FOR REFERENCE

OT C BE AKEN FROM THIS ROOM

TEMPERATURE DISTRIBUTION FOR ROTATING SOLID CYLINDERS HEATED BY RADIATION

Submitted to the Faculty of the Graduate School of Engineering in Partial Fulfillment of the Requirements of

MASTER OF SCIENCE

in

MECHANICAL ENGINEERING

Bogazici University

1981

This thesis has been approved:

Dr. Emre AKSAN (Thesis Supervisor)

Prof. Dr. Akın TEZEL

Aporale

1

Ul

Doç. Dr. Fahir BORAK

ACKNOWLEDGEMENT

The author wishes to express her sincere thanks to her thesis supervisor, Prof. Dr. Ahmet Rasim Büyüktür who guided this study and to Dr. Emre Aksan who made this final text possible.

Thanks are due to Prof. Dr. Akin Tezel for his valuable suggestions.

A note of appreciation is due to Doç. Dr. Aksel Öztürk for his patience, ever unending help and recommendations throughout the study.

Thanks also go to all the authors friends in the Environmental Engineering Group for their encouragement and understanding.

A word of appreciation to Gülsen Karşit for her expert typing of the manuscript.

iii

ABSTRACT

The temperature distribution in rotating circular cylinders heated by radiation has been studied in this thesis. Analytical solutions have been obtained for solid cylinders rotating with constant angular velocity, with incoming radiation taken perpendicular to the axis of rotation and incident on one side. Thermal equilibrium has been achieved by means of reradiation to the surrounding opposite half-space. The treatment employed makes use of the method of separation of variables with linearized boundary s conditions.

Results of the study agree very well with works cited where similar problems have been treated employing different mathematical techniques.

iν

Bu çalışmada, radyasyona tabi, dönen silindirlerdeki sıcaklık dağılımı incelenmiştir. Analitik sonuçlar, kendi ekseni etrafında sabit bir açısal hızla, ışıma yönüne dik bir eksen etrafında dönen katı silindirler için elde edilmiştir. Diferansiyel denklemin lineer hale getirilmiş sınır şartlarına göre çözümü, değişkenlere ayırma metodu ile bulunmuştur.

Sonuçlar benzer problemlerin sonuçları ile karşılaştırılmış ve büyük ölçüde uygunluk gösterdiği saptanmıştır.

ÖZET

CONTENTS

ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ÖZET	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
NOMENCLATURE	x
CHAPTER 1 - INTRODUCTION	1
CHAPTER 2 - LITERATURE SURVEY	3
CHAPTER 3 - HEAT CONDUCTION EQUATION FOR	
ROTATING BODIES	5
3.1 General	5
3.2 Transformation Formula for	ter an an teorem An teorem
Moving Heat Sources	6
3.3 Boundary Conditions	9
CHAPTER 4	12
4.1 Formulation	12
4.1.1 Definition of the Problem	12
4.1.2 Differential Equation for	
Rotating Cylinder	13
4.1.3 Boundary Conditions	15

vi

4.2 Solution of the Problem for			
	the Temperatures in the		
	Solid Cylinder	20	
	4.2.1 Separation of Variables	20	
	4.2.2 Solution for the Solid	•	
	Cylinder	24	
	4.2.3 Determination of the	•	
	Constants	26	
		34	
5.1	Evaluation of the Solution	34	
5.2	Numerical Procedure	38	
5.3	Graphical Results	40	
5.4	Comparison with the Other Studies	51	
5.5	Discussion of the Results	55	
· · ·		57	
Determination of Fourier Coefficients			
APPENDIX B Explanations About Computer Programs			
	4.2 5.1 5.2 5.3 5.4 5.5 Det Exp	 4.2 Solution of the Problem for the Temperatures in the Solid Cylinder 4.2.1 Separation of Variables 4.2.2 Solution for the Solid Cylinder 4.2.3 Determination of the Constants 5.1 Evaluation of the Solution 5.2 Numerical Procedure 5.3 Graphical Results 5.4 Comparison with the Other Studies 5.5 Discussion of the Results Determination of Fourier Coefficients Explanations About Computer Programs	

vii

LIST OF FIGURES

FIGURE	1	Schmatic Representation of the	
•		Cylindrical Coordinate System	·
		(r,ϕ,z) Fixed in the Body with θ	
		Measured in a Sense Opposite	
	•	to the Rotation ω .	14
FIGURE	2	Outer Surface Temperature Variation	
		for Different Rotational Speeds.	43
FIGURE	3	Variation of Ratio of Two Temperatures	
		(Tasymptotic/Tseries) Around the	
		Circumference for $1 < \lambda < 10$.	44
FIGURE	4	Solid Cylinder Temperatures on the	
		$\rho=0.8$ as a Function of ϕ .	46
FIGURE	5	Temperature Distribution as a Function	
		of Radius for Various λ Values.	47
FIGURE	6	Temperature Distribution as a Function	
		of Radius at $\theta = \frac{3\Pi}{2}$.	47
FIGURE	7	Radial Temperature Distribution at	•
		$\theta = \frac{\Pi}{2}$ and for $\lambda = 10$ and $\lambda = 2500$.	48
FIGURE	8	Radial Temperature Distribution for	
•		θ = constant and for λ =10 and λ =2500.	49
FIGURE	9	Surface Temperature Distributions for	•
		Full Range of Gamma Values at $\omega = 0.25 \frac{rad}{hr}$.	50
FIGURE	10	Temperature Distribution Versus for	
	· .	Different Values of Gamma at $\rho=0.8$,	
		$\omega = 0.25 \text{ rad/hr.}$	52
	1947 - M.		

viii

FIGURE	11	Isothermals for the Stationary	
	•	Solid Cylinder.	53
FIGURE	12	Isothermals for Slow Rotation,	
; •	•	$\lambda = 0.25.$	54

NOMENCLATURE

a	Thermal Diffusivity (ft^2h^{-1})
a _n ,b _n	Real series coefficients
B _n	Fourier series coefficients for radiation input
	functions
k	Thermal conductivity (Btu $ft^{-1}h^{-1}R^{-1}$)
٩ ₀ ''	Density of Radiation (Btu $ft^{-2}h^{-1}$)
r	Radial coordinate (ft)
R	Radius of cylinder, (ft)
i,t'	Time, (h)
T	Solid cylinder temperature (^o R)
т _о	Constant temperature in equation (4.11)([°] R)
	GREEK SYMBOLS
α	Absorptivity of surface exposed to radiation
β	$\alpha q_0'' R / (T_0 k)$
Υ	4oet _o ³ R/k
ε	Emissivity
θ	Angular coordinate fixed in space, (rad)
λ	$\omega R^2/a$
ψ*	Temperature variable in equation (4.11)(^O R)

Temperature variable in equation $(4.13)(^{\circ}R)$ Stefan-Boltzmann constant $(0.171x10^{-8} \text{ Btu ft}^{-2} \text{ h}^{-1}R^{-1})$

Angular coordinate fixed in the cylinder Speed of angular rotation (rad h^{-1})

ψ

σ

φ

ω

CHAPTER 1

INTRODUCTION

This thesis is concerned with the temperature distribution in a solid rotating cylinder exposed to incoming parallel radiation.

Literature, in recent years, contains studies of heat conduction in various types of bodies, with radiant energy interchange prescribed on the surface. The current emphasis on satellites and space vehicles has created an interest in the temperature distribution in rotating bodies exposed to solar radiation. Studies can be grouped in several categories such as the analysis of thin-walled bodies, thick-walled bodies and solid bodies.

In this work, a solid cylinder has been considered rotating with constant angular velocity " ω ". This state implies that a balance has been attained between the total heat absorbed by the cylinder and the total heat re-radiated into space. The resulting temperature distribution is typical of a quasi-steady state, since each point of the cylinder fixed with respect to the incoming radiation would have a time-independent temperature. In other words the temperature distribution would vary periodically with time.

2 .

Although the differential equation leading to the temperature distribution is linear, the true radiation boundary condition turns out to be non-linear. Nonetheless, analytical solutions of the differential equation, have been obtained here for linearized boundary conditions. Expressing the governing equation in a rotating coordinate system and using separation of variables, the case has been reduced to an eigenvalue problem. Temperature distributions thus obtained are in very good agreement with results | 7 | published in similar works.

CHAPTER 2

LITERATURE SURVEY

The current emphasis on satellites and space vehicles has created an interest in the temperature distribution of various types of rotating bodies, especially in the past fifteen years, several analysis related to this subject have appeared in the literature. In general these papers consider the body to be placed in a vacuum and receiving radiant energy from a distant source, reradiating energy to a heat sink at absolute zero.

The problem of the solar heating of a rotating cylindrical shell has been considered first by Raynor and Charnes in |11|. Nichols |6| and Roberts |12| have individually obtained the approximate formulas for thin-walled solid cylinders, but neither considered the possibility of rotation.

In a closely related paper, Olmstead and Raynor [7]

3

have undertaken the problem of the rotating solid cylinder. They have obtained analytical solutions by the method of Green's functions. However, in this study, the solution has been examined only for the limiting cases of either very slow or very fast rotational speeds, indicating a need for further analysis of the same problem.

Ölçer [8] considered the problem of the solar heating of rotating space vehicles, and obtained expressions to unsteady temperature distributions by making use of eigen vector techniques.

In a similar analysis made by Raynor and Petrof, [10] for solar heating of rotating thick-walled cylinders, analytical solutions were found as series expressions in terms of orthogonal functions for the hollow cylinder with the adiabatic hole. The resulting temperature distributions were examined for various rotational speeds at the surface of the cylinder.

Arpaci |2| and Carslaw and Jaeger |3| explain in detail the formulation and solution methods of various types of problems in conduction heat transfer. Schneider. |13| gives the transformation formulas for the problems which have moving heat sources.

- 4 -

CHAPTER 3

HEAT CONDUCTION EQUATION FOR ROTATING BODIES

3.1. GENERAL

The formulation of conduction phenomena can be defined so as to obtain the mathematical expression in light of the physics of the problem under consideration and to specify the initial and/or boundary conditions pertinent to the governing equation. The governing equation of a conduction problem can be obtained either by the mathematical interpretation of general formulation or by following, from the start, an individual formulation suitable to the problem. The latter method is especially appropriate for practical application of the study of heat conduction. Detailed exploration of methods of formulation can be found in [2] and [3].

Heat conduction equation for the cylindrical coordinate system which can be obtained by either one of the

5

above procedures is given as:

$$\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial T}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{u'''}{k} = \frac{1}{a}\frac{\partial T}{\partial t}$$
(3.1)

where

$$T \equiv T(r,\phi,z,t)$$

and

$$a = \frac{k}{\rho c_p}$$

Equation (3.1) is applicable for homogeneous isotropic solids and for frictionless incompressible fluids. For $u''' \equiv 0$, Equation (3.1) becomes:

$$\nabla^2 T = \frac{1}{a} \frac{\partial T}{\partial t}$$
 (3.2)

3.2. TRANSFORMATION FORMULA FOR MOVING HEAT SOURCES

The approximate theory of moving heat sources has been considered by Sprarapen and Claussen and the exact analytical theory was developed by Rosenthal. Derivation of the transformation formula for moving heat sources is discussed by Schneider |13| for rectangular coordinates. The transformation formula from stationary to moving systems can be obtained for polar coordinates by applying the same procedure as in |13|.

In the stationary system, $T(r, \theta, z)$ the temperature must satisfy

- 7 -

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{a} \frac{\partial T}{\partial t}$$
(3.3)

If we define two new variables

$$\phi = \theta - \omega t ; \quad t' = t$$

then

 $\frac{\partial \phi}{\partial \theta} = 1;$ $\frac{\partial \phi}{\partial t} = -\omega$ $\frac{\partial t'}{\partial \theta} = 0;$ $\frac{\partial t'}{\partial t} = 1$

$$\frac{\partial T}{\partial \theta} = \frac{\partial T}{\partial \phi} \frac{\partial \phi}{\partial \theta} + \frac{\partial T}{\partial t'} \frac{\partial t'}{\partial \theta} = \frac{\partial T}{\partial \phi} ; \quad \frac{\partial^2 T}{\partial \theta^2} = \frac{\partial^2 T}{\partial \phi^2}$$
(3.4)

$$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial \phi} \cdot \frac{\partial \phi}{\partial t} + \frac{\partial T}{\partial t'} \frac{\partial t'}{\partial t} = -\omega \frac{\partial T}{\partial \phi} + \frac{\partial T}{\partial t'}$$
(3.5)

or:

$$\frac{\partial T}{\partial t} = -\omega \frac{\partial T}{\partial \phi} + \frac{\partial T}{\partial t}$$

(3.6)

Substituting Equations (3.4) and (3.6) into Equation (3.3), we get,

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{a} \left(-\omega \frac{\partial T}{\partial \phi} + \frac{\partial T}{\partial t^*} \right)$$
(3.7)

An observer of the ϕ direction would notice a change in temperature of his surroundings, but he would notice no such change in temperature if he were stationed at a point on the moving Θ axis. This condition of apparent steady state temperature has come to be known as the quasi-steady state and it is represented mathematically by $\frac{\partial T}{\partial t} = 0$ in the moving coordinate system.

Since this puts us in the moving coordinate system $\frac{\partial T}{\partial t}$ = 0 and

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\omega}{a} \frac{\partial T}{\partial \phi} = 0 \qquad (3.8)$$

Equation (3.8) is applicable as heat conduction equation for rotating bodies.

3.3 BOUNDARY CONDITIONS

The formulation of any specified problem can be realized either from the equation of conduction given by Equation (3.1) or from the mathematical interpetations of it in the light of the physics of the problem. These equations involve a partial differential equation in terms of the unknown temperature and their solution involves a number of integration constants. Therefore, an equal number of appropriate conditions in space and time is necessary in order to determine these constants. These conditions are initial and boundary conditions.

Q

The boundary conditions specify the temperature on the heat flow situation at the boundaries of the region. The most frequently encountered boundary conditions are prescribed temperature, prescribed heat flux and heat transfer to the ambient by convection. According to the physics of the problem, combinations of the above can also appear as the boundary conditions of the problem |2,8|.

The boundary conditions for heat transfer problems involving the fourth-power radiation law, free convection and so on, are called nonlinear boundary conditions because they involve a power of temperature. Since this study is about the radiation heating of a solid cylinder, it will be useful to give some information about this type of boundary conditions.

Consider two isothermal surfaces A_1 and A_2 having the absolute temperatures T_1 , T_2 . It has been shown experimentally by Stefan and later proved thermodynamically by Boltzmann that the radiant heat flux q_{12} between the surfaces A_1 and A_2 can be expressed by the following equation as

$$q_{12} = \sigma \overline{F}_{12} (T_1^4 - T_2^4)$$
 (3.9)

where σ is the Stefan-Boltzmann constant and \overline{F}_{12} is the overall interchange factor

For an enclosure composed of two concentric, very long cylinders, \overline{F}_{12} becomes |9|,

$$\overline{F}_{12} = \frac{1}{\frac{1}{\epsilon_1} + \frac{A_1}{A_2} (\frac{1}{\epsilon_2} - 1)}$$
(3.10)

where A_1 and ϵ_1 are the area and emissivity of inner cylinder, respectively. As $A_1/A_2 \rightarrow 0$, Equation (3.10) becomes,

$$\overline{F}_{12} = \varepsilon_1 \tag{3.11}$$

Equation (3.11) is applied to calculate the radiation energy loss from an object to its surroundings. When this object is in vacuum, the radiation energy loss would be

$$q = \sigma \varepsilon_1 T_1^4 = \sigma \varepsilon T^4$$
 (3.12)

To express the heat flux from the surfaces of a solid cylinder exposed to radiation by conduction and radiation, the required boundary condition can be written in the form,

$$-k\left(\frac{\partial T}{\partial n}\right)_{\sigma} = \sigma \varepsilon T^{4} - q_{n}^{"}$$
(3.13)

where q_n " is the radiation term in the direction of surface normal and plus or minus signs of the conduction term correspond to the direction of inward and outward normals, respectively.

CHAPTER 4

4.1. FORMULATION

<u>ند ت</u>ینی

4.1.1. Definition of the Problem

In this study, a solid cylinder is considered to be rotating with constant angular velocity about its geometric axis, the axis being perpendicular to the direction of incoming radiation. Thermal radiation is heating the body and thermal equilibrium is attained by means of reradiation to the surrounding space.

There is no conduction and convection effects with the surroundings at the surface of the body based on the assumption that the importance of radiation relative to convection is larger for low rates of convection. Internal reradiation is not considered on the basis of the conclusion reached in |9|that the body rotation influences

12

the temperatures to a much greater degree than internal radiation. Also longitudinal conduction is neglected according to the analysis of an infinitely long cylinder. Therefore, the heat flow is radial and circumferential and the resulting temperature distribution is two dimensional. The body is considered to be diffusely emitting and diffusely reflecting. The thermal conductivity, k is the same in all direction, i.e., isotropic material.

In the light of this definition of the present problem the temperature distribution of the cylinder can be determined from the solution of the differential equation of temperature subject to the necessary boundary conditions.

4.1.2. Differential Equation for Rotating Cylinder

The cylindrical coordinate system (r,ϕ,z) fixed in the body is shown in Figure 1 with θ measured in a sense opposite to the rotation, ω . Taking diffusivity "a" as constant, the governing partial differential equation can be written in cylindrical coordinate system as,

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} = \frac{1}{a} \frac{\partial T}{\partial t}$$
(4.1)

- 13 -

FIGURE 1. Schmatic Representation of the Cylindrical Coordinate System (r, ϕ, z) Fixed in the Body with θ Measured in a Sense Opposite to the Rotation ω .

A transformation that has been useful in solving problems with moving heat sources eliminates the explicit dependence of the temperature on time. As it is mentioned in the previous chapter, for polar coordinates this transformation is

$$\theta = \phi - \omega t \qquad t' = t \qquad (4.2)$$

Fixed in a stationary frame of reference, the temperature becomes the quasi-steady temperature

$$T(r,\theta) = T(r,\phi,t) \qquad (4.3)$$

characterized by

$$\frac{\partial T}{\partial t'} = 0 \qquad (4.4)$$

Using Equations (4.2) - (4.4), Equation (4.1) becomes,

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\omega}{a} \frac{\partial T}{\partial \theta} = 0 \qquad (4.5)$$

4.1.3. Boundary Conditions

The boundary conditions for the problem involve prescribed surface values for the heat flux. The external surface of the body is heated by the absorption of radiant energy from the distant source and suffers an energy loss by reradiation to space. The gradient of temperature is determined by the net rate of heat conduction per unit area with the local absorbed radiation by Lambert's cosine law and the reradiation governed by the Stefan-Boltzmann law. From Equation (3.13) we get,

 $k \frac{\partial T}{\partial r} + \sigma \epsilon T^4 = \alpha q_0'' \cos^+(\phi - \omega t)$ on r=R (4.6)

where

- the average absorptivity of the cylinder surface, α

he radiant energy flux in a plane normal to the direction of incoming radiation

- Stefan-Boltzmann constant • σ

- the average emissivity of the cylinder surface. ε The Cosine function is defined

$$\cos^{+}(\phi - \omega t) = 0 \qquad \frac{\Pi}{2} \leq (\phi - \omega t) \leq \frac{\Pi}{2} \\ 0 \qquad \frac{\Pi}{2} \leq (\phi - \omega t) \leq \frac{3\Pi}{2} \qquad (4.7)$$

Boundary condition at the center of the cylinder is

$$T = Finite$$
 at $r=0$ (4.8)

When the transformation Equations (4.2) and (4.3)are introduced into the boundary conditions Equations (4.6) and (4.7) become

$$k \frac{\partial T}{\partial r} + \sigma \varepsilon T^{4} = \alpha q_{0} "Cos^{\dagger} \theta \qquad \text{on } r = R \qquad (4.9)$$

$$\cos^{\dagger} \theta = 0 \qquad \frac{\Pi}{2} \leq \theta \leq \frac{3\Pi}{2}$$

and

T =	Finite	•	at r=0	•	(4.10)
					• •

In order to linearize the reradiation heat flux term in Equation (4.6), the following substitution is made,

$$\psi^* \equiv \frac{T - T_o}{T_o}$$
 or $T = T_o(1 + \psi^*)$ (4.11)

It is assumed that $\psi *$ is small compared to unity, and using Maclaurin's expansion, we get

$$\Gamma^{4} = T_{0}^{4} (1 + \psi^{*})^{4} \stackrel{\sim}{=} T_{0}^{4} (1 + 4\psi^{*} + 6\psi^{*2} + \cdots)$$

or

$$T^4 = T_0^4 (1 + 4\psi^*)$$
 (4.12)

$$T^{4} \approx 4T_{0}^{4} (1/4 + \psi^{*}) = 4T_{0}^{4}\psi$$
 (4.13)

where

$$\psi = \frac{1}{4} + \psi^*$$

Substituting the value of ψ into Equation (4.11), yields

$$T = T_{0} \left(\frac{3}{4} + \psi\right)$$
 (4.14)

- 17 -

Then Equation (4:9) becomes

$$\frac{\partial \psi}{\partial r} = \frac{\alpha q_{o}''}{T_{o}k} \cos^{+}\theta - \frac{4\sigma \varepsilon T_{o}^{3}}{k} \psi \qquad (4.15)$$

Introducing Equation (4.14) into Equation (4.5), the differential equation becomes,

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\omega}{a} \frac{\partial \psi}{\partial \theta} = 0$$

Finally, the complete formulation of the problem in $\boldsymbol{\psi}$ becomes

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} + \frac{\omega}{a} \frac{\partial \psi}{\partial \theta} = 0 \qquad (4.16)$$

and subject to the boundary conditions,

$$\frac{\partial \psi}{\partial r} = \frac{\alpha q_{o}''}{T_{o}k} \cos^{+}\theta - \frac{4\sigma \varepsilon T_{o}^{3}}{k} \psi \qquad \text{on } r=R \qquad (4.17)$$

and

$$\psi$$
 = Finite on r=0 (4.18)

1

In addition, the following non-dimensional quantities are introduced

$$\rho \equiv \frac{r}{R}$$

$$\beta \equiv \frac{\alpha q_{o}''R}{T_{o}k}$$
(4.19)
(4.20)

$$a = \frac{4\sigma\varepsilon T_0^3 R}{k}$$
(4.21)

$$\lambda \equiv \frac{\omega R^2}{a}$$
 (4.22)

Substituting Equations (4.19) to (4.22) into Equations (4.16) to (4.18), the formulation of the problem in nondimensional quantities becomes,

$$\frac{\partial^{2} \psi}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} + \lambda \frac{\partial \psi}{\partial \theta} = 0 \qquad (4.23)$$

$$\frac{\partial \psi}{\partial \rho} + \gamma \psi \Big|_{\rho=1}^{2} = \beta \cos^{+} \theta \qquad (4.24)$$

$$\psi \Big|_{\rho=0}^{2} = \text{Finite} \qquad (4.25)$$

4.2. SOLUTION OF THE PROBLEM FOR THE TEMPERATURES IN THE SOLID CYLINDER

4.2.1. Separation of Variables

After the formulation in non-dimensional quantities is completed, a solution is sought by the method of separation of variables.

Assume the existence of a product solution

$$\psi(\rho, \theta) = R(\rho) \ \Theta \ (\theta) \tag{4.26}$$

Introducing Equation (4.26) into Equation (4.23), we obtain

$$(\ddot{R} + \frac{1}{\rho}\dot{R}) \Theta + \frac{1}{\rho^2}R\ddot{\Theta} + \lambda R\dot{\Theta} = 0$$
 (4.27)

Rearranging Equation (4.27), yields

$$\rho^{2} \quad \frac{\ddot{R}}{R} + \rho \quad \frac{\dot{R}}{R} = - \frac{\Theta}{\Theta} - \lambda \rho^{2} \quad \frac{\Theta}{\Theta}$$
(4.28)

The left-hand side of this equation is independent

of θ while the right-hand side is a function of ρ and θ . Since both sides of Equation (4.28) are not independent of either variable they cannot be equal to a constant. Because of the equality of both sides to each other, the right-hand side of this equation must yield to a funcion of ρ only. Accordingly, the functions $\frac{\Theta}{\Theta}$ and $\frac{\Theta}{\Theta}$ are necessarily constants. On the basis of this conclusion, assume

 $\frac{\Theta}{C} = -v^2 \qquad (4.29)$

 $\frac{\Theta}{\Theta} = \kappa \tag{4.30}$

From differentiation of Equation (4.30) with respect to θ , we obtain

 $\Theta = \kappa \quad \Theta \tag{4.31}$

(4.32)

Substituting Equation (4.30) into Equation (4.31) and comparing with Equation (4.29), a relation between κ and ν^2 can be obtained

$$s^2 = -v^2$$

and

or equally

$$\kappa = \bar{+} i \nu \qquad (4.33)$$

22 -

Consider the possible two cases:

CASE 1

Let,

$$\kappa = \frac{\Theta}{\Theta} = -i\nu \qquad (4.34)$$

A solution satisfying this value of κ is,

$$P = A e^{-i\nu\theta}$$
 (4.35)

where A being a complex number.

The above separation constants so introduced, the differential equation in ρ direction becomes,

$${}_{R}^{"} + \frac{1}{\rho} {}_{R}^{"} - (i\nu\lambda + \frac{\nu^{2}}{\rho^{2}}) R = 0$$
 (4.36)

and the complex solution of this equation can be written in the forms

$$R(\rho) = BJ_{\nu}(i\sqrt{i\lambda\nu} \rho) + CY_{\nu}(i\sqrt{i\lambda\nu} \rho) \qquad (4.37)$$

where B and C may take complex values.

For a given value of v, the product solution is,

$$T_{v}(\rho,\theta) = e^{-iv\theta} | B J_{v}(i\sqrt{i\lambda v} \rho) + C Y_{v}(i\sqrt{i\lambda v} \rho)$$
(4.38)

CASE 2

Consider the second case, i.e.,

$$\kappa = \frac{\Theta}{\Theta} = iv \qquad (4.39)$$

A solution satisfying Equation (4.39) and Equation (4.29) is of the form

$$\Theta = A e^{i\nu\theta}$$
(4.40)

where A being a complex number. Then Equation (4.36) becomes

$$\rho^{2} \ddot{R} + \rho \dot{R} + |i\lambda v \rho^{2} - v^{2}| R = 0$$
(4.41)

and the complex solution to the differential Equation (4.41) can be written in the form

$$R(\rho) = BJ_{\nu}(\sqrt{i\lambda\nu} \rho) + CY_{\nu}(\sqrt{i\lambda\nu} \rho)$$
(4.42)

where B and C may take complex values.

For a given value of v the product solution is

$$T_{V}^{+}(\rho,\theta) = e^{i\nu\theta} |B^{+}J_{V}(\sqrt{i\lambda\nu} \rho) + C^{+}Y_{V}(\sqrt{i\lambda\nu} \rho)| \quad (4.43)$$

The linear combination of these solutions is the solution of this problem.

$$\psi(\rho,\theta) = \sum_{v=-\infty}^{\infty} T_v^+(\rho,\theta) + T_v^-(\rho,\theta) \qquad (4.44)$$

4.2.2. Solution for the Solid Cylinder

Since periodic behavior is required in θ -direction, v Values must be integers, i.e., v=n. Also requirement of finite temperature for $\rho=0$ leads to the conclusion that the complex constants C⁻ and C⁺ in Equations (4.38) and (4.43) should be set equal to zero. Therefore, the general solution to the problem can be written in the following complex form,

$$\psi(\rho,\theta) = \sum_{n=-\infty}^{\infty} e^{-in\theta} |B_n J_n(i\sqrt{i\lambda n}\rho)| + e^{in\theta} |B_n^+ J_n(\sqrt{i\lambda n}\rho)| \quad (4.45)$$

or

$$\psi(\rho,\theta) = \sum_{n=-\infty}^{\infty} e^{-in\theta} |B_n J_n(i\sqrt{i\lambda n}\rho)| + e^{in\theta} |B_n^{\dagger} J_n(\sqrt{i\lambda n}\rho)| \quad (4.4)$$

Now, in this expression if we set -n instead of n in the second term, which also changes the argument $(i\lambda n)^{\frac{1}{2}}$ to $i(i\lambda n)^{\frac{1}{2}}$, we obtain

$$\psi(\rho,\theta) = \sum_{n=-\infty}^{\infty} B_n^- e^{-in\theta} J_n(i\sqrt{i\lambda n} \rho)$$
$$+ \sum_{n=-\infty}^{\infty} B_n^+ e^{-in\theta} J_{-n}(i\sqrt{i\lambda n} \rho)$$

Using the relation

 $J_{-n}(x) = (-1)^n J_n(x)$ for n integer

in the Equation (4.47), the general solution for the solid cylinder becomes,

$$\psi(\rho,\theta) = \sum_{n=-\infty}^{\infty} B_n^* e^{-in\theta} J_n(i\sqrt{i\lambda n} \rho) \qquad (4.48)$$

where $B_n^* = (B_n^- + (-1)^n B_n^+)$ or

$$\psi(\rho, \phi = B_{0}^{\star} + \sum_{\substack{n=-\infty\\ \neq 0}}^{\infty} B_{n}^{\star} J_{n}(i\sqrt{i\lambda n} \rho)e^{-in\theta}$$
(4.49)

a vzici finiversitesi kütüphanesi

(4.47)
4.2.3. Determination of the Constant

By means of the outside boundary condition the remaining constant of integration is determined. Along the boundary we have

$$\frac{\partial \psi}{\partial \rho} + \gamma \psi |_{\rho=1} = \beta \cos^{+}\theta \qquad (4.50)$$

$$\cos^{+}\theta = 0 \qquad \frac{\Pi}{2} \leq \theta \leq \frac{\Pi}{2}$$

$$0 \qquad \frac{\Pi}{2} \leq \theta \leq \frac{3\Pi}{2}$$

Accordingly

$$\frac{\partial \psi}{\partial \rho} = \sum_{\substack{n=-\infty\\\neq 0}}^{\infty} B_n^* (n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}} J_n^* (n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}} \rho) e^{-in\theta}$$
(4.51)

Substituting Equations (4.51) and (4.49) into Equation (4.50) yields,

$$\gamma B_{0}^{*} + \sum_{\substack{n=-\infty\\ \neq 0}}^{\infty} B_{n}^{*} |(n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}} J_{n}^{*} ((n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}})$$

$$+ \gamma J_{n}^{*} ((n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}}) |e^{-in\theta} = \beta \cos^{+\theta} \qquad (4.52)$$

$$\gamma B_{0}^{*} + \sum_{\substack{n=-\infty\\ n=-\infty\\ \neq 0}}^{\infty} B_{n}^{e^{-in\theta}} = \beta \cos^{+\theta} \qquad (4.53)$$

where

$$B_{n} = B_{n}^{*} |(n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}} J_{n}^{*}((n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}}) + \gamma J_{n}^{*}((n\lambda)^{\frac{1}{2}} i^{\frac{3}{2}}) | (4.53a)$$

Introducing $e^{-in\theta} = \cos \theta - i\sin \theta$ into Equation (4.53) yields,

$$\gamma B_{0}^{*} + \sum_{n=1}^{\infty} |(B_{n}^{+}B_{-n}^{-}) \cos n\theta - i(B_{n}^{-}B_{-n}^{-}) \sin n\theta| = \beta \cos^{+}\theta \quad (4.54)$$

or

$$\gamma B_{0}^{*} + \sum_{n=1}^{\infty} |a_{n} \cos \theta + b_{n} \sin \theta| = \beta \cos^{+}\theta \qquad (4.55)$$

where

$$a_{n} = B_{n} + B_{-n}$$
$$b_{n} = -i|B_{n} - B_{-n}$$

or

$$B_{n} = \frac{1}{2} (a_{n} + ib_{n})$$

$$B_{-n} = \frac{1}{2} (a_{n} - ib_{n})$$
(4:56)

Equation (4.55) is the complete Fourier series representation of $\beta Cos^+ \theta$ with complex coefficients.

$$\gamma B_{0}^{*} = \frac{\beta}{\Pi}$$
(4.57)

 $b_n = 0$ for all n.

Integrals are given in detail in Appendix A. Therefore, B_n and B_{-n} becomes,

$$B_{n} = \frac{a_{n}}{2}$$

$$B_{-n} = \frac{a_{n}}{2}$$
(4.58)

or

$$B_{n} = B_{-n} = 0 \qquad n \text{ even}$$

$$B_{n} = B_{-n} = 0 \qquad n \text{ odd} \qquad (4.59)$$

$$B_{n} = 1$$

Substituting the value of B_n into Equation (4.53a), Equation (4.49) becomes,

$$\psi(\rho,\theta) = \frac{\beta}{\pi\gamma} + \frac{B_n J_n((n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}\rho) e^{-in\theta}}{\sum_{\substack{n=-\infty\\ \neq 0}} \frac{B_n J_n((n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}\rho) e^{-in\theta}}{(n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}J_n^{\dagger}((n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}\rho) + \gamma J_n((n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}\rho)}$$
(4.60)

Using this result in temperature expression, Equation (4.60) can be represented in a new form as follows:

$$\Psi(\rho,\theta) = \frac{\beta}{HY} + \sum_{n=1}^{\infty} B_n \phi_n(k_n;\rho) e^{-in\theta} + \sum_{n=1}^{\infty} B_{-n} \phi_{-n}(k_{-n};\rho) e^{in\theta}$$
(4.61)

where $\boldsymbol{\varphi}_n$ is defined as

$$\phi_{n} = \frac{J_{n}(k_{n}\rho)}{k_{n} J_{n}^{\dagger}(k_{n}) + \gamma J_{n}(k_{n})}$$
(4.62)

and

- 7

$$k_n = i\sqrt{i\lambda n}$$

Noting that

$$B_{n} = B_{-n}$$

$$\overline{k_{n}} = \overline{i\sqrt{i\lambda n}} = \sqrt{i\lambda n}$$

$$k_{-n} = i\sqrt{i\lambda(-n)} = -\sqrt{i\lambda n} = -\overline{k_{n}}$$
(4.63)

and also

$$J_{n}(-\bar{k}_{n}\rho) = (-1)^{n}J_{n}(\bar{k}_{n}\rho)$$

$$J_{n}(-\bar{k}_{n}\rho) = (-1)^{n}J_{n}(\bar{k}_{n}\rho)$$

$$J_{-n}(\bar{k}_{n}\rho) = (-1)^{n}J_{n}(\bar{k}_{n}\rho)$$
(4.64)

It can be shown that

$$\phi_{-n}(k_{-n};\rho) = \frac{J_n(k_n\rho)}{\overline{k_n}J'_n(\overline{k_n}) + \gamma J_n(\overline{k_n})} = \phi_n(k_n;\rho) \quad (4.65)$$

The complex exponential form of the series is then,

$$\psi(\rho,\theta) = \frac{\beta}{\Pi\gamma} + \sum_{n=1}^{\infty} B_n |\phi_n e^{-in\theta} + \overline{\phi_n} e^{-in\theta}| \qquad (4.66)$$

If ϕ_n and $\overline{\phi_n}$ are defined as follows:

$$\phi_n = \frac{a_n + ib_n}{2}$$
 and $\overline{\phi_n} = \frac{a_n - ib_n}{2}$

Then Equation (4.66) becomes

$$\psi(\rho,\theta) = \frac{\beta}{\Pi\gamma} + \sum_{n=1}^{\infty} B_n |a_n \cos \theta + b_n \sin \theta| \qquad (4.67)$$

where

$$a_{n} = |\phi_{n} + \overline{\phi_{n}}| = 2\operatorname{Re}\{\phi_{n}\}$$

$$b_{n} = -i|\overline{\phi_{n}} - \phi_{n}| = -2\operatorname{Im}\{\phi_{n}\}$$

$$\frac{\beta}{\pi} \frac{(-1)\frac{n+2}{2}}{n^{2}-1} \qquad n \text{ even}$$

$$B_{n} = 0 \qquad n \text{ odd}$$

$$\frac{\beta}{4} \qquad |n| = 1$$

- 30 -

Besides that, the relationship between the complex function $J_n((n\lambda)^{\frac{1}{2}}\rho)$ and the real functions, $ber_n((n\lambda)^{\frac{1}{2}}\rho)$ and $bei_n((n\lambda)^{\frac{1}{2}}\rho)$ is

$$J_{n}((n\lambda)^{\frac{1}{2}}i^{3/2}\rho) = ber_{n}((n\lambda)^{\frac{1}{2}}\rho) + ibei_{n}((n\lambda)^{\frac{1}{2}}\rho) \quad (4.68)$$

from which follows

$$(n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}J_{n}^{\prime}((n\lambda)^{\frac{1}{2}}i^{\frac{3}{2}}\rho) = (n\lambda)^{\frac{1}{2}}|ber_{n}^{\prime}((n\lambda)^{\frac{1}{2}}\rho) + ibei_{n}^{\prime}((n\lambda)^{\frac{1}{2}}\rho)|$$

$$(4.69)$$

where the prime indicates differentiation with respect to argument.

Substituting Equations (4.68) and (4.69) first into Equation (4.62) and then into Equation (4.67), one finds,

$$\psi(\rho,\theta) = \frac{\beta}{\pi\gamma} + 2 \sum_{n=1}^{\infty} B_n(a_n(\rho) \cos \theta - b_n(\rho) \sin \theta) \quad (4.70)$$

where

$$a_{n}(\rho) = \frac{1}{\Omega} |ber_{n}(n\lambda)^{\frac{1}{2}}\rho|(n\lambda)^{\frac{1}{2}}ber_{n}'(n\lambda)^{\frac{1}{2}} + \gamma ber_{n}(n\lambda)^{\frac{1}{2}}| + bei_{n}(n\lambda)^{\frac{1}{2}}\rho|(n\lambda)^{\frac{1}{2}}bei_{n}'(n\lambda)^{\frac{1}{2}} + \gamma bei_{n}(n\lambda)^{\frac{1}{2}}|| (4.71)$$

$$b_{n}(\rho) = -\frac{1}{\Omega} |ber_{n}(n\lambda)^{\frac{1}{2}} \rho |(n\lambda)^{\frac{1}{2}} bei_{n}(n\lambda)^{\frac{1}{2}} + \gamma bei_{n}(n\lambda)^{\frac{1}{2}} |$$

- $bei_{n}(n\lambda)^{\frac{1}{2}} \rho |(n\lambda)^{\frac{1}{2}} bei_{n}(n\lambda)^{\frac{1}{2}} + \gamma ber_{n}(n\lambda)^{\frac{1}{2}} || \quad (4.72)$

and

$$\Omega = |(n\lambda)^{\frac{1}{2}} \operatorname{ber}_{n}^{\prime}(n\lambda)^{\frac{1}{2}} + \gamma \operatorname{ber}_{n}(n\lambda)^{\frac{1}{2}}|^{2} + |(n\lambda)^{\frac{1}{2}} \operatorname{bei}_{n}^{\prime}(n\lambda)^{\frac{1}{2}} + \gamma \operatorname{bei}_{n}(n\lambda)^{\frac{1}{2}}|^{2}$$

$$(4.73)$$

Then the actual temperature distribution can be obtained by inserting Equation (4.69) into Equation (4.14)

$$T = T_{0}\left(\frac{3}{4} + \frac{\beta}{\Pi\gamma} + 2\sum_{n=1}^{\infty} (a_{n}(\rho) \cos \theta - b_{n}(\rho) \sin \theta)\right) (4.74)$$

The reference temperature T_0 has not yet been specified. A logical choice for T_0 is the value of temperature at the centerline. Since the temperature distribution given by Equation (4.74) is based on the linearization which assumes that variation about T_0 is small, T_0 value can be found easily from Equation (4.74) as

$$T_{o} = T(0,\theta) = T_{o} \{ \frac{3}{4} + \frac{\beta}{\Pi \gamma} \}$$
 (4.75)

Equation (4.75) gives us,

$$\frac{1}{4} = \frac{\beta}{\Pi \gamma}$$
(4.76)

Substituting for β and γ from Equations (4.20) and (4.21), respectively gives the result

- 33 -

$$T_{o} = \left(\frac{\alpha q_{o}''}{\sigma \varepsilon \Pi}\right)^{\frac{1}{4}}$$
(4.77)

With the use of Equation (4.77), the expression for γ and β become

$$\gamma = \frac{R}{k} \left(\frac{256}{\Pi^3} \sigma \epsilon \alpha^3 q_0''^3\right)^{\frac{1}{4}}$$
(4.78)
$$\beta = \frac{\Pi}{4} \gamma$$
(4.79)

Then the expression for the temperature distribution with the use of Equation (4.76) and (4.77) become

$$T(\rho, \theta) = T_0 \{1 + \gamma \frac{\Pi}{8} | a_1(\rho) \cos \theta - b_1(\rho) \sin \theta +$$

 $\frac{\gamma}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^2 - 1} |a_{2n}(\rho) \cos 2n\theta - b_{2n}(\rho) \sin 2n\theta| \} (4.80)$

where the quantities T_0 , γ , $a_n(\rho)$ and $b_n(\rho)$ are given by Equations (4.77), (4.78), (4.71) and (4.72) respectively.

CHAPTER 5

5.1. EVALUATION OF THE SOLUTION

The initial step in the evaluation of the solution consists in replacing the Bessel function derivatives with different orders of the same function according to the equalities |1-5|.

 $2z'_{v}(x) = z_{v-1}(x) - z_{v+1}(x)$ $xz'_{v}(x) = vz(x) - xz_{v+1}(x)$ (5.1)

Although the real and imaginary parts of J_n can be resolved into Kelvin functions, the tabulated values of these functions for order other than n=0 and n=1 are not available for argument values x>10. Tables for Kelvin functions only for orders zero and one are given by Abramowitz |1| and these functions for orders $0 \le n \le 5$ are given by Mclachlan |5| for argument values limited to $x \le 10$. Therefore, instead of using tabulated values of these functions, examination of behavior of these functions according to the argument is preferred.

In evaluating the general solution, it is difficult to justify a limitation of the argument range, because the arguments are functions not only of index n, but also thermal diffusivity, radius and speed of angular rotation. Therefore, it is necessary to the calculation of a single value of temperature to determine the Bessel functions of many orders and for a like number of argument values.

The first step in evaluation of the solution is the consideration of temperatures in the solid cylinder for the case of no rotation which are determined by considering the behavior of the series coefficients as ω , or equivalently λ , as it approaches zero. It is appropriate to consider the small argument approximation for the Bessel function |1|,

$$J_{n}(x) \approx \frac{x^{n}}{(2^{n} n!)} (x \neq 0)$$
 (5.2)

- 35 -

The derivative in the expression for the coefficients is replaced by the identity in Equation (5.1). Substituting Equations (5.1) and (5.2) into Equation (4.53a) yields,

$$B_n^*(\rho) = \frac{B_n \rho^n}{n + \gamma}$$
(5.3)

It is noted that in Equation (5.3), the complex series coefficient is a real quantity and it follows that the temperature is symmetrical in the body about $\theta=0$. Then the temperature distribution for $\omega=0$ or equivalently $\lambda=0$ becomes,

$$T(\rho,\theta) = T_{0} \{1 + \gamma | \frac{\pi}{8} \frac{\rho}{1+\gamma} \cos\theta + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^{2}-1} \frac{\rho^{2n}}{2n+\dot{\gamma}} \cos 2n\theta \}$$
(5.4)

For small values of the argument with respect to n, power series representation is useful in calculating $J_n(x)$. Then considering the series representations of $J_n(x)$ and $J_n'(x)$ as follows,

$$J_{n}(x) = \frac{x^{n}}{2^{n}n!} |1 - \frac{x^{2}}{4(n+1)}|$$

$$J_{n}'(x) = \frac{x^{n-1}}{2^{n}n!} |n - \frac{(n+2)x^{2}}{4(n+1)}|$$
(5.5)

we obtain

$$\frac{\Gamma(\rho,\theta)}{T_{o}} = 1 + \gamma \{ \frac{\pi}{2} | C_{1} \cos\theta - D_{1} \sin\theta |$$

$$\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{4n^{2}-1} | C_{2n} \cos 2n\theta - D_{2n} \sin 2n\theta | \} \quad (5.6)$$

where

$$C_{n} = \frac{\left| \left(16(n+1)^{2}(n+\gamma) + n^{2}\lambda^{2}\rho^{2}(n+\gamma+2)\right) \right| \rho^{n}}{\left|16(n+1)^{2}(n+\gamma) + (n\lambda)^{2}(n+\gamma+2)^{2}\right|}$$

$$D_{n} = \frac{4n\lambda(n+1)}{\left|16(n+1)^{2}(n+\gamma) + (n\lambda)^{2}(n+\gamma+2)^{2}\right|}$$
(5.7)

When |x| is large with respect to n, asymptotic expansions of $J_n(x)$ is useful |1|. In this case, coefficients C_n and D_n for Equation (5.6) becomes

$$C_{n} = \frac{e^{\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}} \left(\rho-1\right) \left\{ \left| \cos\left(\frac{n}{2}\right)^{\frac{1}{2}} \left(\rho-1\right) \right| \left| \gamma+\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}} \right| + \left(\frac{n\lambda}{2}\right)^{\frac{1}{2}} \operatorname{Sin}\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}} \left(\rho-1\right) \right\}}{\sqrt{\rho} \qquad \left| \frac{n\lambda}{2} + \left(\gamma + \left(\frac{n\lambda}{2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \right|$$
(5.8)

 $\frac{e^{\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}}\left(\rho-1\right)\left\{\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}}\cos\left(\frac{n\lambda}{2}\right)\left(\rho-1\right) - \left(\gamma+\frac{n\lambda}{2}\right)^{\frac{1}{2}}\sin\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}}\left(\rho-1\right)\right\}}}{\sqrt{\rho} \qquad \left|\frac{n\lambda}{2} + \left(\gamma+\left(\frac{n\lambda}{2}\right)^{\frac{1}{2}}\right)^{2}\right|}$

- 38

For the cases in which both n and |x| are large the Bessel functions can be derived from recurrence technique as explained in |1|. For these large arguments a procedure based on asymptotic series is adopted and the final temperature distribution again becomes the same as Equation (5.8).

For values of λ between $0.1 \le \lambda \le 10$ these functions are not applicable. The temperature distributions for these values of λ are directly programmed for digital computer and the values of temperature at all ranges of θ and ρ values are obtained and plotted. This computer program with the ones which compute the above functions are given in Appendix B.

5.2. NUMERICAL PROCEDURE

In the previous section, the solution for the temperature distribution in a solid cylinder is obtained and the forms of the solution for the different cases are improved. Because physical insight into the phenomena is not well served by the equations of the solution, a series of numerical results have been obtained.

In order to obtain the temperature values for the cases of no rotation ($\lambda=0$), for very slow rotation ($\lambda<<1$) and for a high rotational speeds ($\lambda >>1$), temperature distributions were computed from Equations (5.4), (5.6,7) and (5.8), respectively. Also for the values of λ which are neither in the range of asymptotic expansion nor series expansion, direct computation of Equation (4.70) is preferred by using a subprogram BESCJ. BESCJ can calculate $J_n(z)$ for maximum value of n=100 and for each complex z (except Re(z)=0 and Im(z)=-1) with desired accuracy. A detailed inspection of the resulting temperature values in these programs show us that, asymptotic expansion of the Bessel functions is applicable only for $\lambda > 10$ or equally $\omega > 0.04$ rad/hr (for a=0.004 ft²/hr). Also series expansion approximation is correct only for $\lambda < 0.1$ (i.e., $\omega=0.0004$ rad/hr for a=0.004 ft²/hr). For the values of $0.1 < \lambda < 10$ temperature distribution must be calculated by using BESCJ.

In each of these computer programs, infinite series are calculated with 6 decimal accuracy and it is observed that after the terms for n=10, series are converged with the desired accuracy. Therefore, the results of the in-

-39 -

finite series are truncated after the terms for n=10.

40 -

To compute temperature values, physical parameters were chosen for an aluminum alloy body analogous to that used by Olmstead and Raynor. These values are: radius R=lft, solar constant q^u=442 Btu/ft²-hr, Stefan-Boltzmann constant $\sigma=0.1717 \times 10^{-8}$ Btu/ft²-hr^oR⁴, absorptivity $\alpha=1$, emissivity $\epsilon=1$, thermal diffusivity $a=3ft^2$ /hr, thermal conductivity k=100 Btu/ft hr^oR. It follows that:

 $T_{0} = 535.03^{\circ}R$ $\gamma = 0.010478$ $\lambda = \omega/3$

where ω is given in radian per hour. As a second choice, k is taken equal to 0.01 Btu/ft hr^oR and a=0.004 ft²/hr. From this choice of values follows:

 $T_{0} = 535.03^{\circ}R$ $\gamma = 10.4758$ $\lambda = \omega/0.004$

Using these physical parameters, temperature values were obtained for the full range of λ values.

5.3. GRAPHICAL RESULTS

In this section, the resulting temperature distributions are examined to ascertain the significance of the rotation radial temperature gradients, thermal diffusivity, etc. Since the dimensionless parameters λ and γ depend on these, the temperature distribution of solid cylinder are obtained for the full range of λ and γ values.

Variation of surface temperature around the circumference for all values of λ is shown in Figure 2. Since λ depends on both rotational speed and thermal diffusivity of the material, these temperature distributions become helpful for the variation of one variable while the other remains constant. For a stationary cylinder, the temperatures are symmetric about the point on the cylinder nearest to the radiant source. As easily noticed in Equation(5.3), temperature variation is not sinusoidal as it is for the thin-walled solutions |6|. As the cylinder begins to rotate, rotation destroys symmetry and even for slow rotation $0<\lambda<20$, there is a noticeable shift in the positions of maximum and minimum temperature into the rotational direction. This shifting effect with increasing speed values or decreasing thermal diffusivity is observed to reach a maximum condition for an arc of about 30° on the bright side in the direction of rotation but the minimum temperature shifts an angle of about 90°. Rotation decreases both maximum and minimum values. As λ reaches higher higher values (i.e., rotational speeds approaching infinity or thermal diffusivity diminishes) variation in tem-

- 41 -

perature values becomes smaller and smaller and the temperature of the overall body is found to approach T_0 as required by thermodynamic equilibrium.

In Figure 3, the ratio of two temperature values at the surface of the cylinder, which are obtained from asymptotic series and from the direct computation of the Bessel functions with the aid of BESCJ is given. For the values of $1. \le \lambda \le 10$, Figure 3 shows that, as λ approaches 10, this ratio becomes nearly 1, i.e., asymptotic approach gives nearly correct temperature values, and for $\lambda=10$ these two values coincide.

Figure 4 gives results for the similar case of Figure 1, but for an internal circumferential surface within the cylinder at $\rho=0.8$. For corresponding values of λ values, there is a greater shifting effect at the extreme temperatures. It is easily concluded that the tendency for the λ to drop the temperature gradient is more effective in the interior than on the surface.

Radial variation of temperature and dependence of this variation on λ , are shown in Figure ⁵ and Figure 6, for two angular positions, $\theta=0$ and $\theta=\frac{3\pi}{2}$, respectively. These results show that the radial gradient increases as λ

\$

increases while the circumferential gradients always diminish with increasing λ values. Since λ is directly proportional with rotational speeds, the above conclusion is also valid for the increasing ω values. This result is in agreement with results of |11| and |6|, circumferential gradients always diminish with increasing λ and also ω . However, Figure 5 and Figure 6, indicate that larger gradients can be encountered with rotation that would occur for a stationary cylinder.

For the solid cylinder, in Figure 7 and Figure 8 radial temperature distribution for those radial lines, θ =constant for two rotational speeds also show that temperature approaches to T₀ as ω increases. The effect of rotation cause the shift in maximum temperature into the rotational direction.

Effect of the variation of γ values of temperature distribution is given in Figure 9. It is noted that gamma can be considered as the inverse of Planck number which is the ratio of rate of heat conduction in the body to the radiation emitted by the body. At very low γ values, temperature nearly stays constant and equal to corresponding T_o value. As gamma increases, or equivalently Planck number decreases, temperature distribution is not uniform

- 45 -

Solid Cylinder Temperatures on the $\rho=0.8$ as a Function of Angle φ for Various λ Values.

-47-

.

.

.

Surface Temperature Distribution for Full Range of Gamma Values at $\omega{=}0.25$ rad/hr.

anymore and show the expected variation from T_{o} .

Also temperature distributions are shown in Figure 10 for various values of γ at $\rho=0.8$. At low gamma values such as $\gamma=0.1$ temperature is just equal to the corresponding T_o value or very small variation from T_o is observed as in the case of $\gamma=1$. After this value of gamma, there is a noticable variation from T_o values as gamma increases.

5.4. COMPARISON WITH THE OTHER STUDIES

Isothermals at different rotational speeds which are compared with the results obtained in |7| are shown in Figure 11, Figure 12 for stationary cylinder (λ =0) and for λ =0.25, respectively. The thermal property values used in the calculations are typical of a high termal conductivity material. The radiation intensity corresponds to the ambient thermal energy density for solar radiation near the earth. The cylinder surface is assumed to be a black body so that α = ε =1. For a corresponding gray body the temperature gradients would be smaller. Using these parameters in Equation (4.77) provides T₀=535.03^OR. Using these values of T₀ and α isothermals are drawn for the present case. As easily noticed these curves exactly coincide with the ones obtained in |7| by the method of

51 -

- 52 -

FIGURE 12. Isothermals for Slow Rotation, $\lambda=0.25$ (a=3ft²/hr, $q_0^{\prime\prime}=442$ Btu/ft²hr, $\alpha=\epsilon=1$)

Green's functions.

5.5. DISCUSSION OF THE RESULTS

An approximate analytical solution for the radiation heating of the solid cylinder has been obtained in previous sections followed by a series of numerical results. The numerical results presented in the graphs show a symmetric temperature distribution in θ , for no rotation (i.e., $\lambda \equiv 0$) with the maximum temperature occurring at $\theta \equiv 0$. When rotation is present the temperature distribution in no more symmetric with respect to θ , and the maximum temperature occurs for values of θ in between 0° to -30° , depending on the magnitude of λ . The shift occurs in the direction of rotation. Similarly, a shift is observed for the location of the minimum temperature with respect to the "no rotation" case with values occurring in the range $0 \leq \theta \leq \Pi/2$.

For very high rotational speeds, the temperature of the cylinder approaches T_0 , more so in the inside as on the outside.

Results presented were based on a solution obtained by linearizing the radiation boundary condition. Therefore,

55 ·

the temperature distributions obtained are approximate more so at points on the surface where the temperature departs the most from the uniform equilibrium value, T_0 .

Based on Petrof and Raynor's |10| studies, the results obtained by a linear approximation lead to higher temperatures than those that would actually occur.

REFERENCES

- 1. Abramowitz, A. and Stegun, I.A., <u>Handbook of Mathe-</u> <u>matical Functions</u>, Vol. 55, p. 355, <u>National Bureau</u> of Standards, Washington, D.C. (1964).
- Arpaci, V.S., <u>Conduction Heat Transfer</u>, Addison-Wesley, Reading, Mass, (1966).
- 3. Carslaw, H.S. and Jaeger, J.C., <u>Conduction of Heat in</u> <u>Solids</u>, Clarondon Press, Oxford, (1959).
- 4. Gray, A and Mathews, G.B., <u>A Treatise on Bessel</u> <u>Functions</u>, Dower Pub., (1966).
- 5. McLachlan, N.W., Bessel Functions for Engineers, Oxford Univ. Press, London (1961).
- Nichols, L.D., "Surface Temperature Distribution on Thin-walled Bodies Subject to Solar Radiation in Interplanatary space", NASA TN D-584 (1961).
- Olmstead, W.E. and Raynor, S., "Solar Heating of a Rotating Solid Cylinder", <u>Q. Appl. Math</u>, 21(2), (1963).
- 8. Olcer, N.Y., "On the Solar Heating of Rotating Space Vehicles", <u>Acta Mech.</u>, 1(2) (1965).
- 9. Ozisik, M.N., Basic Heat Transfer, McGraw-Hill (1979).
- 10. Petrof, R.C. and Raynor, S., "The Temperature Distribution in Rotating Thick-walled Cylinders Heated by Radiation", Int. J. Heat Transfer, 11 (1968).
- 11. Raynor, S. and Charnes, A. "Solar Heating of a Rotating Cylindrical Space Vehicles", <u>ARS</u>, 30 (1960).
- 12. Roberts, A.F., "Heating of Cylinders by Radiation on Approximate Formula for the Temperature Distribution", ASME, Paper 64-HT (1964).
- 13. Schneider, P.J., Conduction Heat Transfer, Addison-Wesley, Mass. (1957).

APPENDIX A

DETERMINATION OF FOURIER COEFFICIENTS

Fourier series expansion of any function f(x) on the interval $(-\frac{\pi}{2}, \frac{3\pi}{2})$ is

(1)

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos_k x + b_k \sin k x$$

where

$$a_k = \frac{1}{\Pi} \int_{-\Pi/2}^{3_{\Pi}/2} f(x) \cos kx dx$$

$$b_{k} = \frac{1}{\Pi} \int_{-\Pi/2}^{3\Pi/2} f(x) \operatorname{Sinkx} dx$$

 $a_{0} = \frac{2}{\Pi} \int_{-\Pi/2}^{3\Pi/2} f(x) dx$

Then, the Fourier series expansion of $Cos^+\theta$ becomes;

$$\beta \cos^{+}\theta = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos nx + b_{n} \sin nx$$
 (2)

where

$$a_{o} = \frac{1}{2 \Pi} \int_{-\Pi/2}^{3 \Pi/2} \beta \cos^{+}\theta \, d\theta$$
 (3)

$$a_{n} = \frac{1}{\Pi} \int_{-\Pi/2}^{3\Pi/2} \beta \cos^{+}\theta \cos^{-}\theta d\theta \qquad (4)$$

(5)

$$b_{n} = \frac{1}{\Pi} \int_{-\Pi/2}^{3 \Pi/2} \beta \cos^{+}\theta \sin \theta d\theta$$

 $\cos^+\theta =$

$$0 \qquad \frac{\Pi}{2} \leq \theta \leq \frac{3 \Pi}{2}$$

 $\cos \theta - \frac{\Pi}{2} \le \theta \le \frac{\Pi}{2}$

Then a_0 , a_n and b_n becomes,

$$a_{o} = \frac{1}{2 \pi} \int_{-\pi/2}^{3 \pi/2} \beta \cos^{+}\theta d\theta = \frac{\beta}{2\pi} \int_{-\pi/2}^{\pi/2} \cos^{+}\theta d\theta$$

$$a_{0} = \frac{\beta}{2 \cdot \Pi} |Sin\theta| \int_{-\Pi/2}^{\Pi/2} = \frac{\beta}{\Pi}$$

and

$$a_{n} = \frac{1}{\Pi} \int_{-\Pi/2}^{3\Pi/2} \beta \cos^{+}\theta \cos \theta d\theta = \frac{1}{-\Pi/2} \int_{-\Pi/2}^{\Pi/2} \beta \cos \theta \cos \theta d\theta$$
$$= \frac{\beta}{\Pi} \left[\frac{\cos \theta \sin \theta - \frac{\Pi/2}{\Pi/2} - n \sin \theta \cos \theta - \frac{\Pi/2}{\Pi/2}}{1 - n^{2}} \right]$$

if |n| = 1

$$a_{1} = \frac{\beta}{\pi} \int_{-\pi/2}^{\pi/2} \cos^{2}\theta d\theta = \frac{\beta}{\pi} \left| \frac{1}{2} (\theta + \cos\theta \sin\theta) \right|_{-\pi/2}^{\pi/2}$$
$$a_{1} = \frac{\beta}{2\pi} \times \pi = \frac{\beta}{2}$$

Also, from Equation (5), b_n becomes;

$$b_{n} = \frac{1}{\pi} \int_{-\pi/2}^{3/\pi/2} \beta \cos^{+\theta} \sin^{\theta} d\theta = \frac{\beta}{\pi} \int_{-\pi/2}^{\pi/2} \cos^{\theta} \sin^{\theta} d\theta$$
$$b_{n} = \frac{\beta}{\pi} | \frac{\sin^{\theta} \sin^{\theta}}{-\pi/2} + n \cos^{\theta} \cos^{\theta} |$$
$$b_{n} = \frac{\beta}{\pi} | \frac{\sin^{\theta} \sin^{\theta}}{-\pi/2} + n \cos^{\theta} \cos^{\theta} \theta |$$
$$\frac{\pi/2}{-\pi/2} |$$

$$b_{n} = \frac{\beta}{\Pi} \frac{1}{1-n^{2}} |\operatorname{Sinn} \frac{\Pi}{2} - \operatorname{Sin}(-\frac{n\cdot\Pi}{2}) \operatorname{Sin}(-\frac{\Pi}{2})|$$

$$b_{n} = \frac{\beta}{\Pi}(1-n^{2}) |\operatorname{Sinn} \frac{\Pi}{2} - \operatorname{Sin} \frac{n\cdot\Pi}{2}| = 0 \quad \text{for all } n \cdot \frac{1}{2}$$

- 60 -

APPENDIX B

- 1. Calculation of temperature distribution by using asymptotic expansion of Bessel functions. Applicable only for $\lambda > 10$.
- 2. Direct computation of temperature values by using BESCJ (for $1 \le \lambda \le 10$).
- Temperature distribution for stationary solid cylinders.

Each computer program reads ω , angular velocity according to the format F6.0 and computes the temperature values, TEMP(J) for the circumference of the cylinder at each values of angle FI(J). Also ϕ values and the corresponding temperature values are printed.

61

Angular velocity, ω , must be read according to the format F6.0. Angular velocity values can be given in two cards in the following manner.

0.001 0.004 0.005 0.008 0.01 0.04 0.05 0.08 0.1 0.5 0.8 1. 2.5 . 7.5 10. 15. 25. 50. 100. 3.47. 5.

								1.4			00				00	, _	•	124.24	Z IX BCI	N IX IX IV	UN -						
			NNI	N			N	N			UU				υU)		RRI	RR	RRRF	RR			DDDD	DDDD	DDDC)
			WNI	411			N	14			UU		-		υL	J		RR		5 <u>.</u>	R	۲		ti n			מ (
		•	NNI	NNN			N	N	÷		uu-				<u>.</u> Пн	ı		υn			01	• •		рр рр		-	20
			N N	NEL	ы		E.I											N X				1 -		00		L 2	
			1413	1414	11			IN .			υu				UU	J		K R			RI	‹		DD		L	00
			NN	14	NN	1	- 14	N			UU.				υι	۶.,		RR	RRR	RRRF	RR			DD		(DD
			ΝN		N٨	14	N	N			UU				υυ	J .		RRI	RRR	RRRF	R			DD		0	DD
			NN.		Ň	INN	4 N	IJ			üθ				111	1		Rр		uр						ŕ	<u>,</u>
			M N		•	1.1	LA IA L	6 9 6 1												R R				00		L 2	
			11.61			,		1 N	-						00			кк		K F	(DD		L	טע
			[4] 14	1		ſ	A IN IN	tu –			υυι	1		•	υυι	J		RR		F	₹R			DU		ť	D
			ΝN				ΝN	N			υι	100	UU	บบ	Uυ			RR			RR			DODI	Dubn	DnnD)
			NN	,			N	N			L	JUU	υυι	มม	U			RR			RF	2		DDD	0000	000	
	UN	l T	VA	~ ' ,	10	16		Bn	G A	7 T	C 1	u	N T Y	٧E	יסט	тс	CI	Ko		Tro	Mir		7	1000		BUL	Mer
	ĉ	-	5	<u> </u>		0		20	- A	- 1	~ I	0	14 1 1	• <u>F</u>	K D I	. 1 5.	. 3 1	ΝŲΙ		IER	nq		<u> </u>		5 T A N	սսլ	۷ <u>۲</u> ۲
. D	4	•	NU	ז ע <u>ֿ</u> ר	0				US	ER	I C) *		·				•	. I	PART	N	JMBEI	۰ ۶	00		. <u>1</u> †	PUT
L	E	N	AME	Ξ. *	F	, អេ	auo	GNV	RD	Iυ						c	REA	TED	AT	•	16	:09:	33	JAN	26.	178)	1
39	n۱	1 2	 240	567	89) ri 1	23	456	7.9	97		45	675	- 4 Q		5 D /4	1447	800		4 F 4 7	180,	- 1		7.9	,	4 - 1 -	7000
 3 1 1	0.				<u> </u>	ιų.	- 20			1 U	12-		0/0	57	014	231	1207	0,0	123	1501	07(123	150	18.1	0123	750	070
4 U	κι.	1	· • سا	1.1.1	- 1	. 1 *	-20	2, "	ίĶΟ	ΥË	СТ				• N L	JRD	IL.			• .							
	SY	í S	S * F	REA	DT	•																	•	•			
١I	Ne	ŝ			ſ	140	้ามด	600	10.2	۸n																	
= ¥	Ca	- 	or i		~		- 10	0	~ <u>~</u>	00																	
21	23	P 🖷	RE/	401	• (. L. C	. АЛ				•																
	•	M	AIL	N .	•																						
- 1	C,) 1	126	5/8	1 -	16	; 0	91,	0)																		
		1	• ·				D	IME	NS	1.0	ti - F	11	37).	FF	37	').T	EMP	(37). AF	RA	Υ(1.)	20)	SU.		11	
		. 7	<u>.</u>				R	- - ^ ^	16		a s	1 0	90	N V		' ¶' ' \	.,	1 2	197 11 1					• I		• /	
		2					, r.		15	3 .		1 1		4 1	113	, 0 ,	, 0-	+ 1 2	U I .			1.1					
		ى	•			μu	J r	טאיי	A.T	(1	UFE	5 • U	3														
		4	•				P	1 = 3	• 1	41	592	265	4 .							-						•	
		5					A	LPH	A = 1	Ο.	004														•		
		-					т		3.5	Ĩ'n	า																
		2	•				, ,		55	• U	5																
		1	•				n -	= 1 •																			
		-8	•				D	0 1	00	1	1=1	, 2	0														
		9	•				W	= A R	RA	ΥC	1.1	I)															
	۱	n					Ŵ		51	4	1.1	۱ ۸ :					1.1										
								оди 1	μι • -	.	* * •			-													
	1	1	٠			1	r i	URT	AŢ	(1)	uχ,	¥¥	= ' ı	, r	10.	, 4)											
	1	. 2	•				F	1(1) = (Ο,		• •															
	1	3	•				D	03	. J	= 2	137	1												1. C			
	៍រ	ц				2	F	11.	<u>ا – ۱</u>	FT	1	. 1 1	+ P 1	1/	10												
			•			-	, , 	~ ~ ~		• •		· • •	• • •	L /	104)	· .	•									
	1	5	•				ψ	0 2	00	J	=1,	31														· .	
	- 1	6	•				A	LAM	= ₩ .	/ A	LPt	I A															
	1	. 7	•				D	0 2	1	= 2	.10	10.															
	,	0	•				c	нм <i>и</i>	1.			-															
	1	Ø	٠						4 J.		٠								·					•			
	1	9	•				E :	= A L	AM.	12	•											•					
	2	20					- F	F(J)=.	2.	+FL	. O A	T C	1)	*F1))										
	2	21					E)=(E +	FL	ÜΑT	·(I	1+2	2 .) + *	• () •	5								•	÷ .	
	2	· •	•				5		n		- 1	Ň	• •	- · .													
	4	- 4		. 1			-				· • •	,										•					•
	् 2	23	•		·.		E	F = G	AM.	A +	E D		· · ·			•	-										
	2	24	ę				- P.	A Y =	(R	* • 1	0.5)*	(()	-	0 A 1	[[]])*Ł	*2.) + ((EF)	***	2))					
	7	2					C	2 = (C n	SI	FFI	* E	F + F	D	* Ś 1	N (FE)	170	AΥ				· .				
	~		•				n	2 ·	τn				· - ·				551	1/0	. v								
	4	- 6	•				0	2-1	E D	* C	051		1-6	<u>.</u>	* J I			115	A 1								
	2	27	•				C	c = (¢Ζ	# C	05.(ት ት	()]))	- D 2	* 5	1 1 1	F F ()	1 }})							
	2	28	•				S	UM (1)	= S	U 14 (I -	1.) -	+ (((-	-1.) * *	(I+	1))	/(4.	;*F1	LOAT	(1)	+ . 2	-1-1) + c	C 1
	2	, o	•				T	FII	Sii	Мī	11-	.su	MC	I -	111		F . 0	.00	nnn	11 0	50 .	TO 11	5			-	
	~	• 7	٠		•	-	_	1 V V // 61 **		11.V. 11.97	• • * ~	50	••••	• `	+ / /			+ 0 0 1	υυ			• = • • •	-			-	
	3	٥Q	•			2	C	UN I	1 M	νĿ						•						1					
	1.1	31	•			15	5 E	A = E	**	Π.	5 .																
	2	12					E	B≐E	A #	(12)	-1.)															
	-	- 4	۰.				с.	c	Δ.M.	λ. <u>.</u>	т. Г. Л					,											
	-	23	•				Ľ.	u – u	I M M	мт.	ын Ц.						·										
	_3	34	•				٢	A = (K∉	≄ U	•5)	+ (L + E	ւ	* * 2	()									1		
	3	35	•				C	1 = (CO	S (EB)	* E-	C + 6	ΞA	# S 1	[N (EB)	1/P	A		•	•					
	1	3 4 6					D	1 = (Çn	si	EBJ	₩E	A 🗝 E	ΞC	* S I	N	EB)	1/P	A							,	
	-	· Ø	•				-	- ' Y D I	= 0	~ * ' * -	101		nsi	15	1,	1 \ - \	-01		NIC			18.					
		57	•				Ľ	VL 1	- r	1 +	101	ΨC	ا د ن	A E	+ (-	, , ,	~~~	11	14 L F	1101		, ~•				:	

38, 39, 40, 41, 42, 43, 43, 44, 45,	111 200 100	SUI TEI WR FOI COI STI EŅI	M(J MP(ITE RMA NTII NTII OP D) ≓ SU J) = T (6 , 1 T (5 X NUE NUE	MI 0+T0+GA 11) FI(,2(F12;	MA+(EXP1+ J),TEMP(J 8,5X))	5UMI/2•)			
220 IBANK	353	DB.	ANK		• . • .	i e fa e	•	•		
72 RIUT 01/	261	81	16;	10;0	5					
ADDRESS	001 040 032	000 000 574	03; 04;	3127 3443	13	400 IBANK 828 DBANK	WORDS DEC Words dec	IMAL IMAL		•
		. •			en e				an a	1
n an										
SEGME	NT	55 MA	INS		00	1000 0331	27 040	000 0434	443	
Y 572			5(1)	001000	001177	на на селото на село По селото на селото н По селото на селото н	•		· ·
en e	·		5(1 5(1 5(3)) } }.	001200	002114 002131 002146	\$ (2)	040000	040002	•
• • •			5(5)	002147	002147	-	0 11 10 0		
					ta t		5(2) 5(2)	040003	040314	
•							\$(0) \$(D34)	040316	040322	
						·	5(2)	040365	040432	
Y \$73R1Q8		: :	5 (<u>]</u> 5 (<u>]</u>]))	002150	005151 005346		· · · ·		1. 1.
			5(1	}	005347	007524				
			⇒(] 5(]	} }	01/525	012315	• 1			
		. 9	5(1		012645	013002				- • •
			₽\↓ 5{1) . · · ·)	D15126	015125		•		•
		5	5(1)	016563	017540	•	- -	•	
			▶\] 5(]) }	01/541	024108				
		:	5(1	Ì	026426	026457	s(_)	040433	040435	
COMMONBLOC	K)			'	н. 1917 - Полон	· · ·	5(2)	040436	040436	
							\$(034)	MOEROS		
•	•				an an Arran an Arran	an a	5(036)	PMD\$CO	M	
73R1				i			5(2)	044161	042432	
FORFTN				· •.	•••		5(2)	042433	042440	
МАТН	•	,	55(1	}	n2646n	026631	\$(2) \$(2)	042441 n42475	042474 042527	
1 1 1 1 1 1 1		. 9	5(O;	, 37)	INFO-0	10-LC	\$(Q34)	MOEROS	W12421	
TH		- 5	\$(1)	026632	026716	5(2)	042530	042535	
OMMONBLOCK			⇒(Q;	577	1NL040	1UmhC	»(טזץ)	04253A	042541	2 2
TH		9	5(1))	026717	027123	5(2)	042542	042616	
		:	5(0;	37)	INF0-0	10+LC	\$(034)	MOEROS		
				-		:				

. .

.

	ł,		N	N					NN	I			Ų	U				ŲŬ			RF	RR	RR	RRR	R			DDD	DU	DD	VDD	
;			N	ΝN					NN	1			U	U				υŲ			RF	RR	RR	RRŔ	RR		•	DDC	10(ממנ	Dnn	D
			N	ΝN	N				NN	1			U	U				110			12 E	•				2		hn:				DD
			N	NN	Nł	J			NN	1			Ū	ŭ				1H			- D C	ы)			0			00	л.	ىيى. تەرەپىرىدىغۇ		n n -
			- N	N	KI N				N N	, 1				Ŭ.							00	•										00
			11	NÎ.	141	N 1 N 1			- IN FY	4				Ų 			٠	00			KF	2			RI	K		DD	11			
	÷			NI.	f	N N N	N		- IN IN	4			0	0				00			RF	RRR	RR	RRR	RR			DD				DD
,		•	, N	IN		N	NN		NN	1			U	U				UU			RF	RR	RR	RRR	R			DD			a es ja	DD
			N	N			NN	Ν	ΝŲ	۱.	•		U	U.				ບບ	·		RF	2		RR				DD				DD
			N	N			Ν	NN	INŃ	ł			Ų	U				บบ	ł		RF	2		RR		· ·		bb				DD
			Ň	N				NN	INN	1			. U	υu			ંદ	нц			RC			P	R					1.555		DD
			N	N				ĨÑ	INI	J			•	 ПП				111				. .						00	\ m .		n	55
			- IN M	N					N N					00	00						R H	K			KR			DDL	וסי	2DD	PDD	ιV.
<u>.</u>		1.61		10	۱ م		. ,		TH P	1 	. c			. 0	00			, 			RF	2			R	R		DDL	, DI	DDC	DD)
<u>.</u>	5	a IN	5	AL	¢.	11	U 6			вÇ) G f	42	1 C	ţ	. Ų	NI	V E, F	R S I	TE	sţ	K	DHP	UT	ER	M	EKK	EZI		Ş	TAN	PUL	V
	~			ः म	L.									_														n an	6	1.5 M. 19. 1		
NT.	U		N	UR	D :	IL					VS	5E	R	1 D	*								P	ART	NI	UMB	ER	¢ ۵۵) "			NPU
	÷.							•																				10 D.	•	الا يعام ما		
F I	LE		NA	MĘ	a a	H.	PR	00	00)NU	JRC) I I	L						C	RE/	TED) A	Т:		15	:57	:49	JAN		26	1.9.8	1.
							•																		•		• • •					
78	9(1 1	23	45	67	78	9n	12	234	156	578	39	n 1	23	45	67	8 9 r	112	24	567	789,		24	567	89	n 1:2	246	6789	2		454	789
N	H E	2 n		. 1	1 1				· • • •	, ,	- י	- - 1	0 •. 	 -				, <u>, ,</u> ,	. U 1 1 D D			116	- G			u • •	3110	•••	<u>u</u>			
14	۱ ب د	: •	+ -, 	1+	* 4		+ + 	TT 🗛			ΝĻ	יָרָנ	<u>۲.</u> 4	1					U A U	169)										1	
.		71; 10	2 2	₹ K	Ę. /	ųν	1.		. .		•	_																				i sa di
RN	t i	∮G					04	αu	10())00	105	20	0																	an far singe	•	
S	Y S	55	* R	ΕA	DI	•	٢L	ΕA	R																	1.1		1.	• .		•	
`	E	30(GA	Z I	Ç 1	#	¢Ε	RN																			,					
RN	Ih	İG					04	٥Ó	00	10	02	200	n																			
S		• 1	MΔ	ΙN									• ·									•								- 1. A. 	5 t ge	
1	1	'n	12	2%	15	. 1		51	5 8				•						₹.													
	•		∔ (` •			••	••••	- T,	1.11		· ~ /		n																		an i Suith	•••
			1.			·			L IN		. 9 2	R R	0		_		•								•							
			2.				•		CU	100	- L E	X	V	, <u>∨</u>	Ο,	V1	, >6	г,	SE	RI	V()	01	11	Ζ,Ζ	1				. :			
7			3 😜						υţ	ME	N S	5 I I	0 N	F.	1 (37) , F	FF (37),]	EMP	,(3	7)	, AR	RA'	Y (1	,20),sl	١W	(10	1)	
		54	4.						RE	A D) (5	5,	10)	(A	RR.	AY ((1,	7)	۶J۳	=1,2	20)						1.1			÷.;	
:		9	5.		•		1	Q	FO)RM	1 A T	11	10	F 6	.0)					,		~						1	an in the second se Second second	φ	
•			6						Ρī	= 3	3.1	4	15	92	65	4								•							1	
· 1			7	i, e					R =	1.			• •	17	4 . .	•					١								·	· · · · ·		
			ο.						G A	MΔ	= 1	'n	Ц	76	n 7	071	=											1 × 1		•		
		. !		. · .) - C			• " 	1,5	07	7,73	2							2								
			7 🛊						10	, , , ,	າວະ) ș (() S			-		. •					•									
Ξ,		1	. ب						υQ) 4	00)	11	= 1	, 2	0																
		1	1.						₩ =	A R	RR #	λ.Υ.	(1	, I	1)																	•
		1	2.						WR	1 T	ΓE (6	,1)	W						•										<u>.</u>	
		1:	3					1.	FO	RM	147	11	10	X,	e W	* #	, F 1	12.	8)	•										(1,1)		
		1	4						F 1	(1) =	:0	•				•					·	•									
,		10	5.						Do	3	Ś.,	1=	2.	37								,	,				•		1	•	·	
		1						2	FI	1	 		* 1		1.1	тр	1 / 1							•						•		
		* (5	14		// -	• 1	11	Ų™.	+ 1	τr	• • •	0.		•						•		-			5.0	
		+	/ •						20	- <u>-</u>				11	37 611								L.									
	,	11	₿ ę						nF	, A fi	I D A	1 = 1	W 🗸	A L	rп	A	•													•		
		10	9 🔹						A ≓	÷ 🗋 🛊	1.1	•																			1	
		21	0,						D≓	:6	•														•	•						*
		2	1.				Υ.		DO) 2	2 1	(=)	Ζ,	50								·										
		2	2					•	รบ	M	1)	=	n.	•																		
		2	2						V =	C M	101	ั่่่่่่		50	RТ	(D)	Δ N	۵ ח 4	+ F	104	T ()	()) 	S	0RT	(D)		D A	Fio	<u>۳</u>		3.5	
		-	များ။						AL L		(۱. ۲			1 - 1				4 4 1			, -						• •	(+)	11	
		41	4.						IN M	180	\ \ 2	•							~													
		2	5 🛉						<u> </u>		. t	5 E 1	50	51	V)	A 🛊 [A LI V	\mathbf{X}	21				22									
		2	6 🛊	;					2 =	; (=	2	, *	FL	Q A	11	1.1.	+ 6 /	A M A) *	0(1	MA)	()+	• V •	U (N	MA	X T I).		3			
		2;	7.			•			٧1	= [{ * \	1												6.°							•	
		21	Β.						CA	11	. E	BE	SC	J(V 1	, A	, N I	1 A X	, D	,01	ļ					•						
		2	9.						SE	:R=	÷U	(N I	MA	X)	/ Z				. 1													
		3						•	Χī	=R	REA	ιĽ.	(\$	ER)																	
		2	₩¥. 1						Yi	= ^	- r 1 t h	1 4	 G I	SF	R١																	
		رد د	∔ ♥. つ				·		- 4 F E	1	• * ° \ _	- 7	⊷r 1) 	55	Λ A	T / 1	- ۲۱		1.1	5				•		•						
			2.						· r	19	1 =	- 6	≠ • 1			1.1.	a:J.¶ 1		. V C 1	7 N 7 5									·			
		3							~ ~	· _ v	1.4	. r .	~ -				_		_													
		3	3						CC	: = X	\$1.	+CI	05	(†) M -	ΓA. T	57		r 1 *	21	14.4.1	(r (.	"					•			• .	``	· ~
		3:	3.						C C S U	; = X) M ((1* [])	+ C (05 50	(F M (I -	1).	+(([]# [(=	1.) * *	' " (. • (] +	-1))/	(4,	∙ ∔FI	LOA	T(1) + + (2 🖛	1.)) + (C C
		3:34	3.4.						C C SU I F	; = X M ((((1+ (1) (5)	+ C i = M	05 50 (1	(F M () -	I - S U	1) M(/ → (+ ((I →)	[]+ [([])	-1. .L) * * E • C)+O(000 1) 1)))/ 101	(4+) G	• F I 0	L O A T O	T(I 15) * + i	2 =	1.)) + (°,

							1 N N
36• 2 C	ONTINUE					•1,	
37. 15 N	MAX=2						
38, V		SQRT (DLAM	DA/2.),5QF	RT (DL AMDA	/2+))		
40. Z	1 = (1 + GAN	2 (V) A) N MA; 1 A) # H (1)	X 1 U 1 U 1 · · ·	• •			1.1
41. V	U≓R+V		V+0121				
42. C	ALL BESC.	J(VO,A,1,	6,0)				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
43. 5	ER1=U(1)/	Z1	•			•	
44• X	O=REAL(SE	ER1)					•
45 Y	OFAIMAG(S	SER1)				•	
47.5	VLT-41/84		(FI(J)) = Y(J)	D#SIN(FI(1111		
48. T	EMP(J) = T() + TO + GAMA	+ (FXP1+SU)	11/2.)			•
49. W	RITE(6,1)	() FI(J),	TEMP(J)		•		
50. 11 F	ORMAT (5X	2(F12.8)	5X))				
51. 200 C	ONTINUE						
53- S	ONIINUE		, , , , , , , , , , , , , , , , , , ,	•			
54, F				-	•	•	
· · · · · · · · · · · · · · · · · · ·	II P				· ·	;	a siji
1 287 1BANK 577 D	BANK			•		•	stat v s
BOGAZICI+CERN+							
27R2 RL72R1 01/	26/81 15;	59:41					
• F •			•		•		
2 72R111 01/26/81	16:00.55		•			· · · ·	
LIB BOGAZIC	I + CERN						
	•.				• .	•	÷ *
• • • • •							
> LIMITS 00100	0 035251	1450	6 IBANK WO	ORDS DECI	MAL	· · ·	ed De tractas
IG ADDRESS 03461	0 045276	275	1 DBANK WO	ORDS DECI	MAL		
	e l		•				
		•	1				
		0010		0 " 0 "		1	
SEGMENT PH	ATN=	0010	00 035251	0400	00 0452	./6	
SYS72	\$(1)	001000 0	n1177				
	5(1)	001200 0	02114	· · · ·			•
/ 5	5(1)	002115 0	12131	\$(2)	040000	040002	
	\$(3)	002132 0	02146			•	•
	\$(5)	002147 0	02147	- (-)	0.00000		
				\$(2)	040003	040314	• 44
,			· · · ·	±(2) \$(n)	040316	040313	
· · · · · · · · · · · · · · · · · · ·				\$(034)	040323	040364	
TH	\$(1)	002150 0	02240	\$(2)	040365	040406	
	\$(037)	INF0+010	-LC	\$(034)	MOEROS		
1ATH	5(1)	002241 0	02466	\$(2)	040407	040446	
/ M A T I I	5 (037) 5 (1)	INF0-010	-LC	\$(034) 5(2)	MUEROS	D U U U U	•
r na i n	2(1)	002407 0	02913	⇒(<u>2</u>) 5(2)	040447	040754	
• · · · · · · · · · · · · · · · · · · ·	5(1)	002514 0	n5515	4161	019195	U7U722	ť
SYS73R1Q8	5(1)	005516 0	05712		N		
÷•••	\$(1)	005713 0	10070				
	5(1)	010071 0	12661				
	\$(<u>)</u> 5()	012662 0	13210				
	⇒(1) 5(\)	613347 0	15471	•	•	•	,
		n15472 n	17126				
	- • • /	$\mathbf{v} = \mathbf{v} \cdot \mathbf{v} + \mathbf{v}$	• • • • • •				

nt La tractica

123456789	901234567890	123450789(012345678	890123456	7890123456	578 <u>6012</u> 3456
	NIJ	11.1	+11-1 ·		DRORDROD	QQ
	TAININ	1414	UU .		RRRRRR	
• • • •	NNNN	Mid	ŪŪ	UU III	RR	RR
	NINNN	ININ	UU	UU	RR	RB
,	NIN NINN	NH Net	UU Y	UU	RK	RR
	NIN NINI	No		UU ÚU	RKKKKKK	KKR
	NN NN		UU · ·			
n na tanàna amin' ami Amin' amin' amin	NN N	NUNI	UU	UU	RR	₹R
	NIN	NNN	UUU	UUU	RR	RR
- 2	NN			UUUU	RR	RR
* * *	UNTVAC 1106	ROGAZ		VERCITEST	KOMPLITE	
•	0.111100 -100	BOOKE	ICI ONI	ACU2TICOT		
RUNI) * NURDIÉ	USEI	₹ID *	ris ber otterster i i	PAF	T NUMBER *
FIL	E NAME * PR	AUOONURDI		CRE	ATED AT:	12:13:23
	· · · · · · · ·					
123456789	01234567890	123456789	01234567	190123456	7890123456	57890123456
ARUNIE NU	JRDIL:111-11	-202, PROJI	ECT	•NURDIL	•	
	→ MALN □ 111728781⊒1	2.13(.0)				1
	1.	DIMENSI	0H FT (37), TEMP (37) • FF (37)	A .
	2.	P1=3.14	1592654	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
y na hamana an ta' a sa ba a	3.	R=0.5	Δ	n in the state of the	59	OT OG JIVA
- <u>1. 2</u>	4.	$F\downarrow(1)=0$	•			
• • • • •	5.		$2 \cdot 37$		•	
	7	J FI(J)1F. WRITE(6	12)	1718.	er stier etisteriers states st	
n. A statistica e construire de la construire d	8. 1	2 FURMAT ($\Delta X \cdot \cdot y = 0$.	μ) Δ		u da se
t <u>de aller tani</u> de die. T	9	DO 200	J=1,37	Δ		is a let Friende en bestelet en let en bestelet en let en bestelet en let en bestelet en let en bestelet en be
	10.	SUM=0.	en e	·		
1	11.		1+50			1
2	12.	FF(J)=2	+1*F1(J)		$OAT(\tau) + 2$	4
2 2	14		+2.*FI ()A	///(4•*r⊑ T(])	UNINTIA+2	−⊥•) Δ Neterio (Lineace (11 - 1
· · · · · · · · · · · · · · · · · · ·	15	8 SUMESUM	+131*((2*	,,, ≯0)**I)*C	OS(FF(J))	/CI
- 1 I	10,	DE=(PI*)	*COS(FI	()))/((1	.+GAMA)*8) Der Stander
1 1	17.	EXP1=GA	MA*(DE+S	UM/2.)		uning a rtic pulk alado a se
1 1	18.	TEMP(J):	=T0+T0*E	XP1	د المعنيان وشايريانيا الماري العالم	
1	19.	WRITE(6	(111) FI	(J), TEMP((U	
	21 20 21 20	L FORMALI; O CONTINU	DXIZIFIZ	•8+5X//	sinter Alternation	
7	22.	5TOP	-			an a
	23.	END				(a) A set of the se
END FTN 1	.02 IBANK 17	4 DBANK				na santaka da
AXQT	100101001200	///1 . 10*17	• 30			
MAPZONE	21101 01/20	/01 12+15	• 5 9			
		•			<u>میں میں میں میں میں میں میں میں میں میں </u>	end diana'a concept 197
AUDRESS L	IMITS UN 04	1000 0325. 0000 04310	54 1. 03	3149 IBAN 1604 DBAN	K WORDS DI	ECIMAL ECIMAL
STARTING	ADDRESS 03	2307				
			· .			
			• •			a da ante da a Ante da ante da
				•	•	•
 	SEGMENT	амитиа	0	01000 U32	534 01	+0000 04310
TABLE 5/SI	(572	5(1)	00100	0 001177	a San	en de la Santa de Carlos

1000

.

•

.

.