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ABSTRACT

A MACRO-STRUCTURAL CHARACTERISTIC OF BRAIN
WHITE MATTER: ‘DISPERSION’ WITH ITS CLINICAL

AND TECHNICAL APPLICATIONS

The main goal of this thesis is to find distinct macro-structural characteristics

of brain white matter in the case of psychosis, where development of diagnostic imaging

measures is necessary for early diagnosis and prospective studies. Given a tractogram

data, which is a dense set of white matter fiber pathways of the whole brain obtained

from diffusion magnetic resonance imaging, we propose to compute a global measure

of dispersion for a voxel from the end point statistics of a set of fibers, which indicates

complexity of the white matter voxel not locally but at macro scales. The findings on

phantom data demonstrate sensitivity of the proposed measure to the tuning param-

eters and show its range characteristics. The findings on the real data demonstrate

that proposed macro-structural dispersion information is found to be significant for

discrimination of the schizophrenia and the bipolar patients from the healthy con-

trols, especially when the frontally associative bundles such as cingulum and inferior

occipito-frontal fasciculus are considered. The macroscopic dispersion measure is as

informative as the local diffusion measures for the detection of changes in the white

matter regions due to the psychosis. Beside, as a technical application, the dispersion

map is considered and experimented for segmentation of cingulum. The findings of the

thesis provide that the proposed measure is a potential diagnostic imaging marker in

the case of psychosis and we contribute to the field of diagnostic research by generating

a novel dispersion map of the brain that could be used for other clinical and technical

applications.

Keywords: Brain white matter, macroscopic dispersion, tractogram, bipolar, schizophre-

nia.
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ÖZET

BEYİN BEYAZ CEVHERİNİNİN BÜYÜK ÖlÇEKTE BİR
YAPI ÖZELLİĞİ OLAN ‘YAYILIM’ ÖLÇÜTÜNÜN KLİNİK

VE TEKNİK UYGULAMALARI

Bu tezin temel amacı beyaz cevher yolaklarının büyük ölçekteki karakteristik

özelliklerini bularak psikoz vakalarının teşhis ve takibinde başvurulabilecek bir teşhis

ölçütü ortaya çıkarmaktır. Beyaz cevher yolakları difüzyon ağırlıklı manyetik rezo-

nans görüntülerinin işlenmesi ile ortaya çıkan "traktogram"da beyindeki yolakların

bütününü kapsayacak şekilde oluşturulabilir. Tractogram verisini kullanarak, voksel

boyutundaki sınırdan bağımsız, yani büyük ölçekte bir özellik olarak beyaz cevher

yolaklarının karmaşıklık derecesinin ölçülebileceği bir yayılım ölçütü bu tez kapsamında

önerilmiştir. Sentetik veriler üzerinde yaptığımız çalışmalar önerilen ölçütün bağımlı

olduğu değişkenlere olan duyarlılığını göstermektedir. Önerilen büyük ölçekli yayılım

ölçütünün şizofreni ve bipolar vakalarının normallerden farklı yayılım karakteristikler-

ine sahip olduklarını gösteren ayırt edici bir ölçüt olduğu gösterilmiştir. Önerdiğimiz

büyük ölçekli yayılım ölçütü ile frontal beyin lobu ile bağlantılı olduğu bilinen sin-

gulum ve inferior oksipito-frontal fasikülleri özel olarak incelendiğinde bu farklılık or-

taya çıkmaktadır. Bu yayılım ölçütü, voksel sınırları içerisinde ölçülmüş olan difüzyon

ölçütleri kadar etkili bir ölçüt olduğu karşılaştırmalarla anlaşılmıştır. Önerilen ölçüt ile

oluşturulmuş yayılım haritası ile teknik uygulama da yapılabilmiş ve örnek olarak sin-

gulum bölütleme çalışması yapılmıştır. Bu tezin sonuçları ışığında büyük-ölçek yayılım

ölçütü ile oluşturulan beyin haritalarının psikoz vakalarının teşhisinde kullanılabilecek

bir nörobelirteç olma olasılığı ortaya çıkmıştır. Önerilen yöntem farklı klinik durumlar

için de sınanabilir ve teknik uygulamalarda yeni ilerlemeler sağlanabilir.

Anahtar Sözcükler: Beyin beyaz cevheri, büyük-ölçek yayılım, tractogram, bipolar,

şizofreni.
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1. INTRODUCTION

Quantitative characterization of the white matter (WM) circuitry in the human

brain is paramount for mapping the structural connectivity, which is known to be af-

fected by neurological diseases. Many countries including US, EU, and China devoted

their attention and resources to resolve the structural and functional connection dia-

gram of brain [1]. These initiatives motivate researchers from different disciplines to

develop novel approaches to understand the anatomy and the function of the brain.

Variety of review articles are published emphasizing the need of computational efforts

to obtain a large scale circuit reconstruction of the brain, called connectome [1–10].

Diffusion magnetic resonance imaging (dMRI) can describe brain circuitry in

vivo by measuring variations of water diffusion in several directions. In particular, these

measurements provide insights into the mathematical representations of diffusion (e.g.,

diffusion tensors [11], higher-order tensors [12], orientation distribution functions [13]),

which reflect the local fiber orientation profile. These representations can be used to

extract a tractogram, i.e., a dense set of white matter (WM) fiber pathways of the

whole brain computed using tractography algorithms [14], [15]. Once the information

on the WM circuitry is inferred it is common to focus on selected fiber bundles (i.e.,

spatially coherent collections of fiber pathways), whose integrity is anticipated to be

affected by development, degeneration, or disease [16]. Examples include brain tumors

which can displace or infiltrate WM tracts, callosal atrophy (i.e., gradual loss of fibers

forming the corpus callosum) in individuals with Alzheimer’s disease [17], or diffusely

abnormal WM (i.e., regions with reduced mild MRI hyper-intensity and ill-defined

boundaries) linked to the pathogenesis of multiple sclerosis [18].

Representing fibers and quantifying fiber similarity play a fundamental role.

Earlier approaches often employ shape descriptors/statistics [5], [19], [20] or point

sequence-type parameterization along with the Chamfer or Hausdorff distances [21],

[22], [23]. Although these methods yield promising results, their performance drops
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when analysing partially overlapping or locally diverging fibers.

Fiber clustering and parcellation of large scale regions are two main approaches

that produce quantitative descriptions of the brain’s wiring diagram. Both methods are

complementary ways for mapping the brain in different scales [2], [8], [24]. Structural

information derived from dMRI and the functional information derived from resting

state functional MRI combine and form a basis for most of the studies that aim to

achieve a connectome [4], [7]. However, deriving a truly anatomically correct connec-

tome may not be possible [3], [25]. A tractogram obtained using advanced tractography

methods contains a considerable amount of fibers that do not reflect real underlying

anatomy [4]. To overcome this issue, Fillard et al. proposed spin glass tractography

method [26]. Knowing that the tractography is an ill-posed problem, Mangin et al.

suggest that global modelling of the connectome can provide qualitative improvements

to the tractogram [25]. Other issues, such as scale, stability, structural plasticity, and

different localization of structure-function relationship, remark that each individual

wired up differently and it is impossible to produce a definitive map of the human

connectome [1], [9].

Specific attributes and motifs in the underlying structure of the brain charac-

terize the neurobiological meaning of the parameters. WM microstructure is expressed

in terms of diffusion anisotropy indices (DAIs) obtained from dMRI, such as fractional

anisotropy (FA), apparent diffusion coefficient (ADC), mean diffusivity (MD), and ra-

dial diffusivity (RD) [27]. Several other indices which are sensitive to the surface and

volume changes of the diffusion tensor [28] were also defined. Starting from the clinical

use of dMRI, these indices are heavily employed as a marker for clinical disorders in the

WM [29]. Region of interest (ROI) based tractography can be used to obtain the DAI

statistics of a certain WM tract [30]. Moreover, atlas based studies lead to more ad-

vanced approaches, such as tract based spatial statistics and voxel based morphometry,

which facilitate voxel-wise comparison of DAI statistics on the template space [31].

The new approaches are necessary for the statistical analysis of brain network

data [9]. Prospectively, the tractogram of a brain is used to explore neural connections
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to extract new statistics or markers for WM alterations. Most of the previous studies of

WM indices derived from diffusion data are based on the local diffusion profile within

a voxel. Furthermore, macroscopic motifs of the fibers have currently been considered

as a potential biomarker for the changes along the WM fibers [32], [33]. In the light of

aforementioned studies, we prospect that coherence or dispersion profiles [34], [35], [36]

of the fibers passing through a voxel could be used as a biomarker at the macroscopic

scale. The proposed inference has been investigated for the bipolar disorder that the

next subsection is dedicated to our clinical motivation and its relevance to the proposed

method.

1.1 Clinical Relevance and Motivation

Investigation of brain network characteristics of psychiatric cases using func-

tional and structural brain mapping techniques become a clinical research focus for

many recent studies [37], [38]. These studies show that the quantification of change

or deformation in the brain WM caused by development or disease is a significant

task. For quantification of the dMRI, at first glance, microstructural characteristics,

such as fractional anisotropy and mean diffusivity, are considered as a biomarker for

detecting anomalies. In the latter stages, the use of higher-order diffusion models and

diffusion acquisition in many directions reduced estimation errors and increased the

level of WM detail at microscopic scales. On the other hand, at macroscopic scales,

a typical tractogram of the whole brain contains at least a hundred thousand fibers.

Currently, manual seed ROI based filtering and fiber clustering approaches are used in

combination to delineate a specific bundle of interest, and quantitative evaluation of

the microstructural diffusion characteristics is performed for the delineated bundle. In

fact, a tractogram is mostly considered as a data source for qualitative visualization of

structural information at macroscopic scales [39].

In this thesis, we show that the qualitative information of tractogram could be

quantified and mapped by the definition of a macroscopic feature for a given set of

fibers. Specifically, knowing that the brain dynamics depend on the complex neural
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connections [40], we demonstrate that the fiber motifs, passing through a voxel or a

very small ROI (radius ∼ 1 mm), could be analyzed for macroscopic connection charac-

teristics at a WM tissue that the ROI is centered. Hence, statistical measures derived

from these fiber motifs would provide a novel bio-marker specifically computed for each

voxel. Once a nearly perfect tractogram is obtained, the 3D profile of fibers passing

through a small ROI centered at each voxel could be employed to compute macro-

scopic characteristics, such as dispersion. As a result, similar to an FA map, a novel

dispersion map of the brain could be obtained. The proposed method includes also

a methodological preprocessing framework (Section 4.2) for the spatial normalization

and generation of the tractogram, which is fed as an input for dispersion quantifica-

tion. Developed quantitative maps are applicable for pre-post and group-wise clinical

studies.
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2. BACKGROUND

2.1 Macrostructure of the Brain

The structure and function of the human brain have been studied throughout

the history that we know the earliest written document was a papyrus paper found in

Egypt dated to 17th century B.C. [41]. It was originally written at least a thousand years

earlier by a battlefield surgeon who described the clinical observations of head injuries

carefully . Since then, now we know much more about our brain that it functions

through electrical nerve impulses and has a full sense and control over each part of

the body. Besides, it is the center of intelligence controlling our decisions, thoughts,

and emotions that in other species it is not as developed as such. It is considered as a

paradox that we use the brain to understand itself.

Having plenty of theoretical and technological advances in molecular and imag-

ing sciences, we have explored many aspects of the structure of the brain and we know

certain functioning mechanisms in terms of some chemicals and kinetics of the body.

However we still do not have a complete understanding of how the brain functions with

this structure and what are the structural or functional characteristics of the brain dis-

orders. Since the motivation of this thesis focused on a macroscopic characteristic of

the brain white matter, we will be introducing the gross neuroanatomy with limited

information about the function and microscopic characteristics of the neural tissues.

Brain is a sensitive and vulnerable organ that is protected by several layers

including the skull and cerebrospinal fluid. Soft tissue of the brain actually swims in a

pool which is filled up with cerebrospinal fluid and the brain’s soft structure is preserved

within this fluid. Building block of the brain is a nerve cell or so called neuron, which

has three different parts: cell bodies, axons, and dendrites. Surface of the brain is a

thin layer of gray matter structure called cortex. It is mainly formed by the cell bodies

of the neurons. Behind the gray matter layer, axons of the neurons form fibrous and
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densely myelinated tissue layer which is brighter than the gray matter, therefore this

layer is called white matter. These myelinated axons unite in groups of fibers and run

forward to conduct impulses between cell bodies and dendrites of the neurons (Figure

2.1). Once the brain is sliced, the white matter tissue is mostly imaged to have a

similar and homogeneous color, but in terms of the direction of the axonal pathways

there are heterogeneous white matter regions if there are crossing, bending, or fanning

fibers.

Figure 2.1 A schematic diagram of the nerve cell or neuron. Adopted from the internet [learnabout-
parkinsonsdisease.wordpress.com].

Each fiber bundle forms gross nerve connections between distant sites with a

unique geometric structure in cerebral white matter. The white matter fiber bundles

are anatomically oriented in a sophisticated and complex network yet to attract many

scientists to explore the role of these wonderfully oriented white matter fibers in brain

functioning mechanisms. In vivo and ex vivo imaging techniques are developed in time

to observe structural details of the white matter tissue and its functionality. Diffusion

contrast of magnetic resonance imaging could be considered as a gold standard for in

vivo imaging of the brain white matter fibers and sophisticated diffusion models are

used to reconstruct fibers which depicts structural deviations within the white matter

using 3D renders of the reconstructed pathways (that certain methods of diffusion

MRI will be introduced in next section) . However, considering the resolution of the

imaging, microscopic evaluation of the post-mortem brains provide more precise and
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reliable images for the investigation of anatomical organization of the white matter

connectivity in the nervous system.

Figure 2.2 A schematic diagram showing commissural, association and projection fibers.

In this section, a brief overview is written describing the neuroanatomy of the

long white matter fibers grouped by the location of the connected regions: (i) Com-

mussiral fibers connect the left and right cerebral hemispheres passing through the mid

sagittal section. (ii) Association fibers connect different gray matter regions within

the hemisphere. (iii) Projection fibers connect cortex with mid-brain (diencephalon)

regions such as thalamus and amygdala. Some projection fibers might reach up to the

spinal cord. Images of the certain white matter bundles are adopted from cited works to

demonstrate how they are observed in photographs of carefully dissected post-mortem

brains using microsurgical techniques [42].

The greatest group of fibers in the brain is called corpus callosum that includes

a collection of connected giant span of U shaped fibers along approximately half of

the cerebral hemispheres and run between the left and the right hemispheres. Median

sagittal section of the brain shows its central position and size. Anterior part of the

corpus callosum is called the genu or forceps anterior (minor). These fibers could

best be viewed in the axial section of the brain and connect the left and right frontal

lobes. Central part is called the body of the corpus callosum that these fibers mostly

run towards the superior regions of the cortex. Preserving their likewise U shape and

keeping their center on the mid sagittal slice, the fibers of corpus callosum continues

till the posterior part which is called splenium or forceps posterior (major) that these
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(a) (b)

Figure 2.3 Adopted figures of dissected brain from [42] (with permission) showing some parts of (a)
corticospinal tract, (b) superior longitudinal fasciculus, occipital fasciculus and uncinate fasciculus.

fibers connect the left and right side of the occipital lobe and they could be seen mostly

in the central and most posterior white matter region in the corresponding axial slice of

the brain. There are also other commissural fibers in brain which are relatively much

more smaller than corpus callosum, such as the anterior commissure and posterior

commissure which have very small sagittal cross section diameter 5 mm, but they

start fanning and expanding towards the cortex of both hemispheres that interconnect

much larger regions of the cortex.

Association fibers are groups of fibers which connect regions within the hemi-

sphere. Some of the association fibers may be very long as they could run between the

frontal and occipital lobes passing through the coronal sections of the brain. These

long association fibers are termed fasciculi (fasciculus in singular form). Short associ-

ation fibers connect adjacent cortex regions and they all are termed generally as short

U-fibers. Long association fibers are named more specifically with their location and

connecting cortex regions. The complexity of these fibers and their bending struc-

ture make the definition of the tract very difficult. Therefore the definitions might

be rather course or similar. One such prominent fasciculus is the superior longitudi-

nal fasciculus (SLF). It is located at the superior part of the hemisphere and these

fibers run between different sites of the frontal, temporal, and parietal lobes that in
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between some fibers deviate downward or forward from central part of this pathway

and reach to the sites of the parietal and temporal lobes, and some fibers might reach

up to the occipital lobe, as well. Therefore SLF has a broad anatomy. Another group

of association fibers is named as inferior longitudinal fasciculus which connects the

temporal and occipital lobes with a relatively linear pathway. There are also inferior

and superior fronto-occipital fasciculus that could be coarsely defined as the pathways

which connect visual nerves all the way to the occipital lobe and from the occipital lobe

these fibers run forward back to the frontal lobe. One other main association pathway

is cingulum which is covered with the cingulate gyrus and located within the limbic

system. Cingulum is a very long bundle which runs above the corpus callosum winding

around the genu and turning around the splenium, and ends in the hippocampal gyrus

associating fibers of the hippocampus, amygdala and thalamus with prefrontal cortex.

Projection fibers are also a group of long fibers that unite the cortex with the

lower parts of the brain such as thalamus, caudate nucleus, and putamen. Different

projection fibers might unite in certain regions such as internal and external capsules,

and cerebral peduncles. Coronal radiations also includes projections to the cortex with

a shape of fanning structure towards the cortex. The fibers passing through these

regions might also project to different parts of the brain such as cerebellum and spinal

cord. The projection fibers run between the cortex and the spinal cord makes a known

pathway called corticospinal tract. It passes through the coronal radiations, internal

capsule, cerebral peduncles, and pons to reach its crossing region and go all the way

down in the spinal cord to its controlling muscle or tissue.

In summary, axons of the neurons connecting distant sites are supported and

covered by the myelinated fatty structure that makes the white matter brighter than

the gray matter. These axonal fiber tracts carry impulses within a sophisticated sen-

sory network that in the brain it has a complex but marvelously organized connectivity

structure. The microscopic post mortem studies identified several short and long con-

nections and according to its connecting regions they are classified in different groups.

However since there are crossing and bending regions in which different fibers share

the same anatomical region, the edges and the region limits of most of the classified
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pathways are not certain and it is difficult to have complete understanding of the neu-

roanatomy of the white matter fibers. Knowing all these difficult issues, emerging in

vivo brain imaging methods help to understand specific mechanisms of the brain that

the imaging based attributes correlate up to a certain degree with the structural and

functional neuroanatomy. The next section is about a gold standard imaging mecha-

nism which is based on the diffusion contrast of the magnetic resonance imaging that

could measure the fiber orientation distribution in white matter tissue. Following stud-

ies included novel algorithmic schemes to estimate neuroanatomical structure of the

white matter that could show the characteristics of the neurodegenerative diseases.

2.2 The Brain Tractogram

The pathways of the axons in the brain constitute a sophisticated network which

is nowadays called the brain connectome. This wiring structure is important in the

functioning of the brain such that if there exists a deformation due to a disease or

degeneration on a pathway, its controlling mechanisms might possibly be broken. In

the previous section we introduced the white matter pathways mostly with ex vivo

imaging methods that are important to learn neuroanatomy. On the other hand, in

vivo imaging of the brain is important to characterise the diseases that it guides the

treatment and helps to follow-up the progress.

Noninvasive imaging of the brain has been progressively improved by several

key studies, as first, in quantum mechanical and magnetic properties of the substances

such that Otto Stern, Isidor Isaac Rabi, and Walfgang Pauli were awarded the Nobel

Prize in 1943, 1944, and 1945, respectively, for their contributions. After that, the

concept of magnetic resonance imaging method became available with consecutive and

impressive ideas of the scientists from different backgrounds, such as physics, chemistry,

and medicine, that some of them were also awarded the Nobel Prize for their contribu-

tions. In 1952 the Nobel Prize of physics was shared by Felix Bloch and Edward Mills

Purcell for their contribution to the magnetic resonance properties of certain solid and

liquid substances. In 1954 Carr and Purcell explained in [43] simply that the diffusion
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of water could be measured using a spin echo technique [44]. In that time, diffusion

was actually a phenomenon which reduces the signal strength so that it needed to be

eliminated. These studies were still at the spectroscopic domain. It took more than

30 years to get the first two dimensional images of a slice. First, in 1973, Paul Lauter-

bur considered generation of slight magnetic field gradients to reconstruct a slice of

the specimen inside the magnet using projections [45]. This was a seminal study and

it was followed by other developments such as frequency and phase encoding of the

radio frequency pulses to locate received signals within the slice [46], [47]. Hence, mag-

netic resonance spectroscopy became a noninvasive and volumetric multi slice imaging

method to characterize molecular constitutes of the human body including the brain.

For their contributions, Paul Lauterbur and Peter Mansfield shared the Nobel Prize of

Medicine in 2003.

Diffusion coefficient of the spins was first formulated in 1965 by using a pulsed

gradient technique [48] with S(TE) = S(0)exp(−bD), whereD is the apparent diffusion

coefficient (to be measured), b is the strength of the pulsed gradient, S(0) is the signal

intensity when the diffusion gradient strength vanished during the scan, and S(TE) is

the signal intensity at time of echo in the presence of strong diffusion gradients. Signal

attenuation due to the diffusion of the spins was obtained in a form of an exponential

decay. At that time, it is experimented for dry glycerol for which the diffusion coefficient

was (2.5± 0.2)× 10−8 cm2 sec−1, whereas for H2O the diffusion coefficient was (2.34±

0.08) × 10−5 cm2 sec−1. It was shown that the diffusion in dry glycerol is restricted

within its medium. Approximately three decades later, Basser et. al. introduced

using also off-diagonal pulsed gradients in a spin echo MR sequence such that the

diffusion gradients are applied in at least 6 co-linear directions (XX,YY,ZZ,XY,XZ,YZ)

[11]. Once the diffusion coefficients along the applied diffusion gradients are obtained,

all these measurements S(ij) could be employed offline in Eq. 2.1, from which the

restricted diffusion characteristics of the medium is inferred with numerical solutions

for the diffusion tensor Dij.
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ln[S(ij)/S(0)] = [−bijDij] (2.1)

Diffusion tensor (Dij) is a 3 by 3 symmetric matrix which could be diagonalized

numerically and the shape of the diffusion ellipsoid could be inferred with the eigenval-

ues (λ = [λ1 ≥ λ2 ≥ λ3]) and corresponding eigenvectors (v1, v2, v3) [27]. Principal di-

rection of the ellipsoid was expected to show the direction of the restricting microscopic

walls in the medium. For the brain, restricted diffusion was observed in white mat-

ter regions and the principal direction was showing the directions of the white matter

fibers. Diffusion tensor and its decomposition provided distinct microstructural char-

acteristics which are rotationally invariant measures such as fractional anisotropy (FA)

(Eq. 2.2), mean diffusivity (MD= Trace(λ)/3) or also called mean apparent diffusion

coefficient (ADC) , axial diffusivity (AD= λ1), and radial diffusivity (RD= (λ2+λ3)/2).

FA =

√
3((λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2)

2(λ21 + λ22 + λ23)
(2.2)

Although the diffusion tensor model has been very successful showing 3D struc-

ture of the brain white matter, it was assumed that the diffusion was Gaussian and

it was not fully adequate to show the real microscopic structure of the brain which

includes fiber crossings in many regions.

The developments to the diffusion MR sequences first included using more gradi-

ent orientations in addition to the off-diagonal pulsed gradients. Moreover, diffusion ac-

quisitions with higher gradient strengths (high b value shells) have shown to contribute

to the understanding of diffusion phenomenon in different tissue levels [49], [13], [50].

Development of new mathematical models such as multi tensor model [51], spherical

harmonics representation [52] were followed to fit better to the shape of the measured

diffusion orientation distribution function (ODF) with the emerging diffusion direc-
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tional contrast and varying gradient strength.

An ensemble average propagator function is defined for the displacement of

diffusing spins, in model-free (non-parametric) approach by integrating the measured

diffusion signal along radial directions to form an ODF and it is computed by using Eq.

2.3 which integrates projections of diffusion signals, P (ru) , on each radial direction u.

Ψ(u) =

∫ ∞
0

P (ru)dr (2.3)

Formulation of the diffusion model within spherical coordinates provided more

comprehensive transforms of the diffusion signal. Some of the proposed transforms

reputed to be model free such as spherical deconvolution method [53] and diffusion

orientation transform method [54]. In general, model free methods aim to reconstruct

a fiber orientation density function from which fiber directions could easily be obtained

using peaks of the density function.

A way of analysing the ODF is to make use of spherical harmonic (SH) basis

functions Y m
l (u), which is described clearly in [55]. Here l represents the order of the

SH and m ∈ {−l, ..., 0, ..., l} is an index for 2l + 1 SH functions of order l.

Similar to the Fourier principle, a function defined on a sphere can be represented

as a linear combination of SHs:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

cl,mYl,m(θ, ϕ) (2.4)

Coefficients of each SH is given by:
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cl,m =

∫ 2π

0

∫ π

0

f(θ, ϕ)Y ∗l,m(θ, ϕ)sinθdθdϕ (2.5)

As depicted in Figure 2.4, we note that 0th order SH series is an isotropic model

forming a sphere, and 2nd order SH series is identical to a diffusion tensor model

having a single anisotropic SH. As higher order terms are included in series description

we explore more complex underlying structure. 4th order SH series expansion could

resolve two fiber crossings and higher order terms represent mostly the noise in data

acquisition.

Figure 2.4 Visual representation of even order SH functions. Adopted from the internet
[https://www.mathworks.com/matlabcentral].

Tourneir et. al. [53] proposed to model diffusion signal attenuation as a convolu-

tion of a sample response function in a peanut shape. A density function is estimated

depicting the orientation distribution of the fibers, which is called fiber orientation

density (FOD). FOD is obtained by the deconvolution of the measured signal attenua-

tions with the sample response function. Probabilistic tractography schemes are then

employed which samples most probable directions of FOD function to follow the stream-

lines [56]. Seeds are uniformly distributed on the brain to construct a tractogram. A

typical tractogram might contain at least 100 thousand fibers.
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Tractography algorithms mostly use a brain mask and predefined thresholds on

FA and curvature to stop tracking. For a better tractogram these stopping criteria

are not enough which is lack of anatomical information. Smith et. al. [15] consider

implementing a new scheme to accept or reject tracked fiber by using anatomical con-

straints (segmented regions of brain: white matter, gray matter, CSF, and subthalamic

regions).

Since tractogram seeds are uniformly distributed over the brain, the number

of fibers passing through a voxel is biased and does not satisfy the underlying tissue

density. To overcome this bias Smith et. al. [57] proposed a filtering scheme (called

SIFT) to remove fibers from the tractogram so that a new form of a diffusion model,

which could be reconstructed by using the contribution of the remaining fibers passing

through a voxel, would resemble the measured diffusion. A tractogram is fed as an input

to SIFT algorithm together with the FODs, and the output is a relatively less number

of fibers that fit on the underlying diffusion model estimate. We could then drive

unbiased track based statistics, such as average FA along the fibers passing through a

voxel, to obtain track weighted images (contrasts) which could help to infer diagnosis

of clinical cases [58].



16

Figure 2.5 A tractogram of brain from our Schizophrenia dataset after SIFT.
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3. METHODS AND VALIDATIONS

3.1 Dispersion of a Tract Profile

In this section, the dispersion of a set of fibers is defined mathematically to

measure the shape variability at the macroscopic scale. We considered that each fiber

is represented by a consecutive set of 3D points, and used endpoint statistics to quantify

the dispersion. Definitions are exemplified using a tractogram of kissing fibers dataset,

which is depicted in Figure 3.1(a). Fibers passing through a small sphere (r = 1

mm) (illustrated as dark blue color in Figure 3.1(b) ) are truncated by another sphere

(R = 35 mm) (depicted as red color (with a certain opacity value of 0.3) in Figure

3.1(b)). Hence, the points of each fiber, which are outside the region of this (truncation)

sphere, are trimmed. In Figure 3.1(c), the intersection points of the truncation sphere

and the fibers are depicted as green and red spheres on the surface of the truncation

sphere.

Let a truncated fiber Xi be in the set of fibers {Xi : i ∈ N}, and each fiber is

represented as a set of 3D points such that Xi := (xi,1, xi,2, ..., xi,n, ..., xi,m) with point

coordinates xt,n ∈ R3, and m is the number of points on the truncated fiber.

Let X(s) and X(e) be a set of start and end points respectively of a truncated

fiber which is in the set of fibers {Xi : i ∈ N}, and x(s)c and x(e)c are centroids (∈ R3)

computed by averaging the 3D point coordinates in the sets X(s) and X(e). The sets of

X(s) and X(e) initially contain only the first fiber’s start and end points, which is like

X(s) = {x1,1} and X(e) = {x1,m}, and centroids of start and end points are assigned

accordingly as x(s)c = x1,1 and x(e)c = x1,m. For the remaining fibers (i = 2, 3, ...,m) an

iteration is started. Start and end points are added to X(s) and X(e) considering the

closest alignment to the centroid of each set by comparing distance to the centroids,

x
(s)
c and x

(e)
c . if xi,1 is closer to x

(s)
c than x

(e)
c , then xi,1 is added to X(s) and xi,m

is added to X(e), i.e. X(s) = {X(s), xi,1}, and xi,m is added to X(e) by the same
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way (X(e) = {X(e), xi,m}). Otherwise, end points are assigned to reverse sets such

that X(s) = {X(s), xi,m} and X(e) = {X(e), xi,1}. At the end of these iteration steps,

centroids x(s)c and x
(e)
c are updated considering the recent addition to the sets X(s)

and X(e), and a new iteration is started for the next fiber(i = i + 1). This alignment

produces a clustered representation of start and end points as depicted with green and

red spheres in Figure 3.1(c).

(a) (b) (c)

Figure 3.1 Kissing fibers dataset (a). Two spheres (r = 1 mm (blue) , R = 35 mm (red color with an
opaque view)) both centered at the kissing point p (b). Start and end points (red and green spheres
on truncation surface) of the truncated fibers (c).

We propose to use the variance of the clustered end points (σ2(s) and σ2(e)) as a

dispersion measure defined by Eq. (3.3) (the sum of the variances is normalized using

the radius of truncation sphere, R):

σ2(s) =
1

N

N∑
i=1

(‖(X(s)
i − x(s)c ‖2)2 (3.1)

σ2(e) =
1

N

N∑
i=1

(‖(X(e)
i − x(e)c ‖2)2 (3.2)
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δp =
1

R2
(σ2(s) + σ2(e)) (3.3)

In Eq. (3.3), δp represents the estimated macroscopic dispersion measure for the

center point in real coordinates, p ∈ R3, where ROI and truncation spheres are located

(Figure 3.1(b)), and x(s)c and x(e)c are centroid points of the sets {X(s)
i , i = 1, 2, ..., N}

and {X(e)
i , i = 1, 2, ..., N}, respectively. This definition naturally forms a sampling

scheme over the real coordinates. In theory, a dispersion map (∆) is a mapping from

R3 to R, which could be sampled over a grid of volumetric image. The value of p can

be set to any real coordinate within the image/tract boundaries and could be iterated

for any image resolution so that different samplings of macroscopic dispersion maps

are obtained. Given a tractogram and volume spacings (resolution), ∆ is sampled by

iterating the value of p for the real coordinate centers of each voxel by following the

steps described above in this section (Section- 3.1) to form a unique dispersion map of

the given tractogram.

Mathematically, dispersion value becomes 1.0 when there are two bundles ex-

actly crossing at 90 degrees and each fiber in a bundle starts and ends at the same

point, whereas the dispersion value becomes 0.0 when there is a single bundle that all

the fibers start and end at the same point. In the case of fibers dispersing more than

90 degrees the dispersion value becomes more than 1.0.

Figure 3.2 depicts different samples of the proposed macroscopic dispersion mea-

sure on the crossing, kissing, and fanning synthetic bundles. Point p1, sampled on the

center of the crossing tractogram, has two totally dispersed endpoint sets that the

computed dispersion measure, δp1 = 0.963, is close to 1.0. At the edge of the crossing

region dispersion is decreased drastically as depicted for p2 and p3, where dispersion

values are δp2 = 0.463, and δp3 = 0.003. The point p4 is sampled from the non-crossing

region where the fibers coherently move towards the same direction so that computed

dispersion value, δp4 = 0.004, is very close to 0.0. On the other dataset, for the given
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Crossing Fibers δp1(54,54) = 0.963 δp2(51,57) = 0.463 δp3(51,58) = 0.003 δp4(42,67) = 0.004

Kissing Fibers δp1(54,54) = 0.723 δp2(50,54) = 0.004 δp3(53,63) = 0.159 δp4(39,72) = 0.005

Fanning Fibers δp1(54,31) = 0.005 δp2(54,60) = 0.088 δp3(51,70) = 0.107 δp4(42,79) = 0.003

Figure 3.2 Selected points and their dispersion characteristics are given for crossing (1st row) ,
kissing (2nd row), and fanning (3rd row) bundles in row-wise organization. Bundle tractograms are
shown in left-most images, whereas the right-sided images depict first a background layer with the
dispersion map of the tractogram. Second layer overlays a dot in pink color for the selected point,
pi(column, row). The third layer contains the fibers passing through pi, which are overlaid together
with the truncation sphere in dark blue color, where R = 35 mm. A fourth layer contains the clustered
end points of each fiber, which are shown as red and green small spheres. Dispersion values (δp) are
given below for each pi.

kissing bundles, there are four points that each possesses a different endpoint statistics

(Figure 3.2 second row). At the center point, p1, the dispersion (δp1 = 0.723) is higher

than the dispersion value computed for other points, whereas at a neighboring point

p2, the fibers coherently propagate and the dispersion value is δp2 = 0.004. For the

point p3 on kissing bundles, at the lower surface of truncation sphere, end points are

condensed within a small region, however, the fibers are separated after passing the

kissing region, so that the end points at the upper surface become slightly dispersed,

and the proposed method computes a higher dispersion (δp3 = 0.159) compared to δp2 .

The next point, p4, is sampled on a coherent region that the fibers do not get dispersed

(δp4 = 0.005) but visit the neighboring voxels of the kissing region and keep moving

coherently. Similar demonstrations are depicted in Figure 3.2 third row for the fanning
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bundles dataset, such that the range of dispersion values are lower than the range of dis-

persion values in the kissing and the crossing bundles. For the fanning bundles dataset,

p1 is located at the superior and coherent region, and therefore, dispersion value is very

small (δp1 = 0.005), whereas p2 is located at the upper neighbourhood of the intersec-

tion of fanning bundles that the fibers start fanning into three different directions, so

that we compute an increased dispersion (δp1 = 0.088) with respect to δp1 . As a next

sample, p3 is located in the intersection of two fanning bundles, where the fibers are

coherent in one side but they get dispersed in the other direction, and dispersion value

becomes slightly increased (δp3 = 0.107). The last image depicts characteristics of the

point p4, which is closely located at the end of the fanned bundle, hence there is no

intersection of different bundles, and the bundle is completely coherent (δp4 = 0.003).

3.2 Synthetic datasets

We studied three different synthetic dMRI datasets. Kissing, crossing, and

fanning bundles datasets, as shown in Figure 3.2, were generated using the Phantomas

tool [59] in order to be used for validation studies. The isotropic resolution of synthetic

images was 1.0 mm and the matrix size was 100 x 100 x 100, where diffusion-weighted

images were generated in 32 directions.

3.3 Experiments and results on synthetic datasets

Experiments on synthetic datasets were designed to demonstrate characteristics

of the proposed dispersion measure for the tuning parameter of R, which defines the

macroscopic scale. We observed that the radius of sphere ROI, r, determines the degree

of partial volume effects. Therefore, we fixed r according to the axial voxel spacings.

We used heuristic parameters for the tractography and tractogram generation. Recon-

structed tractograms were sampled over the diffusion space and a dispersion map was

computed as described in Section-3.1.
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(a) (b)

Figure 3.3 Dispersion value (y-axis) versus different R values (x-axis) on kissing fibers dataset.
Figure (a) displays four sample points (p1, p2, p3, p4) on dispersion map of kissing fibers dataset
computed for R = 35, and (b) is the plot showing dispersion values of the picked four points for the
range of 5 ≤ R ≤ 70 mm (r is fixed to 0.5 mm).

In Figure 3.3(a), predefined points, p1, p2, p3, and p4, which were depicted

separately in Figure 3.2 second row, were overlaid together, whereas in Figure 3.3(b),

dispersion profiles of each point were plotted as a function of R. For this experiment,

r was fixed to 0.5 mm and dispersion value of each point was computed for a range of

R values between 5 mm and 70 mm. Point p2 and p4 were located on single bundle

regions, therefore dispersion was independent of R and it was less than 0.05. However,

we observed that dispersion characteristics of p1 and p3 changed with increasing R.

Since p1 was at the center and the fibers of p1 were dispersed in both ends, with

increasing R, dispersion is increased as the truncation sphere became bigger and end

points became more dispersed until the end points reside inside the truncation sphere

at R = 50 mm. For R > 50 mm, dispersion was decreased because the endpoint

statistics remain the same but the normalization factor (R2) caused a drastic decrease

of δp1 . Dispersion plot of the point p3, where the fibers were dispersed on one side but

they were coherent on the other side, was similar to p1, however, the dispersion value

was not bigger than 0.25 and the maximum dispersion was observed for R = 55 mm.

Specifically, we investigated the dispersion contrast of p1 and p3, i.e. formulated as

(δp1 − δp3), and plotted as a blue line, from which we observed that the contrast was

not increased after a certain threshold of R = 35 mm. Since the mean bundle length of
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this dataset was ∼ 100 (±5) mm, we heuristically observed a tuning of R that showed

an optimum dispersion contrast of different regions by setting R as less than the half

of the mean bundle length. Since the mean length of the fibers was approximately 60

mm for a sample real dataset, we chose R as 20 mm in real data experiments.
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4. MACRO-STRUCTURAL DISPERSION CHANGES IN

SCHIZOPHRENIA AND BIPOLAR DISORDER

4.1 Dataset

Previously published [60] real dMRI dataset has 52 normal, 49 schizophrenia,

and 40 bipolar patients included in the processing framework. Diffusion scan was

acquired using GE Medical Systems Signo 3T MR with the TR/TE of 14000/81.5,

slice thickness of 2.5 mm, 256x256 image plane with equal x and y spacing of 0.9375, 8

channel head coil, single shell diffusion weighting with 5 consecutive b = 0 images and

31 directional sampling on the unit sphere with b = 1000 s/mm2.

4.2 Image preprocessing framework

We used MRtrix1 software package for diffusion modeling and tractogram gener-

ation. We also used FMRIB Software Library (FSL) [61] for eddy current and motion

correction, and Brain Extraction Tool (BET) [62] to create brain mask, and some FSL

utility commands for the operations on intermediate image formatting. Registration

steps were performed using FSL-FLIRT for linear registration followed by Diffeomor-

phic Demons Algorithm [63]2 for non-linear registration. For anatomically constrained

tractography [64], T1 weighted high resolution (0.9375 × 0.9375 × 1 mm) image was

registered linearly to diffusion space and segmented using 5tt segment command of

MRtrix package in which we used FSL option.

Eddy current and motion corrected images were used both for response function

estimation and Fiber Orientation Distribution (FOD) modeling of diffusion signal, and

by using FODs a whole-brain tractogram having 1 million fibers were generated as an
1www.mrtrix.org
2Diffeomorphic Demons Algorithm is an option in Medinria tool, and source code is publicly

available at http://hdl.handle.net/1926/510
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output [64]. Before the computation of the dispersion map, the tractogram was filtered

by an algorithm named as ‘spherical deconvolution informed filtering of tractogram’

(SIFT) [57] and 150 thousand of fibers remained after filtering, which computationally

ensures that the remaining fibers after filtering best fit with the underlying FOD signal.

All the diffusion preprocessing and tractogram generation operations were performed

using the MRtrix package.

ICBM-DTI-81 white-matter (JHU) atlas [65] which has 48 WM tract labels

and Juelich brain atlas [10] which has 10 WM regions on MNI152 space were used to

determine group differences. The dispersion map was computed on the diffusion space.

First, structural T1 image was used to register (linear and non-linear warp) subject

space onto MNI. Second, the mean b0 image was registered onto the structural T1

image. Then, these two transformations were used to transform the dispersion map

onto the atlas space.

4.3 Results

By following the diffusion image processing framework as described in Section

4.2, a tractogram of the brain was computed and later used to compute the dispersion

map as described in Section 3.1, by setting the r (radius of sphere ROI) value to 1 mm,

whereas the radius of the truncation sphere, R, was fixed to 20 mm. Experiments on

real dMRI included a qualitative evaluation section that compares the dispersion to FA

and mean b0 images, and that depicts the dispersion profiles for corresponding voxels

of certain WM regions from BP and normal subjects that the proposed dispersion

measure was increased or decreased in the BP group. Then, a statistical evaluation

section is included for detailed group comparisons that were performed considering

WM regions of both JHU and Juelich brain atlas.
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Qualitative Evaluation

In Figure 4.1, the dispersion map of a normal subject within our dataset was

compared to the FA and the mean b0 images of the same subject displaying axial slices

that include corpus callosum and cingulum bundles. Dispersion map was overlaid on

the mean b0 image such that if there was no fiber passing through the voxel, the

dispersion value was null and the voxel depicted with the mean b0 contrast. As it can

be seen from this figure, the dispersion was close to zero if the bundle was coherently

moving towards two sides, e.g. the cingulum, and the genu and the splenium of the

corpus callosum, whereas the dispersion was increased and became closer to 1.0 at the

voxels for which the bundles were crossing or kissing, as observed in Figure 4.1 bright-

yellow regions. The given slices in Figure 4.1(a) and (b) also included axial sections

of some U-fibers for which the middle segment observed to have increased dispersion

contrast having a bright-yellow intensity because this segment had a tight (kissing)

contact with other bundles, however, this contrast was not observed in FA or mean b0

images.

We made the proposed framework available as a downloadable tool3 , that could

be used to compute and save dispersion map of a given tractogram file, and we displayed

sample screenshots from the tool in Figure 4.2 for sample subjects from the BP and

the normal group that the mean dispersion of the right cingulum and the right superior

occipito-frontal fascicle were measured close to the group averages. For this experiment,

we sampled a voxel whose anatomical label is known on the MNI space and transformed

the voxel onto the subject space using the inverse linear and nonlinear registration steps

obtained in the proposed registration framework. Hence, sampled dispersion profiles

of each subject were coregistered and observations were sampled from the same WM

region. What we observed was the difference between the groups, which was depicted

using 3D fiber profiles of the corresponding anatomy. For the marked cingulum voxel of

the BP subject, fibers became more dispersed having more dispersed fiber end points,

in contrast, for the superior occipito-frontal fascicle voxel of the BP subject, fibers were

not as dispersed as for the normal subject.
3https://bitbucket.org/_ali_demir/
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(a) Genu and splenium of corpus callosum

(b) Right and left cingulum

Figure 4.1 A comparison of mean b0, FA, and dispersion on corpus callosum and cingulum bundles.
The dispersion map was overlaid on the mean b0 image. Figure (a) marked anterior edge of the
genu of the corpus callosum with a downward arrow at the top of the image and posterior edge of
the splenium of the corpus callosum with an upward arrow at the bottom of the image. Figure (b)
marked the outer edges of the (radiological) right and the left cingulum with the arrows.

Statistical evaluation

We compared proposed macroscopic dispersion with local DAIs, such as frac-

tional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD),

and axial diffusivity (AD). Proposed dispersion map was reconstructed by setting the r

(radius of sphere ROI) value to 1 mm, whereas the radius of the truncation sphere, R,

is fixed to 20 mm (considering our proposition that it should be less than the half-mean

length of fibers, e.i., we choose R, such that R 6 30 mm).



28

(a) (b)

Figure 4.2 A comparison of the dispersion on the right cingulum (a) and the right superior occipito-
frontal fascicle (b), depicting 3D fiber profiles (on the right and bottom side of orthographic views)
of corresponding (registered) voxels (marked with a cross sign in red color on the axial, sagittal, and
coronal mean b0 images) of BP and HC subjects, where the dispersion of the marked voxel in (a) was
computed as 0.65 for the BP subject and 0.45 for the normal subject, whereas in (b) dispersion was
computed as 0.95 for the BP subject and 1.15 for the normal subject.

Statistical analysis was performed using DAI and dispersion maps which were

registered to the MNI space as described in Section-4.2. Juelich and JHU atlases

are two different maps of the brain in MNI space that the anatomical name of each

brain voxel is known. We considered labeled WM structures (excluding gray matter)

from Juelich and JHU atlases. We excluded certain WM regions, such as cerebellar

peduncles, uncinate fasciculus, fornix, and acoustic radiation, due to their small volume

and possible partial volume artifacts so that we focused on the greater WM structures,

such as corpus callosum, cingulum, and long WM fasciculus as listed in Table 4.1 and

Table 4.2.



29

T
ab

le
4.

1
St
at
is
ti
ca
ls

ig
ni
fic
an

ce
sc
or
es

(p
-v
al
ue
s)

of
th
e
gr
ou

p
co
m
pa

ri
so
ns

on
W

M
la
be

ls
of

Ju
el
ic
h
br
ai
n
at
la
s.

H
C

v
s

S
C

H
H

C
v
s

B
P

S
C

H
v
s

B
P

F
A

A
D

C
R

D
A

D
D

is
p
er

si
o
n

F
A

A
D

C
R

D
A

D
D

is
p
er

si
o
n

F
A

A
D

C
R

D
A

D
D

is
p
er

si
o
n

C
B

0.
01

22
0.

00
41

0.
00

52
0.

03
33

0.
03

96
0.

00
71

0.
00

99
0.

01
14

0
.0

0
0
7

0
.0

0
0
4

C
in

g
u
lu

m
R

0.
00

62
0
.0

0
0
3

C
in

g
u
lu

m
L

<
0
.0

0
0
1

0.
00

55

C
S
T

R
0.

02
52

0.
01

13
0.

01
06

0.
00

79
0.

00
71

C
S
T

L
0.

01
41

0.
00

34
0.

04
98

0
.0

0
1
9

0.
01

98
0.

00
82

IO
F
F

R
0
.0

0
0
1

<
0
.0

0
0
1

<
0
.0

0
0
1

0
.0

0
0
9

0.
00

50
0.

00
40

0
.0

0
1
8

0.
01

26

IO
F
F

L
0.

03
69

0
.0

0
0
2

0.
00

62

O
R

R
0.

03
92

0.
03

11
0.

01
39

0.
02

13
0
.0

0
2
5

0.
03

88
0.

03
78

O
R

L
0.

01
42

0.
02

90
0.

00
86

0.
03

00
0.

03
71

0.
04

09
0.

04
35

0.
00

78

S
L
F

R
0
.0

0
0
5

0.
03

42
0.

00
32

0.
03

54
0.

00
46

0
.0

0
0
3

S
L
F

L
0.

04
69

0.
02

21
0.

02
46

0.
04

94
0.

00
52

0
.0

0
0
9

S
O

F
F

R
0
.0

0
0
6

0.
00

41

S
O

F
F

L
0.

04
40

0
.0

0
0
6

0
.0

0
0
5

B
on

fe
rr
on

ic
or
re
ct
ed

si
gn

ifi
ca
nt

p-
va
lu
es

(p
<

0
.0
02
9)

ar
e
hi
gh

lig
ht
ed

by
us
in
g
bo

ld
fa
ce

fo
nt
,w

he
re
as

p-
va
lu
es
,w

hi
ch

ar
e
gr
ea
te
r
th
an

th
e
co
rr
ec
te
d
th
re
sh
ol
d

bu
t
le
ss

th
an

0.
05

,
ar
e
m
en
ti
on

ed
ju
st

fo
r
an

in
si
gh

t.
N
on

-s
ig
ni
fic
an

t
p-
va
lu
es

ar
e
no

t
gi
ve
n.

C
B
:
C
al
lo
sa
l
bo

dy
,
C
ST

:
C
or
ti
co
sp
in
al

tr
ac
t,

IO
F
F
:
In
fe
ri
or

oc
ci
pi
to
-f
ro
nt
al

fa
sc
ic
le
,O

R
:O

pt
ic

ra
di
at
io
n,

SL
F
:S

up
er
io
r
lo
ng

it
ud

in
al

fa
sc
ic
le
,a

nd
SO

F
F
:S

up
er
io
r
oc
ci
pi
to
-f
ro
nt
al

fa
sc
ic
le
.
R

an
d
L
ar
e
ab

br
ev
ia
ti
on

s
fo
r

th
e
ra
di
ol
og
ic
al

ri
gh

t
an

d
le
ft

si
de

of
th
e
gi
ve
n
tr
ac
t
re
sp
ec
ti
ve
ly
.



30

Juelich and JHU atlases are different in terms of their reconstruction method

that the Juelich atlas is based on histological cuts of a post-mortem brain, whereas the

JHU atlas is an atlas reconstructed by using labeled WM fibers which are reconstructed

from dMRI data. Therefore, anatomical labels and label volume sizes are comparable

such that even if the labels have the same name, they might not completely overlap

in MNI space. For example, the corticospinal tract is named the same in both atlases

but they do not completely overlap. In fact, corticospinal tract defined in Juelich atlas

overlaps with parts of corona radiata and internal capsule defined in JHU, whereas

corticospinal tract defined in JHU atlas is located in the brainstem that its superior

label is internal capsule, which is followed by corona radiata. Superior longitudinal

fasciculus also named the same in both atlases that in Juelich atlas the size of the tract

is smaller than the tract defined in JHU atlas, and only central part of the tract is

labeled in Juelich atlas, whereas in JHU atlas, the tract is defined including fiber ends

connecting to the gray matter surface. Another example is the corpus callosum, which

is labeled as a whole in Juelich atlas whereas in JHU, it is divided into three regions as

the genu, the body, and the splenium of corpus callosum. Cingulum (cingulate gyrus)

is the only bundle that has a similar size and shape in both atlases, and their regions

mostly overlap, except that in JHU, cingulum has two different divisions: cingulate

gyrus and hippocampus, such that the cingulate gyrus part is the superior part of

the cingulum that it lies between the frontal lobe and the temporal lobe of brain

whereas the hippocampus part starts from the temporal region of the brain and reaches

to the hippocampus that this part is not defined in Juelich atlas. Because of the

aforementioned differences between these two atlases, we considered WM regions from

both atlases separately and we presented the statistical results respectively in different

tables and figures.

Statistical significance tests were performed on each map, which were registered

onto the MNI space. In these tests we compared mean values of the given measure over

each atlas region for the healthy controls (HC), schizophrenia (SCH) and bipolar (BP)

patients. First the one-way ANOVA method was used considering the mean values of

the aforementioned measures including the proposed macroscopic dispersion measure.

Then, post-hoc tests were performed only for the significant inter group differences.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3 Whisker-Box plots comparing means of the dispersion measure between the healthy
controls (HC), schizophrenia (SCH), and bipolar (BP) group that the difference between the groups
is statistically significant for the given WM region of Juelich atlas. Bonferroni corrected statistical
significance score is depicted using stars where * means p < 0.0029, ** means p < 0.0006, and ***
means p < 0.00006. We exclude whisker-box plots of WM regions for which the difference between
the groups is not significant (p > 0.0029).

In fact, there was at least one significant difference in most of the considered atlas

regions, so that ANOVA test discards only certain JHU atlas regions. Posterior part

of the internal capsule, anterior part of corona radiata, and thalamic radiation were

the regions for which the difference between groups was not statistically significant.

For each post-hoc analysis, that the atlas region is given, measured mean values of

each group was first tested for normality and if both groups were normally distributed

we used unpaired t-test, otherwise we used Mann-Whitney rank-sum test to obtain a

significance score (p-value) of the compared groups. Since we performed multiple com-

parisons we used Bonferroni corrected p-value threshold (0.05 divided by the number

of atlas regions) to label the comparison that the given atlas region possesses a signif-

icant discrimination for the disease. Significant atlas regions were given in Table 4.1

and Table 4.2 such that the significant p-values were highlighted by using boldface font

and non-significant p-values were leaved empty, whereas p-values which were greater
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.4 Whisker-Box plots comparing means of the DAI measures (FA, RD, AD, and ADC)
between the healthy control (HC), the schizophrenia (SCH), and the bipolar (BP) group that the
difference between the groups is statistically significant for the given WM region of Juelich atlas.
Bonferroni corrected statistical significance score is depicted using stars where * means p < 0.0029,
** means p < 0.0006, *** means p < 0.00006, and **** means p < 0.000006. We exclude whisker-box
plots of WM regions for which the difference between the groups is not significant (p > 0.0029).

than the corrected threshold and less than 0.05 was mentioned in the tables just for

an insight.

Given the Table 4.1 and Figure 4.3, the proposed dispersion measure was found

to be a candidate descriptive feature for comparing the bipolar and the control group

considering most of the Juelich atlas regions. Compared to the healthy controls, it

was observed that the dispersion value was decreased in bipolar group for the collosal

body, the right optic radiation, and the right and the left superior occipito-frontal

fascicle, as depicted in figures 4.3(a), 4.3(b), 4.3(c), and 4.3(d) respectively, whereas

the bipolar group had significantly increased dispersion in both hemispheres of the

cingulum and the inferior occipito-frontal fascicle, as depicted in figures 4.3(e), 4.3(f),

4.3(g), and 4.3(h) respectively. Comparing the differences between schizophrenia and

bipolar group, for the proposed dispersion measure there was a significant decrease in

the region of the callosal body, and the left superior occipito-frontal fascicle (figures
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4.3(a) and 4.3(d)). Furthermore, we also observed in Figure 4.3 that none of the Juelich

atlas regions were sensitive to the changes in the proposed dispersion measure for

discrimination of the healthy control and the schizophrenia groups. However, statistical

test score of the right cingulum comparing schizophrenia and control group was (given

in Table 4.1 as 0.0062) at the boundary of Bonferroni corrected threshold that there

was an insight of an increase in dispersion, which was shown Figure 4.3(e).

In terms of DAI measures, significance scores between the groups were given

in Table 4.1 for the given Juelich atlas regions. For the right inferior occipito-frontal

fascicle, bipolar group had significantly decreased FA and significantly increased RD

and ADC compared to the healthy controls. We, here, mention again that the change

in the dispersion measure was also found to be significant in both the right and the left

inferior occipito-frontal fascicle. The only significant region, comparing schizophrenia

and healthy control groups, was the right superior longitudinal fascicle that significantly

increased ADC (p = 0.0005) was observed.

Increased AD in the left corticospinal tract in the bipolar group compared to

the healthy control group was found to be significant (p = 0.0019). Comparing the

bipolar with the schizophrenia group, we observed significantly decreased AD in both

the left (p = 0.0003) and the right (p = 0.0009) superior longitudinal fasciculus, and a

significantly increased RD in the right inferior occipito-frontal fascicle (p < 0.0001) as

well. We also reported a slightly increased AD in the schizophrenia group compared to

the healthy controls for both sides of superior longitudinal fasciculus that p-values were

0.0032 and 0.0221 respectively for the left and the right side, though the difference was

not significant considering the Bonferroni corrected threshold.

As we have described the statistical comparison results of the diagnostic groups

for the Juelich atlas regions, similar experiments followed considering JHU atlas regions

as well. Statistical results from the JHU atlas regions were given in Table 4.2. In Figure

4.5, Whisker-box plots of the proposed macroscopic dispersion were depicted for the

given region that the change is found to be significant, whereas we only stated the

change of significant DAI measures for the selected regions.
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The corpus callosum was labelled separately as genu, body, and splenium in

the JHU atlas. In Figure 4.5(a) and (b), whisker-box plots show that there was a

decreased dispersion in the body and the splenium of corpus callosum for the bipolar

group compared to the healthy controls. We here mention again that the change in

dispersion measure over the callosal body defined on Juelich atlas was also significant

for the bipolar and the healthy control group comparison noting that the callosal body

in Juelich atlas covers also the genu and the splenium. Since, the statistics of the

dispersion obtained for schizophrenia and healthy control groups were similar in Figure

4.5(a), and the change was statistically non-significant, there was also a statistically

significant decrease in the dispersion measured over the body of corpus callosum for

the bipolar group compared to the schizophrenia group. Considering Figure 4.3(a)

together with Figure 4.5(a) and (b), statistical significance pattern of Figure 4.3(a)

was similar to the Figure 4.5(a) which indicates decreased dispersion was observed for

the callosal body, however this could not be generalized for the genu of corpus callosum

for which the change in dispersion was not significant.
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(a) (b) (c) (d)

(g) (h) (i) (j)

(f) (k) (l)

Figure 4.5 Whisker-Box plots comparing means of dispersion measure for different WM regions from
JHU atlas between healthy controls (HC), schizophrenia (SCH), and bipolar (BP) group. Bonferroni
corrected statistical significance score is depicted using stars where * means p < 0.0016, ** means
p < 0.0003, *** means p < 0.00003, and **** means p < 0.000003. We exclude whisker-box plots of
WM regions for which the difference between the groups is not significant (p > 0.0016).

Unlike the Juelich atlas, in JHU, the corticospinal tract is labeled as the region

not being beyond the brainstem. Therefore the statistical results were different for

each atlas. The dispersion statistics of the corticospinal tract were depicted in Figure

4.5(c) and (d) for the right and the left side respectively, where there was a significant

decrease for both sides comparing the bipolar group with the healthy controls. Since

the change in dispersion was not significant to differentiate the schizophrenia and the

healthy control groups, there exists a distinction in dispersion measure for the bipolar



37

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6 Whisker-Box plots comparing means of DAI measures (FA, RD, AD, and ADC) for
different WM regions from JHU atlas between healthy controls (HC), schizophrenia (SCH), and bipolar
(BP) group. Bonferroni corrected statistical significance score is depicted using stars where * means
p < 0.0016, ** means p < 0.0003, and *** means p < 0.00003. We exclude whisker-box plots of WM
regions for which the difference between the groups is not significant (p > 0.0016).

and the schizophrenia group comparison that dispersion was decreased significantly

(p < 0.0016) for the bipolar group compared also to the schizophrenia group.

The external capsule defined in JHU atlas partially overlaps with the inferior

occipito-frontal fascicle defined in Juelich atlas. As it might be expected, comparing the

Figure 4.3(g-h) and the Figure 4.5(g-h), we observed similar changes in the dispersion

for the external capsule and the inferior occipito-frontal fascicle that, independent of

lateralization, there was a significant increase in the dispersion for the bipolar group

compared to the healthy control group, whereas the change in dispersion was not
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significant for the schizophrenia-healthy control and the bipolar-schizophrenia group

comparisons.

Cingulate gyrus is the gray matter region from which the cingulum bundle

projects, so that the bundle overlies the corpus callosum [66]. In JHU, cingulate gyrus

part of the cingulum is separated from the hippocampus part of the cingulum, where

the cingulate gyrus part mostly overlaps with the cingulum defined in Juelich atlas,

and the statistical results were similar for both atlas regions as depicted in Figure

4.3(e-f) and Figure 4.5(i-j). Therefore, we reproduced that increased dispersion was

observed in the cingulum (cingulate gyrus) defined in JHU atlas, for the bipolar group

compared to the healthy control group. Here, in Figure 4.5(i), we also observed sig-

nificantly increased dispersion (p = 0.0016) comparing the schizophrenia group with

the healthy control group in the right cingulum, for which the significance test score of

the increased dispersion in the right cingulum defined in Juelich atlas was 0.0062 for

the schizophrenia-healthy control group comparison, which was given in Table 4.1 and

depicted in Figure 4.3(e).

Besides, considering the proposed dispersion measure, a slight but significant

decrease was observed in the left superior corona radiata and the right superior lon-

gitudinal fascicle comparing the bipolar group to the healthy controls as depicted in

Figure 4.5(f-k). In addition, we reported in the Table 4.2 that the statistical test score

for the change of the dispersion in the right superior corona radiata and the left su-

perior longitudinal fasciculus were 0.0044 and 0.0071 respectively, which are very close

to the Bonferroni corrected threshold of 0.0016 selected for JHU experiment. There-

fore, it could be inferred that the decrease of the dispersion in the superior corona

radiata and the superior longitudinal fasciculus might be independent of the lateral-

ization. There was also a significant decrease in the left superior fronto-occipital fasci-

culus (p = 0.0013) comparing the bipolar group to the schizophrenia group, noting for

the same tract that the decrease of dispersion for the bipolar group compared to the

healthy controls might also be significant considering the obtained test score of 0.0023.
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Statistical test results of the change in DAI measures were reported as the p-

values in Table 4.2. For the right and the left retrolentucilar part of the internal

capsule, there was a significant decrease in FA comparing the bipolar group to the

healthy controls, where the p-values were 0.0004 and 0.0010 respectively. We also note

from Table 4.2 that there was also an insight of a similar difference in FA considering

the comparison of the bipolar and the schizophrenia groups that statistical test scores

were 0.0056 and 0.0029 for the left and the right side respectively.

Compared to the healthy control group, an increased ADC for the bipolar group

was observed in the body and the splenium of the corpus callosum such that the

significance test scores were p < 0.0003 and p = 0.0001 respectively. Considering

the ADC measure and schizophrenia-healthy control group comparison, we observed

significant change for two different JHU atlas regions, the right posterior corona radiata

(p = 0.0003) and the right sagittal stratum (p = 0.0008), that there was a significant

increase. As for ADC, an increased RD was observed in the body and splenium of the

corpus callosum ( p < 0.0001 and p = 0.0007 ) for the comparison of the bipolar group

with the healthy control group. As there was an increased ADC in the right posterior

corona radiata for the schizophrenia group compared to the healthy controls, RD value

in this region was also increased significantly (p = 0.0004) for the same comparison.

Hence, we observed another similar change pattern for ADC and RD measures in the

right posterior corona radiata for the schizophrenia-healthy control group comparison.

In the right superior longitudinal fasciculus and the left retrolenticular part of internal

capsule, only the difference between the bipolar and the schizophrenia group was found

to be significant for AD measure (p values are p = 0.0003 and p = 0.0004 respectively),

where there was a decreased AD in bipolar group.

We note that, considering the superior longitudinal fascicle defined in Juelich

atlas, AD was decreased in both the left and the right sides. AD measure was also

found to be significant for the bipolar-healthy control group comparison in the body of

corpus callosum, such that there was an increased AD (p = 0.0002) in bipolar group.

We also note that, AD, RD and ADC measures were both increased in the body of

corpus callosum for the bipolar-healthy control group comparison.
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4.4 Discussions

We proposed a method to generate a novel 3D map of a macroscopic feature

of the brain that the intensity of each voxel in the proposed map is a cumulative

information showing the degree of the deviation of WM structure far beyond the voxel.

We also hypothesized that there might be WM regions such that the dispersion map

of the region is useful to discriminate disease groups from the healthy controls.

It is known that the structural brain connectome is produced together with false

positive connections [67]. However, at macro scales, the effect of weak connections

found to be inconsequential as for the graph theoretical analysis [68]. Therefore, the

tractogram is an important information source to be used as an input for the structural

analysis of the brain. The proposed method intentionally considers the tractogram as

an input and reconstructs a 3D map of the brain such that the proposed macroscopic

dispersion is increased as the voxel locally having an increased fiber complexity so

that the tracked fibers elongate from the local region into different directions and

get dispersed at macro scales. One of the major strengths of the proposed method

is that the macroscopic dispersion measure is also capable of detecting macroscopic

characteristics of kissing fibers for which the fibers while locally coherent disperse

gradually at macro scales.

Based on the previous dMRI studies on psychiatric disorders, structural ab-

normalities are identified frequently with reduced FA, and increased RD and AD in

frontal and frontal associative brain WM regions such as cingulum, inferior occipito-

frontal fasciculus and corpus callosum [69].

Consistent with the proposed hypothesis, we examined in the real dMRI exper-

iments that macroscopic dispersion is also informative, together with the local dMRI

measures, to distinguish disease groups, especially for the delineation of bipolar sub-

jects and healthy controls. The implication for our findings is that greater dispersion

obtained in cingulum and inferior occipito-frontal fasciculus might reflect an increased

connectivity in the frontal or frontally associative brain WM regions, which is also
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agreed with previous schizophrenia and bipolar studies that report increased activity

in dorsolateral and prefrontal cortex [70], [71], [72]. Our data confirm a statistically

significant relationship between increased dispersion measure and schizophrenia only

in the right cingulum. For the bipolar disease, our findings report increased disper-

sion in cingulum and inferior occipito-frontal fasciculus, which implicated an increased

connectivity, however there is a decreased dispersion in corpus callosum and superior

occipito-frontal fasciculus that a decreased connectivity is thought to be implicated for

these regions. We here cite a microsurgical study of Türe et. al. [73] that they proposed

the fiber fasciculus of the occipital lobe do not reach to the frontal lobe. Their findings

were recently replicated by other research groups [74], [75], hence the decreased dis-

persion in superior occipito-frontal fasciculus might not necessarily disagree with the

previously reported hypothesis of the increased connectivity of psychosis in prefrontal

regions. For the corpus callosum, considering the body of the region defined in JHU

atlas, decreased dispersion might implicate decreased structural connectivity between

the right and left hemispheres of the brain. Interestingly, in the genu of corpus cal-

losum, which connects medial and lateral surfaces of the frontal lobes, none of the

selected diffusion measures is found to be significant for the discrimination. We note

that previous dMRI studies of the bipolar disease also reported abnormal change in

corpus callosum [76], [77], where our data confirm this also with increased ADC, RD,

and AD.

Considering brain WM labels defined in JHU atlas, our results are consistent

with the results of Juelich atlas regions for the partially overlapping regions such as

external capsule (partially overlaps with inferior occipito-frontal fascicle) and cingulum,

where there is a significant increase in dispersion for the bipolar-healthy control groups

comparison. However, as we observed decreased dispersion in the corticospinal tract

of JHU atlas for the bipolar group, the change in dispersion is not significant for the

region defined in the Juelich atlas, where the tract is defined as a bundle which connects

brain stem and precentral gyrus in the frontal lobe. In other words, the regions are

different from each other, such that in JHU atlas the label is located in the region of

the brain stem, and the upper part of the tract is labeled as cerebral peduncle followed

by internal capsule and corona radiata. Therefore, we considered all the subdivisions of
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the corticospinal tract defined in JHU atlas together, such that significantly decreased

dispersion is observed in corticospinal tract and superior corona radiata, except from

that, the change in dispersion is not significant in the cerebral peduncles and internal

capsule. This implies that decreased structural connectivity exists only for the lower

and the upper part of the bundle. Our findings on the corticospinal tract is consistent

with a recent study which reports reduced motor activity in a bipolar group [78].

Noting that the superior longitudinal fasciculus defined in Juelich atlas is smaller

and located in the central part of the hemisphere compared to the region defined

in JHU atlas, there was no significant difference between the groups considering the

region in Juelich atlas. On the other hand, in the superior longitudinal fasciculus

(defined in JHU atlas), which connects frontal, occipital, parietal, and temporal lobes,

a decreased dispersion observed for the bipolar group suggests that there might be

a decreased structural connectivity between the aforementioned lobes, which is also

previously reported to be significant for the deficits in bipolar groups [77], [76], [79].
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5. SEGMENTATION OF THE CINGULUM STRUCTURE

USING DISPERSION MAP

To admit the technical motivation of the thesis, macroscopic dispersion map

shows distinct contrast between certain white matter structures such as cingulum which

is a partially coherent pathway interconnecting many cortex regions from posterior to

anterior parts of the hemisphere. It runs superior to corpus callosum both at the right

and left hemispheres. A part of the bundle is coherent to some extent from which

few short association fibers run towards the cortex at certain regions. Recent studies

subdivide the cingulum bundle into different parts considering multiple information re-

sources including region of interest based tractography [80], [81]. Therefore tractogram

is an important data to define cortical and subcortical regions that the cingulum bun-

dle interconnects. Since macroscopic dispersion is a tractogram based measure, there

is a bundle specific contrast in the dispersion map (Figure 5.1). In this chapter we

proposed a framework for active contour based segmentation of the coherent region in

the cingulum. The aimed region corresponds to the mid-anterior, mid-posterior, and

post-dorsal neighbours of cingulate gyrus [82]. Therefore, quantitative performance of

the segmentation results are compared to labels of cingulum at JHU atlas which cov-

ers the aimed region. Results are demonstrated also qualitatively supporting that the

segmentation result could be used as a seed for tractography of the cingulum bundle.

5.1 Dataset

Experiments were performed using Human Connectome Project (HCP) dataset.

10 subjects were chosen among HCP 900 Subject Release with the following subject ids:

[100610, 102311, 102816, 104416, 105923, 108323, 109123, 111312, 111514, 114823].

Siemens 3T Connectom scanner was used for imaging of diffusion and T1 weighted

images having isotropic spacing (1.25 mm) and the image size of 145 × 174 × 145.

Diffusion weighted images have 18 b ≈ 0 images and three different b-value shells

(b ≈ 1000, b ≈ 2000, b ≈ 3000) that each shell sphere was sampled in 90 different
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(FA) (Mean b0)

(Coherence (inverse dispersion))

Figure 5.1 A comparison of the coherence (inverse dispersion) map in contrast to mean b0 and FA
map.

directions. We used preprocessed images that are corrected for bias field, eddy current,

and motion.

5.2 Segmentation framework

For segmentation of cingulum we used ITKSnap tool in which there is an im-

plementation of active contour segmentation method [83]. The left and right cingulum

were segmented separately. First, a box ROI covering all parts of the cingulum was

located. Then, inside and outside cingulum regions were marked with two different

label colors manually for a set of classification. As a result, a speed map was computed
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(a) (b)

(c)) (d))

Figure 5.2 Active contour segmentation framework: (a) Pre-segmentation, (b) Spherical seed ini-
tialization, (c) Contour evolution step 64, (d) Contour evolution step 326.

and displayed to be used for contour evolution. Then a small seed contour is initialized

on the cingulum. The next step is to start the evolution steps following the contour

evolution using the Eq. 5.1, where Ct defines a contour at time step t, g(I) is the speed

image obtained from the gradient of the dispersion map (I), κ is the mean curvature

of the contour, and −→η is the normal vector of the contour. We used default values for

α and β as α = 1.0 and β = 0.2

Ct = (αg(I)− βκ)−→η (5.1)
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After certain evolution steps, where the step size is 1.0 mm, contour speed was

slowed, and at about 300th step the contour had its almost final shape which was saved

as a segmentation result.

5.3 Results and Discussions

For the qualitative performance of the segmentation framework, all the segmen-

tation maps were transformed to the MNI atlas space and a mean image of the maps

were shown in Figure 5.3. Besides, overlap statistics were given in Table 5.1 which

includes dice overlap ((2 ∗ vol(A ∩B))/(vol(A) + vol(B))) metric comparing each seg-

mentation with the cingulum region defined in JHU atlas [65]. These results show that

the inverse dispersion (coherence) map could easily be used to segment mid-anterior,

mid-posterior and post-dorsal parts of the cingulum bundle. Mean segmentation maps

qualitatively similar to the JHU cingulum maps for both sides, however there is a left

greater than right asymmetry in HCP dataset. Therefore, overlap ratio is greater in

the right cingulum.

Aim of this segmentation framework is to demonstrate that there is a high dis-

persion contrast between the cingulum and its neighbouring structures such as corpus

callosum. In addition, the anterior part of cingulum runs more dispersively that the

dispersion is more higher in the mid part than the anterior or dorsal part of cingulum.

It could be shown with the tractography of the cingulum that our segmentation frame-

work could be used as a seed ROI to delineate the cingulum bundle from the whole

brain tractogram. The proposed segmentation framework could also be followed on

other coherent bundles such as the genu and the splenium of corpus callosum.
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(a) Mean segmentation map (left) (b) Mean segmentation map (right)

(c) Left cingulum (d) Right cingulum

Figure 5.3 Mean segmentation image of 10 HCP Data.
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Table 5.1
Overlap statistics of cingulum segmentation using inverse dispersion map.

Left Cingulum

ID Overlap Seg. Vol. JHU Vol. Dice Coeff. Overlap/(Seg.) Overlap/JHU

100610 1044 2144 2751 0.4265 0.4869 0.3794

102311 984 2317 2751 0.3883 0.4246 0.3576

102816 993 1996 2751 0.4183 0.4974 0.3609

104416 1272 2942 2751 0.4468 0.4323 0.4623

105923 1180 2555 2751 0.4447 0.4618 0.4289

108323 846 1821 2751 0.37 0.4645 0.3075

109123 823 1535 2751 0.384 0.5361 0.2991

111312 1140 2252 2751 0.4557 0.5062 0.4143

111514 1180 2297 2751 0.4675 0.5137 0.4289

114823 746 1450 2751 0.3551 0.5144 0.2711

Mean Seg. 1629 3539 2751 0.5179 0.4602 0.5921

Right Cingulum

ID Overlap Seg. Vol. JHU Vol. Dice Coeff. Overlap/(Seg.) Overlap/JHU

100610 1261 1906 2342 0.5936 0.6615 0.5384

102311 843 1465 2342 0.4428 0.5754 0.3599

102816 956 1886 2342 0.4522 0.5068 0.4081

104416 741 1373 2342 0.3989 0.5396 0.3163

105923 882 1515 2342 0.4573 0.5821 0.3766

108323 1034 1511 2342 0.5367 0.6843 0.4415

109123 1063 1706 2342 0.5251 0.623 0.4538

111312 1267 2283 2342 0.5478 0.5549 0.5409

111514 1085 1771 2342 0.5275 0.6126 0.4632

114823 851 1458 2342 0.4478 0.5836 0.3633

Mean Seg. 1655 3227 2342 0.5943 0.5128 0.7066
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6. CONCLUSION AND FUTURE PERSPECTIVES

In this thesis we first addressed quantification issues of the brain wiring dia-

gram and we proposed that macroscopic characteristics of the brain tractogram would

provide information about abnormal clinical cases which are difficult to diagnose us-

ing imaging modalities. Characteristics of the brain white matter fibers were mostly

inferred using the statistics of the microscopic diffusion measures obtained from the

delineated bundle of interest discarding the complex and sometimes distinctively insep-

arable shape characteristics. Besides it is sometimes impossible to label a voxel where

there are crossing regions. Therefore we have demonstrated a method to quantify

macro-structural interconnectivity for a given voxel using its macroscopic dispersion

profile without considering its anatomical label. Hence, the proposed method for the

macroscopic dispersion statistics employed for the whole WM voxels to compute a novel

structural map that is named as the macroscopic dispersion map of the brain. Our

contributions have both clinical and technical outcomes.

As a clinical application, macroscopic dispersion reveals that the macroscopic

interconnectivity, which could not directly be inferred in local diffusion measurements,

might be different in the case of psychosis. In Chapter 4, it is shown that the macro-

scopic dispersion changes might be a certain characteristic of bipolar disorder. In-

creased or decreased macroscopic dispersion might be related to the functioning mech-

anisms of the abnormalities in such cases. In addition, similar changes were also ob-

served in schizophrenia as we have observed slightly increased macroscopic dispersion

in the right cingulum.

The macroscopic observations reported in this thesis motivate us to have further

investigations in a large dataset, such as HCP dataset, so that we could observe more

reliable macroscopic dispersion statistics of a normal cohort for each bundle. This

study would be a reference for normal values of macroscopic dispersion to compare

with abnormal cases.
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Another further contribution of the proposed method would be observed if it is

used in a disease classification problem as an input together with other neuroimaging

markers. The results of such an experiment would demonstrate the performance of the

proposed measure when it is combined with the microscopic measures.

There are many clinical parameters, such as severity of the disease, duration

from the onset of the disease, and medication usage, which should be considered to-

gether with the macroscopic dispersion changes to investigate further details of the

macroscopic progression of the diseases with the clinical observations.

Distinctive geodesic shape of the brain white matter fibers is also a unique source

for the technical applications. Our findings suggest that the proposed macroscopic

dispersion measure is an informative map for technical challenges. We emphasized

its contrast characteristics compared to local measures in Chapter 5 for the cingulum

by proposing an active contour based segmentation framework which uses solely the

macroscopic dispersion map. Since the parcellation of the brain in an atlas is an

average result from many subjects, it could not be considered as ground truth but one

further investigation would be to compare the segmentation results with the expert

guided segmentation of the cingulum. Another qualitative validation study could be

performed considering the segmentation results for seeding the tractography of the

cingulum bundle.

The macroscopic dispersion becomes more than 1.0 at points having a complex

fiber profile. For these cases the proposed iterative end point clustering approach might

produce uncertain results and it would require an optimization scheme to perform

several initialization steps to optimize the clustering using the minimized macroscopic

dispersion. This investigation might be necessary if a filtering is required for the

produced dispersion map.

Overall, we have demonstrated a macroscopic biomarker which should also be

informative for other clinical applications where there might be white matter abnor-

malities such as Parkinson’s disease. We also emphasize that there might be future
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advances in macroscopic measures of tractogram. These measures should improve the

understanding of the characteristics with the neurological meaning and its sensitivity

to the changes in white matter. The tractogram is mostly sampled as fibers defined

with a set of consecutive points. There might be new sampling and transform models

that produce high dimensional macroscopic characteristics of the fibers. Definition of

smart convolution kernels for the tractogram might also contribute to the technical

advances as needed in the deep learning methods.
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APPENDIX A. GAUSSIAN PROCESS BASED

MACROSCOPIC DISPERSION

Gaussian process based representation of the fiber leads to a different kind of

dispersion computation [84], such that the normalized inner product of two Gaussian

processes (< Gi, Gj >) gives, oppositely, a coherence measure that ranges from 0.0

to 1.0. Gi is the Gaussian process representation of the truncated fiber i which is in

the set of fibers passing through a voxel. For the Gaussian process based approach,

we defined dispersion in Eq. A.1 as the average value of all pairwise coherence values

subtracted from 1.0.

δg = 1.0− 1

N(N − 1)/2

N−1∑
i=0

N−1∑
j=i+1

< Gi, Gj >

‖Gi‖‖Gj‖
(A.1)

We note that, for the experiments depicted in this chapter, end points based

dispersion was defined without considering a normalization factor of R as we used in

Section 3.1. Here, the end points based dispersion was defined as in Eq. A.2.

δp =
1

N

N−1∑
i=0

1

2
(‖(X(s)

i −X(s)
c ‖2 + ‖(X(e)

i −X(e)
c ‖2) (A.2)

Figures [A.2,A.3,A.4,A.5] shows the dispersion maps of the datasets depicted in

Figure A.1 for different values of the tuning parameters: radius of truncation sphere,

R, and the radius of sphere ROI, r. The increasing value of r blured the dispersion map

by including more number of fibers passing through the neighbouring voxels. Whereas

the increasing value of R increased the contrast of the dispersion map. Therefore, we

need to truncate fibers to discard the effect of fiber length in dispersion measure. Note
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that, both of the proposed approaches for the dispersion measure were independent of

the fiber length, however the fiber length indirectly increases the dispersion contrast.

Synthetic datasets were tested for both end points based and GP based approaches

and the results were similar but there was a limiting issue with the computation times,

such that GP based approach requires more computation time. For example, the

computation of a dispersion map on a crossing dataset was completed in ≈ 10 seconds

and ≈ 14 minutes respectively for end points based and GP based approaches.

(90-degree crossing fibers) (Crossing fibers)

Figure A.1 Two different crossing fibers datasets.
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Figure A.2 90 degree crossing fibers. Dispersion maps are obtained by the end points based approach.
Each row image is obtained by setting the radius of truncation sphere, R ∈ {4, 6, 8} (top to bottom),
and each column image is obtained by setting the radius of sphere ROI r ∈ {1, 2, 3} (left to right).
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Figure A.3 90 degree crossing fibers. Dispersion maps are obtained by the GP based approach.
Each row image is obtained by setting the radius of truncation sphere, R ∈ {4, 6, 8} (top to bottom),
and each column image is obtained by setting the radius of sphere ROI r ∈ {1, 2, 3} (left to right).
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Figure A.4 Crossing fibers. Dispersion maps are obtained by the end points based approach. Each
row image is obtained by setting the radius of truncation sphere, R ∈ {4, 6, 8} (top to bottom), and
each column image is obtained by setting the radius of sphere ROI r ∈ {1, 2, 3} (left to right).
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Figure A.5 Crossing fibers. Dispersion maps are obtained by the GP based approach. Each row
image is obtained by setting the radius of truncation sphere, R ∈ {4, 6, 8} (top to bottom), and each
column image is obtained by setting the radius of sphere ROI r ∈ {1, 2, 3} (left to right).
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APPENDIX B. A TOOL FOR THE MACROSCOPIC

DISPERSION

Recently we released a publicly available graphical user interface tool with the

name of “BWMExplorer” for the proposed macroscopic dispersion. It can be down-

loaded from https://bitbucket.org/_ali_demir/. It requires a reference nifti image at

diffusion space and a tractogram file in TRK format. Then, the program computes the

macroscopic dispersion map and displays 3D fibers of pointed voxel together with the

computed macroscopic dispersion value printed on a text box. Right click on the axial,

sagittal or coronal MR images update the 3D view and compute and display dispersion

statistics for the on clicked voxel. “Ctrl+S” key press opens a dialog to save dispersion

map in nifti format.

There are different view options for the fibers of a voxel to view on or off the

truncation sphere, end point spheres, and trimmed or untrimmed fibers (Figure B.3)
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APPENDIX C. LIST OF PUBLICATIONS PRODUCED

FROM THE THESIS

1. A macro-structural dispersion characteristic of brain white matter and its appli-

cation to bipolar disorder, A. Demir, M. Özkan, A. M. Uluğ, " IEEE Transactions

on Biomedical Engineering, Vol. 00, pp. 1-8, June, 2020.
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