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ABSTRACT

In this work the Weinberg-Salam model of weak and
electfomagnetic interactions is reviewed. This model was
proposed to cure the high energy behavioq; of the classical
weak phenomenology which was first put forward by Fermi as
fg-decay theory and later modified by Feynman and Gell-Mann.

The behaviour of the theory at high energies was hoped to dbe

- modified by the introduction of a new particle,wt. However,
new difficulties were met'especially in the reaction vV—»W+W_
Weinberg's model was first propocsed in 1967 and then presented
with emphasis on the gauge invariance in 1968. The most
important theoretical difficulty was surpassed by 't Hooft

who proved that the theory was renormalizable.The successful
gaﬁge invériant formulation of the weak and electromagnetic
interactions was verified in 1973, with the experimental
obéervation of the mneutral currents, predicted by the theory.
Toﬂay, the model is considered to be true, waiting for the
direct observation of the gauge bosons.

After the introduction. of the model the reaction efefayqp‘
is?considered. The cross-section, the parity violationm, |
thé front-to-back ratio for tﬁe dﬁf—a/{p* decay has been
calculated and compared with experlmental data. Showing the _
already well known fact that, theory and experiment agree —

!

well at presently available euergles.
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I.1l. TLASSICAL WEAK PHENOMENOLOGY AND ITS PROBLEMS

Weak interactions manifest themselves especially in

the decays of elementary particles which are very slow. The
lifetime of a weak decay ranges from iégec to 408ec, the range
of the weak force is finite being about {6wcm and has coupling
strength around 40 m; in matural units (B=c=1). Weak interac- -
tions can be studied in three categories. | |

a. Purely leptonic processes, where only leptbns appear in
the initial and final states. Leptons don't show any infernal
structure and they behave as point-like particles. The known
ones are e.i:,ﬂ?; e (newly discovered), Ye,Vg. Vs, I, Ve, %
(where the last two are also newly discovered).

b. Semileptonic weak processes, where both leptons and
hadrons (strongly interacting particles) are involved.

c. Purely hadronic weak processes among the hadrons, where
leptons do not participate.

The weak interactions at low energies were described

phenomenologically by the Hamiltonian density

4((,,,):

G x £ . el.
ol () ().}.Lc, . (11‘1)

where

el = L)+ £o () (1.1.2)

. Here L‘@Qinvolves the leptonic part while j;@Qrepresents the
hadronic current involved in semi-leptonic and non-leptonic
interactions. In this work, only the purely leptonic part
will be considered, so that the Hamiltogian density is

ﬂle(‘n.): u)LCﬁ) . | (1.1.3)
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The charged currents L“ and Lx, having vector-axial vector

form are given by,

Lu(ﬂ)‘:.@(ﬁ)&(’_f'(’fr)%(ﬂ-}- YU() i (J-Xg)%(@ (I.1.42)
L: (ﬂ) :%e(x)xx(bys)’%@) -+ #7,,/‘(,()3/‘ (4-%) -z}};(,}) (I.1.4v)

(In this discussion Lagrangian and Hamiltonian densities

can be used interchangeably because of the absence of deri-
vative couplings, so that aqu=—iZ6q. In the ;ollqwing sections
"density" will be omitted for brevity.)

Such a Hamiltonian describes a four~fermion point
interaction in the lowest order of perturbation theory,
explaining the experimental data at low energies. However,
the high energy results are not compatible with such a four-

fermion point interaction. Consider the interaction C%_;/‘“;é,

e (94) e(p)

- (%2 (I.1.5)
+ () )

which is a point interaction with zero range. In the lowest
order of perturbation theory the amplitude becomes,using

Eqns.(I.1.3-4),

.G & R
m‘ 1z 'ug.. Xu(‘f'Xs)“/‘ “eK (4 KS)V:Q" (1'1'6).
In the high energy limit and in the centre of mass frame

where lepton masses m_ and %P are negligible, one obtains,

M|~ gk ) (3, p) - (2.1.7)
Since,
q{_k,\, g,.p ~S , (.I.—.;l;.B)

where s is the square of the center of mass energy,it is easy



to deduce that,

M-—a Gs . (1.1.9)

Thus,qYl grows quadratically with the c.m. energy and there

exis? an energy for which'hq_ can exceed unity. Indeed when,

Js = 1 320GV .- (I.1.10)
: G
4?[ is nearly unity. Above this energy it is apparent that

Wﬂ will violate the urnitarity condition. Therefore Eq.(I.1.3)
fails %o describe weak interactions at such high energies. At
first sight it is matural to think that the failure arises from
the neglect of higher order effects. If the following diagram

ig taken into account

Vi (%) e (p) %(f2)

€ (

(T.1.11)

¥(9)
the amplitude is glven by,

{mm '; @m? [d ?[ e, ¥ ('H/‘ (4-3’5)“"';\

. [“_“v,_ y"@-m?j:;,; Yf('{'XS)MW] (I.1.12)
with F«\"' q‘ = P+q = F,_-}-q,. .

However, since

" . . ) .
2(xm)” J p9
the amplitude again diverges. In gquantum electrodynamlcs

divergent integrals also exists, and these divergencies may

be removed at any order by charge and mass renormalization,

In the present case if one follows an analogous procedure

to cancel the divergence there will belhigher order diagrams
where the divergencies become more and‘ﬁore severe and each

requires a new set of renormalization constants. Thus, if all



b
possible diagrams are taken into account an infinite set of
renormalization constants will be needed.lIt follows that Fermi

theory of weak interactions is not a renormalizable theory.

I.2. INTERMEDIATE VECTOR BOSON HYPOTHESIS

Another apﬁroach to cure the high enérgy behaviour
would be to change the assumption of a point interaction in
lowest order, by a non-local interaction mediated by a wvector
boson. Then, there exist a vector field which couples to lepton

fields through the following Hamiltonian,

’;{(a.) :.ﬁ[Li@.) W“(m)-;. () V\{:(aﬂ (I.2.1)
where f is a coupling constant and \NL represents the inter-
mediate vector boson field and l.“ is the current given in
Eq.(I.1.4). The vector boson VL¢ is charged ahd it can have

the decay modes,

~W+.._.9/4 /.(19,) ;.-—ye. Ve (%) (I.2.2)

Consider the high energy behaviour of the crossed process

described by Eq.{(I.1l.5) which now occurs via W-exchange.

; (1.2.3)

The amplltude for thls process, using Eq.(Il.2.1) is,

2 gl K
Mm=1{ - /w [ - Ys)“ve][“ YPU*Ys)“ﬁJ (1.2.4)

with K-‘h o= P -
This amplitude reduces to Eq.{(I.1.6) if W is very heavy and,

L _ .
. NT Mr |
In the high energy limit Eq.(I.2.4) behaves eas,

'WL—J

(1.2.6)




where,
ot ,

K ~S (1.2.7)
Therefore 77[ approaches a constant value with increasing
c.m. energy, an advantage arising from the introduction of-the
W-boson. It may seem that W-boson will modify the high energy
behaviour and divergencies will be avoided. However, this is
nof 80 and the s-wave amplitude violates paitial wave unitarity.

Using Eq.(I.2:5) the amplitude in Eq.(I.2.4) can be written as,

{6)= (2.4 y TGP [ 44 285 (4 gat)]

-: w“‘
= P” Z (T‘P%)P‘T(me)mg‘ . (1.2.8)
e P

The s~-wave amplitude 18,

M- Bt { Qlom) 4+ Lebm(a-ce0]”

G 2ma By |

G g1y 2Bn ) (1.2.9)
showing théﬁiigﬂp is logarithmically divergent and partial
waves eventually violate unitarity condition. Even in renor-~
malizéble theories and for small coupling constants, there ié
an energy above which the perturbation expansion, to any finite
order, ceases to be meaningful. In the spesific example dis-
cussed above, }<“K34u: term in Eq.(I.2.4, causes the theory
to be unrenormalizable and violates unitarity.This term arises
from the longitudinal polarization of the W-boson and it is a
property common to all massive spin one particles. The intro-
duction of W-boson also introduces new divergencies in other
processes, As first explained by M. Gell-Mamn, M.L. Goldberger,
K. Kroll, F.E.'Low(s’le) the most celebrated example is the

—_ -
reaction ‘V&-ve.__;W W .

AN NN
(9 Wee kp)

e -
EASY MJ k.) (1.2.10)
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where &, and £_ are polarizations of W and W respectively.

At high energies,

~ S V.
m‘ \ﬁ\- VVQK("

80,

Bt (1“Kf>“*ve | (1.2.11)

l’WUers"" _ | (1.2.12)

and 472 grows quadratically with c.m. energf. Equivalently the

second order contribution to the wégi elastic scattering amplitude

.__'V'__ w+ o Ve
_ \,e:- . “'e-
AN
2

is also proportlonal to s . Since the K K/ piece of the
V%( propagator give rise to more severe divergencies in higher
orders it is necessary to find some means of eradicating the

divergence order by order.

I.3. WEINBERG~SALAM MODEL

One possibility, as proposed by S. Weinberg in 1967
is to introduce a new neutral particle in the s-channel, and

adjust its couplings to cancel the undesirable growth of the

"electron exchange in Eq.(I.2.lﬂ)(4'5'6’7v8,20L
v

(I.3.1)

Since Z is a neutral particle, the new model predicts neutral
currents which were first observed at CERN(5 7+8,9, 22). However
it turns out that meutral currents are not sufficient to cancel
all the divergencies or the leading hiéh gnergy behaviour of
all "bad“ graphs in the theory. Recent developments in the last

two decades made obvious that an acceptable theory which is



-
renormalizable, is a gauge invariant theory.

The Physical appeal of gauge invariance stems from the
0ld observation (Noether's theorem) that to every continous
symmetry of the lagrangian there corresponds a conservation
law. In-any field theory the classical a;tion "I" constructed

from the Lagrangian is,

T= (4t LLt):l{J“x:({'t}'(ﬁ), %Y) (1.3.2)
The eguation of motion is obtained by Hamilton's principle,
R :
b1 dtLi)=0 (I.3.3)
[ dtLm-0

which gives the Euler-lagrange equations if the variations

of the endpoints are fixed.

SL_Y'IL o - (1.3.4)
Y S(Or)

Now, consider a transformation of the fields in the form,
571
Yiny s &' Yn) 4y 2FEX() (I.3.5a)
L9k 3.
bj.’l//(x)—pea c')/u@ﬂ(x) (I.3.5b)
- which lead to the infinitesimal variations,
SW=iq(S)Y (T.3.6a)
8(y)= ig(8)pY : (I.3.6b)

Such a space-time independent transformation is called a
gauge transformation of the first kind or a global trans-
formation. If the Lagrangian is invariant under such a

global gauge transformation it should satisfy,

§L -0 " | (1.3.7)



Explicitly,
s¢. 84g g‘(:S s $E syt (1.3.8)
sy ¥ &y <,V+g@uy’)( ) (94" e

Using Eqns.(I.3.4-63-6b)5
SL-Y 8L _igrsayps ¥ SL Ligysp*
5(39) S s:(a,qz*) "

+-Qeﬁ i 5'«3/41}’4— -~ J‘xaﬁ ¥
g@#ﬁ ) 2(,4 (?)() Y

= ¢(Sx) af‘(sﬁ’é«’ 1Y~

Defining the current as,

(4 (1.3.9)
é‘(aﬂv*)q )

- _ sL Y4 ¥ (I.3.10)

o S5 gy _SL__gy >
PTEeW) T Ry

it is easily seen that the invariance in Eq.{I.3.7) leads to a

"conserved quantity,

9%}:0 (I.3.11)
However, the gauge transformation considered here is restricted,
since the transformation is merely a phase transformation. In
other words the gauge group is simply the rotation group U(1)
or 0(2) and the parameter " ®" is space-time independent.
Therefore, one can consider other groups‘and space-time dependent
® which will lead to gauge transformation of second kind.A
hint about the relevant gauge group can be obtained from the
Lagrangian Eq.(I.Z.l), (Henceforth only the electronic part
of the Iagrangian will be written. To obtain the full Lagrangian

same expression should be added with the substitution Ea4vh )

s ——Q—gﬁ ("';X&(“'XS')?-W ""?'Kx(d"‘{f)ve )
oo A § (DI ()T ()

LYY TR YY 11_1‘\7'—/"2\2 (I'3-12)



where

N :
CT=d(grie) - (1.3.13)

This form suggest that it is possible to define fields transfor-
ming as a left handed doublet under the "weak" SU(2) group,

L = i_?’f(’:) , | (I.3.14a)

ang,

L - (Ve, 2) ’l_-;_-&’ . | (I.3.14Db)

Describing the weak boson fields as,

&
We = Wi = aug”
- V2

Eq.{I.3.12) takes the following form,

(I.3.15)

£=_3(E%.ML_ +LE L) . (1.3.16)
Obviously a " Tz " part is absent, and a neutral interaction
with a neutral gauge boson Zo wust be included. Since, a priori,
nothing is known about the coupling of Z0 to neutrinos and
leptons, one should consider the most gemeral renormalizable
coupling. A vector boson coupling to the‘neutral lepton current

with‘only left handed neutrinos is expressed by,

is e LT AR AP Ks'e’*'gs'\—’;k/‘('l-;&.)vzzﬁ (I.3.17)

This Lagrangian may be written in terms of a singlet right

handed electron field and the doublet I in Eq.(I.3.14). The

right handed singlet is a new degree of freedom which
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automatically enters into the theory.

If the electromagnetic interactions of leptons are

considered, the lagrangian is given by,

4

= . (e_=electronic charge)
e =. o € Ae 0 g

i\

= ALY L Adops)e
:eoiéﬁ’i‘_;ﬁe-r(?e,é)'ﬁ'i&‘ﬁ(g 3"—?(?)& (1.3.18)

Defining the right handed part of the electron field toc be a
'singlet,

- —_— - ‘ 1-3019
pL_ ep = j;&s e , ( )

Eq.(I.3.18) takes the form,

ﬁm-; %ipﬂ:ﬁ/ﬁ*%tjﬂ._iﬁ% [_'g. (I.3.20)

Writing the Lagrangian in Eq.(I.3.17) with R and L

if p‘h’*’e*-&"-x L+£3Ly.¢ L'EZ (I.3.21)

so that the Ty parts of the lagrangians in Equs.(I.3.20-21)
}are,

({“""'{?) = —Lxx(e A+ 2" 1= L. (1.3.22)

Adding the above expression to the Lagrangian in Eq.(I.3.16)

the desired SU{2) gauge invariant interaction is obtained as,

L+(£M+ fi)zsg_%ts-gt“w,;ﬁ-gtz)kg wlei 2 e L (1.3.23)

where,

ol ol X _
e A +¥32 =\|€°2+€; W3 ’ (I.3.24)
1f, |
Q — e:~+ _.7- ' (1-3.25}



-11-
the above expression can be written with a single coupling

constant,

_>

Z-:—(f%—rf%)cz—_--gzlz.L.M; - (I.3.26)

where,
s ,
W = (W,,,W“Wﬂ . (1.3.27)
The remaining part of dﬁa~+‘ 2 is,
e, RAR +e°%1ﬁL—£1ﬁZR—%£ZLZL
o R (e fl+ L Z RoAT (- H+, 2L

Defining the orthogonal combination,

(1.3.28)

Y = —eo %4y A | (I.3.29)
\Je}+{s’*

the total interaction Lagrangian takes the form,

'Zr..-}'—' Z+{°_+aé:—gzg j}t_ +g’(_f£. LY L+ E,YR) ., (I.3.30)

The coefficient of electromagnetic current contained in 7;

must be equal to electronic charge so that,

e, = g'fs (I.3.31)
.!@‘L+¥32. '

Using Eq.(I.3.25) and Eq.(I.3.31) one obtains,

e-o':—' (I-3032)

]
%38 | .
The only parameter in the model EL, the Weinberg angle is

defined by,

- (o0, = 88, (I.3.33)

Thus ,one obtains the foliowing relations,

%:3’&»9“,:842“9,, 5 ,Qs:%mew (I.3.34)



]2~
o o
Interms of Weinberg angle the fields W3 and Y are written

as follows,

4 ot .
W, = a0 2" + s, A" (I.3.35a)

YQ’:'—A-CL»\QW 2K+CA‘:\9NH“. ' (I.3.35D)

Assuming that Gell-Mann Nishijima formula is also valid in
electro-weak interactions one can define a weak "hypercharge"

’lé_ such that,

Then it follows that,

/%R:(..Q_)R (I.3.37a)
14[_._._ (-4)L (I.3.37b)

This makes meaniagful the coefficient ‘//2 appearing in front
of the second term in Eq.(I.3.30). The free Lagrangian without

a mass term is,
:f.‘rm:'l:i,ZL +RiIR (1.3.38)

The interaction Lagrangian can be obtained from Eq.{(I.3.38) by

the following minimal substitutions,

l‘/a(mﬂ)_._);aﬂ-l-a’);u (I.3.39a)
' : VL |

faf(gML)__.,na/q_g%.W/A-t-g_iV/\. (I.3.390)
As it can easily be seen bg.(I.3.30) both contains electromagnetiz
and weak interactions. Bq.(I.3.30) is not simply the sum of
independent weak and electromagnetic parts as is seen in the
reaction vV—bVV+VV_ previously discussed. The quadratic leading
order growth of the two weak amplitudes does not in this case
compensate, but it cancells against the growth of electromagnetic
term. As pointed out by weinberg “this cooperation of weak and
electromagnetic currents in solving each others problems is

e s 4ha mract aatisfving feature of the theory(4’24).n
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I.4. GAUGE THEORY OF WEAK AND ELECTROMAGNETIC INTERACTIONS

A gauge theory for strong interactions is first attempted
by Yang and Mills in 1954 for the gauge group SU(2)(17), 17

L is Subject‘the gauge transformation,

, e__;g:(r)-:;_ +i § ()

L_ - , (I.4.1)
where the infinitesimal form becomes, |
- .
and the transformation property of the remaining fields are,
‘ . | (I.4.3a)
_AJ — Y 3 > .
— W, (I.4.3b)
W/._W/.‘-\-E}.x-f-gxx Ve 5
, :
Y= (I.4.3¢)
o= Yo Gt

then the Lagrangians in Eqns.{(I.4.4a-4b) are SU(2)xU(1)

gauge invariant,

—_ 3 = 4 s
£4=L(£%—3%-M+-_5_-32’)L, (1.4.4a)
fz_ = '1_2-‘(:')’—1-:'2_ 8’):)R. . (I.4.4b)

Defining the field tensor F/w as,
- - — - { .
Fav = 3uW, = 0y Wh ~g Wart W), > (1.4.5)

_—J v
the transformation of E;y under Eq.(I.4.2) is seen teo be,
— ’ LY —

F_;” - /UV_'_';?% v (I.4.6)

!
leading to gauge ijnvariant kinetic energy term for the W,‘\s,

Z.a - __;f‘;_ T:;N CE*Y. (I.4.7)
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The Euler-lagrange equation of motion for the non-interacting

gauge bosons is,

3/'____8-__;&__ - _.____gé (1.4.8)
$(3W) S,

From Eq.{(I.4.7) one obtains,

$4,  __a ﬁ;v B (I.4.9a)
8wy 7 |
¥, _ ng;,xw“’ . (I.4.90)

Substitution of Egqns.(Il.4.9a2-9b) into Eq.{I1.4.8) gives,

— - A
Brf:v -i-g\/%,x 7~ 0. (I.4.10)

This is a non-linear eguation which shows that non-abelian fields
are carrying isospin and their source is their current.Also

defining,
'ﬁ/ﬂ’ = D/,Vv — 97}* 5 (I.4.11)

it can easily seen that,

s
:Z,f -4 yg/w (I.4.12)
4 '

is also gauge invariant,

The sum of the Lagrangians glven in Eqns.(I1.4.4a2=-4b=-T7~ 12)

describing the interactions inveolving VVL, VL- and the leptons

becomes,

1:(:‘)/_ gél;’+i‘fg’3})l_ . (1.4.13)
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This Lagrangian contains no mass terms either for the leptons
or the gauge bosons. Therefore the gauge bosons described by
this Lagrangian are mgssless contradicting nature, where only
massless boson is the photon. Direct intrcduction of mass terms

into the Lagrangian in Eq.(I.4.13) destroys gauge invariance,

and the renormalizability of the theory.

I.5. HIGGS MECHANISM AND SPONTANEOUSLY BROKEN GAUGE THEORIES

Without destroying renormalizability and gauge invariance
of the theory, the masses are generated through spontaneocus
symmetry breaking. To be able to understand Higgs Mechanism
and spontaneous symmetry breaking(3’4’5'lo’29'3o'31’32) con-~
sider an abelian gauge theory containing only scalér and

vector particles (J and K%p . The Lagrangian is,

L-_LF, rf*’+[(a ie )T [(3-1eANY]

. 2 (I.5.1)
- Po- L(@)
being locally invariant under the transformations,
,  =ex(®) , (
Y =e P (I.5.2a)
(I.5.2b)
with (P expressed as,
Y= g+ C (1.5.3)

N2~

Consider only the part of ILagrangian for LP

Ly=¥q"9, G- @ P-4 (9" Q)% (1.5.4)

The equation of motion now is,

(. .20 ok roto\ (I.5.5)
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1f l? is assumed to be constant i.e. the vacuum expectation

value of the field LP , one has,
2 .
[/.« —+ 2&(@'.%.9)]@.;0 , (1.5.6)
and under the conditions ‘R)O ' /AZ>O the solution is,

LYy =0. (1.5.7)

But, under the conditions K) o, /"‘<0 another solution

is possible,

<“PT"P>, = - —f—t -'-2?:2- , (I.5.8)

from which it follows that,

<('P>¢ =2 efﬁ . | (1.5.9)

2

The new field with zero vacuum expectation value is,

_ A+ Qi (I.5.107
Tz .
assuming that <¢4>¢ = <¢z>°= @] . Using Eq.{I.5.10) and

separating real and imaginary parts one obtains,

Qani+ 3830 = A - 423+ ... (I.5.11a)
r =7

(D-\rfz—k{\’?\z)fb ~O+... | | (I.5.11bj

with A 4.«{’}\ © . Thus, the new fields are seen to have

A 2_0 . One of the fields gaines

mags and the other remaines massless. This situation arises

masses m .-2/.. >O and ™

from the fact that ')\-.7’:.0 . ‘Yhe symmetry of the lowest energy
state is not broken by the Lagrangian but by the vacuum itself,
Such symmetry breakings are called "spontaneously broken

gsymmetries" .
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Taking into consideration the Lagrangian in Eq.(I.5.1)
the equations of motion, :
AL Lo  MSL _ SL o
S('AY) A YCA 0 A

lead to,

B} a»r,:/'ﬂ,___ (A7 A )+ (1.5.12a)

en

h ( O p+ QKL?*(?) Y=re (af‘A,,) L(+Qfe/:i/‘9/ulf+ei/gf/2u ¢f. (1.5.12p)

Defining a new field,

B/.\—.-_- A/.A——é%\—b/"qbl (I.5.13)

one has,

o~
F}uv :D/.;Ay-by{qﬂ: Bf.Bv—’QvBﬂ: F}y (I.5.14)

so that,

! }/—”‘;v ~ 2% RY (I.5.15)

describing a massive vector field, the mass being m=le?\t. The
criginal massless vector field has acquired a longitudinal com-
pounent _eﬁ%%¢L allowing it to have a non zero mass. In terms

of new fields qb4 and Q?_ Eq.(I.5.12b) becomes,

(O-22)+ 0 =iO@+. (1.5.16)

which is the Klein~Gordon equation for (h, and ¢z is eaten up
by vector field, The disappearance of (92 may be understood in
another way. The defining equation of the new field E%u
Eq.(I.5.13), is akin to a gauge transformation with a gauge
function x::__d%JQA. The Lagrangian in Eq.{(I.5.1) is invariant
if lP__,’i_—f__‘Pi e_"bi-/?l simultaneously rotated. This form shows that

{Z
shifted fields correspond to a gauge transformation if only

linear terms are counsidered. Interms of Ettﬁi and E%A the

Nz



Lagrangian becomes,

Lot B Pt 0,00/ + £8.872+4)?

_/,"‘(71+¢4)1_."_;_(’A+<}54)“§ , (1.5.17)

showing explicitly the massive vector field_ﬁéu and the massive

Higgs scalar ¢% . The mechanism described above is calied the

Higgs mechanism,

The gauge boson masses can now be generated if the SU(2)
symmetry of the Lagrangian im Eq.(I.4.13) is spontaneously
broken. Consider the Higgs Lagrangian in Eq.(I.5.4) with /f%:()
and Y bveing SU(2) doublet scalar rield,

LQ:(ﬁ:) | (1.5.18)

Such a choice is consistent because,

'%LP=+“P {(I.5.19)

and if the coupling of (P to the gauge fields is introduced

through the covariant derlvatlve

[%p((?) 2%A4—1832.\Aj —-(3 /u

the coupling _-s/ﬁ. to the hypercharge field is also consistent
with CP having opposite hypercharge to the doublet L. Defining

the new fields after the spontaneous breaking to be,
{?+
o\
tﬁe kinetic term becomes,
01,4 [(37-ig3 0+ 447")¢’]
«[(9+igE W/*-’S )’“W:{p .
15 () s Yagte (2573 (5|

o :
) 7\ as O (1.5.20)

Ao o 8o tw b | a0t 548 2% farb \H(1.5.21)



-19-
*
so that the mass terms for W and ZO are given by,

' 2
My = 2 gr (1.5.22a)
rw\;‘ - %_(3?-_,,3!2);\7-. (1.5.22p)

However the electron and muon are still massless. A Yukawa-type
of interaction between leptons and (P can be considered in order

to give mass to the leptomns. An SU(2)xU(1) gauge invariant

yukawa interaction is,

lirki.(\.?}szons):__e&(ﬁ‘kpill_ -{-[—_‘LP]Q) . (I.5.23)

Using Eq.(I.5.20), Eq.(I.5.23) takes the form,

;E;.h 1 (9, laptons) = - f;%a 4'55‘ (0, A+ ¢b.) i;-_h’-(:“)

( }e i—Jﬁf (z b, ) i__i_ e.}

=-—'€3—(9H—¢ ee (I.5.24)
\ T T
leading to the electron mass,
™ ,:.i_g N (1.5.25)
“TgE |
while the neutrino stays massless. .

The most general SU(2)xU(1) gauge invariant and renor-
malizable Lagrangian of weak and electromagnetic interactions
igs then the sum of the Lagrangiaums in EQ.(I.4.13), Eq.(I.5.4)

and Eq.(I.5.23)., Explicitly written as,
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Z-_-_%(Bﬁwv 3 +%W xW,) _...__(3‘/ -9 /u)

(7, D) (7= g WL LX) (E) B Al (e 0¥ ) e

+[ (3 +TgWa 2 Lig A V)@l =42 91— G(191?)”

~fo(T LE(Q Q) () 4 () ”,‘_**‘(gf) Bie).

(1.5.26)

The interaction part becomes,

— - - ~ D - > PN
. = _%gga (W x Wy (W5 W) - QS(W/,xWV).(QrW. ~Tw)t

+€o(5y/‘e)ﬁ/¢+€of3n9w2f\(_é'yfe.—meé@wtyf% L)
@[(v AW e ]+ L | w (R4 20 ¢)
2?rg? z(qb +22¢)_ ge)gb_--—ﬁ(CP 42%3)

(1.5.27)
The above Lagrangian describes a unified theory of weak and
electromagnetic interactions, the s0 called Weinberg-Salam

mode1t314+5,7+8,9,20,21)

Upon comparison of Eq.(I.5.22a) and Eg.(I.5.22b) it is
seen that #niﬁ>vm“;. The coupling of the leptonic current to
the W-boson (Bq.(I.5.27)) must be egqual to the coupling constant

(Eq.(I.2.1)) £, therefore,

f:—g_—:% ‘ (I.5.28)
232
Using Eq.(I.2.5) one has,
2 _
Lo 8 i (I.5.29)
\Z S)W'vu ‘
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Substitution of rné from Eq.{I.5.22a) finally gives,

- A (I.5.30)
2 G

Solving Eg.(I.5.29) for ’“ﬁ and using Eq.(I.3.3%4) one has,

_ ez s, T
- e
’ 2'65:‘»"9“; Gfi

a .
where eog-_#ﬂ'ac ; & being the fine structure constant. Using

(I.5.31)

2
My

the experimental values, the lower limits for the masses become,

My 2 313 Gev, (1.5.32)
Mt = ecVZ >(?-4.é)26e.\/.1 (1.5.33)
26 sin26w ~

I.6., IRCLUSION OF HADRONS IN THE WEINBERG-SALAM MODEL

In order to include hadrons into this scheme, the
enlargement of the SU(2)xU(1l) gauge group into at least SU(3)
is required, if Cabibbo hypothesis and only three quarks are
considered, According to Cabibboe's picture of weak interaction
universality, the hadronic charged current is represented by

the expression,

& —

d= Y1 (1=ys5)(d aeb, +5 4in6, ) (I.6.1)

where u, ¢, 8 are Gell-~Mann quarks and GL is the Cabibbo

angle. One can form the left handed quark doublet,

N = A-Xs (M) (1.6.2)
L 2 &9

where,

Je_-; dese D, + 5406, -,
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The SU(2) raising and lowering operators T , will then generate
4; and j;f + The remaining left handed component,
S ) = i:'_ii'(_ds:né +5cen b (I.6.3a)
6/ "2 « «

and the three right handed components,

Yp= "Z_.’ N GO "—’P,-_Kf(dwgf—*“"“gc)

(Sho=BE (cosintrowabs)  (L6)

may be assigned to the singlet represantatiomns of the SU(Z)L.
The couplings to the U(1) gauge vector meson ?L are adjusted
as before, to get the correct charges. The coupling to the

Z-boson is then completely determined. It has the form,

' : — 3
et,tﬂamé?“J 2)'[61;'”‘_ @AJQNNL X/‘%’ /ULJ_ (I.6.4)

The last term of the above expression,
Ty Ut s = T () o =T (hpe)s s

(T t-ge) s+ Syultyp)d) conBsinb (16

is a strangeness changing neutral curreant and completely is
unacceptable. It will lead to transitiong of the form,
dfs" —-é}.\d"/a"
- o
via Z=-exchange. The d€ has the same quantum numbers as K 3
thus the existence of the strangeness changing neutral
current will give rise to the decay, .
)
4 -
K -—-)}*/A *

The amplitude of this decay is of the same order of magnitude

as that for Ki4ayﬂ?.(3). Thus the branching ratio r-(KL*iﬂtﬂ-)
r(K.)
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becomes of the order of unity, whereas experimentally it is
less than {O_s. Further, the same Z-exchange mechanism will
give rise to the transition,

dS essd
or, | .

Ka > K°
as a first order (in G) weak effect, which would lead to a mass
difference of Kg and Kg of order G, Yet, this mass difference
is entirely compatible with its being an order G2 effect(B).

Glashow, Iliapoulos and Maiani (GIM Hypothesis)(?123:24)

proposed that the undesirable strangeness changing terms can be
removed by introducing a fourth quark "ec". Comnstructing a

1
second doublet A&_ with the new guark ¢,

N';-_ (c) (1.6.6)
L Se /L

results an additional contribution to the Z~interaction given

by,
N;_ V/‘ % N, e~ EY/,. (’f—-xs.)c - JX/“ (4‘X5‘)d anagc

- §¥/‘ (4'X$)M29¢-+ (JK/u(,f_&)s-{-Eb({—d/S)dJ Ca-aé‘_ §ing, (I.6.7)

so the total neutral current becomes,

+Zy/\(4_xs)c..-a_y/‘(4-xs.)d— -S_gu(/f—ys)s . (I.6.8)

Thus, although the new quark ¢ does not contribute to the
strangeness changing neutral current, -its existence makes

possible to eliminate it.To the ¢ quark a new quantum number

heharm" which is conserved by strong interactions, is assigned.
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The discovery of the family of (¢€) bound states known

as psions(14'15) and the observation of charmed particles(ls)

which decay according to the (c,sa )L pattern constitute a

striking confirmation of the GIM hypothesis.

Thus, under the SU(2)xU(1)} electro-weak gauge group the

transformation properties of the quarks and the leptons would

be as follows,

LG G
doublets: e Ju ’(/" L> \dp/ud \sel/L (I.6.9a)

singlets: e.K,N_-, Yo de, Cr:Sp . (1.6.9b)

The charged and neutral currents ai-e(g) ’

4,(.-. gy,"l_:!é.e-l-'v Y 4__5’_/&+ux {_X.Jg

+ EX& 4-;_6. Sg (I.6.10a)

and,

{0 = =L tEd [1'-3(%.) O(h)sv6y ]

+§. i—&"ek[l-?(gﬂ-} Q(gg)&n w] (1.6.10D)

where _?: V e./A,U«,d s, ¢
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II. THE e € - n” PROCESS

IT1.1.KINEMATICS

The process éhg:irgu- (studied in colliding beam machines)
is possible only via neutral currents if lepton conservation

is assumed. The lowest order diagram is,

s (Pﬂai) y(? ;;ha)

(I1.1.1)
+
+ A (90t
e (PasSa) . ( vta)
The four-momentum and spin polarizations of corresponding
particles are shown respectively in the paranthesis.In the

lab. frame,

-

P,= (p‘i 10 s f,,'-’('“e’o\ (II.1.2a)

and in the center of mass frame (cm,,

Pﬁ(Pfo :ﬁ) , P, = (p;i—'ﬁ) . (I1.1.2b)

Since PVPE is a Lorentz-invariant,

£

MR b IT.1
P1OM€‘P-|0PQ,O+\P\ ( 3)
from which, using Eqns.(II.l.2a-2b) it follows that,

4

BN Ty N T e T | B ¢ < R Y

‘Therefore,

—h .;?- a3
“2""\?4‘1”:‘*']?“"‘2]-?“2 M:.""ll’a\z Mg‘-"-W\:'l'QMgz,lpl+[pl"(_II.1.5)

h:;\?-_ (Pl e i (II1.1.6)

R £ n
Zmg + 29 e B0l IMVERSITES! KETaFHad o



'Since,

one obtains,

while,

_ C <
Pio = Pao

The center of mass energy is,

$= (f’-«"‘?:.)l = (Pdﬁ'*"“e ) ﬁ)i

2 £
= 2m&+2me]a“
from which it follows that,

£ s=2m2
fw-_-__._.__._e-___

LMQ
Using Eq.(Ii.l.ll) in Eq.(II.l.S),

,_ S-2me
Me

Pc'_A "’ Zme e
10 ‘rg—

_ s _ ¢

= =37 =T

The Eq.(I1I.1.6) takes the form,

‘-s]_; e (PE Y mE

P Js

- \1 sz—Qsz
2ys”

In the cm system one has,

»

(I1.1.7)
(I1.1.8)

(11.1.9,

(II.1.10)

(11.1.11)

(I1.1.12)

(11.1.14)

(IT.1.15)
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where 9 is the scattering angle, 'so that the exchange

momentum square is,

t= (F*"“\«\l

= wp s+ 23] §)m® - 2p5 g5, - (11.1.16)

Using ?qns.(;},1112—14} one obtains,

PN z —
t - m2j+m;+ds'45“‘¢2‘1"4‘1“f‘ ) __-‘-i_ . (I1.1.17)
, " ‘

In the high energy limit where Nh_and w7‘are negligibie

these expressions reduces to,

\F\-_—_ _‘l;i (II.1.182)
and, \
‘(::—--%_—(4—-%9) (II.1.18b)

The third relativistic invariant is defined by,

\2
“':(P«"‘lz) (1I.1.19)

satisfying,

S+'t+u:2m2+2m4/§$30 (II.1.20)

which in the high energy limit becomes

u=__5?:.(4+ca¢9) . (IT.1.21)
Abbreviating cosf =z, the rqns.(II.1,18b~21) takes the

form, | .
::...._i.@-%) R :—%—(44—2). (Ir.1.22)

Using the energy-momentum conservation relation,

P4+P‘&= ?4"‘?2. - | (II.1.23)

the following relations are obtained:
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5=(F4+ P:L\Lz 2M89:+ QPI\'PIF;"J Q‘Fd'P:. = ﬁ?zz 71' 2".::21 (IT.1.24a)

t:(ﬁ.‘ q'u)z: M:'+m;—2ﬂ.14c-‘.., "2)"4"]4

e R Rpg S (1-7) (1I.1.24D)

0= (pi- )= me+ms = 2p, 4% =29,

SRR R S (1) (1I.1.24c)

The differential cross section is given by

de_ _4 4 < (m? (II.1.25)
diL ~ dems 4 52:_\ _1
tote

where M is the imnvariant matrix element.l
IT.2. CALCULATION OF THE INVARIANT MATRIX ELEMENT

From the interaction Lagrangian the relevant terms for the

e_"',_.:‘__;,/,;‘);' process, as seen in Eq.(I.5.27) become,

o [t p ) + Bl vt ()

(‘ﬁe‘) 5%9..;
X (mew A“’('L\ ~ 4inb, 2“(7&)) |
+4. ( oy ye 1 Y + B () ye "-‘iﬁ- "&(*9 Z (”‘)]

Abbreviating as %(-,Q_—_e(m) and ’(H,.(x) =)«(x) the scattering matrix

element takes the form in the lowest order,
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2 o 2 ;_‘

(MGWSI'V\QW

[Aiu 8., ( €(x) Y e(x) + = {(») e ) ( mgw lq“(x) — 4B, Zu('x))
+% (é'(ot) Y, %ﬁl e(») + ) Y %ﬁﬁ(a)) Zd(x)]
o [40n0 (00 Yy L8 5 g ol (- 458,2)

+:‘i(€(«g XP‘L’%S e(§)+F4) ¥ i%ﬁ/‘(a bzﬁ(a\-] 1€ (11.2.1)

where T denotes the time ordering of field operators. Since
o and p also distinguishes x and y, the cumbersome notation
can be simplified by dropping x and y. So Eq.(II.2.1) takes

the form,
L\ S\€E = chof‘@ f dady S| T

[ (Epe W)(E Yoo+ o) (B = 48,27)

(8, A 00,2
A 0B, (et ) (B A 08,2 Ey e
‘ g 2 .
o Ay (E'k’*"—";—?i e+ ) (B )

< (casBy AF_M zhy 2"
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The only non-zero contri‘outions are:

- e . el )

<ppIsIEe = e fidgf<olb ottt onaoty
- - - - + +

4By (Y iy pr 478 Y €Y@ ) Bes (prrsa) O (Puse) | 0

O\ T (w8, A"D + 40, 22F) 0>
- <Ol b)u'" (‘L:t:.) “,w-(%ti) '45'_"' A‘“Z QW (Eh’« E.F Yﬁ %xs:/“
— - + o + o
A CTula 1) tﬁYE e) ber (purss) @ (Pl o<\ T2 |0
o b5 0 88 (e
g ) b (a1 (s 107 LT (R 0>
-+ <Ol b/** (ﬂz)tﬁ.) “/.r(q«)td) %—(EYx 4:'3{5- e/-‘-"Yp %ﬁ/‘“

g A T e )8 (50107

ATEED] - e

Z0 and photon propagators are given by,

» ki~ dﬁ L P 2
o) T 2 2hi 103 = -itan) e O K s

(11.2.4)
k_z- mEHIE
<o\ T ﬁ‘(*)ﬁp(a) \Op= _iam)Hdk € ) _QF (11.2.5)

where k is the transferred 4-momentum and,

L:o.+b.-:.q.+q_ (11.2.6)
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" with

kl= (P«’*sz-"“‘ S - (xr.2.7)

In the high limit KK/m g g ’
n igh energy limit /ME is megligible.,After expansion
of field operators in terms of creation and amnnihilation ope-
rators as given in‘Eq.(A.'?) and using anti~commutation relations

of fermion fields as in Eq.(A.8) the Eq.(II.2.3) takes the

form,

L s\eey= (.L\(zn)“fclxdaflkiwe Wiy 8

2Sth megw kz'

L(PetPa)* ‘-(?1‘{'%)‘&

T(z+(?a:sz)5(x L8050 A (400 “)YP *(qi‘ ,_)e

p _.,_ +RA 'ktl 3)
"*"" (90t ¥u V) "’(qv a.)V+(Pz:sa)}/p%-(f‘u‘i)e’(%Hw <@ H)

"'-(!’4*?:-)1 ((Utr9)y
+[A*-“ Pz)sz\ Yo( e (P-vsq) (‘?nt )Y‘B ol (‘iﬂ’t") !

NCATA o Hecth)

R OEATARCEA RN EAL Y)

“'(f’a*‘ﬂ)"
"(71'*71)8

'—(‘?t""fa.)’( "(fﬂ"'?’a)ﬂ)

——-AM'\ ( 4[?;»52)}(&“( (P'U ‘i)“ HH ")Kpix"v (q!" 2)

(ﬁpf« o (90080 % (o) s 5 - (posi) ©

""(F‘l X
RS +%R)y

N :/A-‘(qv{«)xx ﬂg’u‘_(q&){z) 7. (b 2)% (s, ;.(‘h*-?a.)x -t-(ﬁ‘f‘Pa.)g')

|_'-.

—

2 A':Mzgw (-\-’;’4 (FU‘S&) Yx i—iﬁ Ue- (P"s“)u (?"t) YP /"‘+(?4 1)

+ 2 (B oo 1 v Gros0® -(?vt')!fp—'LW(‘L )¢ R SR

+ G).\-' (q“tc) Y" i ORY, +(ﬁa1tﬂ-) 1_(?2, $) XP _X_s: qe_(P‘,s.,) e (R AL -L(J’q"l'f‘z)a]

of
. e-:-k(""é) g P } (11.2.8)
. L'?"-. M-_‘_?'
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After integration of Eq.(I1.2.8) one obtains,

pip| S |dep= _L(zn)‘fg(ﬁ_,_ﬁ_%_%)M (11.2.9) "
where M is invariant matrix element and is equal o,
M= %’f % Y- G { Y o+ e';ti?_” % Yu - Ty Y
N bsinby c:s:Qw (s-~2) o /122‘E e %ﬁ' Va
= -—%‘-‘i Vot Y U CE“" X“\; -+ 45-’#9?;’ 0 (S_M%Z—- —g}{, (Cz_ tzj_ﬁ‘ rep ’L'%_K"‘)

= ¥ A- A+Ys
s U Uy (g __%CS_,. L _5_61)\//4., (II.2.10)
where,

- 2 — 2
e =25 B-1 , &= 2siw b, (11.2.11)

The vector and axial-vector coupling constants are defined by,

g, = Lt _ 9sh, - 4 (II.2.12)
A) 2 <
CL-lp 4
- = -4 II.2.1
gﬁ 2 2 x ( >

! The first term in 2q.(II.2.10) is purely electromagnetic,
' second term is purely weak‘amplitude. Therefore lM[z will

contain interference of these two amplitudes.

lM\ —’a.‘ e.+Y=c “}*Y Wur Ye 'Yp"e*:’;*ﬂff“f‘

%
e - . — & harad e )
L Verfute- ey Vi Ty (e B e ),

b sidQ, By s(s-md) T )
M Ve P A e Ay
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4
~+ Ce E+ Kx((.‘_ UE.‘ +C.R.4__1§-)u ‘\4 X (C'R—'XE +C '{"’XS')

bsinb oo 9»:‘5(5 Ma)

. v},& Yo YF Vo ‘Q}” XFuF
| e o (e A e At
. G . Ve.+x“(ﬁt_ 15 +CR Z&JM

e Y f
16 siv:'% C.N?ew (5 Ml

“(CR'%&-+ C,_"_‘i'_%"f )

Vit T Yo (L + < T ) Vi gf(ca_h@.‘.:.c )y (11.2.14)

To obtain the differential cross-section |M] must be averaged
over initial spins and summed over final spins. The spin

. projection operator is,

Ap,s) = w(p,s)a(p,s) :((+M)_41.(4+ ) (II.2.15)

so that

LM )+ A(p-9] = L (4 (11.2.16)

Using Eq.(I.5.33) one obtains,

4 Z lle‘ ’!.%2.;‘.‘.1 Trx“/g‘ﬂi.gp/%ﬂi’)‘r-xx%ﬁ/q;

.4'1'1?:: 2Gwma A A-Vs A+ys
+ 2 Trye o/ Ay (¢, 18 L 1T o

. .%—Tr Xx%yf(f.g "f_;—é: +C‘L_4_}&:),?:

S

4 AT Zem Top (o, Oy M) S p
s (s-mg?)

J Trx ({‘_g +C /f+& ) ?_gﬁ/?"/

L 260w Tep (8 o B b (C‘-"j’g'zl‘*‘cR L2y}

(5"‘“& )"

R N )Xyﬁ(cni-&}&i—ﬂ)ﬁ’ (11.2,17
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As it is easily seen that thelcontribution cf the second and
the third terms are equal. Using Eqns.{(B.6-7a-7b) the above

expression Eq.(II.2.17) beconmes,

A6 Mt
Fnrs‘f toem = 2 Tr Y Xr}(p ¥ 4 f:.f T"X Y { qu*?« ?"/“

, 4va 48,0 46" ﬁ?; Ten Gup

= 49;?.2“1(&‘% G P9 R-9e) (11.2.18)
Second+Third teem= zle:(Gs M:;} Tr Yo Yo ¥p Y3 (<0 diys + ! )
Ty P At oo XY B R 90
e:;zim ) Q’*- Xg "”‘lefﬁr)(‘ o oty )

'Fafl 32331p

ZSGTEX G\MQ cC+¢
e ) [( d+eg) Pir Fuda

+2¢, e P9, P9 | (1I.2.19)

Since,

c,,_2+c --.[(c c.,_)—a-(c.l_—c,_)]
and,

e cp = % [(c.‘:\— f-p_)z"‘ (cr- %31]

Eq.(I1.2.19) takes the following form,

‘ (A
SQ&D;A‘\‘T]M-PA* m=3QWMGML CL+c - . .Q,+p.0 »,
T Essmd) [ ettt nen)

4‘("-:""&)(.&'?2 B ?("P\‘m ﬂ.“iz) (1I.2.20)
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Fourth term can be obtained from Eq.(II.2.20) by the

: 2 2
substitutions e Se and Cg3Cp » 80

2 4 , |
Foueth ferm = 28 ME Tl Y (poda bt P e P 9a)
(8 -wgt)?

.+ c:"cé)(ﬂ'%\ Pz“h_P'l'q«: Pz‘)z)] (IT.2.21)
According to %hélﬁq.(II.1.25), cross~sections may be easily
calculated now in the high energy limit. Using Eqns.(II.1.24a
-24b—24c)'one obtains the following cross-sections:

The purely electromagnetic cross-section is,

ds: 4 498" s? +2)% 2
L] L . o p— -5." + 1""2
10 t4us s 46 [(4 Y (1-2)°]
o «H(4+2Y (II.2.22)
s
Since,
46 _ oy ds (II.2.23)
® d
then,
| dGun _ T*(4+2Y) (1I.2.24)
da s
thus, A 4
- | dz Slem
GLM-'[‘I dz
- 4 Tl II.2.
T s ( 25)

Similarly, one has for the interference part,

d6haf _ Gmz [(Cl_-* cﬂl(4+zlj+2(cg—cg)i"2] (1I.2.26)
dul. 46T (s-M3) ,
dordf _ % Gmz [(ct_-rcp.)z(’l*f)'i‘Q'(‘-:.-Cz)zl‘] (11.2.27)
de 8NZ (s-™z ) .
6-"':"\'}' - dGM;‘ . ((‘_L_i.gk)z . (II.2.28)
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For the purely weak part one obtains,

Js- Gls mg
d._{L 429“’2(5 mLY

L(CL']'C'JQ-) ("Hz )+22(c,'_cﬂ)] (11.2.29)

dey . .

d;u 6“”’(:{ [LC'L'*CR.] (4+‘t)+2(c. CR) Z] (II,2.30)

W= GS s ‘z. (CE-H'E)Z . ' (II.2.31)
24“(4-—-——;)

The differential cross section is the sum of Eq.(II.2.22),
Eq.(II.2.26) and Eq.(II.2.29),

de_ = xl( A+2) +- Sz [(C;_-t- "n)a(‘f-f-ia)‘*' 2(c,- ‘-R)z*:}

dR 4s A6TVT(s-m})
Ga& 2 242 2 2 a2
+ et YA+ ) (¢f-ca )22 (1I.2.32)
4284~ s‘)ﬁ- [( crea) (co-cx) J

II1.3. PARITY VIOLATION IN t.*f—)/.."}: AND THE EXPERIMENTAL RESULTS

Interference between photon and Zo exchange diagrams will in
general give rise to parity viclating effects in the angular
distribution of /u-pairs, because the coupling of the photon
is vectorial while Zo has an axial vector coupling. The parity

violation can be measured by considering,

do(v) _ de-2)

d &b dJSL
do(z) , deta)
dL ddt (I1.3.1)

Which would be zero in the case of parity coservation. Using

z=co.99 , one has from Weinberg-Salam model,
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[3

“GM;L Gz-S 2 (=
N
A 4T (s "“3_211“(4--‘*/*“‘7132(L ) 8 (11.3.2)
2«;? 4+ %8mifareny? G (G 44add
BTVZ (s-m) 64T (1= 5\

The dominant "Eérﬁi‘é are first terms in the numerator and

denominator, so that

A ~ &G-MEL. L 45 . s 0
HTZ (s~mz) 2% A+

GMz,s b (I1.3.3)

2miZ & ( s—-m;_) 4+ coa’B
which obviously differs from zeroc.

P’

There is also a forward backward asymmetry A/.\/., in the

angular distribution of the /u.-pairs. Forward scattering

cross-section is,

- J clc(a) dz

2 Tx®, wGmi 4 2 2
= £ + -4 2le+ep) +{c -<p
3 s 84z (s-m3) [ ( LreR) + (6 8] J

G 4 oty pavt (2 _c2\2 '
+ Aletred Y+ (ec-<2) ] (II.3.4)
UTT (4= 5wk )" is( - yrlemse)

and backward scattering cross-section is,

T | s
= 2 Ty 280 T4 o)™ () ]

G's 4 (c¥he Vi (eXmed? (II.3.5)
+ Lle+eg Y+ (e —cp) ] -
6'4'1:‘(4_5/%)1.[ (clter) + (=2 ]

Therefore the forward-backward asymmetry is given by,
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A _ F—-R
rr F+ 3
<
=3 & . N (1I.3.6)
4 JalT& s-m3 3a

where use has been made of Eq.(II.2.13). Eq.(II.3.6)can be used

to test the Weinberg-Salam model,if the Weinberg angle %b is
known, since m, depends on the value of Gw » the free parameter
of the model, Q” is determined experimentally from lepton
scattering. According fo the Weinberg-Salam model, one has the

cross-section for ghe and y,e scattering as,

/4

4 I|Hz w\* II- 07
S (e >%e)=7 6 g w[1-4en8, + 22 s, | (I1.3.7a)
Temvie)= A A _ 42 ot (II.3.7b)
(G ol ]
where, 2&2 ) c
— b4
o= M 2 YT

Three events have been identified using neutrino beams at
CEZRN and at the Gargamelle bubble chamber as the process

?LQ..:,?&Q. . The cross-sections measured satisfy(22),

-t
6‘('\; e~ /,e.)<0 26x40 (

{GeV

0.03115¢{(4t;u\c.m<r(v R a)<013x{‘0 (4%:\1) W (II1.3.80)

. 2
allowing the determination of 9 , leading to the value(3’9' 2)
| 04 £ sitBy L 045 .« (%0 % k)

1
Today, the world average value of Weinberg angle 1s( 3)

-

sinf, = 0.23 £ 0.009 . (I1.3.9)
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The masses of intermediate vector bosons W and Zo’ using

Bq.(I1.5.31) and Eq.(I.5.33) are now determined to be,

mwz"-ps GeV | ~ (11.3.10a)
WMo 28 GeV (I1.3.10b)

with the avaible gnergiés today in the colliding beam machines
the direct obgerfétion of wt and Z, is not ﬁossible. In near
future the machines will reach to threshold of Wi:and Zo
production and the model will be tested directly.

Also,vin view of lage cross-sections obtained in deep
inelastic scattering of neutrinos via thé charged current, one

can hope that similar results can be obtained from scattering

by meutral currents. In the interactious,

1I.3.1lla

;ZN"‘"“’EX | (II.3.11b)

where N represents the nucleon, 1 any lepton and X any

hadronic state, according Weinberg-Salam model, the following

branching ratios are obtained(25’26’27’28),

G‘i(—vN)/G‘w(vN)-_-%g.sc.."ew_s;n’ew_,._sz_ (II.3.122)
6:(VN)/6, (3N) = Z-Q_Qs(n'*é?w ~ s, _‘..:1:r (II.3.12b)
The neutral current cross-sections have been measured, at CERN
and NAL, and experimentally it is found that(22),
€i(vN)/6‘w(vN)=D.2'fiﬂ«03 (II.3.1%a)
S (FN)/5,(7N)= 0.41%.0.08 (I1.3.13b)

which gives for the Weinberg angle,

0.2<sihz9w<o-‘f (I1.3.14)
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The forward backward asyumetry of f4-pair creation (Eq.(II.3.6))
for the cm energy s= 1000 Gev® is obtained to be,

A 4.026x40 MB? 4ooox€§2.j_‘
Yk 4 ﬁTTxO 9204 4000 -84% &

— - D' o*?‘ ' ) C e w (11.3.15) PR

) ) .
~if one uses sin 9“,= 0.23, m,= 83 Gev and gA=-1A2. The asymmetry
data obtained by the various PETRA groups are(ll),

Group @ JADE MARK J PLUTO TASSO

A -8k * - - .
fl‘(%) *9 o0X9 T7£10 112, . am

The combined angular distribution is plotted in Fig.l and
it yields <%‘> = =(0.9% 4,9)% which is very near the
theoretically predicted value -~ 7.7 %.

The model also can be tested on the basis of experimental
limits of the strenght of weak neutral currents in lepton pair
production. The importancé of a this kind of test arises from .
the fact that it .is possible to determine weak couplings for
the lepton sector in a‘model independent way and free from
hadron uncertainties. The theoretical values of 8y and gy
defined by Fq.(II.2.12) and Eq.(II.2.13) using sin®By = 0.23

are,

i

.  g2= 0.0016 and gy= 0.25 (II.3.16)

The JADE collaboration finds(IZ),

- g2= 0.01%0.08 and g2= 0.18% 0.16

.Since these values are consistent with the theoretical values
given in Eq.(II.B.lG), one can use qu§11.2.32),thdgtermiqe‘$F£ﬂyﬁj

the value of éinzek;‘with‘giYen‘gv.apﬁ.sAinmbe result is,

0.0‘f <£:ntew <O‘f-6 (35% c.f)
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The values for the vector and axial vector weak coupling
constants thus found are in agreement with the predictions
of Weinberg-Salam modgl and within the framework of this
model experiments give a value of sin29w which agrees with
~the current world average. The mass of the weak boson, with
minimal assumptioﬁs appears to be greater than 51 Gev.
Various groups using the Weinberg-Salam model, used

-+ - - -
the data on € ¢ ~»p e ’ e'e -—v,-r"}\' to extract values on
sinzq” . The results are(ll),

Lower bound Upper bound sin29“,
MARK J 0.07 0.42 0.24 0.11
JADE - : 0.55 0.25 0.18
PLUTO - 0.57 0.23 0.17
PASSO - 0.52 -

II.4. CONCLUDING REMARKS

The process dﬁﬁaycg' via photon and Z, exchange is
analysed in first order perturbation theory and the purely
electromagnetic, the purely weak and the interference cross
sections are obtained. Parity violation and front to back
ratio in the reaction has been calculated and it is shown
that the theoretical value agrees well w}th experiments.

Since it is not possible to determine the Weinberg
angle, sin? g+ Within the model, the experimental values
of Ek,are given and it is shown that the world average value
of Weinberg angle, sin29w2:0.23 is consistent with the
calculations and experimental data for the cross-section

N F
and front to back asymmetry 1n ee-aycp .
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The Weinberg-Salam modgl now, being & well established
theory‘deséribing electromagnetic and weak interactions,
attemps have been made to try to unify strong interactions
and even gravitation. Such models all have the SU(Z)WXU(I)
group as a subgroup i.é. contain the Weinberg-Salam model.

In the neér future, it is expected that the new
machines will eunable the wi and Z  bosons to be observed

directly.
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APPENDIX 4

NoTATION 22 3)
A four vector is denoted by,

A =(A,,A), (4.1)

the scalar product of two four vectors 15,'

A.B= A, BO—A.-é ) (a.2)
the employed metric being,
3“: - 3M= il ~%33=—"4, '3)“’:0 (/.a:r.-u) (4.3)
The Dirac X—matrices satisfy,
) v v
y}‘g + Ka‘)‘= 23/‘ Ic,, N {Ys-)y/..g::c (4.4)
and are represented as
I, © /o &
= (A.5)
Jo = 1 47\3 o
¢ -I,
with \
I A.
X—“éﬁ\rvgx (Y= e (8.6)
The expansion of field operators in terms of creation and
annihilation operators are as f0110w5(3):

If () is a fermion field, .

-1 ipx i) .
Y )= (2 ﬂ]'-sfdap (2&) é{a(p,s)ufgg)é P + b*(ﬁs)v(p,s)e P} (4.7}

where a(p,s) and b(p,s) are particle and anti-particle anni-

hilation operators with the following anti-commutation

relations

ia(Ps);""(Pﬁ]} $b(ps) SR (4.8)
= (2P 2p, S(p-P)dss’
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If LP(-;L) is a boson field,

3 ! .
Y()= @) K (2K 2 (ko e T V)

where 6¢(K)'A) is the polarization vector, satisfying,

K'e(KI%):.O )ELK}?‘)-Q(K,% ‘--'-"‘S‘a‘)4 37431'213 (A.lO)
and the commutation relations for the creation and anni-

hilation operators being

La(k), °+(‘-:/*)] = [b(Lp); b(k,) ] (4.11)
- (211)32\<,,-£‘L'k'-i) gz/. ’ .

The operator A—Ys represents the left handed helicity

projection operg—tor whereasﬂ 4_‘1&‘ projects the right

handed heliecity part of a spin gi/2 field. Feynman's slash

notation is used throughout as, ’Q':X/‘,aj"

Dirac's particle and anti-particle spinors are normalized

respectively as follows,
E(P,:s)u(p,:s)z_wp,ts)v(p,ts}-:.ZM y (A.12)

¥

and plane wave projection operators have the property,

a(p,s) Tlpis) = (Frm) 4 (A+ysd) (4-13a)

V(P»S)V(P,s)z(f—m) %—(4—?%#)‘ . (A.,13b)



~46=

APPENDIX B

SOME TRACE PROPERTIES OF X-—MATRICES

a. T'_X"XF = 4%#

Proof: Using Eg.(A.4) and cyclic property of the trace gives,

Ty 3 =-Te Yp e+ lg,tﬁ T I,
2 Tw (ux#:: gg“f? |
Tefuyp = 44w (.1)
b Teyy fayr (o= 43:«!3335" 49, g{ga_+’fgu¢gﬁs
Proof: Using Eq.(A.4) successively one obtains,

T Yals Yo = TR S Yoo 2 1T Es s T Ye e

+2us T Y
Cyclic property of trace and Eq.(B.l) yields,

Teye Yeys¥s= bgup 855~ 48us 83;‘*‘48“3@8 (3.2)

e Trefp s Yo fs= ¥ CxpSe
Proof: Case 1. x=8, S+6. -

TFX‘" (pYsfeis = L Tr-(: KS s Yo Yi Yo ¥a
= gu&—ﬁ.xsvo' YO‘QQVzX;

(Y, 6) is a pair from the set (0,1,2,3%), If (/4 sV ) is
the other pair, then as a result of Eq.(B.1l),

T Y o Yo Yo Y5~ © Gun

Since /uzf.-\? , it follows that,

T"‘(&X?XSK&&"O (B.3a)

Case 2. All indices are different.

Ty yaysgess = b Tt ¥pYate Yo dudals

(a ,F , £,6) is a permutation of (0,1,2,3).- Therefore,



4 for positive permutations

T"X“KMS X6‘65={ (B.3Db)

G for negative permutations

Combining Eq.:(B.3%a) and Eq.(B.3b) one obtains,

‘ =4y (B.4)
T (p Vs e s = Cupsc
d. Summing and subtracting Eq.(B.4) to Eq.(B.2) the following

relation emerges,

%TPK& XF XS Xo‘ (){ 1‘&531 gap ﬂi‘c"gu‘s 3}«‘*8«6‘39 :‘{'eotpé‘e‘ (B.5)
e. If one defines, Q“GP?-:%T‘PX"‘XFXPKT ,then
g 82050 5550
KT
Qx@py gl (ng,ag gupgs?*@uggs‘ﬁ)(ﬁ g gTg")
= SG-S 3¢899€%+5ﬂ59 y

53.»93” +*a«53’ Qpéwﬁ

g8ince,

1
35_ &nga/*: SP 36?85"= 8;38,.9& F: gg gb—Fg@ 86‘93 ~

it follows that, .
% A
o Fr:z(gi 5+ 35 sk . (8.6

f. If one defines, ’KKQP€=4¢‘E~K¢ XSXPX‘? (4'.!“.{5.) , then,

«dp
fx"‘ﬁf‘ 4593{; ,X 1 o ‘(5 S/“

X &

n{q?;g



99!6"&3 is a symmetric tensor with respect to the indices «

andp therefore the contraction with the totally antisymmetric

tensor P)* ylelds Zero. Also using Bq.(B.6) one obtains,

<, F*\,L"‘Ff‘ (555 + 87.87)-2(80 95 - 35.95)
=48%g);- . (B.7a)

By similar reasoning,

ﬁepgx"‘Pﬁ 48?\3)4 | (B.7b)
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