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ABSTRACT

ALTERNATE REPRESENTATIONS OF DYNAMIC
PROPERTIES AND LOADING

This study covers three main topics, which are directly related to dynamic behaviour
of structures, namely, representation of mass, damping and loading. These three properties
of equation of motion are generally represented by widely accepted approaches. In this
thesis, such representations are discussed via comparisons with infrequently used
representations and viability of them is investigated. For case study, 50-story core wall

structure is chosen.

First topic discussed here is mass representation. Indisputably, the most accepted
assumption for mass representation is lumped mass approach, which is very practical to
construct the matrix or, at least, easy to understand the concept of. Another representation,
not common one, consistent mass approach derived by a similar procedure in the method
for derivation of stiffness coefficients. Consistent mass matrix has off-diagonal terms as
distinct from lumped mass matrix. Since the core wall has a continuous form, it is
reasonable to represent its mass distribution with consistent mass approach, which takes
into account coupling terms. Effects of consistent mass representation on dynamic

response of a 50-storey core-wall tall building are investigated.

Second one is damping property which may be evaluated as one of the most
controversial aspects of structural dynamics. As it is not possible to derive a damping
matrix from the element cross section properties and material properties directly,
proportional viscous damping matrix is generally used instead, which is defined in terms of
modal damping ratios at certain anchor frequencies. However, viscous damping model has
a significant deficiency associated with the energy mechanism. Studies based on
experimental data show that dissipated energy per cycle of an oscillating system is
essentially independent of the excitation frequency as opposed to dependency inherent in



vii

the viscous damping model. Such damping model is called rate-independent or structural
damping, which is conveniently modelled in the frequency domain through complex
stiffness matrix. One of the aims of this study is to observe the effects of such an alternate
damping model on the linear seismic response of a tall building. To this end, a 50-story
core-wall tall building system is investigated. Drift and total acceleration response
characteristics for a set of earthquake records are obtained from the analyses conducted

through Fourier Transform.

Last concept, probably the most innovative idea of this study, is related to loading
part of equation of motion. It has been long applied that ground accelerations are used
directly as force by multiplying floor masses, eventually, relative response quantities are
obtained. The underlying idea of this loading concept is based on pseudo-static
transmission assumption, which presumes that base displacement, in any time instant, is
transmitted throughout building statically and naturally, such movement does not deform
the structure. One of the aims of this study is to investigate viability of this concept. The
motivation is based on the idea that if the building is tall enough, is it possible to be
transmitted of base displacements throughout the building without generating any
significant deformation? For this reason, absolute response and relative response quantities
of the 50-story core-wall are obtained by using acceleration and displacement loading

concepts respectively. Comparative results are given at the end.
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OZET

ALTERNATIF DINAMIK PARAMETRELERIN VE DEPREM
YUKLEMESININ DEPREM DAVRANISINA ETKILERI

Bu calisma, yapilarin dinamik davramisimi dogrudan etkileyen kiitle, soniim ve
deprem yiiklemesi parametrelerinin alternatif modellerini kapsamaktadir. Hareket
denkleminin bu {i¢ terimi, genellikle tiim diinyada kabul goren bazi temel yaklasimlarla
temsil edilmektedir. Bu tez kapsaminda, dinamik parametrelerin temsilleri i¢in farkli
yaklagimlar kullanilmis ve yapilarin sismik tepkisine olan etkileri karsilagtirmali olarak

incelenmislerdir.

Bu ozelliklerden birincisi, yapidaki kiitle dagilimmin modellenmesi ile ilgilidir.
Kiitle dagilimi icin tartismasiz en ¢ok kullanilan yontem; pratik kullanimi1 ve anlagilmasi
kolay olmasi nedeniyle yigili kiitle modelidir. Kiitle temsili i¢in kullanilan diger bir
yontem ise, uyusumlu kiitle yaklasimidir. Bu yontemde; rijitlik katsayilarinin tiiretilmesine
benzer sekilde kiitle katsayilar1 elde edilmektedir. Uyusumlu kiitle matrisinde, y181l1 kiitle
matrisinden farkli olarak, kosegen dis1 katsayilar da bulunmaktadir ki bu katsayilar
sistemdeki kiitlelerin hareketlerinin birbirine bagimli oldugunu ifade etmektedir. Ornegin,
bir betonarme ¢ekirdek perdenin siirekli bir yapiya sahip oldugu disiintildiigiinde,
uyusumlu kiitle modelini kullanmak bu tip bir yap1 i¢in olduk¢a makul bir yontem gibi
goziikmektedir. Bu sebeple, bahsedilen kiitle modellerinin yapinin sismik tepkisine etkisi

50 katl bir betonarme ¢ekirdek perde yapisi analiz edilerek incelenmistir.

Ikinci 6zellik, belki de yap: dinamiginin en karmasik konularmdan biri olarak
sayilabilecek olan soniim parametresidir. S6niim matrisini, elemanin mukavemet ve/veya
malzeme Ozelliklerinden elde etmek miimkiin olmadigindan, genellikle “orantisal viskoz
sonim matrisi” kullanilmaktadir ki bu matris, belli iki frekansa atanilan modal sonim
oranina bagli olarak tamimlanmaktadir. Ancak, viskoz soniim modelinin enerji

mekanizmasiyla iliskili 6nemli bir eksigi vardir. Deneysel olarak elde edilen verilere



dayanan ¢aligmalar gostermektedir ki; titresen bir sistemin bir ¢evriminde tiiketilen enerji,
viskoz soniim modelinde ortaya c¢ikanin aksine, yiikleme frekansindan bagimsizdir.
Yapilarin gergek soniim davranisini modelleyebildigimiz bu soniim ¢esidi “frekanstan
bagimsiz yapisal soniim” olarak ifade edilmektedir ve ancak frekans diizleminde karmasik
sayilarla ifade edilebilen rijitlik matrisi ile uygun bir sekilde tanimlanabilir. Bu ¢aligmanin
amaclarindan bir tanesi, bu alternatif soniim modelinin yapilarin dogrusal sismik tepkisi
lizerine olan etkisini incelemektir. Ayni yap1 bu amag i¢in de analiz edilmis, goreli kat
Otelemesi ve mutlak ivme tepkileri bir takim deprem kaydi kullanilarak Fourier dontistimii

yontemi ile hesaplanmistir.

Bu tez kapsaminda incelenen son konu ise deprem yiiklemesiyle iligkili olup,
muhtemelen bu tezin igerdigi en yenilik¢i fikri kapsamaktadir. Yiikleme ile ilgili olarak
yaygin bir sekilde kullanilan yontem; yer ivmelerinin sistem kiitleleri ile g¢arpilarak
dogrudan yiik olarak yapiya etki edilmesi yaklasimia dayanmaktadir. Bu sekilde elde
edilen deprem yiiklemesi ile diferansiyel denklemin ¢6ziimii sonucunda rolatif
deplasmanlar elde edilmektedir. Bu ydntemin temelini olusturan fikir “sézde-statik
deplasman iletimi” varsayimina dayanmaktadir. Bu varsayim, herhangi bir andaki yer
deplasmaninin, ayni anda statik olarak yapinin her noktasina iletildigi diisiincesini kabul
etmektedir. Bu varsayimdan hareketle; sistem tiimiiyle 6telendiginden, dogal olarak bu gibi
bir hareket yapida bir deformasyona sebep olmaz. Bu ¢alismanin diger bir amaci, bu
varsayimin yiiksek bir bina i¢in gergekten gegerli olup olmadigini test etmektir. Bu sebeple
aynt yapt goreli ve mutlak yap: tepkileri hesaplanmak suretiyle analiz edilmis ve

karsilastirilmali sonuglar verilmistir.
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1. INTRODUCTION

Classical equation of motion consists of four terms, namely, inertial resistance,
damping resistance, structural resistance and seismic loading. Damping part has some
ambiguity due to its complex nature. Reliability of inertial resistance part is based on
proper distribution of mass. Loading part is based on pseudo-static transmission concept,
which may have some deficiencies in some cases. Therefore, this ambiguity and potential
deficiencies due to assumptions have been motivations of this study. It is worth to note that
issues mentioned above seem insignificant but we could have never known how significant

the effects of them, without examining.

1.1. Objective

They say “old habits die hard.” This dissertation is a product of an idea challenging
the statement mentioned above. The main objective is to investigate the effects of alternate
representations of dynamic properties and loading on seismic response and to compare the
results obtained by using ‘old habits’, that is to say, routine lumped mass approach,
proportional viscous damping assumptions and broadly-accepted acceleration loading

concept.

1.2. Scope of Work

Mechanical and cross sectional properties, modeling procedure, related drawings and

mass calculations are presented in Chapter 2.

Current mass distribution assumptions for structures, as follows, lumped mass
approach specified as translational, rotational inertia of structure and consistent mass

approach related to mass influence coefficients are given in Chapter 3.

Extreme cases for proportional damping approaches, Rayleigh damping assumption

and rate-independent (structural) damping concept are explained in Chapter 4.



Pseudo-static transmission and dynamically transmitted base loading assumptions,
derivation of equilibrium equations for displacement and acceleration loading cases are

given in Chapter 5.

Basics of response history analysis in time and frequency domain; modal analysis,

arbitrary loading, silent region and discrete Fourier concepts are summarized in Chapter 6.

Ground motion selection and scaling procedure presented in FEMA P-695 document

is explained and a set of far field ground motion records are listed in Chapter 7.

Combinations of dynamic properties and seismic loading are discussed extensively

and equations are derived for all combinations in Chapter 8.

Drift ratio and total acceleration responses of combinations are compared and

interpretations on results are given in Chapter 9.

In the last chapter, general results and effects of alternate representations are

evaluated.

All modeling and analysis process have been executed in “MATLAB” numerical
computing environment. All drawings except the ones indicated in Chapter 7 have been
drawn in “AUTOCAD”.



2. STRUCTURAL SYSTEM: CORE WALL TALL BUILDING

For the implementation of issues investigated in this thesis, as a structural system, a
50 story realistic 200 meter-long building is pre-designed (Figure 2.1). C40 concrete class,
of which properties are given below, is projected as material used for construction of the

building.

Mechanical Properties C40 Concrete Class:
E  :34000000 KN/m?

G  :14166667 KN/m?

A% :0.20

The system consists of a core wall in the middle, peripheral gravity columns and flat
slabs (Figure 2.2). Cross section of core wall is reduced gradually by each ten story
throughout the building. Height of the each story is constant along the building and it is 4
m. Whole system is rectangle in plan and perfectly symmetrical with respect to x and y

axes, excluding core wall. Dimensions of structural elements are given in Table 2.1 below.

Table 2.1. Dimensions of structural elements.

Slab Coupling | Coupling | Coupling Wall
Length Slfab Beam Beam Beam Length W_all
Story a_nd Thick. Length Height Width a_nd Thick.
Width (mm) (mm) (mm) (mm) Width | (mm)
(mm) (mm)
0-10 | 36000 250 2500 1750 1000 15000 | 1000
11-20 | 36000 250 2500 1750 900 14800 | 900
21 -30 | 36000 250 2500 1750 800 14600 | 800
31-40 | 36000 250 2500 1750 700 14400 | 700
41 -50 | 36000 250 2500 1750 600 14200 | 600

Since the building will be modeled as a stick, it is sufficient to present framework

plan of only first ten stories of the building in here. Framework plan and corresponding A-

A section drawing are illustrated in Figure 2.3 and Figure 2.4.
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Figure 2.1. 3D Model of building.



Figure 2.2. Parts of the buildings in 3D Model.
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Figure 2.3. Framework plan of first ten stories.
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Figure 2.4. A-A Section drawing represented first ten stories.

2.1. Stick Model

Considering framework plan of the building, it can be assumed that stiff core wall in
the middle of the structure governs dynamic behavior of whole building, that is to say, it is
reasonable to model only core wall system in order to represent the entire system.
Mathematical modeling of core wall system is generated by paying regard to finite element
procedures given in “Theory of Matrix Structural Analysis” by J. S. Przemieniecki [1].
For the sake of the simplicity, core wall is represented as stick model for implementation

of a set of response history analysis in frequency domain.

Based on the idea mentioned in the first paragraph, it can be claimed that whole floor
mass will mobilize together with the core wall in the translational direction. Therefore, it is
assumed that slab masses for each floor can be taken into account as if they are
concentrated on the center of the floor levels. The loads on slabs, given below, are taken
from ASCE 7-05 [2].

Loads on slab:
SDL: 2.0 KN/m?
LL: 2.4 KN/m?



Only 25% of masses coming from LL (Live Load) are included to concentrated slab

masses according to directions of ASCE 7-05 [2].

Table 2.2. Mass calculation of structural elements.

Mass
Net Slab Mass from Total | Mass .Of Wall | Total
Slab Mass | from Slab |Coupling
Area ® SDL LL Mass Beam Mass | Mass
(m?) (25%) (t) (t)
(®) o, | © | ©

1071 682 218 66 966 22 520 | 1508
1077 686 220 66 972 20 464 | 1456
1083 690 221 66 977 18 409 | 1404
1089 694 222 67 982 16 355 | 1353
1094 697 223 67 987 13 302 | 1303




Figure 2.5. 3D Model of core wall.
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As it is mentioned in previous part, core wall thickness is reduced 100 mm by each

ten floor along the building. Detailed sectional dimensions are given in Figure 2.3.

0 - 10th Story 11th - 20th Story
15000 14800
w w
o T — — o — - —
1000 200 =
00 g 3
& o
21st - 30th Story 31st - 40th Story
14600 14400
(=] (=]
2 g
_ U 4 of o U U1
800 700
2 2
w Te]

41st - 50th Story
14200

14200
|2500|

600

5850 ! ! 5850

:

Figure 2.6. Core wall cross sections with respect to floor levels.



3. REPRESENTATION OF MASS

11

Undoubtedly, representation of mass property of a structure plays a vital role for

performing of reasonable response history analysis. In this chapter, widely-accepted

lumped mass and consistent mass approaches are presented. Mass representation of the

building will be modeled in different ways using following approaches.

3.1. Lumped Mass Matrix Approach

Lumped mass assumption is the simplest way to model the mass of any structure.

The underlying idea of this concept is that entire mass of a structural element or just a

portion of that is assumed as concentrated at a point [3].

mY : mass of | portion of i'" element

m

oy

! md i
N-1

_ e

ARzi+2 I

| "2 e m{1)
1+1

I e nf®

i
2

1 m(21) m22)
S

@

(2) (M
Myt My

2 1
sl

(2) (1
mi My

Figure 3.1. Calculation of lumped masses.
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General simple procedure is illustrated in Figure 3.1. Elements are divided into two
portions, mass of each portion is assumed that is concentrated on the ends of the element.
Therefore, two lumped masses are occurred for each element, overlapping lumped masses
on the connection points are summed and attached to nodes. Finally, lumped masses are

obtained and they are depicted as in Figure 3.2.

.__N:.

® 6 o

2

1

Figure 3.2. Representative drawing of lumped mass system.

Since acceleration of mass in any joint produces inertial force only in that joint there
IS no any coupling term, that is to say, off-diagonal terms of matrix vanish [3]. If just one
translational degree of freedom is defined for each node, matrix representation of lumped

masses will be like this:

m, 0 0 0 0
0 : m 0 0 : 0
M=|0 : 0 my O : 0 (3.1)
0 ¢ 0 0 my, : 0
0 0 0 0 my
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Even if there is more than one degree of freedoms defined for each node, the same
mass matrix can be used for the analyses by eliminating rotational degree of freedoms

using static condensation procedure.

Not only translational mass but also rotational inertia terms can be defined and taken
into account in the same manner. Mass moment of inertia of a rigid rod can be calculated
as prescribed by Equation 3.2 [3]. Representative drawing of rotational inertia of a uniform

rigid rod is illustrated in Figure 3.3.

m= mxL (3.2
m, =m=* (L?/12) (3.3)
R
L/2
- 3 m=m ('/12)
] r
L/2

Figure 3.3. Calculation of mass moment of inertia.

For this case, mass matrix is diagonal again Equation 3.1, however, it will be double
size of total node numbers since there are two mass terms defined for each node:

translational, rotational lumped masses. Schematic drawing is presented in Figure 3.4.
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m®™ 0 0 0
o m® 0 0
0
0 0 m® 0
M = o (3.4)
0 0 0 m 0
0 0 0 0 m™ 0
0 0 0 0 0o m®™.
(N)
m, -
(o
R

Figure 3.4. Representative drawing of translational and rotational lumped mass system.

3.2. Consistent Mass Matrix Approach

Another mass assumption used for mass representation is consistent mass approach,
which is based on derivation of mass influence coefficient. These influence coefficients
can be evaluated by considering same procedure used for derivation of stiffness

coefficients of an element [3].
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If unit acceleration sway is imposed to the beam, it will bend like this:

Figure 3.5. Representative drawing of unit acceleration excitation to a beam.

Similarly, if unit rotational acceleration is imposed to the beam, it will bend and

deformed shape will be like this:

|
\
\
\\ |

Figure 3.6. Representative drawing of unit rotational acceleration excitation to a beam.

By reason of these excitations, the reaction forces are obtained called mass
coefficients similar to stiffness coefficients. This procedure is repeated for both two ends
of this beam and also for coupling terms. Finally, 4 by 4 matrix is obtained for

representation of consistent mass of the element:

156 22L 54 —13L

M =Ly 221 41> 13L —3I?
420 54  13L 156 —22L

—13L =312 —=22L 4l?

(3.5)
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Figure 3.7. Representative drawing of consistent mass system.
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4. REPRESENTATION OF DAMPING

Another dynamic property investigated, in this study, is damping, which has
remained mystery since beginning of utilization for structural dynamic analysis. Due to the
fact that it cannot be defined and formulated explicitly, it is not possible to derive a
damping matrix from the elements size or cross section properties. Instead, we use
generally proportional damping matrix and define it in terms of modal damping ratios
because of its mathematical convenience. Viscous Rayleigh damping and its extreme
cases; mass proportional and stiffness proportional damping properties have been

investigated in this chapter.

On the other hand, there is one another damping property, discussed here, is rate-
independent, so-called “structural damping” property which can only be defined in

frequency domain because of its complex nature.

4.1. Mass Proportional Viscous Damping

First extreme case of Rayleigh damping is mass proportional damping, which is
generally discussed in books just as a part of Rayleigh damping, is not evaluated as a
distinct property. However, for the sake of better understanding, it has been dealt with in

this study.

It is really hard to justify this formulation physically of course, because the air
damping can be interpreted to model is negligibly small for most structures [4]. Figure 4.1
shows physical illustration of mass proportional damping phenomenon.

Equation 4.1 shows mathematical representation of it:

[C] = a[M] (4.1)
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a is the proportionality constant, have a unit of sec. This coefficient may be

obtained by evaluating relationship between generalized modal mass and damping

parameters for the n'™ mode:

C: = aM;; (4.2)
"Mz = 28nn (4.3)
m

0

Figure 4.1. Physical representation of mass proportional damping.

Combining Equation 4.2 and Equation 4.3, proportionality constant @« and damping

ratio of n™ mode can be obtained:

a=2&w, (4.4)

=20, (4.5)

Damping ratio of n™ mode is inversely proportional with corresponding vibration

frequency. Vibration frequency and damping ratio relationship is given in Figure 4.2. This

figure shows that damping ratios of corresponding vibration frequencies are getting smaller
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as the number of mode increases. It means that response of higher modes cannot be

diminished and effects of them will be significant unrealistically.

mass
proportional

Figure 4.2. £ — w relationship for mass proportional viscous damping.

4.2. Stiffness Proportional Viscous Damping

Other extreme case of Rayleigh damping property is stiffness proportional viscous

damping which formulation is given below:

[C] = BIK] (4.6)

Physically, it can be interpreted to model energy dissipation due to story
deformations Figure (4.3) [4]. Similarly, £ proportionality constant for stiffness matrix
can be obtained by evaluating relationship between generalized modal damping, mass and

stiffness parameters:

C;: = BK;: (4.7)
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"Mz = wh (4.8)
"= 26w (4.9)
Mn n%n
Bk,
k3 [F
Bk
k2 Ez
k
k B|T1
1 L
7 7 AR, A

Figure 4.3. Physical representation of stiffness proportional damping.

Combining Equation 4.7 and Equation 4.8, relationship between generalized modal

damping and stiffness parameters is achieved:

Cn 2
i =2, (4.10)
Hence, proportionality constant 2 and damping ratio of n mode becomes:

B =20/ (4.12)

£, =FPon/, (4.12)
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It is observed from Equation 4.12 that stiffness proportional damping is directly in
proportion with vibration frequency of structure (Figure 4.4). This means that effects of
structural response of higher modes will diminish because of the high damping ratios. It
can be reasonable maybe for first mode dominant structures, however, for the other types
of structures, it cannot be considered as true.

€ 4
Sr - - - - \
|
stiffness
‘ proportional
G F— - - - - - |
I
| |
| |
| |
| |
E L | |
1 [ |
|
| |
‘ ! . =
w w w W

Figure 4.4. £ — w relationship for stiffness proportional damping.

4.3. Mass and Stiffness Proportional (Rayleigh) Viscous Damping

According to the definition of Rayleigh damping, it is assumed as both proportional
with mass and stiffness properties of structures (Figure 4.5).
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Figure 4.5. Physical representation of Rayleigh damping.

Mathematical representation of Rayleigh damping is combination of Equation 4.1

and Equation 4.6:
[C] = a[M] + BIK] (4.13)

The damping ratio for the ™" mode of such system is:

£ = (Y50 )+ (ﬁ "’n/z) (4.14)

The proportionality constants can be derived from specified ¢; and ¢; represented i

and j™ modes respectively. For these two modes, damping ratios can be determined by

solving following matrix [3]:

AN -

Using an inverse matrix operation, proportionality constants can be derived [3]:
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B (o), )

If these two modes have the same damping ratio (§), which gives reasonable results

based on experimental data [4], proportionality constants become:

a =2 (wiwj/wi+wj) @17
B =2 Yo +a,) (4.18)

Now Equation 4.13 can be used and damping matrix of structure can be derived.
After this point, damping ratio for "™ mode can be calculated by using Equation 4.14.
Since the same damping ratio is chosen for ith and jth mode, any other n™ mode between
these modes will have less damping ratio. It means that effects of n™" mode response may
be remarkable. On the other hand, damping ratios of chosen mode frequencies after j"
mode will increase monotonically and effects of these modal responses will be diminished
(Figure 4.6).

& A
Al
combined
ﬁ stiffness
proportional
E"n \ /
\ /7
e
N\
4 5 mass
7/ proportional
A N
o e /
-
/s ~ - /
= =~
w W W, w

Figure 4.6. £ — w relationship for Rayleigh damping.
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4.4. Structural (Rate-Independent) Damping

Broadly accepted viscous damping procedures are usually preferred for modeling of
damping property of structures because of the mathematical convenience. However,
viscous damping representation has a significant deficiency associated with the energy
mechanism. Studies based on experimental data show that dissipated energy per cycle of
an oscillating system is essentially independent of the excitation frequency (Figure 4.7) as
opposed to dependency inherent in the viscous damping model [5]. Such damping model is
called rate-independent or structural damping. It is convenient to express structural
damping force during harmonic motion like that [4]:

k )

fo = (V /(,—)> u(t) (4.19)
3/\
Q
]
g &
§ &
a 4‘\‘90006

Rate-Independent Damping

- =
Forcing Frequency

Figure 4.7. Forcing Frequency — Dissipated Energy relationship for different damping
approaches.

If Equation 4.18 is written in classical equation of motion instead of viscous damping

coefficient “c”, following equation is obtained:
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mii(t) + (Vk/ a) u(t) + ku(t) = p(t) (4.20)

Where, "y" is structural damping coefficient, “@” is forcing frequency. In order to
remove frequency dependence of the system for the case of harmonic motion, structural
damping may be defined as a damping force proportional to displacement but in phase with
the velocity [3]. Note that because of the non-physical character of structural damping, it is
only applicable in frequency domain [6]. It can be provided that writing the velocity in

terms of the displacement:

U(id) = iw U(iw) (4.21)
U(iw) = —@? U(i) (4.22)

Equation 4.21 is substituted in Equation (4.20) and if it is written in simplified form:
mU(iw) + k(yi+ 1) U(iw) = P(iw) (4.23)
In here, only unknown term is structural damping coefficient, which can be derived
in terms of equivalent viscous damping ratio by using dissipated energy relationship at
resonance frequency. As it is seen from Figure 4.7 and Figure 4.8, energy dissipated per

cycle of SDOF system with viscous damping, in the case of harmonic motion, is equal to

actual dissipated energy at resonance frequency.
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Elllpse (viscous damping)
(Equlvalent Area =E )

Figure 4.8. Actual and equivalent damping energy per cycle.

Equivalent damping ratio can be expressed as below, where Eg, is maximum strain

energy [4].

$eq = ﬁ (ED/ESO> (4.24)

Dissipated energy (independent from forcing frequency) in a cycle of harmonic

motion at resonance frequency:
Ep = 2nyEjs, (4.25)

If Equation 4.25 is substituted in Equation 4.24, structural damping coefficient is

obtained in terms of equivalent viscous damping ratio:

feq = )//2 (4-26)

Hence, final form of structural damping becomes when Equation 4.26 is substituted

in Equation 4.23:

mU(iw) + k(2&i + 1) U(iw) = P(i®) (4.27)
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5. REPRESENTATION OF SEISMIC LOADING

Right hand side of classical equation of motion (Equation 5.18) shows that a
structure is exposed to forces due to only ground acceleration (Figure 5.1a). This kind of
thinking, which occupies our minds entirely, sometimes, does not let us think on other
effects that may cause to deform structure during an earthquake. Such that, real action is
not like the equation says. Seismic action does not apply forces to masses of a structure
with fixed base in actual life, but it starts to excite at base and propagates throughout the
structure (Figure 5.1b). Thus, base of the structure moves with ground, excitation is

transferred to structure from the base.

— e e
A A
— @ &
@ @
@ Y T
2
~~ A g
@
T

(@)

Figure 5.1. (a) Relative formulation - acceleration loading,

(b) Absolute formulation — displacement loading.

Starting point of acceleration loading with relative formulation is based on pseudo-
static transmission concept. This assumption supposes that base displacement caused by
seismic action, at any time, does not generate any structural deformation in any building
(independent from the building height) since the same displacement excitation is

transmitted to whole structure concurrently, as independent from time (Figure 5.2).
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= ’ — ’ — ’
1) 1) 0

Figure 5.2. Physical representation of pseudo-static transmission for low-rise, mid-rise and

high-rise model.

In other words, when the wave strikes the building at the base, the same impact will
be seen at all floor levels at the same time. As a matter of fact, base displacement has a
propagation velocity, thus it needs time to reach top of the building. The idea presented
herein is that, if the building is tall enough, delay in displacement action transmission may
cause structural deformation (Figure 5.3).
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Figure 5.3. Physical representation of dynamic transmission for low-rise, mid-rise and

high-rise model.

In this chapter, procedure devoted to investigation of this effect is presented via
comparing displacement and acceleration loading methodologies.

5.1. Formulation Based on Total Response Quantities:

Displacement Loading

Equation 5.1 shows general form of dynamic equilibrium equation in terms of
absolute displacements, u! indicates total displacement response of structure, u, shows

base displacement [7]. My, Cs, Ky terms state structure mass, damping and stiffness

29
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matrices, respectively. Mg, Cg,, K terms indicates base-structure interaction matrices,
where “s” stands for structure, “b” stands for base.

2

structure

S IR
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— 0 :
u,(t)

Figure 5.4. Base, structure, base-structure interaction representation

] Lt R e ] i T [ 1 L PO RS0

From Equation 5.1, equation associated to superstructure can be extracted:

[Mgs1{iic} + [Coslfuie} + [KosHus} = —[Msp]{iin} — [CopHitp} — [KspHwp}  (5.2)

Right hand side of Equation 5.2 shows the forces acting on base joint of structure.

For lumped mass representation of structure, since there would not be base-structure
interaction term (M, ), equation yields to this form:

[Mss]{ug} + [Css]{ug} + [Kss]{ug} = _[Csb]{ub} - [Ksb]{ub} (53)
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Damping matrix can be derived by numerical evaluation but normally it is not
defined [7]. Thus, damping forces can be neglected and equation can be written in

following final form:

[Mss]{u_g} + [Css]{ug} + [Kss]{u.g} = _[Ksb]{ub} (54)

Equation 5.4 shows that forces acting on base joint, are associated to base
displacements and affect degree of freedoms of only first joint (Figure 5.4). It means that
base displacements will be dynamically transmitted to the upper levels throughout the

building.

5.2. Formulation Based on Relative Response Quantities:

Acceleration Loading

Structural total displacement response can be divided into two parts, namely, base

displacement and relative displacement response (Fig 5.5).

{us} = {up} + {us} (5.5)

—u()
Ut —

‘—— ub(t)—-‘

Figure 5.5. Base displacement, relative response, total response.
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If total displacement is written as summation of pseudo-static displacements and

relative displacements, Equation 5.6 is obtained.

ugl = {uf} + {us} (5.6)

Using pseudo-static displacements and base-structure interaction matrix, static
support excitation statement can be defined as below:

K {u }— —[Kspl{up} (5.7)

{uf} = —[Kgs] ™ [Kop 1 {up} (5.8)

Finally, pseudo-static displacements can be defined via using a transformation

matrix:
[Top] = —[Kss] " [Ksp] (5.9)
{ug} = [Top){us} (5.10)
In the same manner, following derived statements are:
(s} = [Ty )Gt} + i) (5.11)
(i1t} = [Ty iy} + {its) (5.12)

Substitution of Equation 5.6, Equation 5.11 and Equation 5.12 into Equation 5.2

yields statements below:

[Mss]([st]{ilb} + {us}) + [Css]([st]{ub} + {us}) + [Kss]([st]{ub} + {us})
= —[Mgp]{ilp} — [Cop]{ttp} — [Ksp{un} (5.13)

[Mss]{ﬂs} + [Css]{us} + [Kss]{us} = _[Msb]{ilb} - [Csb]{ub} - [Ksb]{ub}
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_[Mss] [st]{ub} - [Css] [st]{ub} - [Kss] [st]{ub} (514)
If Equation 5.9 is substituted into last stiffness term at right hand side of Equation
5.14, it is easily seen that sum of stiffness terms is equal to zero. Thus, simplified form

leads to following equation:

[Mis]{iks} + [Cosl{its} + [Kis]{us}
= —[Mgp Witp} = [Con1{ttn} — [Mss][Top Nitp} — [Cos][Tsn]{ttn } (5.15)

In a similar way, damping terms can be neglected. (Effects of these terms on
response will be discussed later.) Therefore, only acceleration terms are remained at the

right hand side:

[Mss]{ils} + [Css]{us} + [Kss]{us} = _[Msb]{ﬂb} - [Mss] [st]{ub} (516)

For lumped mass assumption, conventional equation of motion is obtained:

[Mgs{iis} + [Cosl{tis} + [Kosl{us} = —[Mss[{1}Hiip } (5.17)
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6. ANALYSIS IN TIME AND FREQUENCY DOMAIN

6.1. Time Domain Analysis

Indisputably, time history analysis is the most popular analysis method for evaluating
dynamic response of structures. In the literature, several methods are available so as to
perform dynamic analysis. The most powerful one of these methodologies is undoubtedly
mode superposition procedure. In the first part of this chapter, this procedure is explained
briefly.

6.1.1. Modal Analysis

Well-known mode superposition methodology based on the idea that combination of
responses of generalized SDOF systems, which is derived by coordinate transformation
procedure from coupled equations of MDOF system. To implement this procedure, firstly,
mode shape (amount of degree of freedoms) functions are required. For this purpose,

Equation 5.18 is converted into free vibration form omitting damping matrix and loading

vector. (Subscripts of matrices are ignored for the sake of the brevity.)

[M]{iis ()} + [K{us ()} = 0 (6.1)

It can be assumed that free vibration motion is simple harmonic [3]:

{us()} = {¢}sin(wt + 6) (6.2)

Where, {¢} is the shape vector, w is vibration frequency and 6 is phase angle. If this

Equation 6.2 is derived two times,

{iis ()} = —w?{¢}sin(wt + 6) (6.3)

{us(t)} = —a)z{qb}{us(t)} (6.4)
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If Equation 6.2 and Equation 6.4 are substituted into Equation 6.1, formulation

becomes so-called eigenvalue problem:
[KI{¢} — w?[M]{¢} = {0} (6.5)
Eigenvalue problem is solved by expanding determinant:
I[K] — w?[M]ll =0 (6.6)

This solution gives N mode vibration frequencies and then mode shape functions for

corresponding vibration frequencies are obtained via Equation 6.5.

(W1
| w,

|
w={ws I§ 67)
Lo

(1) ($2) ($3) (PN

3 N
Jcpr Jcp%L qu%L !ML
{¢:} = I(pfl {¢2} = I¢§| {pa =193 -~ {Pnl= I¢,3VI (6.8)

Lor) Loz o) Loz

After this point, in order to determine the displaced positions of the system, we need

modal amplitudes:

{us(0)} = Ti4{o;}y;(® (6.9)

Calculation of modal amplitudes is based on the coordinate transformation procedure

which is explained briefly here:

Coordinate Transformation:

Equation 5.18 can be written in following form without subscripts of matrices:
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[M]{is (0} + [CH{us (0} + [KHus (D)} = —[M]{T}iiy (0) (6.10)

Equation 6.9 and its derivatives are substituted into Equation 6.10:

[M] (Za{e}y;(®) + [C1 (Xale) )y () + [K] (B)oa{; )y (0) = —[MI{1}ii, () (6.11)

If all terms are pre-multiplied by transpose of n™ mode shape, Equation 6.12 will

become in following form:

{¢n} (Z 1{¢]}y] (t)) + {¢n} (Z 1{¢]}y] (t)) + {¢n} (Z 1{¢]}y] (t)) -

{7} [M1{I}it, ()
(6.12)

Mode shapes are orthogonal with respect to both mass and stiffness matrices [3]. The
same property is valid for damping matrix because it is constructed by proportional with
mass matrix and stiffness matrix or combination of them. By nature of orthogonality

property of these mode shapes, these terms will be zero:

{p7 3 [Ml{pm} = 0 (6.13)
{dn}[Kssl{dm} =0 (6.14)

Products for the same mode are called modal mass, modal stiffness and modal

damping respectively:

{7} [Mssl{dn} = My (6.16)

{¢17;} [ ss] {dn} = K; (6.17)

{92} [Cos] {pn} = C5, (6.18)
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And if the loading term is defined as like this:
Ly, = {¢n} [M] {1} (6.19)
Following equation will become:
Mp3n(8) + Cayn () + Knyn (8) = —Lniiy (2) (6.20)
If each term in Equation (6.20) is divided by modal mass and then term in loading

part is substituted by Equation 6.21 called modal participation factor, Equation 6.22 is

obtained.

Lo ="/ (6.21)

I (6) + 28 0n 1, (2) + wrZLYn(t) = —Iy 1y (2) (6.22)

This equation resembles equation of SDOF system but with a little difference. Thus,

following statement is required to get perfect match with SDOF system.
Y (t) =Ty dy(t) (6.23)
dn(t) + 28p0ndn () + Widy (8) = — 11 (1) (6.24)

Finally, we get a bunch of equivalent SDOF systems, which can be solved by
probably the best tool named piecewise exact methodology [8]. Therefore, structural
responses in modal coordinates are obtained. Then, by using modal participation factors
mode shapes, response amplitudes in modal coordinates, and structural response in normal

coordinates is achieved.



38

6.2. Frequency Domain Analysis

Although Fourier analysis in frequency domain has been known as early as time
domain analysis, frequency domain analysis could not have been used for earthquake
response analysis of structures until such time as powerful FFT (Fast Fourier Transform)
algorithm was developed in the middle of 1960s by Cooley-Tukey [11]. After this
milestone, frequency domain analysis has become popular. Today, it is known that
frequency domain analysis is much superior since the equation of motion contains
frequency dependent parameters such as stiffness or damping [3]. Purpose of this chapter is
to give discrete integral formulations of frequency domain approach and to establish
procedures for evaluating structural response in both modal and normal coordinates under

arbitrary loading conditions.

The general frequency domain approach is similar to periodic loading analysis
procedure; however, to apply this approach to arbitrary loading, Fourier series concept is
required. Aim of the Fourier series expansion is to discretize the raw data to sine functions.
In other words, it is assumed that a non-periodic signal is combination of a bunch of

harmonic signal (Figure 6.2).

Figure 6.1 shows the excitation pattern p(t) during t,4, and t, indicates duration of
silent region. In frequency domain analysis, silent region should be placed after ground
motion data in order to represent the free vibration response of structure. The length of the
silent region depends on the response amplitudes of structure and damping ratio. For
example, if damping ratio is chosen small like 1%, due to fact that diminishing of free
vibration response will take long, silent region length must be extended. Otherwise, some
additional spurious response onset of structural response history will be seen. Moreover, if
response amplitudes of structure is major due to its long natural vibration period maybe,
again, diminishing of free vibration response will take long time. Thus, in such cases,
length of silent region should be chosen carefully. Investigations in this study show that
length of the silent region should be chosen 2 times larger of excitation data (ground
motion) for 5% damping ratio. For 2.5% damping ratio, 4 times larger silent region and for
1% damping ratio, 9 times larger silent region is required respectively. It should not be

forgotten that these values are valid for the building investigated in this study, thus, length
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of silent region may be less than specified here for low and mid-rise buildings. Justification
of perfect matching with the results obtained in time domain is achieved by the analyses
performed in SAP2000.

Ty =ty + tg (6.25)

=c

i

[=]

t,=m dt

T,=N dt

Figure 6.1. Digitization of excitation.

T, is sampled at N equally spaced time instants, thus, the sampling interval is
denoted by dt [4]:

To = N dt (6.26)
Ty = 27/~ (6.27)
0 Wy

pm Indicates discretized excitation function in Equation 6.28, it is stated as
superposition of N harmonic functions. Complex amplitude coefficients (P;) defines the

phase and amplitude of j™ harmonic. Parseval’s Equality [11] also known as Discrete

Fourier transform pair [4] is given below:

P () = Y20 Py (i@) e'tJ @otm) (6.28)
Jj=0 *%J
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Pi(i@) = - Tonzh P (1) 710 @0 m) (6.29)

It should be observed from Equation 6.28 that only positive frequencies are
considered. This is called one-sided Fourier Transform. Two-sided Fourier Transform
contains negative frequencies as well [4]. It means that half of the frequencies are negative,

but these have no physical meaning, therefore, highest harmonic frequency will be:
Wmax = (N/z)ao (6.30)

f_max = wmax/zn_ (6.31)

It is called Nyquist frequency or folding frequency. It is observed that forcing

frequency is over at N/2+1 in Figure 6.2.

01 2 mw N-1 N

Figure 6.2. Discretization of non-periodic signal to sine functions.
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Table 6.1 shows that complex amplitude coefficients after Nyquist frequency are

complex conjugate of those before Nyquist frequency.

Table 6.1. Discrete time and Fourier series.

Pm(®) P]'(ia)

p(0) Xo+Yol
p() X1+yil
p(2) Xo+Yol

P(N/2) | Xnetynpl
P(N/2+1) | XnizeaHYni2+1l
P(N/2+2) | Xnizs2HYnr2+2l

Complex Conjugate Pairs

P(N-2) | Xn-1tYnal
P(N-1) | Xn-1+Yn-l

It should be mentioned that all of the DFT procedure is not so meaningful without
Fast Fourier Transform (FFT) because of its cumbersomeness. By means of the discovery
of FFT algorithm, computational effort required is drastically reduced. Besides, almost the
same procedure is valid for FFT with an only difference which based on determination of
N. There are N sums, each of which requires N complex products, or there are N products
required for the original FFT algorithm is given by (N/2) log;N [4]. For example, if the
signal length is 970, it rounds to closest 2™, therefore, N=2'°=1024.

6.2.1. In Modal Coordinates

Equation 6.20 can be written in frequency domain as below:
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MY, (iw) + C.Y,(iw) + K.Y, (iw) = P, (i) (6.32)

Similar approaching to Equation 4.20 and Equation 4.21, displacement response

quantities in modal coordinates can be written in terms of velocity and acceleration:
Y, (iw) = iw Y, (iw) (6.33)

Y, (io) = —@%Y, (i) (6.34)

And Equation (6.30) is reduced to a simple linear equation form:

(—w2M;, + iwC;, + K;}) Y, (iw) = P,(i@) (6.35)

Terms between brackets at the left hand side is called impedance or dynamic

stiffness [3] since it changes with each forcing frequency:

K; = -w2M}, + iaC;, + K;; (6.36)

Therefore, complex displacement amplitude coefficients can be obtained by

following equation:

K Y, (iw) = P,(i®) (6.37)

Complex displacement amplitude coefficients are superposed by using equation
Equation 6.28 and converted back to time domain. Once all procedure is applied for all
modes in the same manner, response quantities in modal coordinates are achieved. They
are combined by Equation 6.9 and eventually, response quantities are obtained in normal

coordinates.

6.2.1.1. In Modal Coordinates with Structural Damping. Equation 4.26 can be written in

terms of response quantities in modal coordinates:

MY, (i) + K;;(2&i + 1Y, (i) = P,(iw) (6.38)
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Substituting Equation 6.31 and Equation 6.32 into Equation 6.36, Equation 6.37 is

derived:
(—@*M;, + K;; (26 + 1)) Y, (iw) = B,(iw) (6.39)

Terms between brackets at the left hand side is called impedance or dynamic

stiffness [3] since it changes with each forcing frequency:
K = —@’M;, + K;(28i + 1) (6.40)

Hence, complex displacement amplitude coefficients can be obtained by following
equation:
K; Y, (i) = P,(i®) (6.41)

Response quantities in normal coordinates are obtained by applying exactly the same
procedure prescribed in last paragraph of Chapter 6.2.1.

6.2.2. In Normal Coordinates

Second and more practical solution for obtaining response gquantities is to get directly
in normal coordinates. It can be possible just in frequency domain because response
quantities can be written in terms of each other Equation 6.31 and 6.32. Thus, the equation
of motion yields simple linear form and it can be solved without needing coordinate
transformation procedure. Equation 6.10 can be written in following form and in frequency

domain respectively:
[M]{iis ()} + [CHus (D)} + [K{us (O} = p(D) (6.42)
MI{Us(i@)} + [CI{Us(i@)} + [K]{Us(iw)} = P(i@) (6.43)

By substituting Equation 4.20 and Equation 4.21 into Equation 6.41, following

equation is derived:
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(—@?*[M] + iw[C] + [KD{Us(iw)} = P(iw) (6.44)

Terms between brackets at the left hand side of Equation 6.42 is called impedance or
dynamic stiffness matrix [3] since it changes with each forcing frequency:

[K] = —@?[M] + i®[C] + [K] (6.45)

The complex displacement amplitude coefficients are obtained by following equation

directly in normal coordinates:
[R](Us(i@)} = P(iw) (6.46)

Finally, complex displacement amplitude coefficients are converted back to time

domain by Equation 6.28 and eventually, displacement response quantities are achieved.

6.2.2.1. In Normal Coordinates with Structural Damping. Equation 4.26 can be written

directly for MDOF systems:
[MI{Us(iw)} + [K]1(2&i + 1){Us(iw)} = P(iw) (6.47)

By substituting Equation 4.20 and Equation 4.21 into Equation 6.41, following

equation is derived:
(—@?[M] + [K](2¢i + 1){Us(io)} = P(iw) (6.48)

Terms between brackets at the left hand side of Equation 6.46 is called impedance or

dynamic stiffness matrix [3] since it changes with each forcing frequency:
[K] = —w?[M] + [K](2&i + 1) (6.49)

The complex displacement amplitude coefficients are obtained by following equation

directly in normal coordinates:

[K){Us(iw)} = P(iw) (6.50)
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Eventually, response quantities in normal coordinates are obtained by using Equation
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7. GROUND MOTION SELECTION AND SCALING PROCEDURE

Attractiveness of response history analysis is based on the capability of showing
response of structures at each instant of an earthquake. By using several ground motion
records, time history analyses are realized. However, it is explicit that these earthquakes
will not be occurred again, thus it is really difficult to decide which earthquakes will be

used in the analyses.

In this part, major part of far field record list presented in the FEMA-695 document
is used for the analyses of the building. Totally, 20 records (40 individual components)
selected from this document. Event magnitudes range from M6.5 to M7.6 with an average
magnitude of M7.0 for far-field record set [11]. Records are obtained regions of which site
classes C and D according to NEHRP site classification. In terms of source mechanism,
fault types are predominantly consist of strike slip fault and several thrust faults are
available. Peak ground acceleration values vary from 0.21g to 0.82g with an average PGA
of 0.43g [11].

Normalization of Records:

Normalization procedure is done to provide the same overall ground motion strength
of record set. This is the one of the simplest procedures to remove unwarranted variability
between records due to inherent differences in magnitude, distance to source, source type

and site conditions [11].

Firstly, geometric mean of two individual components of a record, which is called
PGVpeer, Is calculated. After this procedure is applied for all record set, median of all
PGVpeer Vvalues is divided by each record PGVpeer value Equation 7.1. Therefore,
normalization factor of each record is computed. Then, each component of any record is
multiplied by NM values respectively to get normalized ground motion records (Equation
7.1 and Equation 7.2).

NM; = Median(PGVpggr;)/PGVpggr i (7.1)
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NTHl’i = NML * THl,i (72)
NTHZ,i = NMl * THZ,i (73)

Scaling of Records:

Scaling procedure is done to a MCE level of ground motion according to ground
motion scaling requirements of ASCE/SEI 7.05 [11]. Scaling process is starts with the

calculation of median spectrum of record set (Figure 7.1).
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Figure 7.1. Derivation of median spectrum from response spectra of record set [11].

Then, this median spectrum is matched with MCE design spectra specified in

ASCE/SEI 7.05 [2] anchoring associated fundamental period and site classification (Figure

7.2).
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Figure 7.2. Example anchoring of median spectrum of records to MCE spectral
acceleration at 1 second for B, C, D site classes according to NEHRP [11].

For wide range of fundamental period (T = 0.25 to 5 sec), this procedure is repeated
according to site classification in NEHRP and results are presented as a table (Table 7.1) in

FEMA document.

Table 7.1. Scaling factors with respect to fundamental periods and site classifications [11].

Median Value of Scaling Factors for Anchoring Far-
Normalized Record Set Field Record Set to MCE Speciral

Demand

Syrr 8

EEEERERES

Set Set SDC Donse

2.0 0.284 0.148 3.05 1.02 0.68 0.34
2.2 0.258 0.133 3.08 1.03 0.68 0.34
2.4 0.230 0.118 3.18 1.06 0.71 0.35
2.6 0.210 0.106 3.28 1.09 0.73 0.36
2.8 0.190 0.091 3.53 1.18 0.79 0.39
3.0 0172 0.080 3.75 1.25 0.83 0.42
3.5 0132 0.063 4.10 1.37 0.91 0.46
4.0 0.104 0.052 4.29 1.43 0.95 0.48
4.5 0.086 0.046 4.34 1.45 0.96 0.48
5.0 0.072 0.041 4.43 1.48 0.98 0.49
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As it is seen from highlighted bottom line in Table 7.1, the list is over with 5 sec at
most. However, fundamental period of our building is approximately 6 seconds and site
class is assumed as Bmax — Cmin level. Under these conditions, the closest scaling factor is
0.98. For the sake of the undisturbed ground motion set, scale factor is assumed as 1. In
other words, in whole normalization and scaling procedure, each data is only multiplied by
corresponding normalization factor. Lastly, ground motion records with normalization

factors are given in Table 7.2 below.

Table 7.2. Ground motion record set.

II\|II()) M | Year Earl\tlz?nueake Station Name Norgilgerltion
1167|1994 Northridge Beverly Hills - Mulhol 0.65
2 | 6.7 | 1994 Northridge Canyon Country - WLC 0.83
3| 7.1 (1999 Duzce Bolu 0.63
4171|1999 Hector Mine Hector 1.09
5 | 6.5 | 1979 | Imperial Valley Delta 1.31
6 | 6.5 | 1979 | Imperial Valley El Centro Array #11 1.01
71 6.9 |1995 Kobe Nishi-Akashi 1.03
8 | 6.9 | 1995 Kobe Shin-Osaka 1.10
9 | 7.5 {1999 Kocaeli Duzce 0.69
10| 7.5 | 1999 Kocaeli Arcelik 1.36
11| 7.3 | 1992 Landers Yermo Fire Station 0.99
12| 7.3 | 1992 Landers Coolwater 1.15
13| 6.9 | 1989 Loma Prieta Capitola 1.09
141 6.9 | 1989 Loma Prieta Gilroy Array #3 0.88
15| 6.5 | 1987 | Superstition Hills|  EIl Centro Imp. Co. 0.87
16 | 6.5 | 1987 | Superstition Hills Poe Road (temp) 1.17
17| 7.6 | 1999 Chi-Chi CHY101 0.41
18| 7.6 | 1999 Chi-Chi TCUO045 0.96
19| 6.6 | 1971 | San Fernando LA - Hollywood Stor 2.10
20| 6.5 | 1976 Friuli Tolmezzo 1.44
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8. DYNAMIC PROPERTY AND SEISMIC LOADING
COMBINATIONS

In this chapter, different mass, damping and seismic loading representations are

combined as listed below, equation of motion for each combination is derived respectively.

Table 8.1. Combinations with respect to dynamic properties and loading.

Comb No Mass Type Damping Type Loading Type
Comb#1 Translational Lumped Mass Prop. Viscous Acceleration
Comb#2 Trans. + Rot. Lumped Mass Prop. Viscous Acceleration
Comb#3 Translational Lumped Stiffness Prop. Viscous Acceleration
Comb#4 Trans. + Rot. Lumped Stiffness Prop. Viscous Acceleration
Comb#5a* Translational Lumped Rayleigh Acceleration
Comb#5b** | Translational Lumped Rayleigh Acceleration
Comb#6a* Trans. + Rot. Lumped Rayleigh Acceleration
Comb#6b** | Trans. + Rot. Lumped Rayleigh Acceleration
Comb#7 Translational Lumped Structural Acceleration
Comb#8 Trans. + Rot. Lumped Structural Acceleration
Comb#9 Consistent Mass Prop. Viscous Acceleration
Comb#10 Consistent Stiffness Prop. Viscous Acceleration
Comb#11 Consistent Rayleigh Acceleration
Comb#12 Consistent Structural Acceleration
Comb#13 Translational Lumped Mass Prop. Viscous Displacement
Comb#14 Trans. + Rot. Lumped Mass Prop. Viscous Displacement
Comb#15 Translational Lumped Stiffness Prop. Viscous Displacement
Comb#16 Trans. + Rot. Lumped Stiffness Prop. Viscous Displacement
Comb#17 Translational Lumped Rayleigh Displacement
Comb#18 Trans. + Rot. Lumped Rayleigh Displacement
Comb#19 Translational Lumped Structural Displacement
Comb#20 Trans. + Rot. Lumped Structural Displacement
Comb#21 Consistent Mass Prop. Viscous Displacement
Comb#22 Consistent Stiffness Prop. Viscous Displacement
Combi#23 Consistent Rayleigh Displacement
Combi#24 Consistent Structural Displacement

* Theoretically correct version (detailed explanation is given below.)
** Theoretically wrong version (detailed explanation is given below.)
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8.1. Comb#1: Translational Lumped Mass, Mass Proportional Viscous Damping,

Acceleration Loading

First two terms at the right hand side in Equation 8.1 vanishes because of the fact that
My, term is not available in lumped mass system. Since the system has mass proportional
damping property (Equation 8.2 and Equation 8.3), C,;, term is proportional with M, term,

thus it also disappears:

[Mgs]{iis} + [Cosl{tns} + [Kosl{us}

= _[Msb]{ub} - [Csb]{ub} - [Mss][st]{ub} - [Css]{st}{ub} (8-1)
[Css] = a[M] (8.2)
[Csb] = a[Msb] (83)

[Mss]{ils(t)} + [Css]{us(t)} + [Kss]{us(t)} = _[Mss]{l}{ﬁb(t)} - [Css]{st}{ub (t)}
(8.4)

If displacement, velocity and acceleration terms are substituted with corresponding

frequency domain terms,

[Ms1{Us(i@)} + [Css1{Us(i@)} + [Kss]{Us(i@)} =
—[Mss {3 {U, (i@)} — [Css[{Tsp }{Up (i) } (8.5)

Terms in frequency domain can be converted the other one easily divided or

multiplied by iw. Therefore, Equation 8.5 is become linear equation form:
(~@° [Mys] + i@[Cys] + [KesD{Us (i@)} = —(Ms )1} + 220257, (i)} (8.6)
Finally, Equation 8.6 can be written in simplified form:

[Rss]{Us(iw)} = _[Mss]{ijb(ia)} (8-7)
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8.2. Comb#2: Translational + Rotational Lumped Mass, Mass Proportional

Viscous Damping, Acceleration Loading

The same procedure is valid until Equation 8.6 for Comb#2. Instead of Equation 8.6,
Equation 8.8 should be used to define transmission well. Difference between the Equation
8.6 and Equation 8.8 is transformation matrix (T) in the first term at right hand side. This

indicates that only translational base forces are transmitted to upper levels of structure.
_ . . CssI{Ts L
(—@°[Mgs] + 1B[Cos] + [KesD{Us(i@)} = —([Mss){Tep} + 22 (17, (i)} (8.8)

[kss]{Us(ia)} = _[Mss]{ijb(ia)} (8-9)

8.3. Comb#3: Translational Lumped Mass, Stiffness Proportional Viscous
Damping, Acceleration Loading

First forcing term vanishes since the system has lumped mass matrix. Sum of the
second and fourth terms are equal to zero since system damping is proportional with

stiffness. (Because of the same reason specified in Equation 5.13 and Equation 5.16)

[Mss1{is} + [Cos]{its} + [Kosl{us}

= —[Mgpl{itp} — [Cspl{ttp} — [Mss H{Tsp Hilp} — [Css{T sp}Hutp} (8.10)
[Css] = B[Kss] (8.11)
[Csp] = BIKp] (8.12)

Final form of the statement is classical equation of motion for MDOF system:

[Ms1{iis (0} + [Cosl{ts (O} + [KssH{us (0} = —[Ms[{THip (0} (8.13)

If the statement is written in frequency domain and simplified linear equation form

respectively:
[Mss1{Us (i)} + [Css1{Us (@)} + [Kss{Us (@)} = —[Ms U, (i)} (8.14)
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(—@*[Mgs] + i[Css] + [Kss DU (@)} = —[Mg J{IHUp (i) } (8.15)

[Kss[{Us(i@)} = —[M J{IH U (i@) } (8.16)

8.4. Comb#4: Translational + Rotational Lumped Mass, Stiffness Proportional

Viscous Damping, Acceleration Loading

The same procedure defined in Comb#3 is valid for Comb#4. Note that only last
equation will be like this:

[Rss]{us(ia)} = _[Mss]{st}{Ub (i@)} (8.17)

8.5. Comb#5a: Translational Lumped Mass, Mass and Stiffness Proportional

(Rayleigh) Viscous Damping, Acceleration Loading

Comb#5a is the actual version of the classical equation of motion (Equation 5.18)
with Rayleigh damping. Normally, some terms are neglected by reason of ease of
applicability and Equation 5.18 is used. In this case, actual procedure will be given for the

calculation of the system with Rayleigh damping.

Only first forcing term of Equation 8.18 vanishes because system mass matrix is

lumped, accordingly diagonal.

[Mgsl{its} + [Cosl{its} + [Kis]{us}
= —[Mgp]{ity} — [CopJ{itp} — [Mss]{Tsp Hilp} — [Css ]{Tsp Hakp} (8.18)

Due to the same reason, C,;, term is proportional with only stiffness term (Equation

8.20). This can cause incompatibility between upper levels of structure and base.

[Css] = alMgs] + BIKss] (8.19)
[Csp] = alMgp] + BIKp] (8.20)
[Mgs{iis ()} + [Cos{tes (O} + [KsJ{us (6)}
= —[MssJ{THiip (1)} — [Cos{Tsp Hiry ()3 — [Cop1{a, (O} (8.21)
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If the statement is written in frequency domain and simplified linear equation form

respectively:

[Ms]{Us (@)} + [Css1{Us (@)} + [Kes1{Us (i)}
= —[Mgs {0, (i@)} — [Css[{Tsp HUp (i)} — [Csp){Up (i@)} (8.22)

(_62 [Mss] + ia[Css] + [Kss]){Us(ia)}
= (M5} (1} + AT i, (i) (8.23)

[Kss]{Us(ia)} = _[Mss]{Ub(i(‘_))} (8-24)

8.6. Comb#5b: Translational Lumped Mass, Mass and Stiffness Proportional
(Rayleigh) Viscous Damping, Acceleration Loading (Common Usage,

Theoretically Wrong)

Comb#5b indicates the conventional usage of equation of motion for Rayleigh
damping. However, in order to reduce the equation to ordinary form (Equation 8.13),
damping property must be proportional only stiffness matrix. Otherwise, equation becomes
like Equation 8.21. In this combination, for the sake of the simplicity, sum of the second
and third terms in the loading part of Equation 8.21 is assumed that equals to zero. Hence,

equation will be as specified below:

[Mis1{iis ()3 + [CosI{ts (O3 + [KssH{us ()} = —[Mss J{T}Hip (0} (8.25)

Equation 8.25 can be written in terms of frequency domain:

[Mss]{Us(i@)} + [Css){Us(i@)} + [Kss[{Us(i@)} = —[Mss {I}{Up (i)} (8.26)

The statement is reduced to linear equation form:

(_(‘_)2 [Mss] + iw[css] + [Kss]){Us(ia)} = _[Mss]{l}{ijb(ia_))} (827)
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[Kss[{Us (i@)} = —[M J{IH U (i@) } (8.28)

8.7. Comb#6a: Translational + Rotational Lumped Mass, Mass and Stiffness

Proportional (Rayleigh) Viscous Damping, Acceleration Loading

Comb#6a has exactly the same form of Comb#5a. Additionally, it includes rotational
lumped mass terms but it does not change the form of equation. Only difference is that

Equation 8.29 includes transformation matrix instead of influence vector.

(-2 M1 + 110 + KD U0} = (M Ty + 0l * Losbly s i)
(8.29)
[Kss]{Us(ia)} = _[Mss]{Ub(i(‘_))} (8-30)

8.8. Comb#6b: Translational + Rotational Lumped Mass, Mass and Stiffness
Proportional (Rayleigh) Viscous Damping, Acceleration Loading (Common

Usage, Theoretically Wrong)

Equation 8.28 derived in Comb#5b can be used for analyzing of this combination,

with a difference that influence vector {I} must be substituted by transformation matrix
{st}-

[Kss]{Us(ia)} = _[Mss]{st}{Ub (ia)} (8.31)

8.9. Comb#7: Translational Lumped Mass, Structural Damping, Acceleration

Loading

Due to fact that Comb#7 includes complex term, it is only defined in frequency
domain. Having stiffness proportional damping cancels out the damping terms, therefore,

following formulations are obtained:
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[Ms1{Us(i@)} + (2&i + D[Kss]{Us(i@)} = —[Mss){Tp} {Up(i@)}  (8.32)
(—@%[Mgs] + (2&i + D[KsD{Us(i@0)} = —[MsK{Tp HUp (i) } (8.33)

[Kss[{Us (@)} = —[Ms J{IH U, (i@) } (8.34)

8.10. Comb#8: Translational + Rotational Lumped Mass, Structural Damping,

Acceleration Loading

Equation 8.34 can be used for performing analysis of Comb#8 by substituting

influence vector with transformation matrix:

[kss]{Us(ia)} = _[Mss]{st}{Ub(ia)} (8.35)

8.11. Comb#9: Consistent Wall Mass + Translational Slab Lumped Mass, Mass
Proportional Viscous Damping, Acceleration Loading

In consistent mass system, no terms are canceled; Equation 8.36 will be remained:

[Ms{iis} + [Cos it} + [KosHus}

= —[Mgp]{iip} — [Cspttp} — [Mss HTsp Hilp} — [Css{Tsp Mt} (8.36)
[Css] = a[Mss] (8-37)
[Csp] = a[Mgp] (8.38)

If Equation 8.36 is written in frequency domain:
[Mss1{Us (@)} + [Css){Us (@)} + [Kss 1 {Us (@)}
= _[Msb]{Ub (i@)} - [Csb]{Ub (ia)} - [Mss]{st}{U'b(ia)} - [Css]{st}{Ub (i@)} (839)

And it becomes linear equation form:
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(_62 [Mss] + ia[css] + [Kss]){Us(i(‘_))}

= —([Mg] + [M (T} + o)y (5, (15} (8.40)
[Rss]{Us(ia)} = _[Mss]{(]b(ia)} (8-41)

8.12. Comb#10: Consistent Wall Mass + Translational Slab Lumped Mass,
Stiffness Proportional Viscous Damping, Acceleration Loading

Due to stiffness proportionality, damping terms are cancelled out:

[Mgs]{iis} + [Cosl{tns} + [Kosl{us}

= —[Mgp liip} — [Cspl{itp} — [Mss{Tsp Hilp} — [Css {T s }itp} (8.42)
[Css] = ﬁ[Kss] (8.43)
[Csb] = B[Ksb] (8.44)

[Mss]{us(t)} + [Css]{us(t)} + [Kss]{us(t)} = _[Msb]{ilb (t)} - [Mss]{st}{ub (t)} (845)

If Equation 8.45 is defined in frequency domain:

[Ms1{Us(i@)} + [Css]{Us(i@)} + [Kss]1{Us(i@)} =
—[Msp ){Up (i@)} — [Ms|{Tsp HUp (id) } (8.46)

Equation 8.47 can be written as linear equation:
(_52 [Mss] + ia[css] + [Kss]){Us(iw)} = _( [Msb] + [Mss]{st} ){Ub(l(‘_))} (847)

[Kss]{Us(ia)} = _( [Msb] + [Mss]{st} ){Ub (i@)} (848)
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8.13. Comb#11: Consistent Wall Mass + Translational Slab Lumped Mass, Mass

and Stiffness Proportional (Rayleigh) Viscous Damping, Acceleration Loading

Equation 8.35 can be used for analyzing of Comb#11, but damping matrix should be
defined as Rayleigh damping:

[Css] = a[Mss] + ﬁ[Kss] (8.49)
a[Mgp] + B[Ksp] (8.50)

Frequency domain representation:

[Mos]{Us (i@) } + [Cos]{Us (i@)} + [Kss] (U (i)}
= _[Msb]{Ub (i@)} - [Csb]{Ub (i@)} - [Mss]{st}{Ub (i@)} - [Css]{st}{Ub (ia)} (8-51)

Converted into linear equation form and dynamic stiffness matrix representation

respectively:

(_62 [Mss] + iU_)[Css] + [Kss]){Us(i(‘_))}

= —([Mgy] + [M )Ty} + T (35, i) (8.52)

[Ess]{Us(ia)} = _[Mss]{Ub (ia)} (8.53)

8.14. Comb#12: Consistent Wall Mass + Translational Slab Lumped Mass,
Structural Damping, Acceleration Loading

Structural (Rate-independent) damping is only defined in frequency domain and its

mathematical representation will be as below:

[Mss){Us(i@)} + (2&i + DK H{Us (@)} = —[Mspl{Up (i@)} — [Mss]{Tsp}{ Uy (i@)} (8.54)

All terms can be stated in terms of complex displacement amplitude, thus the

equation yields:
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(=2 [Mgs] + 2€i + D[Ks DU (i@)} = —([Msp] + [Mss{Tsp 3 ){Up (i@)} (8.55)

The terms in brackets at left hand side can be represented as one term called dynamic

stiffness matrix and its representation:

[Kss]{Us(i(‘_))} = _( [Msb] + [Mss]{st} ){Ub (ia)} (856)

8.15. Comb#13: Translational Lumped Mass, Mass Proportional Viscous

Damping, Displacement Loading

Beginning from this combination, the equations are derived for calculation of
absolute response quantities. Mg, term is not available because of lumped mass
assumption, Cg, term is not available since it is assumed that damping is proportional with

mass:

[Mss1{iic} + [Csslfuis} + [KosHusy = —[Mp]{itp} — [Cspl{its} — [KspIfup} (8.57)

[Css] = a[Mss] (8-58)
[Csp] = a[Mg] (8.59)
[Mgs]{iié(8)} + [Cos{ul ()} + [Kos[{us(6)} = —[Ksp {up (8)} (8.60)

If Equation 8.60 is stated in frequency domain:

[MssJ{UE (@)} + [CosI{UL (@)} + [Kss{UE(i@)} = —[Ksp1{Up (i@)}  (8.61)

All terms can be expressed in terms of complex displacement amplitudes, thus

Equation 8.61 yields:
(_62 [Mss] + iw[css] + [Kss]){Ust(iw)} = _[Ksb]{Ub(im)} (862)

[Kss]{Ust(iw)} = _[Ksb]{Ub(i(‘_))} (8.63)
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8.16. Comb#14: Translational + Rotational Lumped Mass, Mass Proportional

Viscous Damping, Displacement Loading

Exactly the same formulation procedure is followed in Comb#13 is valid for
Comb#14.

8.17. Comb#15: Translational Lumped Mass, Stiffness Proportional Viscous

Damping, Displacement Loading

Only mass interaction term is not available due to lumped mass assumption, other

two terms are remained:
[Ms]{iié} + [Cosl{uts} + [Kosl{ue} = —[Mgp){itp} — [Copl{it} — [Kopl{up} (8.64)
[Css] = BlKss] (8.65)
[Csp] = BlKsp] (8.66)
[Ms1{iis ()} + [Cosl{is (O} + [Kss[{us ()} = —[Copl{iy ()3 — [Ksp1{up ()} (8.67)
If the statement is written in frequency domain:

[MssI{UL(i@)} + [CosI{UL (@)} + [KssH{UE (@)}
= —[Csp){Up (i)} — [Ksp {Up (i@)} (8.68)

If the terms left hand side in Equation 8.68 are written in terms of complex

displacement amplitudes, equation yields linear form:
(_52 [Mss] + ia[css] + [Kss]){Ug(ia)} = _(ia[Csb] + [Ksb]){Ub (i@)} (869)

[Kss [{UE (i)} = ~[Ko [ {U (i@)} (8.70)
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8.18. Comb#16: Translational + Rotational Lumped Mass, Stiffness Proportional

Viscous Damping, Displacement Loading

Exactly the same formulation procedure is followed in Comb#15 is valid for
Comb#16.

8.19. Comb#17: Translational Lumped Mass, Mass and Stiffness Proportional
(Rayleigh) Viscous Damping, Displacement Loading

Due to lumped mass assumption, M, term is not available, thus, C,, term is only
proportional with base-structure interaction term (Kj;). Inconsistent behavior is expected

similar to Comb#5a.
[Css] = alMgs] + BlKss] (8.71)
[Csp] = a[Mp] + BlKsp] (8.72)
[Ms{iis ()} + [Cosl{is (O} + [Kss [ {us ()} = —[Copl{iy ()3 — [Ksp 1{up ()} (8.73)
Frequency domain representation:

[Mjs] {Ut(ia—))} Css {Ut(zw)} + [Kss{UE (i@)}
{Ub(lw)} Ksp {U, (i)} (8.74)

All terms can be stated in terms of complex displacement amplitudes, thus the

equation yields:
(_(‘_)2 [Mss] + iw[css] + [Kss]){Ust(iw)} = _(iw[csb] + [Ksb]){Ub(i(‘_))} (875)

[kss]{Ug(ia)} = _[Esb]{Ub (i@)} (876)
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8.20. Comb#18: Translational + Rotational Lumped Mass, Mass and Stiffness

Proportional (Rayleigh) Viscous Damping, Displacement Loading
Exactly the same formulation procedure used in Comb#17 is valid for Comb#18.

8.21. Comb#19: Translational Lumped Mass, Structural Damping, Displacement

Loading

Structural damping has complex valued term, thus, it can be only defined in frequency

domain. Mg, term is not available due to lumped mass assumption:
[Mos]{U$ (@) } + (281 + DK ]{UE (i@))
= —[Mg){U,(i®)} — (261 + DK 1{U, (i@)} (8.77)

All terms can be expressed in terms of complex displacement amplitudes, thus

equation yields:
(=02 [Mg] + (281 + DK D{US (@)} = —(2§i + 1)[Kep [{Up (i@)} (8.78)
[Kes[{UE (@)} = —(28i + DK 1 {U, (i)} (8.79)

8.22. Comb#20: Translational + Rotational Lumped Mass, Structural Damping,

Displacement Loading

Exactly the same formulation procedure used in Comb#19 is valid for Comb#20.

8.23. Comb#21: Consistent Wall Mass + Translational Slab Lumped Mass, Mass

Proportional Viscous Damping, Displacement Loading

Consistent mass system contains all loading terms.

[Mss]{ug} + [Css]{uls:} + [Kss]{uls:} = _[Msb]{ﬁb} - [Csb]{ub} - [Ksb]{ub} (880)
[Css] = a[Mss] (8.81)
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[Csp] = a[Mp] (8.82)

Frequency domain representation and linear equation form of it will become

respectively:
[My1{U% (i@)} + [Cos {UE (@)} + [Ks ] (U (i@)}
= —[Mg){Uy (i@)} = [Csp]{Up (i@)} = K5 }{U, (i)} (8.83)

(_62 [Mss] + ia[css] + [Kss]){Ust(la)}
= —(~@*[Mg] + i®[Cs] + [Kep DU, (i@)} (8.84)

[Rss]{Ust(ia)} = _[Ksb]{Ub (i@)} (8-85)

8.24. Comb#22: Consistent Wall Mass + Translational Slab Lumped Mass,

Stiffness Proportional Viscous Damping, Displacement Loading

The same formulation procedure specified in Comb#21 is valid for analyzing of

Comb#22, but system damping matrix is proportional with stiffness:
[Css] = BIKs] (8.86)

[Csb] = B[Ksb] (8.87)

8.25. Comb#23: Consistent Wall Mass + Translational Slab Lumped Mass, Mass
and Stiffness (Rayleigh) Proportional Viscous Damping, Displacement

Loading

The same formulation procedure specified in Comb#21 is valid for analyzing of

Comb#23, but system damping matrix must be established as Rayleigh damping.
[Css] = a[Mss] + ﬁ[Kss] (8.88)

[Cs ] = a[Msb] + .B[Ksb] (889)
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8.26. Comb#24: Consistent Wall Mass + Translational Slab Lumped Mass, Structural
Damping, Displacement Loading

The last combination is formulated in frequency domain because of the fact that it

has complex valued terms:
[Mos]{US (@) } + (281 + DK ]{UE (i@))
= —[Mg,){U, (i)} = (281 + DK (U, (i@)} (8.90)

All terms can be stated in terms of complex displacement amplitude, thus the

equation yields:

(—@?[Mgs] + (28i + D[KssD{Us (@)}
= —(—*[Msp] + (2§i + D[Ksp DU, (i)} (8.91)

The terms in brackets both at left and right hand side can be represented as one term

called dynamic stiffness matrix and its representation:

[Rss[(UE (i@)} = ~[Kep [ {U, (i@)} (8.92)
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9. COMPARATIVE RESULTS

In this chapter, comparative results are given and discussed in terms of drift ratios
and total acceleration response. 40 individual components of 20 earthquake record set
(mentioned in Chapter 7) are used for response history analysis. Analysis results
presentation is based on comparison of mean values obtained by absolute-maximum
response of each analysis result. Explicitly, one of the combinations is chosen, solved for
an earthquake record, absolute-maximum response for each story is calculated. Blue curves
indicate these absolute-maximum responses in Figure 9.1 and Figure 9.2 for all records.
After this process is repeated for all individual records as in Figure 9.1 and Figure 9.2,
mean of them is calculated (red curves in Figure 9.1 and Figure 9.2). Then, this process is

repeated for each combination. Comparisons are done by using just mean values of each
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Figure 9.1. Absolute-maximum and mean drift ratios for any combination.
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(Abs-Max) Total Acceleration for Comb#11
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Figure 9.2. Absolute-maximum and mean total acceleration response for any combination.

According to regulations in LATBSDC consensus document [12], damping ratio is

taken as 2.5% for all analysis unless otherwise specified.

Note that, analysis results in terms of drift and total acceleration in this chapter is
mostly essential for non-structural elements. Obviously, drift response is not a good
deformation indicator especially for cantilever structures. It is reasonable to give this
explanation in order to express this claim that rotations at the nodes will be getting increase
towards the higher levels for such cantilever structures. This means that the building will
place inclined position without deforming because just the nodes rotate drastically. Drift

ratio will look great in magnitude but it does not represent structural deformation well.

Total acceleration response also serves the purpose of anchorage design for non-
structural elements in tall buildings. Briefly, it is more reasonable approximation to

evaluate the results in terms of non-structural components.
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9.1. Comparisons of Damping Properties for Mass Representations with

Acceleration Loading

9.1.1. Comb#1 - Comb#3 - Comb#5b Comparison

In this case, different damping representations (§=2.5%) are compared for

translational lumped mass system with acceleration loading.

9.1.1.1. Drift Ratio Comparison. Figure 9.3 shows drift ratios of lumped mass system for

different proportional damping representations. One of these viscous damping properties is
well-accepted Rayleigh damping assumption; other two ones indicate extreme cases,

namely, mass proportional and stiffness proportional damping representations.

Comparison of Comb#1 - Comb#3 - Comb#5b (ksi=2.5%)
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Figure 9.3. Drift ratio comparison Comb#1 — Comb#3 — Comb#5b.
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Extreme cases position at two ends while Rayleigh damping representations for
different frequencies chosen locate at the middle region of the graph respectively. It is
reasonable, if it is thought that Rayleigh damping is somehow proportion with these cases.
When the maximum responses of Rayleigh damping with f1-f2 and f1-f5 frequencies are
evaluated, ratio of the maximum drift responses is approximately 85%.

9.1.1.2. Total Acceleration Response Comparison. Considering acceleration responses of

combinations, identical trend can be observed from Figure 9.4. However, extreme cases
look so far from Rayleigh damping cases as compared with drift ratios. When we look at
these maximum responses, the ratio between Rayleigh f1-f2 and Rayleigh f1-f5 is
approximately 63%. This means that choosing of Rayleigh damping frequencies play

crucial role for determination of acceleration response of structure.
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Figure 9.4. Total acceleration response comparison Comb#1 — Comb#3 — Comb#5b.
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9.1.2. Comb#3 - Comb#7 Comparison

In this case, stiffness proportional damping and structural damping (rate-

independent) are compared for lumped mass system with acceleration loading.

9.1.2.1. Drift Ratio Comparison. As it is mentioned in Chapter 4, structural damping is also

named as complex stiffness damping. It is called like that because actually it is
proportional with stiffness of structure and it shifts the phases of displacement amplitudes.
Therefore, it is convenient to compare these two cases since the both of them are
proportional with stiffness. Ratio of maximum drift ratios for two cases is approximately
82%.
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Figure 9.5. Drift ratio comparison Comb#3 — Comb#7.
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9.1.2.2. Total Acceleration Response Comparison. Looking through total acceleration

responses, drastic change can be observed easily due to just phase shifting. It is a proof that

stiffness proportional damping should not be used for such structures.
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Figure 9.6. Total acceleration response comparison Comb#3 — Comb#7.



9.1.3. Comb#5b - Comb#7 Comparison

In this case, Rayleigh damping for different vibration frequencies and structural

damping (rate-independent) are compared for lumped mass system with acceleration

loading.

9.1.3.1. Drift Ratio Comparison. Another important comparison for this study,
undoubtedly, is this case. It gives an idea about choosing of frequencies for Rayleigh

damping. It can be observed from Figure 9.7, choosing of f1-f2 frequencies provides quite

good correlation between structural damping.
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9.1.3.2. Total Acceleration Response Comparison. Once we look at Figure 9.8, we can see

that the same frequencies do not provide good matching with structural damping. Even
though it is different for floor levels, for the sake of the security, f1-f4 frequencies should

be chosen for Rayleigh damping.

Comparison of Comb#5b - Comb#7 (ksi=2.5%)

e e

o SN
35 \ \\\‘
o ) I/

<

. (
o N

15

Floor Level

N

Rayleigh Damp.(f1-f2 freq.)
S Rayleigh Damp.(f1-f3 freq.) |1
Rayleigh Damp.(f1-f4 freq.)

5 / Rayleigh Damp.(f1-f5 freq.)
— Hysteretic Damp.
O r r r r r r r r

02 03 04 05 06 0.7 08 09 1 1.1 1.2
Acceleration (g)

10

!
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9.1.4. Comb#9 - Comb#10 - Comb#11 Comparison

In this case, different damping representations (£=2.5%) are compared for consistent

mass system with acceleration loading.

9.1.4.1. Drift Ratio Comparison. More or less both the same trend and values are valid for

consistent mass system. It will be observed obviously in mass comparisons.
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Figure 9.9. Drift ratio comparison Comb#9 — Comb#10 — Comb#11.
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9.14.2. Total Acceleration Response Comparison. Approaching something from a

different standpoint, it can be said that effects of higher modes can be observed from here
also. Stiffness proportional damping, as it is mentioned in Chapter 4.2, sweeps away the
effects of higher modes (Figure 4.4). Contrarily, mass proportional damping includes
effects of higher modes (Figure 4.2). When they are combined, effects of higher modes

still attract the attention especially for top levels of the building.
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9.1.5. Comb#10 - Comb#12 Comparison

In this case, stiffness proportional damping and structural damping are compared for

consistent mass system with acceleration loading.

9.1.5.1. Drift Ratio Comparison. Figure 9.11 shows comparison of stiffness proportional

damping cases for consistent mass, which is almost the same with lumped mass system.
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Figure 9.11. Drift ratio comparison Comb#10 — Comb#12.
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9.1.5.2. Total Acceleration Response Comparison. As in the case of lumped mass system,

drastic change leaps to the eye for consistent mass system as well.
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Figure 9.12. Total acceleration response comparison Comb#10 — Comb#12.
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9.1.6. Comb#11 - Comb#12 Comparison

In this case, Rayleigh damping for different vibration frequencies and structural
damping (rate-independent) are compared for consistent mass system with acceleration

loading.

9.1.6.1. Drift Ratio Comparison. At the top level, rate between drift ratios for Rayleigh f1-
f2 and structural damping case is 98%. For Rayleigh f1-f2 and structural damping case, the
rate is 89%.
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Figure 9.13. Drift ratio comparison Comb#11 — Comb#12.
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9.1.6.2. Total Acceleration Response Comparison. Similar behavior both for drift and total

acceleration responses are observed from Figure 9.14 and Figure 9.15. At the top level, rate
of acceleration response for Rayleigh f1-f2 and structural case 73%. For Rayleigh f1-f4

and structural case, the rate is 95%.
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Figure 9.14. Total acceleration response comparison Comb#11 — Comb#12.
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9.2. Comparisons of Mass Representations for Damping Properties with

Acceleration Loading

9.2.1. Comb#11 - Comb#12 Comparison

In this case, different mass representations are compared for the mass proportional

viscous damping (§=2.5%) with acceleration loading.

9.2.1.1. Drift Ratio Comparison. As it is seen in Figure 9.15, there is almost no difference

between translational lumped mass and translational — rotational lumped mass systems.

Consistent mass system slightly differs from the other two systems.
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Figure 9.15. Drift ratio comparison of Comb#1 — Comb#2 — Comb#9.
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9.2.1.2. Total Acceleration Response Comparison. In terms of total acceleration responses,

results are almost in the same way with drift ratios. However, system including rotational
lumped mass terms can be seen more apparently as compared with drift ratios but it is so

small.
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9.2.2. Comb#3 - Comb#4 - Comb#10 Comparison

In this case, different mass representations are compared for the stiffness

proportional viscous damping (£=2.5%) with acceleration loading.

9.2.2.1. Drift Ratio Comparison. Consistent mass system slightly differs from the other

mass systems in terms of drift ratios again. It can be said that differences for different mass

systems, in this case, are less with respect to mass proportional damping system.
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Figure 9.17. Drift ratio comparison Comb#3 — Comb#4 — Comb#10.
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9.2.2.2. Total Acceleration Response Comparison. In terms of the acceleration response,

this case differs from previous case (mass proportional damping case) in which difference
can be observed between the mass systems but it is so small. However, in this case

difference is almost zero both in terms of drift ratio and acceleration.
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Figure 9.18. Total acceleration response comparison of Comb#3 — Comb#4 — Comb#10.

Due to fact that mass proportional viscous damping system is inversely proportional
with natural vibration frequency, damping ratios of higher modes are quite small (Figure
4.1) and vibrations cannot diminish. Therefore, higher mode effects can be realized
obviously in such structures rather than those with stiffness proportional damping. This is
the reason of why amount of response difference in mass proportional systems is little bit
larger than that of stiffness proportional systems. Sure that difference, in terms of drift ratio
and acceleration response, between mass proportional and stiffness proportional systems

are negligible.
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9.2.3. Comb#5b - Comb#6b - Comb#11 Comparison

In this case, different mass representations are compared for mass and stiffness
proportional (Rayleigh) viscous damping (£=2.5% for different natural vibration

frequencies) with acceleration loading.

9.2.3.1. Drift Ratio Comparison. Due to fact that Rayleigh damping case is combination of

mass and stiffness proportional damping cases (Figure 4.3), effects of that on different

mass systems is based on natural vibration frequencies chosen obviously.
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Figure 9.19. Drift ratio comparison Comb#5b — Comb#6b — Comb#11.
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9.2.3.2. Total Acceleration Response Comparison. The same reason mentioned in previous

discussions, both drift and total acceleration responses are almost the same. It is
comprehensible that differences between lumped mass and consistent mass system

increases slightly with increasing second frequency chosen for Rayleigh damping.
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Figure 9.20. Total acceleration response comparison of Comb#5b — Comb#6b —
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9.2.4. Comb#7 - Comb#8 - Comb#12 Comparison

In this case, different mass representations are compared for structural (rate-

independent) damping with acceleration loading.

9.2.4.1. Drift Ratio Comparison.
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Figure 9.21. Drift ratio comparison Comb#7 — Comb#8 — Comb#12.
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9.2.4.2. Total Acceleration Response Comparison. Structural damping case gives similar

results in terms of differences between different mass systems to Rayleigh damping case.
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Figure 9.22. Total acceleration response comparison Comb#7 — Comb#8 — Comb#12.
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9.3. Comparisons of Seismic Loading Representations for Mass and Damping

Representations

9.3.1. Comb#1 - Comb#13 Comparison for £&=2.5%

In this case, different seismic loading representations (§=2.5%) are compared for

translational lumped mass system and mass proportional viscous damping.

9.3.1.1. Drift Ratio Comparison. One of the most expected case, undoubtedly, is

acceleration and displacement loading case. Figure 9.23 shows that there is no difference

between them.
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Figure 9.23. Drift ratio comparison Comb#1 — Comb#13.
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9.3.1.2. Total Acceleration Response Comparison. Calculations of wave velocity via

displacement loading formulation, it is said that this result is reasonable because wave
velocity is approximately 1000 m/s. This major value indicates that wave completes its
travel throughout the building so fast. It supports the lying idea of pseudo static

transmission.
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Figure 9.24. Total acceleration response comparison Comb#1 — Comb#13.
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In this case, different seismic loading representations (£=2.5%) are compared for

consistent mass system and structural damping.

9.3.2.1. Drift Ratio Comparison.
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9.3.2.2. Total Acceleration Response Comparison. For structural damping case, situation is

the same for both total acceleration and displacement loading.
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Figure 9.26. Total acceleration response comparison Comb#12 — Comb#24.
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9.4. Effects of Different Damping Ratios on Mass Representations

In this case, effects of different damping ratios on the systems with different mass
representations are investigated. Since the translational and rotational lumped mass system
do not make difference with respect to ordinary translational lumped mass system, it is not

incorporated into the comparisons herein.
9.4.1. Comb#1 - Comb#9 Comparison for £&=1%, 2.5%, 5%

Effects of different (§=1%, £=2.5%, £=5%) damping ratios on the systems for
different mass representations, in the case of mass proportional viscous damping with

acceleration loading, are compared.

9.4.1.1. Drift Ratio Comparison.
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Figure 9.27. Drift ratio comparison Comb#1 — Comb#9.
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9.4.1.2. Total Acceleration Response Comparison. Indisputably, small damping ratios

generates higher response, and changing of damping ratios makes difference slightly
between different mass systems for both drift and total acceleration responses. Rate of
maximum responses between lumped mass and consistent mass system for both

acceleration and drift is approximately 97%.
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Figure 9.28. Total acceleration response comparison Comb#1 — Comb#9
(E=1%, £=2.5%, £E=5%).
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9.4.2. Comb#3 - Comb#10 Comparison for £=1%, 2.5%, 5%
Effects of different (§=1%, £=2.5%, &=5%) damping ratios on the systems for
different mass representations in the case of stiffness proportional viscous damping with

acceleration loading.

9.4.2.1. Drift Ratio Comparison.
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Figure 9.29. Drift ratio comparison Comb#3 — Comb#10 (£§=1%, £=2.5%, £=5%).
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9.4.2.2. Total Acceleration Response Comparison. Figure 9.29 and Figure 9.30 shows that

difference between both total acceleration and drift responses are almost zero. Again, it is

not possible to capture difference for stiffness proportional damping system.
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Effects of different (§=1%, £=2.5%, &=5%) damping ratios on the systems for

different mass representations in the case of structural damping with acceleration loading.

9.4.3.1. Drift Ratio Comparison.
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9.4.3.2. Total Acceleration Response Comparison. The same trend is valid for structural

damping case in terms of both drift and total acceleration responses.
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Figure 9.32. Total Acceleration response comparison Comb#7 — Comb#12
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9.5. Effects of Different Damping Ratios on Rayleigh and Structural Damping

9.5.1. Comb#5b - Comb#7 Comparison §=1%

In this case, two systems with mass and stiffness proportional (Rayleigh) viscous
damping (different natural vibration frequencies are chosen for £&=1%) and structural (rate-

independent) damping are compared for lumped mass system with acceleration loading.

9.5.1.1. Drift Ratio Comparison.
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Figure 9.33. Drift ratio comparison Comb#5b — Comb#7 (£=1%).
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9.5.1.2. Total Acceleration Response Comparison. This is other important comparison

giving interesting results about effects of changing damping ratios. Maybe not essential for
drift ratios but once it is evaluated in terms of acceleration responses, 1% damping ratio
increase the acceleration responses in a remarkable level as compared with 2.5%. Trend of
curve represented structural damping is almost matches with Rayleigh f1-f4 frequencies.
At the lower levels, let’s say until 5" story, structural damping response perfectly matches

with Rayleigh f1-f5 frequencies.
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Figure 9.34. Total Acceleration response comparison Comb#5b — Comb#7 (§=1%).

When it is considered that regulations in the guidelines associated to tall buildings
design procedures, 1% damping ratio is quite reasonable for such structures.
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9.5.2. Comb#5b - Comb#7 Comparison £=5%
In this case, two systems with mass and stiffness proportional (Rayleigh) viscous
damping (£=5% for different natural vibration frequencies chosen) and structural (rate-

independent) damping are compared for lumped mass system with acceleration loading.

9.5.2.1. Drift Ratio Comparison. Since the bandwidth for drift ratios are quite narrow,

changing of damping ratios cannot make much difference. For 5% damping ratio, it is

observed that Rayleigh f1-f2 is almost perfectly matches with structural damping case.
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Figure 9.35. Drift ratio comparison Comb#5b — Comb#7 (§=5%).
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9.5.2.2. Total Acceleration Response Comparison. For 5% damping ratio, structural

damping is placed in the middle of Rayleigh f1-f3 and Rayleigh f1-f4.

Comparison of Comb#5b - Comb#7 (ksi=5%)
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Figure 9.36. Drift ratio comparison Comb#5b — Comb#7 (§=5%).
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10. CONCLUSION

The aim of this study, as it is mentioned before, is to investigate the very popular
assumptions in structural earthquake engineering. As it is expected that most of them have
not made remarkable differences, however, instructive and consistent knowledge have

been captured.

Damping topic is placed on the top since most significant results are captured from
that issue. The outcomes learned from this study in terms of damping topic can be outlined
that so-called Rayleigh damping is very efficient method both practical usage and giving
reliable results if the frequencies associated are chosen correctly. Studies show that
choosing f1-f2 frequencies is enough to get correct drift ratios and it is almost independent
from the damping ratio. However, for total acceleration response quantities, it is not valid.
Even though, effects of different damping ratios are remarkable, author proposed that f1-f4
frequencies for Rayleigh damping should be chosen for such buildings independent from

damping ratio roughly.

Another important issue that it is worth to mention here is significant difference
between stiffness proportional damping and complex stiffness (structural) damping. This

result presents explicitly the effect of phase shifting on seismic response.

Effects of mass representations have taken the second place. Translational and
rotational lumped mass assumption is definitely identical with ordinary lumped mass
approach. Thus, the idea of rigidly rotating floor masses has been discarded. Although the
phase lag between consistent mass and lumped mass systems is seen in animations, since
the maximum response quantities are not so different, only slight difference could have
been captured from this comparison. Even so, author proposes consistent mass systems for

the sake of integrity.

The last topic is related to validation of pseudo-static displacement assumption for
tall buildings. The results show no difference, actually there is a very small difference but
most probably, due to fact that it is caused by phase lags, it cannot be captured in drift or
acceleration responses. Nevertheless, not only the sense of displacement loading but also
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animations generated by using displacement formulations give a better understanding of
wave travel throughout the building. Author thinks that it can be used as an educational

material at least.
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