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ABSTRACT

The temperatUre.distributidn in roiating ci:cUlaf
cyiinders heated by rédiétibn has been studied in this
thesis. Analytical solutions have been obtained for solid
cylinders rotatihg with constant ahgular‘vélocity, with
incoming radiafion taken perpendicular to the axisvof
rotation and incident on one side. Thermal equilibrium
has begn'achiéved by means of reradiatibn;to thevsurroun-'
ding'qpposite haif—space. “The treatmént'employed makes

use of the method of separation of variables with [linearized!

‘boundary- ¢ conditions,
Results of the study agree wery well with works

cited where similar problems have been treated employing

'different mathematical techniques.
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UZET

Bu callsmada, radyasydna tabi, déhen silindirlerdeki
sicakllk daglliml incélenmistir. Analitik sonuglar,- |
kendi ekseni étrafinda Sab?t bir:aclsalihlzia, i1sima
yoniine dik bir ekéen étraflhda ddnen kati éiiindirler
i¢in elde'edilmistin, Diferansiyel.denklemin.lineef hale
getirilmis sanir éartlarlﬁa gére cééﬁmﬁ, degiskenlere

ayirma metodu ile bulunmustur.

‘ Sonuclar: benzer problemlerin sonuclari ile karsilag-

tirilmis ve biyik dlcide uygunluk gbsterdigi saptanmistir.
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- CHAPTER 1

INTRODUCTION

This thesis is concerned with the temperature dis-
tribution in a solid rotating cylinder exposed to incoming

parallel radiation.

Literature, in recent years; coﬁtéins studiés of
heat conduction in various types of bodies,vwith,radiant
energy'intefchange preécribéd on the éurfacé; The current
emphasis on satellites and space vehicles has created an
“interest in the temperafure'distributidn in rotating bo-
dies exposed to solar radiation. Stgdies_can be grouped
in several cétegoriesbsuch‘as the analysis of‘fhin-walléd

" bodies, thick-walled bodies and solid bodies.

.In this work, a solid cylinder‘has been considered
rotating with constant angular velocity "w'". This state
implies that a balance has been attained between the |

total heat absorbed by the cylinder and the total heat

1



re-radiated into space. The resulting temperature distri-
- bution is typical of a quasi—eteady state, since each

. point of the cylinder fixed with respect to the incoming
radiation wouid have a'time—independent temperature. In
other words the temperature dlstrlbutlon would vary perlo-

dlcally with time.

Although the differential equatioh leading to the
temperature distribution ié linear, the true radiation
boundary condition’turns.out to be non-linear. Nonethe-
less, analytlcal solutions of the d1fferent1a1 equation,
have been obtained here for linearized boundary conditions.
Expressing the governing equation in a rotating coordinate
system and using separation of variables, the case has
been reduced to an eigenvalue problem. - Temperature dis-
tributions thué obtained are’intverylgood"agfeement with

results | 7 | published in similar works.



CHAPTER 2

LITERATURE SURVEY

The cufréntiemphasis on sateiiitesiahd'space»vehitles
has created an interest in the temferatﬁre distribution
of various types of rbtating bodies, especially in the
past fifteen Yeéfs,'seVeral analysis relatéd to thié sub -
ject have appeared in the litérature,'lln.general these
papers:consider the body to beiplaced in a vacuum and
réceiving‘radiant energy from a distant source, reradia-

ting energy to a heat sink at absolute ‘zero.

The problem of the solar heatihg 6f,a»rotating'éy4
lindrical shgll.has been‘consideréd firét’by Raynor and~
Charnes in |11]. 'Niéhols |6| and Roberts |12] have indi-
vidually obtained the approximate formulas for_thin-walled
solid cylinders, but neither considered the possibility

of rotation.

In a closely related paper, Olmsteadvand.Raynor |7|

3



have undertaken the problem of'the rotating solid cylinder.
. They have obtained analytical solutions by the method of
5¥Green's funciions; However, ih this study, the solution
has been examined oni; for the limiting'caSes of either

very slow or very fast rotational épeeds, indicating a

need for fufthef analysis of the same prbblem.

Ulcer |8| considered the problem of the solar heating
of rotating space vehicles, and QBtained expressions to
unsteady temperature distributions by making‘use of eigen

vector techniques.

In'a similar analysis made by Raynor énd Petrof,
|10vaor solar heaiing,of rbtating thick?walied cylinders,
analytical solutions were found as seriés expressions in
terms of orthogoﬁal functions for the hQ11ow cylinder
with the adiabatic hole. The,résultiﬁg temperature dis-
btributions were examihed for‘véribus rotati6na1 spee&é

at the surface of the cylihder}

Arpaci |2] and Carslaw and Jaegér |3| explain in
detail the formulation and solution methods of various
types of problems iﬁ conduction heat transferf. Schneider.
|13l gives the transformétioh'formulas for the problems

- which have moving heat sources.



 CHAPTER 3

* HEAT CONDUCTION EQUATION FOR ROTATING BODIES

3.1. GENERAL

The formulation'of.conduction'phenomena cén be de-
fined so as to obtain the mathematiéal expression in light
of the physics of the problem under consideration.and to
specify the initial énd/or boundary éonditiohs pertinent
to the'govefning equétion. Thé governing equation of a

conduction problem can be obtained either by the mathe-

matical interpretation of general formulation or by fol-

lowing, from the start, -an individual formulation suitable
to the problem. The‘latter'method is espeqiélly appro-

priate for>practica1 application of the study of heat

" conduction. Detailed explorétion of methdds of formula-

tion can be found in |[2| and (3],

Heat conduction equation for the cylindrical coor-

dinate system which can be obtained by either one of the

5



above procedures is given as:

1 32T

15 .. 9T, . 92T umt 1 3T '
= —(r &) + — =+ + = = = (3.1)
r or var r2 34)2 572 k a ot
where
T ET(r’q)’z,t)
and

L.k
.p‘cp

Equation (3.1) is applicable for hOmogenéous_isotropic

solids and for frictionless incompressible'fluids. For

u"' £ 0, Equation (3.1) becomes:
2 _ 1.9T

3.2. TRANSFORMATION FORMULA FOR MOVING HEAT SOURCES

The approximate fheory of moving:heat sourcés has
been considered by Sprarapen énd_CiaﬁSsen and the exact
analytical theory was developed by Rosenthal, DérivatiOn
of the tranéformationvformula for moving héat sources is
discussed by Schneidér |13] for_recténgular coordinates.,.
The transformation formuia“frdmfstationary téimoving sys-

tems can be obtained for polar coordinates by applying



the same procedure as in |13].

In the stationary system,T(r,6,2) the temperature

'must,satisfy

2 2 2 . . | )
9 T‘ 1 3T 1 9°T 9°T _ 1 9T (3.3)

¢ = 6 -wt ; t'' = t
then
3. _ 4. 3 _ At _ 4. at' = 1
- L s v 303 It
v . ' 2 2 : ’
_al = E.I. -a:?- + —-—aT ————at' = ?ir_ . a T = a T . (3.4) :

’ ‘2 2
36 3p 236 ot' 36 - 3¢ - 39 ¢

and
oT _ 8T , 98¢ , 3T ot! = - oT 9T (3.5)
ot ¢ ot at' o9t 3¢ ot .
or:
.é_'I.’.= - w-a—T-‘-+ 3T - . (3.6)




Substituting Equations (3.4) and (3.6) into Equatien (3.3},

. - we get,

2L, 8T

An observer of the ¢ direction would notice‘a change
in temperature of his surrouﬁdings, but he wouid hotice |
no such change in temperature if he werefstafioned at a
point on the moving & axis. This condition of apparent
steady state temperature has come ﬁo be known as the.
quasi—steady state and it is represented mathematically

by %% = 0 in the moving coordinate system.

Since this puts us in the movihg.coordinate system

-a—_t-' =0 and
2 , 2 2 : B
3T+l£+_,3 +8T.+_£§1=0 . (3.8)
or? T oT  p2 342 322 2 3¢ | i

Equation (3.8) is‘applicable as heat conduction equation

for rotating bodies.



3.3 BOUNDARY CONDITIONS:

The formulétion of any specified problem can be rea-
lized either from the equation of conduction given by
Equation (3.1).or from the mathematical interpetations
of it in the light of the physics of the problem. These
equations|involve a partial differential equation in terms
of the unknown temperature and their solution involves a
number of integration constants. Therefore, an equal
number of apprdpriate COnditions.ih space aﬁd time is -
necessary in order to determine theée conStanfs. These

conditions are initial and boundary conditions.

' The boundary conditions specify the temperature on
the heat flow situation at the boundaries 6f’thevregion._
The most frequently encountered bbundary conditions are E
prescribed temperéturé,_préstribed.heat'flux and héatvb
transfer to thefambient by convection. Actofdihg ;3 the
physi;é of the problem,-combinations of'thé.above can - |
also appeaf as the boundary conditions of the problem

12,8].

The boundary conditions for heat transfer problems
involving the fourth-power radiation law, free convection

and so on, are called nonlinear boundary conditions be-
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cause they involve a power of temperature. Since this

study is about the radiétioﬁ'heating'of a solid cylinder,

T Ty it will be useful to give some information about this type-

of boundary conditions.

Consider two isothermal surfaces Ay and A, having the
absolute temperatures Ty, T2. It has been shown experi-
mentally by Stefan and iater proved thermodynamically by

-Boltzmann that the radiant heaf'flux 47, between the sur-
faces A; and A, can be expressed by the fOllowing equation

as

where o is the Stefan-Boltzmann constant and §12 is the

(ZTT’f—f‘if:iiff*i‘"iiijtf-—.—- S
joverall.interchange factor

L N e T T

For an enclosure composed of two concentric, very

long cylinders, Flz becomes [9],

= 1 _— (3.10)

= -1
2 Fez' )

- Fio

>1 >
[

+

mra

"1
where A, and €4 are the:area and emissivity of inner cy-

linder, respectively.
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As Al/Az'+ 0,‘Equation (3.10) becomes;
F121= €y | ' (3.11)

Equation (3.11) is applied to calculate the radiation -
energy loss from an object to its surroundings. When

this object is in vacuum, the radiation energy loss would

be

q = csl'Tl = ger? g : ’ o (3.12)

To express the heat flux from the surfaces of a solid
cylinder exposed to radiation by conduction and radiation,
the required boundary condition can be written in the

form,

Ty - ogerd - gom , 3 137 .
“k(an)c oeT 4, v | (3.13)
where qn" is the radiation term in the direction of sur-
face normal and plus or minus signs of the conduction
term correspond to the direction of inward and outward

normals, respectively.



CHAPTER - 4

4.1. FORMULATION

4.1.1. Definition of the Problem

In this study, é>solid cylinder ié consideréd to
be rotating with constant angular velocity about its geo-
metric,axis,vthe axis being perpendiculér'to the direc-
tion of incoming radiatioﬁ. Thermal radiation is heating
the body and thermal equilibrium.is attained by méans of .

reradiation to the surrounding space.

There is no conduction and cbnveétion effects with.
the‘surrouhdings at the surface of the body based on the
assumption that the importance of radiation relative to
convection is larger for.low rates ofkconvectioh. Inter-
nal reradiation is not consideéred on the basis of the

conclusion reached in |9|that ‘the body rotation influences

12
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the temperatures to a much greater degree than;internal‘
radiation. wAlso'longitudinal conduction is neglecfed
“g;according'to‘fhe analysis of an infinitely long cylinder,'
Therefore, the pgat flow is radial and‘circumferential
and the resulting temﬁeraturé distribﬁfion is ‘two dimen-
sional. The body,is_conéidered,tb(be diffusely emitting
and diffusely reflecting.- The thefmal;cohductivity,ik

is the same in all direction, i.e., isotropic material.

In thellight'ofﬂfhis defihitibn.0£vthe>present pro-
blem the teﬁperafure'diétribution of the cylindér can
be determinedvfrom the solution of the differential‘équa-
tion of temperature subjéCt to;the nece§sary boundary

conditions:

4.1,2. Differential Equation for_Rotafing'Cylindei

Thé cylindrical cooidinate SYstem'(r;é;z) fixed.in

- the body is.shdwn in’Figurekl with © measurgd in a sense
opposite ta-the rotation, w. Taking difoSivity "a' as
constant, the govérning partial differenfial equation‘éan

be written in éylindrical coordinate system as,

5T . 1 82T _ 18T IR |
or 2 2 a ot ; (4.1)
T 3¢ :
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FIGURE 1. Schmatic Representation of the Cylindrical Co-
ordinate System (r,¢,z) Fixed in the Body with 6
Measured in a Sense Opposite to the Rotation w.

A transfofmaﬁion that has bgen uéeful in solving -
problems with moving heat sdurces'eliminatesAthe explicit
_dependence of the tempefature‘oﬁ time. As it‘is'hentioned
in the previous chapter, for pdlar coordiﬁateélfhis trans-

.fdrmation is
8= ¢ ~wt  t' =t o (4.2)

Fixed in a stationary frame of ?eference, the temperature

becomes the quasi-steady temperature

CT(r,8) = T(r,0,t) R (4.3)



characterized by -

oT o '
= =90 - 4.4

at' ' ' ( )
Using Bquations (4.2) - (4.4), Equation (4.1}'becomes,

32T
282

+

2
8T+-]__.§'_I‘_+
T 9T

a_rZ 2

F%IH
®(E

3 : L
55 = 0 s

4.1.3, BoundaryvConditiOns.b

The'boundary conditions for the probiem‘involve
prescribed surface values for the'héat flux. The external
surface of the body is.heated-B&;fhe absorptioh'of radiant
energy from the diStanf soureé and suffers an energy loss
'by-reradiation to space. The.gradiént of temperature is
determined_by the net rate of heat}dbhductioniﬁer'unit
area with the 1oca1 abSoTbed’radiatiOn-by Lambert's éosine
law and the‘reraaiatioh governed by the Stefan-Boltzmann
law. From Eqﬁétion (3.13)»wé'gét, | |

3T 4

_k'ﬁ? + oeT’ = aq " Cos™ (¢-wt) 'pn'r=R '_' (4.6)

where
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¢ - the average absorptivity of‘the cylinder surface,
q,'"" - the radiant energy flux in a plane normal to
~ the directiqn of incoming radiation
~0 - Stefan-Boltzmann cbnstant |
€ -.theAaverage emissivity of the cyiindér surface.

‘ The Cosine funption-is defined

+ : | Cos(¢-uwt) - %i (6-wt) ig_ |
Cos™ (9-ut) =" R W N
: 0 - 5 < (;p,—wt)' <5
Boundary condition at-the center of the cylinder is
T é,Finite , ‘ at r=0 o | ,.'._' : (4_8)

When the transformation Equations (4.2) and (4.3)
are introduced,into-the»boundaryfconditions‘Equationé

(4.6) and (4.7) become

AT . b et o :
k 57 ¢ oeT qqo Cos 8= on_r_R B (4.9)
L Bl |
Cosa I <8<y
Cosfe'=

o
o=
IA

farl
A
N
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énd

T = Finite ‘ at r=0 - (4.10)

In order to linearize the reradiation heat flux term

in Equation (4.6), the following subétitution,isfmade,

. 'T—TOI - o - :
br o2 2 or T = T (1 + %) (4.11)

0 .

It is assumed that ¥* is.small compared to unity,-and

using Maclaurin's expansion, we get

4 - T04(i'+ vyt 2 T04(1 + 4y f'ewwz fead)
or _‘ ) ) ' .
™zt e aws | (4.12)
= g1 4 (1 + vey = a1ty S 4a)
where - |
| R &
Substitu;ihg the value of w‘ihto Eqﬁafio§v(4.ll),

yields

T =T (% * w) a | gy (4.14)
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Then Equation (4;9) becomes

3 dq oo . 40€T63 ‘
5—.— Cos B - ——— ¢ . (4.15)
T k Sk .

Introduc1ng Equatlon (4. 14) into Equatlon (4 5), the

dlfferentlal equatlon becomes,

QU
N
<
4
H ]
<

L 1 9%y
. 2 862

X
36

+

SD,IE

=0

QI
=
[
5
L]

Finally, the complete formulation of the problem in

Yy becomes

By, 1 9%y
.5? 2_362

Q
N
~

*'HH

g% o (4.16)

Qo

~

N
-
‘ w)e

and subject to the boundary conditions,

‘ R . . .3
. uq “~ 40€T ‘ : .
%ﬂ = -2 coste - — 0% g on r=R (4.17)
T g : .
T k - kK

and

Y = Finite - on-r=0.": - (4.18)
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In addition, the following non-dimensional -

_. . are introduced

- 7T
P =R
5 = aqo"R
T k
o}
4deT03R
Y =
, k
A = wR?

quantities

(4.19)

(4.20)

(4.21)

(4.22)

Substituting Equations (4.19).tor(4.22) into Equations

(4.16) to (4.18), the formulation of the problem in non-

dimensional quantities becomes,

9 T 2

p2

Q
O
Q
[an]
[N

Y »; k
55 * prll BCos ©

Finite

<
n-—
I

8%y % 3y , 1 3%, 3y _

(4.23)

(4.24)

(4.25)



- 20 -

4.2. SOLUTION OF THE PROBLEM FOR THE TEMPERATURES IN

THE SOLID CYLINDER

4.2.1. Separation of Variables

After the formulation in mon-dimensional quanti-
ties 1s completed, a solution .. is‘éought by the

method of separation of variables.
Assume the existence of a product solution

¥(p,0) = R(p) @ (8) (4.26)
'Introducing Equétidn (4.26).into~Equation‘(4.23), .

we obtain

1"

1 l'-"! L .o ‘
R+ oz R 6+ AR 0 =0 (4.27)

o

) © e

-

(4.28) o

o)
N
~ |~
o+
o)
= |-
!
i
© |© -

The left-hand side of this equatioﬁ is~indepéndent
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of_e while theAright;hand side‘is é function of p and 6.
_ Since both sides of Equati§n (4.28) are not independeht
7of either variable they'cannot be equal to a'COnstant.
Because of the equality of both éides to eaéh other, the
right-hand éide'of-this equation must’y%eld to ?'funcion
of P only. Accofdingly, the functions %-\gnd %' are
necessarily,constantS} .On the baéis of.this toﬁclusion,

assume

S O (4.29)

and

ol - .
|

From differentiation of EQuation-(@.SO) with respect

to 6, we obtain

6 = k © - o (443))

. Substituting Equation (4.30) into Equation (4.31)
and éomparing with Equation (4.29), a relation between K

and vz can be obtained

o= - v? ' o : | (4.32)
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or equaily
- | 3
Consider the pOssible two caées:

CASE 1
Let,

b o ,
K = — = - i\) . ) ) . (4034)

A solution satisfying this value of k is,’

o = A e VO (4.35)

where A being a complex number.

The above separation constants so - introduced, the

differential equation in p directidn”becdmés;

N ‘ . * 2 . ) .
R+ LR - (ivh + 2= ) R =0 (4.36)
S0P 52 - |

and the complex solution of this equation can be written

in the forms

R(p) = BJv(i/‘iAV p) * CY (ivIXV p) . (4.37)
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where B and C may také'complex values.

For a given value of v, the product solution is,

T, (0,8) = e*iVQ1B‘Jv(i/IXG p) + c'YV(i/IiU o)  (4.38)

" CASE 2

Consider the second case, i.e.,

B - g - _ .
K = 8. = 1y - ' (4.39)

A solution satisfying Equation (4.39) and Equation

(4.29) is of the fqrm
o =Aet® (4.40)

where A being a complex number.

Then Equation (4.36) becomes

n

' v : ‘ . g
02 R + pR + |ivp? - v2| R =0 - (4.41)

and';he'complex solutioh to the differential Equation

(4,41) can be writfen in the form"

R(p) = BJ, (YIW o)'+ CY, (Vi p) ‘ : - (4.42)
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where B and C may take complex values.

For a given value of v the product solution is

va(p,e) = eiV6[B+JV(/1AV p) + C+Yv(/1kv p)|  (4.43)

The linear combination of these solutions is the

solution of this problem,

Y(p,8) = I

v=-o

T\‘,"»(p,e).ﬂ» T, (0,0) (4-.44)'

4.2.2, Solution for the Solid Cylinder

Since periodic behavior~is requiféd in e-direction,
v Values must be integers,“i.e§; Y=n. Also requirement .
qf finite temperature'fqrbpéo ieadé.fo the'conélusion that
the compiex constants C~ and C* in_Equationsk(4;38) and
(4.43) should be set equal to zero. Therefore, the
general solutioﬁ to the problem can be written in the
following complex féfm?v |

ind

b(p,0) = 3 e (B, (/DR |+ &t [B g (VTR | (4.45)

or
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v(e,0) = nzéme-ine\B;Jn(imp)l - éinelB;Jn(/mp)l (4.4 )

Now, in this expression if we set -n instead of n in the
. 3
second term, which also changes the argument (iin)? to

. 1
i(ian)?, we obtain

¥(p,8) = © B e ™ g (iv/ixm 0)

s+ e-ine
n

J_.n(i/:,m 2 e
_Using the relation:

J_(x) = (;1)ﬁ Jn(x). “for n integer-
in the Equation (4.47), the geﬁeral solution for the solid
~ cylinder becomeé;

r¢(9,9) = I B; e-ine J, (ivikn 0) . (4.48)

® _ - n'v +
where-Bn = (Bn + (-1) Bn)
or

o]

6

V(e,p = BL + 1 Bl J (i/ATE pye P (4.49)
. n=-o
#0
i AINERSWES
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- 4.2.3, Determination of the Constant

By means of the outside boundary condition the
remaining constant of integration is determined. Along

the boundary we have

2.y | = scos’e . (4.50)

| Pmt Cos® -Lcg< I

72273

Cos™g =
I 31
0 71927
Accordingly

%% - % B (nx)213/2J'(nA)213/2 ye in8 (4.51)

#0

Substituting Equations (4.51) and (4.49) into Equation

(4.50) yields,

o]

yB + lcnx>2 3125 (%%
0 n—-w
#0 '
« vI, ((nx)213/2)|e D8 _ gcos’e  (4.52)
YBZ + ; Bne’ine = BCos 8 (4.53)°

n: -00

#0
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where
3/2;
l(nk)z / (( A) % 3/2) *YJ (@A) 2372y (4.532)
’ . -in® ' '
Introducing e *™° = Cosné - iSinné into Equation (4.53)
yields, |
x 0% 4 ‘ | '
YB, + n§l|(3n+B_n)cosne - i(sn-B_n)Sinnel = BCos'® (4.54)
or
% ® . : :
YB_ + hzl |a,Cosné + b Sinné| = BCos™® | (4.55)
where
8y T By *Bg
by = 'ian B B—nI
- or
B, = % (a, + ib_)
n 2. ''n n :
: . : (4:.56)
B, =% (g, - ib))

Equatlon (4,55) is the complete .Fourier series represen-

tation of BCos’ 6 with complex coeff1c1ents.

B, = =~ - ' ' ‘ (4.57)



28 (_1 n/2+1
———%—————— ~ n even
n--1
an = 0 n odd
R .
7 In| =1

b. =0 for all n,

Integrals are given in detail'in.Appendix A. Therefore,

R and‘B_n becomes,

n
_ a_
Bn - 2
. | o (4.58)
-n - 2
or  .
g DI
'2—-——2—I—— n even
n-,; . . }
En=B_n = 0 n odd - (4.59)
- B
Y In| =1

Substituting the value of B, into Equation (4.53a), Equa-

tion (4.49) becomes,

v(p,8) = ﬁ; s
® . B I ((nA) i

%
p=-w (nx)4 S/ZJ'((nA)213/2)+yJ ((nszl

35.3/2 j o-ine
(4.60)

3/2)
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Using this result in temperature expression, Equation

T e L

— - (4.60) can be repreéented in a new form as follows:

S

. -in®d
+»n Bnq>n(kn,9)e » +

(0,0) =

N8

B
g 1

™8

. B._o_ (k0™ (4.61)
n . .

where ¢n is defined as

o - I, (k) '
n kIl (k) + I (k)

(4.62)

-and

kn = iv/iAn

Noting that

lve]
n
v}

]
=
g
o]

n’
ﬁ1
>
B

n
kn i : X
k-n

and also

3, (-k0) = (-1, ()
31 (kge) = (DRI Cge)
3.,k 0) = (-1, (kpe) SR CA.L

n

It can be shown that
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3 (k) —_—
o_n(k_yip) = ——2—T — = ¢_(k;p) (4.65)
knqﬁ(kn) * YJn(kn) e : ‘

The ;omplex exponential form of the series is then,

vip,0) = £ ) Bploge ™m0 « o7t (4.66)

T

1
If ¢, and ag-are defined‘as“followé:'

a_+ib . a_-ib
_ %n"""n : — _°n "n
¢n - 2 and ¢n 2

Then Equation (4.66) becomes

v(p,08) = %7 + nil B.la,Cosné + b Sinng| l (4.67)
where
a, = |¢n + ¢ | = 2Rel¢}
by = ~iley - ¢yl = -2Imién}
2 .
(-3 |

8 __7_:22: n even

Hv n“-1 '
B = 0 n odd.
n

ReShos]
5
n
}_J
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Besides that, the relationship between the complex

) . 1 V
function Jn[(nk)ép) and the real functions, bern((nk)%p)

—

¢

1 and bei_ ((nA)%p) is

I ((mn*%3/%0) - ber_((n))*p) +vibein((nX)%p) (4.68)
lfrom which fbllows

(nx)%iS/ZJ;:_c,(nx)%i‘S/zp) = @ [ber) (1))

. ibeiﬁ((n})%p)l, , "4 | . (4.69)

where the prime indicates differentidtion with respect to

argument,

Substituting Equations (4.68) and (4.69) first into

Equation (4.62) and then into Equation (4.67), one finds;

Bn(an(p)Cosne - bn(p)S;nne) (4.70j

+
™~
N8

'_l

v(p,0) =§7 n

where

_1 1/2 3ibl ;5 b !5 +
a (p) = 5 [ber;(nd) 7| (nA) bery (nA)™ + yber, (nd)*| +

bei_(nd) % | (a2) ®beit (ma)% + ybei (nA)*¥|| (4.71)
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- 1 L . 1. 1,
b (p) = - §lbern(nl)zpl(nk)zbeiﬁ(nk)z + Ybein(nx}%l

- beinfnx)%p](nx)%beiﬁ(nx)a + yber_(nA)%||  (4.72)

1
Q = ](n)_\)'iberr'l(nk)12 + Ybern(nl)%lz +

| (a0 eil ()% + ybed  (m)¥|2 (4.73)

Then the actual temperature distribution can be obtained

by inse;ting Equation (4.69) into Equation (4.14)

3 S N |
RN £ 2 I (2,(p)Cosno - b, (p)Sinne)) (4.74)

The reference temperaturévTo has nof yet been speci-
fied. A logical choice for T, is the value of température
at the centerline. Since the temperature'distributiqn
given by Equation (4.74) is based on the 1inearization

which assumes that variation about T, is small, T, value

-can be found easily from Equation (4.74) as

T, = T(0,8) = T { 3+ &} (4.75)

Equation (4.75) gives us,
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(4.76)

s e

8_
Y

Substltutlng for B and y from Equatlons (4.20) and (4.21),

respectlvely glves the result

1"
%9 %

oell

T, = (

o (4.77)

With the use of Equation (4.77), the expression for vy and

8 become

L A ‘
Y = %_(i—?i oea’ q,"" )" (4.78)
B=gY . - O 479)

Then the expression for the temperature distribution

with the use of Equation (4.76) and (4.77) become

T(p,6) T6{1<f YE lal(p)Cose - bl(p)Sine +

1 : L Lii%___ laZn(p)COSZnG - bZn(p)ginZnel} (4.80)

where the quantltles To’ y, a, (p) and b (p) are given by .

Equations (4.77), (4.78), (4. 71) and- (4. 72) respectlvely.



 CHAPTER 5

5.1, EVALUATION OF THE SOLUTION

The initial étepvin the eVaiuation of.the]solution
consists in replacing the Bessel function'defiVatiVes
with different orders of the same function according to

the lequalities |1-5].

n

ZZ:)(X). ‘Z\)".l(x.)vb - Zy\,_._l(x_“) o

(5.1)

ng(x). vz (x)}—‘xzy+l(x)

Although the real ahd'imaginary parts Of'Jn can be
resolved into Kelvin functions, the tabulated‘values of
these functions forfbrder other than n=0 ‘and n=1 are not
a&ailable for argument values x>10. Tables f?r Kelvin

functions only for orders zero and one are given by

34



Abramowitz |1| and these functions for orders 0<n<5 are

j;fﬁgiven by Mclachlan |5 for argumént values limited to
~ L

"x210. Therefore, instead of using tabulated values of

[

these functions, examination of behavior of these functions

according to the argument is preferred.

In evaluating the general solution, it is difficult
to juétify a limitation of the argument rénge, because
" the arguments are functions not only of index n, but also
thermal diffusivity, rédius and speed Qf angular rotation.
AThefefore, it is neéessary to the calculation of a single
value of temperaturé to determine the‘Beséel functions of

many orders and for a like number of argument values.

The first step in evaluation of the solution is the
consideration df temperatureé in the solid cylinder for:
the case of no rotation which are détermiﬁed by consi-

~ dering the behavibr of the series coefficients as d, or
equivalently A, as it apprdaches zero{ If is appropriate
to consider the small'argument,approximation-fdr the

Bessel function |1},

. n . :
'n x) (2% n1) *

e



- 36 -

The derivative in the expression for the coefficients

. 1s replaced.by the identity in Equation (5.1). Substi-

~% tuting Equations (5.1) and (5.2) into Equation (4.533)

.~

yields,

® p . '
B (0) = —— o (5.3)

It_is nofed that in Equationv(S.Z), the complex
‘series coefficient is a real Quantity and it follows.that
the temperature is symmetrical in the body about 8=0,
Then the temperature distribution for w=0 of equivalently

~A=0 becomes,

T(p,0) = T, {1+ Yl% 0 'c9se +

1+y
o . .40+l 2n .
% L ( 1%— P Cos2nd} - (5.4)
n=1 4n°-1 2n + Yy : . :

For small values of the argument with respect to n;
power series representation is useful in calculating Jn(x).
Then considering the series representations of Jn(x) and

Jﬁ(x),as follows,
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' ( Xn x2 ' ' -
J (x) = |1 - ' '
SR 2Ry 4(n+1 | :
ne1 - ' ) - (5.5)
‘ Ip00 = — |n - (222X
‘ 2°n! 4(n+1)
we obtain.
Te,8) ., Y{% ]ClCose - D.Sin6|-
T R 1
0
1oy L;l%fii |C. Cos2n6 - D Sin2n®|} (5.6)
7. n=1 4n“-1 2n ZnT T :
where
| (16 (n+1)*(n+v) + n?2%p%(ney+2)) 0"
B 116(n+1) % (n+y) + (@A) (n+y+2) 2| |
(5.7)

p = 4ni(n+1) | (n+y+2) - pz(n+Y)JDn
n 116(n+1)2(n+y) + (nx)z(n+v+2)zl

When |x| is large with respect to n, asymptotic ex-
pansions of Jn(x) is useful [1]. In this case, coeffi-
cients C, and‘Dn for Equation (5.6) becomes

nai 1/2 '_ o 1 ) 1 . ‘1,.' 1
27 7 Dyicos B2 (o-1) | v+ G2 F 1+ (P *sin (3R e -1) )

" nX 3.
o 1B v+ G2

(5.8)



ni, % ~ 1 | = i o -
e T B o5 B (p-1) - (v+ B ¥sin (N (o-1))

e B o+ Gl

For the cases in which both n and |x| are large the
Bessel functions can be derived frqm recurrence'technique
as explained in |1|. For these largé argﬁments'a prdée;
dure basediqn asymptqtic series is édqpted and the final
temperature distributibn ggain becomeé thé same as Equa-

tion (5.8).

For values of A between 0,1<A<10 these functions are
not applicable. The temperéture distributions for theée
values of ) are diTectly programmed for digital computer
ahdlfhé values of temperature at ali-ranges of 6 .and p
values are obtained and plbtted. -Thisfcompﬁter program
Wifh the onés which compﬁte the above functions are given

in Appendix B.
5.2. NUMERICAL PROCEDURE

In the previous Sectiqn, the;éolutiqn fo?'the tem-
perature distributiodn in a solid cflihder is obtained_and-
the forms of the solution for the different céses~aré
imprOVed. Because physical insight into thé.phénomena'is

" not well served by the equations of the solution, a series



- of numerical results have been obtained..
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In order to obtain the temperature values for the:
cases of no rotation (A=0), for very;slow-rotation‘(k€<1)
and for a high rotational speeds (A>>1), temperature dis-
tributions were cgmputedvfrom Equations (5.4), (5.6,7)
and (5.8),vrespective1y; Also for the values of A whiéh
are neither in the range.Of asymptotic,expénsiqn'nor
series expansion, directﬂéompUtation,Qf.Equation (4.70)
is preferred by using a subprogram BESCJ. BESCJ can cal-
culate Jn(z) for maximum value of n=100 and. for each com-
plex z (except Re(z)=0 andAIm(z)=?1) with desiréd accu- .

racy. A detailed inspection of the resulting temperature

values. in these programs show us that, asymptotic expan-

sion of the Besselﬁfunctionsris applicéble only for A>10
or equally w>0.04 rad/hr (for a=0.004 ft?/hr). Also
series expansion approximation is cbrfect only for A<0.1
(i.e., ©=0.0004 rad/hr for a=0.004 ££%/hr). For the
values of 0.1<A<10 temperature distribution_muét be cal:

culated by using BESCJ.

In each of these computer progfams, infinite series
are calculated with 6 decimal accuracy and it_is observed-
that after the terms for n=10, series are converged with

the desired accurdcy.- Therefore, the results of the in-
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-
-

finite series are truncated after the terms for n=10.

~ L To compute temperature values, physicai parameters
were'éhqsen for an aluminum alloy body analogous to that
‘used by Olmstead and Rathr. These values are: radius
R=1ft, solar cqﬁstant qg=442 Btu/ftz-hr, Stefan-Boltzmann

constant 0=0.1717x10'8 Bfu/ftz-hroR4

, absorptivity a=1,
emissivity e=1, thermal diffusivity a=$ft2/hr, thermal
conductivity k=100’Btu/ftahr°R. It follows that:

T, = 535.03°R Y = 0.010478 A = w/3

where w is given in radian per hour. As a second choice,
k is taken equal to 0.01 Btu/ft hr®°R and a=0.0044ft2/h?.

From this choice of values follows:

T, = 535.03°R  y = 10.4758 A = w/0.004

Using these physical parameters, temperature Values

were obtained for the full range of XA values.

5.3, GRAPHICAL RESULTS o,

In this section, the resulting temperature distri-

butions are examined to ascertain the significance of the -
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rotation radial temperature gradients, thermal diffusivity,
etc. Since the dimensionless parameters A and Y depend on
- these, the temperature distribution of solid cylinder are

" obtained for ‘the full range of A and y values.

Variation of surface temperature around the circumfe-
rence for all values of A is shown in Figure 2. Since
depends on both rotational speed and thermal diffusivity
qf the matérial,,these temperature distributions become
helpful for the variation -of one variable while the other
remains. constant. For a statiqnary éylinder, the tempera-
tures are symmetric about the point on the cylinder nearest
to the radiant source. As easily nqticéd in Equation(5.3),
témperature Yariation is not sinusqidal'as’it is for. the.
thin-walled sqlﬁtions [6]. As the cylinder begins to ro-
tate, rotétiqn destroys symmetry and even for slow rotation.
0<A<20, there is a noticeable shift in the positions of
maximum and minimum temperature into the roﬁational direc-
tion: This shifting effect with incréasing speed‘vélués or
decreasing thermal diffusivity is qbservéd'to reach a .
maximum condition for an arc of about 30° on the bright
side in the direction of rotation but the minimum tempera-
ture shifts an angle of about 90°. Rotation dgcreaseé
both maximum and-miniﬁum values. As A }eaché§ higher .
higher values (i.é., rotational speeds approaching infi-

nity or thermal diffusivity diminishes) variation in tem-
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perature values becqmes smaller and smaller and thg‘tem-
- perature of ‘the overall,bddy is found to approach T, as
> required by therquynamic"equilibrium;

In Figure 3, the ratio'of two temperaturé values ét
the surface of the cylinder, which are obtained from a--
symptotic series and from the direct computation of the .
Bessel functions with the aid of BESCJ is givén. For the.
values of 1.5}510;‘Figure‘3 shows that, as’anpprqaches
" 10, this ratio becomes nearly 1, i.e., asymptotic approach
~gives nearly correct temperature values, and for A=10 these

two values coincide.

Figure 4 gives results for the similar case of Eigure
1, but for aﬁ internal circumferential surface within the
cylinaer af p=0,8. 'For'corrésponding~va1ues‘of A values,
there is a greater shifting effect at the extreme tempera-
tures. It is easily concluded that the téndenc} for fhe_
A fo drop the temperature gradient is more effective in

the interior than on the surface.

Radial variation of temperature and dependence of this
variation on A, are shown in Figure > and Figure 6, for
. » Il . ~
two angular positions, 6=0 and 6=%—, respectively. These

results show that the radial gradient increases as A
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increases while the circumferential gradients always di-

minish with increasing A values. Since A is directly

'“_3 proportional with rotational speeds, the above conclusion

is also valid for the increasing w values. This result
" 1s in agreement with results of 111[ and |6|, circumfe-
rential gradients always diminish with increésing_k and
also w. 'quever, Figure 5 and Figure 6, indicate that’
larger gradients can be éncountered,with rotation that

would occur for a stationary cylinder.

For the solid cylinder, in Figure 7 and Figure 8 radial
temperature'distribution:fqr'those radial lines, 6=con-
stant for two rotational speeds also show that temperature
approaches to Tolés w increases. The effect 6f rotation
cause the shift'in maximum temperatﬁre into the rotational

direction.

Effect of the variation.of Y yalues of temperafufe
distribution is given in Figure 9. It.is noted that_gaﬁma'\
can be considéred as the inverse qf Planck.number ﬁhich,is
the‘ratio of rate of heat conduction in the quy_to the
radiation emitted by the body. At very low y values,
temperature nearly §téys cbnstant and equal po correspon--
ding To vaiue, As gamma increases, or equivalently Planck

number decreases, temperature distribution is not uniform
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anymore and show the expected variation from Toe

-Also temperature distributions are shown in Figure 10
for various values of y at p=0.8. At low gamma values
such as y=0.1 temperature is just equallto the correspon-
ding T, value or very smail variation from T is obsérved
as in the case of Y=1. After this vélue of gamma, there
is a noticable variation from T0 Values as gamma increases.

5.4. COMPARISON WITH THE OTHER STUDIES

Isothermals at different rotational speeds which are

-compared with the results obtained in |7|are shown in

Figure 11, Figure 12 for stationary cylinder (A=0) and
for X=0.25, respectively. The thermal property values
used in the calculations are typical of a high termal conm-

ductivity material. The radiation intensity corresponds

~to the ambient thermal energy density for solar radiation

near the earth. The cylinder surface is assumed to be

a black body.so that a=e=1. For,a'cqrresponding.gray body

the temperature gradients would be smaller. Using these

parameters in Eduation (4.77) providesz0=535.03°R. Using

these values of T and o isothermals are drawn for the

| present case. As easily noticed these curves exactly co-

incide with the ones obtained in |7| by the method of
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=442 Btu/ft’hr, a=e=1).

Sftz/hr, q

Isothermals for the Stationary Solid.Cylinder;
= 1
)

w=0 rad/hr.(a

FIGURE 11.
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" . Green's fUnctions}
' 5.5. DISCUSSION OF THE RESULTS

An approximate analytical solution for_fhe radiation
_heatingvof the solid cylinder has been obtaiﬁéd in.preVious
sections followed by a.series of numerical resulté; The
numerical results'presented in the gfaphs show a symmetric
temperature distribution in 8, for no rofation (i.e.,
A = 0) with the maximum temperature occurring'at 9 = 0.
When rotation is present the'teﬁperature'distribution.in
~no more symmetric with reébect.to 8, and the maximum tem-
: peraturerbcCurs-for‘values of 8 in between 0° tob—300, de-
lpending on the magnitude of A. The shift occurs in the
direction of rotétion. Similarly, a shift is 6bserved:for
“the location of thé'minimum temperéture‘with reSpeét;to the
"no rotation" c#se with values occurriﬁg‘in the range

0 < 8 < 1I/2.

" For very high rotational speeds, the temperature of
the cylinderiépproaches T,» more so in the inside as‘oﬂ_

the mnﬂdm

Results presented were based on a solutionfobtained

'by 1ineériiing the radiation boundary condition. There fore,



. the temperature distributions obtained are approximate more
so at points on the surface Whére the temperature departs
the most from the uniform equilibrium value,;Tof
Based . on Petrof and Raynor's 10| studies, the re-
. sults obtained by a linear approximation lead to higher

temperatures than those that would actually occur.
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APPENDIX A -
DETERMINATION OF FOURIER COEFFICIENTS

Fourier series expansion of any function £(x) on the

interval (—'%, %Q is B

. -
f(x) = 79 + I apCosyx + kainkx (D
k=1 »
where
. 1 SH/Z. ' .
3 = = S f(x)Coskx dx
SR 94 ‘
1 3n/2
b = T / f(x)Sinkx .dx
- /2 .
5 3M/2
ag = / f(x) dx
° - /2

: . , + '
Then, the Fourier series expansion of Cos 6 becomes;

o

2
2

o+

ne 8

BCos+e = anCosnx + bnSinnx. (2)

n=1
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where
o . 3/2 ~ ,
e ay =t J ‘BCos'® ao , (3)
- X -1/2
1 3T/2 .
a, =5 7 BCos 6Cosn® dé : (4)
-1/2 -
° 1 ISH/Z .
= . v BCos 6Sinn® 46 o 5
n T 2 . (3
Cos6 - 7<0 <
Cos+6 = '
o Freci
Then ay, a, and b bqumes,
. 32 . s 1/2 8
a, = 35 é/i BCos 646 = T ;/ Cos6d6
-. -1/2
: 2
=B - B
a, = 5= lSlne(-ﬁ/Z = 3
and
. 312 . . /2
a, = F I BCas 6Cosnodd = = [ BCos6Cosnode
':l'[/Z -1/2 ’ ‘
R 7 R 7
_ B CosngSiné _f,, -2n81neCosQ -h/Z |
I ' ‘

l] -n



- 60 -

‘ ’ -IT_ —lf—— 1 even

e n--1
A
’ 0 i n odd
if |n] =1
a; = & / Cos“0de = T (7(6 + CosHSin®)| |
-11/2 | ~1/2
= .3_ x T =8
17 27 )

Also, from Equation (5), b becomés;

b, == [ BCos 0Sinnbd® = ¢ / Cos®Sinnbde
T my . . -1/2
) /2 J/2
Sinn6Sinb + n Cos®Cosnb |
n T 1 ;~n2
B 1l jasen I il DTN i . L
bn = i- ']—-:1—2' [Sl'nn Vi | Sln( -2——) Sin ( T)I
by = 5, [sim 3 - Sin ol =0 'fpr all n.

‘(1'11 )
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CAPPENDIX B

1. Calculation of temperature distribution by using asymp-
totic expansion of Bessel functions. . Applicable only

for;k > 10,

2. Direct computation of temperature values by using

BESCJ (for 1 < A < 10).

3. Temperature distribution for stétionary solid cylin-

ders.,

Each computer program reads w, angular velocity

according to the format F6.0 and computes the tempgréture'

values, TEMP(J) for the circumference of the cylinder at-
each values of angle FI(J). Alsor¢.values and the corre- -

sponding temperature values are printed.
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- 62 -

START
[__;v__,
PI<3,14159
T0<535.03
R «1

GAMA+10,4758
ALPHA<0.0004

+ PI/18

l

¥

200
T« 1,37 4;::>
T .

L

ALAM=W/ALPHA
SUM=0 _

TR Sm——

T « 1,100

=

SUMi

10-6

1

<

200 |

100

STOP




Angular velocity, w, must be read according to the format
F6.0. Angular velocity values can be given in two cards in the

following manner.

p

[0.001.0.004 0,005 0.008 0.01_0.04 0,05 0,08 0.1 0.5 0.8 L. 25

- b o D - D GRUS W W GICNE W WA T P W G

/

cSeoo-luS o 10. 150 23, 20. _.2100.

— - ——— =y G - ——— -




M L hatd P T AL LA A AN O S O o et

NNN NN uu ‘ uu RRRRRRRRRRR PoDDLLDPODDD
NNHH Ny uu yu © RR - RR bo 0D
" NNNNN NN uuy- vu RR RR DD oo
NN NNN NN Ly uu KR RR bu oo
NN NNN N Uy uu RRRRRRRRRRR LD 0D
N NN{ NN uu : vy .RRRRRRRRRR L DD
NN NNN Ny LU uu RR KR LY bo
NN NNNRNN .U uu RR RR LD DD
NN NNN b uuu -~ uuvu KRR RR DL DD
NN NNN - Uuvuuuyuuy - KR RR - ~ DUDDUDRDDDLD
NN NN vuuuuuyy RR RR boDbDODDDDD
UNIVﬁC‘xlob - BOGAZICI UNIVERSITES! KOMPUTER MERKEZ] welSyTaANBUL VES
D NURDIO USER 10 * "~ PART NUMBER o (o INPUY
‘LE NAME » PRRUOGNURDIO CREATED AT: 16309333 JaN 26;1981
390123456789(112345678%(,1 2345 6789012345678901234567890123q567890123ﬂ5578901
VURDIL ) 11=11=202,PROJLCT +NURDIL e ,
SYSS®KREADT. _
VIHG 040000u00020¢
5YSSeREADT.CLEAR
s MAIN
=1 01/26/81—16 09(,0)
le DIMENS Q- FI(37),FF(}?),TEHP(37),ARRAY(1,20) 5UM(101)
2 READ(5,10UL) (ARRAY(1,J),J=},20)
3. 10 FORUAT(1UF6.0)
Y4 P1=3e141592654
S ALPHA=O,UOH
be TO=535.03
T R=loe
8y Do 10p 1= ;2
9 W=ARRAY(1,11)
10, VRITE(6,1) W. _ '
11l 1 FORMAT(IUXo' =7 ,F10.4)
12 F1(1)=Dc ’
13 Do 3 U=2,37
14, - 3 FI(d)=sFI(Ju=~1})+Pl/18,
15, DO 200 Ju=1,37,
RIS ALAM=W/ALPHA
17, DO 2 y=2,)100"
184 SUM{1l)=U. .
19, E=ALAM/ 2
20, FF{J)=2,»FLOAT(1)sF1(J) .
21 ED=(EsFLOAT(I)#24)0x0045 : c
22, EE=EDw(R=14) . . ~
23, . EF=GAMA+ED '
24, ' PAY=(R#el, 5)#( (FLOAT(])sEw2 )+ ((EF)ee2))
25, ‘ C2=(C0S(LEF)«EF+EDsSIN(EE) ) /PAY
26, D2=(ED#CUS(EE)~EF«SIN(EE))/PAY
27, CC=(C2#«COS(FF(J))=D2#SIN(FF(J)))
28, S SuUM(I)= Jumc1—1)+(((-1.)~-(1+1))/c%.vFLOAT(I)-.z-l.)).cC
29, : IF((SUH(1)~bUV(I~1))0Lt 0,000001) GO TO 315 i
30 2 CONTINVE :
31 15 EA=Ewa0e5
32, EB=EAx{ii=14+)
33, EC=GAMA+LA
34, PAS({Reve5 )+ (E+EC2u2) f
35, C1={COS(LB)+EC+EASINIEB))/PA .
36 D1=(COS(LB)*EA=EC«SIN(EB))/PA

37, EXPLl=P1a(CleCOS{FI(JII~DI+SIN(FI(J)II/8,



38, . SUM(J)ESUM]

39, TEMP(J)-TO+T0¢GAMA:CEXPI*SUMI/z.)

40, WRITE(6,111) FI(J),TEMP (V)

41 111 FORMAT(5X,2(Fl2+8,5X%)) .
42 200 CONTINVE ¢
43, 100 CONTINVE

44, . STOP

45, - END

220 JBANK 353 DBANK

72R1UT TA/26/81 16710;05
—~ % »
LIMITS Q01000 033127 13400 IBANK WORDS DECIMAL

- 040000 043443 1828 DBANK WORDS DECIMAL
ADDRESS - 032574 - :

SEGMENT SMAINS® - 0010p0 033127 040000 043443
Y872 $(1)- 001000 0pt177
$(1) n01200 0p21,14 : :
$(1) 002115 002131 $(2) 040000 040002 S
$(3). N02132 pp2146 - T
${5) N02147 QD2147 o R
$(2) 040003 040314
$(2) 040315 040315 - .
$({0) 040316 040322
$(034) 040323 D4U364
- $(2) 040365 D4gHaz
' ' $(1) N02150 Q05151 , :
YS73R1Q8 S(}) 005152 005346
, $(1) 005347 007524
$(1) nU7525 0123156
$(1) 012316 012644
$(1) 012645 013002
$(1) 013003 015125
5{1) N15126 016562
S(1) 016563 017540 A ‘ .
$(1) 017541 024106 R
$(1) 0243107 026425 ‘
: 2(1) N26426 p26457 $(g) 040433 040436
COMMQONBLOCK) o ‘ ‘ 040436 040436
: : ’ 5(2) 040437 042160.--
${034) MOERDS '
$(036) PMDSCOM
$(2) D42161 042432
73R} o
FORFTN - ‘ " $(2) 042433 042440
$(2) 0424%) Q42474
MATH $(1) N26460 026631 $(2)- 042475 042527
$(037) INFO=010=LC $(034) MOERQs
TH : $(1) N26632 026716 $(2) 042530 042535
${037) - INFO=010=LC ' $(034) MOEROS
OMMONBLOCK) ~ . ' , 0425346 04254)

TH 5(1) 026717 p27123 $(2) 042542 042616
' $(037) INFO~=010~LC ~ $(p34) MOERQS -



NN

Uy RRRRRRRRRR LLYLEDPUDD

NNN NN uv uu KRRRRRRRRRR "DDDDDDDDDDD
NNNN NN vu vy - RR ' RR bD - .. - DD
NNNNN NN uu uu RR RR bD e pp
NN NNN NN Uy ;v RR RR pD - 0D
NN NNN N Uy uu RRRRRRRRRRR DD 0D
NN NNN NN uu yu RRRRRRRRRR bo .. - DD
NN NNN Ny uu uu RR RR bp DD
NN NNNNN v Sy RR RR DD 7 - bp
NN NNNN v uuu RR RR . 0D - DbD
NN NN VT ITCVIVISIOY) "RR 'RR boPDPPDPDDRD

‘ NN NN . yuuuuyuy RR DDDDPDDDPDD

roUN LyAC 1106 == BOGAZIC]  UNIVERSITES{ KOMPUTER MERKEZI emISTANBUL- V

VID » NURDIL

USER D » PART NUMBgR ’ 00

FILE NAME » PROOONURDIL 15357149 JAN, 26.1981

CREATED AT
789012345678901234567890123456789012345678901234567890123H567690123655789

NURDIL2111=11=202,PROJECT +NURDIL
SYSS*READT, PR
RNING 040000000200 : SRR
SYSS#READTCLEAR -
- BOGAZICIsCERN
RNING 040000100200
S +MAIN .
Il 01/26/31-15,58(.0) ' '
1o INTEGER D
e COMPLEX V,VOyV],SER,SERI\U(101),Z,2!
3¢ DIMENS1ON F1(37).FF(37),TEMP(B?),ARRAY(I,ZQ).sUM(lol)
¢ READ(5,10) (ARRAY(}, J),J:l'zg, S
S 10 FORMAT(1DF6.0) e
by P153¢141592654 ' o s
7e R=ly : ' ' -
84 GAMA=10,47587975
e TO=535,03
10, Do 100 1l=1,20
L S W=ARRAY (1,11}
S 2 WRITE(6,1) W
13, ] FORMAT(IOX,tW=s*,F12,8)"
140 F1(})=0. :
19 PO 3 Js2,37
164 3 FI(NaFI(dml)+P1/18s : : .
170 DO 200 u=},37 \
18 : DLAMDA=W/ALFPHA , .
194 A=Os A ‘-.\
20 D=é n . . . | ;-
21 Do 2 ]=2,50 :
22, SUM{1)=0.
23, Ve CMPLX(-SQRT(DLAMDAuFLOAT(1)),SQRT(DLAMDA.FLQAT(I)))
244 hMAX:znl
25, CALL BESCJ(VyA NMAX,D,U)
26, - Iz(=2, *FLOAT(I)*GAMA)'U(NMAX)+V¢U(NMAX 1)
274 ' VisRey " . .
28y Call BESCJ(VI1,A, NMAX,D Ul
29, SER=U(NMAX)}/Z.
30, X1=REAL(SER)
3l YISAINAG{SER) .
32 FF{J)=2saFLOAT(1)eF1(J)
33, CC=X1eCOS(FF(J))=Y]aSIN(FF(J))
34,

sumcl)-SUM(1-1)+(c(nl.)-»(1+1))/(4.'FL°AT(1)-.2-1.))-cC

35, IF((SUM(})=SUM(I=1))sLE.Ds000D001) GO TO 15



36
37
38
39,
40,
41,
424
43,
K4,
45 ¢

qb '_‘~‘|
e
484 .
494
50
52,
S3,
54,

t;]"\% B3

1!
200
100

CONTINVE

NMAX=2

VECHPLX (»SQRT(DLAMDA/24) 3SGRT (DLAMDA/2¢) )
CALL BESCJ(VyAyNMAX,DyU)
Zl=(1.+bAMA)'U(1)nv¢U(2)

VOsRey

CaLL BESCJU(VO, A,1,6.U)

SERI=y(1)1/21

Xo= REAL(SERl)

YORAIMAG(SERL) ’
EXPl= Pl/ﬂo'(XOtCOS(Fl(J))-Y0~SIN(FI(J)))
SUM{J)=SUM]

TEMP(J)ISTO+TO#GAMA® (EXPL+SUMI/24)
WRITE(6,11) FI(J),TEMP(J)
FORMAT(5X,2(F1248,5X%X))

CONTINUE

CONTINUE

STOP

END

| 287 1BANK 577 DBANK

BOGAZICIeCERN,
27R2  RL72R} D1/26/8] 15:;5954])

P

! 72R1Yl 01/26/81 16;00;55

LIB BOGAZIC!‘CbRN

» LIMITS
’ - 040000 045276 275] DBANK WORDS DECIMAL
VG ADDRESS Qa4ely :
SEGMENT SMAINS 00logu 03525} 040000 045276
/SYS72 $(1) 001000 0pl177
' $(1) 001200 0p2il4 - : L
/S 5(1) T 0D2115 0n213) $(2) 040000 04p0p2 .
$(3) nuvZ132 op2l4e : : o °
$(5)" 002147 002147 o
$(2) 040003 040314 _
] $(2) 040315 0431
$(0) 040316 040322
. . $(034) 040323 040364
\TH 5(1) n02150 po224p $(2) n40365 Q4p4ge
${037) INFO=010~LC $(p34) MOERQs
1ATH $(14) n02241 op246e $(2) 040407 D4p446
$(037) INFO-010~LC $(034) MOERDS
/MATH $(1) n02467 Np2513 $(2) 040447 04p454
3 : $(2) -~ 040455 pypS22
C%(]) N02514 DPS515 A
/SYS73R1Q8 $(1) nus516 0ns712
$(1) 0u5713 010070
$(1) n10071 012661
$(1) 012662 013210
S(1) 13211 013346
$(1) 13347 W1847]

001000 03525 14506 1BANK WQRDS DECIMAL

L | 0i5472 017126



““123456789012545@789012343075901234507n901>345678901?345678q0123qbc

R (UNIVAC 1106 == BOGAZICI UNIVERSITESI”

NI i uu LU RRRRRRRRRR
CrINKN i uu uu RRRRRRRRRRR
FINNN Hi Uy Uy ~ RR pR
WNINNNN NiN - Uu U RR . RReL
WiV, NNN Ni4 Uy ; uu - RR RR =
NN, NNN (T uy . uu RRRRRRRRRRR .2
Niv- NN N uu U . R
NN NINN N S VIV uu
‘ Wi ONRENY v o WU
Satas NN NI yuu - Uy
=y NN S NN UuuuuuuuUy
P NiN N UUUUUUUU - -

. < -:;i','*' R R
KOMPUTER MER
T RUNID # pURDIL SER 1D # T :

"FILE" NAME * PRAUOONURDIL‘“"“'*~'-*'r

T12345078901234567890123456789012 5“567“9012343678901234567800123456

BRUNTE NURDILr111%117202,PROJECT ~ ,NURDIL. -
CaFTUFLS JMATN o T

_FIN 7R1-1 Ul/&8/81rl? 15¢(+0)

1, DIVENS I0n F1(37)'TEMP(37).FF(57)”
: 2, - Plz3, 1u1592054
i 3. RZ0.5 A T 59 OT 06 ’1Vﬁ
4, Fl(1)=0, _ _ , : -
Se DO 3 J=2+37 T & o ““““"“'*T*“““‘;
S O, 3 FlkJ)-FI(d—l)+P1/18. A Gt gt
S e . 7 . LJ!{ITE ( 6 , 1 ) s A . . P rﬁw._:_.:,..:;..-;u»:.,‘.:;: S
, 8. 12 FORMAT (oXrrd=0.9) & o -,
i 9, DO 200 J= 1.37 ‘ A B i
U ) 10, SUm=0, _ .
B O 1. © DO B I=1.50 T i
2 12, FrqJdl=o+I*FI(J) o A
T2 13, . BIz((=1)%%(I+1))7/ (4., *FLOAT(I)**Z 1 )' AT
2 1y, CLlzGAMA+2,*xFLOAT(1) e
2 15, .8 JUq_gUM+dI*((R*4a)*+l)*COS(FF(J))/CI
1 lo, DEZ(PI#R%COS(FI(J) )/ (1, +GAMA) %8, R
1 17. EXP1=GAMA* (DE+SUM/2,) ‘ T
1 18, TEMP(J) ZTO+TO*EXPL o -
1 19, WRETE(H111) FI(J) s TEMP(JY ¢
1. 20. 111 FURMAT (5Xr2(F12.8r5X))
1 21, 200 CONTINUE .
22. : SToR ' . p S T
23, EHD ' T
END FTN .102 IBANK 174 DUBANK
axQT
MAP28R2 T2R1uUl uls2u/6l 128 13 39
AUDRESS LIMITS U100U 032554 15149 IBANK WORDS DECIMAL

040000 043103. 1604 DBANK. WORDS DECIMAL™ ~~
STARTANG ADLRESS 032307 A T

SEGMENT SMATNS 001000 U32534 04000 04310

TABLEB/SYS72 4 (1) 001000 Up1177
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