~ GEOMETRICAL APPROACHES
" SOLITON EQUATIONS

( Master Thwl)

“ - l‘(. > d ,J' y L a o -
N g o, ] g . . 2
~ UGURHAN MUGAN
- i * 4 - - :
- g Py 5 3 -

- ' " Boazigi University






GEOMETKICAL APPROACHES TO SOLITON EQUATIONS

by
Ugurhan MufZan

Thesis
Submitted in Partial
Fulfillment of Requirements
for the Degree of Mastaer of Sclence

in Physlics

Bogazici University Library

(TR

BoZazgigi University
latanbul | Turkey

February, 1981



i

ACEKENOWLEDGMENT

[ wish to express my sincere gratitude to my thesis
supervisor Dr. hahwi Gliven for his continued intrest and

valuable comments throuxghout this work.

1l would also like to express my thanks to Prof. Dr.
Atlilla Agpkur who made me get interested in this suject

and Prof. Dr., Yavuz hutku for his most vajiuable helps.




ACKNOWLEDGMENT

{ wish to express my sincere gratitude to my thesis
supervisor Dr., kahwi Glven for his continued intrest and

valuatle comments throughout this work.

1 would also like to exnpress wmy thanks to Prof. Dr.
atilla Agxar who made me get interested In this asunject

and I'rof. Dr. Yavus kutku for his wmeegt vaiuable helips,.



ABSTRACT

A review of some recent geometrical approaches to
the soliton equations is presented. The nonlinear evolution
equations which belong to: the Ablowits-Kaup-NewslleSegur
acheme are described in terms of & linear connection whose
curvature vanishes., The properties of this soliton connec-
tion are discussed using exterior differential forms. The
existence of infinite 'numper of conservation laws and
blicklund transformations are considered within this frame-
work, lt is shown that soliton equations may aiso be viewed
a8 embedding problems, A general procedure which associates
with the scliton connection two-dimensional surfaces em-
Ledded in three-dimensional <flat space is outlined.
The aurfaces assoociated with the sine-Gordon and the

Korteweg-deVries equations are explicitly constructed.
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I, LNTKODUCTLON

In thie thenis'wo shall be intrested in a claas of
nonlinear evolution equations which has been Q;tonnively
studied during the last two decades. The well-known mem-
bers of this claes are the Korteweg-de Vries (KdV) equation,
the modified Korteweg-deVries (MKdV) equation, the sine-
uordon equation and the nonlinear Schridinger eguation,
This clags of equations admit particularly interesting
spacial solutions which are known as solitons and find
wide applications in various branchesKOf physics and en-
gineering. Other distinctive features of this class are
the following:

1. The initial value prodblem for these nonlinear
partial differential equations can be solved exactly. This
is accomplished by using the method of inverse scattering
transform which ﬁay be regarded as the generaliszation of
the Fourier analysis to nonlinear problems. In this method
one associates with each equation a linear scattering prob-
lem in which the unknown variable of the nonlinear equation
plays the role of the scattering potential. This unknown
variable is determined by linear computations using the in-
verse scattering theory. The inverse ascattering transform
was first introduced for the KdV equation by Gardner,
Greene , Kruskal and Miura(l) and was subsesquently generalize

2
by Lax( ), Zakharov and Shabat(s), Ablowitz, Kaup, Newell

and begur(4) and by Calegero and Degasporiel(s).

2. These evolution equations have Blcklund transfor.



mutions, A bdcklund transformation relates the solution
of a given'equation to another sclution of the same equa-
tion or to a solution of another equation, Historically,
this property was first observed for the sine-Gordon e-
quation in the study of p-oudo-pbericﬁl lurfacel(s).

3. One can associate with each equation an infin.
ite number of conservation lawa, Under suitable boundary
conditions, these conservation laws give rise to an infin.
ite number of constantsof motion, These provide simple
and efficient methoda to study the properties of the aso.
lutions. The existence of such coneserved quantities was

firet noted by Miura(7) for the KdV equation. N

The purpose of the present thesis i@ to give a
survey of some recent goemetric approaches to this class
of evolution equations. There are two major reasona for
undertaking such a study. First, it ie desirable to elu-
cidute the relutionship between the nonlinear equations
and their associated linear problems. The crucial step in
applying the inversee scattering transform to a given equa-
tion is the determination of its associated linear probleuw,
Therefore, 1t is attractive to consider frameworks which
encompass both the nonlinear evolution equations and their
associated linear problems. Secondly, it is also desirable
to gain more ineight into relationship between the inverse
gcattering transform, Bécklund transformationa‘and the ex._
istence of infinite number of conservation laws, With these

goals in mind, in Chapter Il we introduce the class of squa.



tions which belong to the Ablowits, Kaup, Newell and Segur
(AKNS) schema(‘) and outline some of their basic properties.
In Chapter III we first follow Crampin, Pirani and Robinson(a
and'show that the linear scattering problems for these evo-
lution equations may be described in terms of a linear con.
nection. This scliton connection is represented by a matrix
of 1-forms which takes values in the Lie algebra of SL(2,R).
ln this framework, the requirement that the curvature of

this connection vanishes gives rise to the desired nonlinear
equations, We then utilise the works of C::ampin(9 ) and

(10)

Sasaki and interpret the Blicklund transformations and

the existence of the infinite number of conservation laws.
in Chapter 1V we show that the soliton equations may also

be viewed as embedding problems. Utilizing the observations
of lLund and Regge(ll) and Glrses and Nutku(lz) we discuss
how one associates with each nonlinear evolution equation
and its linear problem, ﬁ two-dimensional surface embedded
in a three-dimensional flat aspace, Conversely, from such em-
bedding problems, one can construct nonlinear egquations
which can be solved using the inverse scattering transform,

We conlude the thesis with a discussion of these geometric

frameworks,



RE P EVOLUTION EQUATIONS SOLVABLE BY INVEKSE SCATTBRING
THANS FOKM

1, Particular Examples

In this section we present the well-known examples

of the nonlinear evolution equations and diecuss their sym.

metries,
a. The Kortweg-deVries (KAV) Bquation: _ ' :
6+ 609, + @ =0 - (11.1)
Here the subscripte denote the partial differentiations
4w1th'raspect to the independent variables t and X, The K4V
equation is encountered in the theories of shallow water
waves , anharmonic lattice, longitidunal dispersive waves in
elastic rods and in plasma physics. This list is not exhaus-
tive; & rather large class of nearly pyperbolic syatem; has
been shown to reduce to KdV equation., There are three aif -
ferent trunsformations which 1eaVe'tha K4aV equation invariant

These are the ualilean transeformations:
l'nlf%‘t » £’=-£ » @I(“'at’)=¢(lat)*'%} ’ (11'2)
the 8pace-time translations; a

Kexen, , tatst,, §=d, (11.3)

and the ecaie tranaformations:

x'aqx , '{'.-.rr{ . é'—.-.r]‘l(b . (II.4)

b. The Modified Korteweg-deVries (MKdV) Equation:

¢t+o¢1¢l+¢ltt 20 . | (I1.5)

This equation has been used to describe acustic waves in



tertain anharmonic lattices and Alfén waves in collision-
less plasma, [t can be shown that 1if ¢ e a solution of
the MKdV equation then (¢*+¢’) sat{sfies the KdV equation.
The MKAV equation shares with the KdV equation the invari-
ance under the transformations (II.2) and (II.3), The scale
transformations: '

t’-r]i ’ t'-rl"{ ’ ¢’-"|'.¢ . : (11-6)

also leaves the MKdV egquation unaltered.

¢. The Sine-uvordon Equation:

SR SR PR I | (11.7)
If a simple change of the independent variables is performed
in the sine-uordon equation also takes the form

b= . - : (11.8)
This equation arises in the atudy of pseudospherical sur -
facea.'lt-has been used to describe the propogation of a
crystal dislocation, Bloch wall motion of magnetic crystals;
the propogation of a magnetic flux of Josephson line, It has
also been employed in élehontary particle theory, The space-
time translations (II,3), the two-dimesional Lorentz trans -

formations:

._M;z:l_-_g ‘ y_..z.%% v S =g, b, (11.9)

-y
a8 well as the scalae transformations:
l.'.r]n. , *’-r]_l{ . ¢i‘¢ , ” (II'. 10)

leave the sine-Gordon equation invariant,

d. The Nonlinear Schriddinger Equation:
' 4 .
"¢t+ - +2'<H ¢=0 . (11.11)



some physical applicatione are stationary two-dimehsional
self-focusing of a plane wave, one-dimension self modula-
tion of a monochromatic wave, the self frapping phenomena
of non-linear optios, propogation of a heat pulse in a
solid and langmuir wavee in plasma, This equation is in-
variant under (I[.3), the scale transformations:

1’=rlv. ’ {’-_rf{‘. s ¢'=¢"1¢ , (II.12)

and the transformation: ,
, y tex- Uit
!:X-Q.Lt , t=¢ R ¢=e (b, ku.on;_\. (11.13)

2. The AKNS System

L]

Given a field (t)(l.&) in one space % and one time &

dimensions, conasider the following Cauchy problem:

b=k() , (11.14)

Pix,t-0)=0, () , . : (11.15)
where X 18 a certain nonlinear operator and the subscript
t denotes purtial differentiation with respect to time. We
wish to solve this nonlinear equation by associating to it
a linear scattering problem, For this purpose we introduce
a linear operator L which depends on ¢(:,t) and defines an
eigenvalue problem by the equation ,

Lv:r]v . (11,16)
where q is the eigenvalue. Suppose the time evolution of
the eigenfunctions V is governed by another operator M ao
that

ivthv . B (11.17)
By differentiating (11,16) with respect to t and using
(1i,17) we obtain



av=-L{il-[M.L]}v . (11.18)
llence , we see that the eligenvalues will be independent of

time if the operators satisfy the La.i condition:

1L£=[M.L] . (11.19)
Pollowing Ablowitz, Kaup, Newell and Segur (AKNS)“) we
shall be interested only in the operators having the forms

4 -

L= & % . (1I.20)
r (-3
. on
A B

Mas , (11.21)

. LC DJ
and therefore we shall take

v

v=| '] . ﬁ (11.22)
Va

For the moment we shall assume that q{.", A,B,C.D are
all arbitrary functions of x,t and the eigemvalue 1
With these choices (I11.16) will take the form

i = QY o (_II.I23a)
Vz,,*'\"z-"""s . (II.23b)
These equations will define us a scattering problem and the
functions a(x,{,r\) and r‘(u,{,r\\ willl play the role of a scat-
tering potential, On the other hand, the time dependence
of v, and Vv, will be governed by the general linear egquations
v";-;/f\v,*&.f1 , (11.24a)
V"t’ Cv,+ th . (II.24p)
S0 far nothing guarantees that rl is indepentent of time,
After differentiating (I11.23) with respect to t , (II.24)

with respsct to X and setting rkao, we firat note that



A,z-D, = %C-rb . (11.25)
which lmplies
As-D+d), (1I1.26)

and without any loss of gereratity we set d=(. When this
property is taken into account in the equations obtained by
croas differentiation, we find that rlt'O 1s satisfied if
the following conditions hold:

--qC-rB (11.27a)
Bi-2nb= 9, - 2Aq, | (11.270)
C +2r|C=r +2Ar . (11,27¢)

These equations are the compatibility comditions for (IL, 16)
'.and (11.17) and are ;quivalent to (II, 19) All the nonlinear
evolution equations that were mentioned in the previous
section "can be identified as the special cases of (I1I,27).
For this purpose let ue firat expand the functions A, B,

and C in powers of r'|:

A=a5r]5+a‘rf+qlr]+q° o (11,28a)
b= b,rff b‘rrwr bu’]* be » (11,26D)
Cz\car]u c,rf'i-c,rl-r Co (11,28¢)

and- substitute (I11,28) into (I1I1,27), Comparing the coef-

ficients of powere of r] we find

A<a _.,r] azr]-_.(a rgrm)r‘-—-azqr‘

_(q_r qlr +ay , . - (I11,29a)

B=ayqr- (g~ —ﬂsM

- (a,q+ zasq r+30,9,- 7 33“) 5 (II.29D)
C= Qa"r (a r'+;. s ,‘)r]

{ {
-(Q.r'+1 3<ir4+a_azr‘-_ 5r;‘) « (II,29¢)

4



We next substitute (II,29) into (1I,27b) and (I1I1.27¢) which

result 'in the egquations

Y- i— ay (i“l" 6qrq )+ jia‘ (qu-24T)

. _ng“?zqqq=o B . (11,30a)
Fe- 05 (ng-6qrr )+ La, (r,-2qr?) |
LA R Q" 72 a2 Vux= 49
S -Q+ 2Q,r =0 . (1I.30Db)

Now the choice, G,-qiunzto, a,=-4 and ra-4, q,-é reduce
(11.30a) to the K4V equation and the coefficients A, B, C,
take the form

A:;-4r\3-2r]¢-§‘ ’ (11.31la)
Be-du- 29 A28 (11310
C=4q1+2¢ . (11.31c)

On the other hand, if we let aaQ,sQ,=0,a,:~+ and ra-q, ﬂ‘@
we get the MKAV equation together with the relations

A=-4r‘5_2r‘c} , L (1I.32a)
bo-du-2qb- A7R-2d G
Cz Quu- 20+ 4n'd+29° . © (11.320)

The nonlinear Schrddinger equation is obtained by special-
) : S ‘
teing to Qo= Q2 Qy=0 , Q=-2¢ and n.-.i" T;{) and then

A‘:Q.«‘.rl v, (1I,33a)
B:Ltb‘-i-llr]q) y (II.33b)
C:iq):-.zlqci)‘ . . (11.33c)

Similarly, we can also find the evolution equations corres-—
ponding to the expansion in inverse powers orrl . Por exem-
ple taking :

| - ]

yielda .\ | : ']

C:E%‘-ﬂ s (I1.34)
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y
%= 7090 5 Q=409 ny=-4ar, (11.33)
and the choice: '
4
r= - L — 2l o = (11-36)
% 5 Q=4 coa@, b=c 4&:'@,
gives us the sine-Gordon equation. If we choose
\ A
~-Q= -4 — 11.37)

rfa q % Y 054 cO;h@ 3 bscurbint‘\ég( 3
then we obtain the sinh-Gordon equatiom,

The nonlinear evolution equations (II.14) which
fall 1into the ANKS scheme are solved by the following pro-
“cedure: 1) Utilising the initial conditions one first cal-
culates the scattering data ( such as the reflection coeffi-
cten‘tn, discrete eigenvalues etc.) for v at \t\.n,‘ t<0. The
potentigl g(l,t) 1s a regular function defined for all real

values of the variable % and is assumed to vanish asymptotl.-

cally: q(x,t)—'o as xX—ptoo .

2) Using the asymptotic form of M at \xluw and (.II.27) one
then determines time evolution of this scattering data, 3)As
the nonlinsar field ¢)(1,i) plays the role of the scattering
potential , one constructs @(i,t) from the knowledge of the

time dependent ecattering data using the technigues develope

for the inverse scattering problems,

This method of solution ie illustrated in Figure I,
We shall not go into details of the inverse scattering trans
form a8 there are extensive louro.u(5 )'(13) on this subject
Here it will be sufficient for our purpose only to note that
there "8 8 close similarity between this method of solutior
of the nonlinear evolution equations and the Fourier anal-

ysis of the linear problems., Consider a linear time evolu-



11l

t1°9.9quation'ror‘u field u(x,t) satisfying the initial condi-
tion W(x,0)=Ug{x) . One may introduce the Fourier transferm
G(kA) of Ulst). U (ko) can be calculated from the Pourier
trunsform of U(x,k) for ts0 and the initial condition Ug(x) .
Then if we take the Fourier transform of the given partial
diffrential equation we obtain the evolution equation in k-
space for the field ﬁ(k,l) which can be immediatly integrated.
The last step which yiolldnlthe solution uU(x,t) of the given
linear partial differential equation is the inverse Fourier
transform. The adventage of this method is thaf the time
evolution is much simpler in k —epace than in x-space.
This prooedure may be summarized schematically as follows:
U(%,0) — G (k,0) —» & (k,b) —w U (x,8) .
S50, from the simjilarity in the features, we may consider
the AKNS scheme as an extension of the Fourier analysis

to nonlinear problems,

: Time Evolution
¢(‘ &) of 8cattering
) sty
Inverse Scattering Data
Transform (at [x}ze0)
|
i
: |
(11.14) ? (11.17)

1

Scattering Data

_ Direct Problem
(h(x) (r.1e) | (at lxle, ko)

Figure 1
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3, hﬁcklund Transformations

One of the basic properties of the nonlinear partial
differential equations which can be solved by inverse scat -
tering transform is that each one admits Bicklund transfor-
mationse. Houghly speaking, Bicklund transformation 1is a
pair of first order differential equation which relate a
solution of a higher order differential equation to another
solution of the same eqguation, or to a iolution of another
differential equation, Utilising these first order equations
one may construct new solutions from & given solution of the
ﬁar£1a1 differential equation., In many problems the trivial
solution ¢h€>exiatl and this solution may be employed as
the initial step in constructing new solutions, Moreover,
in certain cases new solutions can even be constructed al-
gebraically from a set of known aoiutlona. An important
example of such a procedure is the theorem of permutability
for the sine-Gordon equation(14).

Let us introduce a new variable t by

~8=_‘\i;,_ . | (11,38)
b3

Then the associated linear problems (1I1,23) and (I1I,24) res-
pectively take the form .
‘6‘,‘=2q‘6+q-—rt2 . (11,39a)
¥,=Ber2a¥-CcY¥* . (11.390)
These equations are called the Riccati form of (II.23) and
(11.24). To obtain the Blcklund transformations, we follow

!
Konno and Wadati(ls) and 1ntroduco'ﬁ which is assumed to
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satisfy (11.39a) with & new potential ‘itv.). The new potenw
tial is defined as

%mg%m ‘f“"']) (11.40)
Next step is to eliminate r in (II 39) and (I11.40). Here

we shall consider only the following three classes:

When we apply this procedure, the Riccati equation
(II, 39&) beocomes

=2q!‘+¢§+¥"‘ | (11,41)

If we take the function E and the new fisld é as
K—-B‘ 2n , | (II.428)
@(ﬂ ¢(x\+2 (-3 —lt‘), - (11.420)

¢ satiafy the Riccati form (II.41). By introducing q>=-°-‘n
and é--w, (11.42b) can be written as

D (w-)=-22 (I1.43)

= (w W) = 2.“(‘64-2']\, \’
and then we have |

w-w'=-2(% +9.q)+2k(+.\ , (11.44)

where k(t) comes from the integration, The integrability
~ condition for (w-u-t') implies that k(t) is & constant, Next,
combining (I1.42b), which can be expressed as

| f‘a—%-_ (We-w,) , ‘ - (1I.45)
with (.1.41) we obtain .
| W1+“’:=4q‘5+lf1 . - (11.46)
After taking the square of (I1I.44) and choosing the inte-
grationl constant k as -n we now have
4 (w-w')'= 2[!‘ +2.'$r‘+ ] (11,47)

This ohoicq ruultl in one of the equations of the
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LHcklund transformation:
(w-w)*
2
Substitution of f from (1I,47) to the other Riccati form

. (1I1.48a)

U"ﬁ'w --—2" +

(1I,39b) gives us the other equation of the pair;
wt w .2.B+4A[ ""]] -2C [_._&_.l] (II1,48b)

When we substitute A, B and C given in (II.31) these are

the biécklund transformations for the K4V equation,

Hence, we get two equations which relate the partial
derivatives of u,w’to W and W', so they can be used to cal-
culate w’(x,t) from the knowledge of W{x,4) without using
. 'the inverse scattering transform. Another solution w*(x,t)

can be obtained from the knowledge of (%) and so on.

Clase ii: r=-q, qz¢.

The liccatl form (II, 413) takes the form

=2r]‘6‘+¢+q>8 (11,49)

I we chooaea and 4) a8
'..-;— R (II.50a)
@m cbm QL{G,\"B (11.50b)

then 3 satisfies the (II 49) with ¢ Using the procedure
and the notatione that are outlined for class 1, we get
. the BHcklund transformations for class ii;
w ﬂ.o, _-2r] sin(w-w') (II.51a)
W, - W (C B)-(®+4C) cos (w- u)')+2Aun(uJ-d)(II 51b)
(LI,51) are t.he Bicklund transformations for the modified
KdV equation when A, B and C given 1in (.11.32) are substi-

tuted in%to the proper places. The Blicklund transformations
u .
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for the sine-Gordon equation can be obtained by substitu-

$

3 and A,D and C given in (II,22), These can be
written as

‘(@ @)_—2 sm[‘ (¢ - 4))] (II.52a)
4 (@ @)-—-— am[‘ ($+ Q)] (I1,52b)

ting w:

The Riccati form becomu

%, = Zr‘f-r(b @" - (II,53)

If we choose " and § as

‘8-  (11.54a)

$'= d) 2 t“(ﬁw)t‘f ’ © (11.54b)
then ¥ with  satisfies (II.53) for realq. % find that

¢+ ¢= 4,\_I.._f_l..ﬂ_i. . | (1I.55)
which may be inverted to give B

% _ 2n+V4nt - | &'+ &1 ' (I1.56)

‘l
(b/ + @' |
. When we next substitute (II,56) in the Riccati forms of
this class and use the A, ® and C given in (II,33), tn
Blicklund transformations for nonlinsar Schriddinger equation

are obtained,

b, + 4l = (- Q))\/4r|—|4> +F , (11.57a)
. + & = L(4,- 4")\/4'\"“1) I
V@) (188 P |- ) . amsm

4. Infinite Number of Conaservation Laws

~ By a conservation law we understand an equatian

having the form
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Te+N =0, ' (11.58)
where T and N are funotion of the solution c)u.t) of the
nonlinear evolution equation, The function T is called the

conserved density and N the conserved flow or flux, Then
the tunctional

=S T[Q)(x,t)] o, (11.59)

will be constant of motion provided the integral exists and
the integrand satisfies certain boundary conditions at in-
finity. 'Tha conservation laws associated with a given non-
linear equation can be generated by ﬁtililiﬂg the associated
1in;ar problem, For this-purpose let us introduce two var-

iablas

.:.'ll. . (1I.60a)
Na

8=
31.-_ v . (11,60b)

The variable §, has already been considered in Section 3,
The linear equations (II,23) and (II,24) can be used to
obtain the equations

3, :-1f]81 + r-ql?-," , (II.61a)
B‘kz c - ZAK‘ - Br:" [ ] (11.61b)
b, = 2%, +q- 2 | (11.62a)
B',t-.-.B +2AY, -C¥; . (11.62b)

v
From the compatidbility conditions ’C;“-‘;h (+=4,2) ana

(11.2'1‘) ‘one finds the following conservation laws:
(q¥,), = (A+DY), | (11.63a)
(r8), =(-A+C%), . - (11.63b)
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The cosfficients of dx in c“, and e“‘,_, after respeotively

multiplying with % and r, give the equations for the con-
served denasities:

Zr‘(qﬁ) ra_-(g'!?) ri_( (II.64a)
Zr](l"l?)_-rqra-(r"é‘)"+r~(ﬂr ) (11.64b)

Let us aeek the power series solution of (II,64) in inverse
powers of r] |

3_‘6 Mfrl . | - (11.65)

This expanaion gives rise to the following recursion rela-
tion '

=-—[(rq_)6 g g{. {M_t-&(—ﬂ-) ] (11.66)

which gives rise to

r'
ma=2 :[sg (_!_) [rz%z*.q_ r, (‘i-"l)‘] _'
: {rr‘,a "73:[3 (Q‘r“)‘- (qrr‘)“a_
+3‘(3r‘)‘4~ (3‘ r), + 9‘“‘ r, ]} ’

.etc. n this way the determination of density T=q¥, 1a

completed. Then the flux N=A+BY can easily be determined

becaucas., when T 18 known one may use the relation

S N= A+—-'§-BT i (11.67)

Finally, substituting these expressions back into (I1I.63a)
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the ejuating the coefficients of the same powers of 1 one
obtaine explicitly the aferomentioned infinite set of con -~

servation laws, Once T is determined the constant of motion

can be obtained from (II.59),
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111, THR SOLITON CONNECTION

1, Jdentification of the Connection

Lasic equations of the assocciated linear problem can

be rewritten in the form

. [ Y Nf. Y
v - - v :
21" [+ T Y% ao R (1II.1)
-3} FV"' SIS _
v)] LA BY(v] |
_372{ v‘ + c : : 20 - (I11,2),
Ly - :

- - F F .
Following Crampin, Pirani, and Robinnon( 8)_, we note that
(II1,1) and (III,2) can be identified as the two components
of the equation

I Th r"‘" . _
e + 'am = ' |
where R, S,vs 1,2 ; manzl,2 and the summation convention is

employed. Here we take wxx, x*:t and set

3 | A ‘
N 1% R ..|"" = Bl . (111.4)
Therefore (III,3) can be interpreted as the property that the
vector field v" is covariantly constant: -
2 |
whers Q‘ is the covariant derivative. This interpretation
[}

requires that the r;., bs idetified as the components of & lin
ear connection on the space on which v is defined, Let us de-
note by I" the connection one-forms |

Tl dn | ' C(111.6)

- lsm % T . .y

This matrix of one-forms has three independent one-form

entries:
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g ¢
r- e'; -eo ’
where
--(qdli-Ad{‘.) ’ (I11.7a)
__(quBJl:) . (I111.7b)
0= - (rdx+Cdt) . (11I.70)

We shall call this connection the soliton connection,
Note that the soliton comnection I" may be expressed
F.0°X, ., «e0,1,2, " (111.8)
where X_are the infinitesimal generators of s1(2,R); the
Lie algebra of the group 5L(2,R), Consider the 2x2 unmodu-

.lar real matrices,

o o _ |
" S= ) «b-p¥al . (I1I1.9)
$ & O-p
Sie a general element ‘oritho group 8L(2,R). When we intro--
duce the one parameter subgroup of 8L(2,R) as

vlo o) oo ) aefs ) oo

we can write any element of the group SL(2,R) as the product

6=8° 8' 8’- ' o | (111.11)
assuming b;o. The infinitesimal generators of the lie alge-

bra of the group SL(2,R) are obtained' as

| i O 0
X:j’;.st[o ,,] y X; dua, [0 OJ ‘dba_’ ](111 12)

and they have the oomnutation relations:

[Xg’X,]:D(,, [X.,X,]=-2X1 ’ [X,,X,_].-X..(III.H)

Hence the soliton connection  takes values in the Lie alge-

bra of the group SL(2,R).
Having the identified the soliton connection we can

now define the curvature iwo-form by



21

R=dlM+TAT , | (1I1.14)

which also takes values in the Lie algebra of SL(2,R). In

(111.14) d denotes the exterior derivative and in the second.
term matrix and exterior n'ultiplicationo are to be underatood.
When the curvature two-form is expanded in terms of the gen -

U
erators of the lie algebra of SL(2 R) as R:Rx. we have

K=dg'+a'a0* -
=(-A +<3C rB) deadt , (III.15a)
R d6'+26°8'
-(q -B, +2rlb 2qA) JMJ{ (III.15b)
R'= d8*-26°
= (f‘t-C,-?.rlC +2rA) dxadt (III.15¢)
that is,

R = dxadt {(—A +qC+rB) X +(q-B+2qB
-723A)X‘+(rt C- 2qC+2rA)X)}(III.16)
We note that vanishing of the curvature two-form gives the
compatibility conditions (II1,27) which were obtained in the
previous chapter, For example, when one iubatitutea the
values of A, B, C, q and r  which are given in
(11.31), (II.32) and (II,34), (I1I.36), one gets, for the
KdV equation:

R=dundt {($,+69d, +d,, )X, - | (11217

For the modified K4V equation the curvature two-form is

R:dxAdt{(¢t+6¢‘¢,+<}m)(X.—-X,)} y (1I1.18)

and for the sine-Gordon equation one finds

R:th\cl{:{ (¢“_- sind) (XQ-X,)} . (111.19)

ﬁeao results can be summarized as follows: The lin-

ear equations associated with the nonlinear evolution equa -
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tions can be written as the vanishing of the covariant &eriva-
tive of a real two-component vector field., In other words,the
linear equations may be described in terms of a linear con-
nection which takeas its values in 81(2 R). The vanishing of

the curvature two-foram of this connection gi'nl the nonlinear

. ‘evolution equations,

Note ' that the connection one-form I" 1s not wnique
for a given nonlinear evolution. eqﬁation. We can obtain new
forms of the connection by gauge transformations ‘

F—T"28'TS +5'4S , (111,20)
-txez:o S is an element of the group S8L(2,R), Waen the connec -

tion tranaforme as in (III,20), curvature two-form R behaves

as
/ -l
R—R=S8RS=0 . (111.21)
The correaponding chango in the vector field ie given by
v—ov'z § v . _ | (111,22)

" The action of the one-parameter subgroups of SL(2,R)

on the connection one-forms are as follows;

5‘3 :

6°-—-v9° G +J}\ ' - (1I1.23a)
—d'= . | (III,23b)
6—+8z=e s | (I11.23c)
.Sza‘:
9—#6" e’-a (III.24a)
6-—»g'= 2a8°+6 039 -da (I1I,24b)

9’-—*9z o* © (III.240)
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5:32:

9°—+G°:- e°+bo' , | (11I.25a)
6'—6 =6, (1I1.25b)
00" =-2b0"- L6'+ 8- db . (III.25¢)

2., Interpretation of Blcklund Transformations

in the previous section we have seen that the van-
ishing of the curvature two-foras constructed from the soli-
ton connection gives us the nonlinear partial diffore_ntial
squations, The condition R=0 can be written as the foli-
lowipg three equationa:

- J6°+ e'ab*=z0 , o (in.zsa)
de'+28°A8'=0 , | (I11.26D)
d8*-20A0%*-0 . (111.26¢)

Now_o_gnlidolr the lart invariant one-forms of SL(2,R):
-1 w. wl . .
L=X"dX= O (111.27)

where X is a general element of the group 8L(2,8). The
Maurer-Cartan equations for SL(2,R) are: |
Jw® ,,“M, G H-Q.u Aw
AL'#LAL dat 2w nud -(A..;‘-.-daw")

which can bs written as
Jdu™ *ICPB‘ whaw® =0 , (I11.29)
where C'g are the structure constant of SL(2,R), Therefore,

o (111,28)

(I11.26) are formally same as the Maurer-Cartan equations
for tho left invariant one-forms of SL(2,R). However it
should be noted that 9" are one-forms defined on the two.di-

2
mensional space R. Using the Frobenius Theorem, one can fina
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a SL(2,R) valued matrix G such that

r-g'dg . | | | (111.30)

The meaning of this statement is that G is & mapping from
an open set of R into SL(2,R):
X R— SL(2, R) ,
and this map 1nducu‘a mapping 'j."'rromj space of one-forms on
SL(2,R) into the li:ac;o ot one-forms on R*, Therefore
xﬂ(.w‘)ged .
We may write (III.30) as
dG=GI" . | (111.31)
let the bottom row of (3 be denoted ﬁy (Vyy =Yy ). Then
JV:’-‘-"ae’"’nez » 'JVI'VIB' w8 . (1IL.32)
These are equivalent to the associated linear egquations

(II.23) and (II,24).

Using the Iwasawa daoonponitioncls) any element of
the group SL{2,R) can be written uniquely as a product of

an upper triangular matrix and a rotation matrix, Therefore

we may set B )

G=TR" , | (I11,33)
where T 18 an upper triangular matrix valued function and R
is & rotation wmatrix valued function on Rz. We shall choose

them as
Q conly Ly
T=|, Vo | R= _sinly sk ‘,] (111, 34)

When we construct T'.JT from (II1.33) we obtain

- -4

TJdT=RJR+K'TR . (111.35)
The left hand side of (I11,35) is also upper triangular, So
it implies that the lower left corner element of right hand



8side vanishes:

dtp+(e'-» 9*) =26°sinq>+(6'+9*)co-.,q; . (III.36)
Thie equation can be written as two firet order partial dif-
ferential equations fur the rotation angle q). From E;Ndepen-
dence it contains & sclution of the given nonlinear partial
differential equation and ite partial derivatives., If éfkon-
taine a known molution then (III,36) gives a relation between
the known solution and the rotation angle ﬁl.‘Thil observa -
tion suggeats that (IIl.36) must be linked to the Bicklund
transformations associated with the nonlinear svolution equa -
tion. We shall now show that the Llcklund tranaformations
can be interpreted as the gauge transformation which makes

connection one-form [ an upper triangular matrix(g).

‘1f we rewrite the matrix Q4n (IIL.33) expilicitly,

Qcoa%‘--—b"“% “"“%*b"’“!' y (III.37)

the ratio of the elements of bottom row (v , -V{) of Fgives
v
- . III,38
- T-= {82 - (I11,38)

When one t -as the exterior derivat.ve of ' and uses (III.2b6)

one obtain

482206 (706", (111.39)
wniéh 18 equivalent to Riccati form of (I[I.23) and (1I.24).
Crumpin( 9) has observed that U te a ‘peeaudopotential for the

_ e
soliton equation, in the ssnse of Wahlquist and Eatabrookﬁll),

lLet us expilicitly demonstrate this interpretation
of the bHcklund transformations in the two standart examples.
Firet, sonsider the sine.Gordon equation. Using (II1.7) eand

(i1.3%) the connection‘one;form for this equation can easily

L,:‘ . _i = l!\HUngWEQ! th ' b
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be oonatructod. It 1a given by . ,
dr 4 Ll coaddt 1 L dnddt
SO R i Qudergy snd
7 ¢, 9n 0‘«‘-;] t\nt}# _-(r‘dt + z—qcosé dt)

Let us now utilise the gauge freedom of the soliton connec-

J(III,40)

tion and perform a transformation on T with the matrix
cost$ -elnl
| ‘5;{5:.1 N ¢ fé] : (11I.41)
4 -z- OSI |
This transformation brings | into the form
-coa%(rldn +i—- dt) ('i"b“"l‘"?_‘)d"" %‘i’*ﬁ"‘“%_‘)dt
r_: | i drl | ' Q- Jt " Cos (dliu)(III.42)
(-‘_-qj.ﬂ]mn )t-t(i-(i)t-ﬁ"“z) 9218
Now, - the application of (III,36) gives us
d\{) ""h‘(‘bﬁ"‘"‘ @tdt)z- (2:] cos %—dx-‘--‘-m%dt}s\n\p
. +(2"\“"$.‘d“"5'.7| sind. dk)cosy »(1T1.43)

which results in the following pair of first order partial
differential equations; : .
| ' ' ' é
4, +7 Q'-..-. 2r' (smgmsup-ms._slnq») s (III,44a)
LA d =L (s ; III.44b
wt -5:43 == (s:n sy + cos 4 siny) . (IIL.44b)
With the definition qa%thuo equations are, of course,

same &as the cnes givenm in (I11,52).

Ap the second example we take the KAV equation
¢ #1244, +§..,70. Note that the cosffictent of G, ts dir-
ferent from <(Il.1). The possible difference comes from the
choice of -2 instead of ra=! in (II,29) and (II,30). With
thie different choice, the connection one-form for this equa -
tion can easily be constructed by using (IXI,7) and the new

forms of Ay B,C 4in (I11.29). It is given by

s v radn 428t ~pansdrednedd
r. qan+ (4 v 44 +24,) baws +q>1“)$i (111,45)

2dx- (Bq"f-ﬁd)) dt r‘dx- (4:\54-4{"11-26.)&
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Again, by using the gauge freedom of the soliton connection

one may perform sequential transformations on T with the ma~
tricel.

N2 0 | 0 - . | O.
= o Yal' 5,,= % ol S,=[ l]'(nl'w)

Then the new form of l", after setting ?\;q‘ is

a2 dt dx-4(d+n)dt
=l 2 )xe [4(+M2$-N+28,. 10t 294" (HAT)

Therefore, (III1,39) can be written as

T2 n-28- 'Zf' ; (I1II,48a)
-_4«54, +4(¢+7\)'Z, +4(+N(2¢-7)
+2 . (I1I.48b)

1t can be verii’ied easily that if@ satisfies the KdV equa-

tion given in the above form then “ ‘
(I) A-- Tt " (I11.49)
is alaso solution of the same equation. By introducing ¢"-wu

and ég-w,‘ and omitting the constant of integration
(111.49) takes the familiar form

2
~wi-w, = n- (W-w)" (111.50a)
Utilizing (IIL.48b) the second equation of the pair is

obtained as

W, *‘*’t“}(q? +$¢'+ ¢*)

+2 (W-w) (W, w,,) . (II1.50)

%. The Conservation Laws

In this section we shall again consider the variables
B, and ¥, that were defined by (II.60a) and (II.60b). We first
rote that the Hiccatli equations (II,61) for '8. can be combined
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into the Pfaffian equation

Similarly, from (II,62) and the definition of the soliton

' conneotion, we can oaiily write

N, =dY, -0 +20°%,48'=0 . (1r1.52)
We next investigate the integrability conditions for
(I11,51) and (1II,52), By taking the exterior derivatives of
A, and N, and using vanishing of the curvatuse of the
soliton connection we find that, in order to be completely
intégrablo , N, and A, must satisfy the necessary and suffi-
cient conditions o : \

dn,z-2,A(0°+%,0") , (111.53)

dh,=2a,A(8-%,0") . (111.54)
Hence we asee that for the sslutions of (III,51) and (111,52)

the onq-rorms

J,=9°_+%,6'. y o (III,55a)

d,_=—6°+t,_6°' . (I11.55b)
must be closed ‘

~=|J. =0 -y | (I1I,56a)

dd‘.o . | | (I1I,56b)

If thesu equations are expanded in terms of the basis two-
form diadt one of course, regains the conservation laws
(II.63a) and (II1.63b), Therefore, we observe that the soliton
connection provides an elegant way of expressing the conser-

vation laws,
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IV, SOLITON EQUATIONS AS EMBEDDING PROBLEMS 5,

1. Fundamental Bquations of Surface 'Thoory

Let Mbe a three-dimensional flat space. At each

point PeM introduce the orthonormal basis vectors § { t=43)
satisfying the oonditionl

€..€ R R (v
where the netric is given as . .
_ 'Iij‘d“a (1,e,€') , | (1v.2)

and €'+€'’ | . The indicatora G,&’ are introduced in order to
handle the different choices of the signature of the metric.
Obviously, the uasual Euclidean space ocorrespond to the case
€a€=1.

i.ot 4F be a small displacement, This displacement
ia a vector valued one-~form and we can expand it in. terms
of € as ‘ B |
cﬁy--co‘é-t . | (1V.3)
where W' are the dual basis one-forms. We can deo a similar
expansion for the displacements d'& in the basis vectors

thenselvel :

;L w 3 (1v.4)

" As we are conlidering only tho flat spaces, the operator d
can be interpreted as the exterior derivative. Taking the
exterior derivative of (IV,1) and hotmg that .20 we

‘)
obtain

h)lj"'w‘j'tzo . : - (Iv.5)



30

On the other hand, taking the exterior derivative of (IV.3)
and J(d'p)to gives : |

duwt +u>l‘¢-4\_.wl =0 . \ (IV.6)
similarly, d(d@)sO results 1n the equation
9“‘] =dwa +m|‘;_ A ua"J xO , (1v.7)

which expresses that for the flat spaces the curvature two-
form is sero, (IV,3), (IV.4), (IV,5) are imowmn as the

Cartan's structure equations and (IV.6), (IV,7) are the in-
tegrability conditions, | B |

Now, consider a tw-dinnoionnl surface ubeddod in
M. Choose a moving frame (€,,€,.,;) at each peint ¥ of
the surface in such a way that @, and &, are tangent and €,
is normal to the surface, 81noo-F is oconstrained to move in
the surface ,JF must lie in the tangent plane, so the sur-
, 'is defined by — T "l“““" | T

w3=.'0 ’ i ‘ , (1v.8)
and therefore as it is stated S

™ | = 2 ‘ - _

dP=w € +u€, . - (1v.9)

When we distinguish the tangent vectors and the normal
(IV.4) can be written as -

ﬂ Jé,-u}.'ép-t-w‘“é', , (o, pui,2) . (1V.10)
This equation is kmown as the Gauu‘ eguation, From 35.35-0
we have "é',.ée*_,‘-olo d% must also lie in the tangent plane.
We thus obtain the Weingarten equation;

dé'saw“aé‘_‘- W (1Iv,11)
. Again from seperation of the equations for the surface and
its normal, the integrability conditions can be written in

the form ¥
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dw“+w““wp «0 , - (1v.12)
&033 = (.Q' 3 AW twa3A wr =0 , (1v.13)
and venishing of curvature two-form implies that
o dw, Wi al?, a0, (1V.14a)
dwsw,aw? «0 L, (1V.14b)
dw'y +w?, Aw's =0, (IV.14c)

which are called the Gauui-llaina.rdi-Codaui equationa, Let

us introduce the notation

Tawy , T Wy . (1v.15)
‘Then (IV,13) and (IV,14) can be written, as follows:
| T AW + TA w0 |, - - (1Iv.16)
d‘*"z -e€’n'AT:0, | (IV.17a)
dr'+w, AT"20 . (1V.17b)
dit-ew', AT =0 . | (IV.17¢)

The ona-forms ' and W2 can be expressed as linear
combinations of ' and W*, Because of the relation (IV,16),
we have & symmetry in the coefficients:

Tk slwr | (1v.18a)

Tz elw' +nw?* . (1v,18b)
Since there is only one linearly independent two-form on
the surface, we must have ' L

T'AT* =z €€’ Kw'aw? (1v.19)
where o

K=e& (kn-€l) , | (1v,20)
is a scalar and called the Gaussian curvature, Similarly,

WIAT - WAT? ia & two-form on the surface and

WAT' - w'AT? = 2H w'Aaw* |, (Iv.21)
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defines & scalar H called the mean curvature of the surface,

Using (IV,18) the mean ocurvature oan be written as

2H= E.lu-e.n . (Iv.22)
The charecteristic roots of the matrix
| |
: ]
el n

are called the principal curvatures « and «, of the surface,
We consequently have |

2H=K, +&, , (1v.23)
Kee'K«, . ' (1v.24)
Returning back to (IV.17a) we see that |
- duo,-—KwM.o =0 , (Iv,.25)
and the Riemannnn curvature two form G,or the surface is
1=dw,_ = Kw'aw® . (1v.26)

The first fundamental form of the surface is defined
by : - .

dsf:Jf.d_F-w'om'+e. UJ"Qu.)n' ’ (1Iv.27)
where ® denotes the tensor product. The first fundamental
form refers to thc intrineic properties of the surface. The
information about how.tho surface is embedded in the three.di.
" mensional flat manifold is contained in the second fundamental
rorm {the extrinsic curvature), This quantity is defined as

| dsir_..el‘é’s.d'ﬁ'-_-_ (T'ew + T*@w?) . (Iv.28)

I'inally, let us note that the classical form of the equations
cf the surface theory can be obtained by choosing

w'=VE du + (F/Jf') dv , (Iv.29a)
e (H/JE‘) dv (1v,29b)

wiere U, V are the local coordinates, E,F ,G are the metric
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funotions and H%: EG-F% Also choosing

T'=Pdu+Qdv , (IV.30a)

M= Rdu+ Sdv | (IV,30b)
the second fundamental form can be expreased as A

dsd = Ldu*+ 2M dudve Ndve . (1v.31)

2. The Sine- Gordon ﬂuation

Consider a two-dimensional surface having the line
e¢lement |

ds*= slin*@ dv* + cos?Bdu? (1v.32)
where G@(u,v) and U, v are the local coordinates on the sur-
face, Choosing the orthonormal basis one-forms as

W=sn@dv , - (1V.33a)

W= cosB8du (IV.33D)
th§ connection one-form of the surface and its curvature
two-form can easily be constructed, In the ooordindte basis
they are given by

W, =6,dv+e,da , (1v.34)
,; 6, =(6,,~-Ou)dvadu . (1v.35)
Let us demand that the surface is a pseudospherical one
having the Gaussian curvature Kz-l. From (IV.14) and (IV.19)

".wae then have

0,=-w'aw? , o (1v.36)
and therefore obtain | _ .‘ |
O, -6,, = 9nbBcosb , (1v.37)

which reduce to the canonical form (II.7) of the sine.Gordon
equation by settving b.ze. Hence we see that the pseudospher.
jcal surfaces are intimately related with the sine-Gordon



34

equation, It is now natural to ask if the associated linear
ecattering problem can be included into this gooictrical
framework, lLund and nggo(ll) has given & detailed dis -
cussion of this problem, To show how the associated linear
problem fite into the picture, we shall assume that the
pseudospherical surface is embedded in a three-dimensional
rla.t space having the signature, @ z-€xl. Let us again
consider the connection one-form (III.42) for the sine-
dordon equation, After performing a scale tranlrornition we
have

B2-c030 (du'+ £ dt) (17.38a)

8-—-- (0, dx'-8.4d¢) +3n 0 (dx'--'-;dt.') , (1V,38b)

e--_(e dU'- 8, dt) ¥ 5inB (dn'- L &) 5 (17.38¢)
where we have used O= -?a.nd put primes to indicato the new

, .coordinates. We next . define the coordinates

u:ll(ﬁ'*'"i— vy | (1IV,39a)
v=2(K=-3¢) , (1v.39b)
and perform another gauge transformation with the matrix
52.‘.\[? : : . (IV.40)
The new rorm or the connection one-forms are given by
P= 5 (6,dv-8,du) , (IV.41a)
9: 7 s Bdv- -"i- s du (IV.41b)
= .‘_ smeév+&i- cos6 du . ~ (IV.4lc)
We now make tho following identifications,
\Olz—lte =6udv *Gv dg ’ (IV,42a)
T e (8+8)a—sinbdv (17.42b)

_L(E)"—O")‘-.:-c.ogedu , - (IV.42¢)
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and verify that, with W' and W2 given in (IV,33),
S WAL + T Awr=0 | (1IV.43)

TAT*= w'Aw*so . (IV.44)
We are therefore Jultirid %n taking as the second fundamen-
tal form of the surface the quadratic form

ds}: sin? O dv: 4 cos2© du? (IV.45)
This result may be sumnariged &8 follows: Using the soliton
connection we have mapped the sine-Gordon equation and ite
asscciated linear problem to the problem of embedding pseu-
dospherical surfaces in a certain three-dimensional flat
sepace, It should be noted that tge nonlinear sine~Gordon
equation only refers to an 1ntr1nsio'ﬁroperty of the two-

dimensional surfaces: to the Riemannian curvature,

3, Gilrses-Nutku Construction

1t has been recently lhoun(;Z) that the above g‘o-
metrical construction can be extended to all nonlinear eve
olution equations belonging to the AKNS scheme, General pre-
cription is to take |

w‘ﬂ-"'aé- e° | . (1v,468)
W':i\[é? (e'+93) , (IV,.46D)
. vee” (-0'+6% . | - (1V.46¢)

It can be easily shown that with these identifications
(1V.17) 1is nothing but the Maurer-Cartan equations
*“cX obio’- (IV.47)
which was previously considered in Section 2 of Chapter 1II,
llence given a nonlinear equation and ite associated linear

problem one may first consruct the soliton connection and
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where we have omitted the primes on the transformed vari-

ables. Then the gauge transformation by the matrix a. given
in (I11.10) fer |

e= q“'/"‘. , - | (1v.51)
gives the r] independent one-forms, For later convenience,
one can simplify the q independent one-forms by another
gauge transformation with the matrix a‘ which is also given
in (II1.10), for Q=-l, These transformations bring the ele -

menta of the soliton connection into the form

8°= b, dt , (1v.52a)
0'= (1-ldx + ( +2§+ 24P-4)dk , (1v.520)
0= dx - (4+28)dt . (1v.52¢)

Utilizing the invariance property of the K4V equation under
the Galilean transformations given in (I1.2) and performing

yet another gauge transformation with the matrix

o Y ...

' S=1, y \ (1v.53)
L+ O
one obtains the elements of the aoliton connection as follows:
8°= _ é‘ dt | (IV.54a)
[ .
6=dx-2¢dt , | (1V.54b)

G‘-.:_c])dx+(2¢“+§“) dt . (.IV.54c)
Let ue choose the basis one-forms W as

Cw'a (i)t - Lde | (1v.55a)
w*=( L -1)dt + T - (1.55b)

Then ‘the connection one-form W', can be found by using
(Iv,12), It is given by '
' | Iv,56
w,=2¢, dt . (IV.56)
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If one cdmparo- thie connection one-form with the identifica-
tion (IV.46a) obtains that ,

€=l . (1v.57)
The identifications (IV,46b) and (IV.46c) and the Gauss-
Mainardi-Codazszi equations for the basis given in (IV.55)
lead to |

e€e=-1 . - ' (1v.58)
Hence the metric of the space is determined. From (II.46Db)

., ‘and (II,46¢) one cari Tind W' and W* as |
T ()-$)dx+(2¢*-2¢ + §,, ) ot (1v.59)
Tee(l+¢)dx+(2¢*+20+d_ Yt . (IV.60)

Therefore, the first and second fundemental forms of the
surface which is related to the KdV equation are given by
2 |
ds; -.—.Q.(bdt +dtdx (IV.61)
2 2 a
dsie-Ldd-2(¢t+9,, )t r2pdudt . (1v.62)
Finally, the Gaussian curvature of the surface is
= - 1v,.6
- 4‘¢>xx . ( 3)
The embedding problem of a surface with the first and second
fundemental forms given by (LV.,61) and (IV,62) is equivalent
to the KdV eguation and its associated linear problem.
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¥, DISCUSS LON

Ip this thesis we have given a survey of some re.
cent geometrical approaches to & class of nonlinear evolu-
tion equations, These equations were called soliton equa-
tione because of their physically interesting soliton solu.
tiona. The geometrical approaches weres found attractive be-
cause they encomposs both the nonlinear equations and their
assoctated linear problema, In our discussion of the soliton
equaiiona two gedmetrical notions played important roles.
First of these was the introduction of a connection and
' fhe second was th;'éézbdiﬁtibn of two-dihensional surfaces
embedded in three-dimensional flat spaces, Before the dis-
cusgaion Sr these approaches well-lmown examples of the ev-
olution equutions were exhibited in Chapter II, Some of
thelir physical applications and their invariance proper
ties were also mentioned, In the same Chapter a summary
of the AKNS scheme was given and Blicklund transformationa,
éonservation laws were discussed, In Chapter III the evo-
lution equatione were interpreted at the level of & connec-
tion, At this levei the linear eigenvalue problem assocl -
eted with a given nonlinear equation was shown to be equiv.
alent to the vanishing of the covariaﬁt derivative of a
two-component vectorfield. Thie epablod us to identify
‘the Boliton connection which was represented by a SL(2,R)

Lie algebra valued one-form. In this framework the non-
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. linear evolution equitions were obtained by demanding -
that the curvature constructed from the soliton connec .
tion vanishes, It should be noted that the same costruc -

‘tion could be carried out by apecifying the gauge group
is SL(2,C) rather then SL(2,R). In faot, in (IV,40) we
had assumed this generalisation, The gauge freedom as
sociated with the soliton connection was employed in
the discuseion of the Blcklund transformations, Blcklund
transformations were interpreted as the gauge transfor.
ma tions uhich bring the soliton connection into the form
of an upper triangular matrix, The existence of the con-

- servation laws alsc found a simple explanation: they

were the consequence of the existence of two closed one-

forms,

In Chapter IV it was shown that the soliton equa-
tions may alternatively viewed as embedding probleams, For
this purpose the fundamental equations of the surface the
ory(la) (19) were given in terms of exterior differential
forms, Then a general prbcoduro which associates with the
- soliton connection two-dimensional surfaces embedded in
three-dimensional flat spaces were outlined, This proce-
dure was explicitly applied to the sine-Gordon and the
K4V equation and the corresponding surfaces were construc-
ted, Here it 1s intiresting to note thit-thoro is another
approach, due to Sanaki(lo) which interpretes all the so-

liton equations as descridbing only the pseudospherical
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. surfaces in three-dimensional flat space. In our notation,

Sasaki's prescription is to take

0_ I - a ’ . ‘
BI—"-i' w Y (vol)
.6:.15-.(&)'1...“;') . : ' (V-Z)
ezt--lf(m'a."-u)') - | (v.3)

and assume Kz=-l, As can b; verified easily, this approach
has the undesirable feature that the ovolution'oquationn
have to be assumed in the construction of the connection
one-forms of the surfaces. This is in contrast to the
Glirses Nutku prescription where the evolution equations

refer only to the curvatures of the two-dimensional sur-

faces,

An attractive feature of thé onbedding approach
is that it enables us to obtain simple generalisations of
the well-known evolution equations, For example, applica-
ble surfaces to the K4V surfaces were recently con-

atructed(lz)

. These are surfaces hacing the same intrinsic
geometry us the KAV surfaceg but a different embedding

in the three dimensional flat space. This gives rise to a
pair of coupled nonlinear equations which generalises the
.KdV equation and falls into the AEKNS schéme. On the other
hand, a generﬁlization of the sine-Gordon equation has been
obtained by considering the surfaces of Guichard(lz). The
surfaces of Guichard are a generalization of the pseudo -

spherical surfaces and provide a completely integrable
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system which again falls into the AKNS scheme, It is an
interesting problem to seek similar gpneralisationa of
the other well-known evolution oquatidnl. It is also an
interesting problem to consider in detail the Blcklund

transformations and conservation laws within the embedding
approach, '
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