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ABSTRACT 

In this work the Weinberg-Salam model of weak and 

electromagnetic interactions is reviewed. This model was 

proposed to cure the high energy behavio~r of the classical 

weak phenomenology which was first put forward by Fermi as 

;S-decay theory and later modified by Feynman and Gell-Mann. 

The behaviour of the theory at high energies was hoped to be 
+ 

modified by the introduction of a new particle,W-. However, 

- W+w-new difficulties were met especially in the reaction "IIV'" • 

Weinberg's model was first proposed in 1967 and then presented 

with emphasis on the gauge invariance in 1968. The most 

important theoretical difficulty was surpassed by It Hooft 

who proved that the theory was renormalizable.The successful 

ga:uge invariant formulation of the weak and electromagnetic 

interactions was verified in 1973, with the experimental 

observation of the neutral currents, predicted by the theory. 

Today, the model is considered to be true, waiting for the 

direct observation of the gauge bosons. 

+ - + After the introduction of the model the reaction e. e "'1'",-
is considered. The cross-section, the parity violation, 

the front-to-back ratio for the e.+e-~r+~~ decay has been 

calculated and compared with experimental data. Showing the 

already well known fact that, theory and experiment· agree 
• 

well at presently available e~ergies. 
" . 

: 

(ii) 

~ 
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1.1. ~LASS:tCAL WEAK PHENOMENOLOGY AND ITS PROBLEMS 

Weak interactions manifest themselves especially in 

the decays of elementary particles which are 
-iO 

lifetime of a weak decay ranges from 10 sec to 
-16· 

very slow. The 
3 

~O sec, the range 

of the weak force is finite being about {O cm and has coupling 
-$ -.t 

strength around -to mp in natural units (15.=c.=l). Weak interac-. 

tions can be studied in three categories. 

a. Purely leptonic processes, where only leptons appear in 

the initial and final states. Leptons don't show any internal 

structure and they behave as point-like particles. The known 
-+- + + 

ones are e.~}1.~ t.- (newly discovered), "VI!., V;, 'If","'\ll' , )It, Y;; 
(where the last two are also newly discovered). 

b. Semileptonic weak processes, where both leptons and 

hadrons (strongly interacting particles) are involved. 

c. Purely hadronic weak processes among the hadrons, where 

leptons do not participate. 

The weak interactions at low energies were described 

.phenomenologically by the Hamiltonian density 

(1.1.1) 

where 

J;('M.)~ t..o{("')+J~(?(.) (1.1.2) 

Here L~(~involves the leptonic 
. 

part while ~ ... (.,.)represents the 

hadronic current involved in semi-leptonic and non-leptonic 

interactions. In this work, only the purely leptonic part 

will be considered, so that the Hamiltonian denSity is 



The charged currents Lti. and L: having vector-axial vector 

form are given by, 

L,c:("') =. 1Pe (11.) t" ('f -cr .. ) ~ (l')-+ 1/j.(A) (p< e-6'~) 1f'j-('K.) (I.l.4a) 

L: (,,) -:: "')/e.(1I.) ttl. (1~t5) t l"'-) + 1f~(x)'Iti. ("-ts)1/!-(~) (1.1. 4b) 
(In this discussion Lagrangian and Hamiltonian densities 

can be used interchangeably because of the absence of deri­

vati ve couplings, so that !.(r..)-=-It(?C.). In the tollowing sections 

"density" will be omitted for brevity.) 

Such a Hamiltonian describes a four-fermion point 

interaction in the lowest order of perturbation theory, 

explaining the experimental data at low energies. However, 

the high energy results are not compatible with such a four­

fermion point interaction. Consider the interaction C'1- .... I'-~, 

(1.1.5 ) 

which is a point interaction with zero range. In the lowest 

order of perturbation theory the amplitude becomes,using 

Eqns.{I.l.3-4), 

(1.1.6) 

In the high energy limit and in the centre of mass frame 

where lepton masses me and,} are negligible, one obtains, 

(1.1.7) 

5 ince, 

'f~' k rJ '2.'P NS , 

where s is the square of the center of mass energy,lt is easy 



to deduce that, 

(1.1.9) 

Thus,1¥l grows quadratically with the c.m. energy and there 

exist an energy for which rYL can exceed unity. Indeed when, 

rs -= ~ '" 3 2.0 ~~v (1.1.10 ) 
,["G 

1s nearly unity. Above this energy it is apparent that 

will violate the unitarity condition. Therefore Eq.(I.l.3) 

fails to describe weak interactions at such high energies. At 

first sight it is natural to think that the failure arises from 

the neglect of higher order effects. If the following diagram 

is taken into account 
v~ (~.) e-(p) 

"W 
the amplitude is given by, 

'W() - ~ -1 (dlf~ rcA., \/ .. (1- ~5-).L Vd (,(-~s ).ue J 
2. (2iJ)'" J' ~ 6' ;r 6r ~ 

'" [.\i: ... \l1«~-k's) / vl(1-~s)~y J 
2. 6 -lMr 6 1 

with r~+ ~1-:: P+1-= Ft.+'~ . 
However, since 

(I.l.ll) 

(1.1:.12) 

'VIIJ(1)~, Gt fd4'f _> rt ~ .. L . ~ • - \:>. 'I (1.1.13) 
2..(2..11)'1 P ~ 

the amplitude again diverges. In quantum electrodynamics 

divergent integrals also exists, and these divergencies may 

be removed at any order by charge and mass renormalization. 

In the present case if one follows an analogous procedure 

to cancel the divergence there will be higher order diagrams 

where the divergencies become more and more severe and each 

requires a new set of renormalization constants. Thus, if all 
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possible diagrams are taken into account an infinite set of 

renormalization constants will be needed.It follows that Fermi 

theory of weak interactions is not a renormalizable theory. 

I.2. INTERMEDIATE VECTOR BOSON HYPOTHESiS 

Another approach to cure the high energy behaviour 

would be to change the assumption of a point interaction in 

lowest order, by a non-local interaction mediated by a vector 

boson. Then, there exist a vector field which couples to lepton 

fields through the following Hamiltonian, 

(1.2.1) 

where f is a coupling constant and W". represents the inter­

mediate vector boson field and Lrx is the current given in 

Eq.(1.1.4J. The vector boson vJ~ is charged ahd it can have 

the decay modes, 

-+- 1-

Wf4-~r -""r(~) 
+ + 

) Wl{-~ e.-Y~(.vE) (1.2.2j 

Consider the high energy behaviour of the crossed process 

described by Eq.(I.l.5) which now occurs via W-exchange. 

Yt(~4) 
The amplitude for this process, using Eq.(I.2.1) is, 

~ "~ '. 

'l1t= r- 3 ~a.K. ~t"Iw~ CUe ~G((1-ts-)u"el[u"'r y!.(1-(.r)"'r J (1.2.4) 
... """, r 

with Ko: «t:l.-lc..-=?-,~. 
This amplitude reduces to Eq.(I.l.6) if W is very heavy and, 

In the high 
~= -!~ 

energy limit Eq.(I.2.4) behaves as, 

(1.2.5 ) 

(1.2.6) 
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where, 

(1.2.7) 

Therefore ~ approac~es a constant value with increasing 

c.m. energy, an advantage arising from the introduction of the 

W-boson." It may seem that W-boson will modify the high energy 

behaviour and divergencies will be avoided. However, this is 

not so and the s-wave amplitude violates partial wave unitarity. 

Using Eq.(I.2.5) the amplitude in Eq.(I.2.4J can be written as, 

{(Q):: (2 4£ )~h"= ,JTC;p.,.. [1+ 2p~(-1_(.8<\eJl-1 
c:l SL~"" , IT ..:> ""'w a. ~ 

= P: ~ (:r+'!j PJ"(c..,dt}tl1.r. (1.2.8) 
The s-wave amplitude is, 7:D 

-.[2G~ (1 t ., 

1'V{() = l. pc.- J d.(c.9) [ .-( + !l rr"(1-~~)J-
1l" _ t -'r'<AyJ 

__ G ""! 0 _ (..4 ,2 .... '" e~fL ) .Jllr ~ -,+ 1111';' (1.2.9) 

showing that tnL-o is logarithmically divergent and partial 

waves eventually violate unitarity condition. Even in renor-

malizable theories and for small coupling constants, there is 

an energy above which the perturbation expansion, to any finite 

order, ceases to be meaningful. In the spesific example dis­

cussed above, t<."K.1'-!; term in Eq.(I.2.4J causes the theory 

to be unrenormalizable and violates unitarity.This term arises 

from the longitudinal polarization of the W-boson and it is a 

property common to all massive spin one ~articles. The intro­

duction of W-boson also introduces new divergencies in other 

processes. As first explained by M. Gell-Mann, M.L. Goldberger, 

N. Kroll, F.E. Low(6,18) the most celebrated example is the 

reaction "Ye. "\Ie.~ Wf- W-. 

i'tp) 
_..,.,:,!e.:.::(~~~!::!.~ ___ ......... --...,.""'-........ ./'\~r (E_J k_ ) (1.2.10) 
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where 01-
£_ are polarizations of Wand W- respectively. 

At high energies, 

(I.2.11) 

so, 

(1.2.12) 

and 11( grows quadratically with c.m. energy. Equivalently the 

second order contribution to the ~YL elastic scattering amplitude 

(1.2.1;) 

is also proportional to s2 • Since the K"KP/ Z piece of the 
/r-'I.,; 

~~ propagator give rise to more severe divergencies in higher 

orders it is necessary to find some means of eradicating the 

divergence order by order. 

I.;. WEINBERG-SALAN MODEL 

One possibility, as proposed by S. Weinberg in 1967 

is to introduce a new neutral particle in the s-channel, and 

adjust its couplings to cancel the undesirable growth of the 

electron exchange in Eq. (1.2.10) (4, 5,6,7,8,20). 

Wi' 

(1.;.1) 

Since Zo is a neutral particle, the new model predicts neutral 

currents which were first observed at CERN(5,7,8,9,22). However 

it turns out that neutral currents are not sufficient to cancel 

all the divergencies or the leading high energy behaviour of 

all "bad" graphe in the theory. Recent developments in the last 

two decades made obvious that an acceptable theory which is 
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renormalizable, is a gauge invariant theory. 

The Physical appeal of gauge invariance stems from the 

old observation (Noether's theorem) that to every continous 

symmetry of the Lagrangian there corresponds a conservation 

law. In'any field theory the classical action "I" constructed 

from the Lagrangian is, 

I:; S'd t L It) :: S dt.a.;( (1((,,)) 'Jj" 1/1(~)) 
-... 

(1.3.2) 

The equation of motion is obtained by Hamilton's principle, 

(~\ 
~J, dtL(e}=O 

t.. 
which gives the Euler-Lagrange equations if the variations 

of the endpOints are fixed. 

SL_ '/ ~L =0 
d 1( ~(d/"1(') 

Now, consider a transformation of the fields in the form, 

'r- . / 
1./1(,...) ..... e. 1/I(x) , ()(, f. P<\. x) 

?Jr 1f( ... ) -:, e:,Y'( dr 1!J(x) 

which lead to the infinitesimal variations, 

btt/' -:: i~ (d~)1f 

6(,?1f)== /r(8~)'}1f 

(I.3.6a) 

Such a space-time independent transformation is call~d a 

gauge transformation of the first kind or a global trans­

formation. If the Lagrangian is invariant under such a 

global gauge transformation it should satisfy, 
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Explici tly, 

~ t: g ~1(J+- ~ ~{l+ ~f s(Cl1')+ 'bl ~(dl'1f") (1.3.8) 

<b1Jl ~1Jf'f g(~1f) r(d/t') 
Using Eqns.(I.3.4-6a-6b), 

~l= ?:/ <;;li~(Sct)t!f-l- ;yM 'iL (-;1).(Ja<)1f'" 
S Cd!'1./') ~(~I' 1f'*) 

-I- ~ '- i 9 (0«) (/4.(' + g l (-j fj )( S I() d"'1f )' 
go,,'I{') b(~?1f") 

= ~($~rcl( ~!.. ~1.f- ~,-~~ ... ) (1.3.9) 
S(~r~) t(dr1f"') 

Defining the current as. 

(1.3.10 ) 

it is easily seen that the invariance in Eq.(1.3.7) leads to a 

'conserved quantity. 

(I.3.11) 

However, the gauge transformation considered here is restricted, 

since the transformation is merely a phase transformation. In 

other words the gauge group is simply the rotation group U(l) 

or 0(2) and the parameter" P(tI is space-time independent • . 
Therefore, one can consider other groups and space-time dependent 

~ which will lead to gauge transformation of second kind.A 

hint about the relevant gauge group can be obtained from the 

Lagrangian Eq.(I.2.1). (Henceforth only the electronic part 

of the Lagrangian will be written. To obtain the full Lagrangian 

same expression should be added with the substitution e~~ ) 

-l == -!L (~~ ~1C.(1-ts")e. vJ: -I-- €6'K(tf-'(S)Y( w_ot) 
:2Jl. +(ve.) : -* i( -Ve.,e;)~1:rs2~~~~=~~~ fA~J_\,,.-tle \, (1.3.12) 
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where 

L. ±:: ~. (<:~ 1- i.. t.2.) • (1.3.13) 

This form suggest that it is possible to define fields transfor­

ming as a left handed doublet under the "weak" SU(2) group, 

, (I.3.14a) 

and, 

L = (-~~J<:)1+)(.). 
2-

(I.3.14b) 

Describing the weak boson fields as, 

(1.3.15 ) 

Eq.(I.3.12) takes the following form, 

-l = - ~ ( L ¥.X L + L-~ .X L) . (1.3.16) 

Obviously a "tS" part is absent, and a neutral interaction 

with a neutral gauge boson Zo must be included. Since, a priori, 

nothing is known about the coupling of Zo to neutrinos and 

leptons, one should consider the most general renormalizable 

coupling. A vector boson coupling to the neutral lepton current 

with only left handed neutrinos is expressed by, 

This Lagrangian may be written in terms of a singlet right 

handed electron field and the doublet L in Eq.(I.3.l4). The 

right handed singlet is a new degree of freedom which 
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automatically enters into the theory. 

If the electromagnetic interactions of leptons are 

considered, the Lagrangian is given by, 

(eo=electronic charge) 

(1.3.18 ) 

Defining the right handed part of the electron field to be a 

singlet, 

) 

R.:: e'/l::' -{ + i{s e , 
2. 

Eq.(I.3.18) takes the form, 

Writing the Lagrangian in Eq.(I.3.l7) with Rand L 

(1.3.19) 

(1.3.20) 

(1.3.21) 

so that the t3 parts of the Lagrangians in Eqns.(I.3.20-2l) 

/ are, 

( lfl.'" + l~ )Z:3: - I tK(eo A'\f3 ~-<) ¥- ~ . (1.3.22) 

Adding the above expression to the Lagrangian in Eq.(I.3.16) 

the desired SU(2) gauge invariant interaction is obtained as, 

where, 

If, 

(1.3.25) 
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the above expression can be written with a single coupling 

constant, 

where, 
~ 

w = (vJ~ J W'2.J W3 ) • 

The remaining part of L""" + L?;- is, 

eo )Z)(J<. +e.,~ I.jl(L. -i1 '((~R. -1 /2. ~ZL 

-= - (.(. (-eof{ +~~.z)R-1 L (-eo'«+f~X)L. 
Defining the orthogonal combination, 

'1«.::; -eo~+~)AD( 
~ eo7..+~!'4. 

the total interaction Lagrangian takes the form, 

(1.3.26) 

(1.3.27) 

(I.3.28) 

(1.3.29) 

The coefficient of electromagnetic current contained in YK 

must be equal to electronic charge so that, 

(1.3.31) 

~ ~ J 
eo -= l I • 3. 32 ) 

~ ~ ~'l. +~J2. 
The only parameter in the model ew the Weinberg angl,e is 

defined by, 

~(}"u = 8' 
~ 

Thus ,one obtains the following relations, 



-12-

Interms of Weinberg angle the fields Wj'" and '1
01 

are written 

as follows, 

Assuming that uell-Mann Nishijima formula i~ also valid in 

electro-weak interactions one can define a weak "hypercharge" 

~ such that, 

Then it follows that, 

~R.: (-2.)R. 

~l:: (-'I')l 

(I,3.37a) 

This makes meanLlgful the coefficient 1/?- appearing in front 
, 

of the second term in Eq.(I.3.30). The free Lagrangian without 

a mass term is, 

The interaction Lagrangian can be obtained from Eq.(I.3.38) by 

the following minimal substitutions, 

idr(-'~)~ ;dr+8/~ (I.3.39aj 

. ~ ~ 

idt(~L)~;~-5;' .Wr-+~/4: 'II" (I.3. 39b) 

As it can easily be seen ~q.(I.3.30) both contains electromagnetiC 

and weak interactions. Eq.(I.3.30) is not simply the sum of 

independent weak and electromagnetic parts as is seen in the 

- +w-reac tion ')I Y'""l> W previously discussed. The quadratic leading 

order growth of the two wE:ak amplitudes does not in this case 

compensate, but it cancells against the growth of electromagnetic 

term. As pOinted out by weinberg "this cooperation of weak and 

electromagnetic currents in solving each others problems is 

_ .. __ ... ""'0 m",,+' ",atisfving feature of the theory(4,24) ... 
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1.4. GAUGE THEORY OF WEAK AND ELECTROMAGNETIC INTERACTIONS 

A· gauge theory for strong interactions is first attempted 

by Yang and Mills in 1954 for the gauge group SU(2)(17). If 

L is subject the gauge transformation, 

, (1.4.1) 

where the infinitesimal form becomes, 

(1.4.2) 

and the transformation property of the remaining fields are, 

R I = (1+ ~ g/,e '" ) R , 
...... 4.-:. ~ .l ~ 
WI" =- Wi + ~O( + ~o()(.V'f., 

I 

'II" -= l'/, + ~~ (1.4.3c) 

then the Lagrangians in Eqns.(I.4.4a-4b) are SU(2)xU(1) 

{2. =R (;1 + ~ {.Y'))('. 
-'" 

Defining the field tensor ~ 11 as, 

~ ...;> ~ ~.-:. 

~v :: ~ W" - ~"lWt' -8 ~)(. Wy > 
~ 

(I.4.4a) 

(I.4.4b) 

(1.4.5 ) 

the transformation of ~Y under Eq.(I.4.2) is seen to be, 

(1.4.6) 
I 

leading to gauge invariant kinetic energy term for the ~~) 

~ ~ ..... Fr" 
- FJ,AV • • - if I 
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The Euler-Lagrange equation of motion for the non-interacting 

gauge bosons is, 

il <b·i l 6' {3 • (1.4.8) 
-" ~ 

S(drW.y) 8W~ 
From Eq.(1.4.7) one obtains, 

(1.4.10) 

This is a non-linear equation which shows that non-abelian fields 

are carrying isospin and their source is their current.Also 

defining, 

(1.4.11) 

it can easily seen that, 

is also gauge invariant. 

The sum of the Lagrangians given in Eqns.tI.4·.4a-4b-7-12) 
~ 

describing the interactions involving W .. , yO{ and the leptons 

becomes, 
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This Lagrangian contains no mass terms either for the leptons 

or the gauge bosons. Therefore the gauge bosons described by 

this Lagrangian are massless contradicting nature, where only 

massless boson is the photon. Direct introduction of mass terms 

into the Lagrangian in Eq.(I.4.13) destroys gauge invariance, 

and the renormalizability of the theory. 

1.5. HIGGS MECHANISM AND SPONTANEOUSLY BROKEN GAUGE THEORiES 

Without destroying renormalizability and gauge invariance 

of the theory, the masses are generated through spontaneous 

symmetry breaking. To be able to understand Higgs Mechanism 

and spontaneous symmetry breakingC3 ,4,5,lO,29,30,31,32) con-

sider an abelian gauge theory containing only scalar and 

vector particles ~ and ~r . The Lagrangian is, 

f.. =--i;- ~v Fr~ + [(~l+ie.flr)(fItJ [(dt-:eA;- )<.fJ 

-rLtp\p- .f..u.t<f)2.. ) 
being locally invariant under-the transformatfons, 

with ~ expressed as, 

• 

Consider only the part of Lagrangian for tp . 

The equation of motion now is, 

(I.5.2a) 

(1. 5. 2b) 

(1.5.4) 
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If ~ is assumed to be constant i.e. the vacuum expectation 

value of the field 4' ' one has, 

and under the conditions .l( > 0, r1.) 0 the solution is, 

<4'> =:0 • tI.5.7) 
o 

But, under the conditions ~> 0, JA2.(O another solution 

is possible, 

(1.5.8) 

from which it follows that, 

(1.5.9) 

The new field with zero vacuum expectation value is, 

CI.5.107 

• Using Eq.(1.5.10) and 

separating real and imaginary parts one obtains, 

tI.5.lla) 

(o+/+t'A:t)¢2.-= 0~ ... (1.5.llb) 

fields are seen to have 
• 

with )l+,,?-:t:o . Thus, the new 

masses JYVI12=_2r~>O and "",,;-::.0. One of the fields 'gaines 

mass and the other remaines massless. This situation'arises 

from the fac t that '). -:f:. 0 . 'rhe symmetry of the lowest energy 

state is not broken by the Lagrangian but by the vacuum itself. 

Such symmetry breakings are called "spontaneously broken 

symmetries" • 
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Taking into consideration the Lagrangian in Eq.(I.5.l) 

the equations of motion, 

'"ClS'1.. bL=o 
~U/'AY) SA" 

'" 0" 

lead to, 

Defining a new field, 

one has, 

so that, 

_ ",I' F~ 2/\ 2. BY 
d ,?'" ~ e. 1\ 

(1.5.15) 

describing a massive vector field, the mass being m=!e~\. The 

original massless vector field has acquired a longitudinal com­

ponent -e~~r¢1 allowing it to have a non zero mass. In terms 

of new fields ~ and ~ Eq.(I.5.12b) becomes, 

(0 - '2.f''l.)<p~ + Oi~ ~ i O¢2-+ ., . (1.5.16 ) 

which is the Klein-Gordon equation for ~,and cPz. is eaten up 

by vector field. The disappearance of <\>2 may be understood in 

another way. The defining equation of the new field ESt' 
Eq.(I.5.l3), is akin to a gauge transformation with a gauge 

function 1)(=_ cPJ'II. The Lagrangian in Eq.(I.5.l) is invariant 

if lP~ "'-I-<D~ i~2f?t simultaneously rotated. This form shows that 
.J2: 

shifted fields correspond to a gauge transformation if only 

linear terms are considered. Interms of ?+ 4>~ and Br the 
..JT' 
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Lagrangian becomes, 
p r-J,..J tV 
~ = _ ~ FI'"V F + ~ ~ ~)A<p" df~ + e~B)'~jA(~+~) 1-

- r 7. ('?l -I- ¢i) '- ~ (~-I- ~ t 1 ' (I.5.17) 

showing explicitly the massive vector field ~ and the massive 

Higgs scalar ¢" • The mechanism described above is called the 

Higgs mechanism. 

The gauge boson masses can now be generated if the SU(2) 

symmetry of the Lagrangian in Eq.(I.4.13) is spontaneously 

broken. Consider the Higgs Lagrangian in Eq.(I.5.4) with ;M~<:() 

and tp being SU(2) doublet scalar field, 

(I.5.1S) 

Such a choice is consistent because, 

(1.5.19) 

and if the coupling of ~ to the gauge fields is introduced 

through the covariant derivative 
~ ~ 

Dr(~) = dr +I~~. WI' - ig'4 ? 
} 

the coupling -~!2 to the hypercharge field is also consistent 

with 4' having opposite hypercharge to the doublet L. Defining 

the new fields after the spontaneous breaking to be, 

(I. 5.20) 

the kinetic term becomes, 

Dr(O+D!A~-=:[(cl_;~~.Wr+;~)~ 'j!)l{1+J 
'1 I 2....>~ 

~[("dr+"~~·WI'-i{} })tfJ z.. 

== \ ~ ,clt (~+4>o) + 1 ~ \111M ~W:l" (~:tP .. ) - t~g~~I1. ~ (;+~o) \ 

c: ~ ·c/~~~J.Act>_ + t \ WA .. _~uJ2.M\ {'A+~j1 + ~\~'2. ~~('A+<P .. ~~(I.5.21) 
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+ 

so that the mass terms for W-and Zo are given by, 

(1.5.22a) 

(1.5.22b) 

However the electron and muon are still mas-sless. AYukawa-type 

of interaction between leptons and ~ can be considered in order 

to give mass to the leptons. An SU(2)xU(1) gauge invariant 

yukawa interaction is, 

(1.5.23) 

Using Eq.(1.5.20), Eq.(1.5.23) takes the form, 

!.jkt (CR, ~ft{j"'):: - ~ ~ e -( IS (OJ ).+<Po). -( 2'6- (:e.) 

+(~)e) -1:'fr ('A°+cPJ 1+1~ e. j 

leading to the electron mass, 

~e -= ~ ~t.'" 
while the neutrino stays massless. 

(1.5.24 ) 

(1.5.25) 

The most general SU(2)xU(1) gauge invariant and renor­

malizable Lagrangian of weak and electromagnetic interactions 

is then the sum of the Lagrangians in Eq.(1.4.l3), Eq.(1.5.4) 

and Eq.(1.5.23). Explicitly written as, 
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(J A. ~ ~.;,. 2. 'L 

~=-4(6,.Wv-d)lW,...+~Wrx.vJ--J) -1 (~~'/v_?Jv}) 
+ (.y~ J~) (z"P - ~j}. ~ + 8'~ ;r')(~) + e 1~¥~- (i/1 + ~J;r) ~~~!>- e 

-fr<. (e ,( ~YS"( ~+) ~D) ~~¥c( :e) +( -vf.)e) 1~¥~-(::) 1~y.-e') . 
(1.5.26) 

The interaction part becomes, 

-1 ~[(-Yf-~r4~Y6""e.)~+ +h.'J +t{JwrI2(<PoZ.+2~~o) 

+ ~2;g'?' t-;( qt+Q~~o)- ~ (ie)~o - ~ ~(%'t + Lr 'A CPo3) 

(1.5.27) 

The above Lagrangian describes a unified theory of weak and 

electromagnetic interactions, the so called Weinberg-Salam 

model(3,4,5,7,8,9,20,2l). 

Upon comparison of Eq.(1.5.22a) and Eq.(1.5.22b) it is 

seen that ~~~~w. The coupling of the leptonic current to 
• 

the W-boson (Eq.(1.5.27» must be equal to the coupling constant 

(Eq.(1.2.l» f, therefore, 

(1.5.28) 

Using Eq.(1.2.5) one has, 

..2-- %2. • 
~ 2.- - ~iVVI~ 

(1.5.29) 
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Substitution of ~~ from Eq.(I.5.22a) finally gives, 

'/11. =_~ 
,f2G 

(1. 5.30) 

Solving Eq.(1.5.29) for ...,~ and using Eq.(1.3.34) one has, 

where being the fine structure constant. Using 

the experimental values, the lower limits for the masses become, 

~{2;" 1. 4 
Wt1;'-= e. .. ~ _~(t·4.6)Ge.V. 

2<:; .sj,,2ew 

1.6. INCLUSION OF HADRONS IN THE WEINBERG-SALAM MODEL 

In order to include hadrons into this scheme, the 

enlargement of the SU(2)xU(1) gauge group into at least SU(3) 

is required, if Cabibbo hypothesis and only three quarks are 

considered. According to Cabibbo's picture of weak interaction 

universality, the hadronic charged current is represented by 

the expression, 

where u, d, s are Gell-Mann quarks and B$- is the Cabibbo 

angle. One can form the left handed quark doublet, 

where, 

N = L (~) (1.6.2) 
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+ 

The SU(2) ra~s~ng and lowering operators C- , will then generate 

~;: and i~t . The remai~ing le~t handed component, 

(1. 6. 3a) 

and the three right handed components, 

may be assigned to the singlet represantations of the SU(2)L. 

The couplings to the U(l) gauge vector meson ~ are adjusted 

as before, to get the correct charges. The coupling to the 

Z-boson is then completely determined. It has the form, 

(1.6.4) 

The last term of the above expression, 

is a strangeness changing neutral current and completely is 

unacceptable. It will lead to transition~ of the form, 

ds ~f'r-
via Z-exchange. The d&' has the same quantum numbers as ",0, 

thus the existence of the strangeness c.hanging neutral 

current will give rise to the decay, 

Ko + -4/",.- . 
The amplitude of this decay is 

-to + (3) 
as that for K-7>f ~ • Thus 

of the same order of 

the branching ratio 

magnitude 

r(Kl.~r~-) 

r(K ... ) 



-23-

becomes of the order of unity, whereas experimentally it is 
-5" 

less than 40 • Further, the same Z-exchange mechanism will 

give rise to the transition, 

ds ~.sd 
or, 

KO ~Ko 
as a first order (in G) weak effect, which would lead to a mass 

difference of K~ and K~ of order G. Yet, this mass difference 

is entirely compatible with its being an order G2 effect(3). 

Glashow, Iliapoulos and Maiani (GIM Hypothesis)(5,23,24) 

proposed that the undesirable strangeness changing terms can be 

removed by introducing a fourth quark "c". Constructing a 
I 

second doublet NL with the new quark c, 

N' _ (C) (I.6.6) 
L - 59 L 

results an additional contribution to the Z-interaction given 

by, 

tI.6.7) 

so the total neutral current becomes, 

(1.6.8) 

Thus, although the new quark c does not contribute to the 

chang;ng neutral current, -its existence makes strangeness • 

possible to eliminate it.To the c quark a new quantum number 

"charm" which is conserved by strong interactions, is assigned. 
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The discovery of the family of (ee) bound states known 

as pSions(14,15) and the obse~vation of charmed particles(16) 

which decay according to the (e,se)L pattern constitute a 

striking confirmation of the GIM hypothesis. 

Thus, under the SU(2)xU(1) electro-weak gauge group the 

transformation properties of the quarks and the leptons would 

be as follows~· 

singlets: €ott, til; U,tl,.l cl~, t.R.' Sit • 

The charged and neutral currents are(9) , 

and, . -1: ~ f t_ ~It ~ K L I3(~1-) - Q(t.)Sh,2GvJJ 

(I.6.9a) 

(I.6.9b) 

(l.6.l0a) 

+ f f~ 't .. 1~- ~~ [r3(fll)-<Y(~~)S{"It.G'wJ (I.6.l0b) 
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-+ - + 
II. THE e. eo ~rr- PROCESS 

ILl. KINEMATICS 

Th +- .-e process e.f/.-'#rr (studied in colliding beam machines) 

is possible only via neutral currents if lepton conservation 

is assumed. Thoe lowest order diagram is, 
e-(p1)~1) .-

(II.I.I) 

The four-momentum and spin polarizations of corresponding 

particles are shown respectively in the paranthesis.In the 

lab. frame, 

( II.I.2a) 
I 

and in the center of mass frame (cm), 

, (II .1.2b) 

Since P1'P2. is a Lorentz-invariant, 

l Co C \",\2-
Pi0 Me -= P40 fOl.O -t P (n.l.3J 

from which, using Eqns.(II.I.2a-2b) it follows that, 

.. (II.1.4) 

Therefore, 

(11.1. 6) 
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Since, 

(II.1.7J 

one obtains, 

(II.1.8) 

while, 

C C. 
p~O :: 'f'~o (II.1.9) 

The center of mass energy is, 

4 (.f ...l )" So -= (f~ +P:&.) ::::: p~o + ""~, F1 

= :( WI~ + 2 III-Ie, F~! (11.1.10) 

from which it follows that, 

~ $- r.i.'fI..; 
f~o :: :z..M~ • (11.1.11) 

Using ~q.(II.l.ll) in Eq.(II.l.8J, 

(II.1.12) 

The Eq.(II.l.6) takes the form, 

I r1 ~ ~~~(~t-..,; 

• 
( II.l.14) 

In the cm system one has, 

.,.\ 

f 
J 

-p 

(II .1.15) 
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where e is the scattering angle,so that the exchange 

momentum square is, 

-::. M.~ +~ + 2.\ pI \ ~\~e -2P4~ ~~ . (II.1.16) 

Using ~qns.(~.I.L12-14) one obtains, 

(II.1.17) 

In the high energy limit where ME. and WI/, are negligible 

these expressions reduces to, 

tr\~ if 
and, 

The third relativistic invariant is defined by, 
. 2 

U-::(P4-~~) 

satisfying, 

Sol-t-HI:: 2M!+2~~() 

which in the high energy limit becomes 

(II.I.18a) 

(II.l.18b) 

(II.l.19 ) 

l II.I. 20) 

(II.1.21) 

Abbreviating cosB =z, the ~qns.(II.I.18~2I) takes the 

form, 
(II .1. 22) 

Using the energy-momentum conservation relation, 

(11.1.23) 

the following relations are obtained: 
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• 
• • 

".- '. . ",\ 

The differential cross section is given by 

do -f -:.---
4~lT~ 

.i. ~ [M\2. 
4 .5 •• Sa 

-t. •• t L 

where M is the invariant matrix element. 

11.2. CALCULATION OF THE INVARIANT MATRIX ELE11ENT 

(II.l.24b) 

(II.1.24c) 

(II .1.25) 

From the interaction Lagrangian the relevant terms for the 

• - + -e. e ~rr process, as seen in Eq.(I.5.27) become, 

Abbreviating as ~(:c.)=t(~) and 1f'r(I<)-:',i'(1') the scattering matrix 

element takes the form in the lowest order, 



+% ( e (?<o) ~a, ~;,.'tf e(-ll) + ?(?'-) yo< .(-;'Yf r(?~ ~(~)J 

y. [.4i" 9w ( ~(~) ~fo e.(~) -t-,F (~) Y~r("d))( (A6eIVA~(~)- 4\'"ew:C{ ~)) 

+1 ([h)~~ ~-f ~(~)+P(~)Y~ -115" !,(a~~l(~)J Ile-) (11.2.1) 

where T denotes the time ordering of field operators. Since 

~ and ~ also distinguishes x and y, the cumbersome notation 

can be simplified by dropping x and y. So Eq.(II.2.1) takes 

the form, 

<r""r-\S\E.""e.->:... E..~ (d?:.-~o<r-r-IT 
'.2. 4J..v..a.ew CA42ffw J . 

[ ~,,'2.Bw ( 'i~f..e.. -1-fA ~f(.f) ('€ ¥~ e. +f~~f) (ua'dwA"-4A ... ew 1:."') 

~ (c.«.ewAt~v.ewzf) 

-+ t Al-vIBw (q: ~II. Eo +f ¥D£r) ( U4GwAD(-4U-. 9w 1°C)(t:"~~ -i 1~ e. 

+f~~'A f~t'rl:f 

+~ A,t"G-w (e~"A1~ e. +rY" 1;f i)(e.y~e. +ft"r) 

~(~ewA~ -~gw t.h l-0( 

ITT" ,,\ 
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The only non-zero contributions are: 

Z/r\ S \ to'" C '> :. - Q:~ {d.,.d~ t <01 bri' (~~, t l ) ').-(~1' c1) " 
2.';1'1 9w~9w . 

4Av..t~w (i~l(e.f t,.r +P~"'f iI/foe.) b:t (F2.'S2.) a:_ (r1. S1) 10';> 

< 0\ T( (.64tGWA OIAft +4.:lI\l £iw ~o(i~) \ Of 

- ,0\ ~"'(~al tot) Qr(~1 t,)~-4.: .. 2ew (eyCl t.fyfo 1~¥" r 

+ f¥rJ.f f.~} A-l! e.) b:1'(P~I.s~)Q.:_(f1.S1)IO><OIT(i'(,l~)\O;> 

-(01 br"'(~a.ltJ.)~-(~1)t1) ~ ~2Sw(€ro( 11'- e.r"(~r 

-+-ftK 4-P-r i t~ eo) h:t (Fa,S2.)ct:_ (P1,S1) \0:;>(0\ TCi"~')lo> 

+ (0 \ brt (~2)t:l) Qr-(~1) tt) ~ (e ~~ 1-,:/" e F Y" .f-;"YS't 

- 1-ys- - A-¥~ 'd:t ( -i" ( )\ > -+rYrI.. 2. f e fp :4. e.) e,+ f'1'~2)~- P1'S, 0 

where k is the transferred 4-momentum and, 

(II.2.6) 
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with 

(II.2.7) 

In the high energy limit k"k)!w.,:- is negligible.After expansi;~ 
of field operators in terms of creation and annihilation ope­

rators as given in Eq.(A.7) and using anti-commutation relations 

of fermion fields as in Eq.(A.8) the Eq.(II.2.3) takes the 

form, 

<r -r-\ s \ e.+ e.-) = e.; (- t )(211)4 fJ-x.dtidk l4,,,,1.ew eelevJ i! 
z. 6i.:-e-.J ~gw k'2... 

(

_ _ -L. (I",-+P .. )'I< .: (~, +~ .. ) ~ 
. Ve.-t(f~,Sa.WoC.l\-tf~.S1) M)A_(~.)t1)~~ Vr~ (9:t,t.a.)e ~ 

_ _ i(~1+~JX -i:.(R-tP>.);J) e: i.k(:r.-4) 
-+ ~i.-(~" t f ) ~o( V}'+(~2.) t:l) Ve,t (ra.'S~) ~~ l\.-(p,.'t) e. e 

r It (- -t(tVPL)~ t('f.t+9 .. l<! 
+ LA.:." 9w "e.'" (r~,s,.) ~o( Ue.- (rv!..) ~. (~.) t 1 ) ~fl "r+( 12''4) e. ...a 

~(,~+'t.J?(. -l(p<t-+I\) ~ ) 
+ oU,.- t ~)t~ )~" "r+ (9~)t.l) "e.-t (P .. A) ~~ o\.\e.- (P. ,$1) to e. 

1\ ' 4 (- -,.j _ '" -;'(r, tfJ oc. 
- - .4.:" ew "eo+ tp2).s~) to< \.(e.- (Pi'S,) II,~-( ~1,q ~A ~ ".I.A9,,t2) ~. ) 

2.. I r 2.. I ~(~1-+~~ ~ 
.e. 

1-11<" ( ~(~(~ .. )~ -':(f,+I' .. ) 0) 
-+.ur(~1)t1)tol Vrt(9:u4)ve.+(P.th.)~p f \.Ie.- tV,) t. e 

(
1' . -~( f'1 +fa)'X.. 

- .i ~2.{)w \Ie.. (PvSa.) ¥" b'£ Ue.- (Pi' '.) ~- (~i'~) y~ VJ.A+(~,t,) e . ( ) 
2.. 2.. I.. r I .. ~1 +'1z. "I . .e 0 

..f - '"('11+'~;( -~(f1 +,P..)~) 
-+ ~-(~11~)~o( 1~ ~t(~a)i4) ~+(p2""~)~fo~-0V1) e e 

_ _ _ -i.(P1+/'a.)1C. '('I~'-)d 
+i-( ve.+(r:v~)~o(. ~~¥s "'e"(P1IS1)~-(~I'~)~/L y$' }+(~}tL)e. . e. 

_ -1_11", - . -1 i.(~.+!.1.)~ -t(r1t h);ry 
+ur-(~41t:.)yo(~'}+(~~,~)Vet(P1'!.J.)~" ~¥S"~_(Pt'SI)e. e LJ 

. • i.;k.(~-~) ,o/.~ '2. (II.2.8) 

. It '2:.. w. ,,-2. j 
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After integration of Eq.(II.2.8) one obtains, 

(II.2.9) 

where M is invariant matrix element and is equal to, 

where, 

(II.2.11) 

The vector and axial-vector coupling constants are defined by, 

~" = 
Co\.. + Cot!, 2 . tQ II 

- St\'\ W - -
2- - 2-

(II.2.l2) 

~.., ::. 
Co\.. - c..,a. ~ :--

2- 2- • 
(II.2.l3) 

, The first term in Eq.(II.2.l0) is purely electromagnet~c, 

second term is purely weak amplitude. Therefore \M\' will 

contain interference of these two amplitudes. 
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<t-
e.o . V '1-_ (c. .-(-¥s- + c." -1 +¥~-) VI _ v: _ v"'f c.~ .-I-¥!>- -+ c. 1+.1'.» 

e.+0"'\.: L '1.. "" 2. e I' 0 \ .... 2 1..-
16 s",,'tQ...; ~eyJ(s-lVIl) 2-

.,+ ~-~~(,,-1-f +c.~A1o)~+"'r+~f(c(l.. A.1r +Cl,.1;f:;)}- (II.2.14) 

To obtain the differential cross-section IMI2.. must be averaged 

over initial spins and summed over final spins. The spin 

projection operator is, 

(II.2 .15) 

so that 

(11.2.16) 

Using Eq.(1.5.33) one obtains, 

+ 4iTo< 2G'Mg'L. T,.. ~o(,p.; ~ ¥ (ct.. 1-~ +C~ 1+YS-)~ 
~5l~-""l) ~ 2. 2. 

.4; T.,. {J{;.r
'

(c.1t 11S" +c/~?)Jt: 
• 

+ 4iTOI Q.~l'o'.ct. T"~(CL ~1·+'''..{+F)R1'}~~~ 
.u S (s- ..... e'l.) 

. t Tr{('/t 1::f!= + 'L. 1:: )%.lff{ 



-34-

As it is easily seen that the contribution of the second and 

the third terms are equal. Using Eqns.(B.6-7a-7b) the above 

expression Eq.(II.2.l7) becomes, 

f ' t 1 ~(, n211(.t. ,- ~ f 11 Ii f). ~ 'If (J 

I~ It.rM = 4 ~l II" ~~ ~S'¥~ ~~ f1 fa. rt ~ f 0 11? Yy. 

16lf~1.4a 4e-t.?,/r- 6' f 
;;. /.j.."L I)( O"~~ . Pt Pa. 9~')..lf? 

. = ~Q.~ti·(P1·'lPa.'~1+P1'~d):I:~~) 
S 

(II.2.l8) 

-SWM4.+1'kii'd. h"r"" ':: -161TKG Mi Tr ¥.c ~6' ~II. ~~ (c.L 1 +k'~- +cR, .4-~~-) 
'rJr .s(S-rIO£') r :L '4 

~ T"'rrl.I/~''{f~'(CI.''1~ +C(l.-1+fS') F16' r! ~2~~-1)' 

641!",G.,,,,, 2. f" 'Vi" f )f, l¥1' 'l~Pr) =: i; ~1.l"o(6'A~ +~ PC6'Qr \cl... _ + ~ -r 
4.J'is(S~) r r 

6' y . r~ rL '14) ~1r 

'I. 
-= 2.S'b TID( G.l'\e [(c~+c.~) r,.~.r. rz.-~-t 

f;. JI 5 (.!.- M~) 

-r .2 <;'1.. Cit f~ ~'1 flo' ~z ] (II.2.l9) 

Since, 

and, 

Eq.(II.2.l9) takes the following form, 

SQ.l4)"ci+ ii-.;I'"d tv",:: 32 TfQ(~ M~ [(CL.+Cltt(p\·~a. fa-'!1 +fdi Pl.,Ih.) 
,Ji:;(s-r.{) . 

(II.2.20) 
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Fourth term can be obtained from Eq.(II.2.20) by the 

2. 1. substi tutions '"L."'" CoL. and 'I'<~ c,Jt ' so 

(II.2.21) 

According to the Eq.(II.l.25), cross-sections may be easily 

calculated now in the high energy limit. Using Eqns.(II.l.24a 

-24b-24c) one obtains the following cross-sections: 

The purely electromagnetic cross-section is, 

_..j . -12811\'-. ~ [(14-~)2.-r (1-e)4J 
- 6411\ ~:l. 16 

0( 2. ( -1 + :!,2.) (II,2.22 ) 

4-s 

Since I 

(II.2.23) 

then, 

(II.2.24) 

thus, ~ 

4:- _ J d~ ds-c ,.. 
"e,."" - d _1 :c 

= !i. iT", 2. • (II,2.25 ) 
3 .s 

Similarly, one has for the interference part, 

(II,2.26) 

(II.2.27) 

(n.2.28) 
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For the purely weak part one ~btains, 

(II.2.29) 

(II. 2. 30) 

G z.s (l 2..)2-
(S W = ---.;::...;:--:---:- c.1. + c'JI{ • 

.241T (1- ~1 t 
J 

(II.2.3l) 

The differential cross section is the sum of Eq.(II.2.22), 

Eq.(II.2.26) and Eq.(II.2.29), 

ck _ --c1....Q 

O(~( 1+~~) + o(G ..... 2-1. [(CL.+St)'4(1+'lt)+2(cl.-~t~ 
'is -l4 1J .ff(S-W\~) 

+ G~l [('.~'Haf(1+-l~)+(C~-c~)2.1:tJ 
-i:t~~(~- ~t 

(II.2.32) 

II.3. PARITY VIOLATION IN c.""1C ""rr- AND THE EXPERIMENTAL RESULTS 

Interference between photon and Zo exchange diagrams will in 

general give rise to parity violating effects in the angular 

distribution of ~-pairs, because the coupling of the photon 

is vectorial while Zo has an axial vector coupling. The parity 

violation can be measured by considering~ 

Which would be zero in the case of parity coservation. Using 

z=cos 9, one has from Weinberg-Salam model, 



The dominant 'i~rm'B are first terms in the numerator and 

denominator, so that 

which obviously differs from zero. 

There is also a forward backward asymmetry Aft in the 

angular distribution of the ~-pairs. Forward scattering 

cross-section is, 

~ 

F-=J d~(2-l.dc­
Cl c.l: 

-= ~ Tfo<2.+ otG""t [~(,,-+Gr.1{+(C,"-'R/J 
:$ S g.Ji (S-""~ ~ 3 

4- G\ [.il<:C+Gi)1.-+(<:t_!;~)2J 
6411 (-1- S/w.'it 3 

and backward scattering cross-section is~ 

~ 

\3= ( d~~c;) de 
)0 de 
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(II.3.6) 

where use has been made of Eq.(II.2.13)., Eq.(II.3.6)can be used 

to test the Weinberg-Salam model, if the Weinberg angle /till is 

known, since mZ depends on the value of ew ' the free parameter 

of the model. ew is determined experimentally from lepton 

scattering. According to the Weinberg-Salam model, one has the 

cross-section for ')Ite. and ~e. scattering as, 

(II.3.7a) 

(II.3.7b) 

where, 

Three events have been identified using neutrino beams at 

CERN and at the Gargamelle bubble chamber as the process 

- v ~ • The cross-sections measured satisfy(22), ""t"" ~ t / 
_1j.1 ( E . 2. () 

~ ("II e ~ V.IA~) < O. ~6 )(,10 v) c."", 11.3. 8a 
~ I {G~V 

-~j(e: ) L< C- -)< Ij M4i(E"V) 1. (II.3.8b) 
Q o2>'i-W .-t- c"W\ G" ""'''"~Vre. 0.'1 j(lV - ''''' . ~~d I ~;d 

f1 I d' t th 1 (3,9,22) allowing the determination of rl'tJ, ea ~ng 0 e va ue 

average value of Weinberg angle iS~13) Today, the world 

(II.3.9) 
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The masses of intermediate vector bosons Wand Zo' using 

Eq.(I.5.31) and Eq.(I.5.33) are now determined to be, 

YI'\",~+g Gt.V 

WI ~ -;:::: ~ S Ge. V 

(II.3.10a) 

(II.3.10b) 

With the avaib1e energies today in the colliding beam machines 
+ 

the direct observation of W- and Zo is not Possi~le. In near 

future the machines will reach to threshold of Wand Zo 

production and the model will be tested directly. 

Also, in view of 1age cross-sections obtained in deep 

inelastic scattering of neutrinos via the charged current, one 

can hope that similar results can be obtained from scattering 

by neutral currents. In the interactions, 

vl.N~ ~X 

v{N~:;;'X 

(II. 3.lla) 

where N represents the nucleon, 1 any lepton and X any 

hadronic state, according Weinberg-Salam model, the following 

" ' d(25,26,27,28) branch1ng rat10s are obta1ne , 

The neutral current cross-sections have been measured,at CERN 

and NAL, and experimentally it is found that(22), 

6" 'i:. (yN) /5'w ("'iN) -::. O. ')./1 :t. 0.03 

6"r:(:VN)/~w('~N)= 0.41 ±().o.g 

which gives for the Weinberg angle, 

0.2 < s;.,'tgw<' o.¥ 

(II.3.13a) 

(II.3.13b) 

(11.3.14) 
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The forward backward asymmetr~ of fA-pair creation (Eq.(II.3.6» 

for the cm energy s= 1000 Gev2 is obtained to be, 

2 
.(ooo"gg '" 

. , 

.-
100~ - ga:z. '-I 

-:: -0.0'1-'1- <--. (11.3.15) 

if one uses sJ.n2 9...., = 0.23, mz= 89 Gev and gA=-1/Z. The asymmetry 

data obtained by the various PETRA groups are(ll), 

Group • • JADE MARX J 

...a±9 OI9 

PLUTO TASSO 

7±10 1:t.12 

The combined angular distribution is plotted in Fig.l and 

it yields (Arl? = -(O.9:!:. 4.9)% which is very near the 

theoretically predicted value - 7.7 %. 

The model also can be tested on the basis of experimental 

limits of the strenght of weak neutral currents in lepton pair 

production. The importance of a this kind of test arises from 

the fact that it .is possible to determine weak couplings for 

the lepton sector in a model independent way and free from 

hadron uncertainties. The theoretical values of gv and gA 

defined by :F.Q.(II.2.12) and Eq.(II.2.13) using sin 29w = 0.23 

are, 

(11.3.16) 

t · f' d (12) The JADE collabora ~on ~n s , 

g~= 0.01:!: 0.08 and~d= 0.18± 0.16; 

.Since these values are consistent with the theoretical values 

gi yen in Eq. (II. 3 .16 >, one can use Eq. (II. 2.32) t,o d~termi~e 
"". . 

the value of si1'J.2eW with. giv:en gV. and gAo The resuJ.t iii ... 

(85'% c..R.) 

' .. ,..,. 

-
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The values for the vector and axial vector weak coupling 

constants thus found are in agreement with the predictions 

of Weinberg-Salam model and within the framework of this 

model experiments give a value of Sin2ew which agrees with 

. the current world average. The mass of the weak boson, with 

minimal assumptions appears to be greater than 51 Gev. 

Various· groups using the Weinberg-Sa:lam model, used 

the data on e-+C ~ e. ... e.- , ~"'e.-~r}- to extract values on 

sin2~ • The results are(ll), 

, 
sin2ew Lower bound Upper bound 

MARK J 0.07 0.42 0.24 0.11 

JADE 0.55 0.25 0.18 

PLUTO 0.57 0.23 0.17 

TASSO 0.52 

II.4. CONCLUDiNG REMARKS 

The process e. ... e.--l-?'f.- via photon and Zo exchange is 

analysed in first order perturbation theory and the purely 

electromagnetic, the purely weak and the interference cross 

sections are obtained. Parity violation and front to back 

ratio in the reaction has been calculated and it is shown 

that the theoretical value agrees well with experiments • • 

Since it is not possible to determine the Weinberg 

angle, sin29w, within the model, the experimental values 

of ew are given and it is shown that the world average value 

of Weinberg angle, Sin2e'll/:::.'0.23 is consistent with the 

calculations and experimental data for the cross-section 

and front to back asymmetry in ~+e~~j.- . 
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The Weinberg-Salam model now, being a well established 

theory describing electromagnetic and weak interactions, 

attemps have been made to try to unify strong interactions 

and even gravitation. Such models all have the SU(2)wXU(I) 

group as a subgroup i.e. contain the Weinberg-Salam model. 

In the near future, it is expected that the new 
... :!: 

machines wil'i enable the Wand Zo bosons to be observed 

directly. 

• 
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A P P E'N D I X A 

A four vector is denoted by, 

the scalar product of two four vectors is, 

the employed metric being, 

~o. ': - 3.4~ = - ~1" -= - h~=-t)~rv==O (f'~v) 
The Dirac ~ -matrices satisfy, 

and are represented as 

1 

with 
• 
I. -lfl • 

(A.l) 

(A.5 ) 

(A.6) 

The expansion of field operators in terms of creation and 

annihilation operators are as follows(3): 

If 'IjJ( ___ ) is a fermion field, 

where a(p,s) and b(p,s) are particle and anti-particle anni­

hilation operators with the following anti-commutation 

relations 

~ o.(fJ~) ) ct"tp~ s') 1 = i b{p,$) ) 1/( p~s') I 
. ::. (;2. U)! <' Po S ( P -p') r.ss } 

(A.8) 
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If ~(~) is a boson field, 

(A.9) 

where e.o{(K/>') is the polarization vector, satisfying, 

(A.IO) 

and the commutation relations for the creation and anni­

hilation operators being 

[ot(K,?) l Q+(L,I')] :: [b(L1'") ' b+(I<,f'} J 
1 ~ ... f; = (2..11) ZKoh'tK-L) "r '" 

(A.ll) 

The operator ~-y. represents the left handed helicity 
2-

projection operator whereas A+¥~ projects the right 
'-

handed helicity part of a spin 1/2 field. Feynman's slash 

notation is used throughout as, ~= ~t(A.r 

Dirac's particle and anti-particle spinors are normalized 

respectively as follows, 

tA.12) 

and plane wave projection operators have the property, 

(A.13a) 

(A.13b) 
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A F F E N.D I X B 

SOME TRACE FROPERTiES. OF '( -MATRicES 

a. T"'4''''~t = '+~~ 
Proof: Using Eq.(A.4) and cyclic property of the trace gives, 

T""t«.~~:.- TT'¥p~" +1..8D(p TrI4 

2T"'(IL~~:= ~~ .. p 
Tr ('" (~ :. lj '8ot-~ 

b. Tr~« r~ ~r ~~ = If ~/i..~ ~S!) - 't~DI:~ ~~tr-+ 'f~0I~ ~~$ 
Proof: Using Eq.(A.4) successively one obtains, 

If- ~II ~f ~b ~G" = - Tf'~i ib'~G"~Ol -T 2~/X~ Tr tr~/S' -18 .. 'CTr~~ ~~ 
. + ':l~iXO" T ... ~~ t6' 

Cyclic property of trace and Eq.(B.l) yields, 

Tt- ~~¥~ yr ~6' = 4~o(~ ~Sa-- 4~O(t ~~.+48GtO' ~~S 
c. T .... ~6l~~~S~~~s=-4-i<;~~S6"" 

Proof: Case 1. ,.e.~.~::1=6". ~ 

(B.2) 

Tr- ~ot (f ~$ ~~ ~s ::. i. T,.. (: r~ ~~ ~o ¥. ~'/, ~l 
::. i. ~o< .. T ... ~S \'C' Yo ~~ '(ad'l 

(~, «S'") is a pair from the set (0,1,2,3). If (,. ,v) is 

the other pair, then as a result of Eq.(B.I), 

If" ¥It ~~ '{~ t~ ~S' I"J i. ~OO( 0/-"" . 
Since jJ-7:V, it follows that, 

Tf'¥ot. ~~ ~o ~s ~s -= 0 (B.3a) 

Case 2. All indices are different. 

Tr ¥t. ~~ ~8 ~~~S' =. i... 1("(01 ~~ ~J rcr ~o ~.dS.3 
( II( ,~ , f: ,0) is a permutation of (0,l,2,3}. Therefore, 
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_ 4 ~ for positive permutations 

T ... ~o(~~~~~I5'~S= (B.3b) 

4~ for negative permutations 

Combining Eq •. (B.3a) and Eq.(B.3b) one obtains, 

d. Summing and subtracting Eq.(B.4) to Eq.(B.2) the following 

relation emerges, 

e. If one defines, epl.G'~y=~T ... ~ot~.~~'ty ,then 

e e«.'!Ip,.. - 2.(8 fA gt + S~ 31" ) 
":6"~~ - ~ f ) (j 

Proof: 

eot~Pf 90('Afl= (~~~p~ -~1t~8~+ ~It~g .. ~ )({~~~r -l~ ~'>t -I-~"f" 8'),') 

:: 8~ S~ - a~ 8~~g~ + S~;s; 
-~t ~ .. ~~~I" +~8ry8').1"- ~;g~~9.P 

since, +g~S~-~~~~~~r+~~s~ 
d! §ftj~ar -:; S~ ~~~~~:: 8;S~f ~'>.p - S~ 8S'~ ~t -:; 8~? ~?.t 

it follows that, 

(B.G) 

, then, 
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Proof: ~ hA 
:!: tI.'>.~r ," .;.?orr _' 11( fir'/') 

~>J.6'k 'X.± =. ( eot6'p~ =+ .... Ec(!'Pf) (e of' IE: '" 
. M 

" etl.~)t . «""rG ' e f/, Ol?Pr 
=. eoo(€~~ .:t (. E:- ,,~~ +~ ~",r~~ - €ot~P'i (; 

eg(I!i"~~ is a symmetric tensor with respect to the indices 0( 

and ~ , therefore the contraction with the totally antisymmetric 

tensor f::r;I,"J.~r """yields zero 0 Also using Eq 0 (Bo 6) one obtains, 

By similar reasoning, 

(Bo7b) 
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