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ABSTRACT

PREDICTING VON HIPPEL LINDAU (VHL),
POLYBROMO-1 (PBRM1) MUTATIONS AND STAGES OF

CLEAR CELL RENAL CELL CARCINOMA FROM
COMPUTED TOMOGRAPHY IMAGES BY MACHINE

LEARNING

RCC is the most prevalent renal malignancy and ccRCC is the most common

subtype of RCC. It is reported that the prognosis has a strong association with VHL

alteration. It is also reported that PBRM1 gene, second most common alteration in

ccRCC, has a critical role in ccRCC progression and great potential to identify ccRCC.

Moreover, available treatment opportunities are mostly related to stage information.

The treatment options are limited in stage 3 and 4. Studies of ccRCC indicate that

there is a correlation between cancer CT imaging features and gene expression (radio-

genomics). We hypothesized that from quantitative 2D CT images via one slice with

the biggest tumor, both VHL and PBRM1 mutations and stages can be predicted with

accuracy using ML algorithms. TCGA-KIRC data were collected and tumors were

segmented by an expert radiologist. Classification was done by using CL and ANN on

MATLAB. Our results showed that Fine Gaussian SVM model is able to predict VHL

and NON-VHL data with 68.6%, k-NN with Random Subspace model is able to pre-

dict PBRM1 and NON-PBRM1 with 84.9% ,and ANN predicted stages with 91.90%

accuracies. From this study, it appears that ML-based quantitative 2D CT analysis

using one slice for each patient is a feasible and potential method for predicting the

status of VHL and PBRM1 mutations and stages for ccRCC patients.

Keywords: Renal Cell Carcinoma (RCC) , Clear cell Renal Cell Carcinoma (ccRCC),

Von Hippel Lindau (VHL), Polybromo-1 (PBRM1), Computed Tomography (CT),

Machine Learning (ML), Artificial Neural Network (ANN), Classification Learner (CL).
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ÖZET

BİLGİSAYARLI TOMOGRAFİ GÖRÜNTÜLERİNDEN
MAKİNE ÖĞRENMESİ İLE BERRAK HÜCRELİ BÖBREK

KARSİNOMUN VON HIPPEL LINDAU (VHL) VE
POLYBROMO-1 (PBRM1) MUTASYONLARININ VE

EVRELERİNİN TAHMİN EDİLMESİ

BHK en fazla görülen böbrek kanseridir ve BHBK, en sık görülen BHK alt ti-

pidir. BHBK çalışmaları kanserli BT görüntüleri ile gen mutasyonları arasında bir

korelasyon olduğunu göstermektedir (radyogenomik). Ayrıca, prognozun VHL muta-

syonunu ile güçlü bir ilişkisi olduğu rapor edilmiştir. PBRM1 geni, BHBK’de en yaygın

ikinci mutasyondur ve BHBK’yi tanımlamak için büyük bir potansiyele ve ilerlemesinde

kritik bir role sahiptir. Dahası, mevcut tedavi olanakları çoğunlukla evre bilgileriyle

ilgilidir. Tedavi seçenekleri evre 3 ve 4’te sınırlıdır. Bu nedenle erken tanı hastalar

için önemlidir. Bir axial slayt üzerinden en buyuk tumore gore nicel 2D BT görün-

tüleriyle, VHL ve PBRM1 mutasyonları ile evrenin doğrulukla tahmin edilebileceğini

varsayıldı. TCGA-KIRC datası kullandı ve ilgili bölge uzman bir radyolog tarafından

çizildi. MATLAB’da hem CL hem de ANN kullanılarak sınıflandırma yapıldı. Alınan

sonuçlar, CL’de Fine Gaussian SVM modelinin VHL ve NON-VHL verilerini 68.6%, k-

NN with Random Subspace modelinin PBRM1 ve NON-PBRM1’i % 84.9 dereceleriyle

doğru tahmin edebildiğini gösterirken, ANN modelinin evreyi % 91.9 doğru tahmin

edebildiğini gösterdi. Bu çalışmadan, ML ile tek slayt bazlı nicel 2D BT doku anal-

izinin, BHBK’li hastalarda VHL ve PBRM1 mutasyonlarını ve evreyi tahmin etmek

için uygun ve potansiyellı bir yöntem olduğu anlaşılmaktadır.

Anahtar Sözcükler: Böbrek Hücresi Kanseri (BHK), Berrak Hücreli Böbrek Kanseri

(BHBK), Von Hippel Lindau (VHL), Polybromo-1 (PBRM1), Bilgisayarlı Tomografi

(BT), Makine Öğrenmesi (ML), Classification Learner (CL), Yapay Sinir Ağı (ANN).
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1. INTRODUCTION

Renal Cell Carcinoma (RCC) is the most common renal malignancy and at least

3.7 % of new cancer cases are represented by this disease. Just in The United States,

RCC accounted for an estimated 61.560 new patients and 14.080 deaths in 2015. It

is known that certain genes which have mutations can activate intracellular molecular

pathways. These specific pathways lead to an increased risk of specific histological

subtypes of RCC. This knowledge has assisted us for better understanding the patho-

genesis of RCC. RCC has been divided into subtypes related to genetic structure and

mutation status. According to the WHO, there are eight major subtypes of adult-

onset RCC and the most common one is Clear cell Renal Cell Carcinoma (ccRCC,

75%). Approximately 20% of patients have metastatic disease at presentation. More

than half of the patients develop metastases after the initial diagnosis. Recently, the

comprehension of the genetic base of RCC has prominently improved for researching

the disease and using novel anticancer agents targeting specific intracellular pathways

[1].

1.1 Staging Of RCC

The therapeutic approach to ccRCC is related directly to the stage or degree of

tumor spreading. For example, Cabozantinib is a drug which targets the VHL pathway.

The drug was approved in 2016 for patients with metastatic RCC whose tumors did

not respond to their first treatment or whose cancer had returned [2]. Staging by

TNM procedure hich including tumor information, node information and metastasis

information was defined by The American Joint Committee on Cancer (AJCC) [3].

The size of the Stage 1 tumor is less than 7 centimeters or smaller. Both stage 1 and

2, the tumor is found in the kidney only. For Stage 2, the size of the tumor is greater

than 7 centimeters. The tumor begins to spread in stage 3. It could be any size but

could spread to nearby lymph nodes, the blood vessels in or near the kidney, structures

of urine collection, or fatty tissue around the kidney. Metastasis could occur in stage
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4. More than 50% of patients with early stages of RCC are cured, but the outcome for

stage 4 of the disease is poor [4].

Since the standard treatment for kidney cancer related with the stage of cancer,

if the patient is eligible for surgery and the tumor is small enough, partial nephrectomy

may be a viable option. The kidney is spared with this operation, but the tumor and

some of the surrounding tissue are removed. In more advanced cases, a full nephrectomy

in which an entire affected kidney is removed may be necessary. In some cases, where

surgery is not an option, cryoablation - the freezing of cancer cells may offer a solution

if the tumor is solid and in a contained area. Targeted therapies are drugs that target

specific receptors or molecules along the cancer cell growth pathways. These could

make slower, or halt cancer growth if cancer has spread. However, it is a fact that

chances of survival are much better when the disease is diagnosed before it has spread

[4]. Therefore, early diagnosis remains a significant point for the patients [1].

Recently, experiences have shown that simple size measurements are inadequate.

Even sometimes these measurements may cause to misleading for accurate response

assessment with targeted therapies. More various features are required [1]. In addi-

tion, the current decision methods for detecting ccRCC involves an invasive procedure,

namely a biopsy [4] which has technical drawbacks because of the manual extraction of

the tumor. The biopsy always has the possibility of destroying the patient emotionally,

damaging healthy tissue or causing the tumor to spread.

1.2 A Suggested Solution - Radiogenomics

Since these cancer patients race against time, the way of precise diagnosis and

proper treatments based on the patients individually have become a requirement to

acquire effective treatment results. Precision medicine represents a field that works on

this specific problem [5].

Radiogenomics is one of the branches of precision medicine. It gives an opportu-
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nity to make a connection between medical imaging and molecular biology and genetics

area to generate new biomarkers. The first and also the most quoted study about rela-

tionship between medical CT imaging and mutation status of ccRCC belongs to Karlo

et al [6]. The aim of the study was investigating associations between computed to-

mographic (CT) imaging features of ccRCC and mutations in VHL, PBRM1, SETD2,

KDM5C, or BAP1 genes. According to the study, VHL mutation was significantly

associated with well-defined tumor margins, enhancement of nodular tumor, and gross

appearance of intratumoral vascularity. Solid ccRCC’s genotype differed significantly

from the genotype of multicystic ccRCC. It was also reported that VHL and PBRM1

mutations were more common among solid ccRCC [6]. The result of the study gave

us valuable information about mutation types that we need to look at for ccRCC. Shi-

nagare et al. also studied on radiogenomics for ccRCC. According to the study, VHL

and PBRM1 were the most common mutation [7].

However, radiogenomics still remains an evolving area because it is a field related

to many varied and developing fields of disciplines [8]. Moreover, standardization,

overfitting, consistency of feature determination among readers are still problems with

radiogenomics studies [7].

1.3 Effect Of VHL On ccRCC

The Von Hippel Lindau gene (VHL) is located on chromosome 3p25. A 213

amino acid the tumor suppressor protein which plays a key role in the regulation of the

hypoxia response pathway is encoded by this gene. In low oxygen conditions, this path-

way is vital for tumor survival [9]. The potential role of VHL mutation as a prognostic

and predictive marker for RCC was also reported in [9]. The VHL gene codes the VHL

protein. Under its standard functional state and under normoxic conditions, hypoxia-

inducible transcription factors (e.g. HIF-α, HIF-2α) are targeted by VHL complex for

ubiquitin-mediated proteolysis. HIF regulates a host of significant downstream tar-

gets like the vascular endothelial growth factor (VEGF) which promotes angiogenesis,

platelet-derived growth factor, and erythropoietin. Due to the fact that the VHL com-
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plex cannot bind HIF-a for degradation, HIF-α accumulates under hypoxic conditions

[10]. Therefore, RCC shows a proneness to be a vascular tumor with high expression

of VEGF. It tends to be VEGF receptor, PDGF receptor, and basic fibroblast growth

factor (bFGF). High VEGF expression is related to tumor aggressiveness and resulting

in poor survival for RCC [11].

In addition, carbonic anhydrase IX maintains a significant role in pH regula-

tion in cancer cells. It allows these cells for adaptation to the negative conditions of

the tumor microenvironment. There is, furthermore, a study [12] indicated that low

CAIX expression is associated with the absence of VHL alteration and aggressive tumor

features. A significant prognosis in patients with ccRCC was reported.

Moreover, with the process of developing molecularly targeted therapies, the

therapeutic landscape for RCC has changed in the last few years. There are four

FDA approved drugs which are sorafenib, sunitinib, pazopanib, and axitinib for VEGF

receptor inhibitors. And one drug for anti-VEGF monoclonal antibody which is Beva-

cizumab [10] to treat RCC. Plus, Cabozantinib is one of the tyrosine kinase inhibitors

(TKI), which blocks VEGF. Considering the importance of VEGF, determining the

situation of VHL mutation for RCC patients could help to lead the treatment options.

1.4 Effect Of PBRM1 On ccRCC

Polybromo-1 (PBRM1) gene is the second most common mutation and is seen

40% of these patients. The mutation encodes protein BRG1-associated factor (BAF)

180 [13]. It is a crucial distinct component of polybromo BAF SWI/SNF chromatin

remodeling complex which is macromolecular types of machinery. It uses ATP to

mobilize nucleosome. As a result, it affects the critical cellular process by regulating

cell-cycle changes, metabolism, and DNA repair [14].

Although there is not gene-related FDA approved drug yet, there are studies

indicating this gene is valuable because it has an impact on survival. One of the studies



5

about PBRM1 indicated that in patients with RCC, decreasing in PBRM1 expression

is linked with a poor prognosis and advanced clinicopathological features [15]. Another

study with RCC stage-4 patients was indicated that this gene could have potential as

a prognostic marker for advanced RCC [16]. Moreover, other studies indicate PBRM1

mutation status has great potential to identify ccRCC [17], [18]. It was reported that

PBRM1-mutated and BAP-mutated tumors exhibit different biology [18]. In addition

to its noticeable effects on disease progression and being an indicator of the disease,

if the specific role of PBRM1 in chromatin modification is taken into considering, this

may positively affect to new treatment strategies in the future [19].

1.5 Some Previous Machine

Learning Approaches And Radiogenomics

Some of studies which used machine learning methods and radiogenomics ap-

proaches were shown in Table 1.1. Using ANN with Matlab toolbox for classification

was reported in [20]. The study used data source as National Instrument Hardware.

Another study which was about predicting PBRM1 gene mutation for ccRCC was re-

ported in [21]. They used The Cancer Genome Atlas as a data source with preoperative

CT (CECT) images corticomedullary phase contrast-enhanced and artificial neural net-

work (ANN) algorithm and a random forest (RF) algorithm for p rediction. The study

was conducted with a total of 45 ccRCC patients. Another study about to predict spe-

cific gene mutations of ccRCC using with their own model was reported in [22]. They

used 57 ccRCC patients from two independent cohorts and a multi-classifier multi-

objective predictive model for prediction. However the main disadvantage of these two

studies was the low number of patients and not having enough of a large independent

test dataset.

Using Matlab Classification Learner application to generate a model was re-

ported in [23] and the study used the dataset which was based from the Trust-Hub.

Besides supervised machine learning techniques with segmentations, a deep learning
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method for classification of gene mutation was also reported in [24]. The study used

TCIA database as data source and they compared their convolutional neural network

model with a random forest model.

Table 1.1
Some of The Previous Works Including ML And Radiogenomics.

Both machine learning and radiogenomics areas are constantly evolving and

new methods are emerging to the fields. Therefore, different pathways like choosing

multiple slice of ROI could become a shortcoming. Also, using deep learning with

medical images may have disadvantages for nowadays since deep learning needs lots

of images for obtaining solid results [25]. Besides deep learning, using random forest

technique may lead to some defects like instability, especially when there is noisy and

/ or unbalanced data [26]. Moreover, the consistency of feature determination among

readers seems like another essential point to be needed attention.
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1.6 Plan of Thesis

Our goal was to develop an alternative solution to these problems in the future

by using a machine learning (ML) algorithm with quantitative CT texture analysis

that can be implemented to detect gene mutations and stages of ccRCC to increase

the speed of diagnosis. In addition, detecting specific mutations and stages via an

intelligent system may be a time-saver and affect the treatment options.

We hypothesized that with quantitative 2D CT images, VHL and PBRM1 mu-

tations and stage status of ccRCC can be predicted with precision and accuracy. Deep

learning methods require more data for training [25]. Considering the drawbacks of

deep learning, we aimed to use artificial neural networks (ANNs) to predict stages of

ccRCC from 2D CT images. The results were compared, and it is novel for the area

of radiogenomics on ccRCC. Various ML models have been studied. The flowchart of

this study is shown in Figure 1.1.

Figure 1.1 Followed Path For This Work.

The workflow of radiogenomics includes three fundamental components: data

measurements (which include gathering clinical data of histopathological characteriza-
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tion and imaging results), data preprocessing (quality control and preprocessing steps)

and the analysis process (subsets of features) [8].

Our approach was based on machine learning (ML) techniques. Features such

as shape textural properties and related to the relationships between image voxels were

utilized to develop learning models. Then, these models were used for identifying tumor

characteristics to properly classify specific gene mutation status previously mentioned

and stages. The selected features for producing correlations to stage level or specific

gene mutations were used as inputs for classification models. Once the training step

was complete, it was the time to see if the model was any good by tuning the adjustable

parameters according to the results.
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2. METHODS

2.1 Data

There is an ongoing project called Cancer Genome Atlas (TCGA). The collabo-

ration between the National Cancer Institute (NCI) and the National Human Genome

Research Institute (NHGRI) has provided comprehensive maps of key genomic changes

in 33 identified cancer types, including ccRCC [27],[28]. TCGA-KIRC data set which

has the disease type Adenomas and Adenocarcinomas of Kidney was used for this

study. "The results <published or shown> here are in whole or part based upon data

generated by the TCGA Research Network: http://cancergenome.nih.gov/.".

2.2 Experimental / Computational Method

Our aim was to develop an algorithm which will improve the accuracy of early

diagnosis of ccRCC in the future. To achieve the aim, first, we needed preparing the

data for the learning process. Preprocessing the data which were used as an input was

a crucial step to improve the efficiency of neural network training.

How much data and type of data required were decided by taking into consider-

ation scanning the data of ccRCC. The data to be studied were selected by an expert

radiologist. Image quality, the effect of noise in the image, image modality (since the

data included both CT and MR modalities) and nephrectomy criteria were taken into

consideration during data selection. Accordingly, the study was performed with 191

patients data. We gathered and labeled the axial CT images to have training data for

the network. The numbers of patients which were linked to the gender information,

mutation status and stage information were shown in Table 2.1.

After data acquisition process, the tissue of interest was carefully delineated
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Table 2.1
Table For The Number Of Patients According To Gender, Mutation and Stage Information.

Total Number Of Patient 191

Female Patients 69

Male Patients 122

Patients With VHL Mutation 81

Patients With PBRM1 Mutations 63

Stage 1 Patients 92

Stage 2 Patients 19

Stage 3 Patients 50

Stage 4 Patients 30

by the radiologist with over 10 years old experiences using ImageJ [29] software. The

slices were considered to include the largest tumor area for each patient obtained from

TCGA-KIRC data. Sample ROI’s are shown in Figure 2.1.

Figure 2.1 Patients With ccRCC. (a) The tumor which had PBRM1 mutation were shown in right
kidney, was indicated by yellow line. (b) The tumor which had PBRM1 mutation were shown in left
kidney, was indicated by yellow line. (c) The tumor which had VHL mutation were shown in right
kidney, was indicated by yellow line. (d) The tumor which did not have VHL mutation were shown
in left kidney, was indicated by yellow line.

After the region of interests (ROIs) was drawn, Radiogenomics features were

extracted from the ROI. These included gray level patterns, inter-voxel relationships,

shape and texture features. In this step, 136 radiographic features were generated and

a high dimensional feature matrix was created.

In ImageJ software [29], the Analyze section was used for feature extraction.

In addition, the Texture Analyzer plugin was used for GLCM-Texture features [30].

In MIPAV software [31], features were extracted from images by operating Statistic
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Generator section. Selecting VOI was used as an input for Statistic generator. In

LifeX [32], Texture section was operated for feature extraction. Radiogenomic features

include first-order features (shape and histogram), GLRLM, GLZLM, GLCM, and

NGLDM. Visuals of corresponding sections of software and all extracted features were

shown in APPENDIX B.

After feature extraction from the software, a high dimensional matrix was gen-

erated, and the presence of missing data and non-quantitative data was checked by

using the MATLAB code which is below:

[R,TF] = rmmissing(_) R represented the data with missing entries removed

and TF represented removed entry indicator. With this step, 114 out of 136 features

were left.

After the checking missing features and non-numeric features process, the data

were scaled to the standard deviation for normalization.

N = normalize (A). This algorithm returns the vectorwise z-score of the

data in A with center 0 and Std.Dev 1. In our cases, A is the matrix which includes

quantitative features and this algorithm was used for operating on each column of data

separately for normalization.

Unbalanced data were [33] handled for balancing by using the ADASYN algo-

rithm which represents an extended version of SMOTE. It was used to decrease class

imbalance by synthesizing minority class examples. The purpose of the algorithm was

to produce more examples around the boundary between the two classes than within

the minority class. Synthetic examples were generated by using linear interpolation be-

tween the majority class data and related minority class data. The related MATLAB

code is given below:

function [out_featuresSyn, out_labelsSyn] = ADASYN [in_features,

in_labels, in_beta, in_kDensity, in_kSMOTE, in_featuresAreNormalized]
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The explanations of each section could be found in [33]. The default numbers

were stated in [33] for in_beta, in_kDensity, in_kSMOTE and

in_featuresAreNormalized. The number of data after the algorithm applied for the

unbalanced problem are shown in Table 2.2.

Table 2.2
Number Of The Data Before And After SMOTE Process.

In ML and statistical analysis, reducing the dimension of features is described

as an essential procedure since a combination of many features and a limited number

of observations is useless for producing the desired learning result. This situation may

result in the learning algorithm to overfit. By reducing the number of features, more

storage space can be used, and computation time can be saved. Feature selection was

used for this study [34].

After radiogenomics features were calculated, feature selection algorithms were

required to find out whether features can separate specific gene mutation and stage

status. Two sample T-test statistical analysis was selected as the first step of feature

selection to classify the mutation status (p<.05) [35]. The related MATLAB code is



13

Figure 2.2 Feature Weight/Feature Index For VHL Mutation Status Data.

Figure 2.3 Feature Weight/Feature Index For PBRM1 Mutation Status Data.

Figure 2.4 Feature Weight/Feature Index For Stage Status Data.
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given below:

dataTrain1 = obs(grp2idx(mutType)==1,:);

dataTrain2 = obs(grp2idx(mutType)==2,:);

[h,p,ci,stat] = ttest2 (dataTrain1,dataTrain2,’Vartype’,’unequal’);

obs represented each column of data which means features and it was a numeric

matrix mutType was cell array type of data for mutation status and represented one

column. grp2idx was used to create an index vector from the grouping variable. p

represented p-value for each column.

The t-test was applied to each feature, and the p-values were compared for each

feature to understand how effective the features for separating the groups. For VHL

gene data, there were 41 features with a p-value less than 0.05 and for PBRM1 gene

data, there were 30 features.

Feature selection using neighborhood component analysis (FSCNCA) was the

second step to define the final features for mutation classification. Also, it was the

first step for reducing the dimension of the feature matrix and defining final features

for stage status. The working principle of FSCNCA is learning the weights of feature

by implementing a diagonal adaptation of NCA with regularization [36]. The related

MATLAB code is given below:

mdl = fscnca(X,y,’Solver’,’sgd’,’Verbose’,1);

X represented the data which had the desired p values and y represented cell

array of the data which indicated the type of the data. For example for VHL mutation,

cell array was like [VHL, VHL, VHL, NON, VHL, NON, VHL...]. For stage data, X

represented the whole feature matrix and y represented cell array of the data which

indicated the type of stage. For plotting the selected features, the related MATLAB
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code which was used is given below:

figure()

plot(mdl.FeatureWeights,’ro’)

grid on

xlabel(’Feature index’)

ylabel(’Feature weight’)

In Figure 2.3, 2.4 and 2.5, feature weights/feature index graphs are shown for

VHL mutation, PBRM1 mutation, and stage status. The weights of features which

were irrelevant close to zero. The weights which had > 0.5 were considered for creating

subsets of features. For VHL gene data, the number of features obtained using this

method was 10. The name of the features and their p-values are shown in Table 2.3.

For PBRM1 gene data, the number of features obtained using this method was 9. The

name of the features and their p-values are shown in Table 2.4. And for stage data,

the number of the features obtained using this method was 10. The name of features

and their p-values are shown in Table 2.5.

2.3 Classification Tools

After the feature selection process for each specific gene mutation and stages,

classifications were performed by using MATLAB classification learner (CL) [37]. Also

ANN on MATLAB was used for stage classification [38] to train a model and see the

accuracy.

The selected features were used as inputs for the classification models to produce

correlations to the status of gene mutations and stages. The confusion matrix was used
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Table 2.3
Features And Their P-Values For Classification Of VHL Mutation Status. *-Features From ImageJ,

**-Features From LifeX, ***-Features From MIPAV.

Table 2.4
Features And Their P-Values For Classification Of PBRM1 Mutation Status. *-Features From

ImageJ, **-Features From LifeX, ***-Features From MIPAV.
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Table 2.5
Feature Names For Classification Of Stage Status. *-Features From ImageJ, **-Features From

LifeX, ***-Features From MIPAV.

to check for comparing the results visually. It yielded the percentages of correct and

incorrect classifications for both classification methods. Correct classifications were

represented as the green squares on the matrix diagonal.

Classification learner (CL) is an application which is available on MATLAB

R2019a to solve classification problems. It was used to classifying data in terms of

supervised machine learning by using varied classifiers. Supervised learning was a

learning type which learns the mapping function from the pre-known input-output

data. The pre-known data were labeled and set for being a response variable. The

extracted features were set as observations. Validation selection was set to 5-cross-

validation. Models were compared by using the accuracy of the trained models. The

model type was k-NN with Random Subspace for PBRM1 mutation and stage cases.

The main principle of ensemble methods was based on combining the results from weak

learners and turning them a high-quality ensemble model by ensemble classifiers. k-

NN with Random Subspace used a typical KNN model to produce an ensemble model.

KNN is a good way for prediction accuracy in low dimension data. It categorizes

query points based on their distance to points or in this case, neighbors to classify new

points. The model type which yielded the highest accuracy was Fine Gaussian SVM

for VHL mutation status. SVM is a type of supervised classifiers which is known as a
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kernel-based algorithm. The working principle is based on finding the best hyperplane,

the largest margin between the two classes. The hyperplane separates one class’ data

points from the other classes [39]. After the initial results, hyperparameters of classifiers

were optimized in CL. The hyperparameters which were used for CL are shown in

APPENDIX A.

Lastly, the ANN method was utilized to classify patients related to stage infor-

mation. ANN nnstart was a graphical user interface (GUI) on RMATLAB2019a. A

window was opened and pattern recognition and classification option was chosen. The

desired number of hidden neurons could be decided by hand in it. Also, the percent-

age of training, testing and validating data could be decided to create a model and

get results. For performing the identifying and classifying the data, neural networks

were especially well suited. An input layer which was the selected features in our case,

hidden layers, and an output layer which represented four stage status in our case,

were included in ANN. The layers were interconnected via nodes. The output of the

previous layer was implemented by each layer as its input (Figure 2.5).

Figure 2.5 An Illustration Of A Neural Network Architecture.

80% of the data were randomly selected for training. 10% of the data for vali-

dation and 10% of the data for testing were randomly selected. The number of hidden

neurons was shown in APPENDIX A, Table A.2. An illustration of the neural network

as shown in Figure 2.6.
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Figure 2.6 Illustration Of ANN Process.
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3. RESULTS

Our results showed that using classification learner, Fine Gaussian SVM model

can correctly predict VHL and NON-VHL data with 68.6% overall accuracy, and k-NN

with Random Subspace model can correctly predict PBRM1 and NON-PBRM1 data

with 84.9% overall accuracy. ANN model can correctly predict stages with 91.90%

accuracy respectively (Table 3.1).

Table 3.1
Accuracies of models to predict mutations and stage status.

Case Model Accuracies

VHL Fine Gaussian SVM 68.6%

PBRM1 k-NN with Random Subspace 84.9%

STAGE k-NN with Random Subspace 85.4%

STAGE ANN 91.9%

3.1 Classification Learner

3.1.1 For VHL Mutation Status

Figure 3.1 Confusion Matrix Of Classification Learner For VHL Mutation Status.

—
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Figure 3.2 Number Of Observations For Classification Learner-VHL Mutation Status.

3.1.2 For PBRM1 Mutation Status

Table 3.2
Tables For Results And Hyperparameters Of Random Subspace And KNN Templates For PBRM1

Mutation Status.
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Figure 3.3 Confusion Matrix Of Classification Learner for PBRM1 Mutation Status.

Figure 3.4 Number Of Observations For Classification Learner-PBRM1 Mutation Status.

3.1.3 For Stage Status

Table 3.3
Tables For Results And Hyperparameters Of Random Subspace And KNN Templates For Stage

Status.



23

Figure 3.5 Confusion Matrix Of CL For Stage Status. A= Stage 1, B= Stage 2,
C= Stage 3 and D= Stage 4.

Figure 3.6 Number Of Observations For Classification Learner - Stage Status. A= Stage 1,
B= Stage 2, C= Stage 3 and D= Stage 4.
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3.2 Artifical Neural Network

3.2.1 For Stage Status

Figure 3.7 Confusion Matrices For Stage Status. (a) shows confusion matrix for training, (b) shows
confusion matrix for validation, and (c) shows confusion matrix for testing.

Figure 3.8 Neural Network Training Performance-for Stage Status.
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Figure 3.9 Minimizing Cross-Entropies (CE) And Percent Errors For Training, Validation Testing
For Stage Status.

Figure 3.10 Illustration Of ANN For Stage Status.
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4. DISCUSSION

The aim of this project was to develop an algorithm which may aid for the

accuracy of early diagnosis of ccRCC in the future by using features of radiogenomics

and ML. We examined a population which has been taken TCGA [27],[28]. The data

was examined by both authors and a radiologist who has over 10 years of experience.

This examination provided to us the number of images which include only CT images

and the data without renal nephrectomy.

To begin with, the data were extracted by its quality, absence of kidney and

presence of MR images. With 191 patients, ImageJ [29] toolbox was employed to

acquire ROI according to the biggest tumor on each axial slice of CT images.

4.1 Radiogenomics Feature Extraction

When ImageJ was used, the analyze menu was used to measuring, calculating

and displaying for area statistics based on ROI [29]. Texture Analyzer plugin was

additionally used for acquiring GLCM texture features [30]. In APPENDIX B, the

extracted features using ImageJ were listed.

When MIPAV was used, the Statistics Generator section was used for feature

extraction which includes statistical and morphological features. The Statistics Gen-

erator automatically saved the results in a tab-delimited file [31]. In APPENDIX B,

the extracted features using MIPAV were listed.

When LifeX was used, first-order features and texture features were calculated

using Texture Feature Extraction section [32]. The results were stored as an Excel

file named by default patientName-patientID-Texture-time.xls. In APPENDIX B, the

extracted features using LifeX were listed.
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114 out of 136 features were quantitative and related to 2D images. The re-

sults of these quantitative features were properly registered with the name of ALL-q-

features.xlxs as an Excel file and as a result, we had a high dimensional matrix.

4.2 Data Preprocessing

Data preprocessing step had importance to acquire robust results. After the

data were scaled to the standard deviation for normalization, we had unbalanced data

problem since the observation distribution of both mutation status and stages were

unequal. Unbalanced data may lead to misclassifying, and this could bring about

severe consequences for training and accuracy [34]. To solve the imbalance problem,

ADASYN algorithm [33] was used to solve class imbalance by synthesizing minority

class examples. For example, to produce synthetic Stage 2 data, Stage 1 data was used

as a majority class. The results of this step were shown in Table 2.2.

4.3 Extracting And Selecting Radiogenomics Features

After the data preprocessing steps, we had to reduce the dimension of our matrix

to acquire robust results. Having a high dimensional matrix may lead the learning

algorithm to overfit and cause noise. Besides helping overfitting and noise problems,

reducing features can also aid to save storage for a CPU and computation time for

training. Therefore, feature selection algorithms were required to accelerate the process

and determine the subsets of features which have any specific gene information and

stage status in common. The first step for reducing the size of the matrix and feature

selection was applying the T-test statistical analysis (p<.05) to [35] both mutational

status data. For each mutation status, features whose p-values were smaller than 0.05

were extracted and saved.

FSCNCA was applied as the second step of feature selection to define the final
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features for classification of gene mutation status [36]. Plus, it was the first step for gen-

erating a subset of features for stage classification. Feature weight/Feature index plot

for VHL mutation status data was shown in Figure 2.2. Feature weight/Feature index

plot for PBRM1 mutation status data was shown in Figure 2.3. Feature weight/Feature

index plot for stage status data was shown in Figure 2.4. The weights of the irrele-

vant features were close to zero. Feature weights equal, near or higher than 0.5 were

considered. 10 features for VHL mutations, 9 features for PBRM1 mutations and 10

features for classifying stages were used. Final features for VHL status were shown in

table 2.3, final features for PBRM1 status were shown in Table 2.4 and final features

for stage status were shown in table 2.5 and these final features were used as inputs

for classification of each mutation status and stages. Before the classification process,

histograms of each feature were also examined on Excel program for quality control.

4.4 Classification Process And Results

To train models and obtaining accuracy, Classification Learner App [37] and

ANN [38] on MATLAB R2019a [40] were used. These methods produced the results

which gave eligible correlations to the status of gene mutations and stages. The con-

fusion matrix was used to check for comparing the results. Correct classifications were

shown as green squares on the matrix diagonal.

First, classification learner (CL) was used to classifying data according to both

mutation status and stages. Its working principle was based on supervised machine

learning with many classifiers. 5-cross-validation was selected for CL. Then, ANN was

used for predicting stage status. ANN was a computing model whose layered structures

act like the networks of the neurons in the brain and it was used for stage classification

too. The hidden neurons were connected via nodes with both inputs and outputs

sections. Labeled data were set as a response variable and extracted features were set

as predictors. Since there are no fix criteria for the ratio of training validation and

testing data; the data were set randomly %80, %10 and %10 for training, validation

and testing respectively. The hyperparameters which were used for both CL and ANN



29

were shown in APPENDIX A. Moreover, when classifying PBRM1 mutation status, 4

number of neighbor(k) were examined to obtain the best accuracy. According to this

examination, the best accuracy for PBRM1 mutation status was obtained from k=4.

The hyperparameters for both ensemble method and nearest neighbor method and the

results of these methods were shown in Table 3.2.

4.4.1 For Classification Learner

1-VHL MUTATION STATUS:

Fine Gaussian SVM was the model type which yielded the highest accuracy

for VHL mutation status. The best hyperplane was found by SVM. Figure 3.1 shows

the confusion matrix of CL for VHL mutation status. VHL data were estimated 65%

accuracy and NON-VHL data was estimated 72% accuracy. Figure 3.2 shows the

number of observations for VHL status on CL. Overall accuracy was 68.6% and traning

time was 0.78476 sec. Prediction speed was ∼12000 obs/sec.

2- PBRM1 MUTATIONAL STATUS:

The model type which yielded the highest accuracy was k-NN with Random

Subspace for PBRM1 mutation status. k-NN with Random Subspace was one of the

ensemble classifiers in CL. An ensemble classifier combines the results of many weak

learners and creates one high-quality ensemble model. The confusion matrix of CL

for PBRM1 mutation status including true positive rate and false negative rate was

shown in Figure 3.3. PBRM1 data were estimated 93% accuracy and NON-PBRM1

data was estimated 77% accuracy. Figure 3.4 shows the number of observations for

PBRM1 status on CL. Overall accuracy was 84.90% and training time was 1.957 sec.

Prediction speed was ∼830 obs/sec.

3- STAGE STATUS:
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The model type which yielded the highest accuracy was k-NN with Random

Subspace for stage status. Figure 3.5 shows the confusion matrix of CL for stage

status. Stage1 data were estimated 78% accuracy, Stage2 data was estimated 96%

accuracy, Stage3 data was estimated 74% accuracy and Stage4 data was estimated

93% accuracy. Figure 3.6 shows the number of observations for stage status on CL.

Overall accuracy was 85.40% and training time was 3.3917 sec. Prediction speed was

∼850 obs/sec.

4.4.2 For ANN

Confusion Matrix for training, validation, and testing for stage status were

shown in Figure 3.15. The test result was 91.9% accuracy. Figure 3.16 showed Neu-

ral Network Training Performance-for stage Status. Best validation performance was

0.12871 at epoch 43. Minimizing Cross-Entropies (CE) and Percent Errors for training,

validation, and testing for stage status were shown in Figure 3.17. CE was 3.18817e-1

and %E was 8.10810 e-0. Illustration of ANN-for stage status was shown in 3.18.

4.5 Discussion Of The Results

This was the first study with using k-NN random subspace. It was observed

that classification learner (CL) k-NN with Random Subspace gave higher accuracy for

status of PBRM1 mutation and stages. Also, using the ANN method improved the

results for stage status. We consider that the size of the dataset may have caused the

situation. When comparing the size of our data after handling unbalanced data, the

least difference occurred for VHL mutation data. When comparing the numbers, the

number of PBRM1 mutation data after the process was way smaller than stage status

data.

There was no such study related study with staging status of ccRCC in the

literature during this study. ANN and k-NN random subspace methods were used
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for classification. With consideration of disadvantages of number of neighbor equals 1

(most likely to overfit), we also examined one more different number of neighbor for

both ensemble method and KNN method. Also, we did the same process for PBRM1

mutation status. The hyperparameters and the results of the models for stage status

were shown in table 3.3. k=3 was the most elligable model for prediction of stage

status of ccRCC.

After stage status, the most precise accuracy was observed when examining

PBRM1 mutation status. The hyperparameters and the results of the models for

PBRM1 mutation status were shown in table 3.2. When the results were examined,

k=3 was the most elligable for the accuracy. Our results showed the patients could

be classified according to their PBRM1 mutation status with 84.9% accuracy. Figure

3.3 showed that the confusion matrix of predicted classes. 90% true positive rate for

patients with PBRM1 mutations and 77% true positive rate with patients who do not

have PBRM1 mutations were observed.

And when we looked at VHL mutation status, Fine Gaussian SVM model did

not provide sufficient accuracy. It cannot be said that Fine Gaussian SVM model gave

a random prediction, but also the results were not adequate when comparing them with

results of PBRM1 mutation status and stage status. Our results showed the patients

could be classified according to their VHL mutation status with 68.6% accuracy. Figure

3.1 showed that the confusion matrix of predicted classes. 65% true positive rate for

patients with VHL mutations and 72% true positive rate with patients who do not

have VHL mutations were observed.

While k-NN with Random Subspace looks like an alternative tool for classifi-

cation of PBRM1 mutation status and stage status, nevertheless ANN yielded better

results to predict stages. It was observed that ANN improved the results which were

acquired from CL for predicting stage status and it seems that ANN could be an option

to use for stage classification in the future.

Moreover, we also consider the accuracy may have affected because of the reg-
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istration faults in ROI, and lack of the number of observations. Also, it could occur

due to the data acquisition process in TCIA or diversity of contrast agents. More

data are needed for furher research. In addition, the studies indicate that the focus

of radiogenomics may merge with 3D imaging and deep learning in the future. It is

necessary to work with more data for the development of radiogenomics field and its

progress using machine learning. Our work shows that implementing a single slice with

the biggest tumor with quantitative 2D CT features have the potential to predict VHL

and PBRM1 mutation status and stages of ccRCC. This could be used as an alterna-

tive solution to the storage problem in the future. Working with a single slide for each

patient could help reduce costs and improve the performance of computers. Therefore,

it can encourage investors to invest in this field and to further research.
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5. CONCLUSION

We conclude that ML-based quantitative 2D CT analysis with the biggest tumor

for each patient’s axial CT image may be helpful for predicting VHL and PBRM1

mutation status and stage status in patients with ccRCC. Both Fine Gaussian SVM

and k-NN with Random Subspace models in CL and ANN were useful in classification.

In the future, our method could be investigated for other ccRCC patients’ CT images.

A certain pathway could be generated to use daily. Optimal selection of therapy

depends on genetic data (precision medicine) could be available with these types of

studies. Since RCC is a type of disease which generally does not respond well to

radioherapy, by combining studies like ours, drugs related to specific gene mutation

could be developed to stop or change the gene mutations. Therefore, the prognosis of

the disease like ccRCC could be changed or disease progression can be slowed down.

During the process of this study, there was no similar study in the literature which used

2D and single slice with the biggest tumor for each patient. Considering the operating

and CPU capacities of computers, there may be more advantages to working with a

single-slice axial CT over full CT scanning. More models, features and optimization

schemes may be researched in the future.
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APPENDIX A. HYPERPARAMETERS FOR

CLASSIFICATION MODELS

A.1 Hyperparameter Options For Classification Learner

Table A.1
Table For Hyperparameters Of Each Mutation Status And Stage.

A.2 Hyperparameter Options For ANN

Table A.2
Table For Hyperparameters for The ANN Model.

Number Of Hidden Neurons Performance Training

Default:10, Chosen:15 Cross-Entopy Scaled Conjugate Gradient
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APPENDIX B. RADIGENOMICS FEATURES

B.1 ImageJ

Image J was employed for both segmentation and radiogenomics feature ex-

traction in this project. The first-order statistical distribution of the voxel intensities

within the tumor was described by the intensity features. The patterns or the second

and high-order spatial distributions of the intensities were described by the texture

features [41]. Besides the first order features, texture feature plugin which computed

several of the texture parameters described by Haralick [42]. The name of the extracted

features was listed in figure B.1 and B.2.

B.2 MIPAV

In MIPAV software, features were extracted from images by using Statistic Gen-

erator section. ROI, which were drawn in ImageJ, was converted to mask and then in

MIPAV the mask converted to VOI. The name of the extracted features was listed in

figure B.3 and B.4.

Descriptions of some features were explained below:

Eccentricity: the geometric shape of the VOI as an ellipse, with 0 indicates a

circle and 1 indicates a straight line.

Std. dev. of voxel intensity: calculating the standard deviation of the intensity

of the voxels in the VOI.

For more extensive information about other features, MIPAV web site

(https://mipav.cit.nih.gov/) could be reviewed.
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Figure B.1 List Of Extracted Features From ImageJ.
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Figure B.2 List Of Extracted GLCM Texture Features From ImageJ.

Figure B.3 List Of Extracted Features From MIPAV.
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Figure B.4 List Of Extracted Features From MIPAV.
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B.3 LifeX

The software was written in Java. Results are exported in Excel files format.

Figure B.5 shows the setting of feature extraction section in LifeX software which

includes the radiomic features were extracted for this study.

Figure B.5 Table For Advance Options For Radiomic Features In LifeX.

There are 43 quantitative features which include First Order Features - His-

togram, First Order Features- Shape, and Second Order Features - GLZLM, GLRLM,

NGLDM, and GLCM. A comprehensive description of texture features for radiomics

can be found in [43].

Also, information about the features used as input for classification are listed

below:

GLRLM_SRHGE: It is the distribution of the short homogeneous runs with

high grey-levels.

GLZLM_SZE: It is the distribution of the short homogeneous zones in an image.

GLZLM_SZHGE: It is the distribution of the short homogeneous zones in an
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image.

GLRLM_LRLGE: It is the distribution of the long homogeneous runs with low

grey-levels.

GLRLM_LRE: It is the distribution of the long homogeneous runs in an image.

GLZLM_ZP: The homogeneity of the homogeneous zones was measured by it.
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