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ABSTRACT

IDENTIFYING CT IMAGE RADIOMIC BIOMARKERS
FOR PREDICTING IMMUNOTHERAPY RESPONSE OF

NON-SMALL CELL LUNG CANCER PATIENTS

Checkpoint blockade immunotherapy (IO) provides improved long-term sur-

vival in a subset of advanced stage non-small cell lung cancer (NSCLC) patients. How-

ever, highly predictive biomarkers of IO response are an unmet clinical need. In this

thesis, pre-treatment clinical covariates and quantitative image-based features (i.e.,

Radiomics) were utilized to identify parsimonious models that predict rapid disease

progression (RDP) phenotypes and survival outcomes among NSCLC patients treated

with IO. As part of the thesis, four studies were conducted. First, novel prognostic and

predictive computed tomography (CT) radiomic features utilizing radial gradient and

radial deviation maps were created. One feature, RD outside-border SD, was found

to be associated with overall survival in two independent NSCLC cohorts. Second,

clinical-radiomic models that predicted RDP phenotypes, including hyperprogressive

disease (HPD), were created in the setting of NSCLC IO. Among 228 NSCLC pa-

tients, parsimonious clinical-radiomic models with modest to high ability (area under

the curves: 0.812 and 0.843) to predict RDP were identified. In the third study,

stable and reproducible peritumoral and intratumoral CT radiomic features of lung

lesions were identified to reduce the chance of spurious findings. In the fourth and

final study, pre-treatment clinical covariates and radiomics were utilized to identify

a parsimonious risk-model based on survival outcomes among 332 NSCLC patients

treated with IO. The most predictive radiomic feature (GLCM inverse difference) was

found to be positively associated with CAIX expression, using a gene-expression and

an immunohistochemistry dataset.

Keywords: Radiomics, Lung cancer, Immunotherapy.
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ÖZET

KÜÇÜK HÜCRELİ DIŞI AKCİĞER KANSERİ
HASTALARININ İMMÜNOTERAPİ CEVAPLARINI

ÖNGÖREN RADYOMİK BT GÖRÜNTÜ
BİYOİŞARETLERİNİN TESPİTİ

Kontrol noktası blokajı immünoterapisi (İmT) ileri evre küçük hücreli dışı

akciğer kanseri (KHDAK) hastalarının bir kısmında uzun süreli sağkalım gosteriyor.

Bununla birlikte, İmT yanıtını yüksek bir başarı ile tahmin edebilen biyobelirteçler

halen karşılanamamış klinik bir ihtiyaçtır. Bu tezde, İmT ile tedavi edilmiş KHDAK

hastaları arasında ani hastalık progresyonu (AHP) fenotipleri ve sağkalım sonuçlarını

öngören yalın modelleri tanımlamak için tedavi öncesi klinik değişkenler ve nicel görüntü-

temelli özellikler (yani, Radyomikler) kullanılmıştır. Bu tezin içeriği bağlamında dört

çalışma yapılmıştır. İlk olarak, radyal gradyan ve radyal sapma haritalarını kul-

lanan yeni prognostik ve prediktif bilgisayarlı tomografi (BT) radyomik özellikleri

oluşturuldu. Bir özellik, RD outside-border SD, iki bağımsız KHDAK kohortunda

genel sağkalım ile ilişkili olarak bulundu. İkinci olarak, KHDAK İmT’nin hiper-

ani progresyonu (HAD) dahil olmak üzere AHP fenotiplerini öngören klinik-radyomik

modeller yaratıldı. Toplam 228 KHDAK hastasında AHP’yi öngörmek için orta ila

yüksek kabiliyete sahip (eğri altındaki alanlar: 0.812 ve 0.843) klinik-radyolojik mod-

eller oluşturuldu. Üçüncü çalışmada, akciğer lezyonları kullanılarak stabil ve tekrar-

lanabilir periferik-tümör ve tümör-içi BT radyomik özellikleri, yanlış bulgu olasılığını

azaltmak için tanımlandı. Dördüncü ve son çalışmada, İmT ile tedavi edilen 332

KHDAK hastasının sağkalım sonuçlarına dayanan yalın bir risk modeli tanımlamak

için tedavi öncesi klinik değişkenler ve radyomikler kullanılıdı. En öngörücü radyomik

özellik (GLCM inverse difference), bir gen ifadesi ve bir immünohistokimya kohortu

kullanılarak, CAIX ifadesi ile pozitif olarak ilişkili bulundu.

Anahtar Sözcükler: Radyomikler, Akciğer kanseri, İmmünoterapi.
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1. MOTIVATION AND OBJECTIVES

Lung cancer is the leading cause of cancer-related death worldwide and accounts

for more deaths than prostate, breast, colon, and pancreatic cancer combined [1].

Immunotherapy targeting programmed death-1 (PD-1) or programmed death ligand-1

(PD-L1) provide durable responses and improved long-term survival in advanced non-

small-cell lung cancer (NSCLC) patients [2–7]. However, like many novel therapies,

a lack of predictive biomarkers reduces foreknowledge of potential response rates to

immunotherapy, which could be used to tailor individual patient’s treatment plans.

Currently, PD-L1 expression extracted from immunohistochemistry (IHC) is the only

applied biomarker to select patients for immunotherapy yet, PD-L1 expression alone

is not adequate to predict response [8, 9]. Recent clinical trials demonstrated that

immunotherapy exhibits survival benefit regardless of PD-L1 expression [7, 10] hence,

additional biomarkers are significant clinical unmet need.

Medical imaging is one of the key instruments that are intensively used for

diagnosis, treatment planning, monitoring and image-guided interventions of cancer

patients. However, in current radiology practice, only a few simple quantitative met-

rics are being used to characterize tumor phenotype. As such, assessment of response

to immunotherapy on clinical trials uses consensus guidelines—Response Evaluation

Criteria in Solid Tumors (RECIST or iRECIST [11]) that measure only tumor(s) size

by medical imaging (e.g., computed tomography [CT]) and how it objectively changes

in response to therapy. Although iRECIST is widely used for evaluating immunother-

apy response, it is not a baseline (pre-treatment) treatment response predictor. How-

ever, there is emerging evidence that standard-of-care medical images contain comple-

mentary and interchangeable data orthogonal to other sources such as, demographics,

pathology, hematology, genomics, and proteomics. These data can be captured by

a high-throughput computing technique called ”Radiomics”, which involves extract-

ing computational features from a region of interest (i.e., intratumoral or peritumoral

regions) that are based on size, shape, intensity and texture that quantify a variety
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of phenotypic traits [12]. These quantitative features have been shown to be associ-

ated with patient outcomes independent of clinical covariates and patient characteris-

tics [13–18]. Hence, the main objective of this thesis was to develop models utilizing

radiomic and clinical covariates that can predict response of NSCLC patients in an

immunotherapy setting.

1.1 Thesis hypotheses,objectives and organization

The focus of this study is on the development of radiomic-clinical based models

for the prediction of outcomes of NSCLC patients in an immunotherapy setting and

the main hypotheses were as follows:

(i) Hypothesis 1 : Quantitative image features extracted from radial gradient (RG)

and radial deviation (RD) maps of CT scans have the potential to be used as

prognostic, diagnostic and predictive markers of lung cancers, including but not

limited to pre-surgical CT scans and immunotherapy baseline CT scans.

(ii) Hypothesis 2 : Quantitative CT image-based features combined with clinical co-

variates extracted from pre-treatment NSCLC immunotherapy patients could

predict disease progression phenotypes, survival and biological underpinnings of

tumors that lead to treatment resistance which can be used as biomarkers for

avoiding unnecessary treatments.

(iii) Hypothesis 3 : Identifying stable and reproducible quantitative image features is

an important precursor prior to conducting analyses of radiomics data as features

with low-fidelity will likely lead to spurious findings and unrepeatable models.

Based on these hypotheses, six main objectives were defined as part of this thesis.

These objectives overall fall within the aim of assisting physicians as a medical decision

support system utilizing quantitative image-based features and clinical covariates that
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are easily extractable from standard-of-care scans and patient characteristics. As such

the objectives are listed below:

(i) Objective 1 : Create a comprehensive review on the developments of the radiomics

of lung cancer to guide the scientific community on the current advancements and

future directions (Chapter 2).

(ii) Objective 2 : Extract features from RG and RD maps from pre-surgical contrast-

enhanced thoracic CT scans among patients with lung adenocarcinoma and assess

the associations with overall survival (Chapter 3).

(iii) Objective 3 : Develop parsimonious models that can identify NSCLC patients

treated on clinical trials of immunotherapy that are at risk of rapid disease pro-

gression utilizing CT scans and clinical covariates (Chapter 4).

(iv) Objective 4 : Assessing the stability and reproducibility of CT peritumoral and

intratumoral radiomic features of lung lesions (Chapter 5).

(v) Objective 5 : Develop parsimonious models utilizing clinical data and CT scans

of NSCLC patients treated on immunotherapy clinical trials that can predict

survival outcomes (Chapter 6).

(vi) Objective 6 : Finding potential biological and radiological underpinnings of pre-

dictive and prognostic radiomic features by comparing with semantic radiology,

gene expression profiling and IHC (Chapter 3 and Chapter 6).

This thesis consists a total of seven chapters and three appendixes. Since the thesis

was based on multiple-manuscripts, chapters were written in a self-contained manner.

However, all analysis on chapters are complementing to reaching the optimal goal

of identifying clinical and image-based biomarkers for NSCLC immunotherapy. The

chapters of the thesis is as follows:

(i) Chapter 2 : Introduction to epidemiology of lung cancer, radiomics and particu-

larly radiomics of lung cancer.
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(ii) Chapter 3 : Description of the first published manuscript which radiomic features

extracted from RG and RD maps were used to assess overall survival of pre-

surgical lung adenocarcinoma patients. Published in Oncotarget 2017 Nov 10;

8(56): 96013–96026.

(iii) Chapter 4 : Description of the second published manuscript which clinical and

radiomic predictors of rapid disease progression phenotypes were found in the

setting of NSCLC immunotherapy. Features developed on Chapter 3 were also

utilized in this study. Published in Lung Cancer 2019 Mar; 125: 75-79.

(iv) Chapter 5 : Description of the third published manuscript which stability and

reproducibility of radiomic features extracted from intratumoral and peritumoral

regions were assessed. To measure stability the “Moist run” dataset which con-

sists of multiple segmentations of lesions [19] and to measure reproducibility the

Reference Image Database to Evaluate Therapy Response (RIDER) dataset that

consists of test-retest data [20] were utilized. Published in Medical Physics 2019

Sep 08; doi: 10.1002/mp.13808

(v) Chapter 6 : Description of the fourth manuscript (under review) which clinical

and radiomic predictors of patient survival in the setting of NSCLC immunother-

apy. The models created in this study included only stable and reproducible ra-

diomic features which were identified in Chapter 5. A training, an internal test

and an external validation cohort were utilized in this study. Also biological un-

derpinnings of radiomic signature were explored using separate gene-expression

and IHC datasets. Under review at Nature Communications.

(vi) Chapter 7 : Overall conclusions of the thesis were given by summarizing and

highlighting the novelty of each study described in previous Chapters. Potential

future directions regarding each study were discussed.

(vii) Appendix 1 : Supplementary methods, figures and tables are given.

(viii) Appendix 2 : List of publications produced from the thesis are given.

(ix) Appendix 3 : Other contributions to the literature during the time span of this

dissertation are given.
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2. LUNG CANCER AND RADIOMICS

2.1 Lung Cancer

Lung cancer is a major public health issue and the leading cause of cancer-related

deaths among both men and women in the United States [1]. Approximately 57% of

lung cancer patients exhibit metastatic disease stage at the time of diagnosis [21].

Unfortunately, a vast majority of these patients have severe outcomes with 5-year

overall survival (OS) rates of only 6% on a distant stage diagnosis [22].

Use of tobacco products is the major cause of lung cancer; however, cessation

missions are not enough to win the war against lung cancer as there are other ge-

netic [23] and environmental factors [24] , as well as “bad luck” [25] that can lead to a

lung cancer development. There is a pressing clinical necessity for accurate and afford-

able screening methods to catch lung cancers at an earlier stage while it is still localized.

One of the major progress that reduce lung cancer mortality rates was based on the

study by The National Lung Screening Trial (NLST) which compared standard chest

radiography and low-dose helical computed tomography (LDCT) for early detection of

lung cancer [26]. A 20% relative reduction in lung cancer mortality was perceived after

a median follow-up of approximately 6 years for LDCT compared to chest radiography.

Similar results were seen in a European trial,NEderlands-Leuvens Longkanker Screen-

ings ONderzoek (NELSON), in 2018 indicating significant reductions in lung cancer

mortality and confirming the efficacy of lung cancer screening [27]. At the other end of

the detection spectrum, sophisticated therapies have made substantial progress on the

fight against advanced lung cancers over the past 20 years. These therapies include tar-

geted therapies such as Erlotinib and Gefitinib (and now Osimertinib) to treat patients

with activating epidermal growth factor receptor (EGFR) mutations [28,29], or Crizo-

tinib for anaplastic lymphoma kinase (ALK) rearranged lung cancers [30]. However,

most lung cancers do not have a known driver mutation, and thus many novel therapies

fail to be useful because viable, predictive biomarkers cannot be found. An exception
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may be immunotherapy that target the checkpoint blockades, where total mutational

burden or PD-L1 status may predict response. However, emerging data have shown

that durable responses can occur with negative biomarker results and some patients

have rapid progression even if these biomarkers are positive [31]. Thus there remains

a clinically unmet need to develop more robust and predictive biomarkers for response

to checkpoint blockades.

Even though a significant reduction in lung cancer mortality rates has been seen

in the last decade [1], pathologic staging remains to be the most important prognostic

factor for prognosing lung cancer survival [32]. However, there is marked variability in

patient outcomes and survival among patients with the same stage of disease, which

suggests that other factors contribute to lung cancer prognosis [33–37].

Emerging targeted treatment options and the rise of precision medicine for can-

cer has made a remarkable increase in the quantity and types of information that are

being extracted from individual patients and tumors. Medical imaging is one of the

key instruments that are intensively used for diagnosis, treatment planning, monitor-

ing and image-guided interventions of cancer patients. These data are stored digitally

in a standardized Digital Imaging and Communications in Medicine (DICOM) for-

mat that readily be used for analysis. However, in current radiology practice, only

few simple quantitative metrics are being used to quantify tumor phenotype, such as

largest diameters of tumors (i.e., RECIST) by CT or maximum and mean standardized

uptake value (SUV) from positron emission tomography (PET), while the remainder

of evaluative analytics are handled in a qualitative manner making it user-dependent.

However, there is emerging evidence that standard-of-care medical images contain com-

plementary and interchangeable data that are orthogonal to other data types such as,

demographics, pathology, hematology, genomics, and proteomics. These imaging data

can be captured by a high-throughput computing technique called Radiomics which

involves extracting computational image-based features from a region of interest (i.e.,

intratumoral or peritumoral region) of a medical imaging scan. Features are based

on size, shape, intensity and texture that quantify a variety of phenotypic traits [12].

These quantitative radiological imaging features (i.e., Radiomics) are associated with
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cancer patients’ diagnosis, prognosis, and/or their tumor genotype independent of clin-

ical covariates and other patient characteristics [13–18].

In the remaining of this chapter, the field of Radiomics is described and dis-

cussed in the setting of lung cancer. Potential advantages and pitfalls are mentioned

thoroughly.

2.2 Cancer Heterogeneity and the Utility of Radiomics

Cancers are heterogeneous across a wide range of spatial and temporal scales

which results in regional variations in metabolism, vasculature, oxygenation and gene

expression [38,39]. Even with the same histology, tumors may still have unique driver

mutations, proteomic profiling, and/or aggressiveness. Technical advances allow exten-

sive molecular characterization of tumor cells in each individual patient which enables

precise individualized cancer treatment. However, a single arbitrary sample taken

from the tumor using needle biopsy may only represent a small sub-region of the tu-

mor parenchyma potentially generating misleading results via “sampling artifact”. On

the other hand, Radiomics can capture tumor phenotype from a 3-dimensional space

from multiple sites reducing the sampling-bias and has no time-constraint hence can

be captured using longitudinally.

The process of radiomics involves five fundamental steps (a) Image acquisition

and digitization, (b) ROI selection and segmentation, (c) Quantitative feature extrac-

tion and feature selection, (d) biomarker discovery and modeling and (e) validation

(Figure 2.1). The first step involves image-data acquisition and digitization. Ra-

diomics does not require further imaging of patients but rather uses standard-of-care

images. Since imaging is a fundamental instrument of cancer treatment from diagno-

sis to treatment planning and assessing patient response, radiomics have the potential

to benefit greatly from this readily available image-data. However, image acquisition

protocols vary widely across different medical centers and sometimes even in between

the same institutions. Thus, it is crucial to maintain a homogeneous image acquisi-
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Figure 2.1 The Radiomics Pipeline. Using standard-of-care imaging studies, tumor(s) are seg-
mented by an automatic or semi-automatic algorithm and approved by a radiologist. Radiomic features
are computationally extracted from region-of-interests (ROIs) within and around tumor. Radiomic
image features that are redundant and non-reproducible features are eliminated, and a final set of
features are combined with clinical data and conventional biomarkers (e.g., immunohistochemistry,
liquid biopsies, and molecular markers). The data are analyzed and modeled to identify the most
informative data elements that can used to improve decision support for diagnosis, risk prediction,
prognostication, or treatment response.

tion parameter space across the cohort being analyzed. The second step involves the

ROI selection and segmentation. The choice of ROI is typically the primary tumor or

index lesions when the disease is metastatic. Increasingly, however, the peritumoral

regions are being used as an ROI. Segmentation of the ROI can directly affect radiomic

feature values; in fact some radiomic features are extremely sensitive to segmentation

bias [40] rendering them uninformative. Hence, ideally, segmentation methods should

produce accurate, reproducible and consistent segmentations in an automated manner

and require minimal user input in order to increase stability of features. The third

step consists of feature extraction that includes shape, intensity, texture and wavelet

as well as location or orientation of the ROI. To reduce overfitting, features that are

non-reproducible and unstable could be eliminated and principal component analy-
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sis or clustering methods could be used to reduce dimensionality. The fourth step

is the biomarker discovery and modelling step which includes creating models utiliz-

ing biostatistics or machine learning methods to find the most informative radiomics

correlated with the desired end-points of the study (e.g., overall survival, treatment

response, genomics data...etc.). To achieve comprehensive models, clinical data such

as demographics, genetic information, and/or hematology should be incorporated to

the final models. Lastly, the trained models need to be further validated by assessing

accuracy on independent external, if not internal datasets. External validation gives

highest credibility to the study as it shows that the model can be translated between

multiple cohorts and institutions, demonstrating its independence.

Many studies have been conducted on radiomics in the setting of lung cancer.

Some of the major studies in the literature based on four different categories: 1- Early

detection radiomic studies, 2- Prognostic and survival outcome studies, 3- Treatment

response prediction studies and 4- Radiogenomic studies and were discussed below.

2.3 Early Detection Radiomic Studies

Differentiating malignant from benign tumors has been a long ongoing subject

well before the introduction of radiomics [41, 42]. With the era of radiomics, a vast

number of quantitative feature are able to quantify the lesion phenotype, which has

potential to improve diagnostic accuracy. As diagnostic CT and PET/CT scans are

routinely obtained during the workup of lung cancer patients, image-based features

can provide valuable and readily available complementary decision support information

which have translational implications for improved lesion stratification.

After the NLST was made publicly available, many studies were performed on

images of this immense cohort. One of the pioneering works was done by Hawkins et

al. [43] where baseline screening CT scans from the NLST were used to predict inde-

terminate pulmonary nodules that would subsequently develop into malignant tumors.

They used a set of stable and non-redundant radiomic features that were fed into a
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group of classifiers where best accuracy was achieved using a random forests classifier

generating area under the curve (AUC) of 0.81 for predicting development of cancer in

1 year, with highest and lowest radiomics scores having accuracies of 0.93. Peikert et

al. [44] created a radiomics model to compare malignant and benign screen-detected

indeterminate lung nodules utilizing the NLST dataset. Using least absolute shrinkage

and selection operator (LASSO) multivariable analysis, they reported an AUC of 0.939

with 8 features. Huang et al. [45] performed a matched case-control study to find the

added value of CT image-based features for the early detection of small pulmonary

nodules. Utilizing the NLST dataset, they extracted texture features within the tumor

ROI as well as the peritumoral ROI. They showed that image-based features increased

the positive predictive value (PPV) and reduced the false positive (FP) rates compared

to thoracic radiologist evaluations. Cherezov et al. [46] improved malignancy predic-

tion accuracy from 74.7% to 81.0% by implementing separate models based on different

nodule sizes on NLST dataset. They used Synthetic Minority Oversampling Technique

(SMOTE) to overcome the class imbalance. Chae et al. [47] utilized texture features to

differentiate pre-invasive lesions from invasive pulmonary adenocarcinomas that were

marked as part-solid ground-glass opacities (GGOs) on chest CT scans. Their artificial

neural network (ANN) model showed an excellent performance using five radiomic fea-

tures with an AUC of 0.981 on 86 part-solid GGOs. Liu et al. [48] identified semantic

features (i.e., radiological traits quantified by radiologists) that are predictive for ma-

lignancies in lung nodules. Dhara et al. [49] utilized 891 nodules from the Lung Image

Database Consortium and Image Database Resource Initiative database (LIDC-IDRI)

and classified malignant versus benign nodules using support vector machine (SVM).

Their models reached an AUC of 0.951 which outperformed methods that required

manual segmentation of a trained radiologist. Table 2.1 shows the summary of the

screening and early detection radiomic studies.
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Table 2.1
Description of screening and early detection radiomic studies.

Author
Imaging 

modality

Major end-

point

N (training + 

test cohorts)

Study 

cohort

Number of 

features in 

the model

Evaluation 

metric

Analytical 

method used
Study description Validation Type

Hawkins et al. [43] CT Diagnosis 176+152 NLST 10 AUC = 0.81
Random forest 

classifier

Predicting benign vs malignant 

nodules on a screening cohort

Internal validation 

with a separate 

dataset

Peikert et al. [44] CT Diagnosis 726 NLST 8 AUC = 0.939 LASSO
Differentiating benign vs malignant 

from indeterminate nodules

Internal validation 

utilizing 

bootstrapping

Huang et al. [45] CT Diagnosis 140+46 NLST
5 radiomic + 

1 clinical
AUC = 0.9154

Random forest 

classifier

Differentiating benign vs malignant 

from small nodules (≤ 20 mm)

Internal validation 

with a separate 

dataset

Cherezov et al. [46] CT Diagnosis 255+212 NLST
Ranging 

from 5 to 10

AUC = 0.76 to 

0.86

Machine 

learning

Differentiating benign vs malignant 

based on nodule size

Internal validation 

with a separate 

dataset

Chae et al. [47] CT Diagnosis 86 private 2 and 5 AUC = 0.981

Logistic 

regression + 

ANN

Differentiating preinvasive lesions 

from invasive pulmonary 

adenocarcinomas 

No validation

Liu et al. [48] CT Diagnosis 102+70 private
4 sematic 

features

AUC = 0.74 and 

0.80
Liner classifier

Differentiating benign vs malignant 

from incidentally identified nodules

Internal validation 

with a separate 

dataset

Dhara et al. [49] CT Diagnosis 891 LIDC/IDRI Unknown
AUC = 0.8488 

to 0.9505
SVM

Predicting benign vs malignant 

nodules 
No validation

Abbreviations: CT = computed tomography; AUC = area under curve; SVM = support vector machine; LASSO = least absolute shrinkage and selection operator; ANN = artificial neural network; LIDC/IDRI = 

Lung Image Database Consortium and Image Database Resource Initiative database.
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2.4 Prognostic and Survival Outcome Radiomic Studies

Accurately determining the aggressiveness of tumors is critical as it can help

physicians develop a prognosis and provide options to choose between curative and

palliative treatments as well as the aggressiveness of the therapy. Pathological stag-

ing remains to be the most important prognostic factor for lung cancer survival [32].

However, radiomic studies have shown that image-based biomarkers have the potential

to complement other types of biological markers and improve prognosis of lung cancer

which will assist physicians on determining the treatment type.

Aerts et al. [50] analyzed NSCLC and head and neck cancer patients and vali-

dated a CT radiomic signature that had better prognostic performance than covariates

such as Tumor, Node, Metastasis (TNM) staging and volume. They found associations

between their radiomic signature and gene-expression patterns using gene-set enrich-

ment analysis where the most informative features were found to be correlated with cell

cycling pathways. Grove et al. [14] developed two CT features; convexity and entropy

ratio, which were significantly associated with OS of patients diagnosed with primary

lung adenocarcinoma utilizing two independent cohorts. Tunali et al. [51] assessed

the same cohorts and developed novel radiomic features generated from RG and RD

maps that also associated with OS. Coroller et al. [52] built a combined model of CT

radiomics and clinical predictors that is correlated with distant metastasis while Wu et

al. [53] utilized fluorine 18 (18F) PET/CT based radiomic features to overcome same

problem. Huang et al. [54] found radiomic signatures that correlated with disease-free

survival. Several studies [55–57] investigated the prognostic performance of CT ra-

diomic features for distant metastasis and loco-regional recurrence after stereotactic

body radiation therapy. Win et al. [58] showed that heterogeneity on both CT and

PET components of PET/CT were significant predictors of survival. Chae et al. [47]

and She et al. [59] found CT radiomic signatures that differentiated indolent versus in-

vasive lung adenocarcinoma. Table 2.2 shows the summary of the screening and early

detection radiomic studies.
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Table 2.2
Description of prognostic and survival outcome radiomic studies.

Author
Imaging 

modality

Major end-

point

N (training + 

test cohorts)

Study 

cohort

Number of 

features in 

the model

Evaluation 

metric

Analytical 

method used
Study description Validation Type

Aerts et al. [50] CT OS 422+ 225
prviate + 

TCIA
4

Concordance 

index = 0.65

Cox 

proportional 

hazards 

Prognostic power of radiomic 

features and the underlying gene-

expression patterns.

External validation

Grove et al. [14] CT OS 61+47

Will be 

available on 

TCIA

1 P value : 0.008 

Cox 

proportional 

hazards 

Prognostic power of newly 

developed radiomic features
External validation

Tunali et al. [51] CT OS 61+47

Will be 

available on

TCIA

1 P value : 0.014

Cox 

proportional

hazards 

Prognostic power of newly 

developed radiomic features
External validation

Coroller et al. [52] CT
OS & Distant 

metastasis
98+84 private 3

Concordance 

index = 0.61

Cox 

proportional 

hazards 

Predicting distant metastasis External validation

Wu et al. [53] PET
Distant 

metastasis
70+31 private 2

Concordance 

index = 0.71

Cox 

proportional 

hazards 

Predicting distant metastasis

Internal validation 

with a separate 

dataset

Huang et al. [54] CT DFS 141+141 private 5
Concordance 

index = 0.691
LASSO

Predicting DFS in early stage 

patients

Internal validation 

with a separate 

dataset

Huynh et al.[55] CT OS 131 private 13 AUC = 0.667

Correlation 

analysis 

(Spearman’s 

Early stage disease recurrence 

prediction of patients treated with 

SBRT

No validation

Li et al. [56] CT OS 92 private

2 radiomic + 

1 clinical + 1 

semantic

Log-rank p-

value = 0.0002

Cox 

proportional 

hazards 

Early stage disease survival 

prediction of patients treated with 

SBRT

No validation

Oikionomou et al. 

[57]
CT + PET OS 150 private 7

(logrank chi-

square: 8.92, 

p = 0.002

Cox 

proportional 

hazards 

Predict clinical outcome in lung 

cancer patients treated with SBRT
No validation

Win et al. [58]
(FDG) 

PET/CT
OS 56 + 66 private

2 radiomic + 

1 clinical

Cox regression 

p-value < 0.001

Cox 

proportional 

hazards 

Predicting OS External validation

Chae et al. [47] CT Prognostic 86 private 2 AUC = 0.981 ANN

Differentiate preinvasive lesions 

from invasive pulmonary 

adenocarcinomas

No validation

She et al. [59] CT Prognostic 207 + 195 private 5 AUC = 0.95
Logistic 

regression

Differentiate indolent from invasive 

pulmonary adenocarcinomas

Internal validation 

with a separate 

dataset

Abbreviations: CT = computed tomography; AUC = area under curve; TCIA = The Cancer Imaging Archieve; PET = positron emission tomography; OS = overall survival; ANN = 

artificial neural network; LASSO = least absolute shrinkage and selection operator; 
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2.5 Treatment Response Prediction Radiomic Studies

Early assessment of a therapeutic efficacy and predicting treatment outcomes

would aid clinicians to decide which treatment has the optimal benefit for the patient.

Potentially this will eliminate unnecessary treatments reducing toxicities, costs, and

increasing patient survival. Thus, accurate and robust early predictive models are

clinical needs for all cancer types.

Coroller et al. [60] investigated CT radiomic features extracted from primary

lung tumors and lymph nodes to predict pathological complete response after neoadju-

vant chemoradiation before surgery. They showed that a clinical-radiomics model had

the highest median AUC and performed significantly better than the radiomics only

or clinical only models. Yu et al. [61] retrospectively analyzed training and valida-

tion cohorts of NSCLC patients that were treated with surgery or stereotactic ablative

radiation therapy (SABR). Their CT radiomic model was able to identify patients

by mortality risk and also shown association with distant metastasis. Mattonen et

al. [62] compared a machine learning radiomics based approach versus a physician to

detect local recurrence after SABR. Their radiomic signature consisted of five features

which discriminated local recurrence from fibrosis with an AUC of 0.85. Khorrami et

al. [63] utilized peri- and intratumoral CT radiomic features to predict pemetrexed-

based chemotherapy response. They showed that peritumoral features were predictive

for time-to-progression. Fave et al. [64] utilized delta radiomics (i.e., changes in ra-

diomic features in longitudinal scans) and showed that radiomic feature alterations

after radiation therapy may represent tumor response. Tunali et al. [65] and Trebeschi

et al. [66] utilized CT radiomics to address a recent clinical unmet need of identifying

immunotherapy response. Both studies had significant performances with AUCs over

0.80 to discriminate responders versus non-responders. Table 2.3 shows the summary

of the screening and early detection radiomic studies.
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Table 2.3
Description of treatment response prection radiomic studies.

Author
Imaging 

modality
Major end-point

N (training + 

test cohorts)

Study 

cohort

Number of 

features in 

the model

Evaluation 

metric

Analytical 

method used
Study description Validation Type

Coroller et al. [60] CT pCR 85 private
2 radiomic + 

1 clinical

AUC = 0.67, p 

< 0.05
Random forest

Predicting pathological response 

after neoadjuvant chemoradiation
No validation

Yu et al. [61] CT OS 147 + 295 private 2
log-rank p-value 

= 0.017

Random 

survival

forests

Predicting the clinical outcomes for 

patients with stage I NSCLC 

treated with SABR

Internal validation 

with a separate 

dataset

Mattonen et al. [62] CT Local recurrence 45 private 5
FPR = 24.0%, 

FNR = 23.1%

Machine 

learning

Assess physician ability to detect 

timely local recurrence and to 

compare physician performance 

with a radiomics tool

No validation

Khorrami et al. [63] CT OS and TTP 72 + 53 private 7 AUC = 0.77

Minimum 

redundancy 

maximum 

Discriminative ability of radiomic 

features on response to 

chemotherapy

Internal validation 

with a separate 

dataset

Fave et al. [64] CT Local recurrence 107 private 1
Log-rank p-

value = 0.269

Cox 

proportional 

hazards 

Assessing radiation therapy 

response by utilizing delta 

radiomics

No validation

Tunali et al. [65] CT
Rapid disease 

progression
228 private

4 radiomic + 

4 clinical
AUC = 0.8040 

Logistic 

regression

Identifying rapid disease 

progression phenotypes in patients 

treated with immunotherapy

No validation

Trebeschi et al. [66] CT
Response to 

immunotherapy
133+70 private 2

AUC = 0.83, p 

< 0.001

Machine 

learning

Identifying radiomic biomarkers 

for immunotherapy response

Internal validation 

with a separate 

dataset

Abbreviations: CT = computed tomography; AUC = area under curve; OS = overall survival; SABR = stereotactic ablative radiation therapy; TTP= time-to-progression; pCR = 

pathalogical complete response; FPR = false positive ratio; FNR = false negative ratio. 
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2.6 Radiogenomics Studies

Cancer is a heterogeneous disease where genomic heterogeneity, molecular and

microenvironmental events contribute to the aggressiveness and therapy response. Ge-

nomic profiling is being used for appropriate treatment selection for advanced lung

cancer [67]. Meanwhile, studies have shown that radiomic features capture the link be-

tween the cancer genomics and tumor phenotype which is called radiogenomics. (Nota

bene: In some publications, “Radiogenomics” is a term to describe genomic prediction

of radiation response patterns, however those studies were not refered in this section).

Wu et al. [67] observed that some CT texture features were associated with

NSCLC tumor histology. Velazquez et al. [68] found clinical-radiomics signatures that

differentiated EGFR and Kirsten rat sarcoma viral oncogene homolog (KRAS ) muta-

tions, the most common somatic mutations in lung adenocarcinomas. On the other

hand, Gevaert et al. [69] utilized semantic features (to predict EGFR and KRAS muta-

tions; however their models were only able to predict for EGFR mutations accurately.

Liu et al. [70] utilized CT radiomics to predict EGFR mutation status in an Asian

cohort who had surgically-resected peripheral lung adenocarcinomas. Weiss et al. [71]

similarly looked at CT texture features that are discriminated KRAS mutant tumors

from pan-wildtype tumors. Yamamoto et al. [72] combined clinical covariates and CT

based features to characterize tumors with ALK+ rearranged NSCLC. Yoon et al. [73]

identified clinical and CT and PET radiomic predictors for ALK /ROS1/RET fusion-

positive lung adenocarcinoma. Zhou et al. [74] integrated semantic CT features with

next-generation RNA sequencing data to identify radiogenomic biomarkers. They val-

idated 10 metagenes annotated by functional gene enrichment analysis that resulted in

significant associations with semantic CT image features.Table 2.4 shows the summary

of the radiogenomic studies.
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Table 2.4
Description of radiogenomic studies.

Author
Imaging 

modality
Major end-point

N (training + 

test cohorts)

Study 

cohort

Number of 

features in 

the model

Evaluation 

metric

Analytical 

method used
Study description Validation Type

Wu et al. [67] CT Tumor histology 350 private 5
AUC = 0.72; p 

= 2.3 × 10−7

Machine 

learning

Finding association between 

radiomic features and the tumor 

histologic subtypes

No validation

Velazquez et al. 

[68]
CT EGFR mutation 353+352 private 21 AUC = 0.70 Random forest

Discriminating between EGFR
+

and 

EGFR
-

External validation

Gevaert et al. [69] CT EGFR mutation 186 private
5 semantic 

features
AUC = 0.87

Multivariate 

decision tree

Discriminating between EGFR
+

and 

EGFR
-

No validation

Liu et al. [70] CT EGFR mutation 298 private
4 radiomic +2 

clinical
AUC = 0.709

Logistic 

regression

Discriminating between EGFR
+

and 

EGFR
-

No validation

Weiss et al. [71] CT KRAS mutation 48 private 2
Accuracy = 

89.6%

Recursive 

decision tree

Differentiation between K-ras 

mutation and pan-wildtype
No validation

Yamamoto et al. 

[72]
CT ALK mutation 59 +113 private

3 radiomic +1 

clinical

Accuracy = 

78.8%
Random forest

Discriminating between ALK
+

and 

ALK
- 

External validation

Yoon et al. [73] PET/CT
ALK/ROS1/RET 

mutations
539 private

4 radiomics + 

1 qualitative 

image features 

+ 2 clinical

Sensitivity = 

0.73, Specificity 

= 0.70

Chi-squared 

test and 

Student t test

Predictors of tumors with ALK, 

ROS1, or RET fusions

Internal validation 

utilizing CV 

Abbreviations: CT = computed tomography; AUC = area under curve; PET = positron emission tomography; CV = cross validation. 
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2.7 Limitations of Radiomics

Although radiomics have shown premise for potentially improving diagnostic,

prognostic, and predictive accuracy of cancer, there are still limitations and hurdles to

overcome. The two most important limitations which will be discussed are the lack of

reproducible studies and poor study designs that lead to spurious results and create

underpowered studies.

There is a broad spectrum of factors contributing to non-reproducible results

that range from imaging to segmentation and to statistical flaws. Standard-of-care

image acquisition parameters have a wide range. These parameters include, but are

not limited to: pixel spacing, slice thickness, reconstruction kernel, kVp, washin and

washout periods on PET and dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) scans, administration of contrast agents, as well as gradient strengths,

field strengths, echo time, and repetition time on MRI scans. Intra- and inter-scanner

variabilities affect these parameters, which can cause radiomic feature distributions to

change. To overcome these issues, efforts need to be expended to at least partially

standardize acquisition and reconstruction protocols, and to develop post-acquisition

corrections for some of these variables, such as linear interpolation to a fixed voxel size.

On the other hand, if radiomic features are being extracted from a heterogeneous image

acquisition parameter space, features that are less sensitive to these parameters which

eventually shown to have higher predictive/prognostic value, should be used eliminating

the features that are more sensitive [75]. Meanwhile, computational radiomic feature

calculations involve many critical processing steps that include pre-processing, spatial

interpolation and intensity discretization. Recently an international group of radiomic

researchers formed the Image Biomarker Standardization Initiative (IBSI) to tackle

the issue of standardizing radiomic features across multiple institutions [76]. The goal

of the initiative was to set consensus and provide benchmarks on the most common

radiomic features as well as image processing steps before feature extraction where

benchmark calculations were performed on digital synthetic images. All researchers

in the field to set their radiomic features are encouraged to use the IBSI standards in

order to increase the chance of reproducible research.
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Another important factor that affects the reproducibility is the segmentation of

the region-of-interest (i.e., tumor parenchyma or peritumoral parenchyma). Manual

segmentations are particularly time consuming and often leads to intra- and inter-

observer variations. To overcome this, segmentation of the tumors can be performed

by fully- or semi-automated algorithms which involve minimal user variations such as

simple initializations (e.g., seed point), followed by a computer-based delineation of the

ROI. However, to tackle this issue further, segmentation algorithms across institutions

have to be standardized to achieve consistent delineations. Nevertheless, many of the

features are not reproducible even when acquired within a few minutes using same

image acquisition parameters [77] or when the same segmentation algorithms were

being used [19]. Hence, researchers working on lung cancer radiomics are encouraged

to choose reproducible features by utilizing test re-test datasets, such as RIDER, and

stable features by utilizing multiple segmentation datasets such as the Moist run dataset

[40].

Another important factor affecting quality of results is incorrect study designs

that can increase the rate of false discoveries [39]. With the potential wide range of

hyperparameters such as number of filters, feature categories, and other adjustable pa-

rameters, there are theoretically an unlimited numbers of radiomic features that can be

used. As a matter of fact, many studies include too many features without accounting

for multiple testing errors which leads to feature selection bias, false positive results or

underpowered studies [78–80]. As a rule of thumb, Chalkidou et al. [81] suggested that

using at least 10-15 observations (i.e., patients) per predictor variable (i.e., radiomic

feature) will realistically reduce false discovery rate. Another potential application is

to correct significant p-values for multiple testing using methods such as Bonferroni-

Holm or Benjamini-Hochberg methods [82–84]. If estimates of predictive performance

are conducted from a cohort of a single institution, multiple-folded repeated cross val-

idation should be performed to minimize the risk of overfitting. However, utilizing an

internal and/or ideally an external validation cohort with similar patient demograph-

ics and status is the optimal method to validate findings to avoid spurious findings.

Researchers could also assess whether the found model can be applied on a distinct

patient population (making it predictive) or reflect a pan-signature that can be used
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on multiple patient subgroups (making it prognostic).

Overall, to assess the quality of a radiomics study, a new metric called radiomics

quality score (RQS) has been proposed by Lambin et al. [85] which evaluates radiomic

studies by a series of questions on internal consistency, reproducibility and clinical ap-

plicability. The RQS score does not claim to evaluate the significance of the study yet

it quantifies proper study design and scientific usefulness. Researchers are highly sug-

gested to evaluate their studies by RQS and try to get a high score for more repeatable

and quality science in the field of radiomics. To create a benchmark for RQS score, a

recent meta-analysis [86] analyzed 77 published papers and documented that the mean

RQS across all studies was 9.4 ±+ 5.6 where the potential maximum of RQS is 36.

2.8 Future Guidelines

Radiomics is a tool for clinical decision support which does not have the goal

to remove radiologists from clinical practice but rather act as a complementary sys-

tem that converts radiological examinations into quantitative features that ultimately

improve diagnostic accuracy and prediction power. As such, it is intended to extract

information utilizing standard-of-care images that routinely available. However, as

mentioned before, there are limitations that are still unmet to make the transition

from research to clinical practice. The most crucial step to make the leap to clinical

translation is testing the clinical utility of such image-based markers by randomized

prospective clinical trials. In order to achieve this, proper study designs and high-

quality research needs to be put in place to reduce false discovery rates and spurious

findings.

With an increasing number of medical images being digitized and being readily

available for analysis, applying machine learning methods, specifically deep learning,

for predicting patient outcomes attracts many researchers. Deep learning has un-

precedented success due to advances in central processing units (CPUs) and graphics

processing units (GPUs), the availability of big data due to increased storage and dig-
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itization. Deep learning models are most effective when the numbers of samples are

sufficiently high, e.g. tens of thousands to millions. However, due to the logistical

hurdles associated with sharing medical data between institutions, most studies still

fall way too short of reaching these sample sizes to get properly working artificial in-

telligence (AI) models. To overcome this challenge, researchers use data augmentation

methods such as affine transformation [87] or generative adversarial networks [88] to

generate artificial samples and/or use transfer learning methods [89,90] where the neu-

ral networks are trained using natural images and only the final output layer is trained

with the target-task samples (i.e., medical images) and/or use two-dimensional images

instead of using three-dimensional images to reduce the input layer size (Note bene:

This is contradictory with the premise of radiomics to quantify 3-D tumor phenotype).

Another potential way to tackle this is through a centralized databases or using a dis-

tributed learning platform where the ‘code’ is shared instead of the data [85]. Although

methods are used to overcome the low number of sample sizes, it is believed that more

work is necessary to make the transition to clinic for the deep learning methods. Nev-

ertheless, deep learning methods for the segmentation of tumors [91] is a much more

applicable process since segmentation outputs are binary and the sample sizes are much

bigger due to a pixel wise decision making.

2.9 Conclusions

In this review, an overview of radiomics was given, particularly on the setting

of lung cancer. Studies that had impact on the field as well as potential limitations

and future directions were summarized.
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3. RADIOMIC FEATURES EXTRACTED FROM RADIAL

GRADIENT AND RADIAL DEVIATION MAPS

ASSOCIATED WITH SURVIVAL AMONG LUNG

ADENOCARCINOMA PATIENTS

3.1 Introduction

Lung cancer is the leading cause of cancer-related death in the United States

and accounts for more deaths than prostate, breast, colon, and pancreatic cancer com-

bined [1]. Pathological staging is the most important prognostic factor for lung cancer

survival [32]. However, there is marked variability in patient outcomes and survival

among patients with the same stage of disease, which suggests that other factors con-

tribute to NSCLC prognosis. These prognostic factors include sex, histology, genetic

alterations in oncogenes and tumor suppressor genes, co-morbidities, and patient per-

formance status [33–37]. Additionally, there is emerging evidence that radiological

and quantitative image features are associated with patient outcomes independent of

clinical covariates and patient characteristics [13–18]. As diagnostic CT scans are rou-

tinely obtained during the workup of lung cancer patients, image features can provide

valuable and readily available complementary decision support information which could

have translational implications for improved prediction of patient outcomes and further

patient stratification.

With high-throughput computing, it is now possible to rapidly extract a large

number of quantitative image features from standard-of-care imaging such as CT. The

conversion of digital medical images into mineable high-dimensional data is a process

that is known as Radiomics. Radiomics is motivated by the premise that biomedical

images contain information that reflects the underlying pathophysiology of the region

of interest (i.e., lung tumor) and that these relationships can be revealed via conversion

of images to structured data, data-mining, and statistical analysis [12]. As part of this
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study, a set of image features extracted from RG and RD maps generated from thoracic

CT images were analyzed. For each voxel in the voxel-of-interest (VOI), RD and RG

value were calculated which in-turn formed the RG and RD maps. Each voxel in the

RD map is defined as the angle between a voxel’s gradient vector and its radial vector

(i.e., vector pointing towards the center of mass of the segmented lesion), whereas

each voxel in the RG map specified the magnitude of gradient along that voxel’s radial

vector. Using these maps, RG and RD features which represent voxel-by-voxel gradient

changes from the selected VOIs were generated. As such, these features were expected

to be sensitive to changes in tumor shape that occur along radial directions, such

as lobulation and border definition, which are important predictive and prognostic

features in lung cancer [15, 92, 93].

Features extracted from RG and RD maps were first used in a computer-aided

detection (CADe) system for eliminating false positive pulmonary nodule candidates

on chest X-ray [94]. Messay et al. [95] used these features in a computer-aided diagno-

sis system (CADx) to discriminate between benign and malignant nodules. In another

study from this group, RG and RD image features were utilized to optimize free pa-

rameters of a CT pulmonary nodule segmentation system [96]. As such, the goal of

this study was to extract features from RG and RD maps from pre-surgical contrast-

enhanced thoracic CT scans among patients with lung adenocarcinomas and assess

whether these features were associated with overall survival. Additionally, potential

biological underpinnings of these features were explored by analyzing the association

between RG and RD image features with semantic radiological features.

3.2 Materials and Methods

3.2.1 Lung Cancer Patients

This retrospective study was approved by the Institutional Review Boards at

the University of South Florida and Maastricht University Medical Center. There were

two separate cohorts used in this study that have been described elsewhere [14]. Briefly,
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the training cohort included 61 patients from the H. Lee Moffitt Cancer Center (MCC)

Research Institute, Tampa, Florida and the test cohort included 47 patients from the

Maastricht Radiation Oncology Clinic (MAASTRO), Maastricht, Netherlands. All

patients were diagnosed with lung adenocarcinoma and underwent surgical resection

as first course of therapy. Pre-treatment contrast enhanced CT scans were acquired

within two months prior to surgery. Both cohorts included diagnostic pre-treatment

contrast-enhanced CT scans acquired between 2006 and 2009 and clinical data includ-

ing demographics, histology, stage, and vital status information. Follow-up for vital

status information occurs annually through passive and active methods.

3.2.2 Patient Data

For the training cohort, clinical data were obtained from Moffitt’s Cancer Reg-

istry, which abstracts self-reported patient data and clinical information from patient

medical records. Follow-up information for vital status occurs annually through pas-

sive and active methods. For this analysis, vital status was updated for the Moffitt

patients since the previously published report [14]. Pathological TNM staging was uti-

lized when available and clinical stage was used if pathological staging was unknown.

Smoking status was categorized as ever smoker (current or former smoker) or never

smoker. Similar data were abstracted and databased from MAASTRO for the test

cohort patients.

3.2.3 Tumor Segmentation

All tumors were segmented using an in-house single-click ensemble segmentation

algorithm on the Lung Tumor Analysis (LuTA) software program platform (Definiens

Developer XD c©, Munich, Germany) [97]. After applying the single click approach, the

tumor delineations were inspected and edited if needed by a resident expert radiologist.

The lung and tumor mask images obtained from LuTA software program were then

imported into MATLAB R© (Mathworks, Natick, MA) for image feature extraction as
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described below.

3.2.4 Radial Gradient and Radial Deviation Maps and Features

Development of the RG and RD image features has been previously described

[94,95]. In our study, after the tumors were segmented and center of mass of the tumor

was automatically detected, 48 features were extracted from the RG and RD maps

(Table A.1) bounded by different masks (described below) which were derived from

tumor delineation masks using morphological operations. Since there were variations

in image acquisition parameters, tri-linear interpolation was performed by a factor

of two for scans acquired with a slice thickness of ≥ 4 mm on the z-axis to create

homogeneous spacing between scans. Additionally, pixels were interpolated tri-linearly

in x and y directions to 2.50 mm x 2.50 mm.

The masks used were ‘tumor mask’, ‘border mask’, ‘core mask’, and ‘outside

mask’. The tumor mask was the region that was delineated semi-automatically using

Definiens Developer XD c© software (Definiens, Inc., Cambridge, MA). The border

mask is a doughnut-shaped region that is created by subtracting the two masks which

are formed by a dilation operation followed by an erosion operation on the tumor mask.

The region obtained after the erosion operation is the core mask. Structural elements

radii used for dilation and erosion morphological operations were 7.5 mm and 12.5

mm for smaller tumors (major axis length [2D] < 100 mm) and 10.0 mm and 15.0

mm for larger sized tumors (major axis length [2D] ≥ 100 mm), respectively. The

outside mask is created by implementing dilation to the tumor mask followed by the

subtraction of the tumor mask from the dilated region. The structural element used

for the dilation morphological operation was 17.5 mm pixels for smaller tumors and

22.5 mm for larger sized tumors, respectively (Figure 3.1). All masks were additionally

bounded to the lung parenchyma mask so that the VOIs did not exceed outside of

the lung parenchyma. The features were created using the four masks for both 2-

dimensional (2D) and 3-dimensional (3D). All 2D features were computed on the slice

which included the center of mass of the segmentations. The 3D features features were
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Figure 3.1 Cartoon image of the four tumor masks. The region inside the black line is the tumor
mask, the orange area is the core mask, the red area is the border mask, and the region outside the
black line is the outside mask (combination of the half part of red region and whole blue region).

a natural extension of the 2D features and were calculated after the first and the last

slices of the tumor segmentations were removed in order to reduce the partial volume

effects. The separation features were calculated as the difference divided by the sum

inside the analyzed masks (e.g., the RD mean outside-border separation feature is the

difference of outside RD mean and the border RD mean divided by the sum of the

two).

3.2.5 Elimination of Non-Reproducible and Redundant Features

To eliminate the non-reproducible features the RIDER dataset [20] was used

and the concordance correlation coefficient (CCC) between test-re-test scans were cal-

culated. The RIDER dataset is a National Cancer Institute (NCI) sponsored project

for the guidance of integrating quantitative features across different institutions. The

dataset is publicly available in National Biomedical Imaging Archive [20]. A total of

31 patients with unenhanced test-retest chest CT scans were acquired within 15 min-

utes of each other. The CCCs were calculated to quantify the reproducibility between

consecutive scans for patients. The CCC values range from 1 to -1, where 1 indicates a

perfect correlation between two variables. Also, whenever two or more features had a

Pearson’s correlation coefficient > 0.80, the feature(s) with higher absolute column-wise

correlation mean were eliminated.
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3.2.6 Radiological Semantic Features

Radiological semantic features for the training cohort were extracted by a clinical

radiologist (with more than 7 years of experience) who was blinded to survival status

and RD/RG status of the patients. Table 3.1 contains the 13 radiological semantic

features that were extracted from the CT scans of the subjects. Briefly, in terms of

morphological characteristics, the presence or absence of fissure attachment (defined

as a tumor that attaches to the fissure; tumor’s margin is obscured by the margin),

pleural attachment (defined as tumor attaches to the pleura other than fissure; tumor’s

margin is obscured by the pleura), lobulation, concavity, air bronchogram, calcification,

attachment to vessel, and pleural retraction were assessed. The following features were

also evaluated, which have been defined elsewhere: dominant attenuation pattern [98],

shape, border definition, spiculation [99,100], bubble-like lucency and cavitation [100].

Table 3.1
Semantic features analyzed.

No. Features Values

1 Fissure attachment 0: absence 1: presence

2 Pleural attachment 0: absence 1: presence

3
Bubble-like lucency / 

cavitation
0: absence 1: presence

4 Air bronchogram 0: absence 1: presence

5 Calcification 0: absence 1: presence

6 Attachment to vessel 0: absence 1: presence

7 Pleural retraction 0: absence 1: presence

8 Lobulation 0: absence 1: presence

9 Spiculation 0: absence 1: presence

10 Concavity 0: absence 1: presence

11 Attenuation pattern
1 1: GGO 2: part-solid 3: solid

12 Shape 1: round/oval 2: irregular

13 Border definition

Abbreviations: GGO = ground glass opacity.

1: well-defined 2: neither 1 or 

3 3: poorly defined

1
None of the tumors were GGOs.
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3.2.7 Statistical Analyses

All statistical analyses were performed using Stata/MP 14.2 (StataCorp LP,

College Station, TX). All image features were dichotomized at their median value.

Differences in image-based features by demographic features and semantic features

were tested using Fisher’s exact test for categorical variables and Student’s t-test for

the continuous variables. Survival analyses were performed using Cox proportional

hazard regression, Kaplan-Meier curves, and log-rank tests. All survival data were

right-censored at 5 years. To reduce the number of features and covariates to a single

parsimonious model, a backward elimination approach was applied. The features that

were identified as the most informative in the training cohort were then tested in the

test cohort.

3.3 Results

3.3.1 Patient Demographics

Among 61 patients in the training cohort, 50.8% were male, 67.2% were aged

above 65 years at the date of diagnosis, and 72.1% were either stage I or II. Among

the image acquisition parameters, 93.4% of the CT scans were acquired with 120 kVp,

34.4% used B41f as a convolution kernel, 76.9% had an interpolated slice thickness of

2.5 mm, and 34.4% had a pixel resolution ≥ 0.7785 (third quartile). The median time

to event (i.e.,OS) was 33.5 months for this cohort (Table 3.2).

In test cohort, there were a total of 47 patients of which 53.2% were male, 46.8%

were aged above 65 years at the date of diagnosis and 68.1% were either stage I or II.

Among the image acquisition parameters, 85.1% of the CT scans were acquired with

120 kVp, 48.9% used A or B as a convolution kernel, 61.7% had an interpolated slice

thickness of 2.5 mm, and 78.7% had a pixel resolution ≥ 0.7785 (third quartile). The

median time to event (i.e., OS) was 32.0 months for this cohort (Table 3.2).
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3.3.2 Univariable Analyses

After eliminating the redundant (n = 15) and non-reproducible features (n =

16), the log-rank p-values for the remaining 17 features were calculated (Table A.1).

Out of these 17 features, two features (RD outside-border separation standard devia-

tion (SD) and RG outside-border separation SD 2D) were significantly associated with

OS, (log-rank p-value ≤ 0.05) and three features (RG border SD , RG outside-tumor

separation mean, and RD tumor SD ) were marginally (log-rank p-value ≤ 0.1) as-

sociated with OS (Table 3.3). The log-rank p-values for all 17 features assessed are

presented in Table A.2.

The Kaplan-Meier survival curves with a median cutoff for the five features are

presented in Figure 3.2a-e and the 5-year survival rates are presented in Table A.3.

For the two features that were significantly associated with OS, tumors with high (≥

median) RD outside-border separation SD (Figure 3.2c, Hazard Ratio [HR] = 0.36;

95% CI 0.16-0.81, p = 0.013) and radial gradient outside-border separation SD (Figure

3.2d, HR = 0.43; 95% CI 0.20-0.94, p = 0.035) were associated with improved OS

(Table 3.3). For the three features which were marginally significant to OS, tumors

with high RG border SD (Figure 3.2a, HR = 1.92; 95% CI 0.90-4.11, p = 0.092) and RD

tumor SD (Figure 3.2e, HR = 2.00; 95% CI 0.92-4.34, p = 0.078) were associated with

poor OS while high RG outside-tumor separation mean was associated with improved

OS (Figure 3.2b, HR = 0.48; 95% CI 0.22-1.06, p = 0.068).

In an exploratory analysis, low correlation was found between the features that

were previously published in these cohorts (entropy ratio and convexity) [14] and

RG/RD features used in this analysis (Pearson correlation coefficient < 0.35 for all

features). Hence, the RG and RD features provide orthogonal information to other

prognostic features.
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Table 3.2
Patient characteristics in the training and test cohorts.

Characteristic Training Cohort Test Cohort

Number of patients 61 47

Age at diagnosis, N (%)

< 65 20 (32.8) 25 (53.2)

≥ 65 41 (67.2) 22 (46.8)

Gender, N (%)

Female 30 (49.2) 22 (46.8)

Male 31 (50.8) 25 (53.2)

Stage, N (%)

I and II 44 (72.1) 32 (68.1)

III and IV 17 (27.9) 15 (31.9)

Tumor volume, mean cm
3

(SD) 19.5 (29.0) 52.4 (130.0)

Tumor max diameter, mean mm (SD) 31.6 (13.8) 38 (21.5)

Overall survival, median months, (SD) 33.5 32

Image acquisition parameters

120 57 (93.4) 40 (85.1)

130 or 140 4 (6.6) 7 (14.9)

A,B 0 (0) 23 (48.9)

B30s,B60f,B70s 2 (3.3) 5 (10.7)

B30f 8 (13.1) 0 (0)

B40f 19 (31.2) 15 (31.9)

B41f 21 (34.4) 0 (0)

Other 11 (18.0) 4 (8.5)

1.5 mm 0 (0) 2 (4.3)

2.0 mm 8 (13.1) 13 (27.7)

2.5 mm 40 (65.6) 29 (61.7)

3.0 mm 13 (21.3) 3 (6.3)

< 0.6926 20 (32.8) 6 (12.8)

≥ 0.6926 to < 0.7785 20 (32.8) 4 (8.5)

≥ 0.7785 21 (34.4) 37 (78.7)

Pixel resolution (mm), tertiles, N (%)

Interpolated slice thickness , N (%)

Convolution kernel, N (%)

Voltage, kVp, N (%)

Abbreviations: SD = standard deviation.
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Table 3.3
Log-rank tests and Cox proportional hazards models for overall survival in the training cohort.

Log-Rank Univariable Model
2

Multivariable Model
3

Multivariable Model
4

P-value
1 OR (95% CI) OR (95% CI) OR (95% CI)

RG Border SD 0.084 1.92 (0.90 - 4.11) 0.092 . . . .

RG Outside-Tumor Mean 0.061 0.48 (0.22 - 1.06) 0.068 0.29 (0.12- 0.66) 0.003 0.31 (0.13 - 0.72) 0.006

RD Outside-Border SD 0.009 0.36 (0.16 - 0.81) 0.013 0.25 (0.11 - 0.58) 0.001 0.24 (0.10 - 0.58) 0.001

RG Outside-Border SD (2D) 0.029 0.43 (0.20 - 0.94) 0.035 . . . .

RD Tumor SD 0.071 2.00 (0.92 - 4.34) 0.078 . . . .

Age 0.439 1.38 (0.60 - 3.16) 0.444 . . 0.83 (0.34 - 2.05) 0.690

Gender 0.694 1.16 (0.54 - 2.49) 0.696 . . 1.05 (0.47 - 2.35) 0.906

Stage 0.085 1.95 (0.90 - 4.23) 0.093 . . 2.14 (0.91 - 5.03) 0.082

Tumor Volume 0.044 2.23 (1.00 - 4.97) 0.051 . . . .

Bold values are statistically significant.
1
Log-rank p-value for each covariate for overall survival right censored at 5-years. The radiomic features were dichotomized at the median value and the clinical 

covariates were dichotomized based on Table 1. The univariable analyses were based on 62 patients. But, due to missing patient data (age and gender), the total 

sample size for the multivariable analyses was 61 patients.
2
The independent main effect ORs for each covariate 

3
The ORs for the two imaging features in a single model following backward elimination that considered all features and tumor volume. 

4
The ORs for both imaging features identified from backward elimination adjusted for clinical covariates. 

Abbreviations: SD = Standard Deviation; OR = odd ratio; CI = confidence interval; RD = Radial deviation; RG = Radial gradient

Covariate
P-value P-value P-value

Training cohort (N = 61)
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log-rank p-value = 0.046
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Figure 3.2 Kaplan-Meier survival curves for the following features a) Radial gradient border standard
deviation in the training cohort, b) Radial gradient outside-tumor separation mean in the training
cohort, c) Radial deviation outside-border separation standard deviation in the training cohort, d)
Radial gradient outside-border separation standard deviation (2D) in the training cohort, e) Radial
deviation tumor standard deviation in the training cohort, f) For the combination of radial gradient
outside-tumor separation mean (RGOTSM) and radial deviation outside-border separation standard
deviation (RDOBSSD) features. Hazard ratio with 95% confidence interval is calculated for the entire
group instead of subgroups. HR = 3.65; 95% CI (1.89 – 7.05g) For the combination of radial gradient
outside-tumor separation mean (RGOTSM) and radial deviation outside-border separation standard
deviation (RDOBSSD) features in the test cohort.
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3.3.3 Multivariable Analyses

To reduce the number of image features to the most meaningful subset associated

with overall survival, a stepwise backward elimination model using a threshold of 0.01

was applied to identify a parsimonious model. All five features and tumor volume

were considered for the inclusion in the final model. The two features that remained

in a feature-only multivariable model were RD outside-border separation SD (HR =

0.25; 95% CI 0.11 - 0.58, p = 0.001) and RG outside-tumor separation mean (HR =

0.29; 95% CI 0.12-0.66, p = 0.003). To control for potential confounding, these two

features were included in multivariable Cox regression model that included age, gender,

and stage; and both features remained significantly associated with OS (Table 3.3).

These two features were further analyzed by demographics and imaging parameters and

contingency tables were pulled out. In the training cohort, none of the demographics

or imaging parameters were significantly associated with RD outside-border separation

SD and RG outside-tumor separation mean (Table 3.4).

To determine if the findings could be replicated in an external cohort, these two

features were analyzed in a test cohort (Table 3.5) using the median threshold values

obtained from the training cohort and found that RD outside-border separation SD

was significantly associated with OS (Figure A.1b, HR = 0.36; 95% CI 0.16-0.81, p =

0.014) but RG outside-tumor separation mean was not found to be significant (Figure

A.1a, HR = 0.75; 95% CI 0.28-2.03 p = 0.575). However, for both features, the

point estimates were inversely associated with risk of death. When these two features

were included in multivariable Cox model that included age, gender and stage; RD

outside-border separation SD was significantly associated with OS (HR = 0.40; 95%

CI 0.17-0.97, p = 0.042) along with age (HR = 2.65; 95% CI 1.07-6.60, p = 0.035)

and stage (HR = 3.35; 95% CI 1.34-8.36, p = 0.010) (Table 3.5). Additionally, among

early stage lung cancer patients (stage I and II), RD outside-border separation SD

was found to be significantly associated with OS in the training cohort (log-rank p-

value = 0.031) and marginally significant in the test cohort (log-rank p-value = 0.097).

None of the patient demographics or imaging parameters were significantly associated

with RG outside-tumor separation mean and RD outside-border separation SD (except
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pixel resolution significantly associated with RG outside-tumor separation mean in test

cohort (p = 0.010, Table 3.6).

3.3.4 Combinatorial Analyses

In exploratory analyses, we assessed the combinatorial effects of RD outside-

border separation SD and RG outside-tumor separation in the training and test cohorts

(Figure 3.2f-g and Table A.3). In both cohorts patients who had high values (>median)

of both features also had significantly better OS compared to patients who had low

values (≤ median) of both features. The subset of early stage patients (stage I and

II) were also explored and the combinatorial effect was also found to be significantly

associated with OS in the training cohort (log-rank P-value = 0.020). Although the

survival pattern was similar in the test cohort, it did not reach statistical significance

(log-rank p-value = 0.19).

3.3.5 Associations with Semantic Radiological Features

Three RD/RG radiomic features were significantly associated with three se-

mantic features (Table 3.7): Lobulation, pleural attachment, and border definition.

Importantly, the replicated feature was significantly associated with border definition.

Specifically, cancers with a well-defined border were significantly more likely to have

high (> median) RD outside-border separation. These analyses were restricted to the

training cohort only.

3.4 Discussion

In this study extracted RG and RD image features were extracted to determine

whether they are associated with lung cancer patient survival. Of the 48 features

that were analyzed, 31 features were eliminated because they were not reproducible or



35

Table 3.4
Demographics and imaging parameters by image dichotomized features in training cohort.

LOW HIGH P- Value LOW HIGH P- Value

Female 14 (45.2) 16 (53.3) 13 (43.3) 17 (54.8)

Male 17 (54.8) 14 (46.7) 0.612 17 (56.7) 14 (45.2) 0.446

< 65 8 (25.8) 12 (40.0) 8 (26.7) 12 (38.7)

≥ 65 23 (74.2) 18 (60.0) 0.283 22 (73.3) 19 (61.3) 0.416

I/II 21 (67.8) 23 (77.4) 23 (77.4) 21 (67.7)

III/IV 10 (32.2) 7 (22.6) 0.570 7 (22.6) 10 (32.3) 0.570

37.40% 65.30% 0.061 34.90% 67.70% 0.009

120 28 (90.3) 29 (96.7) 26 (86.7) 31 (100.0)

130 or 140 3 (9.7) 1 (3.3) 0.612 4 (13.3) 0 (0) 0.053

A,B 0 (0) 0 (0) 0 (0) 0 (0)

B30s,B60f,B70s 2 (6.7) 0(0) 1(3.2) 1(3.3)

B30f 6 (20.0) 2 (6.4) 3 (9.7) 5 (16.7)

B40f 7 (23.3) 12 (38.7) 12 (38.7) 7 (23.3)

B41f 10 (33.3) 11 (35.5) 9 (29.0) 12 (40.0)

Other 5 (16.7) 6 (19.4) 0.270 6 (19.4) 5 (16.7) 0.700

1.5 mm 0 (0) 0 (0) 0 (0) 0 (0)

2.0 mm 5 (16.1) 3 (10.0) 3 (10.0) 5 (16.1)

2.5 mm 17 (54.8) 23 (76.7) 20 (66.7) 20 (64.5)

3.0 mm 9 (29.1) 4 (13.3) 0.189 7 (23.3) 6 (19.4) 0.861

< 0.6926 mm 7 (22.6) 13 (43.3) 7 (23.3) 13 (41.9)

≥ 0.6926 and < 

0.7785 mm
10 (32.3) 10 (33.3) 13 (43.3) 7 (22.6)

> 0.7785 mm 14 (45.1) 7 (23.4) 0.146 10 (33.4) 11 (35.5) 0.172

5- year survival, %

Voltage, KVp, N (%)

Convolution Kernel, 

N (%)

Interpolated Slice 

Thickness, N (%)

Pixel Resolution, 

tertiles N (%)

Radial deviation outside-border

separation SD

Covariate

Bold values are statistically significant.

Sex, N (%)

Age, N (%)

Stage, N (%)

Radial gradient outside-tumor

separation mean
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Table 3.5
Cox proportional hazards models for overall survival in the test cohort.

Multivariable Model
1

Multivariable Model
2 

OR (95% CI) OR (95% CI)

RG Border SD . . . .

RG Outside-Tumor Mean 0.75 (0.28 - 2.03) 0.575 0.48 (0.17 - 1.37) 0.172

RD Outside-Border SD 0.36 (0.16 - 0.81) 0.014 0.40 (0.17 - 0.97) 0.042

RG Outside-Border SD (2D) . . . .

RD Tumor SD . . . .

Age . . 2.65 (1.07 – 6.60) 0.035

Gender . . 1.43 (0.53 – 3.82) 0.476

Stage . . 3.35 (1.34 – 8.36) 0.010

Tumor Volume . . . .

1
The ORs for from the two imaging features identified in training cohort from backward elimination

2
The ORs for both imaging features identified from backward elimination in training cohort adjusted for clinical 

covariates

Abbreviations: SD = Standard Deviation; OR = odd ratio; CI = confidence interval; RD = Radial deviation; RG = 

Radial gradient

Bold values are statistically significant.

Test cohort (N = 47)

Covariate
P-value P-value

they were redundant. The remaining 17 features were subjected to statistical analysis

resulting in a parsimonious model containing two highly informative features associated

with lung cancer survival. One of the two features (RD outside-border separation SD)

was replicated and found to be significantly associated with OS in a separate external

cohort (test cohort) of lung cancer patients.

Radiomics is motivated by the premise that quantitative image features reflect

the underlying pathophysiology of tumors. In Figure 3.3 VOIs and corresponding RD

maps for two patients with substantially different clinical outcomes are presented. The

patient (Figure 3.3a) with short survival was deceased after 9 months and had a low

(< median) RD outside-border separation SD value while the second patient (Figure

3.3b) was still alive after 60 months had a high (> median) RD outside-border sepa-
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Table 3.6
Demographics and imaging parameters by image dichotomized features in test cohort.

LOW HIGH P- Value LOW HIGH P- Value

Female 17 (48.6) 5 (41.7) 8 (38.1) 14 (53.9)

Male 18 (51.4) 7 (58.3) 0.747 13 (61.9) 12 (46.1) 0.381

< 65 21 (60.0) 4 (33.3) 11 (52.4) 14 (53.9)

≥ 65 14 (40.0) 8 (66.7) 0.180 10 (47.6) 12 (46.1) 1.000

I/II 25 (71.4) 7 (58.3) 11 (52.4) 21 (80.8)

III/IV 10 (28.6) 5 (41.7) 0.481 10 (47.6) 5 (19.2) 0.059

0.23 0.556 0.347 10.90% 47.40% 0.007

120 29 (82.9) 11 (91.7) 17 (81.0) 23 (88.5)

130 or 140 6 (17.1) 1 (8.3) 0.659 4 (19.0) 3 (11.5) 0.684

A,B 18 (51.4) 5 (41.7) 9 (42.9) 14 (53.8)

B30s,B60f,B70s 4 (11.4) 1 (8.3) 3 (14.3) 2 (7.7)

B30f 0 (0.0) 0(0.0) 0 (0.0) 0 (0.0)

B40f 10 (28.6) 5 (41.7) 7 (33.3) 8 (30.8)

B41f 0 (0.0) 0(0.0) 0(0.0) 0(0.0)

Other 3 (8.6) 1 (8.3) 0.905 2 (9.5) 2 (7.7) 0.877

1.5 mm 2 (5.7) 0 (0.0) 2 (9.5) 0 (0.0)

2.0 mm 12 (34.3) 1 (8.3) 7 (33.3) 6 (23.1)

2.5 mm 19 (54.3) 10 (83.4) 11 (52.4) 18 (69.2)

3.0 mm 2 (5.7) 1 (8.3) 0.219 1 (4.8) 2 (7.7) 0.381

< 0.6926 mm 3 (8.6) 3 (25.0) 2 (9.5) 4 (15.4)

≥ 0.6926 and < 

0.7785 mm
1 (2.9) 3 (25.0) 2 (9.5) 2 (7.7)

> 0.7785 mm 31 (88.5) 6 (50.0) 0.010 17 (81.0) 20 (76.9) 0.877

Convolution Kernel, 

N (%)

Interpolated Slice 

Thickness, N (%)

Pixel Resolution, 

tertiles N (%)

Bold values are statistically significant.

Voltage, KVp, N (%)

Covariate

Radial gradient outside-tumor Radial deviation outside-border

separation mean separation SD

Sex, N (%)

Age, N (%)

Stage, N (%)

5- year survival, %
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Table 3.7
Association between semantic features and radial gradient and radial deviation features.

Absent Present P- Value

LOW 27 (60.0) 4 (23.5) 0.021

HIGH 18 (40.0) 13 (76.5)

Absent Present

LOW 28 (62.2) 3 (17.7) 0.004

HIGH 17 (37.8) 14 (82.3)

Well 

Defined

Poorly 

Defined 
Other

1

LOW 13 (81.3) 8 (42.1) 10 (37.0) 0.015

HIGH 3 (18.7) 11 (57.9) 17 (63.0)

LOW 4 (25.0) 9 (47.4) 18 (66.7) 0.029

HIGH 12 (75.0) 10 (52.6) 9 (33.3)

LOW 4 (25.0) 14 (73.7) 13 (48.2) 0.018

HIGH 12 (75.0) 5 (26.3) 14 (51.8)

Semantic Feature

Bold values are statistically significant.

Border definition

1
Tumor with neither a well or poorly-defined border.

2
This feature was replicated and found to be statistically significantly 

associated with survival in both the training cohort and test cohort 

Radial gradient border SD, N (%)

Radial deviation outside-border separation SD
2
, N (%)

Lobulation

Feature name

Pleural attachment

Radial gradient outside-border separation SD (2D), N (%)

Radial gradient border SD, N (%)

Radial gradient outside-border separation SD (2D), N (%)

ration SD value. In the original CT-image, both patients have similarly-sized tumors

that are speculated; however, the VOI for each RD image have considerably different

RD map appearances. By quantifying and analyzing these differences, as performed in

this study, RD/RG features were shown to have potential clinical utility by differen-

tiating patients with an aggressive disease and poor patient outcomes versus patients

with more indolent disease and improved outcomes. Additionally, by analyzing the

correlations of RD/RG features with semantic radiological features, we may have re-

vealed their potential biological underpinnings. Specifically, we found three RG and
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RD features that were significantly associated with tumor lobulation, pleural attach-

ment, and border definition (Table 3.7). The replicated feature, which was associated

with lung cancer survival in both cohorts, was significantly associated with border def-

inition that has been previously reported to be a prognostic factor in lung cancer [15].

In the current analysis, patients who had well defined border definition were signifi-

cantly associated with high RD outside-border separation SD. As such, these analyses

suggest that RG and RD features may be capturing clinically and biologically relevant

radiological information of lung cancer tumors.

Radial image-based features have been previously applied in chest CT CAD

systems to; discriminate benign and malignant nodules, and optimize free parameters

of tumor segmentation [95,96]. However, in these previous studies means and SDs were

calculated from two different masks (region inside tumor and region outside tumor) on

the RG and RD maps. By contrast, the means and standard deviations were calculated

from four different masks (tumor mask, border mask, core mask, and outside mask)

in this study. To the best of our knowledge, the current study is the first to analyze

RD/RG features for their association with lung cancer survival and their association

with radiological semantic features.

In this study, unique and new features were extracted and analyzed from training

and test cohorts originally published by Grove et al. [14]. Grove et al. reported

that convexity and entropy ratio features were significantly associated with OS in the

training cohort. Thus, a model that included the convexity and entropy ratio features,

RD/RG features, and patient characteristics were explored and was found that RD

outside-border separation SD (HR = 0.21), RG outside-tumor separation mean (HR

= 0.21), and entropy ratio (HR = 3.28) were significantly associated with OS in the

training cohort. However, when the remaining three features were analyzed in the test

cohort, only RD outside-border separation SD (HR = 0.34) was found to be significant.

Radiomics have the potential to complement and improve current precision

medicine. Limitations of tumor-based biomarkers are: they can be subjective to sam-

pling bias due to the heterogeneous nature of tumors, the requirement of tumor speci-
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Figure 3.3 Volume of interests (VOI) for two lung cancer patients with extreme differences in clinical
outcomes. Radial deviation image features for the corresponding VOIs for these lung cancer patients.
a) A tumor of a patient (Patient ID [PID]: 33) who deceased after 9 months. b)A tumor of a patient
(PID: 75) with who had an ongoing survival after 60 months.

mens for biomarker testing, where the assays can be timely and expensive [12,14,101].

In contrast, radiomic features can be extracted in real-time from standard-of-care im-

ages, do not require timely and often expensive laboratory testing, are not subject to

sampling bias and artifact, and are non-invasive. Importantly, radiomic analyses do

not subject patients to additional radiation exposure since standard-of-care images are

utilized, and radiomic features represent the phenotype of the entire tumor in 3D and

not just the portion that was subjected to biomarker testing. Indeed, there is prece-

dence that quantitative image features provide valuable and potentially translational

information in lung cancer patient outcomes. Previous studies have shown that tumor

shape and density are related to lung cancer survival [12, 14, 50, 101]. Additionally,

as tumor shape becomes more eccentric, it has a higher probability of metastatic dis-

ease [14], and solid lesions that are differentiable from their outside environment and

have high contrast edges tend to be less aggressive [101]. Furthermore, tumors that

are connected to lung wall are also associated with poor prognosis [101,102].
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Some limitations and strengths are acknowledged to this study. First, an avail-

able dataset [14] of modestly sample sized training and test cohorts were utilzied.

However, the features that were extracted and analyzed were unique from the prior

work [14] and, importantly an image feature was found to be significantly associated

with OS in both the training and test cohorts. We applied a rigorous feature reduc-

tion approach to eliminate correlated and no-reproducible features, and we utilized

a backward reduction approach to identify a single parsimonious model containing

the most important features. It is acknowdledged that in the combinatorial analyses

there were limited numbers of patients in the subgroups and progression-free survival

data for these cohorts were not available. A potential limitation of radiomic studies

is the range of image acquisition parameters and modalities used which can make it

difficult to standardize image features and limit the robustness of computer-extracted

features [103]. In future studies, interpolation methods can be investigated to harmo-

nize all data to a smaller range of slice thickness and pitch, which is hypothesized to

reduce some acquisition associated variability. However, image acquisition parameters

were not found to be associated with RD outside-border separation SD for either cohort

(Table 3.4 and Table 3.6). Despite the fact that the study was limited to patients with

lung adenocarcinoma, potential histological differences in the analyses were removed

and it is believed that this study had numerous strengths that outweigh the potential

limitations.

In conclusion, this study identified a RG and RD image feature that was sig-

nificantly associated with lung cancer survival in both training and test cohorts even

after adjusting for clinical covariates. The analyses also revealed a novel combinatorial

association of two features which differentiates patients with aggressive disease versus

patients with indolent disease, and this was replicated in the test cohort. As such, these

findings may have clinical utility to sub-stratify patients based on clinical outcome and

identify patients that may need more that aggressive treatment such as neo-adjuvant

chemotherapy and aggressive follow-up and management. These features will require

confirmation in additional studies and lung cancer patient cohorts.
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4. NOVEL CLINICAL AND RADIOMIC PREDICTORS

OF RAPID DISEASE PROGRESSION PHENOTYPES

AMONG LUNG CANCER PATIENTS TREATED WITH

IMMUNOTHERAPY

4.1 Introduction

Immune-checkpoint blockades targeting PD-1 or PD-L1 provide durable re-

sponses and improved long-term survival in advanced NSCLC patients [2–7]. However,

overall response rates are only about 20-50% and those that do not respond can expe-

rience accelerated and lethal progression described as HPD [104]. Though PD-L1 IHC

is a widely applied biomarker to select patients for immunotherapy, PD-L1 expression

alone is not adequate to predict response [8,9]. Recently, a clinical trial demonstrated

that immunotherapy combined with chemotherapy exhibits survival benefit regardless

of PD-L1 expression [7]. Hence, additional biomarkers that are highly predictive of pos-

itive and negative responses to immune-checkpoint blockades are a significant unmet

clinical need.

In this study, clinical data and CT scans of NSCLC patients treated on im-

munotherapy clinical trials were utilized to develop parsimonious models that identify

patients that are at risk of rapid disease progression. Image-based feature (Radiomics)

data were extracted to capture peritumoral and intratumoral heterogeneity reflecting

the underlying pathophysiology of the ROI [12, 50, 105] that included the lung lesion

and surrounding border region of the lung lesion (Figure 2.1). The rapid disease pro-

gression phenotypes that were analyzed based on time-to-progression (TTP) and tumor

growth rates (TGRs).
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4.2 Materials and Methods

4.2.1 Study Population and Patient Data

Based on patient eligibility (Figure 4.1), this study included 228 NSCLC pa-

tients that were prospectively enrolled into industry-sponsored clinical trials using

PD-1 single agent (Nivolumab, Pembrolizumab), PD-L1 single agent (Durvalumab,

Atezolizumab), or the combination of PD-L1 or PD-L1 with cytotoxic T-lymphocyte-

associated protein 4 (Ipilimumab, Tremelimumab) as a second agent. All patients

were treated between June 2011 and June 2016 at the Moffitt Cancer Center, Tampa,

Florida. Other common inclusion criteria included: Patients who were diagnosed with

histologically- or cytological-documented NSCLC with advanced/metastatic stage dis-

ease with at least one measurable lesion (≥ 10 mm), Eastern Cooperative Oncology

Group (ECOG) Performance Status of 0 or 1, and provided written informed con-

sent. Common exclusion criteria included: a concurrent medical condition requiring

the use of immunosuppressive medications or immunosuppressive doses of systemic or

absorbable topical corticosteroids, and presence of any active autoimmune disease. Pa-

tient data were obtained from Moffitt’s Cancer Registry, Moffitt’s Collaborative Data

Services Core, and through manual abstraction from electronic medical records. Ac-

cess to these data for retrospective analyses was approved by the University of South

Florida Institutional Review Board.

Moffitt’s Cancer Registry abstracts information from patient electronic medical

records on demographics, history of smoking, stage, histology, treatment, and vital

status. Follow-up for vital status occurs annually through active (i.e., chart review

and directly contacting the patient, relatives, and other medical providers) and passive

methods (i.e., mortality records). Hematology data were obtained from the CDCS and

included: lactate dehydrogenase (LDH), serum albumin, lymphocytes, white blood

cells, neutrophils, fibrinogen, and neutrophils to lymphocytes ratio (NLR). Manually

abstracted data included: targeted mutations (EGFR, KRAS ), body mass index, his-

tory of systemic treatment(s) for current lung cancer staging, ECOG performance

status, RECIST diameters of target and non-target lesions, best overall responses,
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number of metastatic sites (number of organs that have metastatic lesions), metastatic

sites prior to treatment, Royal Marsden Hospital (RMH) prognostic score, and MD

Anderson (MDA) risk score. The RMH prognostic score ranges from 0 to 3 and one

point was added when serum albumin is < 3.5 (g/dl), one point was added when LDH

> upper limit normal (225 U/L), and one point was added when number of organ

metastases > 2 [106]. The MDA risk model score ranges from 0 to 5 and one point

was added when serum albumin was < 3.5 (g/dl), one point was added when LDH >

upper limit normal (225 U/L), one point was added when number of organ metastases

> 2, one point was added when a presence of a gastrointestinal tumor, and one point

was added when ECOG > 0 [107].

4.2.2 CT Tumor Segmentation and Radiomic Feature Extraction

Pre-treatment contrast-enhanced thoracic CT scans were performed ≤ 30 days

prior to the initiation of immunotherapy were utilized to extract quantitative image

features. The CT imaging studies were acquired using two different manufacturers

(General Electric Healthcare, Waukesha, Wisconsin and Siemens, Erlangen, Germany).

About 95% of the CT scans were acquired with a slice thickness of 3 mm. The median

pixel spacing was 0.80 mm by 0.80 mmm and seven different convolution kernels were

used to reconstruct the images with B41f as the most common (65.4%).

Patients who had a pre-treatment CT scan and a RECIST target or a non-target

lung lesion were considered for radiomics feature extraction and analysis (Figure 4.1).

Whenever a patient had a lung target lesion, the lung lesion with largest RECIST

diameter based on the radiology report was selected for radiomic analysis. If a pa-

tient did not have a lung target lesion, the non-target lung lesion with the largest

RECIST diameter was selected for analysis. Patients that did not meet either condi-

tion were excluded from all radiomic analysis. The detected lesions were delineated

in 3D using an in-house single-click ensemble region growing segmentation algorithm

on the Lung Tumor Analysis software program platform (Definiens Developer XD c©,

Munich, Germany) [97]. Following the single-click approach, tumor delineations were
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either confirmed as is or edited by an expert radiologist with more than 10 years of

clinical experience. The binary tumor mask images (i.e., tumor delineations) were then

imported into in-house radiomic feature extraction toolboxes created in MATLAB R©

2015b (The Mathworks Inc., Natick, Massachusetts) and C++ (https://isocpp.org).

A total of 600 radiomic features were extracted from the selected ROIs which

included both the tumors and tumor border regions (Figure 3.1). Features based on

shape, intensity and texture were extracted using algorithms from the Image Biomarker

Standardization Initiative (IBSI) v5 [76]. The radial deviation and radial gradient

[https://github.com/TunaliIlke/RDRG-v2.1] and wavelet features were defined else-

where [51]. Prior to the extraction of radiomic features, all images were resampled

to a single voxel spacing of 1mm x 1mm x 1mm to standardize spacing across all im-

ages. Texture features were extracted using a fixed bin width of 25 Hounsfield units

(HU). All radiomic features were linearly rescaled between -1 and 1. Non-reproducible

features were eliminated by calculating the CCC between test/re-test scans using the

RIDER dataset [20]. The CCCs were calculated for each radiomic feature to quantify

the reproducibility between consecutive scans and the features with a CCC < 0.80 were

removed.

4.2.3 Rapid Disease Progression Phenotypes

Two rapid disease progression phenotypes were generated as dependent variables

(Figure 4.2):

(i) Patients who had a TTP < 2 months versus the patients who had a TTP ≥ 2

months;

(ii) Patients who had a HPD versus patients without a HPD (non-HPD);

where TTP was defined as time from initiation of immunotherapy to disease

progression (by RECIST or clinical evaluation) excluding deaths. Patients in the TTP
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≥ 2 months group included patients that either had a progressive disease (PD), stable

disease (SD) or partial response (PR) on their last follow-up, while all patients in the

TTP < 2 months group had a PD on their last follow-up. Cancer progression was

confirmed by a second follow-up scan (to rule out pseudo-progression) or by clinical

evaluation of the treating clinician. The tumor growth rate TGRpre-treatment was calcu-

lated using baseline scan (CT scan prior to initiation of therapy) and pre-baseline scan

while the TGRtreatment was calculated using the baseline scan and the first follow-up

scan as defined by Champiat et al. [104]. The TGR rate was calculated from the differ-

ence of tumor volumes from consecutive CT scans: TGRpre-treatment and TGRtreatment

(Figure 4.3).

HPD patients were a subset of patients that exhibited PD and accelerated TGR

< 2 months (Figure 4.3) and were defined based on a stringent set of criteria adapted

from prior studies [104,108,109]:

(i) Greater than a two-fold increase from TGRpre-treatment to TGRtreatment, and

(ii) PD on first follow-up scan by RECIST (RECIST 1.1 or iRECIST) criteria, and

(iii) Time-to-treatment failure (TTF) < 2 months.

4.2.4 Statistical Analyses

All statistical analyses were performed using Stata/MP 14.2 (StataCorp LP, Col-

lege Station, Texas) and R Project for Statistical Computing version 3.4.3 (http://www.r-

project.org/). Differences for the clinical covariates were tested using Fisher’s exact

test for categorical variables and the Mann-Whitney’s rank sum test and analysis of

variance test for continuous variables. Survival analyses were performed using Kaplan-

Meier curves, and the log-rank tests. For the radiomics data, non-reproducible features

were eliminated using test/re-test scans from the RIDER dataset [20].

Using logistic regression, a covariate reduction model building approach was
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Figure 4.1 Overall survival and progression-free survival for the training and test cohorts.

employed to identify the most informative clinical covariates and radiomic features

to predict rapid disease progression phenotypes. The AUROCs were calculated and

used to compare the predictive performance of the various models. For the clinical

covariates, we only considered covariates that were significantly different (P < 0.05) in

univariable analysis. Then a stepwise backward elimination approach using a threshold

of 0.05 was applied to produce a parsimonious model containing only clinical covari-

ates. For the radiomic features, we only considered features that were significant (P <

0.05) or marginally significant in univariable analyses (P < 0.10). Any features that
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Figure 4.2 Response groups of immunotherapy patients. The non-responders were defined as
patients who developed PD < 2 months (time-to-progression < 2 months). Patients who discontinued
treatment and had an accelerated tumor growth were defined as HPD. The PD without HPD patients
had PD on first follow-up and did not meet the HPD criteria. Responder patients were ones who
developed had an ongoing response (PR/CR or SD) or developed PD at least 2 months after the
initiation of therapy (TTP ≥ 2 months).

Figure 4.3 Example of an HPD patient that had SD prior to the initiation of immunotherapy
but developed rapid tumor growth on first follow-up and experienced more than 2-fold increase from
pre-treatment tumor growth versus treatment.

were correlated with tumor volume based on a Pearson’s correlation coefficient ≥ 0.80

were removed. If two or more features were correlated based on an absolute Pearson’s

correlation coefficient ≥ 0.80, the feature(s) with the higher column-wise absolute cor-

relation mean(s) was/were removed. The remaining radiomic features were included in
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a stepwise backward elimination approach using a threshold of 0.05 to produce a par-

simonious model of only radiomic features. For rapid disease progression phenotypes,

the most informative set of clinical covariates and the most informative set of radiomic

features were combined into a single final model.

Individual probability for disease progression of final clinical-radiomic models

were calculated and were used to group patients to assess progression-free-survival

(PFS). Specifically, the individual probability for each patient was split into percentiles

(median and tertiles) and novel cut-points were identified using Classification and Re-

gression Tree (CART). CART is a non-parametric data-mining tool that can fragment

data into subgroups by failure time data using [110] and classifies variables through

a decision tree composed of binary splits where the split points are optimized based

on impurity criterion. For the PFS analysis, an event was defined as death or either

clinical or RECIST based progression of cancer and survival data were right-censored

at 36 months.

When data are imbalance for case and controls, classification can be biased

in favor of the majority class. To overcome this problem, SMOTE technique was

applied [111] that increase the number of samples in our minority classes (TTP <

2 months and HPD groups) by creating synthetic examples. Five nearest neighbors

were used as SMOTE parameter and minority classes were sub-sampled to be equal

numbered with the majority samples.

4.3 Results

Patient demographics (Table 4.1), disease burden (Table 4.2), hematology re-

sults (Table 4.3) and mutational status results (Table 4.4) were compared for TTP

< 2 months vs TTP ≥ 2 months and HPD vs non-HPD. The full and parsimonious

multivariable models for the clinical covariates are presented for TTP < 2 months vs

TTP ≥ 2 months (Table 4.5) and HPD vs non-HPD (Table 4.6). For the analysis of

TTP < 2 months vs TTP ≥ 2 months, the full clinical model included eight clinical
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covariates with an AUROC of 0.770, whereas the parsimonious clinical model included

four covariates with an AUROC 0.736. In multivariable analysis for HPD versus non-

HPD, the full model included two clinical covariates with an AUROC of 0.783 whereas

the parsimonious clinical model with one variable feature yielded an AUROC 0.712.

Table 4.1
Patient demographics by rapid disease progression phenotypes.

Characteristic
TTP < 2 

months

TTP ≥ 2 

months

P-

Value
HPD Non-HPD

P-

Value

54 (23.7) 174 (76.3) 15 (8.0) 172 (92.0)

< 65 18 (33.3) 68 (39.1) 5 (33.3) 69 (40.1)

≥ 65 36 (66.7) 106 (60.9) 0.521 10 (66.7) 103 (59.9) 0.785

Median, (95% CI) 67 (65-68) 67 (65-68) 0.992 67 (57-72) 66 (65-67) 0.834

Female 24 (44.4) 77 (44.2) 5 (33.3) 77 (44.8)

Male 30 (55.6) 97 (55.8) 1.000 10 (66.7) 95 (55.2) 0.431

IIIb 1 (1.9) 7 (4.0) 0 (0) 6 (3.5)

IV 53 (98.1) 167 (96.0) 0.684 15 (100) 166 (96.5) 1.000

Adenocarcinoma/Others 36 (66.7) 129 (74.1) 11 (73.3) 120 (69.8)

Squamous cell carcinoma 18 (33.3) 45 (25.9) 0.299 4 (26.7) 52 (30.2) 1.000

Anti PD-L1 18 (33.3) 43 (24.7) 3 (20.0) 49 (28.5)

Anti PD-1 18 (33.3) 54 (31.0) 8 (53.3) 50 (29.1)

Doublet 18 (33.3) 77 (44.3) 0.300 4 (26.7) 73 (42.4) 0.192

0 9 (16.7) 43 (24.7) 3 (20.0) 37 (21.5)

1 45 (83.3) 131 (75.3) 0.267 12 (80.0) 135 (78.5) 1.000

Never smokers 6 (11.1) 30 (18.0) 1 (6.7) 32 (19.2)

Ever smokers 48 (88.9) 137 (82.0) 0.292 14 (93.3) 135 (80.8) 0.313

25 25.9 25.7 25.7

(23.1-26.3) (24.9-27.0) 0.079 (21.2-26.3) (24.8-27.0) 0.382

Abbreviations: HPD = hyperprogressive disease; TTP = time-to-progression; BMI = body mass index

Bold P-values are statistically significant

Smoking status was available for 221 patients.

Checkpoint inhibitors, N (%)

BMI, median, (95% CI)

ECOG performance status, N (%)

Smoking status

Sex, N (%)

Stage, N (%)

Histology, N (%)

Age at diagnosis, N (%)

Total, N (%)
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Table 4.2
Disease burden characteristics of patients by rapid disease progression phenotypes.

Characteristic
TTP < 2 

months

TTP ≥ 2 

months

P-

Value
HPD Non-HPD

P-

Value

No 36 (69.2) 135 (79.9) 14 (93.3) 129 (75.9)

Yes 16 (30.8) 34 (20.1) 0.130 1 (6.7) 41 (24.1) 0.197

< 2 27 (50.0) 129 (74.1) 10 (66.7) 120 (69.8)

≥ 2 27 (50.0) 45 (25.9) 0.001 5 (33.3) 52 (30.2) 0.777

No 44 (81.5) 149 (85.6) 12 (80.0) 147 (85.5)

Yes 10 (18.5) 25 (14.4) 0.517 3 (20.0) 28 (14.5) 0.475

No 35 (64.8) 143 (82.2) 10 (66.7) 138 (80.2)

Yes 19 (35.2) 31 (17.8) 0.013 5 (33.3) 34 (19.8) 0.316

No 31 (57.4) 130 (74.7) 9 (60.0) 126 (73.3)

Yes 23 (42.6) 44 (25.3) 0.017 6 (40.0) 46 (26.7) 0.366

No 47 (87.0) 147 (84.5) 13 (86.7) 148 (86.1)

Yes 7 (13.0) 27 (15.5) 0.827 2 (13.3) 24 (13.9) 1.000

< 3 18 (33.3) 80 (46.0) 5 (33.3) 77 (44.8)

≥ 3 36 (66.7) 94 (54.0) 0.117 10 (66.7) 95 (55.2) 0.431

< 2 26 (49.1) 110 (70.5) 4 (26.7) 107 (69.0)

≥ 2 27 (50.9) 46 (29.5) 0.007 11 (73.3) 48 (31.0) 0.003

13.4 14 17.1 13.7

(5.2-21.0) (11.1-17.6) 0.390 (1.9-28.4) (10.4-17.5) 0.796

91 77 86 81

(74.4-105.2) (66.6-85.4) 0.175 (48.3-105.4) (71.0-89.7) 0.974

Prior systemic treatments were assessed < 6 months prior to the initiation of immunotherapy. Prescribed 

corticosteroids based on medical record reporting. RMH prognostic score data were available on 209 

patients. 

Previous lines of systemic treatment

Number of metastatic sites

Hepatic metastasis, N (%)

(95% CI)

RECIST tumor diameter 

(mm) at baseline, (95% CI)

Abbreviations: RMH = Royal Marsden Hospital; HPD = hyperprogressive disease; TTP = time-to-

progression; TGR = tumor growth rate.

Bold P-values are statistically significant.

TGRpre-treatment percentage, 

RMH prognostic score

Bone metastasis, N (%)

Brain metastasis, N (%)

Corticosteroids3, N (%)

History of radiation therapy2
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Four hundred and nine features were found to be reproducible (CCC ≥ 0.80). The

Table 4.3
Hematology results of patients by rapid disease progression phenotypes.

Characteristic
TTP < 2 

months

TTP ≥ 2 

months

P-

Value
HPD Non-HPD

P-

Value

324 236 510 235

(225-417) (216-263) 0.046 (328-578) (214-280) 0.001

3.8 4 3.8 3.9

(3.6-3.9) (3.9-4.1) <0.001 (3.4-4.1) (3.9-4.0) 0.182

1.14 1.31 1.16 1.26

(0.98-1.28) (1.21-1.40) 0.023 (0.68-1.37) (1.18-1.38) 0.342

7.7 7.08 7.94 7.39

(6.82-8.95) (6.79-7.57) 0.180 (6.24-10.51) (7.03-7.97) 0.434

5.65 4.82 5.8 4.98

(4.40-6.73) (4.51-5.10) 0.081 (4.22-8.55) (4.68-5.41) 0.284

635 491 552 532

(550-676) (467-537) 0.003 (440-695) (490-593) 0.441

4.65 3.73 5.51 3.82

(3.67-5.82) (3.35-4.06) 0.007 (3.41-9.71) (3.58-4.29) 0.238

Hematology data were available for 208 patients for LDH, 226 patients for serum albumin, WBC and 

neutrophils, 224 patients for lymphocytes, 102 patients for fibrinogen. 

Abbreviations: HPD = hyperprogressive disease; TTP = time-to-progression; TGR = tumor growth rate.

Bold P-values are statistically significant.

Neutrophils, 1e+9/L

Fibrinogen, mg/dL

NLR

Serum albumin, g/dL

Lymphocytes, 1e+9/L

WBC, 1e+9/L

Hematology Data, median, (95% CI)5

LDH, U/L

Table 4.4
Mutational status results of patients by rapid disease progression phenotypes.

Characteristic
TTP < 2 

months

TTP ≥ 2 

months

P-

Value
HPD Non-HPD

P-

Value

Not Detected 30 (85.7) 101 (83.5) 9 (100) 105 (84.0)

Detected 5 (14.3) 20 (16.5) 1.000 0 (0) 20 (16.0) 0.355

Not Detected 17 (70.8) 57 (68.7) 5 (71.4) 58 (69.1)

Detected 7 (29.2) 26 (31.3) 1.000 2 (28.6) 26 (30.9) 1.000

Mutational status data were available for 156 patients for EGFR and 107 patients for KRAS. 

Abbreviations: HPD = hyperprogressive disease; TTP = time-to-progression; TGR = tumor growth rate.

Bold P-values are statistically significant.

EGFR mutational status6

KRAS mutational status6

reproducible features that were found to be marginally significant (p < 0.10) on uni-
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variable analysis (Table A.4) were then considered for inclusion in the multivariable

analyses. In multivariable analysis the parsimonious radiomics model with only four

features yielded an AUROC of 0.717 (Figure 4.4). In multivariable analysis for HPD

versus non-HPD, the parsimonious radiomics model with only one feature yielded an

AUROC 0.674.

The parsimonious models for the clinical covariates and radiomic features were

combined into a final clinical-radiomic model (Figure 4.4). The final clinical-radiomic

TTP < 2 months vs TTP ≥ 2 months model yielded an AUROC of 0.804 with 83.4%

specificity, 63.4% sensitivity and 73.4% accuracy after SMOTE sub-sampling and op-

timal cut-point approach (Table 4.7). The final clinical-radiomic HPD vs non-HPD

model yielded an AUROC score 0.865 (Figure 4.4) with 92.9% specificity 74.0% sen-

sitivity and 82.3% accuracy after SMOTE sub-sampling (Table 4.7). When patients

Table 4.5
Multivariable models of clinical covariates associated with TTP < 2 months vs TTP ≥ 2 months.

Parsimonious

Multivariable Model Multivariable Model1

OR (95% CI) OR (95% CI)

Previous lines of systemic treatment 2.13 (0.86-5.29) 0.103 2.62 (1.30-5.30) 0.007

Hepatic metastasis 2.10 (0.91-4.87) 0.084 2.50 (1.14-5.48) 0.022

Bone metastasis 2.48 (1.15-5.33) 0.020 2.54 (1.21-5.33) 0.014

RMH prognostic score - - - -

LDH2, U/100 L 1.05 (0.93-1.19) 0.434 - -

Serum albumin, g/dL 0.33 (0.11-1.02) 0.053 - -

Lymphocytes, 1e+9/L 0.99 (0.48-2.06) 0.985 - -

Ratio of: neutrophils/lymphocytes 1.09 (0.99-1.21) 0.073 1.14 (1.06-1.23) <0.001

AUROC for the model

TTP < 2 months vs TTP ≥ 2 months 

Covariate

P-value P-value

1The ORs for image features identified from stepwise backward elimination. 

2LDH count odds ratios were calculated based on U / 100 L.

0.770 0.736

Abbreviations: TTP, Time-to-progression; OR, odds ratio; CI, confidence interval; AUROC, area under the receiver-

operator characteristics.

Bold ORs and P-values are statistically significant.
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Table 4.6
Multivariable models of clinical covariates associated with HPD vs non-HPD.

Parsimonious

Multivariable Model Multivariable Model1,2

OR (95% CI) OR (95% CI)

Previous lines of systemic treatment - - - -

Hepatic metastasis - - - -

Bone metastasis - - - -

RMH prognostic score 4.46 (1.25-15.88) 0.021 6.13 (1.86-20.23) 0.003

LDH3, U/100 L 1.12 (0.94-1.35) 0.213 - -

Serum albumin, g/dL - - - -

Lymphocytes, 1e+9/L - - - -

Ratio of: neutrophils/lymphocytes - - - -

AUROC for the model

HPD vs non-HPD

Covariate

P-value P-value

1The ORs for image features identified from stepwise backward elimination. 

2Because of the low number of HPD patients, a threshold of 0.01 instead of 0.05 was used to produce a more stringent 

parsimonious model using stepwise backward elimination approach.

3LDH count odds ratios were calculated based on U / 100 L.

0.783 0.712

Abbreviations: HPD; Hyperprogressive disease; OR, odds ratio; CI, confidence interval; AUROC, area under the 

receiver-operator characteristics.

Bold ORs and P-values are statistically significant.

were grouped based on an HPD included RECIST at first follow-up (Figure 4.5), HPD

patients had significantly lower OS. Patient-level probabilities from the final TTP <

2 months vs TTP ≥ 2 months model was sub-grouped and analyzed for survival out-

comes where patients with lower probability scores had significantly improved PFS.

These results were consistent when the probability scores were categorized by CART

(Figure 4.6) and percentiles (Figure A.2).
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Figure 4.4 AUROCs for clinical only models, radiomic only models, and combined
clinical-radiomic models. a) TTP < 2 months versus TTP ≥ 2 months group. The clinical
features in the models were: Previous lines of therapy, presence of hepatic metastasis, presence of
bone metastasis and NLR. The radiomics features were: Radial gradient border SD-2D, 3D Laws
E5L5E5, border 3D Laws E5E5L5 and border quartile coefficient of dispersion. b) HPD vs non-HPD.
The clinical feature in the models was: RMH prognostic score and the radiomic feature was: border
NGTDM strength.

4.4 Discussion

Although immunotherapy can provide clinical benefit among late stage lung

cancer patients, published studies have reported that only 20-50% of patients exhibit

durable responses [2–7, 112]. Moreover, rapid disease progression is associated with

rapid and lethal outcomes (Figure 4.5), particularly HPD [104]. As such, in this study

novel parsimonious models were identified containing highly informative clinical data

and radiomic features to predict rapid disease progression phenotypes of NSCLC pa-

tients with modest to high AUROCs ranging from 0.804 to 0.865 (Figure 4.4) and

accuracies ranging from 73.4% to 82.3%.

For the analyses comparing TTP < 2 months vs TTP ≥ 2 months, the com-

bined final radiomic-clinical model produced an AUROC of 0.804 (with 83.4% speci-

ficity, 63.4% sensitivity, and 73.4% accuracy) based on four clinical covariates and four

radiomic features. The clinical covariates in the final model were presence of hepatic

and bone metastasis, previous lines of systemic therapies, and NLR. Prior studies have

shown that presence of hepatic and/or bone metastases are associated with poor out-
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comes on NSCLC patients [113,114]. In the bone marrow, the resident and infiltrated

stromal cells and their molecular mediators create a unique bone metastatic microen-

vironment that leads to persistent immunosuppression [114] and the liver is a known

site of immune tolerance which may be the cause of resistant liver metastasis lesions to

immunotherapy. Elevated baseline-derived NLR have been associated with reduced OS

and progression-free survival (PFS) in NSCLC treated with immunotherapy [113,115].

Increased NLR is a measure of reduced lymphocytes which suppresses the host immune

response where elevated NLR in the blood could be an implication of inflammatory

cells being present in tumor microenvironment (TME) that leads to immune evasion

or escape from the immune intervention [116]. Tumors that were exposed to higher

number of systemic treatments could result in a clonal selection of resistant tumor cells

that are able to evade immune-surveillance. Another possibility is that these tumors

might have an innate resistance to any cancer therapy thereby exhibiting an “immune-

desert” phenotype. Three of the four radiomic features (RG border SD-2D, border

quartile coefficient of dispersion, border 3D Laws E5E5L5,) were extracted from the

border regions of the tumors, which is the immediate outside of the tumors that may

be capturing data related to the TME. RG border SD-2D feature has previously shown

to be associated with OS and semantic radiology of lung cancer patients [51]. Border

quartile coefficient of dispersion, calculates the dispersion of the distribution of border

region intensities which quantifies the degree of heterogeneity of the TME. Two 3D

Laws features were also identified (3D Laws E5L5E5 and border 3D Laws E5E5L5)

that quantify voxel-by-voxel differences and capture spatial and textural heterogeneity

across the ROI [117].



57

Table 4.7
Performance statistics from the combined multivariable models and SMOTE sub-sampled multivariable models.

Combined model Combined model Combined model Combined model

without SMOTE with SMOTE without SMOTE with SMOTE

Area under ROC curve 

(95% CI)
0.812 (0.731-0.890) 0.804 (0.752- 0.855) 0.843 (0.712-0.973) 0.865 (0.818-0.911)

Accuracy (95% CI) 84.50% (78.42-89.47) 71.2% (65.36-76.53) 90.71% (84.64-94.96) 78.74% (73.19-83.61)

Specificity 97.00% 74.44% 99.21% 66.14%

Sensitivity 50.00% 67.91% 7.69% 91.34%

PPV 85.71% 72.80% 50.00% 72.96%

Optimal cut-point 0.369 0.563 0.12 0.591

Area under ROC curve 

(95% CI)
0.812 (0.731-0.890) 0.804 (0.752- 0.855) 0.843 (0.712-0.973) 0.865 (0.818-0.911)

Accuracy (95% CI) 81.81% (75.36-87.11) 73.41% (67.68-78.61) 75.71% (65.75-82.56) 82.28% (77.02-86.77)

Specificity 88.72% 83.46% 74.80% 74.02%

Sensitivity 62.50% 63.43% 92.31% 90.55%

PPV 66.67% 79.44% 26.68% 77.70%

TTP < 2 months vs TTP ≥ 2 months1 HPD vs non-HPD2

Performance statistics

1The clinical features in the model were: Previous lines of therapy, presence of hepatic metastasis, presence of bone metastasis 

and NLR. The radiomics features were: Radial gradient border SD-2D, 3D Laws E5L5E5, border 3D Laws E5E5L5 and border 

quartile coefficient of dispersion. 

2The clinical feature in the model was RMH prognostic score and the radiomic feature was border NGTDM strength.

Optimal cut-point

Abbreviations: CI= confidence interval; HPD = hyperprogressive disease; TTP = time-to-progression; PPV = positive predictive 

value.
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The final clinical-radiomic model for HPD versus non-HPD analysis included

RMH prognostic score and one radiomic feature and revealed an AUROC of 0.865 with

92.9% specificity 74.0% sensitivity and 82.3% accuracy. The RMH prognostic score is

a clinical prognostic score which has been shown to predict OS of immunotherapy

patients [104] and advanced staged lung cancer patients [118]. The radiomic feature,

border Neighborhood Grey Tone Difference Matrix (NGTDM) strength, quantifies the

similarity of pixel intensities within a neighborhood to derive heterogeneity and tex-

ture of the TME [119]. Though the biological underpinnings of HPD are currently

unknown, published studies have speculated that checkpoint blockades may be in a

proliferative activating oncogenic signaling response [104], aberrations in driver genes

may be co-amplifying pathways that initiate HPD [108] and regulatory T-cells that sup-

press antitumor T-cell responses may promote tumor proliferation [109]. As radiomic

features have been shown to capture biological information and genomic pathways [50]

and correlate with genomic mutations [120], we speculate that these features associated

with rapid disease progression could be capturing one or more of these characteristics.

Nonetheless, further research is needed to elucidate the mechanisms of rapid disease

progression and HPD and of the biology of the radiomic features that predicts disease

outcomes. Both limitations and strengths of this study are acknowledged. This is an
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Figure 4.5 Kaplan-Meier curves for OS from initiation of therapy to date of last follow-up or date
of death. The patient subgroups were based on RECIST at first follow-up for PD, SD, PR, and HPD.

early report demonstrating the potential utility of radiomics to predict rapid disease
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Figure 4.6 Kaplan-Meier curve for PFS based on novel cut-points identified by CART analysis points
using individual probability of each patient for the TTP < 2 months versus TTP ≥ 2 months model.
CART analysis did not identify a cut-point for the HPD analysis.

progression phenotypes; these results will need to be replicated in independent test

and validation cohorts. PD-L1 expression data were not available for these patients

since the IHC assays were performed by the industry sponsors. Though, prior stud-

ies have revealed that PD-L1 expression has limitations in predicting immunotherapy

response [121, 122]. A recent clinical trial study demonstrated that regardless of PD-

L1 expression, immunotherapy combined with chemotherapy offers survival benefit [7].

Thus, inclusion of PD-L1 status may add little or no improvement to the performance

of our models.

Because of the complexity in objective immunotherapy response, including hy-

perprogressive disease, pseudo-progression, and acquired resistance, there is a pressing

challenge to identify biomarkers to predict patients that are least likely to respond. In

this early report, novel models containing informative clinical covariates and radiomic

image features were identified to predict rapid disease phenotypes including HPD. Ad-

ditional research with independent test and validation will be needed to demonstrate

the clinical utility of these findings.
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5. STABILITY AND REPRODUCIBILITY OF

COMPUTED TOMOGRAPHY RADIOMIC FEATURES

EXTRACTED FROM PERITUMORAL REGIONS OF

LUNG CANCER LESIONS

5.1 Introduction

Radiomics is the process of converting standard-of-care medical images into

quantitative image-based data that can subsequently analyzed using conventional bio-

statistics, machine learning approaches, and artificial intelligence [12]. Conventional

radiomic features based on shape, size, intensity, and texture are typically extracted

from the intratumoral ROI to quantify the cancer phenotype [105]. These radiomic

features, of which many are beyond visual acuity, have shown to be significantly asso-

ciated with cancer detection, diagnosis, prognosis, prediction of response to treatment,

and monitoring of disease status [17,43,50,64,123]. However, there has been a renewed

interest in quantitative characterization of the peritumoral region, the area immedi-

ately surrounding the tumor parenchyma, since this region is involved in immune infil-

tration, blood and lymphatic vascular networks, and stromal inflammation [124–127].

Early efforts preceding the “modern era of Radiomics” demonstrated that peritumoral

image-based features have diagnostic and predictive utility [94, 128–130]. Recent ef-

forts have shown the clinical utility of peritumoral radiomic features in studies of lung,

breast, and head and neck cancers [51, 131–135].

Prior studies have established that some radiomic features are sensitive to

tumor segmentation and/or image acquisition hence unstable and non-reproducible

[40, 136, 137], where stability is defined as the consistency of a feature across differ-

ent segmentations and reproducibility is defined as the consistency of a feature across

image acquisition parameters such as patient position and respiration phase. Identi-

fying stable and reproducible features is an important precursor prior to conducting
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analyses of radiomic data since features with low-fidelity will likely lead to spurious

findings and unrepeatable models. Though aforementioned studies have characterized

the stability [40] and reproducibility [136,137] of intratumoral radiomics, no such study

to date has been conducted on peritumoral radiomic features.

To address the gap in this domain, this study was conducted to assess the

stability and reproducibility of peritumoral radiomic features of lung lesions captured

by thoracic CT scans. This study is also different from prior work conducted on

intratumoral radiomics in that the majority of the radiomic features that were evaluated

in this study were standardized through algorithms defined by IBSI [76]. To measure

stability we utilized the “Moist-run” dataset [19] from The Cancer Imaging Archive

and to measure reproducibility we utilized the RIDER dataset that consists of test-

retest data [20]. Peritumoral ROIs with incremental distances of 3 mm to 12 mm

from the tumor boundary were generated by applying morphological image processing

operations on tumor segmentation masks. The clinical utility of stable and reproducible

peritumoral features was tested on three previously published lung cancer datasets

using OS as the endpoint. The stable and reproducible features identified in this study

could be applied to a feature selection pipeline for CT radiomic analyses.

5.2 Materials and Methods

5.2.1 Moist-run dataset

The Moist-run dataset was utilized to measure radiomic feature stability. This

dataset was constructed by the Quantitative Imaging Network as a lung segmentation

challenge [19] and consists of 40 CT images of 40 NSCLC patients from five collections

of Digital Imaging and Communications Medicine series and one thoracic phantom.

Each patient in the dataset had one lesion of interest and the phantom scan had 12

lesions of interest which totals to 52 lesions of interests. The images on this dataset

were previously de-identified.
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5.2.2 RIDER test-retest dataset

To measure reproducibility of radiomic features, the RIDER test-retest dataset

was utilized [20]. This NCI dataset was developed to generate an initial consensus on

how to harmonize data collection and analysis for quantitative imaging methods. This

dataset consisted of 32 NSCLC patients who had two non-contrast chest CT scans that

were acquired within 15 minutes of each other using the same scanner, acquisition and

processing parameters. As such, the only variability between the test and re-test scans

would be attributed to patient orientation, respiration, and movement. The images on

this dataset were previously de-identified.

5.2.3 Prognostic lung cancer datasets

To test the applied utility of stable and reproducible peritumoral features, three

previously published datasets were utilized. One dataset was used for training and

two datasets for validation. The training dataset included 62 surgically resected lung

adenocarcinoma patients from the H. Lee Moffitt Cancer Center & Research Institute

who had CTs two months prior to surgery [14,51]. The first validation cohort included

47 lung adenocarcinoma patients from MAASTRO, Maastricht, Netherlands [14, 51]

and the second validation cohort was a radiogenomic dataset [14,51] that included 103

adenocarcinoma patients who had pre-surgery CTs.

5.2.4 Segmentation Algorithms

The lesions on the Moist run dataset were previously segmented using three dif-

ferent segmentation algorithms. Each segmentation algorithm was implemented using

three different initial parameters (i.e., seed point or bounding circle, Figure 5.1) hence;

nine segmentations per lesion were obtained. Algorithm 1 uses marker-controlled wa-

tersheds, geometric active contours and Markov random fields inside a user drawn

bounding circle ROI surrounding the lesion. Algorithm 2 requires a single-click inside
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the lesion as an initial parameter which then automatically generates multiple seed

points inside the tumor. Subsequently, a click and grow algorithm was used to gener-

ate multiple segmentations that are combined to generate a consensus segmentation.

Algorithm 3 uses a “seed circle” as an initial parameter and applies a two-dimensional

region growing technique followed by automatic removal of blood vessels and lung

parenchyma. Further details of the segmentation algorithms were previously described

elsewhere [40]. The lesions on the RIDER dataset were previously segmented using

Algorithm 1 Algorithm 2 Algorithm 3

Figure 5.1 Initial parameters used on segmentation algorithms. Algorithm 1 uses a bounding
circle while algorithms 2 and 3 uses seed points as initial parameters.

a semi-automatic single-click ensemble region growing segmentation algorithm on the

LuTA software program platform (Definiens Developer XD c©, Munich, Germany) [97].

The segmentation work flow contained four steps: 1) Pre-processing of automatic or-

gan segmentation; 2) Semi-automated correction of pulmonary boundary; 3) Click and

Grow execution; 4) A manual refinement by an expert if needed. Further details of the

segmentation algorithms were previously published elsewhere [77].

5.2.5 Peritumoral Masks

Peritumoral masks were generated as a natural extension of the tumor segmen-

tations by using morphological image processing operations. A disk-shaped structural

element with a radius of intended peritumoral distance was used for morphological
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dilation on tumor segmentations, followed by removal of the tumor region to create

“doughnut-shaped” peritumoral masks. Intervals of 3, 6, 9 and 12 mm outside the tu-

mor were used to create the peritumoral masks. For the first analysis, the peritumoral

regions were bounded by the lung parenchyma and for the second analysis the peri-

tumoral regions were not bounded by lung parenchyma (i.e., peritumoral regions were

allowed to extend outside of lung parenchyma, Figure 5.2). The MATLAB R© (version

2018a) scripts to create peritumoral masks from intratumoral masks are available at

https://github.com/TunaliIlke/peritumoral regions/.

CT Scan Without lung mask With lung mask

Figure 5.2 Peritumoral masks. Image on the left shows a CT scan ROI. Image on the middle
image shows a peritumoral region that is not bounded by the lung parenchyma mask. Image on the
right shows peritumoral region bounded by the lung parenchyma mask. Red region is removed from
the peritumoral region as it lies outside the lung parenchyma.

5.2.6 Radiomic Features

All images were linearly resampled to a single voxel spacing of 1mm x 1mm x

1mm to standardize spacing across all images. A total of 264 statistical, histogram

and texture radiomic features were extracted from the selected peritumoral and intra-

tumoral ROIs using in-house toolboxes created in C++ (https://isocpp.org). Texture

features included gray level co-occurrence matrix (GLCM), gray level run-length matrix

(GLRLM), gray level size zone matrix (GLSZM) and neighboring gray tone difference

matrix (NGTDM), 3D Laws and wavelet features. All features (except wavelet texture
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features) were extracted using standardized algorithms defined by the IBSI v5 [76].

Wavelet features were extracted from the peritumoral and intratumoral ROIs using

algorithms described elsewhere [77]. Histogram, co-occurrence, GLRLM, GLSZM and

NGTDM texture features were extracted using a common bin width of 25 HUs. Addi-

tionally, 41 IBSI standardized shape and size features were extracted from intratumoral

masks.

5.2.7 Statistical Analyses

Statistical analyses were performed using Intercooled Stata/MP 14.2 (Stata-

Corp LP, College Station, TX) and R Project for Statistical Computing version 2.13.1

(http://www.r-project.org).Stability and reproducibility of features were assessed us-

ing CCC. For each feature, CCCs were calculated between different segmentation al-

gorithms, initial parameters and test-retest scans. The CCC values range from 1 to

-1, where 1 indicates a perfect correlation between two variables. Similarity between

different segmentation approaches were computed using the Jaccard index:

J(Seg1, Seg2) =
|Seg1 ∩ Seg2|

|Seg1 ∪ Seg2|
(5.1)

where Seg1 and Seg2 are the two segmentation masks being compared. Differences be-

tween initial parameters and algorithms by varying distances were tested using Fisher’s

exact tests.

Briefly, survival analyses were performed using Kaplan-Meier survival estimates

and the log-rank test. The OS was the main endpoint for these analyses and an event

was defined as date of death. The OS was assessed from date of first treatment (e.g.,

surgery) to the date of death or date of last follow-up. The survival data were right

censored at 60-months. All P-values were 2-sided and a P-value less than or equally to

0.05 was deemed statistically significant.
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5.2.8 Survival Analyses

Utilizing the training cohort (Moffitt adenocarcinoma dataset) a univariable

Cox regression model was created and stable and reproducible features (0-3 mm, not

bounded by a lung mask) significantly associated with OS were retained. To produce

a parsimonious model, the remaining radiomic features were included in a stepwise

backward elimination Cox regression model using a threshold of 0.01 for inclusion.

CART models were created identify patient risk groups utilizing the final radiomic

features. Afterward, using the features found in the training cohort model, CART

models were re-created utilizing the two validation cohorts.

5.3 Results

Table 5.1 presents the similarities between segmentations using Jaccard indices

between different initial parameters and algorithms being used. The results demon-

strate high similarities (Jaccard index > 0.90) between segmentations that were com-

puted using different initial parameters. On the other hand, moderate similarities

(Jaccard index > 0.80) were observed between segmentations that were computed us-

ing different segmentation algorithms.

5.3.1 Peritumoral Features

Figure 5.3 presents CCC groups (high, moderate, low) of peritumoral radiomic

features with respect to different algorithms and different initial parameters. The green

boxes represent high (CCC > 0.95), yellow boxes represent moderate (CCC ≥ 0.75 &

CCC ≤ 0.95) and red boxes represent low (CCC < 0.75) CCCs. A high CCC indicates

that the radiomic feature is not sensitive to variation in segmentations, whereas a low

CCC indicates that radiomic feature is sensitive to the difference in segmentations. As

peritumoral distance increased, there were significantly higher numbers of moderate or

highly stable features (Table 5.2 and Table 5.3). The statistical (Table A.5), histogram
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Table 5.1
Initial parameter and algorithm comparison by Jaccard index scores.

Jaccard index

0.973

0.969

0.979

0.948

0.955

0.962

0.943

0.955

0.942

0.81

0.827

0.805

Algorithm 2-initial parameter 1 vs initial parameter 3

Initial parameter comparisons

Algorithm 1-initial parameter 1 vs initial parameter 3

Algorithm 1-initial parameter 1 vs initial parameter 2

Algorithm 1-initial parameter 2 vs initial parameter 3

Algorithm 2-initial parameter 1 vs initial parameter 2

Algorithm 1 vs Algorithm 2

Algorithm 2-initial parameter 2 vs initial parameter 3

Algorithm 3-initial parameter 1 vs initial parameter 2

Algorithm 3-initial parameter 1 vs initial parameter 3

Algorithm 3-initial parameter 2 vs initial parameter 3

Algorithm comparisons
1

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
1
Algorithms were compared using segmentations created by random selections of initial 

parameters (1-2-3) for each lesion. 

(Table A.6), and a subset of texture features (Table A.7) were found stable and re-

producible (Table 5.4) for different initial parameters however, 3D Laws (Table A.8)

and wavelet texture (Table A.9) features were found to be significantly less stable and

reproducible. Overall, the inter-stability (i.e. stability across different segmentation

algorithms) was observed to be significantly lower than the intra-stability (i.e. stability

across different initial parameters of same algorithms). The overall reproducibility of

features were not significantly different as peritumoral distances changed; although a

subset of texture features (GLCM, GLRLM, GLSZM and NGTDM) were slightly more

reproducible for peritumoral distances above 3 mm (Table 5.4). All aforementioned

analyses were performed for features extracted from peritumoral regions that were

bounded by a lung parenchyma mask (Figure A.3). The stability of features where
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Figure 5.3 Concordance correlation coefficient groups of peritumoral features bounded by lung
parenchyma. The green boxes represent higher (CCC > 0.95), yellow boxes represent moderate (CCC
≥ 0.75 and CCC ≤ 0.95) and red boxes represent lower (CCC < 0.75) CCCs.

a lung parenchyma mask was not used to bound the peritumoral region was consis-

tent with the analysis where a lung parenchyma mask was used (Tables A.10-A.15).

However, peritumoral features were significantly more reproducible with the increasing

peritumoral distances (Table 5.5).
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Table 5.2
Distribution of stability groups of all peritumoral radiomic features extracted from ROIs that are

bounded by a lung mask for different initial parameters.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value

CCC < 0.75 30 (11.4) 0 (0) 10 (3.8) 21 (8.0)
CCC ≥ 0.75 & CCC ≤ 0.95 63 (23.9) 9 (3.4) 26 (9.9) 8 (3.0)
CCC > 0.95 171 (64.7) 255 (96.6) 228 (86.3) 235 (89.0) <0.001

P-value <0.001 <0.001 0.001

CCC < 0.75 14 (5.3) 1 (0.4) 9 (3.4) 29 (11.0)
CCC ≥ 0.75 & CCC ≤ 0.95 55 (20.8) 32 (12.1) 63 (23.9) 8 (3.0)
CCC > 0.95 195 (73.9) 231 (87.5) 192 (72.7) 227 (86.0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 33 (12.5) 2 (0.8) 8 (3.0) 10 (7.6)
CCC ≥ 0.75 & CCC ≤ 0.95 34 (12.9) 24 (9.1) 38 (14.4) 0 (0)
CCC > 0.95 197 (74.6) 238 (90.1) 218 (85.6) 244 (92.4) <0.001

P-value <0.001 0.022 <0.001

CCC < 0.75 57 (21.6) 36 (13.6) 44 (16.7) 44 (16.7)
CCC ≥ 0.75 & CCC ≤ 0.95 122 (46.2) 86 (32.6) 52 (19.7) 11 (4.2)
CCC > 0.95 85 (32.2) 142 (53.8) 168 (63.6) 209 (79.1) <0.001

P-value <0.001 0.004 <0.001

CCC < 0.75 40 (15.2) 22 (8.3) 37 (14.0) 45 (17.1)
CCC ≥ 0.75 & CCC ≤ 0.95 124 (47.0) 76 (28.8) 39 (14.8) 10 (3.8)
CCC > 0.95 100 (37.8) 166 (62.9) 188 (71.2) 209 (79.1) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 55 (20.8) 6 (2.3) 8 (3.0) 45 (17.1)
CCC ≥ 0.75 & CCC ≤ 0.95 95 (36.0) 74 (28.0) 23 (8.7) 10 (3.8)
CCC > 0.95 114 (43.2) 184 (69.7) 233 (88.3) 209 (79.1) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 182 (68.9) 146 (55.3) 121 (45.8) 97 (36.7)
CCC ≥ 0.75 & CCC ≤ 0.95 78 (29.6) 99 (37.5) 108 (40.9) 122 (46.2)
CCC > 0.95 4 (1.5) 19 (7.2) 35 (13.3) 45 (17.1) <0.001

P-value <0.001 0.023 0.096

CCC < 0.75 41 (15.5) 33 (12.5) 19 (7.2) 11 (4.2)
CCC ≥ 0.75 & CCC ≤ 0.95 133 (50.4) 103 (39.0) 42 (15.9) 45 (17.1)
CCC > 0.95 90 (34.1) 128 (48.5) 203 (76.9) 208 (78.7) <0.001

P-value 0.004 <0.001 0.335

CCC < 0.75 49 (18.6) 48 (18.2) 30 (11.4) 12 (4.5)
CCC ≥ 0.75 & CCC ≤ 0.95 156 (59.1) 112 (42.4) 66 (25.0) 49 (18.6)
CCC > 0.95 59 (22.3) 104 (39.4) 168 (63.6) 203 (76.9) <0.001

P-value <0.001 <0.001 0.001

Distance
1

1
P-values were generated using Fisher’s Exact test comparing 0-6 mm vs. 0-3 mm, 0-9mm vs. 0-6 mm, and 0-12 

mm vs. 0-9 mm, respectively. 

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

5.3.2 Intratumoral Features

Figure 5.4 presents CCC groups of intratumoral radiomic features with respect

to different algorithms and different initial parameters. The majority of the inter-
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Table 5.3
Distribution of stability groups of all peritumoral radiomic features extracted from ROIs that are

bounded by a lung mask for different segmentation algorithms.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value

CCC < 0.75 148 (56.1) 102 (38.6) 69 (26.1) 73 (27.6)
CCC ≥ 0.75 & CCC ≤ 0.95 108 (40.9) 140 (53.0) 151 (57.2) 142 (53.8)
CCC > 0.95 8 (3.0) 22 (8.4) 44 (16.7) 49 (18.6) <0.001

P-value 0.001 <0.001 0.722

CCC < 0.75 165 (62.5) 139 (52.6) 118 (44.7) 81 (30.7)
CCC ≥ 0.75 & CCC ≤ 0.95 84 (31.8) 90 (34.1) 76 (28.8) 121 (45.8)
CCC > 0.95 15 (5.7) 35 (13.3) 70 (26.5) 62 (23.5) <0.001

P-value 0.005 0.001 <0.001

CCC < 0.75 180 (68.2) 147 (55.7) 128 (48.5) 84 (31.8)
CCC ≥ 0.75 & CCC ≤ 0.95 77 (29.2) 96 (36.4) 105 (39.8) 139 (52.7)
CCC > 0.95 7 (2.6) 21 (7.9) 31 (11.7) 41 (15.5) <0.001

P-value 0.002 0.158 <0.001

Algorithm 2 vs Algorithm 3

1
P-values were generated using Fisher’s Exact test comparing 0-6 mm vs. 0-3 mm, 0-9mm vs. 0-6 mm, and 0-12 

mm vs. 0-9 mm, respectively. 

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Distance
1

stabilities were low (CCC < 0.75) while intra-stabilities were more frequently moder-

ate or high (Table A.16). Most size and shape features were found to be highly stable

for different initial parameters (Figure 5.4). Intensity, a subset of a texture features

(GLCM, GLRLM, GLSZM and NGTDM), size and shape features were at moderately

or highly reproducible, while 3D Laws and wavelet features were less reproducible (Ta-

ble A.24). For all feature categories, intratumoral features had lower median CCC

values than their corresponding peritumoral features for both reproducibility and sta-

bility assessments (Figure 5.5).
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Table 5.4
Distribution of reproducibility groups of peritumoral radiomic features extracted from ROIs that are

bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm P- Value
2

CCC < 0.75 68 (25.8) 55 (20.8) 71 (26.9) 80 (30.3)

CCC ≥ 0.75 & CCC ≤ 0.95 121 (45.8) 148 (56.1) 138 (52.3) 113 (42.8)

CCC > 0.95 75 (28.4) 61 (23.1) 55 (20.8) 71 (26.9) <0.001

P-Value 0.068 0.263 0.081

CCC < 0.75 3 (15.8) 2 (10.5) 3 (15.8) 3 (15.8)

CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 5 (26.3) 4 (21.0) 4 (21.0)

CCC > 0.95 15 (78.9) 12 (63.2) 12 (63.2) 12 (63.2) 0.731

P-Value 0.272 1.000 1.000

CCC < 0.75 5 (17.9) 2 (7.1) 4 (14.3) 4 (14.3)

CCC ≥ 0.75 & CCC ≤ 0.95 7 (25.0) 15 (53.6) 10 (35.7) 10 (35.7)

CCC > 0.95 16 (57.1) 11 (39.3) 14 (50.0) 14 (50.0) 0.512

P-Value 0.086 0.467 1.000

CCC < 0.75 3 (4.8) 0 (0) 0 (0) 1 (1.6)

CCC ≥ 0.75 & CCC ≤ 0.95 28 (45.2) 39 (62.9) 33 (53.2) 31 (50.0)

CCC > 0.95 31 (50.0) 23 (37.1) 29 (46.8) 30 (48.4) 0.198

P-Value 0.038 0.363 0.857

CCC < 0.75 44 (35.2) 44 (35.2) 44 (35.2) 68 (54.4)

CCC ≥ 0.75 & CCC ≤ 0.95 79 (63.2) 81 (64.8) 81 (64.8) 57 (45.6)

CCC > 0.95 2 (1.6) 0 (0) 0 (0) 0 (0) 0.002

P-Value 0.615 1.000 0.003

CCC < 0.75 13 (43.3) 7 (23.3) 20 (66.7) 4 (13.3)

CCC ≥ 0.75 & CCC ≤ 0.95 6 (20.0) 8 (26.7) 10 (33.3) 11 (36.7)

CCC > 0.95 11 (36.7) 15 (50.0) 0 (0) 15 (50.0) <0.001

P-Value 0.305 <0.001 <0.001

Distance
1

All features

Statistical features

Histogram features

Texture
c

features

1
P-values were generated using Fisher’s Exact test comparing 0-6 mm vs. 0-3 mm, 0-9mm vs. 0-6 mm, and 0-12 

mm vs. 0-9 mm, respectively. 
2
P-value was generated using Fisher’s Exact test for the overall distributions of the four peritumoral distance (3 x 

4 contingency table)
3
Features consist GLCM, GLRLM, GLSZM and NGTDM texture features.

3D Laws texture features

Wavelet texture features
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Table 5.5
Distribution of reproducibility groups of peritumoral radiomic features extracted from ROIs that

were not bounded by a lung mask.

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

CCC < 0.75 

CCC ≥ 0.75 & CCC ≤ 0.95 

CCC > 0.95 

P- Value
2

<0.001

<0.001

<0.001

<0.001

<0.001

Distance
1

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 mm

66 (25.0) 49 (18.6) 89 (33.7) 73 (27.7)

All features

158 (59.9) 118 (44.7) 92 (34.9) 58 (22.0)

40 (15.1) 97 (36.7) 83 (31.4) 133 (50.3)

3 (15.8) 2 (10.5) 3 (15.8) 3 (15.8)

<0.001 <0.001 <0.001

Statistical features

10 (52.6) 1 (5.3) 0 (0) 0 (0)

6 (31.6) 16 (84.2) 16 (84.2) 16 (84.2)

2 (7.1) 2 (7.1) 3 (10.7) 3 (10.7)

0.001 1.000 1.000

Histogram features

21 (75.0) 5 (17.9) 5 (17.9) 2 (7.1)

5 (17.9) 21 (75.0) 20 (71.4) 23 (82.1)

3 (4.8) 0 (0) 0 (0) 0 (0)

<0.001 1.000 0.531

Texture
3

features

43 (69.4) 25 (40.3) 22 (35.5) 16 (25.8)

16 (25.8) 37 (59.7) 40 (64.5) 46 (74.2)

44 (35.2) 44 (35.2) 68 (54.4) 67 (53.6)

<0.001 0.711 0.330

3D Laws texture features

79 (63.2) 74 (59.2) 50 (40.0) 27 (21.6)

2 (1.6) 7 (5.6) 7 (5.6) 21 (24.8)

<0.001

14 (46.7) 1 (3.3) 15 (50.0) 0 (0)

0.271 0.007 <0.001

Wavelet texture features

Numbers inside parenthesis are the percentage values.

1
P-values were generated using Fisher’s Exact test comparing 0-6 mm vs. 0-3 mm, 0-9mm vs. 0-6 mm, and 0-12 

mm vs. 0-9 mm, respectively. 
2
P-value was generated using Fisher’s Exact test for the overall distributions of the four peritumoral distance (3 x 4 

contingency table)
3
Features consist GLCM, GLRLM, GLSZM and NGTDM texture features.

P- Value

P- Value

P- Value

P- Value

P- Value

P- Value <0.001 <0.001 <0.001

5 (16.6) 13 (43.3) 15 (50.0) 13 (43.3)

11 (36.7) 15 (50.0) 0 (0) 17 (56.7)
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Figure 5.4 Concordance correlation coefficient groups of intratumoral features. The green boxes represent higher (CCC > 0.95), yellow boxes represent
moderate (CCC ≥ 0.75 and CCC ≤ 0.95) and red boxes represent lower (CCC < 0.75) CCCs.
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Figure 5.5 Whisker-box plots of CCCs by feature categories. a) CCCs of features extracted
from test-retest dataset (RIDER) from intratumoral ROI and peritumoral ROIs. b) CCCs of features
extracted using Algorithm 1 and Algorithm 2 from intratumoral ROI and peritumoral ROI (3 mm)
of Moist-run dataset. *Texture features included GLCM, GLRLM, GLSZM and NGTDM features.
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5.3.3 Survival analysis of peritumoral features

Utilizing the training cohort, univariable Cox regression analyses were conducted

using the stable and reproducible peritumoral features (0-3 mm, not bounded by a lung

mask, n = 63) and the top performing features (n = 5, p < 0.05) were selected for

multivariable analysis. These remaining features were included in a stepwise back-

ward elimination Cox regression model and one feature (F300:3D Wavelet P2 L2 C11)

remained in the final model. The classification and regression tree analysis identi-

fied the optimal cut-point (≥ 1.18 x 10−4) that discriminated by OS in the training

dataset and found that patients categorized in high cut-point had significantly worse

survival. Applying the novel cut-off point to two independent cohorts showed that

F300:3D Wavelet P2 L2 C11 was prognostic in all three cohorts (Figure 5.6).

5.4 Discussion

Radiomics are powerful image-based biomarkers that have been successfully ap-

plied for cancer detection, diagnosis, prognosis, prediction of response to treatment,

and monitoring of disease status by converting standard-of-care medical images into

quantitative data [17, 43, 50, 64, 123]. Because the surrounding peripheral areas of the

tumors represent the tumor microenvironment, emerging studies have considered the

clinical utility of peritumoral radiomic features [51,131–135]. Overall, a subset of peri-

tumoral features were found to be stable and reproducible. Features found to be stable

regardless of the peritumoral distances included statistical and histogram and a subset

of texture features (GLCM, GLRLM, GLSZM and NGTDM). This suggests these fea-

tures are less affected by changes in the ROIs. Also the stability and reproducibility

of most 3D Laws and wavelet texture features were found to be inconsistent across

the peritumoral regions which have been shown in other studies of intratumoral ra-

diomics [77, 136]. As such, the inclusion of a subset of 3D Laws and wavelet texture

features may result in spurious and non-repeatable findings. Also, when the clinical

utility of stable and reproducible peritumoral radiomic features were assessed in rela-

tion to lung cancer survival, stable and reproducible features were found to be more
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likely to get validated than unstable and non-reproducible features. Specifically, the

top performing peritumoral feature was a stable and reproducible peritumoral feature

utilizing three previously published datasets [14, 51, 138] (Figure 5.6).

Although prior studies have been conducted to assess for stability [40] and repro-

ducibility [136,137] of intratumoral radiomic features, this is the first study conducted

on peritumoral radiomic features. Kalpathy-Cramer et al. [40] found that intratumoral

size-based CT features were highly stable and shape-based features were less stable.

However, their study found that texture-based features were less stable which is consis-

tent with our findings for peritumoral texture-based features. On the other hand, size

and shape-based features were not extracted for the peritumoral region in our study

because these feature classes explicitly describe the intratumoral ROI. Balagurunathan

et al. [136] found that most intratumoral features were reproducible utilizing a semi-

automatic segmentation method on test-retest CT imaging which was also consistent

with our findings however, we also observed that 3D Laws texture features were less re-

producible than the rest of the feature groups. A separate study from Balagurunathan

et al. [137] assessed lung tumor volumes across different segmentation algorithms and

found that larger nodules (≥ 8 mm) were more reproducible. However, volumetric

analyses of the peritumoral regions were not conducted in this study.

Because peritumoral masks are natural extensions of the intratumoral masks,

the radiomic features extracted from the peritumoral and intratumoral regions could

yield similar stability and reproducibility. Interestingly, the majority of the intratu-

moral features were unstable, especially when extracted using different segmentation

algorithms (Figure 5.4). However, peritumoral features were found to be more sta-

ble and reproducible than their corresponding intratumoral features. This study also

showed that peritumoral features further away from the intratumoral region were in-

creasingly more stable. This finding might be related to the existence of homogenous

lung parenchyma in distal peritumoral regions compared to intratumoral regions or

peritumoral regions proximal to the tumor.

This analyses also revealed that subsets of features were consistently stable irre-
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spective of the initial parameter (e.g., seed point) for a given segmentation algorithm.

These findings are important since there is no ground truth for initial parameters for

any segmentation algorithm and it is essential that features are consistent across differ-

ent users. Whereas, some of these features were not stable when they were extracted

using different segmentation algorithms. These results demonstrate the importance of

using the same segmentation algorithm when conducting radiomics research especially

when attempting to train, test, and validate findings.

In this study, no significant differences were found on the stability of features

that were extracted from ROIs bounded by a lung parenchyma mask versus ROIs

that were not bounded by a lung parenchyma mask. Although peritumoral features of

lung tumors near the mediastinum or chest wall may be attenuated, our data suggests

that these features are still stable. The clinical utility of including outside of the lung

parenchyma to the ROI is currently unknown. Notably, pleural invasion by lung tumors

is associated with a poor prognosis [139] and peritumoral features extracted from ROIs

bounded by lung parenchyma may not accurately capture such a trait. Additionally,

the lung parenchyma masks are not always available or are not included in software

algorithms.

In 2017 a comprehensive review on the process and developments in radiomics

by Lambin et al. [85] stated, “. . . optimal reproducibility and stability enable mul-

ticenter studies to maximize the likelihood of a validated radiomic signature being

fit-for-purpose in routine clinical use.” To meet this goal, assessing the reproducibil-

ity and stability using the framework presented here and by others [40, 136] provide

groundwork to ensure generalizable studies across datasets and institutions. Because

the peritumoral region has unique clinical and biological significance, capturing this

information using radiomic analyses has tremendous translational utility as demon-

strated from previous studies and this study [51,131–135].
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Figure 5.6 Kaplan-Meier graphs of overall survival for Moffitt adenocarcinoma dataset (right), MAASTRO adenocarcinoma dataset (middle), and Radio-
genomics dataset (left) utilizing radiomics modelling of peritumoral features (0-3 mm).
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In summary, this study identified a subset of stable and reproducible CT ra-

diomic features from the peritumoral region of lung lesions. Because recent studies

have shown evidence that peritumoral features have clinical significance [51, 131–135],

identifying stable and reproducible features is crucial to minimize spurious and non-

repeatable results. The stable and reproducible features identified in this study can be

used to guide a feature selection pipeline for assessing the clinical utility of peritumoral

CT radiomic features.
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6. CLINICAL FACTORS AND QUANTITATIVE

IMAGE-BASED FEATURES PREDICT

IMMUNOTHERAPY RESPONSE AMONG LUNG

CANCER PATIENTS

6.1 Introduction

Immunotherapy, which targets the PD-1 or PD-L1, has demonstrated durable

clinical benefit in 20-50% patients with advanced stage NSCLC [2–7]. The patterns

of immunotherapy response and progression are complex [140], including, e.g. rapid

disease progression [65], hyperprogression [104], and acquired resistance [141]. Because

of this complexity, there is a pressing challenge to identify robust predictive biomark-

ers that can identify patients that are least likely to respond. Though tumor PD-L1

expression by IHC is the only clinically approved biomarker to predict immunother-

apy response, recent clinical trials demonstrated significant improvements in clinical

outcomes irrespective of PD-L1 expression level [7, 10]. Furthermore, TMB, defined

as the total number of mutations per coding area of a tumor genome [142], has been

shown to be a superior predictor of immunotherapy response compared to PD-L1 sta-

tus [143–145]. Despite the potential clinical utility of TMB, there are limitations with

its use as tumor specimens have to be sufficient in both quantity and quality [145].

Further, tumors are evolutionarily dynamic and accumulate mutations rapidly [146],

and laboratory methods to calculate TMB can be timely and expensive. Moreover,

tumor-based biomarkers, including PD-L1 expression, are often subject to sampling

bias due to the molecular and cellular heterogeneity of the biopsied tumors [147]. As

such, complimentary biomarkers that are predictive, non-invasive, and measured in a

timely fashion would have direct translational implications. Quantitative image-based

features, or radiomics [12], reflects the underlying pathophysiology and tumor hetero-

geneity (Figure 2.1) and have many advantages over tissue-based biomarkers as they

can be rapidly calculated from standard-of-care medical imaging and they reflect the
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entire region-of-interest (e.g., tumor) and not just the portion of the tumor that is

assayed.

In Chapter 3, the utility of radiomics to predict rapid disease progression and

hyperprogression phenotypes in immunotherapy treated NSCLC patients was demon-

strated. Building upon this work, in the present chapter pre-treatment clinical data

and radiomic features extracted from CT scans were utilized to develop a parsimonious

model to predict survival outcomes among NSCLC patients treated with immunother-

apy. The biological underpinnings of the radiomics features were assessed utilizing

gene-expression information from a well-annotated radiogenomics NSCLC dataset and

IHC data from a separate NSCLC dataset. Furthermore, the radiomic features were

assessed for survival in four independent NSCLC cohorts.

6.2 Materials and Methods

6.2.1 Immunotherapy-treated Lung Cancer Patients

This analysis included 332 stage IIIB or IV NSCLC patients that were treated

with immunotherapy using PD-1 single agent (Nivolumab, Pembrolizumab), PD-L1

single agent (Durvalumab, Atezolizumab), or combination of PD-L1 or PD-L1 with

cytotoxic T-lymphocyte-associated protein 4 (Ipilimumab, Tremelimumab) as second

agent. Inclusion criteria included patients having a baseline CT or PET/CT scan less

than 90 days prior to the initiation of immunotherapy and at least one RECIST target

or non-target lung lesion. The patients were divided into discovery (MCC 1, N =

180),test cohort (MCC 2, N = 90) and validation cohorts (VA, N = 62). Patients

in the training cohort were enrolled in clinical trials treated between June 2011 and

January 2016 at Moffitt Cancer Center. Patients in the test cohort were treated with

immunotherapy between May 2015 and October 2017 where 94.6% were treated as

standard-of-care and 5.4% were enrolled in industry-sponsored clinical trials at Moffitt

Cancer Center. Patients in the validation cohort were treated with standard-of-care

immunotherapy between July 2015 and February 2019 at the James A. Haley Veterans’
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Hospital.

Patient data were obtained from electronic medical records and institutional

databases including demographics, stage of disease, histology, treatment, vital status,

targeted mutations, ECOG performance, RECIST, hematology data, vital status (de-

ceased or alive), and date of death or last follow-up. Date of progression was abstracted

and defined as progressive disease from RECIST definition or clinical progression eval-

uated by the treating clinicians whenever RECIST was not available. This study was

approved by the University of South Florida Institutional Review Board.

6.2.2 Radiogenomics Dataset

A previously described dataset [138] of 103 surgically resected adenocarcinoma

patients who had pre-surgery CTs and gene expression data was used to identify po-

tential biological underpinnings of the most informative radiomic feature. Briefly, gene

expression was IRON-normalized and batch-corrected for RNA quality Pathway and

Gene Ontology Enrichment was performed using Clarivate Analytics MetaCore [138].

6.2.3 Immunohistochemistry Dataset

To further investigate the connections between tumor biology and the radiomic

features, a dataset of 26 surgically resected NSCLC patients who had pre-surgery CTs

and treated at MCC were identified for immunohistochemical staining of carbonic

anhydrase (CAIX). However, 16 cases were available with enough tumor tissue and

sufficient staining quality.

Slides were stained using a Ventana Discovery XT automated system (Ven-

tana Medical Systems, Tucson, AZ) as per manufacturer’s protocol with proprietary

reagents. Briefly, slides were deparaffinized on the automated system with EZ Prep

solution (Ventana). Heat-induced antigen retrieval method was used in RiboCC (Ven-
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tana). The rabbit primary antibody that reacts to CAIX, (ab15086, Abcam, Cam-

bridge, MA) was used at a 1:250 concentration in Dako antibody diluent (Carpenteria,

CA) and incubated for 32 min. The Ventana OmniMap Anti-Rabbit Secondary Anti-

body was used for 20 min. The detection system used was the Ventana ChromoMap

kit and slides were then counterstained with Hematoxylin. Slides were then dehydrated

and cover slipped as per normal laboratory protocol.

The CAIX proteins were highlighted by brown nuclear staining of CAIX. A

computational system was implemented for automated evaluation of positive staining

percentage defined as the total number of positive stained pixels by total number

of tumor and its immediate microenvironment pixels. Additionally, the automated

algorithm calculated scores were compared with board-certified pathologist’s H-scoring

metric which is defined elsewhere [148].

6.2.4 Prognostic validation Dataset

The radiomics data were further validated for prognosis in four published datasets.

Only OS was available for these datasets. The first dataset [14, 51] comprised of 62

adenocarcinoma patients who underwent surgical resection as first course therapy at

the Moffitt Cancer Center and had pre-surgery CTs within 2 months prior to surgery.

The second dataset [14, 51] comprised of 47 adenocarcinoma patients who underwent

surgical resection as first course therapy at the Maastricht Radiation Oncology Clinic

and had pre-surgery CTs within 2 months prior to surgery. The third dataset included

234 patients [43, 149] diagnosed with screen-detected incident lung cancers in the Na-

tional Lung Screening Trial. The fourth dataset was a radiogenomics dataset [138] of

103 adenocarcinoma patients as described above.



84

6.2.5 Tumor segmentation and Radiomics Extraction

Figure 2.1 presents an overview of the radiomics pipeline used in this study.

Pre-treatment contrast-enhanced thoracic CT scans performed ≤ 90 days (median:

10 days) prior to the initiation of immunotherapy (baseline) were retrieved from the

picture archiving and communication system and loaded into HealthMyne Quantita-

tive Imaging Decision Support (QIDS) software (https://www.healthmyne.com). A

radiologist with more than 10 years of clinical experience selected the largest lung tu-

mor of the patients and initialized an automated 3D segmentation algorithm using the

HealthMyne R© QIDS Rapid Precise Metrics software. The tumor delineation outputs

of the 3D segmentation algorithm were either confirmed or edited whenever necessary

by the radiologist.

The tumor mask images (i.e., tumor delineations) were imported into an in-

house radiomic feature extraction toolboxes created in MATLAB R© 2015b (The Math-

works Inc., Natick, Massachusetts) and C++ (https://isocpp.org). The CT images

were resampled to a single voxel spacing of 1mm x 1mm x 1mm using cubic interpo-

lation to standardize spacing across all images. The HUs in all CT images were then

resampled into fixed bin sizes of 25 HUs discretized from –1000 to 1000 HU.

A total of 213 radiomic features were extracted utilizing the training cohort from

the intratumoral region (N = 122 features) and the peritumoral region 3 mm outside

of tumor boundary (N = 91 features) using standardized algorithms from the IBSI

v5 [76]. Peritumoral regions were bounded by the lung parenchyma mask to exclude

any tissue that exceed outside of the lung parenchyma. Unstable and non-reproducible

radiomic features were eliminated utilizing methods mentioned on Chapter 5.

6.2.6 Statistical Analysis

All statistical analyses were performed using Stata/MP 14.2 (StataCorp LP, Col-

lege Station, Texas) and R Project for Statistical Computing version 3.4.3 (http://www.r-
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project.org/). Differences for the clinical covariates were tested using Fisher’s exact

test for categorical variables and the Mann-Whitney U test for continuous variables.

Survival analyses were performed using Kaplan-Meier survival estimates and the log-

rank test. The OS and PFS were the two dependent variables. For OS, an event was

defined as death and the data were right censored at 36-months. For PFS, an event

was defined as death or either clinical or RECIST based progression of cancer and the

data were right-censored at 36 months. The index date for both OS and PFS was the

date of initiation of immunotherapy.

A rigorous model building approach was employed to reduce the number of

covariates and identify the most informative clinical covariates and radiomic features

associated with patient survival. For the clinical covariates, univariable Cox regres-

sion was performed and covariates significantly (P < 0.05) associated with OS were

retained. To produce a parsimonious clinical model, the remaining clinical covari-

ates were included in a stepwise backward elimination Cox regression model using a

threshold of 0.01 for inclusion. For the radiomic features, univariable Cox regression

was performed and radiomic features were retained that were significantly associated

with OS after Bonferroni-Holm correction (P < 0.05). Radiomic features correlated

with tumor volume (Pearson’s correlation coefficient ≥ 0.80) were removed. Among

the remaining radiomic features, correlated features were identified using an absolute

Pearson’s correlation coefficient ≥ 0.80 and the feature with the smallest p-value from

the univariable analysis was retained. The remaining radiomic features, were utilized

to identify a parsimonious radiomics model using a stepwise backward elimination ap-

proach applying a threshold of 0.01 for inclusion. The final covariates from the clinical

model and the final features from the radiomics model were combined and CART was

used to find patient risk groups. CART is a non-parametric approach modified for

failure time data [110] that classifies variables through a decision tree composed of

splits, or nodes, where the split points are optimized based on impurity criterion. The

clinical-radiomics CART model from the training cohort was validated utilizing the

test and the validation cohorts. Time-dependent AUCs and CIs were calculated for 6,

12, 24 and 36 months for training and test cohorts. The most predictive Radiomics

feature was also validated in four independent cohorts.
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For the radiogenomics analysis, the highest prognostic radiomic feature was

compared to every gene probesets using two different approaches: correlation and

two-group analysis. For the correlation analysis, gene probesets were filtered and de-

termined as statistically significant using the following criteria: Pearson’s correlation

with a threshold |R| > 0.4, an expression filter with max expression of gene > 5, and

an inter-quartile filter (interquartile range > log2 [1.2 fold-change]). Gene probesets

were filtered and determined as significant using the following criteria based on a Stu-

dent’s t test p < 0.001 and mean logarithmic fold-change (LFC) between high and low

prognostic radiomic feature of LFC > log2 (1.4 fold-change). The significant probesets

from the two analyses were intersected yielding a final list of probesets significantly

associated with the prognostic radiomic feature.

6.3 Results

6.3.1 Immunotherapy Treated Patient Demographics

Type of checkpoint inhibitor, ECOG performance status, number of previous

lines of therapy, serum albumin, lymphocyte counts, and NLR were significantly dif-

ferent between the training and test cohorts (Table 6.1). Also, significant differences

were found for OS and PFS between training and test cohorts (36-month OS 32.6%

vs. 19.2%, respectively; 36-month PFS 20.8% vs. 9.5%, respectively; Table 6.2) where

log-rank P-value was < 0.05 (Figure 6.1).

Median age, sex, smoking status, stage, type of checkpoint inhibitor, ECOG

performance status, lymphocyte counts, and NLR were significantly different between

the training (MCC cohort 1) and validation cohort (VA cohort, Table 6.1). However,

OS were not significantly different between the two cohorts (Figure 6.1). PFS data was

not available for validation cohort.
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Figure 6.1 Overall survival graph for the training, test and validation cohorts and progression-free
survival graph for the training and test cohorts.

6.3.2 Clinical Model

Among the 16 clinical covariates from Table 6.1 that were considered for the

clinical model, four clinical features (serum albumin, number of metastatic sites, pre-

vious lines of therapy and neutrophils counts) were significantly associated with OS

in univariable analysis utilizing the training cohort. The final parsimonious clinical

model included two clinical features: serum albumin (HR = 0.33; 95% CI: 0.20-0.52)

and number of metastatic sites (HR = 2.14; 95% CI: 1.48-3.11).

6.3.3 Radiomics Model

Among the original 213 intratumoral and peritumoral radiomic features, 67 fea-

tures were found to be stable and reproducible. Eight of the 67 features were removed

because they were correlated with tumor volume. Univariable analysis identified eleven

features significantly associated with OS and eight of the nine features were dropped

because they were correlated within each other (Figure 6.2). Among the two remaining

features (GLCM inverse difference and peritumoral quartile coefficient), stepwise back-

ward elimination approach identified GLCM inverse difference as the most informative

radiomic feature (HR = 1.41; 95% CI: 1.19-1.67, p < 0.001).
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6.3.4 CART Analysis

Based on the two most informative clinical covariates and most informative

radiomic feature, CART analysis have found novel cut-off points (Figure 6.3) and clas-

sified patients in the training cohort into six risk groups (Figure A.4) which were further

collapsed into four risk groups based on OS (Figure 6.4): low-risk (blue), moderate-risk

(red), high-risk (green), and very high-risk (yellow). Similar findings were observed for

PFS. The risk groups identified in the training cohort were also extracted in the test

cohort (Table 6.2 and Figure 6.4) where the time-dependent AUCs were found to be

similar for both cohorts for OS (Figure 6.5). Specifically, for 6 months OS, our model

achieved an AUC of 0.784 (95% CI: 0.693 – 0.876) and for 24 months the AUC was

0.716 (95% CI: 0.558 – 0.843) for the test cohort.

6.3.5 Multivariable Analysis

A multivariable Cox regression analysis was conducted adjusting for clinical

covariates that were significantly different between the training cohort and test cohort

(Table 6.1). The HRs were adjusted for ECOG, lymphocyte counts and neutrophils to

lymphocytes ratio (Table 6.3) and the high-risk (test cohort HR = 3.33; 95% CI 1.57

– 7.05) and very high-risk (test cohort HR = 5.35; 95% CI 2.14 – 13.36) groups were

still found to be associated with significantly worse outcomes compared to the low-risk

group (HR = 1.00). The results were consistent when the data were analyzed for PFS

(Table 6.4). Utilizing the validation cohort and adjusting for stage, ECOG, lymphocyte

count and neutrophils to lymphocytes ratio, the very-high risk group had significantly

worse outcomes (HR = 13.81; 95% CI 2.58 – 73.93) compared to the low-risk group

(Table 6.5).

Clinical covariates were compared across the four CART risk groups (Table 6.6)

and previous lines of therapy, ECOG, white blood cell counts, neutrophils and NLR

were found to be significantly different. Multivariable Cox regression was performed

adjusting for these potential confounders but did not appreciably alter the HRs for risk
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groups (Tables 6.3 6.4).

Figure 6.2 Correlation matrix for the radiomic features that were significantly associated with overall
survival in the univariable analysis. The feature in the final parsimonious model was GLCM inverse
difference and it is found to be correlated with nine other features shown inside the green box.

GLCM 

Inverse 

Difference

≤ 0.43

> 0.43

Very-high-

risk group

Number of 

metastatic 

sites

1 ≥2 1 ≥2

Number of 

metastatic 

sites

Serum 

albumin

Number of 

metastatic 

sites

≥ 3.9 < 3.9

High-risk 

group

High-risk 

group

Moderate-

risk group

Moderate-

risk group

Low-risk 

group

1 ≥2

Figure 6.3 The CART was used to identify patient risk groups based on a model containing one
radiomic feature and two clinical features. Patients were grouped from low risk to very-high risk based
on the CART decision nodes and terminal nodes.
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Table 6.1
Patient characteristics by the training and test cohorts.

Training 

Cohort

Test 

Cohort

Validation

Cohort

(N = 180) (N = 90) (N = 62)

Dichotomized
< 65 68 (37.8) 37 (41.1) 15 (24.2)
≥ 65 112 (62.2) 53 (58.9) 0.599 47 (75.8) 0.063
Median, (95% CI) 67 (65-68) 67 (64-69) 0.783 68 (67-71) 0.026

Female 95 (52.8) 43 (47.8) 3 (4.8)
Male 85 (47.2) 47 (52.2) 0.442 59 (95.2) <0.001

Never smoker 30 (16.7) 16 (17.8) 2 (3.2)
Ever smoker 146 (81.1) 74 (82.2) 0.866 60 (96.8) 0.004
Unknown/Missing 4 (2.2) 0 (0) 0 (0)

IIIb 6 (3.3) 4 (4.4) 13 (21.0)
IV 174 (96.7) 86 (95.6) 0.735 49 (79.0) <0.001

Adenocarcinoma/others 137 (76.1) 71 (78.9) 43 (69.3)
Squamous cell carcinoma 43 (23.9) 19 (21.1) 0.648 19 (30.7) 0.135

Anti PD-L1 48 (26.6) 18 (20.0) 8 (12.9)
Anti PD-1 57 (31.7) 69 (76.7) 54 (87.1)
Doublet 75 (41.7) 3 (3.3) <0.001 0 (0) <0.001

0 39 (21.7) 10 (11.1) 12 (19.4)
1 141 (78.3) 67 (74.4) 39 (62.9)
2 0 (0) 13 (14.4) <0.001 11 (17.7) <0.001

None 70 (43.9) 21 (23.3) n/a
1 48 (26.7) 47 (52.2) n/a
≥ 2 62 (34.4) 22 (24.4) <0.001 n/a -

1 82 (46.6) 51 (56.7) 25 (40.3)
≥ 2 98 (54.4) 39 (43.3) 0.094 37 (59.7) 0.554

Not Detected 107 (59.4) 37 (41.1) n/a
Detected 25 (13.9) 5 (5.6) n/a
Missing/Inconclusive 48 (26.7) 48 (53.3) 0.355 n/a -

Not Detected 61 (33.9) 20 (22.2) n/a
Detected 29 (16.1) 12 (13.3) 0.664 n/a
Missing/Inconclusive 90 (50.0) 58 (64.4) n/a -

Serum albumin, (g/dL) 4.0 (3.9-4.0) 3.8 (3.6-3.9) <0.001 3.9 (3.7-4.0) 0.087
Lymphocytes, (1e+9/L) 1.3 (1.2-1.4) 1.0 (0.9-1.2) <0.001 1.0 (0.9-1.2) 0.014
WBC, (1e+9/L) 7.1 (6.7-7.6) 7.7 (6.8-8.8) 0.246 7.5 (6.7-8.7) 0.383
Neutrophils, (1e+9/L) 4.8 (4.4-5.1) 5.3 (4.6-6.5) 0.131 5.6 (4.8-6.1) 0.329
NLR 3.7 (3.2-4.1) 5.2 (4.0-7.5) 0.002 5.3 (4.1-6.8) 0.004

Sex, N (%)

Characteristic

P-Value

Age at initiation of treatment, N (%)

P-Value

Smoking status
1

Stage, N (%)

Histology, N (%)

Checkpoint inhibitors, N (%)

ECOG performance status, N (%)

Previous lines of therapy on current diagnosis

1
P-values for smoking status, EGFR mutational status and KRAS mutational status were calculated for patients 

without missing/inconclusive data.

Number of metastatic sites

EGFR mutational status
1

KRAS mutational status
1

Hematology, median, (95% CI)

Abbreviations: CI = confidence interval; NLR = neutrophils to lymphocytes ratio;

Bold P-values are statistically significant.
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Table 6.2
Overall survival and progression free survival rates by training and test cohorts and patient risk

groups.

6 12 24 36

months months months months

Training Cohort 82.70% 60.80% 42.10% 32.60%

Test Cohort 61.70% 46.20% 22.40% 19.20%

Training Cohort 100% 95.20% 84.70% 84.70%

Test Cohort 95.00% 85.00% 38.90% 38.90%

Training Cohort 92.60% 76.40% 59.70% 47.90%

Test Cohort 67.80% 56.70% 33.10% n/a

Training Cohort 81.10% 54.40% 24.90% 15.60%

Test Cohort 62.10% 34.10% 17.10% 8.50%

Training Cohort 59.90% 24.30% 12.20% 0%

Test Cohort 16.70% 11.10% 0% 0%

Progression-free survival

Training Cohort 47.90% 32.80% 22.80% 20.80%

Test Cohort 37.90% 19.60% 9.50% 9.50%

Training Cohort 71.40% 71.40% 65.50% 65.50%

Test Cohort 73.70% 46.30% 29.80% 29.80%

Training Cohort 65.90% 43.00% 31.20% 25.00%

Test Cohort 23.90% 19.10% 9.60% n/a

Training Cohort 43.00% 27.00% 9.80% 9.80%

Test Cohort 41.30% 15.00% 3.80% n/a

Training Cohort 15.70% 0% 0% 0%

Test Cohort 11.10% 0% 0% 0%

Percent survival at:

Overall survival

Overall by cohort

Overall by cohort

By risk group

Low-risk

Moderate-risk

High-risk

Very-high-risk

High-risk

Very-high-risk

Cells were marked as n/a whenever all of the patients were censored for the given 

interval.

By risk group

Low-risk

Moderate-risk



92

0.00

0.25

0.50

0.75

1.00

O
v
e

ra
ll 

s
u

rv
iv

a
l

35 20 6 3 2 0 0Very-high risk
70 53 29 18 9 5 4High risk
54 48 33 23 13 9 5Moderate risk
21 21 18 14 10 9 7Low risk

No. at risk

0 6 12 18 24 30 36
Months

Low risk Moderate risk

High risk Very-high risk

log-rank p-value < 0.001

0.00

0.25

0.50

0.75

1.00

O
v
e

ra
ll 

s
u

rv
iv

a
l

18 3 1 0 0 0 0Very-high risk
29 18 9 6 3 1 1High risk
23 14 9 5 3 1 0Moderate risk
20 19 16 10 4 4 1Low risk

No. at risk

0 6 12 18 24 30 36
Months

Low risk Moderate risk

High risk Very-high risk

log-rank p-value < 0.001

Test cohort (MCC 2)

0.00

0.25

0.50

0.75

1.00

O
v
e

ra
ll 

s
u

rv
iv

a
l

12 7 5 1 0 0 0Very-high risk
20 14 7 2 2 0 0High risk
18 12 10 6 5 2 0Moderate risk
12 11 4 4 3 2 1Low risk

No. at risk

0 6 12 18 24 30 36
Months

Low risk Moderate risk

High risk Very-high risk

log-rank p-value = 0.009

Validation cohort (VA)

Test cohort (MCC 2)

log-rank p-value < 0.001

0.00

0.25

0.50

0.75

1.00

P
ro

g
re

s
s
io

n
-f

re
e

 s
u

rv
iv

a
l

18 2 0 0 0 0 0Very-high risk
29 11 4 3 1 0 0High risk
23 5 3 2 1 1 0Moderate risk
20 14 8 6 2 2 1Low risk

No. at risk

0 6 12 18 24 30 36
Months

Low risk Moderate risk

High risk Very high risk

log-rank p-value < 0.001

0.00

0.25

0.50

0.75

1.00

P
ro

g
re

s
s
io

n
-f

re
e

 s
u

rv
iv

a
l

35 5 0 0 0 0 0Very-high risk
70 25 10 3 3 2 1High risk
54 34 22 14 8 7 3Moderate risk
21 15 12 10 7 6 5Low risk

No. at risk

0 6 12 18 24 30 36
Months

Low risk Moderate risk

High risk Very high risk

Training cohort (MCC 1)

Training cohort (MCC 1)

Figure 6.4 Kaplan-Meier survival curves estimates for overall survival (top) in the training (left), test (middle) and validation cohorts (right), and progressive-
free survival (bottom) in the training (left) and test cohorts (right).
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Figure 6.5 Time-dependent AUC curves for Cox regression models based on 6, 12, 24 and 36 months
for training (top) and test cohorts (bottom). The AUC values were statistically not different between
training and test cohorts.

6.3.6 Radiogenomics Analysis

For two-group analysis, GLCM inverse difference was dichotomized at the pre-

viously determined CART threshold (0.43), which was similar to the mean (0.47) and
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Table 6.3
Univariable and multivariable Cox regression analysis for overall survival for the training and test

cohorts.

Univariable Model
1

Multivariable Model
2

Multivariable Model
3

Univariable Model
1

Multivariable Model
2 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Risk group

Low-risk 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Moderate-risk 3.79 (1.13 – 12.68) 3.08 (0.89 – 10.66) 3.56 (1.02 – 12.48) 1.70 (0.75 – 3.87) 1.51 (0.66 – 3.51)

High-risk 8.02 (2.47 – 26.09) 7.87 (2.38 – 25.97) 6.98 (2.10 – 23.18) 2.73 (1.33 – 5.63) 3.33 (1.57 – 7.05)

Very-high-risk 19.32 (5.80 – 64.32) 17.33 (5.11 – 58.72) 17.24 (5.09 – 58.36) 10.52 (4.58 – 24.17) 5.35 (2.14 – 13.36)

ECOG . 1.22 (0.70 – 2.11) 1.20 (0.69 – 2.07) . 2.63 (1.47 – 4.68)

Pr. treatment . . 1.36 (1.01 – 1.81) . .

Lymphocytes . 1.04 (0.74 – 1.46) . . 0.73 (0.45 – 1.17)

WBC . . 0.98 (0.88 – 1.09) . .

Neutrophils . . 1.10 (0.89 – 1.34) . .

NLR . 1.01 (0.97 – 1.06) 0.98 (0.92 – 1.05) . 1.05 (1.02 – 1.08)

Abbreviations: SD = standard deviation; HR = hazard ratio; CI = confidence interval; PFS = progression-free survival; NLR = neutrophils to 

lymphocytes ratio; WBC = white blood cell ; Pr. treatment = previous lines of treatments at current diagnosis

Bold values are statistically significant.

1
The main effects for each risk group with the low risk group as the referent category. 

2
These models included the clinical covariates that were found to be significant different between the training and test cohorts (Table 6.1) and the risk 

groups using the low risk group as the referent category.
3
These models included the clinical covariates that were found to be significant different between the CART risk groups (Table 6.5).

Training cohort (MCC 1) Test cohort (MCC 2)

Overall survival

median (0.45) values in the radiogenomics dataset. Correlation and two-group analyses

identified 123 significant probesets representing 91 unique genes that were associated

with the GLCM inverse difference radiomic feature. Interestingly, only three probe-

sets (representing two genes) were positively associated with GLCM inverse difference:

CAIX and Family With Sequence Similarity 83 Member F (FAM83F). GLCM inverse

difference was positively associated with CAIX expression based on two different probe-

sets (Figure 6.6A-D). Median CAIX expression was lower for patients with low GLCM

inverse difference (< 0.43) (merck2 DQ892208: 4.61 [95% CI: 4.38 – 5.00]; merck

NM001216: 4.48 [95% CI: 4.24 – 4.62]) vs. high GLCM inverse difference (≥ 0.43)

(merck2 DQ892208: 6.32 [95% CI: 5.50 – 6.86]; merck NM 001216: 5.66 [95% CI: 5.11

– 6.39]).
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Table 6.4
Univariable and multivariable Cox regression analysis for progression-free survival for the training

and test cohorts.

Univariable Model
1

Multivariable Model
2

Multivariable Model
3

Univariable Model
1

Multivariable Model
2 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Risk group

Low-risk 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Moderate-risk 2.02 (0.89 – 4.64) 2.05 (0.88 – 4.76) 2.36 (1.00 – 5.58) 2.96 (1.43 – 6.14) 2.80 (1.34 – 5.85)

High-risk 5.15 (2.33 – 11.36) 5.55 (2.46 – 12.49) 4.89 (2.15 – 11.14) 2.58 (1.29 – 5.14) 3.05 (1.50 – 6.18)

Very-high-risk 9.62 (4.12 – 22.44) 9.03 (3.77 – 21.63) 8.79 (3.66 – 21.11) 7.13 (3.31 – 15.35) 3.95 (1.56 – 8.54)

ECOG . 1.09 (0.68 – 1.74) 1.05 (0.66 – 1.68) . 2.33 (1.35 – 4.03)

Prv treatment . . 1.32 (1.04 – 1.67) .

Lymphocytes . 0.83 (0.63 – 1.09) . . 0.88 (0.59 – 1.33)

WBC . . 1.00 (0.90 – 1.11) . .

Neutrophils . . 1.04 (0.86 – 1.26) . .

NLR . 1.04 (0.99 – 1.09) 1.01 (0.95 – 1.07) . 1.05 (1.02 – 1.08)

Abbreviations: SD = standard deviation; HR = hazard ratio; CI = confidence interval; PFS = progression-free survival; NLR = neutrophils to 

lymphocytes ratio; WBC = white blood cell ; Pr. treatment = previous lines of treatments at current diagnosis

Bold values are statistically significant.

1
The main effects for each risk group with the low risk group as the referent category. 

2
These models included the clinical covariates that were found to be significant different between the training and test cohorts (Table 1) and the risk 

groups using the low risk group as the referent category.
3
These models included the clinical covariates that were found to be significant different between the CART risk groups (Sup Table 2).

Training cohort (N = 180) Test cohort (N = 90)

Progression-free survival

6.3.7 Immunohistochemistry Analysis

Further investigating the relationship between CAIX expression of tumors and

tumor GLCM inverse difference radiomics showed that patients with higher CAIX

expression had a trend towards higher GLCM inverse difference (Figure 6.6E). Auto-

mated pathology scoring algorithm was compared with the pathologist scored H-score

and shown to have high correlation (Figure 6.6F). Representative cases of patients with

high and low GLCM inverse difference and pathologically scored high and low CAIX

expressions are shown in (Figure 6.7).
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Table 6.5
Univariable and multivariable Cox regression analysis for overall survival for the validation cohort.

Univariable Model
1

Multivariable Model
2 

HR (95% CI) HR (95% CI)

Overall survival

Risk group

Low-risk 1.00 (Reference) 1.00 (Reference)

Moderate-risk 4.07 (0.90 – 18.26) 4.00 (0.83 – 19.17)

High-risk 4.72 (1.02 – 21.94) 4.54 (0.90 – 23.11)

Very-high-risk 9.72 (2.08 – 45.49) 13.81 (2.58 – 73.93)

Age . 1.00 (0.96 – 1.05)

Stage . 0.66 (0.23 – 1.93)

ECOG . 1.98 (0.99 – 3.94)

Lymphocytes . 1.13 (0.53 – 2.40)

NLR . 1.09 (0.99 – 1.18)

Bold values are statistically significant.
1
The main effects for each risk group with the low risk group as the 

referent category. 

2
These models included the clinical covariates that were found to be 

significant different between the training and test cohorts (Table 6.1) 

and the risk groups using the low risk group as the referent category.

Validation cohort (VA)

Abbreviations: SD = standard deviation; HR = hazard ratio; CI = 

confidence interval; ECOG = Eastern Cooperative Oncology Group; 

NLR = neutrophils to lymphocytes ratio; 

6.3.8 Prognostic Validation Datasets

GLCM inverse difference was significantly associated with OS in three out of the

four independent NSCLC cohorts (Figure 6.8) using previously found CART cut-point

(0.43). Although the a priori cut–point for GLCM inverse difference was not signifi-

cantly associated with OS in the Maastricht patient cohort, GLCM inverse difference

as a continuous covariates was significantly associated with OS in a Cox regression

model (HR = 2.74; 95% CI 1.04 – 7.24).
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Figure 6.6 Association between GLCM inverse difference CT radiomic feature and high CAIX ex-
pression. a) Whisker-box plots representing the association between CAIX expression using merck
2DQ892208 probset and GLCM inverse difference. High and low GLCM inverse difference was found
using novel cut-point defined by CART analysis b) Scatter plot showing the linear relationship be-
tween CAIX expression using merck 2DQ892208 probset and GLCM inverse difference. CART defined
cut-off point was used to differentiate high (blue) and low (red) GLCM inverse difference. c) Whisker-
box plots representing the association between CAIX expression using merck NM001216 probset and
GLCM inverse difference. High and low GLCM inverse difference was found using novel cut-point
defined by CART analysis. d) Scatter plot showing the linear relationship between CAIX expres-
sion using merck NM001216 probset and GLCM inverse difference. CART defined cut-off point was
used to differentiate high (blue) and low (red) GLCM inverse difference. e) Whisker-box plots repre-
senting the association between CAIX expression on IHC staining and GLCM inverse difference CT
radiomic feature. High and low GLCM inverse difference was found using novel cut-point defined by
CART analysis. f) Scatter plot showing linear relationship between pathologist H-score for CAIX and
computer derived (Aperio positive pixel count algorithm) automated CAIX scoring.

6.4 Discussion

Predictive biomarkers that identify lung cancer patients who will experience

rapid and lethal outcomes is a critical unmet need as such, patients could avoid in-
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Figure 6.7 Representative cases for testing the agreement between GLCM inverse difference and
CAIX IHC expression. Correlation between high CAIX and high CT radiomic feature is seen on left
side and correlation between low CAIX and low CT radiomic feature is seen on right side.

effective and expensive treatment. In this study, a rigorous radiomics pipeline and a

robust analysis was utilized to identify and successfully test and validate a parsimonious

clinical-radiomic model that was significantly associated with survival outcomes and

stratified patients into four unique risk groups based on risk of patient death and risk of

progression. The very high-risk group was associated with extremely poor OS in all the

training, test and independent validation cohorts (Figure 6.4) which may suggest these

patients should either avoid immunotherapy altogether or utilize upfront combination

treatments that may yield a better response. The most informative radiomic feature,

GLCM inverse difference, was positively associated with CAIX expression and further

validation demonstrated that GLCM inverse difference was also associated with OS in

four independent NSCLC cohorts.



99

Table 6.6
Patient characteristics by CART risk groups for the training cohort.

Low risk Moderate risk High risk Very-high risk P-Value

Dichotomized

< 65 9 (42.9) 22 (40.7) 26 (37.1) 11 (31.4)

≥ 65 12 (57.1) 32 (59.3) 44 (62.9) 24 (68.6) 0.798

Female 8 (38.1) 31 (57.4) 40 (57.1) 16 (45.7)

Male 13 (61.9) 23 (42.6) 30 (42.9) 19 (54.3) 0.323

Never smoker 4 (19.1) 10 (18.9) 12 (17.9) 4 (11.4)

Ever smoker 17 (80.9) 43 (81.1) 55 (82.1) 31 (88.6) 0.809

III 2 (9.5) 0 (0) 3 (4.3) 1 (2.9)

IV 19 (90.5) 54 (100) 67 (95.7) 34 (97.1) 0.138

Adenocarcinoma/others 17 (81.0) 43 (79.6) 53 (75.7) 24 (68.6)

Squamous cell carcinoma 4 (19.0) 11 (20.4) 17 (24.3) 11 (31.4) 0.636

Anti PD-L1 4 (19.1) 11 (20.37) 24 (34.3) 9 (25.7)

Anti PD-1 7 (33.3) 16 (29.6) 25 (35.7) 9 (25.7)

Doublet 10 (47.6) 27 (50.0) 21 (30.0) 17 (48.6) 0.285

0 10 (47.6) 10 (18.5) 15 (21.4) 4 (11.4)

1 11 (52.4) 44 (81.5) 55 (78.6) 31 (88.6) 0.021

None 10 (47.6) 33 (61.1) 10 (14.3) 17 (48.6)

1 4 (19.1) 13 (24.1) 24 (34.3) 7 (20.0)

≥ 2 7 (33.3) 8 (14.8) 36 (51.4) 11 (31.4) <0.001

1 21 (100) 14 (25.9) 47 (67.1) 0 (0)

≥ 2 0 (0) 40 (74.1) 23 (32.9) 35 (100) <0.001

Not Detected 14 (77.8) 36 (87.8) 37 (75.5) 20 (83.3)

Detected 4 (22.2) 5 (12.2) 12 (24.5) 4 (16.7) 0.495

Not Detected 7 (58.3) 17 (60.7) 26 (70.3) 11 (84.6)

Detected 5 (41.7) 11 (39.3) 11 (29.7) 2 (15.4) 0.401

Serum albumin, (g/dL) 4.0 (3.8-4.2) 4.1 (4.1-4.2) 4.0 (3.9-4.1) 3.6 (3.5-3.7) <0.001

Lymphocytes, (1e+9/L) 1.0 (0.8-1.4) 1.2 (1.2-1.4) 1.4 (1.3-1.5) 1.2 (0.8-1.6) 0.215

WBC, (1e+9/L) 6.8 (5.1-8.8) 6.9 (6.4-8.0) 6.9 (6.4-7.4) 8.3 (7.4-10.9) 0.023

Neutrophils, (1e+9/L) 4.8 (3.7-6.4) 4.7 (4.1-5.3) 4.4 (3.9-4.9) 6.1 (5.1-7.4) 0.007

NLR 4.1 (2.7-5.7) 3.4 (2.8-4.0) 3.1 (2.8-3.7) 4.6 (3.8-7.0) 0.004

Checkpoint inhibitors, N (%)

Characteristic

Age at diagnosis, N (%)

Sex, N (%)

Smoking status
1

Stage, N (%)

Histology, N (%)

1
P-values for Smoking status, EGFR mutational status and KRAS mutational status were calculated for patients 

without missing/inconclusive data.

ECOG performance status, N (%)

KRAS mutational status
1

Abbreviations: CI = confidence interval; NLR = neutrophils to lymphocytes ratio;

Bold P-values are statistically significant and P-values for continuous variables were calculated using Kruskall-

Previous lines of therapy on current diagnosis

Number of metastatic sites

EGFR mutational status
1

Hematology, median, (95% CI)
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Training cohort (MCC 1) Test cohort (MCC 2)

Gene-expression cohort

Moffitt adenocarcinoma cohort MAASTRO adenocarcinoma cohort

NLST cohort

Log-rank p-value < 0.001

Log-rank p-value = 0.019

Validation cohort (VA)

Log-rank p-value = 0.025
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Figure 6.8 Kaplan-Meier survival plots of patients dichotomized by radiomics score. Same cut-off point was used for dichotomizing the cohorts. a) Training
cohort b) Test cohort c) Validation cohort, d) Gene-expression cohort e) NLST cohort f) Moffitt adenocarcinoma cohort g) MAASTRO adenocarcinoma
cohort.
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The four final risk groups found in this study were derived from one radiomic

feature (GLCM inverse difference) and two clinical covariates (number of metastatic

sites and serum albumin). Higher GLCM inverse difference was associated with poor

outcomes in four other prognostic validation NSCLC cohorts suggesting a pan-radiomic

feature. The GLCM inverse difference is an “avatar feature” that is correlated with

nine other radiomic features (Figure 6.2). Dense and uniform lesions were found less

likely to respond to treatments as tumors with higher GLCM inverse difference were

reflecting this phenotype (Figure A.5). Furthermore, this analyses revealed that the

avatar feature is associated to tumor hypoxia since it was positively associated with

CAIX expression which is an important pH regulatory enzyme that is upregulated in

hypoxic tumors leading to an acidic tumor microenvironment [150] and associated with

poor cancer prognosis [151, 152] including NSCLC [153, 154]. Tumor-hypoxia leads to

advanced but dysfunctional vascularization and acquisition of epithelial-mesenchymal

transition phenotype, resulting in cell mobility and metastasis and alters cancer cell

metabolism and contributes to therapy resistance by inducing cell quiescence and im-

munosuppressive phenotype [155]. The most predictive clinical covariates in this study

demonstrate the utility of standard-of-care clinical information to predictive treatment

response. Higher number of metastatic sites increases disease burden and can result in

mixed responses where one or more lesions may be responding while others are progress-

ing and ultimately resulting in progressive disease. The other clinical covariate, serum

albumin, has been shown to be associated with survival in NSCLC patients [156, 157]

and is used in cancer prognostic scores including RMH prognostic score [118] and MDA

risk score [158]. Lower serum albumin is an indicator of malnutrition, inflammation,

and hepatic dysfunction which may lead to worse outcomes. The mechanism of serum

albumin in related to immunotherapy response is not yet established yet.

Emerging evidence demonstrates the utility of radiomics as a non-invasive ap-

proach to quantify and predict lung cancer treatment response of tyrosine kinase in-

hibitors [159, 160], platinum-based chemotherapy [63], neo-adjuvant chemo-radiation

[60,161], stereotactic body radiation therapy [55,62], and immunotherapy [65,66,131].

With respect to immunotherapy treatment response, our analysis on Chapter 4 demon-

strated that pre-treatment clinical covariates and radiomic features predicted rapid
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disease progression phenotypes, including HPD (AUROCs ranging 0.804-0.865) among

228 NSCLC patients treated with single agent or double agent immunotherapy. Sun

et al. [131] developed and validated a radiomic signature for CD8 cells that predicted

clinical outcomes (AUC = 0.67) among 135 patients spanning 15 different cancer types

treated with anti-PD-1 or anti-PD-L1 NSCLC patients only represented 22% of their

dataset. Trebeschi et al. [66] developed a machine learning model that significantly

discriminated progressive disease from stable and responsive disease (AUC = 0.83)

among 123 NSCLC patients treated with anti-PD1 immunotherapy. The study pre-

sented here represents the single largest study population of NSCLC patients treated

with immunotherapy.

We acknowledge some limitations of this study. The TMB data is not available

for any of the patients and PD-L1 IHC data was only available for 8 patients (4.4%) in

the training cohort, 29 patients (32.2%) in the test cohort and for any of the patients

in the validation cohort. Thus, the performance of PD-L1 status to predict patient

outcomes was not evaluated in this study. However, recent studies have shown that

patients respond to immunotherapy regardless of PD-L1 expression [7,10], so inclusion

of PD-L1 status may add little or no improvement to predict patient outcomes in our

models. Also, there were significant OS differences between the training, the test and

the validation cohorts (Figure 6.1) as majority of the patients in the test cohort were

treated with standard-of-care immunotherapy while the training cohort comprised of

clinical trial patients who usually have better overall performance status. However, the

very-high risk groups to immunotherapy found by the developed models were replicated

in both test and validation cohorts. The IHC analysis were done for a small group of

patients (N = 16) due to limited resources. However, an automated method was used

to score IHCs as pathologist H-score metric could lack inter- and intra-variability [148].

Despite these minor weaknesses, this study is yields a high radiomic quality score (RQS

= 17) which is a stringent metric that quantifies the clinical relevance of a radiomic

study [85].

In conclusion, using standard-of-care imaging and clinical covariates a novel par-

simonious model was identified and validated that predicts OS and PFS among NSCLC
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patients treated with immunotherapy. The prognostic image-based (i.e., GLCM inverse

difference) feature was found to be associated with CAIX, an important enzyme up-

regulated in hypoxic and acidotic tumors which is related to treatment resistance.

The potential clinical application of this work is that baseline radiomics and clinical

covariates can identify patients that are unlikely to respond to immunotherapy.
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7. OVERALL CONCLUSIONS

Radiomics provides powerful image-based biomarkers that have been success-

fully applied for cancer detection, diagnosis, prognosis, prediction of response to treat-

ment, and monitoring of disease status by converting standard-of-care medical images

into quantitative data [12, 17, 43, 50]. The major aim of this work was to develop

radiomic models that are associated with NSCLC patient responses in the setting of

checkpoint blockade immunotherapy. This is particularly important as currently, PD-

L1 expression extracted from IHC is the only applied biomarker to select patients

for immunotherapy; however, PD-L1 expression alone is not adequate to predict re-

sponse [8,9]. In fact, recent clinical trials demonstrated that combination immunother-

apy (i.e., chemotherapy plus immunotherapy) exhibits survival benefit regardless of

PD-L1 expression [7, 10]. The work presented in this thesis provided generalizable

radiomic-clinical based multivariable models that were able to predict immunotherapy

response. The models created were developed using rigorous radiomic pipelines and

biological underpinnings of image-based features that were explored within the bound-

aries of resources available. Following is a summary of final results obtained in this

thesis along with the scientific novelty of the manuscripts that are either published or

under review.

7.1 Radiomic Features Extracted From Radial Gradient and

Radial Deviation Maps Associated with Survival among

Lung Adenocarcinoma Patients (Oncotarget 2018)

In this study, the main hypothesis was that image-based features extracted

from RG and RD masks of chest CT exams were predictive of NSCLC patient overall

survival. Additionally, the potential biological underpinnings of these features were ex-

plored by analyzing the association between RG and RD image features with semantic

radiological features.
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After eliminating non-reproducible and redundant features, parsimonious mod-

els were created where two highly informative RG/RD features were found to be associ-

ated with lung cancer survival. One of the two features (RD outside-border separation

SD) was replicated and found to be significantly associated with OS in a separate

external cohort.

By quantifying and analyzing these differences, as performed in this study, we

have shown that RD/RG features may have clinical utility by differentiating patients

with an aggressive disease and poor patient outcomes versus patients with more in-

dolent disease and improved outcomes. Semantic radiological analyses revealed that

RG/RD features were associated with potential radiologist defined tumor phenotypes.

Specifically, three RG/RD features were significantly associated with tumor lobulation,

pleural attachment, and border definition (Table 3.7). The replicated feature was sig-

nificantly associated with border definition semantic feature which has been previously

shown to be a prognostic for lung cancer [15].

Overall, this study identified RG and RD image features that were significantly

associated with lung cancer survival even after adjusting for clinical covariates. The

combinatorial associations of two features were able to differentiate patients with ag-

gressive disease versus patients with indolent disease, and this was replicated in the

test cohort. As such, these findings may have clinical utility to sub-stratify patients

based on clinical outcome and identify patients that may need more that aggressive

treatment such as neo-adjuvant chemotherapy and aggressive follow-up and manage-

ment. As future work, these features can be used in other scanner settings and cancer

histologies. As part of this thesis, these features were used in the work presented in

Chapter 4 as rapid disease progression phenotype predictors.
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7.2 Novel Clinical and Radiomic Predictors Of Rapid Disease

Progression Phenotypes among Lung Cancer Patients Treated

With Immunotherapy (Lung Cancer, 2019)

In this study, the main hypothesis was to identify clinical and computational

image-based predictors of rapid disease progression phenotypes in NSCLC patients

treated with immune-checkpoint blockades. Rapid disease progression phenotypes were

based on time-to-progression and/or tumor growth rates. An important recent phe-

nomenon called hyperprogressive disease, an accelerated and lethal progression, among

immunotherapy treated patients was also assessed. Rapid disease progression pheno-

types are important to predict on baseline (pre-treatment) as currently there are no

robust or readily available biomarkers that can predict immunotherapy outcomes. Be-

cause of the complexity in objective immunotherapy response, including hyperprogres-

sive disease, pseudo-progression, and acquired resistance, there is a pressing challenge

to identify biomarkers to predict patients that are least likely to respond to avoid

unnecessary and potentially toxic treatments.

Novel parsimonious models containing highly informative clinical data and ra-

diomic features to predict rapid disease progression phenotypes of NSCLC patients

with modest to high AUROCs ranging from 0.804 to 0.865 (Figure 4.4) and accura-

cies ranging from 73.4% to 82.3% (Table 4.7). Clinical covariates alone have shown to

have modest performance in predicting immunotherapy treatment response. However,

substantial improvements in the AUROCs were observed when clinical and radiomic

features were combined. The clinical covariates in the final model were presence of

hepatic and bone metastasis, previous lines of systemic therapies, and NLR. Three of

the four radiomic features (RG border SD-2D, border quartile coefficient of dispersion,

border 3D Laws E5E5L5) were extracted from the border regions of the tumors, which

is the immediate outside of the tumors that may be capturing data related to the TME.

Also RG border SD-2D feature has previously shown to be associated with survival on

Chapter 3. Although, modest to high AUROCs were found, further research is needed

to elucidate the mechanisms of rapid disease progression and HPD and of the biology
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of the radiomic features that predicts disease outcomes.

Overall, novel models containing informative clinical covariates and radiomic

image features to predict rapid disease phenotypes including HPD were identified in this

work. At the time this work was performed, independent test and validation cohorts

were not available. Hence, additional research with independent test and validation are

needed to demonstrate the clinical utility of these findings and biological underpinnings

of the predictive radiomic features found should be investigated. Nevertheless, this

proof-of-concept study showed that radiomics have the potential to be utilized as a

complementary biomarker to clinical data and provide orthogonal information in the

setting of lung cancer immunotherapy.

7.3 Stability and Reproducibility of Computed Tomography

Radiomic Features Extracted from Peritumoral Regions

of Lung Cancer Lesions (Medical Physics, 2019)

In this study, the main hypothesis was to assess the stability and reproducibility

of peritumoral and intratumoral radiomic features of lung lesions captured by thoracic

CT scans. Although intratumoral radiomic features were assessed for stability and re-

producibility previosly, no such study was done utilizing peritumoral radiomic features.

This study also differs from prior work conducted on intratumoral radiomics in that

the majority of the radiomic features that were evaluated were standardized through

algorithms defined by IBSI [76]. Finally, the clinical utility of using such features that

are stable and reproducible in relation to lung cancer survival were assessed.

To measure stability the “Moist run” dataset [19] from The Cancer Imaging

Archive was used and, to measure reproducibility the RIDER dataset that consists of

test-retest data [20] was used. Peritumoral ROIs with incremental distances of 3 mm

to 12 mm from the tumor boundary were generated by applying morphological image

processing operations on tumor segmentation masks. A subset of peritumoral features
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that were stable and reproducible were found. Features found to be stable regardless

of the peritumoral distances included statistical and histogram and a subset of texture

features (GLCM, GLRLM, GLSZM and NGTDM). This suggests these features are

less affected by changes in the ROIs. A majority of the 3D Laws and wavelet texture

features were inconsistent across the peritumoral regions, suggesting instability. When

the clinical utility of stable and reproducible peritumoral radiomic features were as-

sessed, the most prognostic feature found was also a stable and reproducible feature

(Figure 5.6). Interestingly, a majority of the intratumoral features were unstable, es-

pecially when extracted using different segmentation algorithms (Figure 5.4). Finally,

there were no significant differences in stability for features that were extracted from

ROIs bounded by a lung parenchymal mask versus ROIs that were not bounded by a

lung parenchymal mask. However, the clinical utility of including extra-pleural tissues

into the ROI is currently unknown and future work needs to be done to clarify.

Overall, stable and reproducible IBSI standardized peritumoral and intratu-

moral features were identified. Because the peritumoral region has unique clinical and

biological significance, capturing this information using radiomic analyses has tremen-

dous translational utility as demonstrated from previous studies and this study. The

features found in this analysis were further used on Chapter 6 to reduce the chance of

spurious findings.

7.4 Clinical Factors and Quantitative Image-Based Features

Predict Immunotherapy Response among Lung Cancer

Patients (Under review)

In this study, the main hypothesis to be tested that pre-treatment clinical data

and radiomic features extracted from CT scans can be used to develop a parsimonious

model to predict survival outcomes among NSCLC patients treated with immunother-

apy. The biological underpinnings of the radiomics features were assessed utilizing

gene-expression information from a well-annotated radiogenomics NSCLC dataset and
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were further assessed for survival in four independent internal and external NSCLC

cohorts.

Parsimonious models that were associated with survival were further used to

stratify patients into unique risk groups based on risk of patient death and progres-

sion. The very high-risk group was associated with extremely poor OS and PFS in

all the training, test and independent validation cohorts (Figure 6.4). This finding

suggests that these patients should either avoid immunotherapy altogether or utilize

upfront combination treatments that may yield a better response. Importantly, the

most important radiomic feature, GLCM inverse difference, was positively associated

with CAIX expression utilizing a radiogenomics NSCLC dataset. The CAIX expres-

sion is an important pH regulatory enzyme that is upregulated in hypoxic tumors

leading to an acidic tumor microenvironment [162] and associated with poor progno-

sis [151,152]including NSCLC [153,154]. The two clinical covariates that are associated

with survival were number of metastatic sites and serum albumin. Higher number of

metastatic sites increases disease burden and can result in mixed responses where one

or more lesions may be responding while others are progressing and ultimately resulting

in progressive disease. The other clinical covariate, serum albumin, has been shown to

be associated with survival in NSCLC patients [156].

Overall, using standard-of-care imaging and clinical covariates, we identified

and validated a novel parsimonious model that predicts OS and PFS among NSCLC

patients treated with immunotherapy. The prognostic image-based (i.e., GLCM in-

verse difference) feature was found to be associated with CAIX, an important enzyme

unregulated in hypoxic and acidotic tumors which is related to treatment resistance.

The potential clinical application of this work is that baseline radiomics and clinical

covariates can identify patients that are unlikely to respond to immunotherapy.
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APPENDIX A. SUPPLEMANTARY TABLES AND

FIGURES

Table A.1
Radial gradient and radial deviation imaging features.

No. Features No. Features

1 C Radial deviation tumor mean 25 C Radial deviation outside mean 

2 F Radial deviation tumor SD 26 C Radial deviation outside SD 

3 C Radial gradient tumor mean 27 C Radial gradient outside mean 

4 C Radial gradient tumor SD 28 C Radial gradient outside SD 

5 F Radial deviation tumor mean (2D) 29 F Radial deviation outside mean (2D)

6 R Radial deviation tumor SD (2D) 30 F Radial deviation outside SD (2D)

7 F Radial gradient tumor mean (2D) 31 C Radial gradient outside mean (2D)

8 F Radial gradient tumor SD (2D) 32 F Radial gradient outside SD (2D)

9 R Radial deviation core mean 33 F Radial deviation outside-tumor separation mean 

10 R Radial deviation core SD 34 F Radial deviation outside-tumor separation SD 

11 R Radial gradient core mean 35 F Radial gradient outside-tumor separation mean 

12 F Radial gradient core SD 36 F Radial gradient outside-tumor separation SD 

13 R Radial deviation core mean (2D) 37 R Radial deviation outside-tumor separation mean (2D)

14 R Radial deviation core SD (2D) 38 R Radial deviation outside-tumor separation SD (2D)

15 R Radial gradient core mean (2D) 39 R Radial gradient outside-tumor separation mean (2D)

16 R Radial gradient core SD (2D) 40 C Radial gradient outside-tumor separation SD (2D)

17 C Radial deviation border mean 41 F Radial deviation outside-border separation mean 

18 C Radial deviation border SD 42 F Radial deviation outside-border separation SD 

19 C Radial gradient border mean 43 C Radial gradient outside-border separation mean 

20 F Radial gradient border SD 44 C Radial gradient outside-border separation SD 

21 F Radial deviation border mean (2D) 45 R Radial deviation outside-border separation mean (2D)

22 R Radial deviation border SD (2D) 46 R Radial deviation outside-border separation SD (2D)

23 C Radial gradient border mean (2D) 47 C Radial gradient outside-border separation mean (2D)

24 R Radial gradient border SD (2D) 48 F Radial gradient outside-border separation SD (2D)

Abbreviations: F = Final set of features that were analyzed after non-reproducible (R) features and correlated features 

(C) were removed
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Table A.2
Log-rank p-values for the 17 features that are reproducible and non-redundant.

No. Features Log-rank P-value

2 Radial deviation tumor SD 0.071

5 Radial deviation tumor mean (2D) 0.705

7 Radial gradient tumor mean (2D) 0.697

8 Radial gradient tumor SD (2D) 0.673

12 Radial gradient core SD 0.949

20 Radial gradient border SD 0.083

21 Radial deviation border mean (2D) 0.875

29 Radial deviation outside mean (2D) 0.980

30 Radial deviation outside SD (2D) 0.111

32 Radial gradient outside SD (2D) 0.825

33 Radial deviation outside-tumor separation mean 0.322

34 Radial deviation outside-tumor separation SD 0.646

35 Radial gradient outside-tumor separation mean 0.061

36 Radial gradient outside-tumor separation SD 0.711

41 Radial deviation outside-border separation mean 0.322

42 Radial deviation outside-border separation SD 0.009

48 Radial gradient outside-border separation SD (2D) 0.029

Bold values are statistically significant.
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Figure A.1 Kaplan-Meier survival curves for the features in the test cohort. a) RG outside-tumor
separation b) RD outside-border separation standard deviation.
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Table A.3
The 5-year survival rates for dichotomized image features.

5-year survival 

rate

Log-rank P-

value

High 42.20%

Low 60.20% 0.084

High 65.30%

Low 37.40% 0.061

High 67.70%

Low 34.90% 0.009

High 63.80%

Low 38.90% 0.029

High 40.80%

Low 62.40% 0.071

High/High 100.00%

High/Low or Low/High 50.20%

Low/Low 12.10% <0.001

High/High 85.70%

High/Low or Low/High 26.30%

Low/Low 12.50% 0.046

Fig 3.2B. RG outside-tumor mean

Fig 3.2D. RG outside-border SD (2D)

Features

Five significant features from the training cohort

Combinatorial features 

Fig 3.2F. Training cohort

Fig 3.2E. RD tumor SD

Fig 3.2C. RD outside-border SD

Fig 3.2A. RG border SD

Image features were dichotomized at the median value so that “High” ≥ median value and 

“Low” < median value. 

Abbreviations: SD = standard deviation; RD = radial deviation; RG = radial gradient

Fig 3.2G. Test cohort
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Table A.4
Univariable analysis of the association between radiomic features and rapid disease progression

phenotypes.

Radiomic Feature P value AUROC P value AUROC

Avg co-occurrence homogeneity normalized 0.091 0.58 - -

3D Laws E5L5E5 0.046 0.594 - -

3D wavelet P1 L2 C1 0.051 0.526 - -

Border quartile coefficient of dispersion 0.072 0.539 - -

Border center of mass shift (mm) 0.09 0.536 - -

B184: 3D Laws E5E5L5 0.078 0.533 - -

Radial gradient border SD-2D 0.084 0.563 - -

Border area density minimum volume ellipsoid - - 0.093 0.643

Flatness - - 0.077 0.663

Border intensity at volume fraction 10 - - 0.08 0.667

Border NGTDM strength - - 0.003 0.674

Border 3D Laws S5R5R5 - - 0.066 0.771

Border 3D Laws W5W5R5 - - 0.083 0.649

Radial deviation outside-tumor mean - - 0.089 0.683

Abbreviations: TTP = Time-to-progression; HPD = hyperprogressive disease; AUROC = area under the 

receiver-operator characteristics; SD = standard deviation; NGTDM = neighboring gray tone difference 

matrix

Bold P-values are statistically significant.

TTP < 2 months vs 

TTP ≥ 2 months 

(N = 183) (N = 154)

HPD vs Non-HPD



114

log-rank p-value <0.001
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Figure A.2 Kaplan-Meier curves based on cut-points using individual probability of each patient
from the combined radiomic-clinical models. The first column were based on median cut-point and
the second column was based on and tertiles. The top row is for TTP < 2 months versus TTP ≥ 2
months analysis and the bottom row is for HPD vs non-HPD analysis.
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Table A.5
Distribution of stability groups of statistical peritumoral radiomic features extracted from ROIs that

are bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 19 (100) 19 (100) 19 (100) 18 (94.7) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 18 (94.7) 19 (100) 19 (100) 18 (94.7) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 0 (0) 0 (0) 0 (0)
CCC > 0.95 18 (94.7) 19 (100) 19 (100) 19 (100) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (21.1) 2 (10.5) 2 (10.5) 0 (0)
CCC > 0.95 15 (78.5) 17 (89.5) 17 (89.5) 19 (100) 0.250

P-value 0.660 1.000 0.486

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (10.5) 0 (0) 0 (0) 0 (0)
CCC > 0.95 17 (89.5) 19 (100) 19 (100) 19 (100) 1.000

P-value 0.486 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (21.1) 2 (10.5) 2 (10.5) 0 (0)
CCC > 0.95 15 (78.5) 17 (89.5) 17 (89.5) 19 (100) 0.250

P-value 0.660 1.000 0.486

CCC < 0.75 5 (26.3) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (63.2) 15 (78.5) 15 (78.5) 13 (68.4)
CCC > 0.95 2 (10.5) 4 (21.1) 4 (21.1) 6 (31.6) 0.037

P-value 0.079 1.000 0.714

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (36.8) 0 (0) 0 (0) 0 (0)
CCC > 0.95 12 (63.2) 19 (100) 19 (100) 19 (100) <0.001

P-value 0.008 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (52.6) 3 (15.8) 1 (5.3) 0 (0)
CCC > 0.95 9 (47.4) 16 (84.2) 18 (94.7) 19 (100) <0.001

P-value 1.000 1.000 1.000

CCC < 0.75 3 (15.8) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (68.4) 14 (73.7) 14 (73.7) 14 (73.7)
CCC > 0.95 3 (15.8) 5 (26.3) 5 (26.3) 5 (26.3) 0.373

P-value 0.254 1.000 1.000

CCC < 0.75 2 (10.5) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 14 (73.7) 14 (73.7) 11 (57.9) 10 (52.6)
CCC > 0.95 3 (15.8) 5 (26.3) 8 (42.1) 9 (47.4) 0.136

P-value 0.456 0.495 1.000

CCC < 0.75 5 (26.3) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (63.2) 15 (79.0) 15 (79.0) 14 (73.7)
CCC > 0.95 2 (10.5) 4 (21.0) 4 (21.0) 5 (26.3) 0.049

P-value 0.079 1.000 <0.001

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.6
Distribution of stability groups of histogram peritumoral radiomic features extracted from ROIs that

are bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 1 (3.6) 0 (0) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (3.6) 1 (3.6) 1 (3.6) 0 (0)
CCC > 0.95 26 (92.8) 27 (96.4) 26 (92.8) 28 (100) 0.852

P-value 1.000 1.000 0.491

CCC < 0.75 1 (3.6) 1 (3.6) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (7.2) 0 (0) 2 (7.2) 0 (0)
CCC > 0.95 25 (89.2) 27 (96.4) 26 (92.8) 28 (100) 0.411

P-value 0.741 0.491 0.491

CCC < 0.75 1 (3.6) 1 (3.6) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (7.2) 0 (0) 1 (3.6) 0 (0)
CCC > 0.95 25 (89.2) 27 (96.4) 26 (92.8) 28 (100) 0.631

P-value 0.741 1.000 0.491

CCC < 0.75 1 (3.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (21.4) 3 (10.8) 3 (10.8) 1 (3.6)
CCC > 0.95 21 (75.0) 25 (89.2) 25 (89.2) 27 (96.4) 0.281

P-value 0.295 1.000 0.611

CCC < 0.75 1 (3.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3) 1 (3.6) 1 (3.6) 1 (3.6)
CCC > 0.95 23 (82.1) 27 (96.4) 27 (96.4) 27 (96.4) 0.381

P-value 0.193 1.000 1.000

CCC < 0.75 1 (3.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (21.4) 2 (7.2) 2 (7.2) 1 (3.6)
CCC > 0.95 21 (75.0) 26 (92.8) 26 (92.8) 27 (96.4) 0.162

P-value 0.143 1.000 1.000

CCC < 0.75 11 (39.3) 3 (10.8) 2 (7.2) 3 (10.8)
CCC ≥ 0.75 & CCC ≤ 0.95 17 (60.7) 21 (75.0) 22 (78.5) 18 (64.3)
CCC > 0.95 0 (0) 4 (14.2) 4 (14.3) 7 (25.0) 0.006

P-value 0.010 1.000 0.562

CCC < 0.75 0 (0) 1 (3.6) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (39.3) 0 (0) 0 (0) 0 (0)
CCC > 0.95 17 (60.7) 27 (96.4) 27 (96.4) 28 (100) <0.001

P-value <0.001 1.000 1.000

CCC < 0.75 1 (3.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (42.9) 5 (17.9) 1 (3.6) 0 (0)
CCC > 0.95 15 (53.6) 23 (82.1) 27 (96.4) 28 (100) <0.001

P-value 0.044 0.193 1.000

CCC < 0.75 5 (17.9) 3 (10.7) 1 (3.6) 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 20 (71.4) 21 (75.0) 20 (71.4) 19 (67.9)
CCC > 0.95 3 (10.7) 4 (14.3) 7 (25.0) 7 (25.0) 0.501

P-value 1.000 1.000 1.000

CCC < 0.75 5 (17.9) 3 (10.7) 0 (0) 1 (3.6)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (67.9) 17 (60.7) 16 (57.1) 14 (50.0)
CCC > 0.95 4 (14.3) 8 (28.6) 12 (42.9) 13 (46.4) 0.036

P-value 0.426 0.206 0.789

CCC < 0.75 10 (35.7) 2 (7.1) 2 (7.1) 3 (10.7)
CCC ≥ 0.75 & CCC ≤ 0.95 16 (57.1) 22 (78.6) 22 (78.6) 19 (67.9)
CCC > 0.95 2 (7.1) 4 (14.3) 4 (14.3) 6 (21.4) 0.064

P-value 0.040 1.000 <0.001

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.7
Distribution of stability groups of GLCM, GLRLM, GLSZM and NGTDM texture features

peritumoral radiomic features extracted from ROIs that are bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (1.6) 0 (0) 0 (0) 0 (0)
CCC > 0.95 61 (98.4) 62 (100) 62 (100) 62 (100) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (1.6) 0 (0) 0 (0) 1 (1.6)
CCC > 0.95 61 (98.4) 62 (100) 62 (100) 61 (98.4) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (3.2) 0 (0) 0 (0) 0 (0)
CCC > 0.95 60 (96.8) 62 (100) 62 (100) 62 (100) 0.247

P-value 0.496 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 15 (14.2) 1 (1.6) 2 (3.2) 1 (1.6)
CCC > 0.95 47 (75.8) 61 (98.4) 60 (96.8) 61 (98.4) <0.001

P-value <0.001 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (9.7) 0 (0) 0 (0) 0 (0)
CCC > 0.95 56 (90.3) 62 (100) 62 (100) 62 (100) 0.001

P-value 0.028 1.000 1.000

CCC < 0.75 1 (1.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (21.0) 2 (3.2) 2 (3.2) 2 (3.2)
CCC > 0.95 48 (77.4) 60 (96.8) 60 (96.8) 60 (96.8) <0.001

P-value 0.002 1.000 1.000

CCC < 0.75 24 (38.7) 4 (6.5) 3 (4.8) 3 (4.8)
CCC ≥ 0.75 & CCC ≤ 0.95 36 (58.1) 47 (75.8) 32 (51.6) 27 (43.6)
CCC > 0.95 2 (3.2) 11 (17.7) 27 (43.6) 32 (51.6) <0.001

P-value <0.001 0.007 0.630

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 14 (22.6) 3 (4.8) 1 (1.6) 0 (0)
CCC > 0.95 48 (77.4) 59 (95.2) 61 (98.4) 62 (100) <0.001

P-value 0.007 0.619 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 28 (45.2) 4 (6.5) 2 (3.2) 0 (0)
CCC > 0.95 34 (54.8) 58 (93.5) 60 (96.8) 62 (100) <0.001

P-value <0.001 0.680 0.496

CCC < 0.75 21 (33.9) 4 (6.4) 2 (3.2) 1 (1.6)
CCC ≥ 0.75 & CCC ≤ 0.95 39 (62.9) 45 (72.6) 28 (45.2) 24 (38.7)
CCC > 0.95 2 (3.2) 13 (21.0) 32 (51.6) 37 (59.7) <0.001

P-value <0.001 0.001 0.596

CCC < 0.75 18 (29.0) 2 (3.2) 1 (1.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 36 (58.1) 38 (61.3) 24 (38.7) 22 (35.5)
CCC > 0.95 8 (12.9) 22 (35.5) 37 (59.7) 40 (64.5) <0.001

P-value <0.001 0.015 0.711

CCC < 0.75 23 (37.1) 5 (8.0) 3 (4.8) 2 (3.2)
CCC ≥ 0.75 & CCC ≤ 0.95 36 (58.1) 44 (71.0) 36 (58.1) 30 (48.4)
CCC > 0.95 3 (4.8) 13 (21.0) 23 (37.1) 30 (48.4) <0.001

P-value <0.001 0.148 0.536

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.8
Distribution of stability groups of 3D Laws texture peritumoral radiomic features extracted from

ROIs that are bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 29 (23.2) 0 (0) 8 (6.4) 12 (9.6)
CCC ≥ 0.75 & CCC ≤ 0.95 54 (43.2) 7 (5.6) 0 (0) 1 (0.8)
CCC > 0.95 42 (33.6) 118 (94.4) 117 (93.6) 112 (89.6) <0.001

P-value <0.001 <0.001 0.362

CCC < 0.75 13 (10.4) 0 (0) 8 (6.4) 20 (16.0)
CCC ≥ 0.75 & CCC ≤ 0.95 41 (32.8) 20 (16.0) 36 (28.8) 0 (0)
CCC > 0.95 71 (56.8) 105 (84.0) 81 (64.8) 105 (84.0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 32 (25.6) 1 (0.8) 7 (5.6) 20 (16.0)
CCC ≥ 0.75 & CCC ≤ 0.95 29 (23.2) 19 (15.2) 37 (29.6) 0 (0)
CCC > 0.95 64 (51.2) 105 (84.0) 81 (64.8) 105 (84.0) <0.001

P-value <0.001 0.001 <0.001

CCC < 0.75 49 (39.2) 36 (28.8) 44 (35.2) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 75 (60.0) 50 (40.0) 17 (13.6) 7 (5.6)
CCC > 0.95 1 (0.8) 39 (31.2) 64 (51.2) 74 (59.2) <0.001

P-value <0.001 0.001 0.088

CCC < 0.75 32 (25.6) 22 (17.6) 37 (29.6) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 90 (72.0) 46 (36.8) 9 (7.2) 1 (0.8)
CCC > 0.95 3 (2.4) 57 (45.6) 79 (63.2) 80 (64.0) <0.001

P-value <0.001 0.001 0.027

CCC < 0.75 53 (42.4) 6 (4.8) 8 (6.4) 45 (36.0)
CCC ≥ 0.75 & CCC ≤ 0.95 68 (54.4) 65 (52.0) 17 (13.6) 5 (4.0)
CCC > 0.95 4 (3.2) 54 (43.2) 100 (80.0) 75 (60.0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 123 (98.4) 124 (99.2) 101 (80.8) 61 (48.8)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (1.6) 1 (0.8) 24 (19.2) 64 (51.2)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) <0.001

P-value 1.000 <0.001 <0.001

CCC < 0.75 39 (31.2) 29 (23.2) 17 (13.6) 11 (8.8)
CCC ≥ 0.75 & CCC ≤ 0.95 78 (62.4) 73 (58.4) 31 (24.8) 21 (16.8)
CCC > 0.95 8 (6.4) 23 (18.4) 77 (61.6) 93 (74.4) <0.001

P-value 0.011 <0.001 0.102

CCC < 0.75 47 (37.6) 32 (25.6) 30 (24.0) 12 (9.6)
CCC ≥ 0.75 & CCC ≤ 0.95 78 (62.4) 86 (68.8) 62 (49.6) 31 (24.8)
CCC > 0.95 0 (0) 7 (5.6) 33 (26.4) 82 (65.6) <0.001

P-value 0.003 <0.001 <0.001

CCC < 0.75 96 (76.8) 69 (55.2) 50 (40.0) 45 (36.0)
CCC ≥ 0.75 & CCC ≤ 0.95 29 (23.2) 56 (44.8) 75 (60.0) 80 (64.0)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) <0.001

P-value <0.001 <0.022 0.602

CCC < 0.75 125 (100) 119 (95.2) 102 (81.6) 73 (58.4)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 6 (4.8) 23 (18.4) 53 (41.6)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) <0.001

P-value 0.029 0.001 <0.001

CCC < 0.75 125 (100) 125 (100) 106 (84.6) 64 (51.2)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 0 (0) 19 (15.2) 61 (48.8)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) <0.001

P-value 1.000 <0.001 <0.001

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.9
Distribution of stability groups of wavelet texture peritumoral radiomic features extracted from

ROIs that are bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 1 (3.3) 9 (30.0)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3) 1 (3.3) 25 (83.3) 6 (20.0)
CCC > 0.95 23 (76.7) 29 (96.7) 4 (13.3) 15 (50.0) <0.001

P-value 0.052 <0.001 <0.001

CCC < 0.75 0 (0) 0 (0) 1 (3.33) 9 (30.0)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (33.3) 12 (40.0) 25 (83.3) 6 (20.0)
CCC > 0.95 20 (66.7) 18 (60.0) 4 (13.3) 15 (50.0) <0.001

P-value 0.789 <0.001 <0.001

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 5 (16.7) 0 (0) 0 (0)
CCC > 0.95 30 (100) -83.300 30 (100) 30 (100) 0.003

P-value 0.052 0.052 1.000

CCC < 0.75 7 (23.3) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (73.3) 30 () 28 (93.3) 2 (6.7)
CCC > 0.95 1 (3.33) 0 (0) 2 (6.7) 28 (93.3) <0.001

P-value 0.005 0.492 <0.001

CCC < 0.75 7 (23.3) 0 (0) 0 (0) 1 (3.3)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (73.3) 29 (96.7) 29 (96.7) 8 (26.7)
CCC > 0.95 1 (3.33) 1 (3.3) 1 (3.33) 21 (70.0) <0.001

P-value 0.011 1.000 <0.001

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (13.3) 3 (10.0) 0 (0) 2 (6.7)
CCC > 0.95 26 (86.7) 27 (90.0) 30 (100) 28 (93.3) 0.242

P-value 1.000 0.237 0.492

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (63.3) 15 (50) 15 (50) 30 (100)
CCC > 0.95 11 (36.7) 15 (50) 15 (50) 0 (0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 2 (6.7) 3 (10.0) 1 (3.3) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 23 (76.7) 27 (90.0) 10 (33.3) 24 (80.0)
CCC > 0.95 5 (16.7) 0 (0) 19 (63.3) 6 (20.0) <0.001

P-value 0.101 <0.001 0.001

CCC < 0.75 1 (3.3) 16 (53.3) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 28 (93.3) 14 (46.7) 0 (0) 18 (60.0)
CCC > 0.95 1 (3.3) 0 (0) 30 (100) 12 (40.0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 23 (76.7) 26 (86.7) 16 (53.3) 25 (83.3)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3) 4 (13.3) 14 (46.7) 5 (16.7)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) 0.018

P-value 0.506 0.010 0.025

CCC < 0.75 15 (50.0) 15 (50.0) 15 (50.0) 7 ()
CCC ≥ 0.75 & CCC ≤ 0.95 15 (50.0) 15 (50.0) 2 (6.7) 23 (76.7)
CCC > 0.95 0 (0) 0 (0) 13 (43.3) 0 (0) <0.001

P-value 1.000 <0.001 <0.001

CCC < 0.75 17 (56.7) 15 (50.0) 17 (56.7) 15 (50.0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (43.3) 15 (50.0) 13 (43.3) 15 (50.0)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) 0.930

P-value 0.796 0.796 0.736

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.10
Distribution of stability groups of all peritumoral radiomic features extracted from ROIs that are

not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 30 (11.4) 0 (0) 10 (3.8) 23 (8.7)
CCC ≥ 0.75 & CCC ≤ 0.95 68 (25.8) 18 (6.8) 23 (8.7) 17 (6.4)
CCC > 0.95 166 (62.9) 246 (93.2) 231 (87.5) 224 (84.9) <0.001

P-value <0.001 0.002 0.045

CCC < 0.75 37 (14.0) 18 (6.8) 29 (11.0) 26 (9.9)
CCC ≥ 0.75 & CCC ≤ 0.95 60 (22.7) 17 (6.4) 39 (14.8) 14 (5.3)
CCC > 0.95 167 (63.3) 229 (86.8) 196 (74.2) 224 (84.8) <0.001

P-value <0.001 0.001 0.001

CCC < 0.75 32 (12.1) 19 (7.2) 33 (12.5) 20 (7.5)
CCC ≥ 0.75 & CCC ≤ 0.95 38 (14.4) 18 (6.8) 10 (3.8) 6 (2.3)
CCC > 0.95 194 (73.5) 227 (86.0) 221 (83.8) 238 (90.2) <0.001

P-value 0.001 0.045 0.092

CCC < 0.75 48 (18.2) 27 (10.2) 35 (13.3) 42 (15.9)
CCC ≥ 0.75 & CCC ≤ 0.95 123 (46.6) 71 (26.9) 53 (20.1) 14 (5.3)
CCC > 0.95 93 (35.2) 166 (62.9) 176 (66.6) 208 (78.8) <0.001

P-value <0.001 0.142 <0.001

CCC < 0.75 40 (15.1) 22 (8.3) 40 (15.1) 46 (17.4)
CCC ≥ 0.75 & CCC ≤ 0.95 118 (44.7) 61 (23.1) 35 (13.3) 9 (3.4)
CCC > 0.95 106 (40.2) 181 (68.6) 189 (71.6) 209 (79.2) <0.001

P-value <0.001 0.002 <0.001

CCC < 0.75 29 (11.0) 1 (0.4) 33 (12.5) 11 (4.2)
CCC ≥ 0.75 & CCC ≤ 0.95 110 (41.7) 39 (14.8) 12 (4.5) 42 (15.9)
CCC > 0.95 125 (47.3) 224 (84.8) 219 (83.0) 211 (79.9) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 182 (68.9) 120 (45.4) 65 (24.6) 64 (24.2)
CCC ≥ 0.75 & CCC ≤ 0.95 79 (29.9) 126 (47.7) 160 (60.6) 148 (56.1)
CCC > 0.95 3 (1.2) 18 (6.8) 39 (14.8) 52 (19.7) <0.001

P-value <0.001 0.023 0.017

CCC < 0.75 43 (16.3) 32 (12.1) 33 (12.5) 2 (0.8)
CCC ≥ 0.75 & CCC ≤ 0.95 128 (48.5) 46 (17.4) 27 (10.2) 49 (18.5)
CCC > 0.95 93 (35.2) 186 (70.5) 204 (77.3) 213 (80.7) <0.001

P-value 0.008 0.054 <0.001

CCC < 0.75 58 (22.0) 49 (18.6) 33 (12.5) 32 (12.1)
CCC ≥ 0.75 & CCC ≤ 0.95 147 (55.7) 89 (33.7) 18 (6.8) 31 (11.7)
CCC > 0.95 59 (22.3) 126 (47.7) 213 (80.7) 201 (76.2) <0.001

P-value <0.001 <0.001 0.156

CCC < 0.75 138 (52.3) 76 (28.8) 65 (24.6) 67 (25.4)
CCC ≥ 0.75 & CCC ≤ 0.95 120 (45.4) 148 (56.1) 84 (31.8) 45 (17.0)
CCC > 0.95 6 (2.3) 40 (15.1) 115 (43.6) 152 (57.6) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 169 (64.0) 119 (45.1) 46 (17.4) 50 (18.9)
CCC ≥ 0.75 & CCC ≤ 0.95 80 (30.3) 102 (38.6) 150 (56.8) 153 (58.0)
CCC > 0.95 15 (5.7) 43 (16.3) 68 (25.8) 61 (23.1) <0.001

P-value <0.001 <0.001 0.740

CCC < 0.75 174 (65.9) 122 (46.2) 70 (26.5) 60 (22.7)
CCC ≥ 0.75 & CCC ≤ 0.95 86 (32.6) 123 (46.6) 158 (59.9) 154 (58.3)
CCC > 0.95 4 (1.5) 19 (7.2) 36 (13.6) 50 (18.9) <0.001

P-value <0.001 <0.001 0.218

Distance

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.11
Distribution of stability groups of statistical peritumoral radiomic features extracted from ROIs that

are not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P-value

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 19 (100) 19 (100) 19 (100) 18 (94.7) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 18 (94.7) 19 (100) 19 (100) 18 (94.7) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 0 (0) 0 (0) 0 (0)
CCC > 0.95 18 (94.7) 19 (100) 19 (100) 19 (100) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (10.5) 2 (10.5) 2 (10.5) 1 (5.3)
CCC > 0.95 17 (89.5) 17 (89.5) 17 (89.5) 18 (94.7) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (5.3) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 18 (94.7) 19 (100) 19 (100) 17 (89.4) 0.610

P-value 1.000 1.000 0.486

CCC < 0.75 0 (0) 0 (0) 0 (0) 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (10.5) 2 (10.5) 2 (10.5) 1 (5.3)
CCC > 0.95 17 (89.5) 17 (89.5) 17 (89.5) 17 (89.4) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 6 (31.6) 1 (5.3) 1 (5.3) 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (63.2) 16 (84.2) 15 (79.0) 14 (73.7)
CCC > 0.95 1 (5.3) 2 (10.5) 3 (15.8) 4 (21.0) 0.170

P-value 0.115 1.000 0.714

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (42.1) 0 (0) 0 (0) 1 (5.3)
CCC > 0.95 11 (57.9) 19 (100) 19 (100) 18 (94.7) <0.001

P-value 0.003 1.000 <0.001

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 9 (47.4) 2 (10.5) 2 (10.5) 0 (0)
CCC > 0.95 10 (52.6) 17 (89.5) 17 (89.5) 19 (100) 0.001

P-value 0.029 1.000 0.486

CCC < 0.75 4 (21.0) 0 (0) 0 (0) 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (68.4) 10 (52.6) 6 (31.6) 3 (15.8)
CCC > 0.95 2 (10.5) 9 (47.4) 13 (68.4) 15 (79.0) <0.001

P-value 0.012 0.325 0.447

CCC < 0.75 2 (10.5) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (68.4) 13 (68.4) 11 (57.9) 12 (63.2)
CCC > 0.95 4 (21.0) 6 (31.6) 8 (42.1) 7 (36.8) 0.461

P-value 0.484 0.737 0.500

CCC < 0.75 5 (26.3) 0 (0) 0 (0) 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (68.4) 17 (89.5) 16 (84.2) 15 (79.0)
CCC > 0.95 1 (5.3) 2 (10.5) 3 (15.8) 3 (15.8) 0.082

P-value 0.046 1.000 1.000

Distance

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2 vs Algorithm 3

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3
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Table A.12
Distribution of stability groups of histogram peritumoral radiomic features extracted from ROIs that

are not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (7.1) 1 (3.6) 1 (3.6) 0 (0)
CCC > 0.95 26 (92.9) 27 (96.4) 26 (92.9) 28 (100) 0.753

P-value 1.000 1.000 0.491

CCC < 0.75 1 (3.6) 1 (3.6) 1 (3.6) 1 (3.6)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (3.6) 1 (3.6) 1 (3.6) 1 (3.6)
CCC > 0.95 26 (92.9) 26 (92.9) 26 (92.9) 26 (92.9) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 1 (3.6) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 3 (10.7) 1 (3.6) 1 (3.6) 2 (7.1)
CCC > 0.95 25 (89.3) 26 (92.8) 26 (92.8) 26 (92.8) 0.874

P-value 0.611 1.000 1.000

CCC < 0.75 1 (3.6) 0 (0) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3) 3 (10.7) 2 (7.1) 1 (3.6)
CCC > 0.95 23 (82.1) 25 (89.3) 25 (89.3) 27 (96.4) 0.569

P-value 0.705 1.000 0.611

CCC < 0.75 1 (3.6) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3) 2 (7.1) 1 (3.6) 3 (10.7)
CCC > 0.95 23 (82.1) 26 (92.9) 27 (96.4) 25 (89.3) 0.459

P-value 0.422 1.000 0.305

CCC < 0.75 0 (0) 0 (0) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (21.4) 4 (14.3) 3 (10.7) 4 (14.3)
CCC > 0.95 22 (78.6) 24 (85.7) 24 (85.7) 24 (85.7) 0.793

P-value 0.729 1.000 1.000

CCC < 0.75 12 (42.9) 3 (10.7) 2 (7.1) 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 16 (57.1) 21 (75.0) 21 (75.0) 20 (71.5)
CCC > 0.95 0 (0) 4 (14.3) 5 (17.9) 6 (21.4) 0.002

P-value 0.005 1.000 1.000

CCC < 0.75 1 (3.6) 0 (0) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (39.3) 1 (3.6) 1 (3.6) 0 (0)
CCC > 0.95 16 (57.1) 27 (96.4) 26 (92.8) 28 (100) <0.001

P-value 0.001 1.000 0.491

CCC < 0.75 1 (3.6) 1 (3.6) 1 (3.6) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (39.3) 2 (7.1) 2 (7.1) 0 (0)
CCC > 0.95 16 (57.1) 25 (89.3) 25 (89.3) 28 (100) <0.001

P-value 0.010 1.000 0.236

CCC < 0.75 8 (28.6) 2 (7.1) 2 (7.1) 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (67.8) 16 (57.1) 10 (35.7) 11 (39.3)
CCC > 0.95 1 (3.6) 10 (35.7) 16 (57.1) 15 (53.6) <0.001

P-value 0.003 0.309 1.000

CCC < 0.75 7 (25.0) 3 (10.7) 2 (7.1) 1 (3.6)
CCC ≥ 0.75 & CCC ≤ 0.95 18 (64.3) 16 (57.1) 15 (53.6) 15 (53.6)
CCC > 0.95 3 (10.7) 9 (32.1) 11 (39.3) 12 (42.8) 0.053

P-value 0.122 0.855 1.000

CCC < 0.75 9 (32.1) 3 (10.7) 2 (7.1) 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (67.9) 22 (78.6) 21 (75.0) 20 (71.4)
CCC > 0.95 0 (0) 3 (10.7) 5 (17.9) 6 (21.5) 0.022

P-value 0.040 0.807 1.000

Distance

Algorithm 2 vs Algorithm 3

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3
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Table A.13
Distribution of stability groups of texture peritumoral radiomic features extracted from ROIs that

are not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 1 (1.6) 0 (0) 0 (0) 0 (0)
CCC > 0.95 61 (98.4) 62 (100) 62 (100) 62 (100) 1.000

P-value 1.000 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 3 (4.8) 0 (0) 0 (0) 1 (1.6)
CCC > 0.95 59 (95.2) 62 (100) 62 (100) 61 (98.4) 0.197

P-value 0.244 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 3 (4.8) 0 (0) 0 (0) 0 (0)
CCC > 0.95 59 (95.2) 62 (100) 62 (100) 62 (100) 0.060

P-value 0.244 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (21.0) 1 (1.6) 2 (3.2) 1 (1.6)
CCC > 0.95 49 (79.0) 61 (98.4) 60 (96.8) 61 (98.4) <0.001

P-value 0.001 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (6.4) 0 (0) 0 (0) 0 (0)
CCC > 0.95 58 (93.6) 62 (100) 62 (100) 62 (100) 0.015

P-value 0.119 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (21.0) 1 (1.6) 2 (3.2) 1 (1.6)
CCC > 0.95 49 (79.0) 61 (98.4) 60 (96.8) 61 (98.4) <0.001

P-value 0.001 1.000 1.000

CCC < 0.75 23 (37.1) 4 (6.4) 3 (4.8) 3 (4.8)
CCC ≥ 0.75 & CCC ≤ 0.95 37 (59.7) 46 (74.2) 28 (45.2) 24 (38.7)
CCC > 0.95 2 (3.2) 10 (19.4) 31 (50.0) 35 (56.5) <0.001

P-value <0.001 0.001 0.865

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (16.1) 1 (1.6) 0 (0) 0 (0)
CCC > 0.95 52 (83.9) 61 (98.4) 62 (100) 62 (100) <0.001

P-value 0.008 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 30 (48.4) 2 (3.2) 1 (1.6) 0 (0)
CCC > 0.95 32 (51.6) 60 (96.8) 61 (98.4) 62 (100) <0.001

P-value <0.001 1.000 1.000

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 30 (48.4) 2 (3.2) 1 (1.6) 0 (0)
CCC > 0.95 32 (51.6) 60 (96.8) 61 (98.4) 62 (100) <0.001

P-value <0.001 1.000 1.000

CCC < 0.75 20 (32.3) 2 (3.2) 1 (1.6) 1 (1.6)
CCC ≥ 0.75 & CCC ≤ 0.95 34 (54.8) 32 (51.6) 22 (35.5) 19 (30.7)
CCC > 0.95 8 (12.9) 28 (45.2) 39 (62.9) 42 (67.7) <0.001

P-value <0.001 0.118 0.850

CCC < 0.75 18 (29.0) 3 (4.8) 2 (3.2) 2 (3.2)
CCC ≥ 0.75 & CCC ≤ 0.95 41 (66.1) 45 (72.6) 32 (51.6) 24 (38.7)
CCC > 0.95 3 (4.8) 14 (22.6) 28 (45.2) 36 (58.1) <0.001

P-value <0.001 0.025 0.331

Distance

Algorithm 2 vs Algorithm 3

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3
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Table A.14
Distribution of stability groups of 3D Laws peritumoral radiomic features extracted from ROIs that

are not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 30 (24.0) 0 (0) 8 (6.4) 20 (16.0)
CCC ≥ 0.75 & CCC ≤ 0.95 58 (46.4) 2 (1.6) 0 (0) 5 (4.0)
CCC > 0.95 37 (29.6) 123 (98.4) 117 (93.6) 100 (80.0) <0.001

P-value <0.001 0.003 0.002

CCC < 0.75 36 (28.8) 17 (13.6) 27 (21.6) 20 (16.0)
CCC ≥ 0.75 & CCC ≤ 0.95 43 (34.4) 3 (2.4) 13 (10.4) 1 (0.8)
CCC > 0.95 46 (36.8) 105 (84.0) 85 (68.0) 104 (83.2) <0.001

P-value <0.001 0.005 0.001

CCC < 0.75 32 (25.6) 18 (14.4) 32 (25.6) 20 (16.0)
CCC ≥ 0.75 & CCC ≤ 0.95 31 (24.8) 2 (1.6) 8 (6.4) 0 (0)
CCC > 0.95 62 (49.6) 105 (84.0) 85 (68.0) 105 (84.0) <0.001

P-value <0.001 0.007 0.001

CCC < 0.75 40 (32.0) 27 (21.6) 33 (26.4) 42 (33.6)
CCC ≥ 0.75 & CCC ≤ 0.95 82 (65.6) 35 (28.0) 18 (14.4) 5 (4.0)
CCC > 0.95 3 (2.4) 63 (50.4) 74 (59.2) 78 (62.4) <0.001

P-value <0.001 0.035 0.013

CCC < 0.75 32 (25.6) 22 (17.6) 39 (31.2) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 87 (69.6) 30 (24.0) 5 (4.0) 0 (0)
CCC > 0.95 6 (4.8) 73 (58.4) 81 (64.8) 81 (64.8) <0.001

P-value <0.001 <0.001 0.035

CCC < 0.75 29 (23.2) 1 (0.8) 32 (25.6) 10 (8.0)
CCC ≥ 0.75 & CCC ≤ 0.95 85 (68.0) 29 (23.2) 3 (2.4) 34 (27.2)
CCC > 0.95 11 (8.8) 95 (76.0) 90 (72.0) 81 (64.8) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 123 (98.4) 98 (78.4) 44 (35.2) 32 (25.6)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (1.6) 27 (21.6) 81 (64.8) 86 (68.8)
CCC > 0.95 0 (0) 0 (0) 0 (0) 7 (5.6) <0.001

P-value <0.001 <0.001 0.008

CCC < 0.75 41 (32.8) 30 (24.0) 31 (24.8) 2 (1.6)
CCC ≥ 0.75 & CCC ≤ 0.95 76 (60.8) 16 (12.8) 13 (10.4) 28 (22.4)
CCC > 0.95 8 (6.4) 79 (63.2) 81 (64.8) 95 (76.0) <0.001

P-value <0.001 0.861 <0.001

CCC < 0.75 57 (45.6) 32 (25.6) 32 (25.6) 32 (25.6)
CCC ≥ 0.75 & CCC ≤ 0.95 68 (54.4) 69 (55.2) 12 (9.6) 6 (4.8)
CCC > 0.95 0 (0) 24 (19.2) 81 (64.8) 87 (69.6) <0.001

P-value <0.001 <0.001 0.332

CCC < 0.75 80 (64.0) 45 (36.0) 44 (35.2) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 45 (36.0) 79 (63.2) 39 (31.2) 6 (4.8)
CCC > 0.95 0 (0) 1 (0.8) 42 (33.6) 75 (60.0) <0.001

P-value <0.001 <0.001 0.036

CCC < 0.75 125 (100) 99 (79.2) 28 (22.4) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 26 (20.8) 97 (77.6) 81 (64.8)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 125 (100) 102 (81.6) 44 (35.2) 44 (35.2)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 23 (18.4) 81 (64.8) 76 (60.8)
CCC > 0.95 0 (0) 0 (0) 0 (0) 5 (4.0) <0.001

P-value <0.001 <0.001 0.088

Distance

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3
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Table A.15
Distribution of stability groups of wavelet peritumoral radiomic features extracted from ROIs that

are not bounded by a lung mask.

0 – 3 mm 0 – 6 mm 0 – 9 mm 0 – 12 P- Value

CCC < 0.75 0 (0) 0 (0) 1 (3.3) 3 (10.0)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3) 15 (50.0) 22 (73.3) 11 (36.7)
CCC > 0.95 23 (76.7) 15 (50.0) 7 (23.3) 16 (53.3) <0.001

P-value 0.060 0.060 0.012

CCC < 0.75 0 (0) 0 (0) 1 (3.3) 5 (16.7)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (40.0) 13 (43.3) 25 (83.3) 10 (33.3)
CCC > 0.95 18 (60.0) 17 (56.7) 4 (13.3) 15 (50.0) <0.001

P-value 1.000 0.001 <0.001

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0) 15 (50.0) 1 (3.3) 4 (13.3)
CCC > 0.95 30 (100) 15 (50.0) 29 (96.7) 26 (86.7) <0.001

P-value <0.001 <0.001 0.353

CCC < 0.75 7 (23.3) 0 (0) 1 (3.3) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (73.3) 30 (100) 29 (96.7) 6 (20.0)
CCC > 0.95 1 (3.3) 0 (0) 0 (0) 24 (80.0) <0.001

P-value 0.005 1.000 <0.001

CCC < 0.75 7 (23.3) 0 (0) 1 (3.3) 1 (3.3)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (73.3) 29 (96.7) 29 (96.7) 5 (16.7)
CCC > 0.95 1 (3.3) 1 (3.3) 0 (0) 24 (80.0) <0.001

P-value 0.011 1.000 <0.001

CCC < 0.75 0 (0) 0 (0) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (13.3) 3 (10.0) 2 (6.7) 2 (6.7)
CCC > 0.95 26 (86.7) 27 (90.0) 28 (93.3) 28 (93.3) 0.900

P-value 1.000 1.000 1.000

CCC < 0.75 18 (60.0) 14 (46.7) 15 (50.0) 26 (86.7)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (40.0) 16 (53.3) 15 (50.0) 4 (13.3)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) 0.004

P-value 0.438 1.000 0.005

CCC < 0.75 1 (3.3) 2 (6.7) 1 (3.3) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 23 (76.7) 28 (93.3) 13 (43.3) 2 (66.7)
CCC > 0.95 6 (20.0) 0 (0) 16 (53.3) 10 (33.3) <0.001

P-value 0.024 <0.001 0.119

CCC < 0.75 0 (0) 16 (53.3) 0 (0) 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 29 (96.7) 14 (46.7) 1 (3.3) 25 (83.3)
CCC > 0.95 1 (3.3) 0 (0) 29 (96.7) 5 (16.7) <0.001

P-value <0.001 <0.001 <0.001

CCC < 0.75 24 (80.0) 25 (83.3) 17 (56.7) 20 (66.7)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (20.0) 5 (16.7) 13 (43.3) 10 (33.3)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) 0.096

P-value 1.000 0.047 0.596

CCC < 0.75 15 (50.0) 15 (50.0) 15 (50.0) 4 (13.3)
CCC ≥ 0.75 & CCC ≤ 0.95 15 (50.0) 15 (50.0) 5 (16.7) 26 (86.7)
CCC > 0.95 0 (0) 0 (0) 10 (33.3) 0 (0) <0.001

P-value 1.000 <0.001 <0.001

CCC < 0.75 17 (56.7) 14 (46.7) 22 (73.3) 11 (36.7)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (43.3) 16 (53.3) 8 (26.7) 19 (63.3)
CCC > 0.95 0 (0) 0 (0) 0 (0) 0 (0) 0.032

P-value 0.606 0.064 0.009

Distance

Algorithm 2 vs Algorithm 3

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3
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Table A.16
Distribution of stability groups of all intratumoral radiomic features.

Counts

CCC < 0.75 12 (3.9)
CCC ≥ 0.75 & CCC ≤ 0.95 62 (20.4)
CCC > 0.95 230 (75.7)

CCC < 0.75 14 (4.6)
CCC ≥ 0.75 & CCC ≤ 0.95 63 (20.7)
CCC > 0.95 227 (74.7)

CCC < 0.75 8 (2.6)
CCC ≥ 0.75 & CCC ≤ 0.95 51 (16.8)
CCC > 0.95 245 (80.6)

CCC < 0.75 83 (27.3)
CCC ≥ 0.75 & CCC ≤ 0.95 160 (52.6)
CCC > 0.95 61 (20.1)

CCC < 0.75 58 (19.1)
CCC ≥ 0.75 & CCC ≤ 0.95 160 (52.6)
CCC > 0.95 86 (28.3)

CCC < 0.75 55 (18.1)
CCC ≥ 0.75 & CCC ≤ 0.95 134 (44.1)
CCC > 0.95 115 (37.8)

CCC < 0.75 219 (72.0)
CCC ≥ 0.75 & CCC ≤ 0.95 78 (25.7)
CCC > 0.95 7 (2.3)

CCC < 0.75 33 (10.9)
CCC ≥ 0.75 & CCC ≤ 0.95 70 (23.0)
CCC > 0.95 201 (66.1)

CCC < 0.75 36 (11.8)
CCC ≥ 0.75 & CCC ≤ 0.95 110 (36.2)
CCC > 0.95 158 (52.0)

CCC < 0.75 157 (51.6)
CCC ≥ 0.75 & CCC ≤ 0.95 140 (46.1)
CCC > 0.95 7 (2.3)

CCC < 0.75 134 (44.1)
CCC ≥ 0.75 & CCC ≤ 0.95 150 (49.3)
CCC > 0.95 20 (6.6)

CCC < 0.75 192 (63.2)
CCC ≥ 0.75 & CCC ≤ 0.95 108 (35.5)
CCC > 0.95 4 (1.3)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.17
Distribution of stability groups of intratumoral statistical features.

Counts

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 19 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 19 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 19 (100)

CCC < 0.75 5 (26.3)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (42.1)
CCC > 0.95 6 (31.6)

CCC < 0.75 1 (5.3)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (52.6)
CCC > 0.95 8 (42.1)

CCC < 0.75 5 (26.3)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (42.1)
CCC > 0.95 6 (31.6)

CCC < 0.75 15 (79.0)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (21.0)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (52.6)
CCC > 0.95 9 (47.4)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (63.2)
CCC > 0.95 7 (36.8)

CCC < 0.75 12 (63.2)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (36.8)
CCC > 0.95 0 (0)

CCC < 0.75 12 (63.2)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (31.6)
CCC > 0.95 1 (5.3)

CCC < 0.75 14 (73.7)
CCC ≥ 0.75 & CCC ≤ 0.95 5 (26.3)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.18
Distribution of stability groups of intratumoral histogram features.

Counts

CCC < 0.75 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 3 (10.7)
CCC > 0.95 23 (82.1)

CCC < 0.75 2 (7.1)
CCC ≥ 0.75 & CCC ≤ 0.95 2 (7.1)
CCC > 0.95 24 (85.7)

CCC < 0.75 1 (3.6)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3)
CCC > 0.95 23 (82.1)

CCC < 0.75 10 (35.7)
CCC ≥ 0.75 & CCC ≤ 0.95 14 (50.0)
CCC > 0.95 4 (14.3)

CCC < 0.75 3 (10.7)
CCC ≥ 0.75 & CCC ≤ 0.95 17 (60.7)
CCC > 0.95 8 (28.6)

CCC < 0.75 5 (17.9)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (67.9)
CCC > 0.95 4 (14.3)

CCC < 0.75 24 (85.7)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (46.4)
CCC > 0.95 15 (53.6)

CCC < 0.75 1 (3.6)
CCC ≥ 0.75 & CCC ≤ 0.95 16 (57.1)
CCC > 0.95 11 (39.3)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (78.6)
CCC > 0.95 6 (21.4)

CCC < 0.75 13 (46.4)
CCC ≥ 0.75 & CCC ≤ 0.95 14 (50.0)
CCC > 0.95 1 (3.6)

CCC < 0.75 24 (85.7)
CCC ≥ 0.75 & CCC ≤ 0.95 4 (14.3)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 



129

Table A.19
Distribution of stability groups of features intratumoral GLCM, GLRLM, GLSZM and NGTDM

texture features.

Counts

CCC < 0.75 1 (1.6)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (9.7)
CCC > 0.95 55 (88.7)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (12.9)
CCC > 0.95 24 (87.1)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 6 (9.7)
CCC > 0.95 56 (90.3)

CCC < 0.75 19 (30.7)
CCC ≥ 0.75 & CCC ≤ 0.95 26 (41.9)
CCC > 0.95 17 (27.4)

CCC < 0.75 12 (19.3)
CCC ≥ 0.75 & CCC ≤ 0.95 21 (33.9)
CCC > 0.95 29 (46.8)

CCC < 0.75 18 (29.0)
CCC ≥ 0.75 & CCC ≤ 0.95 22 (35.5)
CCC > 0.95 22 (35.5)

CCC < 0.75 44 (71.0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (17.7)
CCC > 0.95 7 (11.3)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 10 (16.1)
CCC > 0.95 52 (83.9)

CCC < 0.75 2 (3.2)
CCC ≥ 0.75 & CCC ≤ 0.95 31 (50.0)
CCC > 0.95 29 (46.8)

CCC < 0.75 27 (43.5)
CCC ≥ 0.75 & CCC ≤ 0.95 28 (45.2)
CCC > 0.95 7 (11.3)

CCC < 0.75 22 (35.5)
CCC ≥ 0.75 & CCC ≤ 0.95 28 (45.2)
CCC > 0.95 12 (19.3)

CCC < 0.75 45 (72.6)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (21.0)
CCC > 0.95 4 (6.4)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.20
Distribution of stability groups of intratumoral 3D Laws texture features.

Counts

CCC < 0.75 9 (7.2)
CCC ≥ 0.75 & CCC ≤ 0.95 35 (28.0)
CCC > 0.95 81 (64.8)

CCC < 0.75 12 (9.6)
CCC ≥ 0.75 & CCC ≤ 0.95 38 (30.4)
CCC > 0.95 75 (60.0)

CCC < 0.75 7 (5.6)
CCC ≥ 0.75 & CCC ≤ 0.95 31 (24.8)
CCC > 0.95 87 (69.6)

CCC < 0.75 40 (32.0)
CCC ≥ 0.75 & CCC ≤ 0.95 73 (58.4)
CCC > 0.95 12 (9.6)

CCC < 0.75 41 (32.8)
CCC ≥ 0.75 & CCC ≤ 0.95 71 (56.8)
CCC > 0.95 13 (10.4)

CCC < 0.75 24 (19.2)
CCC ≥ 0.75 & CCC ≤ 0.95 60 (48.0)
CCC > 0.95 41 (32.8)

CCC < 0.75 95 (76.0)
CCC ≥ 0.75 & CCC ≤ 0.95 30 (24.0)
CCC > 0.95 0 (0)

CCC < 0.75 32(25.6)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (8.8)
CCC > 0.95 82 (65.6)

CCC < 0.75 32 (25.6)
CCC ≥ 0.75 & CCC ≤ 0.95 23 (18.4)
CCC > 0.95 70 (56.0)

CCC < 0.75 59 (47.2)
CCC ≥ 0.75 & CCC ≤ 0.95 66 (52.8)
CCC > 0.95 0 (0)

CCC < 0.75 60 (48.0)
CCC ≥ 0.75 & CCC ≤ 0.95 65 (52.0)
CCC > 0.95 0 (0)

CCC < 0.75 66 (52.8)
CCC ≥ 0.75 & CCC ≤ 0.95 59 (47.2)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.21
Distribution of stability groups of intratumoral wavelet texture features.

Counts

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (36.7)
CCC > 0.95 19 (63.3)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3)
CCC > 0.95 23 (76.7)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 5 (16.7)
CCC > 0.95 25 (83.3)

CCC < 0.75 6 (20.0)
CCC ≥ 0.75 & CCC ≤ 0.95 23 (76.7)
CCC > 0.95 1 (3.3)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 30 (100)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 14 (46.7)
CCC > 0.95 16 (53.3)

CCC < 0.75 19 (63.3)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (36.7)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (63.3)
CCC > 0.95 11 (36.7)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 19 (63.3)
CCC > 0.95 11 (36.7)

CCC < 0.75 21 (70.0)
CCC ≥ 0.75 & CCC ≤ 0.95 9 (30.0)
CCC > 0.95 0 (0)

CCC < 0.75 14 (46.7)
CCC ≥ 0.75 & CCC ≤ 0.95 12 (40.0)
CCC > 0.95 4 (13.3)

CCC < 0.75 21 (70.0)
CCC ≥ 0.75 & CCC ≤ 0.95 9 (30.0)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.22
Distribution of stability groups of intratumoral size features.

Counts

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 5 (50.0)
CCC ≥ 0.75 & CCC ≤ 0.95 5 (50.0)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)
CCC > 0.95 10 (100)

CCC < 0.75 1 (10.0)
CCC ≥ 0.75 & CCC ≤ 0.95 9 (90.0)
CCC > 0.95 0 (0)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (80.0)
CCC > 0.95 2 (20.0)

CCC < 0.75 5 (50.0)
CCC ≥ 0.75 & CCC ≤ 0.95 5 (50.0)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.23
Distribution of stability groups of intratumoral shape features.

Counts

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3)
CCC > 0.95 23 (76.7)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 8 (26.7)
CCC > 0.95 22 (73.3)

CCC < 0.75 0 (0)
CCC ≥ 0.75 & CCC ≤ 0.95 5 (16.7)
CCC > 0.95 25 (83.3)

CCC < 0.75 3 (10.0)
CCC ≥ 0.75 & CCC ≤ 0.95 16 (53.3)
CCC > 0.95 11 (36.7)

CCC < 0.75 1 (3.3)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (36.7)
CCC > 0.95 18 (60.0)

CCC < 0.75 3 (10.0)
CCC ≥ 0.75 & CCC ≤ 0.95 11 (36.7)
CCC > 0.95 16 (53.3)

CCC < 0.75 17 (56.7)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (43.3)
CCC > 0.95 0 (0)

CCC < 0.75 1 (3.3)
CCC ≥ 0.75 & CCC ≤ 0.95 7 (23.3)
CCC > 0.95 22 (73.3)

CCC < 0.75 1 (3.3)
CCC ≥ 0.75 & CCC ≤ 0.95 9 (30.0)
CCC > 0.95 20 (66.7)

CCC < 0.75 15 (50.0)
CCC ≥ 0.75 & CCC ≤ 0.95 15 (50.0)
CCC > 0.95 0 (0)

CCC < 0.75 13 (43.3)
CCC ≥ 0.75 & CCC ≤ 0.95 17 (56.7)
CCC > 0.95 0 (0)

CCC < 0.75 17 (56.7)
CCC ≥ 0.75 & CCC ≤ 0.95 13 (43.3)
CCC > 0.95 0 (0)

Algorithm 1 vs Algorithm 2

Algorithm 1 vs Algorithm 3

Algorithm 2 vs Algorithm 3

Numbers inside parenthesis are the percentage values.

Algorithm 1-Initial parameter 1 vs Initial parameter 2

Algorithm 1-Initial parameter 1 vs Initial parameter 3

Algorithm 1-Initial parameter 2 vs Initial parameter 3

Algorithm 2-Initial parameter 1 vs Initial parameter 2

Algorithm 2-Initial parameter 1 vs Initial parameter 3

Algorithm 2-Initial parameter 2 vs Initial parameter 3

Algorithm 3-Initial parameter 1 vs Initial parameter 2

Algorithm 3-Initial parameter 1 vs Initial parameter 3

Algorithm 3-Initial parameter 2 vs Initial parameter 3

Comparisons groups 
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Table A.24
Distribution of reproducibility groups of intratumoral radiomic features.

Counts

CCC < 0.75 95 (31.2)

CCC ≥ 0.75 & CCC ≤ 0.95 154 (50.7)

CCC > 0.95 55 (18.1)

CCC < 0.75 1 (5.3)

CCC ≥ 0.75 & CCC ≤ 0.95 13 (68.4)

CCC > 0.95 5 (26.3)

CCC < 0.75 3 (10.7)

CCC ≥ 0.75 & CCC ≤ 0.95 20 (71.4)

CCC > 0.95 5 (17.9)

CCC < 0.75 3 (4.8)

CCC ≥ 0.75 & CCC ≤ 0.95 20 (69.4)

CCC > 0.95 5 (25.8)

CCC < 0.75 66 (52.8)

CCC ≥ 0.75 & CCC ≤ 0.95 59 (47.2)

CCC > 0.95 0 (0)

CCC < 0.75 15 (50)

CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)

CCC > 0.95 15 (50)

CCC < 0.75 0 (0)

CCC ≥ 0.75 & CCC ≤ 0.95 0 (0)

CCC > 0.95 10 (100)

CCC < 0.75 7 (23.2)

CCC ≥ 0.75 & CCC ≤ 0.95 19 (63.3)

CCC > 0.95 4 (13.3)

Numbers inside parenthesis are the percentage values.

1
Features consist GLCM, GLRLM, GLSZM and NGTDM 

texture features.

Feature Groups

Size features

Shape features

All features

Statistical features

Histogram features

Texture features
1

3D Laws texture features

Wavelet texture features



135

¡¡¡ ¢ £¤¥¦

¡¡¡ ¢ £¤§¦ ¨ ¡¡¡ © £¤¥¦

¡¡¡ © £¤§¦

ª«
¬­
«
®¯
¬°
±²
³®
­
´
®¬
³¬
¯®
¬¯µ
³¶

·­
³
¬ ¸
¹­
®

ª«
¬­
«
®¯
¬°
º¯
®¬
»¼
¹³

m
 

·­
³
¬ ¸
¹­
®

½
»
± »
µµ
¸¹
¹­
«
µ­
¾

¿
À
Á
À
Â
¾¿
À
Ã
Ä
Â
¾

³«
´
Å
¿
Æ
Ç
Â

 t
e
x
tu

re
 

·­
³
¬ ¸
¹­
®

3
D

 L
a
w

s
 t

e
x
tu

re
 

·­
³
¬ ¸
¹­

s

3
D

 W
a
v
e
le

t 
te

x
tu

re
 

·­
³
¬ ¸
¹­
®

È
É

3
 m

m

IP 1-2 (ALG 1)

IP 1-3 (ALG 1)

IP 2-3 (ALG 1)

IP 1-2 (ALG 2)

IP 1-3 (ALG 2)

IP 2-3 (ALG 2)

IP 1-2 (ALG 3)

IP 1-3 (ALG 3)

IP 2-3 (ALG 3)

ALG 1-2

ALG 1-3

ALG 2-3

RIDER

Initial 

Parameters

Algorithms

Test-retest

È
É
Ê
Ë
Ë

IP 1-2 (ALG 1)

IP 1-3 (ALG 1)

IP 2-3 (ALG 1)

IP 1-2 (ALG 2)

IP 1-3 (ALG 2)

IP 2-3 (ALG 2)

IP 1-2 (ALG 3)

IP 1-3 (ALG 3)

IP 2-3 (ALG 3)

ALG 1-2

ALG 1-3

ALG 2-3

RIDER

Initial 

Parameters

Algorithms

Test-retest

Ì
Í

9
 m

m

IP 1-2 (ALG 1)

IP 1-3 (ALG 1)

IP 2-3 (ALG 1)

IP 1-2 (ALG 2)

IP 1-3 (ALG 2)

IP 2-3 (ALG 2)

IP 1-2 (ALG 3)

IP 1-3 (ALG 3)

IP 2-3 (ALG 3)

ALG 1-2

ALG 1-3

ALG 2-3

RIDER

Initial 

Parameters

Algorithms

Test-retest

Ì
Í

1
2

 m
m

IP 1-2 (ALG 1)

IP 1-3 (ALG 1)

IP 2-3 (ALG 1)

IP 1-2 (ALG 2)

IP 1-3 (ALG 2)

IP 2-3 (ALG 2)

IP 1-2 (ALG 3)

IP 1-3 (ALG 3)

IP 2-3 (ALG 3)

ALG 1-2

ALG 1-3

ALG 2-3

RIDER

Initial 

Parameters

Algorithms

Test-retest

Figure A.3 Concordance correlation coefficient groups of peritumoral features not
bounded by lung parenchyma. The green boxes represent higher (CCC > 0.95), yellow boxes
represent moderate (CCC ≥ 0.75 and CCC ≤ 0.95) and red boxes represent lower (CCC < 0.75)
CCCs.
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Figure A.4 Overall survival and progression-free survival for the six risk groups identified by CART
in the training cohort. Groups 2, 3 and groups 4, 5 were combined for the analysis in Figure 6.4.
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Figure A.5 Patients on low and very-high risk groups. First column represents the
primary target lesion CT scan. Second column represents the tumor segmentation. Third column
represents a gradient image of the segmented area for visualization of the tumor texture. Patient on
the top was identified as a low risk patient to immunotherapy and had a less dense tumor phenotype
with lower GLCM inverse difference score. Patient on the bottom was identified as a very-high risk
patient and had a dense tumor phenotype with higher GLCM inverse score.
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