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ABSTRACT· 

The temperature distribution in rotating circular 

cylinders heated.by radiation has been studied in this 

thesis. Analytical soluti.on·s have been obtained for solid 
, 

cylinders rotating with constant angular velocity, with 

incoming radiation taken perpendicular to the axis of 

rotation and incident on one side. Thermal equilibrium 

has been achieved by means o"f reradiation .to tl1e surroun­

ding opposite half-space .. The treatment employed makes 

use of the method of separation of variables with 111ii.eariz~~r: 
-_.-- -- ~---

lboundarY's,condTf~oii-s' . 

Results of the study agre~ very well with works 

ci ted where similar prob lems have been treated employing 

different mathematical techniques . 

• 
l.V 



tiZET 

Bu Qal~$mada, radyasyona tabi, donen silindir+erdeki 

s~cakl~k dag~l~m~ incelenmi$tir. Anali tik sonuQla~", 

kendi ekseni etraf~nda sabit bir aQ~sal h~zla, ~s~ma 
, , 

yonline dik bir eksen etraf~nda donen kat~ silindirler 

iQin elde edilmi$tir,. Diferansiyel denklemin lineer hale 

getirilmi$ s~n~r $artlar~na gore Qozlimli, degi$kenlere 

ay~rma metodu ile bulunmu$tur. 

SonuQlar- benzer problemlerin sonuQlar~ ile kar$~la$­

t~r~lm~$ ve bliylik 'olQlide uygunluk gosterdi~i saptanm~$t~r. 

v 
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NOMENCLATURE 

a Thermal Diffusivity (ftZh- l ) 

Real series coefficients 

Fourier series coefficients for radiation input , 

functions 

k Thermal conductivity (Btu ft-lh-lR- l ) 

q " Density of Radiation (Btu ft- 2h- l ) o 

r Radial coordinate (ft) 

R Radius of cylinder, Cft) 

i. , t ' Time, (h) 

T Solid cylinder temperature (oR) 

To Constant temperature in equation (4.11) (oR) 

GREEK SYMBOLS 

ex. Absorptivity of surface exposed to rad.iation 

13 ex.qo"R/CTok) 

y 4crET03Rt~ 

E. Emissivity 

e Angular coordinate fixed in space, (rad) 

A wR2/a 

~*Temperature variable in equation (4.l1)C oR) 



(J 

Temperature variable in equation (4.l3}(Ojt) 

Stefan-Boltzmann constant (O.171xlO- 8 Btu ft- 2 

h-lR-1 ) 

Angular coordinate fixed in the cylinder 

Speed of angular rotation (rad h- l ) 



CHAPTER 1 

INTRODUCTION-

This thesis is concer:p.ed with the temperature dis-

tribution in a solid rotating cylinder exposed to incoming 

parallel radiation. 

Literature, in recent years, contains studies of 

heat conduction in various typ'es of bodies, wi thradiant 

energy interchange prescribed on the surface; The current 

emphasis on sate IIi tes and space vehicles has created an 
, , 

'interest in the temperature distribution in rotating bo-

dies exposed to solar radiation. Studies can be grouped 

in several categories such as the analysis of thin-walled 

bodies, thick-,walledbodies and solid bodies. 

,In this work, a solid cylinder has been considered 

rotating with constant angular velocity "w". This state 

implies that a balance has been attained between the 

total heat absorbed by the cylirider and the total heat 

I 
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re-radiated into space. The resulting temperature distri­

bution is typical of a quasi-steady state, since each 

- --:.point of the cylinder fixed with respect to the incoming 

radi·ation would have a' time-independent temperature. In 

other words the temperature distribution would vary perio­

dically with time. 

Although the differential equation leading to the 

temperature distribution is linear, the true radiation 

boundary condition turns out to be non-linear. Nonethe­

less, analytical solutions of the differential equation, 

have been obtained here for linearized boundary conditions. 

Expressing th~ governing equation in a rotating coordinate 

system. and using separation of variables, the case .has 

been reduced to an eigenvalue problem; Temperature dis­

tributions thus obtained are in very.goodagreement with 

resul ts I 7 I published in similar works. 
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CHAPTER 2 

LITERATURE SURVEY 

The current emphasis on sate~lites and space vehicles 

has created an interest in the temperature distribution 

of various types of rotating bodies, especially in the 

past fifteen years, several analysis related to this sub­

j ect have appeare-d in the li:terature. In general these 

papers consider the body to be- placed in a vacuum and 

receiving radiant energy from a distant source, reradia­

ting energy to a heat sink at absolute zero. 

The problem of the solar heating of a rotating cy':' 

lindrical shell has been considered first by Raynor and 

Charnes in \11\ .. Nichols 161 and Roberts' 1121 have indi­

vidually obtained the approximate formulas for thin-walled 

solid cylinders, but neither considered the possibility 

of rotation. 

In a closely related paper, Olmstead and Raynor 171 

3 
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have undertaken the problem of the rotating solid cylinder. 

They have obtained analytical solutions by the method of 

- -~:', Green' s functions. However, in this s~udy, the solution 

has been examined only for the limiting ca~es of either 

very slow or very fast rotational speeds, indicating a 

need for further analysis of the same problem. 

tilcer 181 considered the proble~ of the solar heating 

of rotating space vehicles.) and obtaine'd expressions to 

unsteady temperature distributions by making use of eigen 

vector techniques. 

In a similar analysis made by Raynor and Petrof, :.::. 

110 I f,or solar heating of rotating thick-walled cylinders, 

analytical solutions were found as series expressions in 

terms of orthogonal functions fo'r the hollow cylinder 

with the adiabatic hole. The resulting temperature dis-

tributions were examined for various rotational speeds 

at the surface of the cylinder. 

Arpacl 121 and Carslaw and Jaeger /3/ explain in 

detail the formulation and solution methods of various 

types of problems in conduction heat transfer.. Schneider. 

113/ gives the transformation' formulas for the problems 

. which have moving heat sources. 



CHAPTER 3 

HEAT CONDUCTION EQUATION FOR ROTATING BODIES 

3.1. GENERAL 

The formulation of conduction phenomena can be de­

fined so as to obtain the mathematical expression in light 

of the ph'ysics of the problem under consideration and to 

specify the initial and/or boundary conditions pertinent 

to the governing equation. The governing equation of a 

conduction problem can be obtained either by the mathe­

matical interpretation of general formulation or by fol­

lowing, from the start,an individual formulation suitable 

to the problem. The latter method is especia1iy appro­

priate for practical application of· the study of heat 

conduction. Detailed exploration of methods of formula-

tion can be found in \2\ and \31. 

Heat conduction equation for the cylindrical coor-

dinate system which can be obtained by either one of the 

5 
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above procedures is given as: 

! L(r aT) 
r ar ar 

where 

T - T(r,</>,z,t) 

and 

a = 

1 aT 
a at (3.1) 

Equation (3.1) is applicable for homogeni:!ous isotropic 

solids and for frictionless incompressible fluids. For 

u'" :: 0, Equation (3.1) becomes: 

= 1.aT 
aat (3.2) 

3.2. TRANSFORMATION FORMULA FOR MOVING HEAT SOURCES 

The approximate theory of moving heat sources has 

been cOllsidered by Sprarapen and C1auss'en a~d the exact 

analytical theory was developed by Rosenthal. Derivation 

of the transformation formula for moving heat sources is 

discussed by Schneid'erl131 for rectangular 'coor.dinates .. 

The transformation formula 'from. stationary to moving sys­

tems can be obtained for polar coordinates by applying 
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the same procedure as in \13\. 

In the stationary system,T(r,e,z) the temperature 

must, satisfy 

a2T + 1:. aT + 
ar2 r ar 

If we define two new variables 

1 aT 
a at 

cj> = e -wt t' = t 

then 

acj>, _ acj> _ at' at' a-e - 1; at - -w as - a at 

aT aT acj> + aT at' aT a2T a2T = ---- - - = 
ae acj> ae at' a·e acj> ae 2 acj>2 

and 

aT aT = -. a¢ - + !L~= - w aT + aT 
at acj> at at' at acj> at' 

or' 

aT _ aT aT 
-rr--wa¢+afI 

(3.3) 

= 1 

(3.4) 

(3.5) 

(3.6) 
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Substituting Equations (3.4) and (3.6) into Equation (3.3), 

we get, 

1 aT + _1 __ a_2 _T + 
r or 

1( -w a.T + ~.) 
a afj> at' (3.7) 

An observer of the .tj) directiop. would notice a change 

in temperature of his surroundings, but he would notice 

no such change in temperature if he were ·stationed at a 

poin t on th~ moving'S' axis. This condition of apparent 

steady state temperature has come to be known as the 

quasi-steady state and it is represented mathematically 
aT' 

by at = 0 in the moving coordinate system. 

Since this puts us in the moving coordinate system 
aT 
"IT' = 0 and 

a2
T + 1:. aT' + 1 

r C)r 
aT 

a<p 
= 0 (3.8) 

Equation (3.8) is applicable as heat conduction equation 

for rotating bodies. 
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3.3 BOUNDARY CONDITIONS 

The formulation of any specified prob1e'm can be rea­

lized either from the equation of conduction given by 

Equation (3.1) or from the mathematical interpetations 

of it in the light of the physics of the problem. These 

equa tions lJn\roIvi a partial diffe,rentia1 equation in terms 

of the unknown temperature and their solution involves a 

number of integration constants. Therefore, an equal 

number of appropriate conditions.in space and time is 

necessary in order to determine these cons·tants. These 

conditions are initial and boundary conditions. 

The boundary conditions specify the temperature on 

the heat flow situation. at the boundaries of the region. 

The most frequently encountered boundary conditions are 

prescribed temperature, prescribed heat flux and heat 

transfer to the ambient by convection. According to the 

physics of the problem, combinations of the above can 

also appear as the boundary conditions of the problem 

12,81 . 

The boundary conditions for heat .transfe~ problems 

involving the fourth-power radiation law, free convection 

and so on, are called nonlinear boundary conditions be_ 
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cause they invo'l ve a power of temperature. Since this 

study is about the radiation heating of a solid cylinder, 

it will be usef~l to give some information about this type 

of boundary conditions. 

Consider two isothermal surfaces Al and A2 having the 

absolute temperatures Tl , T2 . It has been shown experi­

mentally by Stefan and later proved thermodynamically by 

. Boltzmann that the radiant heat flux q12 between the sur~ 

faces Al and AZ can be expressed by the following equation 

as 

F (T 4' Tz
4 ) 

Q1Z = .0 12 i· (3.9) 

For an enclosure composed of two concentric, very 

long cylinders, FlZ becomes 191, 

1 
- + E· .1 

1 (3.10) 

- 1) 

where Al and El are the area and emissivity of inner cy­

linder, respectively. 
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As Al/AZ + 0, Equation (3.10) becomes, 

(3.11) 

Equation (3.11) is applied to calculate the radiation 

energy loss from an object to its surroundings. When 

this object is in vacuum, the radiation energy loss would 

be 

q = OC' T 4 = <;'1 1 (3.12) 

To express the heat flux from the surfaces of a solid 

cylinder exposed to radiation by conduction arid radiation, 

the required boundary condition can be written in the 

form, 

('3.13 ) 

where q " is· the radiation term in the dire·ction of sur-
n . 

face normal and plus or minus signs of the conduction 

term correspond to the direction of inward and outward 

normals, respectiYely. 
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CHAPTER 4 

4.1. FORMULATION 

4.1.1. Definition of 'the Problem 

In this study, a.so1id cylinder is considered to 

be rotating with constant angular velocity about its geo­

metric, axis, the axis being perpendicular to the direc­

tion of incoming radiation. Thermal radiation is heating 

the body and thermal equilibrium is attained by means of . 

reradiation to the surrounding space. 

There is no conduction and convection effects with 

the surroundings at the surface of the body based on the 

assumption that the importance of radiation relative to 

convection is larger for low rates of convection. Inter­

nal reradiation is not considered on the basis of the 

conclusion reached in 191that the body ~otation influences 

'12 
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the temperatures to a much greater degree than internal 

radiation. Also longitudinal conduction is neglected 

'. according to the analysis of an inf{nitely long cylinder. 

Therefore, the heat flow is radial and circumferential 
.' 

and the resulting temperature distribution is two dimen­

sional. The body is considered tb'be dif~uselY emitting 

and diffusely reflecting. The thermal conductivity, k 

is the same in all direction~ i.e., isotropic material. 

In the light of this definition, of the present pro­

blem the temperature 'distribution of the cylinder can 

be deter~ined from the solutiort of the differential equa­

tion of temperature subject to ,the necessary boundary 

condi tions. 

4.1.2. Differential Equ~tion for Rotating Cylinder 

The cyli~drital coordinate system (r,$;z) fixed in 

the body is shown in Figure 1 with e measured in a sense 

opposite to the rotation, 'W. Taking difflisivity "a" as 

constant, the governing partial differential equation can 

be written in cylindrical ~oordinatesystem as, 

1. aT 
= a at (4.1) 
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" 
" 
" 
" 
" 

q" 
0 

" 
" 
" 
'" 

FIGURE 1. Schmatic R~preseIitation of the Cylindrical Co­
ordinate System (~,~,z) Fixed in the Body withe 
Measured in a Sense Opposite to the Rotation w. 

A transformation that has been useful in solving· 

problems with moving heat sources eliminates the explicit 

dep~ndence of the temperature·on time. As it is mentioned 

in the previous chapter, for polar coordinates this trans-

formation is 

e = ~ -wt t' = t (4.2) 

Fixed in-a stationary frame of ieference, ihe temperature 

bec~mes the quasi-steady temperature 

T(r,e) = T(r,¢,t) (4.3) 
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= 0 (4.4) 

Using Equations (4.2) - (4.4), Equation (4.1) b~comes, 

o ' (4.5) 

4.1. 3. Boundary Conditions, 

The boundary conditions for the problem involve 

prescribed surface'va1ues for the heat flux., The external 

surface of the body is, heated by the abso:rption of radiant 

energy from the distant source and suffers an energy loss 
" 

by reradiation to space. The ,gradient of temperature is 

determined by the net rate of heat conduction per unit 

area with the local absoibed radiation by Lambert's cosine 

law and the ,reradiation governed by the Ste~n-Bo1tzmann 

law. From Equation (3.13) we get, 

aT 
k 'ar + 

where 

4 + asT = aq " Cos (cp-wt) o on r=R ,(4.6) 
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a. - the average absorptivity of the cylinder surface, 

qo'~ - the radian.t energy flux in a plane normal to 

the direction of incoming radiation 

. 0 - Stefan-Boltzmann constant 

- the ~verage emissivity of the cylinder surface. 

The Cosine function is defined 

+ . 
Cos (¢-wt) =. 

Cos(¢-wt) 

O. 

- 1L < (¢-wt) < IT.. 
2 - - 2 
11 < (¢ -wt)· < 3IT. 
2 - - 2 

(4. 7) 

Boundary condition at the cent~r of the cylinder is 

T = Finite at r=O (4.8) 

When the transformation Equation~ (4.2) and (4.3) 

are introduced ,into the boundary conditions Equations 

(4.6) and (4.7) become 

aT '0£T4 q "Cos + r=R (4.9) k + = e' on 
ar ex. 0 

Cose II < e < IT 
2 - - 2 

+ 
cos·e = 

0 
'II e 

3n 
- < < 2 2 - -
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and 

T = Finite at r=O (4.10) 

In order to linearize the reradiation heat flux term 

in Equation (4.6), the following substitution is made, 

T-T 
1jJ* 0 
-~ 

or (4.11) 

It is assumed that 1jJ* is small compared to unity,-and 

using Maclaurin's expansion, we get 

or 

where 

T4 ; T 4 (1 + 41jJ*) 
o 

T4 - 4T 4 (1/4 + 1jJ*) = 41 41jJ 
o 0 

1jJ = 1 + 1jJ* 
4 

(4.12) 

(4.13) 

Substituting t~e value of ~ into Equation (4.11), 

yields 

(4.14) 
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Then Equation (4;9) becomes 

+ 40e: T0 3 
COS e - ~ (4.15) 

k 

Introducing Equation (4.14) into Equation (4.5), the 

differential equation becomes, 

w 'd1jJ = a 
a' as 

Finally, the complete formul~tion of the problem in 

~ becomes 

1 aljJ 
rdr 

and subj ect to the boundary conditions, 

II 40 e: T 3 
a\jJ 

aq + 0 0 \jJ ar = Cos e on 
To k k 

and 

~ -, Fini toe on r=O 

(4.16) 

r=R (4.17) 

(4.18) 
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In addition, the following nbn-dimensiona1quantities 

_._ are introduced 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

Substituting Equations (4.19) to (4.22) into Equations 

(4.1~ to (4.18), the formulation of the problem in non-

dimensional quantities becomes, 

1jJ I = Finite 
p=o 

(4.23) 

(4.24) 

(4.25) 
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4;2. SOLUTION OF THE PROBLEM FOR tHE TEMPERATURES IN 

THE SOLID CYLINDER 

4.2.'1. Separation 6f Variables 

After the f'ormulation in 'non-dimensional quanti-

ties is completed, a·solution , is sought by the 

method of separation of va;riables. 

Assume the existence cif·a product solution 

1J!(p,e) = R(p) 8. '. (e) (4.26) 

Introducing Equation (4.26) irtto Equation (4.23), 

we obtain 

(~ + ~ R) e " R e + AR 

Rearranging' Equation (4.27), yields 

" 
, 

p2 R R 
+ p 

R R 
= -

11 

e 
e 

e 
e 

, . 
e = 0 (4,.27) 

(4.28) 

. The left-hand side of this equatiOn is independent 
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of 8 while the right-hand side is a function of p and 8. 

Since both sides of Equation (4.28) are not independent 

tof either var~ab1e they cannot be equal to a constant. 

Because of the equality of both sides to each other, the 

right-hand side of this equation must yield to a funcion 
" I 

of P only. Accordingly, the functions ~. and e e " e are 

necessarily constants. On the basis of this conclusion, 

assume 

" 
e = v2 
C-

(4.29) 

and 

e 
- = K ,(4.30) 
e 

From diffetentiation of Equation (4.30) with resp~ct 

to 8, we obtain 

" 
e = K e (4.31) 

Substituting Equ~tion (4.30) into Equation (4.31) 

and comparing with Equation (4.29), a relation b~tween K 

and ,,} can be obtain'ed 

(4.32) 
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or equally 

-
K = + iv (4.33) 

Consider the pOssible two cases: 

. CASE 1 

Let, I. 

e 
K = = iv (4.34) 

e 

A solution satisfying this value of K is, 

(4.35) 

where A being. a complex number. 

The above separation constants so introduced, the 

differential equation. in p direction becomes; 

" 1 I . v 2 
R + R - (ivA + ) R = a 

p p2 
(4.36) 

and the complex sol~tion of this equation c~n be written 

in the forms 

(4.37) 
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.where Band C may take complex values. 

For a given value of \I, the product solution is, 

CASE 2 

Consider the second case, i~e., 

I'; 

K = e = iv' e (4.39) 

A solution satisfying Equation (4.39) and Equation 

(4.29) is of the form 

e ive 
= A e 

where A being a complex number. 

Then Equation (4.36) becomes 

(4.40) 

(4.41) 

and ,the complex so 1u,tion to the differential Equation 

(4.41) can be written in the form 

R(p) = BJv (/L\v p) + CYv (/L\V p) (4.42) 
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where B and C may take complex values. 

For a given value of v the product solution is 

+ eivaIB+Jv(/iAV + Tv (p,a) = p) + C YV(h.AV p) I (4.43) 

The linear combination of these solutions is the 

solution of this p,roblein. 

00 

v=-oo 
TV + (p t a) + Tv - (p , a) (4;44) 'ljJ(p,a)= L 

4.2.2. Solution for the Sblid Cylinder 

Since periodic behavior is required in a-direction, 

v values must be integers, 'i.e., 'v=n. Also requirement 

of fini te temperature for p'=Q leads to the conclusion that 

the comp)ex constants C- and C+ in Equations (4.38) ·and 

(4.43) should be set equal to zero. Therefore, the 

general solution to the problem ,can be written in the 

following complex form, 

ljJ(p,a) = 

or 
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00 ° 

1)J(p,6) = n~~ooe-].n6\B~Jn(i/iAnp)\ + ein6\B~Jn(/iAnp)\ (4.4) 

Now,. in this expression if we set -n instead of n in the 
1 

second term, which also changes the argument (iAn)~ to 
1 

i(iAn)~, we obtain 

00 

B-e-;in6 1)J(p,6) = L J (i/iAn p) n n n=-oo 

00 

-in6 J (olDJi + L: B+ p) (4.47) n e -n ]. ]. n 
n=.,oo 

Using the relation 

in the Equation (4.47), the general solution for the solid 

cylinder becomes, 

00 

1)J(p,6) = L: (4.48) 
n=-oo 

* (B~ ( _l)n B+) where B = + 
n n 

or 

* 
00 

* -in6 
1)J(p,~ = Bo + L: B J (i/iAn p)e. 

n n . 
n=-oo 

(4.49) 

10 

" 
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4.2.3. Determination of the Constant 

By me,ans of the outside boundary condition the 

remaining constant of integration is determined. A1o~g 

the boundary we have 

Cl\jJ I + (4.50) ap + y\jJ = SCos e 
p=l 

cose - II < e < II 
2 - - 2 

. + 
Cos e' = 

0 II < e < 3II 
2 - - 2 

Accordingly 

00 

(4.51) 
n=-oo 

:j0 

substituting Equations (4.51) and (4.49) into Equation 

(4.50) yields, 

:'c 
yB + 

o 

00 

2: 
n=-oo 

:j0 

~ yJ ((nA)~i3/2) le-ine = 
n ' 

* yB + o 

00 

2: 
n=-oo 

'f0 

+ 
SCos e 

+ SCos e (4.52) 

(4.53)' 
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where 

-in'8 
Introducing e = Cosne - iSinne into Equation (4.53) 

yields, 

* YBo + E I(B +B )Cosne - i(B -B )Sinnel = 
n=l n -n n -n 

or 

* YB + o 

where 

or 

E lanCosne + bnSinnel 
n=l 

a = B + B n n-n 

bn '= -ilBn - B_nl 

B = !(a - ib ) -n 2 n n 

+ = acos e 

+ SCos e (4.54) 

(4.55) 

(4:56) 

Equa tion (4.55) is the complete .Fourier series represen­

ta tion of seos + e with complex coefficie,nts. 

* f3 
yB 0 = n (4.57) 

'. 
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213 (-lJ n / 2+1 
IT n 2 -1 

n even 

an = 0 n odd 

13 
In I 1 2 = 

for all n. 

Integrals are given in detail in. App.endix A. There fore, 

Bn and B -n becomes, 

a 
Bn = n 

z:-
an 

(4.58) 
B_ n =z-

or 

S 
(-1) n;z 

n even Z- 2 n -1 

13 = B = 0 n odd (4.59) n -n 

B 
Inl = 1 4" 

Subs ti tu ting the value of Bn in to Equation (4.5 3j:l.) ,. Equa­

tion (4.49) becomes,. 

1jJ (p ,e) = ~y + 

00 , 

(4.60) 
n=-oo 

fO 
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Using this result "in temperature expression, Equation 

(4.60) can be represented in a new form as follows: 
~'j" , 

-!:~ 

lJ!(p ,e) 

where ~n 

~n 

. and 

= L + 
ID' 

00 

~ 
n=l 

B ~ (k ·p)e ine 
-n ·-n -n' 

is defined as 

I n (knP). 
= 

kn J~(kn) + yJn (kn) 

Noting that 

kn iffAn - liAn = = 

k_n = iliA (-n) = - liAn 

and also 

I n (-knP) = ( - 1) n J n (kn P ) 

Jl (-k p) = ( - 1) n J ~ (kn P ) 
n n 

J -n (knP) = ( - 1) n J n (kn p ) 

It can be shown tnat 

(4.61) 

(4.62) 

= kn (4.63) 

(4.64) 

, ;" 

. 
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(4.65) 

The ~omplex exponential form of the series is then, 

t/J(p,e) = L + 
TIY 

00 

2: 
n=l 

B I~ e- ine + ~ e-inel n n n 

If ~ and ~n are definedas"follows: 't'n 't' 

a +ib n n 
2 

and ~ = n 

a-ib n n 
2 

Then Equation (4.66) becomes 

[3. = + TIy 

where 

B = n 

00 • 

2: BrilanCosne + bnSinnel 
n=l 

.§. (-l)~ 
n even 

2 n n -1 
0 n odd 

[3 Inl = 1 "4 

(4.66) 

(4.67) 
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Besides that, the relationship betw~en the complex 

___ , function In((nA)~p) and the real functions, bern((nA)~p) 
~~ ~_, 1 

-.- .:S and bein((nA),~p) is 

1 1 

ber ((nA)~p) + ibei ((nA)~p) n . n (4.68) 

from which follows 

+ ibei~ ( (n(.) ~p) I . (4.69) 

where the prime indicates differentiation with respect to 

argumep.t. 

Substituting Equations (4.68) and (4.69) first i~to 
\ 

Equation (4.62) and then into Equation (A.67), one finds, 

00 . 
t/J(p,6) = ney + 2 r Bn(an(p)Cosn6 - bn (p)S,inn6) 

n=l 
(4.70) 

where 

1 1 1 1 1 

an (p) =. n I bern (nA) ~p I (nA) ~ber~ (nA) ~ + ybern (nA) ~ I + 

3.: ~. 3.: ~II bei enA) 2p I (nA) be].·f (nA) 2+ ybein(nA) 
n .n (4.71) 
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and 

1 1 1 2 
n = l(nA)~ber~(nA)~ + Ybern(nA)~1 + 

l(nA)~bei~(nA)~ + Ybein(nA)~I~ (4.73) 

Then the actual temperature distribution can be obtained 

by inserting Equation (4.69) intoEquation (4.14) 

00 

f3 ny + 2 r (an(p)Cosne"' bn(p)Sinne)) (4.74) 
n=l 

The reference temperature To has not yet been speci­

fied. A logical choice for To is the vaiue of temperature 

at the centerline. Since the temperature distributi<:n 

given by Equation (4.74) is based on the linearization 

which assumes that variation about To is small, To value 

can be found easily from Equation (4.74) as 

(4.75) 

Equation (4.75) gives us, 
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1 S 
'4 = n·Y 

(4.76) 

-'; Substi tutingfor Sand y from Equations (4.20) and (4.21), 

respectively gives the result 

(4.77) 
! 

With the use of Equation (4.77), the expression for y and 

a become 

y = R (256 cre:ct 3 q ,,3)~ 
K . II3 0 (4.78) 

S = II -y 4 (4.79) 

Then the expression for the temperature distribution 

with the use of Equation (4.76) and (4.77) become 

T(p ,e) 

y ~ (_1}n+1 
~ - 2 la2n(p)Cos2ne - b2n(P)Sin2n61} (4.~O) 

2 n=l 4n-1 

where the quantities To' y, anCp) and bnCp) are given by . 

Equations (4.77), C4.78), C4.71) and (4.72) respectively. 
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CHAPTER 5 

5.1. EVALUATION OF THE SOLUTION 

The initial step in the evaiuation of the solution 

consists in replacing the Bessel function derivatives 

with different orders of the same function according to 

the i e-quaifi:ie-s 11- 5 I • 

(5.1) , 
xZv(x) = vz ex) -xzv+l(X) 

Al though the real and imaginary parts of I n can be 

resolved into ~elvin functions, the tabulated values of 

these functions for: order other than n=O 'and n=l are not 

available for argument values x>lO. Tables for Kelvin 

functions only for orders zero and one are given by 

34 

\. 
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Abramowitz III and these functions for orders 0<n<5 are 

;;--:...::~ __ -=- given by Mclachlan 151 for argument values limited to 
. ,t 

-'':7 x<lO. Therefore, instead of using tabulated values of 

these functions; examination of behavior of these functions 

according to the argument is preferred. 

In evaluating the general solution, it is difficult 

to justify a limitation of the argument range, because 

the arguments are functions not only of index n, but also 

thermal diffusiv~ty, radius and speed of angular rotation. 

Therefore, it is necessary to the calculation of a single 

value of temperature to determine the Bessel functions of 

many orders and for a like number of argument values. 

The first step in evaluation of the solution is the 

consideration of temperatures in the solid cylinder for 

the case of no rotation which are determined by'cons~­

dering the behavior of the series coefficients as w, or. 

equivalently. A, as it approaches zero. It is appropriate 

to consider the small argument approximation· for the 

Bessel function Ill, 

n 
J (x) -n'-

x (x -+ 0) 
(2n n I) 

(5.2) 
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The. derivative in the expression for the coefficients 

" is replaced.by the identity in Equation (5.1). Substi-
IS~ ~_ ~ ~. 

---~:r, tuting Equations (5.1) and (5.2) into Equation (4.S3a) 

yieLds, 

* Bn(p) = (5.3) 

It is noted that in Equation (5.3), the complex 

series coefficient is a real quantity and it follows that 

the temperature is symmetrical in the body about 8=0. 

Then the temperature distribution for w=O or equivalently 

A=O becomes, 

-T(P,S) = T~{l + YI~ l~Y cose + 

1 00 (_l)n+l 
'2 E 2 

n=l 4n -1 
Cos2ne} (5.4) 

For sma-II values of the argument with respect to n, 

power series representation is useful in calculating In(x). 

Then considering the series representations of In(x) and 

J~(x).as follows, 
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n 2 
I n (x) = x 

11 x -
Znn! 4(n+1 

n-1 
. (S. S) 

.-? 

J~(~) 
x 

In 
(n+z}xZI = -

Zn I n. 4(n+1) 

we obtain 

T (p , e) . II 
Ic1cose D1Sine I' = 1 + Y{r -

To 

'1 
00 ( _l)n+t 

'2" E 
.4n 2_1 

IC 2nCos2ne - D2nSin2n6!} (5.6) 
n=l 

where 

1(16 (P.+1).2 (n+Y) +n2A2p2 (n+Y+2)) I pn 
en = 2 

116 (n+1) (n+y) + (nA) 2 (n+y+2) 21 
(5.7) 

D = 4nA (n+1) ,I Cn+y+2) - p2 (n+y) I pn 

n !16(n+1)2(n+y) + (nA)2(n+y+2)2! 

When Ixl is large with respect to n, asymptotic ex­

pansions of In(x) is useful/II. In this case, coeffi­

cients Cn and Dn for Equation (5.6) ,becomes 
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nA k 

e (y-) 2(P-l){(¥-)~COS(¥-) (p-l) -' (y+ ¥-)~Sin(¥-)%(p-l)} 

/p I¥-+ (y + (~A)~) 2 I 

For the cases in which both n and I x I . ?-re large the 

Besse.l functions can be derived from recurrence technique 

as explained in 111. For these large arguments a proce­

dure based on asymptotic series is adopted and the final 

temperature distribution again becomes the same as Equa-. 
ti on (5.8). 

For values of A between O.l<A<IO these functions are 

not applicable. The temperature distributions for these 

values of A are di"rectly programmed for digital computer 

and the values of temperature at ali·ranges of e .and p 

values are obtained and plotted. This computer program 

with the ones which compute the above functions are given 

in Appendix B. 

5.2. NUMERICAL PROCEDURE 

In the previous section, the solution for the tem-

perature distribution in a solid cylinder is obtained and 

the forms of the solution for the different cases are 

improved. Because.physical insight into the phenomena is 

not well served by the equations of the s?luti~n, a series 

I 

. I 

I 
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of numerical results have been obtained •. 

"~....::....-'-:..-

,:1; In order to obtain .the temperature values for the 

cases of no rotation CA=O), for very slow· rotation CA«l) 

and for a 'high rotational speeds CA»l), temperature dis­

tributions were computed from Equations (5.4) ,(5.6,7) 

and (5.8), respectively. Also for the values of A which 

are neither in the range of asymptotic expansion nor 

series expansion, direct oomputation of Equation (4.70) 

is preferred by using a subprogram BESCJ. BESCJ can cal­

culate In(z) for maximum value of n=lOO and for·each com­

plex z (except Re(z)=O and Im(z)=-l) with desired accu-

racy. A detailed inspection of the resulting temperature 

values. in these programs show u~ that, asymptotic expan­

sion of the Bessel functions is applicable only for A>lO 

ot equally w>O.04 rad/hr (for a=O.004 ft2/hr). Also 

series expansion approximation is correct only for A<O.l 
'2 . 

(i.e., w~0.0004 rad/hr for a=O.004 ft /hr) • For the 

values of O.l~A~lO temperature distribution must be cal­

culated by using BESCJ. 

In each of these computer progr~ms, infinite series 

are calculated with 6 decimal accuracy and it,is observed­

that after the terms for n=lO, series are converged with 

the desired accuracy. Therefore, the results of the in-
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finite series are truncated after the terms for n=lO. 

- ~ .- ': 

.t To compute temperature values, physical parameters 

were' chosen for an aluminum alloy body analogous to that 

used by Olmstead and Raynor. These values are: radius 

R=lft, solar constant q"=442 Btu/ft2-hr, Stefan-Boltzmann 
" 0 

constant a~0.17l7xlO-8 Btu/ft2-hroR4 , absorptivity 0.=1,. 

emissivity £=1, thermal diffusivity a=3f~2Jhr, thermal 

conductivity k=lOO Btu/ft ;hroR. It follows that: 

y = 0.010478 A = w/3 

where w is given in radian per hour. As a' second choice, 

k is taken equal to, 0.01 Btu/ft hroR and a=0.004 ft 2/hr. 

From this choice of values follows: 

y = 10.4758 A = w/O.q04 

Using the"se physical parameters, temperature values 

were obtained for the full range of A values. 

5.3. GRAPHICAL RESULTS 

In this section, the resulting temperature distr"i­

butions are examined to ascertain the significance of the 
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rotation radial temperature gradients, thermal diffusivity, 

etc. Since the dimensionless parameters' A and y dep~nd on 

these, the temperature distribution of solid cylinder are 

': obtained for the full range of A and y values. 

Variation of surface temperature around the circumfe­

rence for all values of, A is shown in Figure 2. Since>. 

depends on both r.otational speed and thermal diffusivity 

of the material, these temperature distributions become 

helpful for the variation ·of one variable while the other 

remains. constant. For a stationary cylinder, the tempera­

tures are symmetric about the point on the cylinder nearest 

to the radiant source. As easily noticed in Equation(S.3), 

temperature variation is not sinusoidal as it is for the.' 

thin-walled solutions 16!. As the cylinder begins to ro­

tate, rotation destroys symmetry and even for slow rotation, 

0~A~20, there is a noticeable shift in the positions of 

maximum and minimum temperature into the rotational direc­

tion. This shifting effect with increasing speed .values or 

decreasing thermal diffuSivity is observed to reach a 

maximum condition for an arc of ab'out 30 0 on the bright 

side in the direction of rotation but the minimum tempera­

ture shifts an angle of about 90 0
• Rotation decreases 

, , 

both maximum and minimum values. As A reache? higher 

higher ~alue s (i. e., r'ota tional speeds approaching infi­

ni tyor thermal diffusi vi ty diminishes) varia'tion in tem-
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perature values becomes smaller and smalier and th¢' tem­

perature of'the overall body is found to approach 10 as 

.~. required by thermodynamic' equilibrium. 

In Figure 3, the ratio 'of two temperature values at 

the surface of the cylinder, which are obtained from a­

symptotic series ,and from the direct computation of the 

Bessel functions with the aid of BESCJ is given. For the 

values of l.,::,A,::.lO, Figure "3 shows that, as A approaches 

10, this ratio becomes nearly 1; i.e., asymptotic appr-oach 

gives nearly correct temperature values, and for A=lO these 

two values coincide. 

Figure 4 gives results for the similar case of Rigure 

1, but for an internal circumferential surface within the 

cylinder at p=0.8. For corresponding values of A values, 

there is a greater shifting effect at. the extreme te~pera­

tures. It is easily contluded that the tendencj for the 

A to drop the temperature gradient is more effective in 

the interior than on the surface. 

Radial variatiop. of temperature and dependence of this 

variation on A, are shown in Figure 5 and Figure 6, for 

two angular positions, e=o and e=~n , respectively. Thes'e 

results show that the radial gradient increases as A 



-43-

L 

-::: ...::..- ":,:--- ~ 

p:: 
0 

,...... 
CD ... 
M, 
II 
0-

"-' 
E-< 

800 

70 

\ 

'" 600 \ 
, 
\ 

----------- ----

500 

._--------

II/2 II 3~/2 2 II' 

FIGURE 2. Outer Surface Temperature Variation for Differen·t 
Rotational Speeds for the Sqlid Cyiinder (R=lft, 
k=O,l Btu ft-lhr-IR- l , a=0.004 ft 2hr- l , q"=442 
Btu ft - 2 h r - 1) 



.~ -',. 

1.02 

1. 01 
>'=1 

Tas 
Tse; 

1 

.99 

.~8 

-
6=0 TI/2 • TI 3TI/2 2I1 

FIGURE 3. Variation of· Ratio of Two Temperature Values (Tasymptotic/Tseries) 
Around the Ci rcumferencefor ). Values Between 1. and 10. 

r 

/, 
I' 

( 

i 



- 45,-

increases while the circumferential gradients always di­

minish with. increasing. ~ values. Since~. is directly 

proportional with rotational speeds, the above con~lusion 

is also valid for the increasing w values. This result 

is in ag,re.ementwith results of 1111 and 161, circumfe­

r~ntial gradients always diminish with increasing A and 

also w. However, Figure 5 and Figure 6, indicate that. 

larger gradients can be encountered. with rotation that 

would occur for a stationary cylinder. 

For the solid cylinder, in Figure 7 and Figure 8 radial 

temperature' distribution for those radial lines, 6=con­

stant for two rotational speeds also show that temperature 

approCl:ches to To as w increases. The effect of rotation 

cause the shift in maximum temperature into the rotational 

direction. 

Effect of the variation of y values of temperature 
. 

distribution is given in FigureS. It is noted that gamma 

can be considered as the inverse of Planck number which. is 

the ratio of rate of heat conduction in the body to the 

radiation emitted by the body. At very low y values, 

temperature nearly stays constant and equal to correspon-. 

ding To value. As gamma increases, or equivalently Planck 

number decreases, temperature distribution is not uniform 
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anymore and show the expected variation ~rom To' 

Also temperature distributions are shown in Figure 10 

for various values of y at p=O.8. At low gamma values 

such as y=O.l temperature is just equal to the correspon­

ding To value or very small variation from Toi~ observed 

as in the case of Y=l. After this value of gamma, there 

is a noticable variation from To values as gamma increases. 

5.4. COMPARISON WITH THE OTHER STUDIES 

Isothermals at different rotational speeds which are 

'compared with the results obtained in \7\are shown in 

Figure.ll, Figure 12 for stationary cylinder (A=O) and 

for A=O.25, respectively. The thermal property values 

used in the calculations are typical of a high termal con­

ductivity material. The radiation intensity corresponds 

to the ambient thermal energy density for solar radiation 

near the earth. The cylinder surface is assumed to be 

a black body so that a=E=l. For a corresponding gray body 

the temperature gradients would be smaller. U~ing these 
.' 0 

parameters in Equation (4.77) provides To=535.03 R. Using 

these values of To and d isothermals are draw~ for the 

present case. As easily noticed these curves exactly co­

incide with the ones obtained in \7\ by the method of 
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Isothermals for the Stationary Solid. Cylinder; 
w=Q rad/hr.(a=3ft2/hr, q~=442 Btu/ft2hr, a=&=l). 
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Green's fUnctions. 

5.5. DISCUSSION OF THE RESULTS 

An approximate analytical solution for the radiation 

heating of the solid cylinder has been obtained in .previous 

sections followed by a series of numerical results. The 

numerical results presented in the graphs shO\o,1 a symmetric 

temperature distribution in e,' for no rotation (Le., 

A = 0) with the maximum temperature occurring at e = o. 

When rotation is present the temperat'ure distribution. in 

no more symmetric with respect to e, and the maximum tem­

perature occurs for values of e in between 0 0 to _30 0
, de-

. pending on the magnitude of A. The shift occurs in the 

direction of rotation. Similarly, a shift is observed for 

. the location of the minimum temperature with respect. to the 

"no rotation" case with values occurring- in the range 

o < e < 11/2. 

For very high rotational speeds,' the temperature of 

the cylinder approaches To' more so in the inside as on 

the outside. 

Results presented were based on a soll:ltion. obtained 

by linearizing the radiation boundary condition. Therefore, 



-:- 56 - -

the temperature distributions' obtained are approximate more 

so at points on the surface where the temperature departs 

the most from the uniform equilibrium value, To. 

Based.on Petrof and Raynor's \10\ studies, the re­

sults obtained by a linear approximation lead to higher 

temperatures than those that would actually occur. 
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APPENDIX A 

DETERMINATION OF FOURIER COEFFICIENTS 

Fourier series expansion of any function· f(x) on the . 

interval (-~, ~n) is 

where 

a k 

bk 

a 
0 

Then, the 

+ SCos e 

(1) 

1 3II /2 
= - f f(x)Coskx dx 

II· -II /2 

1 3II /2 
= IT f f(x)Sinkx.dx 

-II /2 

2' 3II /2 
- IT f f(x) dx 

-II /2 

Fourier series expansion of Cos + e becomes; 

a 00 

= ~ + ~ anCosnx + bnSinnx. 
n=l 

(2) 
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I 
----, 

~.;:,.~,-" 

- -;~ 

where 

ao 

ao 

and 

_ 0 1 3 TIl 2 

ao - 2TI -~/2 

1 3'TI/2 
a = f 

n TI _ TI/2 

1 3 TI/2 
b = f 
n 1T _ TIl 2 

cose 
+ Cos e = 

3:n/2 

a 

- 59 -

+' SCos e de 

+ SCos eCosne de 

scos+eSinne de 

JI <' e < :TI 
2- -"Z 

:ll< e < ~,IJ 
2 - - 2 

'TJ}2 1 + S = 2'TI f SCos ede = 2n f 
-.nl2 -,:TI/2 

S nl2 S = 20 TI ISinel f = TI - n/2 

(3) 

(4) 

(5) 

Cosede 

1 3 TIl 2 + 1 n/2 
an = TI f SCas eCosnede = - f scoseCosnede, 

- TIl 2 - TI/2 , 

'TI/2 II/2 
S CosneSine -'h/2 - nSineCose - h/2 = 
TI n2 1 -

. 



~~.~-- ~. 
,.? 

_!I."";! , 

- 60 -

2f3 (_I)n/ 2+1 

rr n2-1 
n even 

o n odd 

if Inl = I 

f3 n/2 
Cos 28d8 f3 I.!.( 8 

.n/2 
a l = f = + Cos8Sin8) I I n -·rr/2 ·rr 2 -.n/2 

a l = f3 x rr = f3 
2·n 2" 

Also, from Equation (5), b becomes; n . . 

Sinn8Sin8 

bn = f3 I !Sinn - :---r II l-n . 

b· f3 I Sinn = II 2 n .(I-.n ) 

II 
T 

·p/2 + n 
-·n/2 . 

n 

2 I - n 

Sine -

2" - Sin 

f3 n/2 
= f Cos8Sinn8d8 

11: _ ~/2 

Cos8Cosn8 

n:rr) 
2 Sin (-

~:TII = 0 

.TI/2 
I 

-.n/2 

~) I 

for all n. 

... 
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APPENDIX B 

1. Calculation of temperature "distribution by' usi~g asymp­

totic expansion of Bessel functions .. Applicable only 

for A > 10. 

2. Direct computation of temperature values by using 

BESCJ (for 1 ~ A ~ 10). 

3. Temperature distribution for stationary solid cylin-

ders. 

Each computer program reads w, angular velocity 

according to the format F6.0 and computes the temperature 

values, TEMP(J) for the circumference of the cylinder at­

each values of angle FI(J). Also ~.values and the corre-

sponding temperature values are printed. 
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PI+3.14159 
T~535.03 
R +1 

GAMA+10.4758 
LPHA+O. 0004 

J + 2,37 

J + 1,37 

I + 1,100 

< 

2 



Angular velocity, w, must be read according to the fonnat 

F6.0. Angular velocity values can be given in two cards in the 

following manner. 
~...::... ---..:.::-- ~ 

'I' 
.!'!~ 

0.001 0.004 0.005 0.008 0.01 0.04 0.05 0.08 0.1. 0.5 .0.8 1. 2.5 ------_ .... --.-._--- ------ ------ -- ---- -- ---- .-.--- --- ------- -------- ----- - --

25. 50.1_00. - - - --- --- - -- --- ... ---



NN Ill'" uu 'UU - t'\ r"\ r\ 1'\, f1 " " r'\ r, " --- ----- ~-NNN NN UU UU R R R R R r\ H R IH~ R DDDDDDDDDDD 
r~NtltJ NI. uu ULJ RR RR OU DO 
NNtH~ N NN UU' UU R r~ RR DD DD 
tlN NNN t~ I~ \.IU uU hR RR DI) DO 
I~ N NNN 1'1 tJ UU· UU RRRRRHRRRRR DD DO 
I~N NNI'j NN VU UU RRRRRRRRRR Dl) DO 
t~N NNN tJH \.IU UU RR f< R (1) DO' 
NN NNNf-.JN lJU LJU RR RR DD DO 
I~N NNNtl UULJ UUU kR RR DO DD 
tJ N NNN UlIUUUUUUUU kR RR DuDDLJOoDDDO 
I~N 

1 NI~ UUUUUUUU RR RR DDDDDODDDD 
UNj VAC-' 1106 .... BOGAlICl UNIVERSIT[SI KO~lPUTER He:RKEZI .... ISTANbUL V E. R. ;;-......:::.:>.".-: 

'7 
.0 • N'URlfIO US[H ID .. INPUT 

:L£ NAME .. PkQUOONURDIU CREAlE.1) AT: 

i9012J~56789D123~56789W123~567H90123~S67890123~567890123~567890123~6678901 
~UROIL,111-11-202,PROJlCT .NURDIL. 

SYS$·READT. '. 
~ING O~OOOUOOU2nO 
5YS$.REAUT.CLEAR 

,MAIN 
~L Ul/26/81~16:09(,O) , 

1 • D I ~1 ENS I i,.l r i F I ( 37 ) , F f ( ~ 7 ) , T E H P ( 37 ) , A R RAY ( 1 , 20 ) , 5 U M ( 1 0 '1 ) 
2. R~AD(5,1UJ (ARRAY(l,J),J;l,ZU) 
3. 10 rORMAT(lUF6.0) 
~t Pt=3.1Q1S92b5Q 
5 • ALP 1\ A = 0 • U 0 'I 
6 t 

7, 
8, ' 
9. 

10. 
11, 
lZ. 
13. 
1'i, 
15. 
16. 
17. 
16, 
19. 
20. 
21 • 
22!1 

,23. 
2'1. 
25. 
2b, 
1.7, 
28, 
29. 
30. 
31 • 
32. 
33, 
3~. 

35. 
36. 
37. 

2 

TO;535.03 
R = 1. 
00 lOu 11;=1 ,20 
W::ARRAY(l,II) 
~'JlnTE(6,1) w. 
rORMAT(lUX,'W=',FIO.'1) 
Fl(ll=O, 
DO 3 J=Z,;37 

3 FI(J)=Fl(J~1)~Pl/18. 
DO ZOO J::l,37, 
ALAM;;W/ALPHA 
Do 2 I=L,lOO' 
SUN(l);;u. 
£;ALM1/2, 
FF(J)::2.-FLOAT(II·rl(J) 
ED=(E.FLOATII)'2.) •• O.5 
E£=EO •. ( H-l.) 
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fl A Y ;; ( R • _ 0 • 5 ) ., ( ( FLO A T ( I ) • E • 2. ) + ( ( E r ) •• 2 ) ) 
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15 £ A = L- • 0 • 5. 
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PA=(R.",U.S)·I[+EC •• 2) 
Cl=(COSILB)'EC+EA.SlN(E~))/rA 
Dl=(CUS(LB).EA"EC'SIN(EU) I/PA 
EXP1=PI.IC1.COS(Fl(J))-Dl-SIN(FI(J))I/H. 
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SUMIJ)1'!5UI'1I 
TEMPIJ)~TO+TO.GAMA.(EXP1+SUMI/Z') 
WRtTE(6,11l) FI(J),TEt1P(J) 

111 fORMAT(5X,2(F1Z e8.SX») 
200 CONTINUE 
lOO CONTINUE 

STOP . 
END 

~ 
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13'100 IBANK WORDS DECIMA~ 
1828 D6ANK WORDS DECJMA~ 

; 1 

~, .' 



NN NN UU uU HRRRRRRRR~ DDIJUOOPIJDD 
NNN NN UU UU RRRRRRRRRRR DDPPD!)ODOpD 
NNNN NN UU UU HR RR DO DO 
NNNNN NN UU UU RR RR DO 00 
NN NNN NN UI,) . Uu RR RR DO I DO 
NN NNN N Ii UU Uu .R R R R R R R R R H R DO DO 
NN NNN NN UU uU HRRRRRRRRR DO DO 

, NN NNN N~ uu uu RR RR pO 00 
NN NNNNN UU UU RR RR DO 00 . ">'>;;. NN NNNH UUU uuu RR RR . DO 00 
NN I~NI~ UUUUUUUUUU RR RR DDDopPpDDOD ' 
NN I Nt-! UUUUUUUU RR .RR OOOOPOO!)O!) 

t ~J:!:l;Y At-', 1 1 [) 6 "., BOGAZICl UNIVERSITESt l<or1PUTER MERKEZI ~ .. 1 ~J ~,~~~,~' VE 
0::::::--

," "1' 

,~ to • NUR'P II .. USER ~D • PART NUMBER • 00 :,,- ,.,INPUT 
." 

CREAT~D AT; 15; S 7 ; ,*9 J.A N ,~6 .J.9li 1 
. . ~," " .~~ ,. . 

7~9U1Z3't~67890123~Sb7890123~~~7890123't5670Y012J'tS67e90123'tS67~901Z3~S678't 
N U ROt l.. ttl 1.., 1 1 ",'2 a 2 , PRO J t:: CT. N U R 0 n.-. '., ",~, . , " ' 

. SYS$,REAOT, ' 
RNING 0,*0000000200 
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i 
,,! 
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.1 11; W;;;ARRAY(l,lll 

l~. W~lTE(6,1) W 
13, 1 ,FORMAT(10x,tVv;::',F12.8)' 
1 ~ • F J ( 1 ) =0 • 
1~. Do 3 J=2,37 
16. 3 FJ'J);:FI(J~1)+Pl/18, 
17. DO 200 J-l,37 
18. DLAMDAFW/ALPHA 
19. A;:O. .... ~ .. ~ 

20, D;;:b 
21. Do 2 1=2,50 
22. 5UM(1)=O. 
23. V;::CMPLX(.SQRT(DLAMDA.FLOAT(I)) ,SQRT(DLAMDA.FLoAT(l)~) 
2't, NHAX F 2.1 . 
25, CALL BESCJ(V,A,NMAX,D,U) . 
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15 NMAX=Z 

V=CMPLX(~SQRT(DLAMDA/2,),SQRT(DLAMDA/.2'» 
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.STOP 
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