays a key role in choosing the right segmen-

tation method and optimum parameters for a particular task. Various figures of merit

have been developed and used by researchers in the literature and they are explained

in section 2.1.5. The volume estimation accuracy and the overlap measurement of the

segmented lesions were analyzed using the volume error percentage (VE%) and the

Jaccard Index (JI), respectively [21, 24]. The VE% calculates the absolute percentage

error of the volumes between segmented and ground truth images as displayed in Eq.

2.2. It takes the value of 0 when the volume of the segmented image is equal to the

volume of the ground truth image.

On the other hand, segmented regions may not coincide with ground truth

regions even if they have equal volumes. In such cases, it is necessary to use Eq. 3.12,

JI = TP

TP + FP + FN
, (3.12)

where TP indicates the ground truth voxels which are correctly classified as segmented

lesion voxels, FP shows background voxels which are incorrectly assigned as segmented

lesion voxels, and FN represents ground truth voxels which incorrectly belong to back-

ground voxels as illustrated in Figure 3.9. The JI value of 1 shows totally overlapped

regions, while the value of 0 indicates completely non-overlapping regions.
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Ground Truth
Volume

Segmented
Volume

FN TP FP

TN

Figure 3.9 Overlap measurement method for segmented and ground truth voxels.

3.8 Structure of the Study

The study consists of two main parts. The first part addresses the segmentation

of the lesion volumes obtained from the first, second, and third datasets. In the second

part, the blind deconvolution method was implemented on resampled images which

were locally extracted from original data, after which the volume of each lesion was

compared with its ground truth. Figure 3.10 summarizes the methodology of our study.

3.9 Statistical Analysis

We used the two-tailed paired sample t-test for evaluation of the effect of the re-

storation on the PET segmentation methods. To examine where the differences occur,

two combinations of related groups were used for each segmentation technique, i.e. seg-

mented original volumes versus ground truth volumes on the one hand, and segmented

restored volumes versus ground truth volumes on the other hand. All analyses were

carried out using SPSS version 23 [70].
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Figure 3.10 The methodology of our study.
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4. RESULTS

4.1 Results of the Phantom Data

Six spheres of phantom data were recovered using the ROI-based blind deconvo-

lution and resampling method. After the restoration process, all original and restored

spherical lesions were segmented using various segmentation methods, and resulting

volumes were compared with real volumes to assess the effect of this restoration on vo-

lume measurements. The degree of conformity (accuracy) and consistency (precision)

between segmented and real volumes of each segmentation method was evaluated for

both original and recovered images. The volume measurement results with respect to

segmentation techniques used are presented in Table 4.1. The top half of the table

shows measured volume values of the phantom lesions for each segmentation method,

and the bottom half of the table shows their volume error percantages (accuracy and

bias) and standard deviations (precision).

The mean volume error percentages reflect how accurately the segmentation is

performed, while standard deviations indicate how precise it is. With the ROI-based

blind deconvolution and resampling, the accuracy was improved in VE% by a factor

of about 28.4 for the ACWC, 16.1 for the RG, 8.6 for the MET, 3.4 for the AT, and

1.5 for the FCM as illustrated in Figure 4.1. In the same way, the precision was

improved in VE% by a factor of about 18.4 for the ACWC, 18.8 for the RG, 2.7 for

the MET, 2.5 for the AT and the FCM segmentation methods as shown in Figure 4.1.

The ACWC achieves a lower mean relative error of 3.37%±SD of 4.49% (minimum:

0.04%, maximum: 11.18%) compared with the result of other segmentation methods

for recovered images.
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Table 4.1
Segmentation results and absolute percentage errors of the Dataset 1 with respect to various segmentation techniques for original and restored cases.

Segmentation Methods

AT MET RG ACWC FCM

Lesions Orig.(cc)1 Dec.(cc)2 Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) G. Truth (cc)3

37 mm 31.52 28.32 36.14 27.16 36.82 26.30 33.91 27.09 24.99 20.70 26.34

28 mm 14.65 12.34 17.95 10.78 19.31 9.71 16.97 11.45 11.22 8.32 11.23

22 mm 8.12 6.66 9.63 5.51 11.71 4.78 8.75 5.39 6.19 4.34 5.43

17 mm 3.47 2.55 4.38 2.26 9.41 2.23 4.84 2.39 3.20 2.19 2.39

13 mm 1.76 1.24 2.49 1.44 - 1.58 3.69 0.98 1.76 1.12 1.1

10 mm -4 0.61 1.10 0.77 - 1.86 0.93 0.69 - 0.73 0.49

Mean±SD 11.90±12.05 10.22±11.00 14.12±13.69 9.43±10.57 19.31±12.41 8.92±10.23 13.63±12.47 9.46±10.65 9.47±9.40 7.33±7.97 9.30±10.30

Lesions Orig.(VE%)5 Dec.(VE%)6 Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%)

37 mm 19.65 7.52 37.19 3.10 39.79 0.16 28.74 2.85 5.14 21.40

28 mm 30.41 9.87 59.80 3.98 71.99 13.52 51.11 1.97 0.07 25.93

22 mm 49.48 22.67 77.40 1.40 115.67 11.92 61.20 0.83 13.90 20.17

17 mm 45.27 6.69 83.11 5.65 293.85 6.74 102.55 0.04 34.02 8.54

13 mm 60.00 12.91 126.71 30.64 - 43.45 235.64 11.18 60.00 1.91

Mean±SD 40.96±15.96 11.93±6.47 76.84±33.13 8.95±12.22 130.33±113.36 8.08±6.02 95.85±82.60 3.37±4.49 22.63±24.58 15.59±9.98

1The segmented volume of the original spherical phantom lesion is denoted by Orig.(cc).
2The segmented volume of the restored spherical lesion is denoted by Dec.(cc).
3The reference, ground truth volumes, of the spherical lesions is denoted by G. Truth (cc).
4The lesion could not be segmented with the specified method.
5Orig.(VE%) denotes the percentage volume error of the original spherical phantom lesion and calculated using Eq. 2.2.
6Dec.(VE%) denotes the percentage volume error of the restored spherical phantom lesion and calculated using Eq. 2.2.
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Figure 4.1 Mean absolute volume errors of the segmentation methods for original and restored
phantom images (Dataset 1).

The mean value of the ground truth volumes is 9.30 cc (ranging from 1.1 cc to

26.34 cc). The smallest lesion (10 mm) was excluded from the study due to the lack

of some segmentation results of the original cases. The correlation analysis between

measured volumes and real volumes for each segmentation method before and after

restoration is shown in Figure 4.2. provides the correlation analysis between measured

volumes and ground truth volumes for five segmentation methods. As seen in this

figure, all segmentation methods used yielded overestimated volumes compared to real

volumes for all sizes of spheres before restoration, especially for small spheres due to

the PVE. After the restoration process, these high-volume differences decreased in all

segmentation methods for spheres less than 22 mm in size. However, only the FCM

increased the volume differences for spheres larger than 20 mm in size.

Table 4.2 presents the range and the mean of the JI values obtained from the

overlap measurement of segmented volumes of original and restored spherical lesions.

For each segmentation technique, two-tailed paired sample t-test is used to analyze the

relationship between two related groups, i.e. segmented original volumes versus ground

truth volumes as well as segmented restored volumes versus ground truth volumes. The

mean JI values of the restored images varied between 0.68 and 0.71 which are higher

than those of the original segmented volumes. The further statistical test reveals

that there are significant differences (p<0.05) between original segmented volumes and
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Figure 4.2 Comparisons of measured lesion volumes with ground truth volumes with respect to five
segmentation methods (Dataset 1). Adaptive Thresholding in (a), Maximum Entropy Thresholding
in (b), Region Growing in (c), Active Contour with Classification in (d), and Fuzzy C-Means Segmen-
tation in (e). The dotted line shows where the measured volume and true volume are equal. These
data belong to six spherical lesions with volumes ranging from 0.49 to 26.34 cc. Note that x and
y-axes are plotted on a logarithmic scale with base 2.
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reference volumes except the FCM. However, no significant differences (p>0.05) are

found between restored segmented volumes and reference volumes for all segmentation

techniques; that is, implementation of the local blind deconvolution on original PET

lesions improves volume measurements and yields similar results with their true values.

Table 4.2
Overlap measurements (JI) in relation to real volumes of the spheres obtained from Dataset 1.

JI in relation to Ground Truth

Seg. Methods Range Mean SD p value

AT (Original) 0.57-0.78 0.65 0.08 <0.05

AT (Restored) 0.62-0.83 0.70 0.08 0.06

MET (Original) 0.42-0.70 0.56 0.10 <0.05

MET (Restored) 0.59-0.84 0.70 0.10 0.57

RG (Original) 0.27-0.69 0.50 0.18 <0.05

RG (Restored) 0.62-0.83 0.71 0.09 0.33

ACWC (Original) 0.50-0.74 0.59 0.10 <0.05

ACWC (Restored) 0.62-0.84 0.71 0.09 0.36

FCM (Original) 0.57-0.85 0.70 0.11 0.69

FCM (Restored) 0.63-0.80 0.68 0.07 0.14

Finally, to assess the effect of the restoration on foreground and background

voxels, activity profiles of the lines passing from the center of the spheres were plotted

on the central slice of the restored and original images as shown in Figure 4.3. There

is a clear trend of increases in voxel intensities of foreground regions for all locally de-

convolved lesions compared with original lesions. Nevertheless, no increase is observed

in background regions.
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Figure 4.3 Intensity profiles of the original and restored phantom lesions at SBR of 4:1 (Dataset 1).
Note that for each lesion, original and recovered images are displayed on the left side and on the right
side, respectively.
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4.2 Results of the Realistic Simulated Whole Body 18F-FDG

PET Oncology Images

The same methodological procedures are applied for simulated PET images as

in phantom images. Volume measurement results of the PET image segmentation

methods used with and without blind deconvolution method are presented in Table

4.3 and Figure 4.4. As seen from this table and figure, three methods (the MET, the

RG, and the FCM) could not segment any lesion on original data. In addition, other

methods (the AT and the ACWC) overestimated lesion volumes compared with ground

truth volumes. However, all lesion volumes could be measured by each segmentation

technique after implementation of the local blind deconvolution method.

The best volume estimation accuracy and precision were observed for the lesion

size of 14 mm at SBR of 10 after deconvolution. The mean volume error percentage

and SD of the five methods is 12.15%±8.27% for this lesion. When the SBR value

decreases, the volume percentage error rates increase for all types of lesions. For

instance, when the SBR value decreases from 10 to 4, the volume percentage error rate

of the ACWC increases from 13.62% to 19.26% for the lesion size of 14 mm, and from

16.75% to 20.17% for the lesion sizes of 10.5 mm. Overall, for all lesion types with blind

deconvolution, the ACWC is the most accurate and precise even in the worst case. The

measured mean volume error percentage and SD of the recovered lesions is 17.45±2.94

(minimum: 13.62%, maximum:20.17%). The cause of this improvement is obvious

from the intensity profiles of the original and restored lesions shown in Figure4.5. Line

intensities of recovered lesion regions have been significantly increased compared with

original images.
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Table 4.3
Segmentation results and absolute percentage errors of the Dataset 2 with respect to various segmentation techniques for original and restored cases.

Segmentation Methods

Lesions AT MET RG ACWC FCM

(mm/SBR) Orig.(cc)7 Dec.(cc)8 Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) G. Truth (cc)9

14/10 4.16 1.54 - 1.83 -10 1.42 3.75 1.32 - 1.82 1.52

14/4 6.09 2.39 - 2.59 - 4.47 9.07 1.23 - 3.36 1.52

10.5/10 3.95 1.02 - 1.27 - 1.34 9.07 0.75 - 1.91 0.64

10.5/4 4.41 1.20 - 2.27 - 2.22 9.07 0.77 - 1.90 0.64

Mean±SD 4.66±0.98 1.54±0.61 - 1.99±0.57 - 2.36±1.46 7.74±2.66 1.02±0.30 - 2.25±0.74 1.08±0.51

Lesions Orig.(VE%)11 Dec.(VE%)12 Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%)

14/10 173.10 0.74 - 20.22 - 7.00 146.02 13.62 - 19.17

14/4 299.49 57.01 - 69.80 - 193.04 495.14 19.26 - 120.00

10.5/10 544.09 58.42 - 97.44 - 107.70 1311 16.75 - 197.25

10.5/4 586.07 85.94 - 252.44 - 245.13 1311 20.17 - 195.38

Mean±SD 401±197 51±36 - 101±100 - 138±104 816±589 17.45±2.94 - 133±84

7Orig.(cc) indicates the segmented volume of the original lesion.
8Dec.(cc) indicates the segmented volume of the restored lesion.
9The reference, ground truth volumes, of the lesions is denoted by G. Truth (cc).

10The lesion could not be segmented with the specified method.
11Orig.(VE%) denotes the percentage volume error of the simulated PET lesion and calculated using Eq. 2.2.
12Dec.(VE%) denotes the percentage volume error of the restored simulated PET lesion and calculated using Eq. 2.2.
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Figure 4.4 Measured lesion volumes using various PET image segmentation methods with and
without blind deconvolution for Dataset 2.
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Figure 4.5 Intensity profiles of the original and restored simulated PET Oncology images (Dataset
2).

4.3 Results of the The Clinically Relevant Large Tumors

The last source of data includes six patient images which have clinically resem-

bled large lesions with arbitrary shapes and heterogeneous activity distributions. The

same restoration steps are implemented on these lesions as in the first two datasets.

The results of the segmentation analysis before and after restoration are presented in

Table 4.4. As seen from this table, for original lesions, each segmentation technique

yields a lower mean volume estimation error (minimum: 7.67%, maximum: 32.61%)

than the result of the other datasets. Minimum mean error rate (7.67%±6.08%) is

calculated with the MET for these original large lesions.
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Table 4.4
Segmentation results and absolute percentage errors of the Dataset 3 with respect to various segmentation techniques for original and restored cases.

Segmentation Methods

AT MET RG ACWC FCM

Lesions Orig.(cc)13 Dec.(cc)14 Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) Orig.(cc) Dec.(cc) G. Truth (cc)15

Patient 1 40.32 34.49 35.65 31.57 46.34 36.22 60.42 39.16 32.51 26.64 40.38

Patient 2 208.51 189.05 200.90 172.52 296.00 276.10 239.10 180.85 167.81 145.50 203.84

Patient 3 84.03 65.70 64.32 44.06 82.82 61.16 97.22 56.20 71.94 49.46 65.60

Patient 4 176.26 158.42 162.82 139.77 229.12 248.80 224.64 186.10 150.59 130.71 196.35

Patient 5 61.12 48.24 51.20 33.41 78.46 50.22 77.06 51.77 48.83 32.69 53.89

Patient 6 64.38 53.27 52.10 35.31 66.37 51.12 70.40 58.89 49.60 35.09 57.15

Lesions Orig.(VE%)16 Dec.(VE%)17 Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%) Orig.(VE%) Dec.(VE%)

Patient 1 0.16 14.61 11.73 21.83 14.74 10.30 49.60 3.02 19.49 34.02

Patient 2 2.29 7.26 1.44 15.37 45.21 35.45 17.30 11.28 17.68 28.62

Patient 3 28.09 0.14 1.95 32.84 26.24 6.76 48.20 14.33 9.66 24.61

Patient 4 10.23 19.32 17.08 28.82 16.69 26.71 14.41 5.22 23.31 33.43

Patient 5 13.42 10.49 4.99 38.00 45.61 6.80 42.99 3.92 9.38 39.34

Patient 6 12.65 6.80 8.85 38.22 16.13 10.56 23.18 3.04 13.21 38.60

Mean±SD 11.14±9.95 9.77±6.68 7.67±6.08 29.18±9.14 27.44±14.51 16.10±12.04 32.61±16.09 6.80±4.81 15.45±5.63 33.10±5.70

13The segmented volume of the original lesion is denoted by Orig.(cc).
14The segmented volume of the restored lesion is denoted by Dec.(cc).
15The reference, ground truth volume, of the lesions is denoted by G. Truth (cc).
16Orig.(VE%) denotes the percentage volume error of the lesion and calculated using Eq. 2.2.
17Dec.(VE%) denotes the percentage volume error of the restored lesion and calculated using Eq. 2.2.
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After the restoration process, the mean volume percentage errors decrease from

11.14% to 9.77% for the AT, from 27.44% to 16.10% for the RG, and from 32.61% to

6.80% for the ACWC. Nevertheless, the mean percentage errors of the lesion volumes

tend to increase from 7.67% to 29.18% for the MET, and from 15.45% to 33.10% for

the FCM method. As in the previous datasets, for recovered lesions, the ACWC is

more accurate and precise (6.80±4.81) among the segmentation methods used.

Table 4.5 shows the overlap measurements of the segmented lesion volumes be-

fore and after the restoration process. Mean JI values increase for two segmentation

methods (the ACWC and the RG) with restoration. Efficiency of each segmenta-

tion technique is evaluated using two-tailed paired sample t-test for two paired groups

(original versus ground truth and restored versus ground truth). The statistical test

reveals that there are no significant differences (p>0.05) between original segmented

volumes and reference volumes except the ACWC. That is, large lesion volumes can be

measured close to the ground truth volumes with most of the PET segmentation met-

hods without any processing. However, when the blind deconvolution is implemented

on these large lesions, the ACWC is the best choice thanks to its high accuracy and

precision (Mean Error%±SD%: 6.80%±4.81% and Mean JI±SD: 0.78±0.05).

Table 4.5
Overlap measurements (JI) in relation to real volumes of the spheres obtained from Dataset 3.

JI in relation to Ground Truth

Seg. Methods Range Mean SD p value

AT (Original) 0.65-0.85 0.76 0.06 0.603

AT (Restored) 0.71-0.79 0.75 0.03 0.102

MET (Original) 0.71-0.82 0.78 0.04 0.159

MET (Restored) 0.60-0.74 0.67 0.07 <0.05

RG (Original) 0.62-0.81 0.72 0.09 0.067

RG (Restored) 0.65-0.79 0.73 0.06 0.271

ACWC (Original) 0.55-0.83 0.70 0.09 <0.05

ACWC (Restored) 0.70-0.83 0.78 0.05 0.101

FCM (Original) 0.70-0.82 0.77 0.04 0.110

FCM (Restored) 0.60-0.70 0.65 0.04 <0.05

The intensity values of the line profiles in lesion regions have been compared
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for original and recovered images as shown in Figure 4.6. When we compared the

intensity profiles of the three datasets (Figure 4.3, Figure 4.5, and Figure 4.6), we

observed less intensity increase with the blind deconvolution in large lesions compared

to small lesions. The most probable cause of this difference is associated with the

number of iterations used in the deconvolution. Table 3.6 shows that the CNR values

of the large lesions reach a maximum with fewer numbers of iterations. This fact may

be a result of the PVE’s limited effect on large lesions.
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Figure 4.6 Intensity profiles of the original and restored clinically relevant patient images (Dataset
3).
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5. DISCUSSION

As we have seen from literature studies in section 2.1, numerous factors could

affect the accuracy of segmentation methods, i.e. scanner or image resolution, scanner

type and settings of image reconstruction algorithms, image filtering, level of image

noise, and tumor characteristics. Therefore, accurate segmentation of lesions from the

PET/CT image has vital importance in terms of treatment planning, as far as its

position, shape, and volume are concerned. The initial objective of this study was

to determine the optimal segmentation methodology using local blind deconvolution

and resampling to accurately and precisely measure metabolically active PET lesion

volumes.

PET image segmentation studies from Table 2.1 have shown that each segmen-

tation technique has a different measurement error, and the best segmentation methods

have less than 10 percent. For instance, in a study of Hatt et al. [17], the Fuzzy Locally

Adaptive Bayesian (FLAB) segmentation method showed superior performance com-

pared to the thresholding, the FCM, and the Fuzzy Hidden Markov Chain (FHMC)

methods; while Firouzian et al. [25] found that the contrast-oriented thresholding and

the AT methods have provided better results for phantom lesions and irregular shapes

of lesions respectively, compared to the fixed thresholding and the FLAB methods.

Thus, there is no consensus among researchers on a single segmentation method apt

for varying patient, image acquisition, and reconstruction parameters.

5.1 Main Findings

In our study, various segmentation methods were compared with respect to the

patient parameters (lesion size and shape, SBR, uptake heterogeneity) and the re-

storation method used. The chart summarizing the performance of the segmentation

methods on phantom lesions is presented in Figure 5.1, and all measurement errors
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are analyzed in terms of lesion size and the PVC method. When we compare the

performance of segmentation methods in terms of restoration, for all phantom spheres,

the CNR-guided ROI-based deconvolution significantly reduces volume estimation er-

rors (minimum error: 3.37%±4.49% [ACWC method], maximum error: 15.59%±9.98%

[FCM method]). For small lesions (<22 mm), the restoration improves accuracy and

precision of all segmentation methods (minimum errors: 5.22%±4.69% [FCM method]

and 5.61%±7.88% [ACWC method], maximum error: 25.10%±25.96% [RG method]).

For larger lesions (sized 22-37 mm), volume errors of all segmentation techniques used

except the FCM decrease with blind deconvolution method (minimum error: 1.88% ±

1.01% [ACWC method], maximum error: 22.50% ± 3.04% [FCM method]).

If the radiologist needs to measure volumes of small lesions which resemble sp-

heroids with homogeneous activity distributions, the ACWC, the FCM, and the AT

methods will be best practical options with the proposed restoration method (volume

error <10%). For larger lesions, all techniques without the FCM method will be prefe-

rable choices. Thus, these findings and methods will be an important contribution to

the development of the first segmentation flow map that will benefit PET specialists

for accurate and precise volume measurements of various lesions.

In the second data set, the effect of the SBR is investigated with respect to the

restoration. Images of this dataset consisted of large pixel sizes (5.06 mm) and small

spherical lesions with 10.5 mm and 14 mm in diameter. Normally, a lesion of 10.5

mm in diameter cannot be represented by 2 large pixels. Therefore, the PVE results

from large pixel sizes in small lesions in the image. In this worst case, none of the

segmentation techniques are capable to segment these small lesions accurately without

restoration. However, after the restoration process, all techniques provide useful results

for lesions sized 14 mm in diameter and SBR of 10 (min: 0.74%, max: 20.22%). When

SBR decreases from 10 to 4, bias increases for all segmentation techniques, consistent

with the findings of Cheebsumon et al. [4]. For all lesions included in the second

dataset, the ACWC seems to be the best method on average (17.45±2.94).

Furthermore, the execution time of the local restoration method is a signifi-
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All PVC

No PVC

Blind
Deconvolution

AT: 40.96 ± 15.96

MET: 76.84 ± 33.13

RG: 130.33 ± 113.36

FCM: 22.63 ± 24.58

AT: 11.93 ± 6.47

MET: 8.95 ± 12.22

RG: 8.08 ± 6.02

FCM: 15.59 ± 9.98

Size Small < 22 mm PVC

No PVC

Blind
Deconvolution

AT: 52.64 ± 10.41

MET: 104.91 ± 30.83

RG: could not segment.

FCM: 47.01 ± 18.37

AT: 9.80 ± 4.39
MET: 18.14 ± 17.67

RG: 25.10 ± 25.96

FCM: 5.22 ± 4.69

Large
22-37 mm PVC

No PVC

Blind
Deconvolution

AT: 33.18 ± 15.11

MET: 58.13 ± 20.16

RG: 75.82 ± 38.09

FCM: 6.37 ± 7.00

AT: 13.35 ± 8.15

MET: 2.83 ± 1.31

RG: 8.53 ± 7.29

FCM: 22.50 ± 3.04

ACWC: 95.85 ± 82.60 

ACWC: 3.37 ± 4.49 

ACWC: 169.09 ± 94.10 

ACWC: 5.61 ± 7.88 

ACWC: 47.02 ± 16.61 

ACWC: 1.88 ± 1.01 

Figure 5.1 The chart that summarizes the performance of the segmentation methods on phantom
lesions in terms of VE%. Note that AT is the Adaptive Thresholding, MET is the Maximum Entropy
Thresholding, RG is the Region Growing, ACWC is the Active Contour with Classification, and FCM
is the Fuzzy C-Means segmentation methods.
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cant variable in terms of computational cost, as far as its positive impact on accurate

segmentation is concerned. Therefore, the efficiency of the local restoration method

is compared with the whole image deconvolution regarding the computation time of

the algorithms on the second dataset. For the local restoration, the best values of

the parameters (the initial PSF kernels and the iteration values) were selected from

Table 3.5 for each lesion. For the whole image restoration, the initial PSF kernel of

4x4x4 voxels was used with iteration values acquired from Table 3.5. Each algorithm

was implemented using MATLAB 2015a on a dual-core 2.53 GHz Intel Core i5 CPU.

As shown in Table 5.1, the CPU time is significantly reduced in average ∼13-fold with

respect to deconvolving the entire image volume using the local extraction method [48].

Table 5.1
The comparison of the execution times of the local blind deconvolution and the whole image blind

deconvolution (obtained from the reference [48]).

Lesions

(mm/SBR)

The best iteration

number

CPU Time of the whole

image deconvolution (sec)

CPU time of the local

deconvolution (sec)

14/10 15 89.2 8

14/4 15 89.6 6.6

10.5/10 15 89.6 6.4

10.5/4 20 101.5 6.5

Mean 92.48 6.88

In the third data set large lesions with arbitrary shapes and heterogeneous acti-

vity distributions are restored, and lesion volumes are measured before and after the

restoration process. We have seen that volume errors of the third dataset are lower

than others. This is an expected result because intrinsic and extrinsic factors cause

less degradation in image quality on large lesions. After the restoration process, sig-

nificant deterioration is observed on volume estimation accuracy for two segmentation

algorithms (the MET and the FCM). It should be noted that the FCM method was

implemented on the restored images with an improved CNR. Despite this, the fact

that the segmentation resulted in an increased error maybe explained by the inability

of this method to function well with real lesions.

In addition, no statistically significant difference was found between two groups
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(original v. true and restored v. true) in terms of segmentation accuracy for the AT and

the RG methods. However, for the ACWC, significant improvements were observed.

All segmentation techniques except the ACWC were capable to segment these lesions

without restoration. This is consistent with findings of past studies by Soret et al. [5]

and Hatt et al. [41] who conclude that the PVE depends on the size of the lesion,

and large lesions are less affected by the PVE. As a result, if the radiologist prefers

to use our proposed method on large lesions (mean volume: 102.87 cc, ranging from

40.38 cc to 203.84 cc), the ACWC may be a good option based on these experiments.

Furthermore, as stated above, not all automatic segmentation algorithms are able to

delineate realistic heterogeneous tumors correctly; however, Table 3.5 shows that CNR

is systematically better for all tumors after deconvolution. Therefore, it would be useful

to verify automatic delineation results visually and after deconvolution.

5.2 Comparison with Literature

This study differs from previous work in that the CNR and ROI-based deconvo-

lution was used together with resampling. The image is first restored before automatic

segmentation. Figure 5.2(a) shows the advantage of using CNR and ROI based decon-

volution. It can be seen that deconvolution improves CNR. The best iteration number

should be selected based on Figure 5.2.

Most iteration control methods use metrics such as Mean Square Error (MSE),

Mean Absolute Error (MAE), and Signal to Noise Ratio (SNR) [71]. These methods

make the iterative algorithm stop with respect to a criterion and a threshold when

there is no further advantage. However, these methods are not designed for predicting

the iteration number that yields the least segmentation error on an image. As can be

seen in Figure 5.2(b), Figure 5.2(c), and Figure 5.2(d), CNR yields a peak, helping us

to find the approximate iteration number for the best recovered image [63]. Note that

the right iteration number can be found by sequentially computing the CNR either

starting from the value of 1 for a given tumor (preferably in an automated fashion) or

by estimating an initial iteration number for starting the search by consulting CNR
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versus iteration results obtained from previous experiments. Note that this can be

expanded continuously by including the results of new tumor delineation cases.
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Figure 5.2 CNR values for all lesions before and after restoration (a), CNR values with respect to
iterations are shown in (b) for the dataset 1, in (c) for the dataset 2, and in (d) for the Dataset 3.

The local deconvolution of the reconstructed image resulted in several advanta-

ges over the deconvolution of the whole 3D image as expressed in the above sections.

First, the PSF could be taken fixed for a small region. Second, the execution time

was significantly reduced. Third, deconvolution can be performed for any residual

PVE that can remain after reconstruction for a particular tumor region. Finally, this

method does not suffer from PSF prediction errors during reconstruction. Therefore,

by using both CNR- and ROI-based deconvolution, it was possible to significantly

increase delineation accuracy while reducing computational time and implementation

complexity as described in the text.
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Taking these advantages into account, it would be useful to compare this resto-

ration method with other methods, if data sets and other conditions are the same. On

the other hand, in case of different conditions, Table 5.2 compares our method with the

state-of-the-art studies in terms of the volume estimation error and the computation

time. Xu et al. (2018) proposed a joint solution for post-reconstruction PET images by

utilizing interactions among segmentation, denoising, and PVC processes [72]. They

used the NEMA NU-2 IQ Phantom containing six spheres with sizes ranging from 10 to

37 mm, clinical and pre-clinical PET. They measured the average segmentation error

for only phantom data and found the DSC of 0.9275. This average error rate is better

than ours. However, it should be noted that the metric of DSC yields better results

compared to the JI. In addition, their average processing time is 5 seconds per slice and

about 5 minutes are needed to implement their proposed method. This computational

time is higher than ours.

In another study, Li et al. applied integrated total variation semi-blind de-

convolution and Mumford-Shah segmentation with multiple regularization methods on

phantom and clinical data [47]. Their phantom and other imaging parameters were

different from our input parameters. Similarly, small volumes ranging from 0.5 to 20

mL were measured using several segmentation methods at SBR values of 2, 4, 8, and

16. Despite these higher SBR values, they found the VE% of 20%, the CE of 41%, and

the DSI of 0.77 for averaged over all sphere sizes and SBRs of the phantom. When these

results are compared with our findings, on the one hand, our segmentation accuracy

(the VE%: 3.37%) is superior to theirs. On the other hand, their overlap measurement

(DSI: 0.77) is slightly better than our finding (JI: 0.71). This difference is the result

of the use of two different metrics such as DSI and JI. As stated in the previous para-

graph, the metric of DSC yields better results compared to the JI. This was the one of

the limitations of our study. Finally, the execution time of their method was several

minutes for one patient. However, high computational costs may be induced if there

are more optimal solutions than one for the regularization step.
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Table 5.2
Comparison of the state-of-the-art studies with our method.

Related

Works

Segmentation and PVC

Methods
Data Types Volume Measurement Error

Computation

Time

Xu et al.

(2018)

[72]

Volume Consistency-Based

Iterative Voxel-Based Correction

Algorithm for PVC, Generalized

Anscombe Transformation for

denoising, and Affinity

Propagation Based Iterative

Clustering Method for

segmentation

Phantom,

clinical, and

pre-clinical

PET scans

With the use of denoising and

PVC steps, they measured 7.25%

(DSC1: 92.75%) average

segmentation error for the Nema

phantom spheres. Without

denoising and PVC steps, the

resulting average error was found

25.3% (DSC: 74.7%).

The average

processing

time was 5 s

per slice.

Li et al.

(2017)

[47]

Integrated total variation

semi-blind deconvolution with

multiple regularization (for PVC).

Mumford-Shah segmentation, 40%

thresholding, 50% thresholding,

Otsu thresholding, Active contour,

Geodesic active contour, FCM, and

Graph cuts methods (for

segmentation).

Phantom

and clinical

data

Their method performed better

results compared to other

segmentation methods in terms of

DSI2 (0.77), CE3 (41%), and VE4

(20%) for averaged over all sphere

sizes and SBRs of the phantom

data.

The typical

computation

time was

about several

minutes for

one patient.

Our

Method

Local blind deconvolution and

resampling (for PVC).

Adaptive Thresholding (42% and

50% ), Maximum Entropy

Thresholding, Region Growing,

Active Contour with Classification,

and FCM (for segmentation).

Phantom

and

simulated

clinical

images

With the use of the active contour

with classification technique, the

mean VE was reduced to 3.37%

and the mean JI5 value was found

0.71 for all lesions of the phantom

dataset.

The typical

computation

time was less

than a

minute for a

3-D image of

the lesion.

5.3 Limitations and Future Work

The scope of this study was limited in terms of segmentation algorithms, data-

sets, and PET scanners. Despite the five kinds of segmentation algorithms used, we

did not apply all PET segmentation methods and manual delineation.

1DSC: Dice Similarity Coefficient
2DSI: Dice Similarity Index
3CE: Classification Error
4VE: Volume Error Percentage
5JI: Jaccard Index
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6. CONCLUSION

Accurate tumor volume measurement has been a controversial and much dis-

puted subject within the field of the PET imaging. We improved the accuracy of the

various PET segmentation methods for volume quantification on PET images com-

bining two methods: the local blind deconvolution and resampling. The goal in this

work is to study the impact of blind deconvolution and processing parameters on the

accuracy of automated delineation algorithms and then to optimize the accuracy with

respect to these parameters. The method was tested on tumors of different sizes and

SBR conditions successfully. Therefore, the primary motivation is fundamentally to

help guide medical professionals in making better delineation that will ultimately be-

nefit their patients.

In conclusion, the method described in this study can significantly reduce tumor

delineation errors. It can be practically used by combining the best automatic segmen-

tation routine with resampling and a modified deconvolution scheme based on the blind

restoration method. The procedure should take a few minutes, not needing a special

software. Future work is needed to automate these procedures.

6.1 List of publications produced from the thesis

1. “Optimising delineation accuracy of tumours in pet for radiotherapy planning

using blind deconvolution,” Guvenis, A. and Koc, A., Radiation Protection Do-

simetry, Vol. 165, no. 1-4, pp. 495-498, 2015.

2. “3-D Tumor Delineation in Positron Emission Tomography reconstructed ima-

ges restored by the use of Lucy Richardson blind deconvolution method,” Koc,

A. and Guvenis, A., in IUPESM 2015 World Congress on Medical Physics and

Biomedical Engineering, Abstract Book, pp. 527, 2015.

3. “Implementation method in blind deconvolution based tumor segmentation using



68

simulated pet images,” Koc, A. and Guvenis, A., in Medical Technologies National

Congress (TIPTEKNO), 2017, pp. 1-4, IEEE, 2017.

4. “Design and evaluation of an accurate CNR-guided small region iterative restoration-

based tumor segmentation scheme for PET using both simulated and real hetero-

geneous tumors,” Koc, A. and Guvenis, A., Submitted to the Journal of Medical

& Biological Engineering & Computing, 2019
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APPENDIX A. BLIND DECONVOLUTION ALGORITHM

I = load untouch nii( ’input image.nii’ );

This function loads locally cropped image into I.

A = double ( I.img (:,:,:) );

Image types (16 bit and 32 bit) are converted to type double.

3D Kernel = ones(x,y,z);

This array is the edgetaper kernel obtained from the background region. Each number

indicates the distance in voxels from the border of the image to the nearest lesion re-

gion measured by visual inspection for each image cropped locally. Table A.1 presents

the kernel sizes used in the edgetaper function.

Table A.1
Edgetaper kernel sizes used to reduce ringing artifacts for various lesion sizes.

Lesions Kernel Sizes in Voxels

D
at

as
et

1

37 mm 10x10x15

28 mm 18x18x25

22 mm 20x20x30

17 mm 20x20x30

13 mm 25x25x30

10 mm 25x21x30

D
at

as
et

2 14 mm, SBR: 10 27x18x18

14 mm, SBR: 4 30x26x23

10 mm, SBR: 10 27x23x20

10 mm, SBR: 4 30x30x25

D
at

as
et

3

patient 1 12x9x4

patient 2 10x15x11

patient 3 17x16x6

patient 4 13x6x3

patient 5 26x16x4

patient 6 10x8x4

INITPSF = ones(x,y,z);

INITPSF, one of the parameters of the deconvolution process, represents the PSF

kernel size to be used in deconvolution. Due to the spatial distortion in the recon-
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structed PET images, four separate PSF kernel sizes (13x13x13, 15x15x15, 17x17x17,

and 21x21x21) were used for the deconvolution process. After the restoration process,

the best PSF kernel size was determined using the CNR for each lesion.

B = edgetaper(A,3D Kernel);

This function blurs the edges of image A using 3D Kernel, and reduces the ringing

artifacts in blind deconvolution. Image B, which is the output of this function, is then

used as the input of the blind deconvolution.

[J, P] = deconvblind(B, INITPSF, ITERATION);

The deconvblind function deconvolves image B using two additional parameters (IN-

ITPSF and ITERATION). It returns both deconvolved image J and restored PSF P in

each iteration. The loop continues until the number of iterations used (1, 2, 3, 4, 5, 7,

10, 15, 20, 30, 40, and 50). In total, 16 outputs (J and P) are generated for each lesion,

4 for the INITPSF and 12 for the ITERATION. The best INITPSF and ITERATION

values are then calculated using CNR.

debimg(:,:,:)=J;

I.img=debimg;

save untouch nii(I,’Restored image’);

save untouch nii(I,’Restored PSF’);
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C.-M. Kirsch, “Comparison of different methods for delineation of 18f-fdg pet–positive
tissue for target volume definition in radiotherapy of patients with non–small cell lung
cancer,” Journal of Nuclear Medicine, Vol. 46, no. 8, pp. 1342–1348, 2005.



72

13. Black, Q. C., I. S. Grills, L. L. Kestin, C.-Y. O. Wong, J. W. Wong, A. A. Martinez, and
D. Yan, “Defining a radiotherapy target with positron emission tomography,” Interna-
tional Journal of Radiation Oncology* Biology* Physics, Vol. 60, no. 4, pp. 1272–1282,
2004.

14. Biehl, K. J., F.-M. Kong, F. Dehdashti, J.-Y. Jin, S. Mutic, I. El Naqa, B. A. Siegel, and
J. D. Bradley, “18f-fdg pet definition of gross tumor volume for radiotherapy of non–small
cell lung cancer: Is a single standardized uptake value threshold approach appropriate?,”
Journal of Nuclear Medicine, Vol. 47, no. 11, pp. 1808–1812, 2006.

15. Jentzen, W., L. Freudenberg, E. G. Eising, M. Heinze, W. Brandau, and A. Bockisch,
“Segmentation of pet volumes by iterative image thresholding,” Journal of Nuclear Me-
dicine, Vol. 48, no. 1, pp. 108–114, 2007.

16. Geets, X., J. A. Lee, A. Bol, M. Lonneux, and V. Grégoire, “A gradient-based method for
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