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ABSTRACT

NON-CONTACT BREATHING ABNORMALITY
DETECTION USING MACHINE LEARNING

Respiratory diseases are widely seen in the world and they are not seriously

handled until they start affecting the patient’s life very badly. Respiration motion

contains information about the patient’s health status which can be measured with

non-contact measurement techniques. Non-contact continuous measurement of respi-

ration rate and pattern is desirable for both the patients and the caregivers. Doppler

radar can measure the chest wall displacement, accurately. It is also cheap and ac-

cessible. Once the chest wall motion is captured, machine learning algorithms can

predict the type of the breathing pattern. Different types of breathing patterns con-

tain distinctive features that the classification algorithms can focus on. In this study,

a Doppler radar measurement setup was prepared. The accuracy of the system was

tested with a linear actuator and it found to be accurate enough to measure the chest

wall displacement. 5 breathing patterns including normal, hypoventilation, Kussmaul,

Cheyne-Stokes and Biot’s breathing were collected from 10 subjects. Since each sub-

ject reproduced 5 breathing patterns, a total of 50 measurements were taken. Results

show that prediction accuracy is 96% for linear discriminant and subspace ensemble

classifier, and other used algorithms also predict the patterns with more than 90%

accuracy.

Keywords: Doppler radar, Non-contact measurement, Classification, Breathing dis-

order.
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ÖZET

MAKİNE ÖĞRENMESİ İLE TEMASSIZ NEFES
BOZUKLUĞU ÖLÇÜMÜ

Solunum hastalıkları dünyada sıklıkla görülmektedir ancak hastanın hayatı çok

ciddi şekilde etkilenmediği sürece hastalık tedavi edilmemektedir. Temassız ölçüm

teknikleriyle ölçülebilen solunum hareketi hastanın sağlık durumuyla ilgili bilgiler içer-

mektedir. Solunum hızı ve hareketinin temassız sürekli ölçümü hem hastalar, hem

sağlık çalışanları için istenen bir imkandır. Doppler radar göğüs kafesi hareketini

doğru bir şekilde ölçebilir. Doppler radar modül tipi aynı zamanda ucuz ve erişilebilir

bir radardır tipidir. Gö ‘güs kafesi hareketi kaydedildikten sonra makine öğrenmesi al-

goritmaları solunum hareketi tipini tahmin edebilir. Çeşitli solunum hareketlerinin

sınıflandırma algoritmalarının odaklanabileceği farklı özellikleri bulunmaktadır. Bu

çalışmada, bir Doppler radar ölçüm düzene ‘gi hazırlandı. Sistemin hassasiyeti servo

motor konrollü lineer aktüatör ile test edildi ve radarın gö ‘güs kafesi hareketini ölçe-

bilir hassasiyette olduğu tespit edildi. 10 denekten normal, hipoventilasyon, Kussmaul,

Cheyne-Stokes ve Biot dahil 5 nefes tipi toplandı. Her denek 5 nefes hareketi ürettiğin-

den, toplamda 50 ölçüm alındı. Sonuçlar, lineer diskriminant ve alt uzay diskriminant

topluluk sınıflandırıcılarının nefes hareketlerini %96 doğrulukla tahmin edebildiğini,

kullanılan diğer algoritmaların doğruluklarının ise %90’ın üstünde olduğunu gösterdi.

Anahtar Sözcükler: Doppler radar, Temassız Ölçüm, Sınıflandırma, Nefes bozuk-

luğu.
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1. MOTIVATION

Breathing is one of the 5 vital signs, and being able to measure it continuously

gives an idea about the person’s general health. Any alteration in breathing pattern

may be caused by a damaged central nervous system which should be considered by

medical professionals.

Radar technologies enable us to detect the speed, direction and the distance of a

moving object, remotely. The accuracy of the Doppler radar displacement measurement

enables us to detect the chest wall displacement which contains both the heart and

respiration motion.

Machine learning algorithms are widely used in many fields including the bio-

medical technologies. These algorithms are able to classify the time domain signals

which makes them useful for breathing abnormality detection. To be able to accurately

classify the respiration disorders, good feature selection is an important task.

In this thesis work, a Doppler radar system was used to acquire chest wall dis-

placement. Raw data were analog and digitally processed to extract the displacement

information and then features that were thought to represent the respiratory motion

signals well were extracted. The best features representing the breathing patterns were

selected and fed into the classification algorithms. Linear discriminant analysis was

able to classify the breathing patterns with 96% accuracy.

Keywords: Breathing disorder, Biot’s, Cheyne-Stokes, non-contact measure-

ment, Doppler, classification, feature extraction, feature selection.
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2. INTRODUCTION

2.1 Respiratory patterns

The adequate supply of oxygen is crucial for the functioning of the human body

including neurological functions. Lack off oxygen affects the brain functions within

seconds, and neurons begin to die within minutes. Respiratory system supplies the

requisite gasses from the environment to the body and helps the body’s acid-base

balance. The driving force of the gas exchange is the pressure difference among inside

of the lungs and the environment, and while the diffusion is used to transport the gases

over short distances, convection is used for longer distances.

Ventilation is the gas exchange between alveoli and atmosphere, which takes

place in the lungs. To create a pressure difference which enables the ventilation, chest

and diaphragm works collaboratively. Contraction of inspiratory muscles increases the

lung volume, which decreases the inner pressure of the lung lower than that of the

environment. This pressure difference is actively generated, and it enables air to rush

inside the lungs resulting in the expansion of the thorax. Relaxation of contracted

muscles cause the diaphragm to rise, and the lung and chest volumes to decrease.

Ventilation is maintained by the interplay of the central nervous system, lung re-

ceptors, and central and peripheral chemoreceptors. Respiratory rhythm is generated

by network of neurons that are located at the ventrolateral medulla and controlled

by vagus and glossopharyngeal nerves. Chemoreceptor afferents and neurons in the

parabrachial nucleus can increase the respiratory rate and depth. Serotoninergic neu-

rons located in the ventral medulla can also affect respiratory rhythm by serving as

chemoreceptors. Apnea is a necessary process during the swallow and noxious chem-

ical irritation of airway and, it is produced by neurons in the intertrigeminal zone

[1]. Forebrain can alter the respiratory rhythm. Deterioration of any system that af-

fects respiration shows itself in respiration rate, volume, regularity, depth or in motion
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pattern [2, 3].

Several metabolic conditions may alter the breathing rate or pattern which is

accepted as the first sign of physiological deterioration [4]. Chronic respiratory diseases

are frequently seen in all around the world. The most common chronic respiratory dis-

eases are asthma, chronic obstructive pulmonary disease, acute respiratory infections,

lung cancer and tuberculosis. Around 235 millions of people suffer from asthma and

200 million suffer from the chronic obstructive pulmonary disease [5]. Being able to

detect breathing abnormalities help with the diagnosis and monitoring of the related

diseases. Early detection of deterioration can decrease the recovery time and cost,

drastically.

2.1.1 Normal Breathing

Respiration is carried out by lungs which is also responsible for buffering the

blood volume and filtering the small blot clots from the venous circulation. During the

inspiration the diaphragm, scalene muscles and external intercostal muscles contract.

This contraction results in the diaphragm to lower and this motion raises and expands

the chest which also results in expanded lungs. Conversely, expiration lowers and

reduces the chest and the lung volume. In [2], this cyclic thorax displacement depending

on the different subjects is measured in between 4-12 millimeters. For a healthy adult,

respiration rate is in between 12-20 breaths per minute (BPM) [4]. Figure 2.1 shows

chest wall motion for the normal breathing.

Figure 2.1 Normal breathing pattern. Each large box represents 30 seconds. Adapted from [6].
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2.1.2 Kussmaul Breathing

Dr. Adolf Kussmaul observed diabetic patients who were in the late stage of

ketoacidosis. He described a new breathing pattern that is deep and rapid and is caused

by severe metabolic acidosis. Kussmaul breathing is more commonly seen in diabetic

ketoacidosis, lactic acidosis, sepsis and less common in salicylate poisoning, renal tubule

acidosis and diarrhea [7]. Figure 2.2 illustrates Kussmaul breathing pattern.

Figure 2.2 Kussmaul breathing pattern. Each large box represents 30 seconds. Adapted from [6].

2.1.3 Hypoventilation

Hypoventilation is a condition of decreased depth and respiratory movement.

Patients with this condition exhale less CO2 than the rate of CO2 they produce. It

causes unbalanced partial pressure of CO2 level. Chest injury, neuromuscular disorders,

Batter’s syndrome and adrenal steroid excess are some of the causes of hypoventilation

[1].

2.1.4 Cheyne-Stokes Breathing

Cheyne-Stokes breathing is described as cyclical, increasing-decreasing breath-

ing pattern followed by apnea. This type of breathing is generated by normal brainstem

respiratory reflexes [8, 9]. For a healthy person, there are only a few seconds of circu-

latory delay between a change in alveolar blood gasses and CO2 tension in the brain.

Although cardiovascular or pulmonary diseases increase the circulatory delay, descend-

ing pathways sustain the breathing even during no need for respiration. This feature

damps the oscillation that causes Cheyne-Stokes. Bilateral damage, hepatic failure,
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uremia and heart failure that prolongs blood reach from lungs to brain [1].

Cheyne-Stokes is commonly seen in patients who suffer from brain tumor, trau-

matic brain injury, carbon monoxide poisoning and stroke. It is also mentioned in

the literature that among the patients who had heart failure, those who have Cheyne-

Stokes breathing pattern have a worse course of disease than those who do not have it

[7]. Figure 2.3 illustrates the Cheyne-Stokes breathing pattern.

Figure 2.3 Cheyne-Stokes breathing pattern. Each large box represents 30 seconds. Adapted from
[6].

2.1.5 Biot’s Breathing

In the 19th century, Camille Biot studied patients who had Cheyne-Stokes

breathing and in one patient he observed that rather than regular gradually increased

and decreased respiratory movements, patient had irregular crescendo and decrescendo

cycles following apnea segments were seen for both Cheyne-Stokes and Biot’s breath-

ing patterns. So, Biot concluded that this breathing pattern should be named different

than Cheyne-stokes. This type of breathing abnormality is seen in patients with brain

stem injury, medullary lesions, narcotic medications and chronic opioid abuse [7, 10].

Figure 2.4 illustrates the Biot’s breathing pattern.

Figure 2.4 Biot’s breathing pattern. Each large box represents 30 seconds. Adapted from [6].
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2.2 Vital Sign Measurement Techniques

2.2.1 Contact-based Measurements

There are several methods being used by contact-based respiration monitoring.

Respiration measurement devices can be acoustic based, airflow based, rib cage and

abdominal displacement detection based, transcutaneous CO2 monitoring based or

electrocardiogram (ECG) derived respiration rate based. In [11], Mimoz et al. were

able to accurately measure the respiration rate with an acoustic transducer. The results

of acoustic transducer were tested by comparing its results to an airflow measurement

based capnometer. To assess the accuracy of the respiration rate statistically, Bland-

Altman analysis method was performed.

Respiratory inductive plethysmography (RIP) is another contact-based respira-

tory monitoring device that measures the rib cage and abdomen circumference. Zhang

et al. in [12] present a RIP module with accurate lung volume estimation and low

power consumption.

ECG derived respiration rate measurement technique uses the modulation ef-

fect of respiration over the ECG signals. Respiration rate can be extracted from ECG

signals by measuring the respiratory induced fluctuations. Mazzati et al. [13] moni-

tors respiratory waveform, frequency and apnea and results were compared with the

nasal/oral flow.

Oximetry probe-based devices emit and collect red and infrared frequencies

to measure the blood oxygen saturation. The oxygenated hemoglobin absorbs more

infrared frequencies and less red light frequencies, and the oxygenated hemoglobin

absorbs more red light and less infrared light [14].

Fekr et. al developed a contact-based respiratory abnormality detection system

using an accelerometer sensor [15]. They have used hierarchical Support Vector Ma-

chine (SVM) algorithm to detect five types of breathing abnormalities. The average
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accuracy of the system found to be 82.29% for 11 subjects. In [16], Fekr et. al con-

ducted another investigation on breathing abnormality detection with 10 subjects and

eight types of breathing abnormalities, using six different classification algorithms. The

best accuracy was found to be 97.50% in SVM and second best algorithm for the study

group was found to be 97.37% with decision tree bagging (DTB). The measurements

were again taken with contact-based accelerometer.

2.2.2 Non-contact Measurements

Non-contact vital sign detection is widely studied in the literature [17–22]. In

[17], Lohman et al. studied Doppler radar vital sensing and the low-pass filtered the

respiration signals with 0.7 Hz cut-off frequency to extract the respiration motion and

band-pass filtered the unfiltered signal with 1-3 Hz cut-off frequencies to extract heart

rate. They used autocorrelation method to estimate the heart rate and respiration

rate and concluded that 88% of the time their estimations were correct compared to

reference rate taken from pressure pulse sensor UFI-1010. Suzuki et al in their work

[19] used dual-frequency microwave radars to monitor vital signs for elderly care. They

located their two 24 GHz radars underneath the mattress to measure the heart rate and

respiration rate. An electrocardiogram was used as a reference measurement system

and their system was r=0.92 correlated for the heart rate measurement. Also they

found the respiration rate correlation coefficient as 0.94.

Lee et al. [22] suggest to decompose the inhalation and exhalation segments for

more detailed information investigation. They also suggest continuous wavelet trans-

form for detailed analysis of the respiratory patterns. They found strong correlation

between Doppler radar and spirometer during tidal volume estimation. Rahman et al.

[23] were able to accurately predict which subject is breathing behind the wall by just

looking at their similar breathing patterns. They proposed to zoom in the segments

of the breathing cycle and also increase the signal to noise ratio by manipulating the

DC offset. They used 2 subjects 14 breathing patterns and all the predictions were

correct. Miao et al. [20] used Doppler radar for monitoring the 4 different breath-
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ing patterns including normal, Cheyne-Stokes, dysrhythmic and Kussmaul’s breathing

types. Then by using support vector machine (SVM) classifier and six different kernel

functions, they found that the best accuracy for the classification of the breathing pat-

terns was 93.3%. They have used 5 different subjects and 60 samples were taken from

these subjects. The linear SVM was predicted correctly all the normal and Cheynes-

Stokes instances. While the dysrhythmic breathing was predicted with 80% accuracy,

Kussmaul’s breathing was predicted with 93% accuracy. Another Doppler radar based

system is [21] which detects sleep quality by measuring the heart rate, respiration rate

and body motion. They collected 110 hours of sleep data from 8 subjects and they

used an ARM microcontroller and an Android smartphone to handle machine learning

algorithms. The heart rate error of the device was found 8.07% and respiration rate

error was found 10.84%. ffff

2.3 Radar Principles

A Radio Detection and Ranging (RADAR) device generates radiating electro-

magnetic energy and receives the returning echo signals that are reflected from the

objects. The distance of the object from the radar can be extracted from the travel

time. Travel time is the sum of the transmitted signal’s duration to hit the object and

reflected signal’s duration to the hit the radar receiver. If the target is stationary, then

the phase and frequency of the reflected signal do not change. However, if the target

is moving, received signal’s (reflected signal) phase is shifted and therefore the velocity

of the target’s movement can be found by signal processing. Depending on the size,

material and geometry of the target, the received signal’s power changes. By choosing

the appropriate frequency, radar signals can penetrate through walls, clouds, dust or

blankets which enables to detect invisible targets. The frequency range for radar is

usually defined as 3 kHz to 300 GHz, and both resolution and atmospheric attenuation

increases with higher frequencies for pulsed radar systems [2, 24,25].

Figure 2.5 car curt shows the typical radar system components. A radar system

has a transmitter, a receiver, an antenna and a signal processing unit. The transmit-
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ter is responsible for generating the electromagnetic waves and amplification of it to

the required power. An antenna concentrate the radio waves to the desired direction

and receive the echo signals from the same direction. Using this property, the target’s

direction can be detected. The receiver detects the reflected waves from the objects

whose dielectric constants are different and at the direction of the transmitted waves.

Then the receiver down converts the received transmission frequency to the interme-

diate frequency or base-band. It also amplifies the signal for digitization or display

purposes, and separates the noise and interference from the signal.

Figure 2.5 Simplified radar block diagram. Adapted from [26].

2.3.1 Doppler Radar

In 1842, Austrian physicist Christian Doppler discovered that the frequency of

the reflected waves is shifted if there is a relative movement between object and signal

source. Basically, if the relative speed is zero then the radar system reaches the same

cycles as the signal source transmits. If the object is getting closer to the radar than

the radar reaches more cycles than in stationary state. The reflected Doppler shift is

positive if the relative distance increases between the signal source and the object and

vice versa. The relation between velocity and the Doppler shift can be expressed with

fd =
2ftνr
C0

(2.1)
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where fd is the Doppler frequency shift, ft is the radar frequency, νr is the radial

velocity (m/s) which equals to v cos θ, and C0 is the speed of light [27].

Doppler radar systems are widely used in various fields such as vehicle speed

measurement, weather forecasting, door opening systems and physiological vital sign

detection systems [2, 17, 25]. Several waveforms such as CW, frequency modulated

continuous wave (FMCW) and pulsed can be selected depending on the specific re-

quirements of the application.

If we neglect the phase noise and simplify the CW transmitted signal then it

can be expressed as:

T (t) = cos (2πf0t) (2.2)

where f0 local oscillator frequency, t is elapsed time. Transmitted signal travels until

it is reflected from an object or human body. If the transmitted signals is reflected

from the subjects rib cage which has a relative movement to the transmitter, then the

phase shifted received signals can be expressed as:

R(t) = A cos (2πf0t+
2π

λ
(2d0 + 2d(t))) (2.3)

where d0 is the initial distance between rib cage and radar antenna, and d(t) is the

displacement resulting from the breathing and heart beat, and A is the received signal’s

amplitude.

A simple Radio Frequency (RF) front end contains transmitter, receiver, local

oscillator, splitter and frequency mixer. It basically multiplies the transmitted and

received signals which results:

R(t)T (t) = A cos (2πf0t+
2π

λ
(2d0 + 2d(t))) cos (2πf0t) (2.4)

and from trigonometry,

cos a cos b =
cos (a− b) + cos (a+ b)

2
(2.5)
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Resulting signal can be expressed as

R(t)T (t) =
A

2
cos (

2π

λ
(2d0 + 2d(t))) +

A

2
cos (2πf0t+

2π

λ
(2d0 + 2d(t))) (2.6)

A low pass filter can be used to eliminate the high frequency component of the equation

and received baseband signal becomes,

R(t)T (t) =
A

2
cos (

2π

λ
(2d0 + 2d(t))) (2.7)

and its variable phase can be expressed as,

θ(t) =
2π

λ
2d(t) (2.8)

Simply by taking the arccos of the sensor output, chest wall displacement can be found

[2]. This type of radar is called single channel radar system, and its main disadvantage

is the null point limitation which was described in [28] as loss of sensitivity at distances;

d0 =
n

4
λ (2.9)

if the n is an integer. Figure 2.6 illustrates the single channel Doppler radar system.

Figure 2.6 Single channel Dopper radar illustration. Adapted from [29].
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Quadrature receiver system is proposed by [29] to overcome the null point lim-

itation problem. In quadrature systems there are two output ports which are called

in-phase and quadrature channels. Quadrature channel output is generated by phase

shifting the local oscillator signal by 90◦ and then mixing it with the received signal.

So, while the quadrature channel term contains sine function, in-phase channel contains

cosine function. By taking the arctangent of two output channels,

φ(t) = arctan

(
Q(t)

I(t)

)
= arctan

(
sin (θ + d(t))

cos (θ + d(t))

)
= θ + d(t) (2.10)

where d(t) is the superposition of respiratory and heart motion can be found. So, the

respiration motion’s phase information x(t) and the heart motion’s phase information

y(t) can be expressed as d(t) = 4π(x(t)+y(t))/λ. If the measured displacement is bigger

than the half wavelength of the carrier signal, unwrapping is needed. Thereafter, the

equation

∆X =
1000C0

4πf
arctan

(
Q(t)

I(t)

)
(2.11)

can be used to find the chest wall displacement (∆X) in millimeters where f is the

Doppler radar’s carrier frequency [30].

A more comprehensive equation which includes quadrature channel imbalance,

DC offset and phase error can be written as

φ′(t) = arctan

(
Q(t)

I(t)

)
= arctan

(
VQ + Ae sin (θ + d(t) + φe)

VI + cos (θ + d(t))

)
(2.12)

where VI and VQ are the DC offset and Ae and φ′e are the amplitude error and phase

error, respectively [2, 31].

2.4 Machine Learning Approach

Predicting the possible future actions of a system or extracting the hidden infor-

mation in a respiration motion can be accomplished by programming computers. Given

a set of data from the chest wall motion of several patients and healthy subjects, ma-
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chine learning algorithms select some parameters and optimize the selected parameters

in the training phase. Selected parameters are expected to express the original data

well. Systems where the features and their labels are clearly given to the algorithm are

called supervised learning. Since the algorithm has access to the structure of the data,

new data can be classified according to the specific properties of the algorithm. In this

section, extracted features and applied classification algorithms will be described.

2.4.1 Feature Extraction and Selection

Finding the most expressive features for each class is one of the most important

tasks for machine learning algorithms. By choosing the most relevant k dimensions

(features) that can carry most of the information of the original data, classification

speed increases and the complexity of the algorithm decreases. Furthermore, although

mostly increasing the number of features results in better training error, it does not

necessarily lower the validation error which is loss of the time and effort [32]. Several

features described below was used in this thesis to help classify the different breathing

patterns.

Number of peaks: In a selected time window, the number of peaks represents how

many breath is taken. Peak is found at the location where the inhalation ends and

exhalation starts.

Peak average: From a selected time window, amplitudes of peaks were found from

the breathing signal and then mean value is calculated from these amplitudes. Peak

average represents the average depth of the subject‘s breath.

Maximum amplitude: Maximum value of the breathing pattern signal. It gives the

subject‘s deepest breath from a selected time window.

Peak Variance: Variance of a signal is average squared deviation from the mean, and

it shows the variability within the signal. In this work, it represents the variance of

the tidal volume.

Maximum Value of the Short-time Signal: Short term energy of 5 seconds sliding
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window was first calculated. To calculate the energy of the signal, equation:

N∑
n=0

|x(n)2| (2.13)

is used. The resulting energy matrix is shorter than original breathing pattern matrix

and it has its own maximum, minimum, variance value. Maximum value of the new

matrix is selected as short-time maximum value. Before the calculation of the short

term energy, the signal was normalized to between 0 and 1 by dividing its each com-

ponent to the maximum value of the original matrix.

Minimum Value of the Short-time Signal: Minimum value of the short-time en-

ergy matrix.

Range of the Short-time Signal: Maximum value of the short-time signal is sub-

tracted from minimum value of the short-time signal to find the range of the short-time

signal.

Variance of the Short-time Signal: Variance of the short-time energy matrix.

Maximum Value of the Instant Frequency: First to find the instantaneous fre-

quency, unwrapped instantaneous phase angle divided by 2π and the derivative is taken.

Then the maximum value of the new matrix is selected as the maximum value of the

instantaneous frequency.

Minimum Value of the Instant Frequency: Minimum value of the instant fre-

quency matrix.

Range of the Instant Frequency: Range of the instant frequency matrix is calcu-

lated with subtracting the maximum value of the instantaneous frequency from mini-

mum value of the instantaneous frequency.

Variance of the Instant Frequency: Variance of the instant frequency matrix.

Mean of the Instant Frequency: Mean of the instant frequency matrix.

Approximate Entropy: From a selected time series window, approximate energy

(ApEn) measures the randomness and regularity of a signal. ApEn is well explained

in [33] and formulated as

ApEn(m, r,N) = φm(r)− φm+1(r) (2.14)
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where

φm = (n = m+ 1)
N−m+1∑

i=1

logCm
i (r) (2.15)

and Cm
i (r) is the number of j such that d[x(i), x(j)] < r/(N −m+ 1) where

d[x(i), x(j)] = maxk=1,2,...,m(|u(i+ k − 1)− u(j + k − 1)|) (2.16)

from a time series of data u(1), u(2), ..., u(N). Typically, m is set to 2 and r varies

depending on the application, and it is considered to be in between 0.1-0.2 times the

standard deviation of the time series data [34].

Kurtosis: To detect the distribution of the data and depending on the kurtosis result,

it tells information about the shape of the distribution. The kurtosis of a signal is

β2 =
E(X − µ)4

(E(X − µ2))2
=
µ4

σ4
(2.17)

where E is the expectation operator, X is the input signal, µ is mean of the input

signal.

Apnea Score: This feature tries to give higher scores to the breathing patterns that

contain apnea. The algorithm calculates the standard deviation of the signal first.

Then takes the derivative of the signal to set the apnea segment to the zero amplitude.

As a final step, a the algorithm finds how many points lay in between ± 0.2 standard

deviation from the mean of the signal.

After the extraction of features, to be able to express the target best, feature

selection must be performed. Any feature that is highly correlated with other features

will increase the risk of misleading the classification of the data. Multivariate feature

selection can be done using filter, wrapper or embedded methods. Filter methods

were used in this thesis and they include correlation, variance thresholding and linear

discriminant analysis.
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2.4.2 k-Nearest Neighbor

k-Nearest-Neighbor (kNN) is a supervised classification algorithm that classifies

the new data point with respect to its k closest neighbor. Supervised algorithms need

labeled data sets and kNN is no exception. To assign the new object to a classifier, it is

wise to choose k value odd-numbered, since it increases the chance of not having equal

votes and tie for the new object’s assignment. The distance of the new test object to

each point can be found with several distance functions. Depending on the effectiveness

on the data set, distance function can be Euclidean, Manhattan, Minkowsky, Camberra,

Chebychev, Hamming or other less popular distance functions. Euclidean distance is

widely used and can be described as;

D(x, y) =

√√√√ k∑
i=1

|xi − yi|2 (2.18)

The algorithm is memory-based and although it does not need a training phase and

model creation is easy, it still needs to compute each point’s distance information which

makes it slow and computationally expensive.

Figure 2.7 Illustration of new grey hexagon data point and its distances to closest neighbors.
Adapted from [35].
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2.4.3 Decision Tree

Decision tree is a common nonparametric method which is structured as a tree

and have root nodes, decision nodes and leaf nodes. Branches are the possible outcomes

of the previous node and they determine the direction to the new nodes. Root node

has no incoming edge and it is the starting point of the tree. Decision nodes have one

incoming edge and have at least two branches. New nodes represent smaller regions

which are divided into a smaller nodes until they reach to a leaf node. Leaf nodes or

also called end nodes are the class predictions and they only have one incoming edge.

Any new data that falls in to this leaf node has the same label if it is a classification

problem and similar numeric results for regression problem [32]. Figure 2.8 illustrates

a decision tree and its data set which desired to be classified either to C1 or C2.

Figure 2.8 Dataset and its decision tree. Adapted from [32].

A commonly used method divide and conquer is developed by Quilan et al. [36]

and split the data according to the feature that has the most discriminative subset.

The procedure continues until the decision node reaches to the leaf node.
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2.4.4 Support Vector Machine

Support vector machine (SVM) is another supervised learning algorithm which

can be used for both regression and classification. This classifier tries to maximize the

margins of hyperplane so it is robust to outliers. This hyperplane is the place where

two data set are the most distinct and support vectors are the closest boundries to the

data set. Figure 2.9 shows the optimal hyperplane which is between black dot line and

linear separator with black line [32].

Figure 2.9 Support vector machine illustration. Adapted from [32].

Although the classifier requires high memory and time for the training, by using

the kernel functions it is not required to have the nonlinear mapping. This is done

by applying a transformation and generates a new feature set. Two kinds of kernel

functions are linear kernel and polynomial kernel functions [20].
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2.4.5 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is commonly used supervised algorithm for

dimension reduction and classification of the data set. It was created by R.A. Fisher

in 1936. The algorithm tries to find the best linear transformation that can discrim-

inate among classes. To evaluated the accuracy of the separation, distance between

two groups is found by any euclidean distance formula. The result shows how much

the classes differ in terms of standard deviations. To classify a new data point, the

algorithm checks whether or not the data satisfies below inequality:

βT

(
x−

(
µ1 + µ2

2

))
> − log

p(c1)

p(c2)
(2.19)

where βT is coefficients vector, x is the data vector and the right side of the inequality

is the class probability. The classifier assumes that data can be separated by their

distribution functions. It works well even though the data is not normally distributed

[37].

2.4.6 Gaussian Naive Bayes’

Gaussian naive Bayes’ is a probabilistic classifier algorithm which basis Bayesian

theorem and it is called naive because the algorithm ignores the correlations and de-

pendencies. It means any feature that is used for classification purpose excepted to be

unrelated to other features. The algorithm uses equation below to find the probability

of the event P (e) occur:

P (e|Y ) =
P (Y |e) ∗ P (e)

P (Y )
(2.20)

where P (e|Y ) is the posterior probability of the class for given predictor and e is

the class variable and Y is the features, P (Y |e) is the likelihood, P (e) is the prior

probability of e and P (Y ) denotes the prior probability of the predictor [32,35].
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2.4.7 Subspace Discriminant Ensemble

Subspace Discriminant Ensemble uses the outputs of several classification algo-

rithms including a weak learner and gives the results of the best performing combina-

tion. It generally results better than single classification algorithm. This method is

more suitable for cases where the number of features is high.
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3. METHODS AND EXPERIMENTAL SETUP

3.1 Preliminary Doppler Radar Measurement Setup

To be able to detect heart and respiratory rate in real-time, an ARM-based mi-

crocomputer was utilized to Doppler radar measurement system was build. Hardware

of the designed system includes an ARM-based microcomputer, power regulators, band-

pass filters, amplifiers, analog-to-digital converter, IPS -154 Doppler radar transceiver.

Figure 3.1 shows the designed system’s block diagram.

Figure 3.1 Block diagram of the designed Doppler radar measurement system.

IPS -154 is responsible for transmitting and receiving the 24 GHz electromag-

netic waves and converting to the base band quadrature signals. Allocated power

supply of the RF front-end is low noise RF regulator and ARM-based microcomputer

does not use the same power supply. These baseband signals are then fed to ampli-



22

fiers which have the gain of 20 chosen by empirically for 1 m distance measurements.

Amplified signals are then band-pass filtered with 0.0005 Hz lower cut-off and 40 Hz

higher cut-off frequency for the DC cancellation and antialiasing purposes. To be able

to digitize the data, quadrature signals are then carried with 1.25 volts DC signal. A

12 bit ADC is used to digitize the data which then transmitted to ARM-based mi-

crocontroller with serial peripheral interface (SPI) protocol. Sampling rate is set to

160 Hz for minimizing the band interface. The digitized data then signal processed to

extract the respiration and heart rate.

The software of the designed Doppler radar measurements system extracts the

respiratory rate and the heart rate by following the steps plotted in Figure 3.2.

Figure 3.2 Block diagram of the digital signal processing steps of the designed Doppler radar
measurement system.

Digitized data first averaged and DC cancelled by using several digital differ-

entiators and integrators. Quadrature signals are then arctangent demodulated and
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resulted signals represents the chest wall motion in wrapped radians. Before converting

the data to distance, unwrapping is done and radians are converted to angle. Distance

conversion of the angle is done by using Eq. 2.11. Respiration rate and heart rate

are extracted from the same motion informaition by filtering with 2 different FIR fil-

ters. For the respiration rate, cut-off frequency was set to 0.7 low pass filter and for

the heart rate cut-off frequencies were set to 1 Hz to 3 Hz band-pass filter. For both

respiration and heart rate signals an 18 seconds long Hanning window is applied and

resulted signals autocorrelation was calculated. Lastly respiration and heart rate are

found by finding the second positive peak of the autocorrelation.

Extracted respiration rate and heart rate are then sent to the internet server

with message queuing telemetry transport (MQTT) communication protocol. Since

the signal processing is executed on the proposed Doppler radar system and sent to

the internet server, any computer that has internet connection can be used to monitor

the status of the patient. Displayed physiological data are then stored for further usage.

The computer that displays the vital signs is named as subscriber and its graphical

user interface was written in Python code. The program has color coded warning for

caregivers and it can show multiple subjects status.

3.2 Doppler Radar Setup

Below procedures were followed to be able to transmit and receive the Doppler

radar signals, extract displacement information and compare the system’s reliability

with other distance measurement systems. For each following sections, the Doppler

radar distance measurement system containing HMP4030 programmable power sup-

ply (Rohde Schwarz, Munich, Germany), LeCroy WaveRunner 6100A 1 GHz oscil-

loscope (Teledyne LeCroy, New York, USA), K-band transceiver IPS-154 (InnoSent,

Geldersheim, Germany) and MATLAB R2019a mathematical computing software (The

MathWorks, Inc. Massachusetts, USA) were used as described below.

IPS-154 is a 24 Ghz CW transceiver with 2 channel outputs which are in-phase
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and quadrature signals. The transceiver’s horizontal full beam width is 45° and its

vertical full beam width 38°. It operates with 5V and in this thesis, power is supplied

with a LT3042 ultra low-noise RF linear regulator. Linear regulator is supplied with

HMP4030 which is also a low noise power supply. Once the IPS-154 is supplied with

power, it starts to generate the in-phase and quadrature outputs with respect to the

movement in front of it. Generated quadrature signals are then low pass filtered with

a 160 KΩ resistor and 0.1µ capacitor which results in 10 Hz cutoff frequency. Filtered

channels are then sampled with 500 Hz rate using LeCroy WaveRunner 6100A oscillo-

scope. Samplings were done with DC 1MΩ coupling, 3 bits noise filtering and 1 sweep

pre-processing averaging settings in the oscilloscope. To have synchronous sampling,

channel 2 and channel 3 were used. Sampled quadrature channels are then saved to an

external hard disk in the MATLAB compatible .mat file format. LeCroy oscilloscope

generates 2 .mat output files for one for in-phase and other for quadrature channel.

Generated files contain the time variables in their first column, while the second column

is the voltage information.

3.2.1 Doppler Radar Signal Processing

To extract the distance information from the digitized quadrature signals, sev-

eral steps of operations were performed which are shown in Figure 3.3.

Figure 3.3 Flow chart of the digital signal processing steps for breathing pattern extraction.
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Digital signal processing and other codes to compare results, extract features

and classification of signals were written in MATLAB R2019a. First, data were im-

ported by a script written and then imported data were trimmed to equalize the length

of the data files. DC cancellation was applied by subtracting each channel’s mean volt-

age from itself. Arctangent demodulation was then applied to the quadrature signals

using Eq. 2.10. Demodulated signals were in wrapped radian results which needed

to be unwrapped to find the distance information. Unwrapping was simply done by

adding multiples of ±2π to the angular data if there is a jump more than π radian

between two data points. To convert the angle data to distance, Eq. 2.11 was used.

Extracted distance information contains both the respiratory and the heart motion

which is later extracted with a Kaiser window finite impulse response (FIR) low pass

filter. Cutoff frequency of the filter was selected as 0.7 Hz which caused the filter or-

der to be 6272. Resulted signals contained different breathing patterns and they were

manually trimmed to get separate breathing patterns.

3.3 Test Setup with Linear Actuator

To evaluate the accuracy of the designed Doppler radar system, the system was

placed 1 meter in front of the linear actuator as it is shown in Figure 3.4. A metal sheet

was attached to the linear actuator to reflect the transmitted signals. Linear actuator

system was controlled by a program that was written in C# programming language.

Position information and elapsed time variables were saved to a text file. To minimize

the vibration of the linear actuator system, the speed of the system was set to 5 mm/s

and it was programmed to make a 10 mm cyclic periodic movements. To attenuate

the servo motor’s electrical noise on Doppler radar measurement setup, both systems

plugged in different power sources.

Doppler radar measurement setup was the same as it was explained in Section

3.2. Since the sampling frequency of the linear actuator is lower compared to the

designed Doppler radar system’s sampling frequency, measurements from the linear

actuator were linearly interpolated for further investigations.
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To evaluate the accuracy of the designed Doppler radar system’s measurements

with linear actuator’s servo motor encoder results, a gold standard statistical analysis

method Bland-Altman was used.

Figure 3.4 Doppler radar test setup with linear actuator.

3.4 Test Setup with Respiratory Belt Transducer and Doppler

Radar

Designed Doppler radar system results were also compared with the results from

Biopac Respiratory Effort Transducer -MP30 (BIOPAC Systems Inc, CA, USA), while

both systems were measuring the same patient’s chest wall displacement, simultane-

ously. Measurements were taken while the subject was wearing respiratory belt trans-

ducer on his rib cage and laying on a desk as it is shown in Figure 3.5. Doppler radar
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was placed above the patient’s rib cage to measure the same area as respiratory belt

transducer. It was asked from subject to breathe normally and not to move during the

measurements. Respiratory belt transducer measurement results were acquired with

Biopac Student Lab Version 3.7.6 software program with 100 Hz sampling rate and

saved to a text file. The Doppler radar system’s measurement results were collected as

it was explained in Section 3.2.

Figure 3.5 Doppler radar test setup with respiratory belt.

3.5 Breathing Measurement Test Setup

To measure 5 different breathing patterns including normal, Kussmaul, Biot’s,

Cheyne-Stokes breathing and hypoventilation, subjects laid on a desk while the de-

signed Doppler radar system was focused on their chest wall. Subject warned to not

to move their body during the test. Subjects were between 19-29 years old who were
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students of Boğaziçi University. Breathing patterns were shown to the subjects and

they were guided during the measurements as explained below:

Normal Breathing: Subjects were asked to relax and breath normally.

Kussmaul Breathing: Subjects were asked to breath faster and deeper than the

normal breathing to increase the frequency and the tidal volume of their respiration.

Biot’s Breathing: Subjects were asked to breath faster than the normal breathing

with no extra effort to inhale deeper for regular tidal volume. Subject was also asked

to hold his/her breath when he/she heard the command "hold" to mimic the periodic

apnea of the Biot’s breathing.

Cheyne-Stokes Breathing: Cheyne-Stokes breathing pattern was shown to subjects

and they were asked to increase the depth of their breath and then, decrease the depth

of their breath for the same amount of time as much as possible, and hold his/her

breath until the command "Start again".

Hypoventilation: To breathe less than 12 times in a minute, subjects were asked

to finish his/her breathing cycle at least 6 seconds or more. Subjects were also asked

to breathe less deeply than when they were breathing normally to decrease the tidal

volume of their respiration.
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Figure 3.6 Breathing measurement test setup.

3.6 Feature Extraction and Selection

Collected breathing pattern signals are first manually trimmed to have 60 sec-

onds of each type of breathing pattern. Since there are 5 breathing patterns to be

investigated from 10 subjects, a total of 35 breathing signals were collected. 16 fea-

tures were extracted from each breathing signal, and those features were described in

the Subsection 2.4.1. Extraction of features was done on MATLAB R2019a software

environment.
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Features that have higher correlation coefficients than 0.7 for each breathing type

were extracted from the feature set. Features were eliminated one by one, checking the

correlation after every elimination to keep the maximum number of uncorrelated fea-

tures. Elimination according to the correlation has been performed on both normalized

and not normalized data.

Linear discriminant analysis was performed after the elimination according to

the correlation to be able to eliminate non-linearly correlated features, as well. The

procedures that are followed to compute the new 4 dimensional feature set is can be

found in Appendix A.

Finally, extracted and selected features were fed to the MATLAB’s classification

learner tool to see the classification algorithm results.
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4. RESULTS

This section explains the extraction of the displacement information from the

raw data and then compares the results of the measured displacement information with

a linear actuator and a respiratory belt. Thereafter, Subject 5’s breathing patterns are

illustrated and features that are extracted from them are given in a table for each

subject. Lastly, classification algorithm results are then given Section 4.6.

4.1 Preliminary Doppler Radar Measurement Setup Results

The designed Doppler radar is illustrated in the Figure 4.1. The hardware

dimensions were 56.5 mm for the width and 85.6 mm for the length and lastly the

height was 80 mm.

Figure 4.1 Designed Doppler radar measurement system.

Normal breathing respiration movement, cough and apnea mimic from a subject

while he was wearing respiratory belt transducer and Doppler radar measurement was

focus on the same area results are shown in Figure 4.2.
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Figure 4.2 Designed Doppler radar measurement system and respiratory belt comparison.

The top graph is taken from the respiratory belt transducer and Y axis represents

the voltage that is generated from the transducer of the respiratory belt which caused

from the chest wall motion. Second graph at the bottom is the results from designed

Doppler radar and Y axis of it shows the chest wall displacement in mm. First red

circle on the left side of the plot between 5-8 seconds illustrates the cough mimic of the

subject and the second red circle on the right side of the between 24-33 seconds shows

the apnea mimic of the subject.
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4.2 Linear Actuator Measurement Results

Figure 4.3 shows the course of calculation of distance starting from the collected

voltage values. Figure 4.3(a) shows the in-phase (blue) and quadrature (red) channel

measurement results for 30 seconds. The amplitude of the channels was scaled to -1 to

1. Figure 4.3(b) is the result of the arctangent demodulation. The result of arctangent

demodulation is in between −π to +π and the unwrapped plot is shown in Figure

4.3(c). In Figure 4.3(d) the black line illustrates the results taken from the controller

of the linear actuator. The red line on the same plot is the calculated displacement of

linear actuator measured by Doppler radar in millimeters.

Figure 4.3 Doppler radar displacement extraction steps.

Position information from the linear actuator and Doppler radar displacement

measurements given above were compared with Bland-Altman analysis and results

were depicted in Figure 4.4. X axis shows the mean of the two different method’s

position measurements. Y axis shows the difference between all position measurements

where the interpolated linear actuator position information was subtracted from the

Doppler radar measurements. The black line shows the mean value of the difference in

measurements and it is at 0.0594 mm. Red lines are the 1.96 standard deviations added
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and subtracted from the mean difference value which are 0.2833 mm and -0.1645 mm

respectively. Most of the overrun data are observed when the mean of measurements

was between 4mm to 6 mm, but 96.87% of the points were inside the red lines.

Figure 4.4 Bland-Altman analysis result of Doppler radar vs Linear Actuator.

4.3 Respiratory Belt vs Doppler Radar Measurement Results

Doppler radar and Biopac respiratory effort transducer -MP30 measurement

results were shown in Figure 4.5. Subject’s chest wall displacement was measured

with the Doppler radar, and resulting respiration motion were shown in Figure 4.5(a).

Y axis of the graph shows the chest wall displacement in millimeters and maximum

displacement is measured to be 11.05 mm. Figure 4.5(b) shows the results from the

Biopac respiratory effort transducer -MP30. X axis of both graphs illustrate the time,

and measurements were taken for 70 seconds. Y axis for respiratory belt transducer

was acquired in voltages. Peak counting indicates that the respiratory rates are equal

for both methods. Subject’s breath hold (apnea) reproduction takes place between

16-28 seconds for Doppler radar system and for respiratory belt it was seen between

17-28 seconds. While the Doppler radar has shown constant like distance measurements
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during the apnea, respiratory belt transducer showed a descending trend.

Figure 4.5 Single subject’s normal breathing and apnea measurement results of Doppler Radar and
Biopac respiratory effort transducer -MP30. Figure 4.5(a) Doppler radar measurement result. Figure
4.5(b) Biopac respiratory effort transducer -MP30 measurement result.

4.4 Breathing Measurement Results

Breathing patterns described in Section 2.1 were reproduced by 10 subjects,

resulting chest wall displacement graphs collected from Subject 5 can be seen in Figure

4.6. All breathing patterns were recorded for 60 seconds. Figure 4.6(a)-(e) shows

the Biot’s, Cheyne-Stokes, hypoventilation, Kussmaul and normal breathing patterns,

respectively. During the Biot’s breathing measurements, subject 1,3 and 7 took deep

breaths and held it which altered the several feature results including maximum peak

location, peak average, and peak variability. Moreover, as can be seen in subject 5’s

breathing result, measurement base-line oscillates during the measurements and this

oscillation was seen for all subjects.
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Figure 4.6 Chest wall displacement measurements collected from Subject 5.

4.5 Feature Extraction Results

Table 4.1 shows the results of the extracted features of different breathing pat-

terns collected from Subject 5.

4.6 Classification Algorithm Results

Extracted features were used by several classification algorithms and the en-

semble subspace discriminant classifier and linear discriminant classifier resulted the

best accuracy by predicting 96% of the data correctly. Figure 4.7 shows the confusion

matrix of the linear discriminant classifier results.
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Subject 5’s

Feature Results

Biot’s

Breathing

Cheyne-Stokes

Breathing

Hypo-

ventilation

Kussmaul

Breathing

Normal

Breathing

60

Seconds

Rectangle

Window

Entropy 0.015 0.011 0.007 0.044 0.02

Kurtosis 3.3776 3.7931 3.1342 1.5556 2.0407

Apnea Score 16295 15824 5927 2742 5008

Peak Max 7.0864 10.6639 5.0087 10.6856 12.2383

Peak Count 13 12 6 38 17

Peak variance 0.1455 3.9631 0.1224 0.5985 0.6472

Peak average 6.6762 7.0078 4.5631 8.7697 11.0333

5 Seconds

Sliding

Window

Variability 0.0308 0.0222 0.0306 0.0038 0.0112

Range 0.4607 0.4613 0.6800 0.2581 0.4675

Max 0.4609 0.4613 0.7195 0.4650 0.7280

Min 0.0002 0 0.0395 0.2069 0.2605

Instant

Frequency

Features

Variability 0.1102 0.0975 0.0075 0.6111 0.1735

Range 1.5993 1.7049 0.4784 2.5765 1.7782

Min -0.700 -1.059 -0.825 -0.935 -0.748

Max 0.8215 0.8042 0.2464 1.2767 0.8003

Mean -0.010 0.004 -0.010 -0.004 0.009

Table 4.1
Mean Subject 5’s feature extraction results for each breathing pattern.
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Figure 4.7 Confusion matrix of the linear discriminant classification algorithm.

Table 4.2 shows the different type of classification algorithm results with 10-

fold cross-validation when the features were not been normalized. The best-resulted

classification algorithms were the linear discriminant (96%) and ensemble subspace dis-

criminant (96%). While linear discriminant falsely predicted 2 Cheyne-Stokes breath-

ing patterns, ensemble subspace discriminant wrongly predicted 1 for Biot’s and 1

for Cheyne-Stokes. All the classifiers were predicted the hypoventilation, Kussmaul

breathing with 100% precision. Only the linear SVM made 1 false prediction on normal

breathing. Cheyne-Stokes was the hardest to predict for the classifiers and weighted

KNN has the lowest precision with 70%.
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Accuracy (%)

Classifier/Breath Biot’s
Cheyne-

Stokes

Hypo-

ventilation
Kussmaul Normal Average

Linear SVM 80 80 100 100 90 90

Subspace Discrt.

Ensemble
90 90 100 100 100 96

Fine Decision

Tree
90 80 100 100 100 94

Weighted KNN 100 70 100 100 100 92

Linear

Discriminant
100 80 100 100 100 96

Gaussian Naive

Bayes’
90 80 100 100 100 94

Table 4.2
Classifier algorithm precision results in percentage without normalization of the features.
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5. DISCUSSION

Noninvasive and contactless assessment of human physiological condition is de-

sirable for both caregivers and patients. Deterioration of breathing pattern can give

an idea about the neurological impairment as mentioned in [1] which makes the con-

tactless monitoring of the breathing pattern desirable. In this thesis, an ARM-based

microcomputer device is developed to detect the respiration and heart rate. Although

the device is able to detect these vital signs and normal breathing pattern accurately,

we were not able to monitor the Cheyne-Stokes and Biot’s breathing patterns. The

device was also in agreement with respiratory belt transducer during the cough and

apnea measurements. Thereby, to be able to detect all breathing patterns described

in Section 2.1 IPS -154 Doppler radar module used with the setup described in the

Section 3.2. Raw quadrature signals acquired from the Doppler module were filtered

with analog components with a 10 Hz cutoff frequency for the anti-aliasing purposes

before digitization. To minimize the power supply noise, Rohde Schwarz JMP4030

programmable power supply and LT3042 ultra low noise RF linear regulator was used.

Also during the test with the linear actuator, it was observed that grounding the power

cables separately decreased the electrical noise on the system significantly.

Quadrature channels were sampled synchronously since any delay in sampling

between channels causes phase shifts and this shift affects the arctangent demodulation.

As it was recommended in [2], the selected sampling frequency was 500 Hz so that it

will be higher than 100 Hz to decrease the out-of-band interference. Sampled signals

contain the DC offset stemming from both the internal reflections of RF front-end and

from the background object reflections. The respiration frequency of a hypoventilation

patient may turn out to be 0.1 Hz, which makes DC offset an issue. One of the ways

that was used to get rid of DC offset was AC coupling, which latens the time response

of the system drastically. To have a faster time response and computational simplicity,

DC cancellation was applied simply by removing the mean from both of the channels,

digitally. Mean extracted and scaled raw signals were shown in Figure 4.3(a).
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Due to the single channel’s null point limitation, arctangent demodulation was

used to find the motion of the thorax expansion as it was recommended in the literature

[31]. Distance information was found after the signals were arctangent demodulated,

converted from radians to angle, unwrapped and converted to distance in millimeters

respectively which is shown in Figure 4.3(b-d). Since the distance information contains

the heart motion and other unwanted higher than respiration frequency components, a

Kaiser window FIR filter with 0.7 Hz cutoff and order of 6272 was used. The solution

to using a high order filter was to take 3 minutes of breathing measurements from each

subject for each breathing pattern and then extracting the 60 second intervals from

it by hand. FIR filter was chosen because of its linear phase which is crucial in our

study since we are extracting the distance from the phases of two channels. The signal

needed to be truncated by hand as a consequence of the high ordered filter altering the

first part of the distance measurement result.

Bland-Altman method is the gold standard statistical analysis to compare two

different measurement system which measures the same measurand [38]. The linear

actuator system and Doppler radar measurement results are illustrated in Figure 4.3(d).

To be able to statistically analyze the Doppler radar and linear actuator measurements

the sampling frequency should be the same. As the sampling frequency of the linear

actuator is lower (100 Hz) than the Doppler radar’s sampling frequency (500 Hz), linear

interpolation was performed to the linear actuator. Although other interpolation types

could also be selected, in our test setup linear actuator’s speed was set to be the same

during the measurement so linear interpolation was expected to give better results

than the other types. The results of the Bland-Altman analysis was shown in Figure

4.4 and 96.87% of the data were found to be in between the red lines which indicates

1.96 standard deviations added and subtracted from the mean difference value. This

implicates that these two measurement setups measure the same thing with similar

accuracy. Furthermore, maximum measurement difference result between the linear

actuator and the Doppler radar system is 0.53 mm which is very small compared to

the distances we want to measure which are generally in the range of 4-12 mm [2].

To investigate the accuracy of the Doppler radar measuring real breathing move-
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ments, the system and the respiratory belt transducer monitored the same subject

synchronously as in [22,39] and the Figure 4.5 was obtained as a result. Since the res-

piratory belt results are in voltage and Doppler system is in millimeters, Bland-Altman

analysis could not be used. Figure 4.5 shows the 70 seconds of breathing measurement

results while the subject performed normal and apnea. For both methods, the res-

piration rate is found to be the same as it was expected but the apnea period was

found slightly different. This difference is thought to be caused by respiratory belt

transducer’s high pass filter. Any time the subjects breath in and hold their breath,

voltage decrements were seen with descending intervals as it is the case in capacitor

discharge.

As a next step, 5 breathing patterns described in the Section 2.1 were collected

from 10 subjects. Breathing patterns of subject 5 is plotted in Figure 4.6. For the

Biot’s breathing pattern, (as it can also be seen in subject 5’s results) most of the

subjects hold their breath after a deep inhalation which altered many of the features.

Features like approximate entropy, maximum peak value, mean, standard deviation and

range of the peaks may mislead by this action and affected the results. Biot’s breathing

classification accuracy was the lowest for every classification algorithm and this may be

one of the causes. Cheyne-Stokes breathing was the hardest to perform for the subjects

and so the variation within this pattern was found to be higher than other breathing

patterns. As mentioned in the Subsection 2.1.3, tidal volume of hypoventilation should

be less than normal breathing and results from the subjects show good correlation

with this information which can be considered as a good feature to separate these two

patterns. To replicate the Kussmaul breathing, subjects were asked breath deep and

rapidly which made them dizzy at the end of the procedure. Some of the subjects,

as it is the case with subject 5, were not able to breathe with a steady initial chest

wall displacement which means the subject did not exhale fully and started a new

inhalation. As a consequence, the Kussmaul breathing pattern resulted in a higher

variation than it was expected. These fluctuations were also seen in other respiration

patterns but with much less amplitude.

Machine learning algorithms performances are strongly dependent on the ex-
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tracted features they are fed and that is why extracting and selecting the most defini-

tive features are important. Since a signal can be expressed with an amplitude, a

frequency and phase information, features were extracted by considering these prop-

erties. Some features such as mean, standard deviation, variability of the peaks are

expected to have the good characteristics of amplitude of the signals. To represent

the frequency and the phase of the signal, number of peaks, variance, mean, maxi-

mum and minimum of instantaneous frequency were extracted. These features were

have already been effectively used in the literature [16, 34, 40]. Apnea between two

breathing is a discriminative feature so a hand-written apnea detection feature was

also used. The result of this feature was as expected and able to discriminate the

Biot’s and Cheyne-Stokes breathing pattern from the normal breathing, hyperventila-

tion and hypoventilation patterns. Approximate entropy is also a widely used feature

to measure the regularity and the periodicity of a time-series data [41, 42]. If we as-

sume the normal breathing to be a perfect sinusoidal signal with constant frequency

and amplitude, only the change in frequency affects the approximate entropy and this

was also seen in our results as hypoventilation (lower frequency) had the lowest average

approximate entropy and Kussmaul breathing (higher frequency) had the maximum

average approximate entropy. Kurtosis is another feature used in time-series data and

it was a good discriminator for hypoventilation from other breathing patterns in my

thesis [43, 44].

A good feature is strongly correlated with the result but not with other fea-

tures. For a linearly correlated feature set, looking at the correlation of each feature

and eliminating the ones with higher correlation coefficients increase the accuracy of

the classification algorithm and decreases the required computational power and time.

Hence, correlation coefficients of features with one another were calculated, and the

features that are highly correlated with other features for all subjects and breathing

types were excluded from further evaluations. Peak average of 60 seconds measurement

and instant frequency range was found to be correlating with more than 2 features in

each breathing so that they were excluded from measurements.

Linear discriminant analysis is another filtering method for feature selection and



44

it reduces the number of features to a desired number of nxd-dimensional subspace. It

works well with linear and nonlinear data sets [37, 45] and it drastically increased the

detection of Biot’s breathing pattern in my thesis work. Although, features which are

not scaled, mislead the distance-based classification algorithms by their variances and

magnitudes LDA overcome this problem inherently.

Classification algorithms resulted in good accuracy ranges from 90% to 96%.

Cheyne-Stokes breathing was the hardest pattern for the subject it resulted in the sub-

jects breathing patterns. Even when we plot the graphs, variations were clear between

subject results but still, the ensemble subspace discriminant was able to classify this

breathing pattern with 90% accuracy. Biot’s breathing accuracy was always higher than

Cheyne-Stokes and when it was misclassified, algorithms predicted it as Cheyne-Stokes

breathing. It may be due to the apnea segment for both patterns. All the Kussmaul

and hypoventilation predictions were correct for every classification algorithms even

though there were deviations in Kussmaul breathing patterns.

Since the normal breathing chest wall displacement is higher than hypoventila-

tion chest wall displacement for the same patient, continuous monitoring is required to

predict accurately. Furthermore, with the increased knowledge about physiology and

continuous measurements of it, our predictions can be used as assistive information in

other diagnoses.
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6. CONCLUSION

This thesis aimed to detect breathing disorders remotely using Doppler radar

and machine learning algorithms. Chest wall motions were captured using a 24 GHz

ISM band Doppler radar. Analog and digital signal processing techniques were used

to extract the displacement information from the raw data collected from the Doppler

radar. According to the Bland-Altman statistical method the designed radar system

was found to be able to accurately detect chest wall displacement. Considering the

previous works in the literature and investigation of the signal trends, features were

extracted from breathing signals. To increase the speed of computation and exclude

the features that represent the same characteristics of the signal, feature selection was

applied and the most informative features were fed to the classification algorithms. It

was found that the subspace discriminant ensemble and linear discriminant classifier

was able to predict the breathing patterns with 96% accuracy.

In the future, we plan to improve our device to be able to detect breathing

disorders continuously. The programming language is MATLAB currently but other

softwares such as python or C++ can be used and will be implemented as a future

work. Also, we plan to measure the real patient chest wall motions and improve our

device accordingly. Even though the used programming software was MATLAB in this

thesis work, other programming languages python and C++ can accurately result as

MATLAB software. Especially the python libraries are wide and reachable for the both

feature extraction section and classification part of the thesis. To be able to use the

device in hospitals, required clinical tests will done in the future.
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APPENDIX A.

Feature extraction and LDA MATLAB Script

clear all

clc

close all

files = dir;

files(1:2)=[];

dirFlags = [files.isdir] ;

subFolders = files(dirFlags) ;

CovMat{1}=’’;

mat = dir(’*.mat’);

mcount=0;

TDSpeakvar=[];

TDSpeakmax=[];

TDSmin=[];

TDSpower=[];

STDvar=[];

STDrange=[];

STDmax=[];

STDmin=[];

storepks=[];

storelocs=[];

shorttimewindow=5;

menergy=[];

for i=1:length(subFolders)

fprintf(’Sub folder #%d = %s\n’, i, subFolders(i).name);

cd(subFolders(i).name)

mat = dir(’*.mat’);

figure(’Name’,subFolders(i).name)
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for q = 1:length(mat)

s=load(mat(q).name);

CovMat = [CovMat struct2cell(s)];

CovMat{1,q+1+mcount}(:,1)=CovMat{1,q+1+mcount}(:,1)-...

CovMat{1,q+1+mcount}(1,1);

CovMat{1,q+1+mcount}(:,2)=CovMat{1,q+1+mcount}(:,2)-...

min(CovMat{1,q+1+mcount}(:,2));

DetectApnea(:,q+mcount)=length(find(diff(TDSignals)...

<= (0.2*std(diff(TDSignals))) & diff(TDSignals)...

>= (0.2*-std(diff(TDSignals)))));

storesignals{:,q+mcount} =TDSignals/max(TDSignals);

myangle(:,q+mcount)=(TDSignals*2*pi*24e9)/(1000*3e8);

cen_ang(:,q+mcount) = myangle(:,q+mcount)-mean(myangle(:,q+mcount));

inst_fre(:,q+mcount) = diff(cen_ang(:,q+mcount))/(1/500)/(2*pi);

ifa(:,q+mcount)=medfilt1(inst_fre(:,q+mcount),60);

kurtosisResults(:,q+mcount) = mean(ifa(:,q+mcount).^4)...

/(mean(ifa(:,q+mcount).^2)).^2;

t=CovMat{1,q+1+mcount}(:,1);

t2=find(t>=0 & t<=shorttimewindow ); % SHORT TIME x axis

N=length(t2);

nTDSignals=TDSignals/max(TDSignals);

for j=1:size(nTDSignals,1)-size(t2,1)

menergy(j,q)=sum(nTDSignals(j:size(t2,1)+j-1,1).^2)...

/(size(t2,1));

end

TDSmin=[TDSmin min(TDSignals)];

TDSpower=[TDSpower sum(TDSignals.^2)/size(TDSignals,1)];

STDvar=[STDvar sum( abs( menergy(:,q)-mean(menergy(:,q))).^2 )...

/(size(TDSignals,1)- size(t2,1)-1)];

STDmax=[STDmax max(menergy(:,q))];

STDmin=[STDmin min(menergy(:,q))];

STDrange=[STDrange STDmax(end)-STDmin(end)];
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subplot(length(mat),1,q);

findpeaks(TDSignals,t,’MinPeakProminence’,2,’MinPeakDistance’,0.75)

[pks,locs] =findpeaks(TDSignals,t,’MinPeakProminence’,2,...

’MinPeakDistance’,0.75);

storepks{1,q+mcount}=pks;

storelocs{1,q+mcount}=locs;

TDSpeakcount(q+mcount)=length(pks);

TDSpeakavr(q+mcount)=mean(pks);

TDSpeakvar(q+mcount)=var(pks);

TDSpeakmax(q+mcount)=max(pks);

mangle(:,q+mcount)= 2*pi*24e9*TDSignals/(1000*3e8);

cen_ang(:,q+mcount) = mangle(:,q+mcount)-mean(mangle(:,q+mcount));

inst_fre(:,q+mcount) = diff(cen_ang(:,q+mcount))/(1/500)/(2*pi);

insmax(q+mcount)=max(inst_fre(:,q+mcount));

insmin(q+mcount)=min(inst_fre(:,q+mcount));

insvar(q+mcount)=var(inst_fre(:,q+mcount));

insmean(q+mcount)=mean(inst_fre(:,q+mcount));

insrange(q+mcount)=insmax(q+mcount)-insmin(q+mcount);

approxEnt(q+mcount) = approximateEntropy(TDSignals,’Radius’,

0.1*std(TDSignals),’Dimension’,2);

end

mcount=mcount+length(mat);

end

%%% Class names

mnames=["Biots" "Biots" "Biots" "Biots" "Biots" "Biots" "Biots"

"Biots" "Biots" "Biots" "CheyneStokes" "CheyneStokes"

"CheyneStokes" "CheyneStokes" "CheyneStokes" "CheyneStokes"

"CheyneStokes" "CheyneStokes" "CheyneStokes" "CheyneStokes"

"Hypoventilation" "Hypoventilation" "Hypoventilation"

"Hypoventilation" "Hypoventilation" "Hypoventilation"
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"Hypoventilation" "Hypoventilation" "Hypoventilation"

"Hypoventilation" "Kussmaul" "Kussmaul" "Kussmaul" "Kussmaul"

"Kussmaul" "Kussmaul" "Kussmaul" "Kussmaul" "Kussmaul"

"Kussmaul" "Normal" "Normal" "Normal" "Normal" "Normal"

"Normal" "Normal" "Normal" "Normal" "Normal" ];

sefa=table(TDSpeakavr’,TDSpeakvar’,TDSpeakmax’,TDSpeakcount’

,STDmin’, STDmax’,STDrange’,STDvar’,insmax’,insmin’,insrange’

,insvar’,insmean’, approxEnt’,kurtosisResults’,DetectApnea’

,mnames’);

CovMat(1)=[];

mydata=[TDSpeakvar’,TDSpeakmax’,TDSpeakcount’,STDmin’,STDmax’

,STDrange’, STDvar’,insmax’,insmin’,insvar’,insmean’

,approxEnt’,kurtosisResults’,

DetectApnea’];

X=mydata;

mdims=4;

[classes, bar, labels] = unique(mnames);

classnum = length(classes);

CSw = zeros(size(X, 2), size(X, 2));

CSt = cov(X);

for i=1:classnum

% Instances

instX = X(labels == i,:);

% Within class scatter

CovMat = cov(instX);

p = size(instX, 1) / (length(labels) - 1);

CSw = CSw + (p * CovMat);

end

% Between class scatter

BCS = CSt - CSw;

BCS(isnan(BCS)) = 0; CSw(isnan(CSw)) = 0;
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BCS(isinf(BCS)) = 0; CSw(isinf(CSw)) = 0;

% Check dimensions

if classnum <= mdims

mdims = classnum - 1;

warning([’Target dimensionality reduced to ’ num2str(mdims) ’.’]);

end

% Perform eigendecomposition of inv(Sw)*Sb

[M, lambda] = eig(BCS, CSw);

% Sort eigenvalues and eigenvectors in descending order

lambda(isnan(lambda)) = 0;

[lambda, ind] = sort(diag(lambda), ’descend’);

M = M(:,ind(1:min([mdims size(M, 2)])));

% Mappdata

mappedData = X * M;

% Store mapping for the out-of-sample extension

mapping.M = M;

mapping.val = lambda;

LdaReducedMatrix=mydata*mapping.M;

MLfeatures=table(LdaReducedMatrix(:,1),LdaReducedMatrix(:,2),...

LdaReducedMatrix(:,3),LdaReducedMatrix(:,4),mnames’);
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