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ABSTRACT

EVALUATION AND ANALYSIS OF A COMPUTER AIDED
DIAGNOSTIC SYSTEM FOR LUNG NODULE

ASSESSMENT IN CT SCANS

Throughout the process of detecting lung cancer, using CT scans to predict the

malignancy level of pulmonary nodules will be complicated process for radiologists.

CAD gives a second opinion to radiologists to identify lesions properly and distin-

guish malignant nodules at the early stage of lung cancer. In order to develop the

CAD scheme, a coherent and consistent database such as the Lung Image Database

Consortium (LIDC) database is the most crucial point to consider. In that database,

CT scans are evaluated by four di�erent radiologists and their annotations on nodule

characteristics are highly e�cient for researchers. One of these characteristics is ma-

lignancy that has 5 ratings: Highly - moderately unlikely, indeterminate, moderately

- highly suspicious. In this study, the classi�er performances of SVM, RF and ANN

are compared using 1018 cases, 907 nodules and 110 extracted features. Experimental

results demonstrate that best performing classi�ers are respectively ANN, SVM and

RF on malignancy prediction. The most critical gap of LIDC Database is the lack of

ground truth data that is mainly caused by the absence of biopsy results. Therefore, by

using arithmetic mean voting, this problem might be avoided and desired information

might be acquired. The results of analyses show that grouping radiologists' malig-

nancy ratings increases classi�cation accuracy. Classi�ers are examined with the use

of 5 class, 3 class (benign, indeterminate, malignant) and 2 class (benign, malignant)

ratings on malignancy datasets. Experiments show that the classi�cation performance

is enhanced by grouping malignancy ratings. Three groups of datasets' classi�cation

results indicate that moderately and highly malignant separation assessments a�ect

classi�cation performance negatively. However, using two classes under the name of

benign and malignant, increases the accuracy rate up to 98%.

Keywords: CAD, Lung Cancer Classi�cation, ANN, SVM, RF.
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ÖZET

B�LG�SAYARLI TOMOGRAF� TARAMALARINDA
AKC��ER NODÜLÜ YORUMLAMALARI �Ç�N

B�LG�SAYAR DESTEKL� TANI S�STEM�
DE�ERLEND�RME VE ANAL�Z�

Akci§er kanseri te³hisi sürecinde BT taramalar�ndan nodüllerin kötü huylu-

lu§unu tahmin etmek radyologlar için karma³�k bir süreçtir. Bilgisayar Destekli Tan�

Sistemleri, lezyonlar� do§ru ³ekilde tan�mlamak için radyologlara ikinci bir �kir verir.

BDT sistemi geli³tirirken göz önünde bulundurulmas� gereken en önemli nokta anla³�l�r

ve tutarl� bir veri taban�d�r. Lung Image Database Konsorsiyumu (LIDC) Veri Taban�,

ara³t�rmac�lara dört radyolo§un nodüllerin karakteristik özellikleri ve konumlar� ile

ilgili de§erlendirmelerini içeren BT taramalar� sunar. Kötü huyluluk 5 ayr� derece-

lendirme ile de§erlendirilmi³tir: Yüksek ve orta olas�l�kla iyi huylu, belirsiz, orta ve

yüksek olas�l�kla kötü huylu. Bu çal�³mada, SVM, RF ve ANN s�n��and�r�c�lar�n�n per-

formans� 1018 vaka, 907 nodül ve 110 özellik kullan�larak kar³�la³t�r�lm�³t�r. Deneysel

sonuçlar, en iyi performans gösteren s�n��and�r�c�lar�n malignite tahmininde s�ras�yla

ANN, SVM ve RF oldu§unu göstermektedir. LIDC veri taban�n�n en kritik eksi§i, biy-

opsi sonuçlar�n�n bulunmamas� nedeniyle standart referans verisinin olmamas�d�r. Bu

nedenle, standart referans�n belirlenmesinde ortalama oylama kullan�lm�³t�r. Öte yan-

dan, radyologlar�n malignite sonuçlar�n�n grupland�r�lmas�n�n s�n��and�rma sonuçlar�n

do§rulu§unu art�rd�§� görülmektedir. S�n��and�r�c�lar, malignite veri kümeleri üzerinde

5 s�n�f, 3 s�n�f (iyi huylu, belirsiz, kötü huylu) ve 2 s�n�f (iyi huylu, kötü huylu) ol-

mak üzere test edilmi³tir. Deneyler, radyologlar�n malignite derecelendirmelerini gru-

plaman�n, s�n��and�rma performans�n� artt�rd�§�n� göstermektedir. Sonuçlar, orta ve

yüksek derecede kötü huylu gibi ara de§erlendirmelerinin s�n��and�rma performans�n�

olumsuz yönde etkiledi§ini göstermektedir. Buna ra§men, iyi huylu ve kötü huylu ad�

alt�nda iki s�n�f kullan�lmas�, do§ruluk oran�n� 98%'e kadar artt�rmaktad�r.

Anahtar Sözcükler: BDT, Akci§er Kanseri Nodül Nitelendirme, ANN, SVM, RF.
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1. INTRODUCTION

Cancer occurrence and accordingly death rates are highly increasing worldwide.

Among these occurrences, lung cancer comes forward as the primary type, which causes

a fatal threat for both men and women. However, it is possible to cure incidents since

most of the cancer types might be detected and treated at an early stage. Detecting the

disease at an early stage allows for malignancy rates to be decreased as well. Tracking

the nodules that have been identi�ed by imaging systems is also helpful in decreasing

malignancy rates. The �rst imaging method used in analysing a suspicious case of

lung cancer is the chest X-ray. The chest X-ray itself, which is a con�dential method,

is not su�cient enough for the ideal characterization and staging. However it helps

determining prior knowledge on the situation [1].

In cases where further treatment is necessary, Computed Tomography is an of

choice method applied for lung cancer imaging, which provides crucial information to

radiologists. Radiologists utilize the CT scan and the information it provides to analyse

malignancy predictions.

With the increase in the success and the susceptibility of the scan, the data

produced by these systems increase accordingly as well. In addition, the increase in

quantity of the data causes di�culties for the radiologists, which causes them to make

mistakes in their interpretations. However, the di�erence of intensity in CT scan images

and anatomical structure misinterpretation by clinicians might lead to a problem in

marking the location of nodules [2], [3].

Consequently, schemes of Computer Aided Detection (CAD) are enhanced in

order to detect suspicious lesions in medical images. CAD also provides an alternative

point of view to radiologists, which decreases the amount of misjudgements. The CAD

System consists of two processes.
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The �rst stage is image processing to recognize nodules' coordinates via pre-

processing methods and segmentation and last stage is classi�cation using image fea-

tures in order to decide nodules were identi�ed as malignant or benign.

The most commonly used and referred dataset to enhance the CAD system

which contains 1018 cases collected from �ve di�erent universities (including University

of Iowa, University of Chicago, Weill Cornell Medical College, University of California

at Los Angeles and University of Michigan) is LIDC (Lung Image Database Consor-

tium). Each one of the cases contains more than one lung CT scan with annotations

obtained from four di�erent radiologists. The lack of ground truth data and the in-

su�ciency of knowledge on the degree of expertise of four radiologists compose the

negative sides of LIDC dataset [4].

Up to date studies have provided consistent results in the development of de-

tection of lung nodules and to identify malignancy rate using the Computer Aided

Diagnosis System. The CAD System includes �ve major steps: Reading DICOM slices

in the working database, pre-processing, segmentation of the ROI( Region of Interest),

detecting tumour, extracting features and classi�cation.

The LIDC database includes marked nodule areas that are determined by four

di�erent radiologists. As a consequence, the study proceeds without the need for nodule

segmentation and tumour detection steps.

In view of eventual achievement of CAD scheme, the classi�cation of de�ned

nodule candidates is the fundamental stage. In addition, classi�cation stage allows to

reduce false positive rate. Thus, radiologists e�ectively interpret CT images and result

of that increase the reliability of the CAD system [5]. Classi�cation error is increasing

caused by the unbalanced distribution of malignancy voting LIDC data. However,

these challenges provide an opportunity to improve machine learning techniques to

computer-aided diagnosis.

The main aim of this study is to support the development of a CAD scheme to



3

assist the radiologists using with classi�cation methods of ANN, SVM and RF in the

characterization of lung nodules. Additionally, experiments show that grouping ma-

lignancy ratings have improved classi�cation performance on publicly available LIDC

database.

1.1 Lung Cancer Statistics

As reported by the World Health Organization in 2018, heart disease and stroke

together comprise the �rst main reason of death around the world, followed by cancer

subsequently as the second main reason of death which takes an estimated of 9.6

million people's lives [6]. Cancer comes into existence with uncontrolled cell growth

which eventually turns into a disease. This happens when cells grow beyond their

usual boundaries. The cells that exceed the limitations of enlargement might also

expand their limits, spreading to other tissues or organs. The process of expanding

is called metastasis. Likewise, the abnormal tissue masses that are created by overly

evolved cells are called tumours, which are either classi�ed as cancerous (malignant)

or non-cancerous (benign) [7].

While numerous cancer types exist across the globe, lung cancer still holds the

�rst place in being the best type of cancer which results in incidence and mortality

rates. Lung cancer alone represents the reasoning behind approximately 1 in 5 (18.4%)

cancer deaths which is comprised of 2.1 million newly diagnosed lung cancer patients

new lung cancer incidences, and 1.8 million deaths estimated in 2018 [8].

There are two main subtypes of lung cancer. First of them being small-cell lung

carcinoma, (SCLC) accounting for 15% of all cases of lung cancer and correspondingly

the second one being non-small-cell lung carcinoma (NSCLC), accounting for the re-

maining 85% of the cases. Dissimilar cancer types require the necessity for di�erent

methods of treatment, which may include surgery for non-small cell lung carcinoma

(NSCLC).
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Conversely, in cases where small cell lung carcinoma (SCLC) is present, utilizing

chemotherapy and radiation help in acquiring a better response [9], [10]. The main issue

concerning the diagnosis is determining whether the nodules of the patients are benign

or malignant. Nodules that are classi�ed as highly likely to be malignant stop being

examined closely and instead, a treatment period is started accordingly. However, in

cases where nodules are thought to be benign, they are examined periodically with CT

scans. Nevertheless, if there is a contradiction regarding the decision process of the

probable situation, additional operations such as a biopsy might be required.

Accordingly, the diagnosis is a�rmed with a biopsy, which usually takes the

form of a bronchoscopy or a CT-guided biopsy. The histological type of malignant

growth alongside the extent of spread (the stage) and the patient's performance rate

combined designate the method of treatment and prognosis. If treated, patients' �ve-

year survival percentage that follow the diagnosis increases to 14%. Correspondingly,

a surgical approach, as well as chemotherapy and radiotherapy might be counted as

possible treatment methods [11].

Being exposed to smoke that is exhausted from tobacco products in a long time

period is the most common reason for lung cancer, e�ecting 90% of the cases. However

genetic and biological aspects of the patient also play an important role. In addition to

that, being exposed to toxic minerals such as asbestos and breathing air that contains

harmful gases such as radon are amongst the reasons of lung cancer occurrence. Overall

air pollution and breathing second hand smoke that comes from smokers are also within

the causes of this speci�c type of cancer. One of these reasons or all of them combined

might be why non-smoker patients, who constitute only the 10% of the incidents, are

diagnosed with lung cancer [12], [13].

When it comes to lung cancer, there are no actual early symptoms, so it is often

diagnosed simply when the status of the disease reaches an advanced stage. Accord-

ingly, symptoms of lung cancer include cough, hemoptysis, chest pain and abnormal

weight loss [8].
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For this reason, the fact that there are no symptoms speci�able seen in the early

stages of the disease indicates the necessity and emphasises the importance of the CAD

systems.

1.2 Image Analysis in Chest CT

The simplest way to decrease high death rates caused by lung cancer is to

diagnose the nodule as early as possible. However, the process of determining and

evaluating the nodules especially with a smaller size requires a complicated process for

radiologists.

The computerized tomography devices used today are systems that are capa-

ble of doing a scan, with high resolution and under millimetric susceptibility, on the

entire chest. As stated by Awai et al. [14], using CT instead of analogy radiography

increases the chance of detecting lung cancer. The detection success is almost 2.6 to

10 times higher with CT scans. With the increase in the success and the susceptibil-

ity of the scan, the data produced by these systems increase accordingly as well. In

addition, the increase in quantity of the data causes di�culties for the radiologists,

which causes them to make mistakes in their interpretations. A misdiagnosis on CT

scans might be caused by several reasons, however most of them are caused by observer

error. Observers might conduct an unsuccessful scanning session or they might be mis-

taken while recognizing the state of the nodules. They might also make mistakes in

the decision-making process and misinterpret some of the precise characteristics such

like size, location or conspicuity. Some technical issues might also cause problems.

Regardless, these errors result in inaccurate information [15].

Utilizing multiple detector scanners and reshaping the slices into thinner por-

tions help in detecting more nodules. This also results in using a higher quantity of

thinner slices while conducting a study on imaging lung cancer. This increase in the

quantity of images that are obtained at each CT examination makes the process of CT

analysis much more time consuming, laborious and wearisome.
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As a consequence, detection sensitivity concerning the nodules might be di-

minished, caused by the fatigue of the reviewer [16]. Meanwhile, processes such as

detecting the nodule's location, eliminating the irrelevant data from the data set, com-

ing up with suggestions on the characteristics of the nodule detected and separating

di�erent components of the lungs make it convenient for users. As researches con-

ducted on this subject reveal, computer-aided diagnosis systems decrease the amount

of misinterpretation made by radiologists and accordingly increase the amount of early

diagnosis.

Figure 1.1 Example of CT Scan.

With technology progressing from day to day, imaging systems used in medical

radiology has changed in a way that enables diagnosing the disease at an early stage.

Today, screening methods such as chest radiography, CT, MRI and PET-CT make pos-

sible detecting and diagnosing even small size tumours. CAD systems are developed in

order to help radiologists analyse the data procured from these devices. These systems

provide radiologists with interpretation of images, detecting nodules and determination

of their quali�cations. They also assist radiologists by giving a second opinion in which

the system help in to classifying nodules, marking conspicuous structures and sections

to calibrate the lesion characterization [17].
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Advantages of using CAD systems include [16], [18]:

• Assist in detecting cancer in an early stage,

• Improve accuracy rates in diagnosis,

• Decreasing the time spent by radiologists during an exam evaluation,

• Reducing misinterpretation ratio,

• Eliminating false positive,

• Prevents consuming extra time.

CAD systems are advanced for the purpose of enabling detecting the pulmonary

nodules automatically in chest CT scans. In order to do so, researchers use a database,

which is generally publicly available with using arti�cial intelligence methods.

A CAD system that helps in identifying nodules as benign or malignant is

generally organized to conclude the main steps of feature extraction, classi�cation and

validation. Figure 1.2 demonstrates the block diagram representing all of these stages.

Figure 1.2 Flowchart of CAD System.
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1.3 Literature Review

The aim of this study is to show that radiologists consensus on malignancy,

in�uences the results of the classi�cation. The LIDC Dataset lacks a base of ground

truth and accordingly, mean voting is used for calculating the ground truth. In addition

to that, the results of classi�cation obtained from the SVM, RF and ANN are compared

using literature.

Therefore, examining the works in literature under three groups will be useful

in coming up with a better evaluation process for the outcomes of this work.

1.3.1 Impact of Reader Agreement on Reported CAD Performance

As proposed by Han et al. [19], 3D Haralick, Gabor, and local binary are three

features to be compared consequently. The method of comparing the quali�cations

was validated with the SVM classi�er, using the LIDC database by using 1012 nodules.

The method recommended includes 3 groups of malignancy rate, showcasing �1� and

�2� classi�ed as benign whereas �4�and �5� as malignant and �3� as uncertain. The

group �3� where classi�cation is de�ned to be uncertain, two possible scenarios might

be deployed, �rst of the scenarios being �3� to be grouped into benign class and on

the contrary into malignant class in the second. By acknowledging the nodules with

composite rank of malignancy �1� and �2� as benign and simultaneously �4� and �5�

as malignant, the maximum accuracy rate of 0.94 is acquired, in order to utilize SVM

classi�er.

Kaya et al. [20], suggest a Computer Aided Diagnosis system for detecting a

malignant nodules. In this study, LIDC database nodules are separated into 2 di�erent

groups, which voted 5 ratings and 3 ratings from radiologists. Ground truth is set

by majority voting. In the 5 class experiment, the Rain Forests classi�er obtained

the highest classi�cation accuracy, which is 0.8040. In the 3 class experiment, LDA

classi�er has a great accuracy, which is 0.8200.
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Chen et al. [21], combined two di�erent database, which are the LIDC and Bei-

jing Friendship Hospital Clinical Database. The LIDC database categorized 3 di�erent

nodule sets (probably benign, uncertain, probably malignant) for training and clinical

dataset for testing to classify all of the nodules with ANN. Additionally, building a

system in order to compare radiologists' assessment for malignancy rate and biopsy re-

sults. The system reached AUC value of 79%, which was higher than the performance

of the radiologists.

Moreover, a method suggested by Liu [22] states using 252 nodules that are

larger than 3 mm in diameter from the LIDC database, and constituting a group of

tumours for region agreement between radiologists in order to classify with ANN. The

method of leave-one-out was implemented in the interest of verifying the productiveness

of the ANN which has the highest correlation rate of 0.72.

A.Setio et al. [23] extend their work to determine pulmonary solid nodules larger

than 10 mm with 3D segmentation algorithm. The total number of large solid nodules is

238 from the LIDC and majority voting used for ground truth. After feature extraction,

24 features based on shape, spatial context, blobness and intensity are computed. A

nodule was considered to be solid in the event that larger part of the radiologists scored

the texture characteristic higher than 3 (1 = ground-glass/non solid, 3= part-solid, 5=

solid). SVM results and agreement levels evaluated together discloses a sensitivity rate

of 98.3% and 94.1% large nodules at an average of 4.0 and 1.0 false positives rates,

respectively.

Zinovev et al. [24] propose a scheme for evaluating the nodule characteristics,

which includes combining probabilistic classi�ers based on belief decision trees and

ADABoost learning which helps in handling the uncertainty of the diagnosis process as

a consequence of various annotations. With the intention of resolving the unbalanced

data problem of LIDC, several adaptations were made to these system.
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1.3.2 Studies Conducted on Designating the Ground Truth

Di�erent ground truth assumptions, varying classi�cation methods and dataset

are caused by di�cult comparison between these studies. Undoubtedly the success rate

of a CAD system may vary considerably based on the selection of data that is being

tested and what the ground truth holds. Although, the results are remarkable within

related studies in literature.

Wiemker et al. [25] analysed eight di�erent ground truth con�gurations with

the usage of the LIDC Database. In the event of con�rmation acquired by four of

the radiologists, the CAD system designed reaches a sensitivity rate of 89%. It also

acquires the same result, which is an average of false positive rates that comes forward

as two per patient. An occurrence of con�ict is much probable in the case of smaller

nodules. Averagely, the radiologists detected only 66% of the nodules that have already

been marked as a nodule by the other three radiologists. These results point out that a

vast quantity of nodules, which are agreed upon by human expert observers, exist. In

contrast, an equivalently broad set of noted nodules are not agreed upon, which means

a consensus is not reached by the observers.

Accordingly, Angel et al. [?] implied nodules in computerized tomography scans

that are 90 in number, with the method of dividing the process into two steps. Firstly,

the process is executed blinded and the following unblinded with the purpose of seeing

the results of the other three observers in the LIDC study. As the study suggests, for

nodules that are 3 ≥ mm, there were exactly 174 nodules corresponding, whereas at

least 1 of the observers decided that it was a nodule. For exactly 146 of the nodules

corresponding, no less than 2 of the observers agreed and for a sum of 121 of them,

at least 3 of the observers agreed. For 90 of the nodules corresponding, all four of the

observers reached a consensus. These results demonstrate that human expert observers

agree on a large amount of nodules. However, considering an equally large proportion

of the nodules, there is no consensus reached among the observers.
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1.3.3 Studies on ANN, SVM and RF Classi�ers

By using the LIDC and ELCAP database, Hiram et al. [17] executed a test on

23 malignant and 22 benign nodules that are 2 mm to 30 mm in diameter. Features

extracted from the GLCM in the wavelet domain and classi�ed with SVM, classi�er's

accuracy is 82.22% whereas the sensitivity is at 90.90% and speci�city is at 73.91%.

Ground truth is not explained clearly.

Akram et al. [26] suggests using a method which using intensity based 2D and

3D statistical features. In the LIDC dataset, the nodules' range in diameter di�er-

entiate from 3 to 30 mm. Moreover, 47 computerized tomography scans that include

nodules within are utilized in the computer-aided diagnosis system. The sensitivity

rate of 96.31% is acquired by the SVM classi�er with an accuracy rate of 96.54%,

which emphasises an improvement concerning the existing CAD systems. Ground

truth information is not su�cient.

By utilising 1191 nodules from a private dataset, Demir et al. [27] developed a

CAD system which requires 2D and 3D pre-processing steps. The textual features of

the surface are obtained by Gray Level Co-occurrence Matrix (GLCM) and extracted

morphological characteristics from the volume of interests. SVM classi�cation results

obtain a sensitivity percentage of 98.03%, a selectivity percentage of 87.71%, an accu-

racy percentage of 90.12%, as well as a 2.45 ratio regarding false positive incidents.

In the study proposed by Matsuki et al. [28], a CAD system, which using

the ANN, is developed in order to classify malignant nodules, which establishes 16

radiological �ndings and 7 clinical parameters. The numerical mean of the area that

is under the curve of ROC has enhanced from 0.831 to 0.959 (P < .001). Through

implementing the ANN results on high-resolution computerized tomography scans, it

is understood that the accuracy ratio concerning the diagnosis, might be increased by

utilizing a computerized design. Also di�erentiating 56 nodules that are benign from

99 nodules that are malignant serves as a helping medium during this process.
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1.4 Organization of This Thesis

In this thesis, three di�erent classi�cation methods have been compared using

the LIDC database in accordance with lung CT images. By grouping the malignancy

scores of four di�erent radiologists using images on the LIDC database, an observation

is made on the e�ects of the radiologists consensus in classi�cation outcomes.

The �rst chapter of the thesis includes an introduction and importance of Com-

puter Aided Diagnosis System. The second chapter focuses on the materials and the

methods deployed where the parts of the developed system are explained speci�cally.

In this section, the phase that starts with the LIDC Database properties and feature

extraction of the images are explained. At the concluding part of the chapter, the

evaluation of the classi�cation methods is given in terms of accuracy. Furthermore, the

third chapter explains and discusses the results of the classi�cation process by com-

paring the results of other studies. Finally, the last chapter summarizes the study and

informs on the results of the study, and also commentates on future plans regarding

the subject.
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2. MATERIALS AND METHODS

2.1 LIDC Database

The development of computed tomography systems has a signi�cant impact on

the frequent application of this imaging technique. The systems are less a�ected by the

patient's movements, and they are able to screen more frequently in order to obtain

more detail, resulting in an increase in image quality, as well as a signi�cant increase in

data quantity. With these developments, the burden on radiologists is also increased

accordingly.

CAD systems are widely used to facilitate the work of researchers in radiology

as in many other medical �elds. The biggest challenge for the systems developed is

obtaining data that are correctly labelled and usable for generalization.

Nevertheless, a database that is directly derived from National Cancer Institute,

which collects a various number of computed tomography (CT) scans exists, with

the assistance brought in by the works of �ve di�erent academic institutions which

are University of Chicago, Cornell University, University of Michigan, University of

California and University of Iowa. This database, which might be accessed publicly as

the �Lung Image Database Consortium�, has the objective to solely create a basis for

developing, training and evaluating CAD techniques to researchers [29].

For the analysis of the CT scans, each one of the four institutions designate a

radiologist. Each scan is conducted with annotations by a chest radiologist, using a

process that consists of two phases.

Thus, the LIDC proposes a two phased data collection process that would [?]:

• Enable each scan to be reviewed by multiple expert readers,
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• Clearly give the location of the nodule and spatial scope information acquired

from each review's results in the form of a radiologist annotation,

• In the identi�cation process of nodules, denotes between readers, the di�erences

and the variability in the characterization of the boundaries of the nodule, as well

as allowing for them,

• Permit the data accumulation process to be executed asynchronously with the

purpose of not needing all radiologists to take part simultaneously in the imaging

of a single scan.

Among the quali�cations of the LIDC dataset, concerning the large majority of

nodules, the lack of standard references acquired through a biopsy or through a follow

up comes forward. Because of the fact that radiologists were not obliged to agree

while analyzing the nodules present in the dataset, a variation of semantic ratings

and outlines acquired from particular radiologists exists. There are several reasons

behind this variability which includes the lack of ground truth data, the insu�ciency of

knowledge on the expertise degree of di�erent radiologists and them being anonymous

over varied nodules [24].

Consequently, the nodule is connected with several semantic ratings instead of

one. In addition, these challenges give an opportunity that computer aided diagnosis

to be ful�lled by implementing untraditional machine learning techniques.

Radiologists obliged to outline the boundaries of each nodule that is labelled

as �nodule ≥ 3 mm� and to allocate subjective nodule quali�cations. For every single

nodule labelled as �nodule < 3 mm�, the radiologists are obliged to solely point out the

centre of the nodule without de�ning the boundaries of the nodule and to illustrate

the features of the nodule. Identically for the �non- nodule ≥ 3 mm�, only marking the

center is required. In the second phase of the process, every radiologist might review

other radiologists' evaluations and they are also able to review and modify their own

evaluations.
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As a result of the two phased review process, a concluding annotation folder is

generated for each CT scan. From the Web site of National Biomedical Image Archive

(NBIA), a total group of CT images that conclude the relevant XML annotation �les

are accessible [30].

The characteristics of a nodule are malignancy, sphericity, texture, calci�cation,

subtlety, lobulation, internal structure, spiculation, and margin. The table 2.1 demon-

strates and expresses these quali�cations, which are also called radiographic descriptors.

Each of them is rated from 1 to 5 or 6 by four di�erent radiologists.

Table 2.1

The Distribution of LIDC Nodule Characteristic.

Characteristics Ratings Characteristics Ratings

Calci�cation

1. Popcorn

Sphericity

1. Linear

2. Laminated 2. .

3. Solid 3. Ovoid

4. Non-central 4. .

5. Central 5. Round

6. Absent

Spiculation

1. Marked

Internal Structure

1. Soft Tissue 2. .

2. Fluid 3. .

3. Fat 4. .

4. Air 5. None

Lobulation

1. Marked

Sublety

1. Extremely Subtle

2. . 2. Moderately Subtle

3. . 3. Fairly Subtle

4. . 4. Moderately Obvious

5. None 5. Obvious

1. Highly Unlikely

Texture

1. Non-Solid

Malignancy

2. Moderately Unlikely 2. .

3. Indeterminate 3. Part Solid

4. Moderately Suspicious 4. .

5. Highly Suspicious 5. Solid

In order to advance the level of development concerning Computer Aided Detec-

tion or facilitating diagnosing methods for lung nodules, accumulating a vast quantity
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of computed tomography scans and building a standard reference is at substantial

importance.

In the LIDC Dataset, there is no ground truth data present, since annotators

are not obliged to agree on characteristic ratings. On account of limited number of

studies found in literature, in order to summarize the ratings, this study suggests to

use mean voting method with numerous annotators. Also providing that the average

produced has a comprehensive ratio that is not an integer number. Consequently, it is

rounded to the nearest whole number.

Table 2.2

Rounding Values.

Rounding Values

1.5 → 1

2.5 → 3

3.5 → 3

4.5 → 5

The �nal release of the LIDC Database includes 1018 cases right along with

2635 distinct nodules. Each scan in the LIDC dataset is paired with a correlating

XML �le that contains the outputs of a two-phased progress in which various amount

of radiologists annotated on the image.

In this proposed study, selecting 907 distinct nodules which have ≥ 3 mm di-

ameters and have an annotation by all of the 4 radiologists for malignancy degree.

2.2 Feature Extraction

The features informs about the characteristics of the item which might also be

identi�ed as the determinable properties of an image. The lung nodules detected after

the scanning might be found on one or more CT scans.
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Table 2.3

Distribution of Malignancy Rates.

Malignancy Degree Number of Nodules

1 97

2 92

3 491

4 156

5 71

Total 907

In this work, by using MATLAB, a several features are calculated from the

nodule areas that are created as a result of segmentation. Accordingly, in literature,

features are seen to be classi�ed as 2D, 2.5D and 3D. In this study, the 110 features

extracted from the largest area of the nodule (2D) are subtracted from all the sec-

tions and the average of the features (2.5D) is taken into consideration. The features

include shape, size and texture based forms. Whereas on MATLAB, some features

are obtained by utilising the functions of �RegionProps� and �Properties�: Standard

deviation eccentricity, solidity, circularity, aspect ratio, area of bounding box.

The features that concern Gray level co-occurrence matrix and Haralick texture

[31] are extracted which takes place on the biggest region of the nodule and a mean of

all slices of the nodule.

Haralick features comprise of contrast, correlation, energy, homogeneity, en-

tropy, autocorrelation, dissimilarity, cluster shade, cluster prominence, inverse di�er-

ence normalized and inverse di�erence moment normalised, maximum probability, dif-

ference entropy, sum entropy, di�erence variance, sum variance, sum average, informa-

tion measures of correlation 1, information measures of correlation 2.

Features that are obtained from the Gray Level Co-Occurence Matrix- GLCM

[31], [32]:
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Contrast: Obtained by measuring the contrast between the pixels and their

adjacency throughout the entirety of the image.

Contrast =
∑
i,j

|i− j|2p(i, j) (2.1)

Correlation: Measures the joint probability of speci�ed pixel pairs.

Correlation =
∑
i,j

(i− µi)(j − µj)p(i, j)
ϑiϑj

(2.2)

Energy: Supplies the sum of squared components in the GLCM in order to

demonstrate i and j matrix indexes.

Energy =
∑
i,j

p(i, j)2 (2.3)

Homogenity: Calculates the closeness concerning distributing components in

the GLCM and the GLCM diagonal in order to demonstrate i and j matrix indexes.

Homogenity =
∑
i,j

p(i, j)

1 + |i− j|
(2.4)

Entropy: It is the measurement unit that expresses how complex an image is.

On a �at image, the entropy value equals zero. As complications increase in the image,

the entropy value also increases accordingly. It is used to determine the compressibility

of the image (i inclines entropy values).

Entropy =
n∑
i=1

pi log2 pi (2.5)

Zernike Moments: That moments are complex polynomial sets that form a verti-

cal set on a unit disc. They are insusceptible to rotating and insensitive to translation.

That is the reason why nodules are transported to a 128x128 square with calculating

their centers of gravity [33]. In this study, 60 features are extracted using Zernike

moments.
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2.3 Determinig Malignancy Datasets

In the LIDC Database, malignancy predictions of radiologists have 5 di�erent

ratings: 1 - highly unlikely, 2 - moderately unlikely, 3 - indeterminate, 4 - moderately

suspicious and 5 - highly suspicious.

As consensus rates increase between radiologists, the number of samples falling

into each class is expected to decrease. However, the decrease in the middle evaluation

(2 - moderately unlikely and 4 - moderately suspicious) classes is much higher than

in other classes. Accordingly, radiologists are more likely to reach a consensus on

inde�nite classi�cations (1 - highly unlikely , 3 - indeterminate , 5 - highly suspicious).

The experiments are applied in class of 2 and 3, grouped according to their malignancy

rates, and in class of 5 where such a grouping is not applied.

Table 2.4

Grouping Rates to 5 Class.

Number of 5 Class

1 - Highly

Unlikely

2 - Moderate

Unlikely
3 -Indeterminate

4 - Moderate

Suspicious

5 - Highly

Suspicious

97 92 491 156 71

Table 2.5

Grouping Rates to 3 Class.

Number of 3 Class

1-2 Benign 3- Indeterminate 4-5 Malignant

189 491 227

Table 2.6

Grouping Rates to 2 Class.

Number of 2 Class

1 - 2 Benign 4 - 5 Malignant

189 227
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2.4 Classi�cation

The main objective behind classi�cation in CAD systems are deciding on whether

the nodules are malignant or benign with using features as guidance. A number of stud-

ies that do classi�cation with using LIDC Database exist. Be that as it may, in this

one in particular, 3 di�erent datasets that are privatized and 3 di�erent classi�cation

methods are used.

2.4.1 Support Vector Machine (SVM)

Support vector machines (SVM) are used in the construction of learning ma-

chines and they minimize the generalization error. In addition, they are an innovative

approach created by positioning a group of planes that divide two or more classes of

input [34]. By construction of these planes, the SVM brings forward the limits between

the input data. The components of the input data which determine these limits are

called support vectors.

The main objective of the SVM is to install an e�ective way of learning that is

computerized, with the purpose of separating hyperplanes in high dimensional feature

space.

As stated by Vapnick [35], support vector machines di�erentiate a group of

binary training data. These data reserve a hyperplane that is distant from the two

separate classes, which is respectively called the maximal margin hyperplane. The main

goal is to develop a function f by using training data that comprises of N-dimensional

patterns xi and class labels yi.

f : RN → {±1} (2.6)
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(x1, y1) , (x2, y2) , . . . . . . (x1, y1) ∈
(
RNx{±1}

)
(2.7)

Consequently, f will do a proper classi�cation on new examples, which are x and

y. In the case of separating the training data linearly being impossible, support vector

machines might work e�ciently using with the kernel techniques (comprises using the

kernel trick). In the input space, the hyperplane which de�nes the SVM matches with a

non-linear decision boundary. Thereby, support vectors help in expressing the function

f , whereas it is computerized and calculated accordingly.

f(x) =
NS∑
i=1

(aiyiK (si, x) + w0) (2.8)

In the case of K being the kernel function, ai weight that is connected to the

output of support vector machines is obtained as Si being the support vector.

An additional advantage of the SVM is an automatic model selection, which

helps in automatically obtaining the proper number and locations of the basis functions

as long as training. Accordingly, the achievement of the SVM is mostly dependent on

the kernel [36], [37].

The desired result concerning sets of training vectors, which are connected to

di�erent classes and are �m� in total by numbers, is: (x1, y1), (x2, y2), (x3, y3), (xm, ym),

where xi ∈ Rn indicates the ith input vector and yi ∈ 1, 1.

In addition, the objective obtained from the maximal margin classi�er includes

�nding a hyperplane (where w: wx + b = 0) which is used to di�erentiate training

samples [38]. Within the potential hyperplanes, just one of them maximizes the nearest

data point of every class and the margin, which is the distance among the hyperplane.
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Figure 2.1 An example demonstrating the optimal separation of hyperplane that comes from the

SVM, in accordance with the maximal margin between two hyperplanes that are parallel.

Figure 2.1 shows an example concerning the optimal dividing hyperplane along-

side the largest margin. Points positioned on the verge of the margin are denoted by

the support vectors. The function for convolution of the kernel, which is partly aligned

with decision function and the support vectors, is the result to the classi�cation. Con-

sequently, the polynomial kernels, gaussian kernels, radial kernels and anova kernels

are among the options in SVM-based CAD applications.

The most frequently used kernel functions concerning SVM analyses are as fol-

lows [39]:

• The Polynomial Kernel

K (xi,x) =
(
xTi + 1

)p
(2.9)
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where p>0 is a constant and it explains the order of the Kernel.

• The Gaussian RBF Kernel

K(x, y) = exp

(
−‖x− xi‖

2

2δ2

)
(2.10)

where δ > 0 is a constant and it explains width of the Kernel.

During the process of training, the parameters p in Eq. 2.9 and δ in Eq. 2.10

are designated.

The resulting value of the SVM is -1 or 1. When the �nal value obtained from

the output of a test sample is bigger than 0, the lesion present in the image will be

classi�ed as malignant. On the contrary, when the �nal value obtained from the output

is smaller than 0, the lesion will be classi�ed as benign [38].

Apart from other methods used when statistically classifying the nodules, SVMs

reduce the structural risk to a minimum, which includes the possibility of misclassifying

data that have never been seen. Thus in theory, the SVM is highly generalizable to test

data. Also the SVMs trans�gure the corresponding information present in the training

set to a little quantity of support vectors which are solely used to classify new data. By

doing so, the di�erentiating quali�cations of the two classes are clearly distinguished.

As a result, it is obtained that the SVM is a usefull machine learning method

used for classifying the system. It analyzes and identi�es the categories using trained

data. SVM is basically used for the classi�cation purpose for diagnosing of the disease.

2.4.2 Random Forest (RF)

Random Forest is a ensemble algorithm which contains a large number of random

decision trees in which it speci�es the most appropriate one. No other generalization
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approach is necessary since this randomness is applied on selecting feature as well as

de�ning trial/training data sets [40].

Some quali�cations of the RF Algorithm:

• Produces reliable results on data with few examples or data with large size such

as microarray data unlike many classi�cation algorithms,

• Works e�ciently under big data sets,

• Informs on which variable is more important for the classi�cation process,

• Has an e�cient way of predicting the missing information,

• Contains solutions for a possible scenario where data is unbalanced,

• Forests obtained might be saved for later use on other data,

• By expanding some quali�cations, it can be used in setting and detecting the

outlier on data that is not labeled.

Every decision tree made in the RF is constituted on another bootstrap sample

obtained from the initial data set. A part of the data set is separated for testing and is

not included in the training at the event creating each tree. Usually the training data

is made up of 66% of the bootstrap sample, whereas trial data covers 34% of it [40].

During the process of making the decision trees and deciding on every node of the

trees, k (k < K) feature selected from features that equals K in total is used. Features

to be used in the node are designated with a measuring medium called gini importance.

Correspondingly, evaluation of variable importance is made with calculations obtained

from this phase. In the scope of the thesis, the parameter of the number of trees that

is used for comparing is set to be 100 in classi�cations.
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2.4.3 Arti�cial Neural Network (ANN)

The Arti�cial Neural Network or brie�y named as ANN, comprises of a group

of neurons that are interconnected. Neurons are cellular structures that have the

ability to acquire and keep information with using experiential knowledge. In order to

copy the structural construction of a neuron in a computer system, a structure named

perceptron was developed in 1943 [41].

In case where xi ∈ RND a 1 into xi is appended, making it a RND+1 vector. The

perceptron trans�gures the input into a binary output fw(x) ∈ {0, 1} by considering

[42], [43]:

fw(x) =

 1 if w.x > 0

0 otherwise
(2.11)

where w ∈ RND+1 which equals to linear function x → w · x followed by a non-linear

activation function ϕ(x) that can be equally written, is a vector of real-valued

fw
(
xi
)

= ϕ
(
w · xi

)
(2.12)

where ϕ(x) is the Heaviside step function, de�ned by ϕ(x) = 1 if x > 0 and 0 otherwise.

A substantial point is the selection of the parameter w, hence the perceptron

de�ned by fw(x) might perform a speci�c task. The supervised setting in which there

is a dataset

D =
{(
x2, t2

)
i∈{ii...Na}

}
(2.13)
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with, for all i,

xi ∈ RND+1, ti ∈ {0, 1} (2.14)

By re-assessing the predictions at each one parameter bring up to date in the

original perception algorithm, the parameters are repeatedly updated and the param-

eters that correspond with the incorrect predictions are modi�ed.

As formality, yi = ϕ
(
w · xi

)
∈ {0, 1} is the �nal product of the perceptron

model. For the purpose of obtaining a set of parameters where the dataset D is thor-

oughly explained, stochastic parameter updates are utilized for every pair of training

(Xi, yi) in D, as follows:

w← w +
(
ti − yi

)
xi (2.15)

Moreover, the updates that are obtained from Eq.2.15 that implemented either

for a number of iterations, �xated prior to the performance. Also, when errors con-

cerning iterations are less than the prede�ned threshold, they are �xated again prior

to the performance.

Error =
1

Na

Na∑
i=1

∣∣∣ti − yi
∣∣∣ (2.16)

This design, which is basically constructed, can show its force when various

perceptrons come together in order to work coherently. These perceptrons are usually

put in order in layers. Each one of these layers take input from the previous one, apply

weights and after points out to the next layer if possible.
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Figure 2.2 Simple Design of Perceptron.

In ANN, optimal performance is acquired when the weights are linked with

connections in-between the layers. There are two manners of achieving this outcome,

and most of the processes involve putting initials on the weights and letting the network

use it as an example. Afterwards, a process called �back-propagation� takes place,

which involves calculating the errors made by the network and feeding the outcome

backwards. This process is used to update the weights. By repeatedly increasing the

use of this process, the network acquires the knowledge that is required to categorize

numerous di�erent classes [44].

Accordingly, another one of these is feed forward Arti�cial Neural Network,

which includes activation function that means neuron transferring data to another

neuron. This function has the possibility to be linear or sigmoid [45]. When the

sigmoid activation function is utilized, the calculation of the output of the jth neuron

is made accordingly:
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zj =
1

1 + e−δ(z−inj)
(2.17)

where z−inj
de�nes the input of the neuron, which is obtained from the neuron on the

previous layer, it is calculated as such:

z−inj = bj +
n∑
i=1

xiwij (2.18)

where xi describes the �nal output of the ith neuron that was positioned on the former

layer, n represents the overall amount of neurons that were positioned on the former

layer accordingly. Moreover, wij de�nes the connection weight derived from the ith

neuron, with ith neuron which is positioned on the previous layer. Whereas bj represents

the jth neuron bias and r represents the steepness of the function connected to the

sigmoid activation. During the learning process, both of w and j values are updated.

The update requires the following equations [46]:

wij(new) = wij(old) + ∆wij (2.19)

bj(new) = bjold+ ∆bj (2.20)

∆wij = αδjxi (2.21)
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∆bj = αδj (2.22)

where α de�nes the learning rate and δ de�nes the correction factor, the productivity

of Arti�cial Neural Network is appraised by utilizing Mean Square Error (MSE) that

is described as

MSE =
1

L

L∑
k=1

m∑
j=1

(
tkj − ykj

)2
(2.23)

where the quantity of training pairs are shown with L, m de�nes the total number of

neurons in the output layer; actual and target outputs at jth neuron for kth training

pair are represented by ykj and t
k
j [47].

The set of weights, which de�nes a network architecture with a training array

of input templates, determine the output of the network designated for each entries

patterns. Together with the error occurred between the acquired network performance

and the desired target performance, they constitute a potential multimodal reaction

surface over a hyperspace which has sizes coinciding in according to the quantity of

weights [39].

One of the problems occurring with the ANN approach is the over-�tting of the

data. This problem occurs when the classi�er recognizes excellent training examples,

at the cost of being able to recognize a general input. This problem might be prevented

by using cross-validation where the network is trained on one, and evaluated on another

set of data. The network can be over-�tted if some error occurs in the validation set.

As long as the previous networks are saved, the network can be taken back to the

ground where the smallest error was present [45].
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3. RESULTS AND DISCUSSIONS

The LIDC Database enables seeing annotations from four di�erent radiologists

on CT scans. For this reason the e�ect of the consensus on classi�cation performance,

which derives from radiologists â malignancy predictions are observed in this research.

Correspondingly, the experiments are conducted on data sets with 2 and 3 classes,

where malignancy rates are grouped, and data sets with 5 classes, where such grouping

is not present. The performances of the SVM, RF and ANN are compared by using

907 nodules with 110 features.

Performances of the methods are compared by calculations on their accuracy,

sensitivity and speci�city. As explained in part 2.3, according to malignancy scores

obtained from radiologists, the dataset is divided into three:

• Class 2, comprising scores of benign (1-2) and malignant (4-5),

• Class 3, comprising scores of benign (1-2), indeterminate (3) and malignant (4-5),

• Class 5, comprising scores of highly unlikely (1), moderately unlikely (2), inde-

terminate (3), moderately suspicious (4) and highly suspicious (5).

The accuracy ratio regarding the classi�cation process is measured by detecting

cases where the test groups are classi�ed properly.

TP: True Positives, where the number of true value is malignant and the pre-

diction number is also malignant.

TN: True Negatives, where the number of true value is benign and the prediction

number is also benign.

FN: False Negatives, where the number of true value is benign while the pre-
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diction number is malignant.

FP: False Positives, where the number of true value is malignant while the

prediction number is benign.

Analyzing the ROC graph and confusion matrix concerning the trained method

is highly enough in terms of evaluating the accuracy rate of the designed classi�er [48].

In the confusion matrix, the sensitivity and speci�city for the tests are presented with

including sensitivity as properly classi�ed malignant nodules and speci�city as properly

classi�ed benign nodules.

Confusion Matrix: The cross matrix holes contain the count of classes, which

are classi�ed properly, whereas the o� diagonal cells contain instances that were mis-

classi�ed. The whole percentage of properly classi�ed instances are shown in green and

rate of misclassi�ed instances are shown in red by the blue matrix holes in the right

down.

ROC Graph: Receiver Operating Characteristics curves for each one of the

outputs are demonstrated by the colored lines in the ROC graph. In accordance with

threshold being diversed, the ROC curve is a plot that shows the true positive rate

means sensitivity or the false positive rate (1-speci�city), depending on the variation.

An ideal test would come up with a 100% sensitivity and a 100% speci�city rate, which

are shown by points in the upper side of the left edge.

3.1 Result of SVM

In this research, �rst method is SVM which selected for calculating the e�ects

of consensus achieved by radiologists on the classi�cation method.

The method is used in classifying nodules as benign or malignant, whereas test

data sets and training sets are shaped separately. The shaping of them includes utilizing
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a �ve-fold cross validation technique, which requires the present data to be dissected

into 5 random pieces, surely in accordance with their malignancy scores. The purpose

of this is being able to generalize the results by using cross validation.

For the purpose of detecting less error connected to cross validation, the pa-

rameters of BoxConstraint, PolynomialOrder, KernelFunction and KernelScale were

optimized. The higher accuracy was achieved when Kernel function Linear, the cost

value is 0.10, the margin of error is 0.001.

When the data that are grouped under class of 2,3 and 5 are tested with the

SVM classi�er, the highest accuracy is obtained with the data that are grouped under

a class of 2. Respectively, the accuracy levels of classi�cation are 0.95, 0.76 and 0.68;

whereas the CV errors are 0.048, 0.24 and 0.31.

ROC graphics are bene�cial in eliminating possibilities, concerning the organi-

zation of the classi�ers, as well as visualizing their quality performance.

After the calculation of the Receiver Operating Characteristics (ROC) curve,

the area under the curve (AUC) was procured. The AUC assists in �nding the dis-

criminatory capability of the Support Vector Machine. Admittedly, a rating of 1.0

equals perfect discriminatory ability, whereas a rating of 0.5 inclines that there is no

discriminatory ability [36].

As a results of the training data, The AUC acquired ratings of 0.9, 0.8 and 0.7.
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Figure 3.1 Confusion Matrix of SVM Classi�er with 5 Class.

Figure 3.2 ROC Graph of SVM Classi�er with 5 Class.
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Figure 3.3 Confusion Matrix of SVM Classi�er with 3 Class.

Figure 3.4 ROC Graph of SVM Classi�er with 3 Class.
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Figure 3.5 Confusion Matrix of SVM Classi�er with 2 Class.

Figure 3.6 ROC Graph of SVM Classi�er with 2 Class.



36

3.2 Result of RF

In this study, the RF method, which comprises of various decision trees, was

utilized in order to conduct the classi�cation. By the medium of sequential forward

selection, nodes of the decision trees were formed with various treasured features. Ac-

cordingly, each one of the decision trees has the ability to make judgment. They are

independent in their judgments, which are based on the features of the tree, subsequent

to the phase of data training [49]. What this study tried to obtain was a comparison

made by using di�erent numbers of trees, utilizing a sum of 110 features, whose results

are shown as follows:

Figure 3.7 Confusion Matrix of RF Classi�er with 5 Class.
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Figure 3.8 ROC Graph of RF Classi�er with 5 Class.

Figure 3.9 Confusion Matrix of RF Classi�er with 3 Class.
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Figure 3.10 ROC Graph of RF Classi�er with 3 Class.

Figure 3.11 Confusion Matrix of RF Classi�er with 2 Class.
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Figure 3.12 ROC Graph of RF Classi�er with 2 Class.

The RF classi�er is optimized with the parameters of �Num Learning Cycles�,

�Num Variables to Sample� and �Split Criterion�.

As demonstrated by the confusion matrixes above, in the cases where radiologists

reach a consensus, classi�cation made by utilizing 2 class scored higher in terms of

accuracy, in comparison with class of 3 and 5. The highest accuracy is obtained with

the data that are grouped under a class of 2. Respectively, the accuracy levels of

classi�cation are 0.947, 0.75 and 0.68; whereas the CV errors are 0,04, 0,23 and 0.27.

However, the RF classi�cation system is not more successful than the SVM method.
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3.3 Results of ANN

For the purpose of advancing the level of success of the network and aiming

it to be trained afterwards, the target and input data must be placed in the network

in order to be fed in it. Thereafter, a division is made by the network, which results

in three di�erentiated samples instead of one. The samples are associated with the

input data and they are classi�ed under three categories in terms of what they will

be used for. The di�erent kinds of samples are respectively comprised of; ones that

are used for training the system, ones that are used for validating and the ones that

help to test the system. The samples that are used for training the network helps the

network to change former knowledge in the case of an error. Moreover, the network

generalization is calculated by the validation samples. They also stop the generalization

when the generalization is no longer improving. In the event where the network errors

still occur largely, a new training of the network might be required in order to obtain

more accurate and e�ective result [50].

Out of the training dataset, 72% of the data is used for training, whereas 18% of

it is used for validation and the remaining 10% for the intention of testing. In addition,

the set of the test never changes, which is obtained by dissecting it to 10 parts. The

amount of hidden neurons are 34 for class of 5, 25 for class of 3 and �nally 18 for class

of 2.
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Figure 3.13 Confusion Matrix of ANN Classi�er with 5 Class.

Figure 3.14 Confusion Matrix Testing Results of ANN Classi�er with 5 Class.
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Figure 3.15 Confusion Matrix Validation Results of ANN Classi�er with 5 Class.

After evaluating the test results of class of 5, 3 and 2;it is seen that ANN is

the most successful classi�cation method with a performance of 0,983, 0.832, 0.757

respectively.

Figure 3.16 Confusion Matrix of ANN Classi�er with 3 Class.
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Figure 3.17 Confusion Matrix Testing Results of ANN Classi�er with 3 Class.

Figure 3.18 Confusion Matrix Validation Results of ANN Classi�er with 3 Class.
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Figure 3.19 Confusion Matrix of ANN Classi�er with 2 Class.

Figure 3.20 Confusion Matrix Testing Results of ANN Classi�er with 2 Class.
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Figure 3.21 Confusion Matrix Validation Results of ANN Classi�er with 2 Class.

An important issue concerning the structure of ANN is determining the learning

rate constant. While training the networks, if not enough epochs are used, the model

canât acquire enough knowledge, resulting in a decreased level of test and training set

accuracies, which is also called an under-�tting. Conversely, if more epochs are used,

the system might over�ow with training samples by memorizing all of them, which is

called an over-�tting. This suggests that the test has a low rating of accuracy even

though it has a good accuracy rate of training sets. Accuracy mentioned corresponds

with the ratio obtained by dividing the number of correct classi�cation samples to all

samples.
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Figure 3.22 Analyzing Accuracy Rate of Di�erent Epochs.

Analyzing accuracy rate of di�erent epochs and their test sets, which shows the

user when to stop doing a training on the network 3.3, might help with coming through

this situation. However, a di�erence will exist at all times between the accuracy rates

of training and test sets. When this di�erence starts to decline, it is taken as a sign to

stop the process of training.

The best validation performances of groups of 2,3 and 5 are demonstrated in

the graphics below. As the results show that there were no over-�tting or under-�tting

obtained during the tests.
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Figure 3.23 Results of Accuracy Rate of 29 Epochs.

Figure 3.24 Results of Accuracy Rate of 40 Epochs.
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Figure 3.25 Results of Accuracy Rate of 41 Epochs.

3.4 Comparison of Classi�cation Methods

Among the classi�cations that were made by three di�erent training sets, the

method of ANN acquired the highest score of accuracy, followed by the SVM and the

RF methods.

In the dataset of 5 classes/groups, a limited number of moderate ratings (2 -

moderately unlikely and 4 - moderately suspicious) that are not reached a consensus

upon by radiologists, e�ected the results negatively.

The dataset of 2 and 3 classes has a higher rate of accuracy than the dataset of

5 classes. Similarly that results show that the moderate ratings e�ect the classi�cation

success adversely.
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Table 3.1

Class of 5 Experiment Results.

Class 5 Experiment

Accuracy Sensitivity Speci�city CV Error Hidden Neuron

SVM 0,6803 0,4225 0,6804 0,3197 -

RF 0,6836 0,6761 0,8454 0,2780 -

ANN 0,7574 0,6338 0,8041 - 34

ANNval 0,7362 0,4615 1,0000

Table 3.2

Class of 3 Experiment Results.

Class 3 Experiment

Accuracy Sensitivity Speci�city CV Error Hidden Neuron

SVM 0,75965 0,71366 0,46561 0,24035 -

RF 0,74972 0,87665 0,67725 0,23289 -

ANN 0,83241 0,83260 0,66138 - 25

ANNval 0,84049 0,80488 0,73529

Table 3.3

Class of 2 Experiment Results.

Class 2 Experiment

Accuracy Sensitivity Speci�city CV Error Hidden Neuron

SVM 0,9519 0,9471 0,9577 0,0481

RF 0,9471 0,9604 0,9312 0,0482 -

ANN 0,9832 0,9824 0,9841 - 18

ANNval 0,9600 0,9512 0,9706

On the basis of all methods, generally the measurements of sensitivity are lower

than the speci�city measurements.

This shows that the methods are more successful in determining the negative

samples of methods, compared to positive ones.
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In terms of calculating speci�city, di�erences that are distinct as the success of

classi�cation exist between the methods. This signi�es that the methods di�er from

each other in terms of determining samples as positive or negative.

3.5 Discussion

In the literature, Han et al. [19], Kaya et al. [20], Chen et al. [21], A.Setio

et al. [23] and Zinovev et al. [24] have prominent studies on malignancy prediction

using LIDC dataset. These studies based radiologists consensus on malignancy. In our

study, malignancy ratings of radiologists were grouped as 2 classes, 3 classes and 5

classes and results are comparable with Han et al. [19] and Kaya et al. [20]'s studies.

Kaya et al. [20]'s reaches the highest classi�cation accuracy with various classi-

�ers, which is 0.8040 with 3 class of groups and Han et al. [19] is 94% with 2 class of

groups. In our study, the highest accuracy is 98,32% with 2 class of groups. Although

the classi�cation methods are di�erent, these two studies support of grouping the score

of radiologists as well as our results.

Makes a comparison by taking into account the classi�cation methods, litera-

ture's highest accuracies are Akram et al. [26] using SVM classi�er and accuracy is

96.54%, Demir et al. [27] of 90.12% with SVM and Matsuki et al. [28]'s study has

95,9% accuracy level with ANN. Our studies highest accuracy is 98,32% with ANN

classi�er.

Considering the di�erent ground truth assumptions, there are various gaps in

the literature. We used mean voting as the standard reference in our study based on

the Sauter et al. [51]'s study that refers using mean voting causes the most successful

results for these kind of datasets. When the studies in the literature are examined, it

is seen that the majority voting is used in general and there are not enough studies

using mean voting to date.
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4. CONCLUSION AND FUTURE WORK

4.1 Summary of The Study

Within the scope of this thesis, the malignancy of the nodule has been tried to

be determined by SVM, RF and ANN methods using the LIDC database published

by the American Cancer Research Institute. The e�ect of consensus, obtained from

malignancy ratings of four di�erent radiologists, on classi�cation success is calculated.

One of the biggest problems of the LIDC database is the lack of standard ref-

erences/ground truth and unbalanced data distribution. In order to determine the

ground truth, mean voting method was used. In the literature, most of the studies

conducted were made using the majority voting, and a few studies in the literature

were conducted with mean voting.

Generally, the grouping of malignancy degrees has been observed to increase the

classi�cation performance, for the reason that it decreases the representation degree of

intermediate degrees (2 - moderately unlikely and 4 - moderately suspicious), which

were controversial for the radiologists. In the experiments on the three class data set;

the aim is to reduce the scattering between evaluations by grouping the evaluations

that are close to each other ( 5 - highly suspicious / 4 - suspicious and 1 - highly unlikely

/ 2 - unlikely). Additionally, in the 2-class dataset, in order to see how non-identi�able

nodules e�ect the classi�cation success, this class was removed from the data set.

It was observed that the consistency between the radiologistsâ evaluations and

taking into consideration the linear relationship between radiographic descriptors have

positive e�ects on the classi�cation performance. In the statistical signi�cance tests,

it was observed that ANN classi�er, which has the highest classi�cation performance,

was statistically superior to other methods.
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In general, the sensitivity measurement on all methods is lower than the speci-

�city measurement. This situation inclines that methods are more successful in detect-

ing negative examples than detecting the positive ones.

When 5-class, 3-class and 2-class experiments were compared, considering all

the methods compared and developed;

• The classi�cation performance has increased by 25% on average,

• The sensitivity has increased by 41% on average,

• The speci�city has decreased by 30% on average.

4.2 Future Work

In this study, 2 and 2.5 dimensional features were used. In future studies, 3D

features can be included in the study. All features obtained from this study have been

used. By using the method of feature election, the features which a�ect the success

negatively might be eluded and the features which a�ect the success positively might

be used. Accordingly, this would also contribute to the advancement of the work.

Additionally, median voting was used for ground truth. The study might be

continued by using median or majority voting methods.

By using Deep Machine Learning methods, the classi�cation performance on

LIDC can be increased.
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