

NON-LINEAR FINITE ELEMENTS ANALYSIS OF REINFORCED CONCRETE FRAMES WITH MASONRY FILLER WALLS

THESIS

Faik Kıvanç

BOĞAZİÇİ UNİVERSITY Civil Engineering Deparment 1982

NON-LINEAR FINITE ELEMENTS ANALYSIS OF REINFORCED CONCRETE FRAMES WITH MASONRY FILLER WALLS

THESIS

Faik Kıvanç

BOĞAZİÇİ UNIVERSITY Civil Engineering Deparment 1982 NON-LINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE FRAMES WITH MASONRY FILLER WALLS

> Faik Kıvanç BSCE

A Thesis

Presented to

the Faculty of the School of Engineering

Boğaziçi University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Dog. Dra Borek in

Civil Engineering

February 1982

NON-LINEAR FINITE ELEMENTS ANALYSIS OF REINFORCED CONCRETE FRAMES WITH MASONRY FILLER WALLS

Approved by:

Dr. Hüsamettin ALPER (Thesis Advisor)

Doç.Dr. Burak ERMAN

Dr. Ahmet CERANOĞLU

Bruck Einan Ahmed Dlevanofry

ACKNDWLEDGEMENT

I would like to express my sincere gratitudes to my thesis supervisor Dr. Hüsamettin Alper for his invaluable guidance and assistance during the course of my study.

ABSTRACT

An incremental non-linear finite element program taking into consideration the nonlinear behaviour and failure of mortar joints in masonry is developed and applied to the analysis of reinforced concrete frames with masonry filler walls.Tension cracks in reinforced concrete frame and brick elements are taken into consideration also.A failure criterion is adopted for mortar joint elements to simulate their failure.Several failure criteria,material properties of mortar and loading types are used to study their effects.Resulting crack patterns and loaddeflection curves are presented.

ÖZET

Tuğla duvarlarda ki harçların doğrusal olmayan davranışını ve çatlamalarını dikkate alan doğrusal olmayan bir sonlu alemanlar programı geliştirilmiş ve betonarme çerçeve içinde ki tuğla dolgu duvarlara uygulanmıştır.Betonarme çerçevede ki ve tuğlalarda ki gerilme çatlakları da dikkate alınmıştır.Harç elemanlarının kırılmalarını simüle etmek üzere bir kırılma kriteri kullanılmıştır.Değişik etkileri incelemek amacıyla çeşitli kırılma kriterleri,harç malzeme özellikleri ve yükleme tipleri uygulanmıştır.Sonuç olarak elde edilen çatlama şekilleri ve yük-sehim eğrileri gösterilmiştir.

00	BIT.	E MI	TA
LU	NI	CN	15

LIST OF FI	GURES
LIST OF SY	MBOLS
CHAPTER 1:	INTRODUCTION 1
	1.1 GENERAL
	1.2 FORMER WORKS ON MASONRY PANELS AND
	THEIR INTERACTION WITH FRAMES 2
	1.3 OBJECT AND SCOPE
CHAPTER 2:	FINITE ELEMENT FORMULATION
	2.1 INTRODUCTION
	2.2 GENERAL FINITE ELEMENT FORMULATION 5
	2.3 STRUCTURAL MODEL
	2.4 ELEMENT DETAILS
	2.4.1 Jojnt Element
	2.4.2 Reinforced Concrete Element 15
	2.4.3 Brick Element
CHAPTER 3:	ESSENTIAL ASPECTS OF SOLUTION PROCEDURE 19
	3.1 INTRODUCTION
	3.2 FAILURE CRITERIA
	3.2.1 Failure Criteria for Joint Elements 19
	3.2.2 Failure Criterion for Reinforced
	Concrete Elements
	3.2.3 Failure Criterion for Brick Elements . 23
	3.3 THE NONLINEAR ANALYSIS PROCEDURE
	3.4 FINITE ELEMENT MODEL OF FRAME WITH
	MASONRY INFILL
	3.5 MATERIAL PROPERTIES
CHAPTER 4:	APPLICATIONS AND RESULTS
	4.1 INTRODUCTION

4.2 ANALYSIS WITH THREE TYPES OF FAILURE

	CRITERIA
	4.2.1 Failure Criterion Type I
	4.2.2 Failure Criterion Type II
	4.2.3 Failure Criterion Type III
	4.3 EFFECT OF VERTICAL LOADING
	4.4 EFFECT OF INCREASE IN ELASTIC AND
	SHEAR MODULI OF MORTAR
	4.5 ANALYSIS OF THE FRAME WITHOUT INFILL PANEL 32
	4.6 LOAD DEFLECTION CURVES
APTER 5:	DISCUSSION AND RESULTS
FERENCES	
PENDIX I	RECTANGULAR PLANE STRESS ELEMENT
PPENDIX II	ISTIFFNESS COEFFICIENT CONTRIBUTIONS FROM
	REINFORCING BARS OF R.C. ELEMENTS

CI

联

六

AI

44 APPENDIX III: FLOWCHART OF SOLUTION PROCEDURE

1	T	5	T	0	F	F	I	G	UR	E	S
	1.20	~		-			-	-		100	

51	5
1. Finite Element Discretization of a Plane Stress Element	10
2. Joint Element (After Page)	TU
3. Coordinate Transformation for Jojnt Element	15
4.Reinforced Concrete Element (After Colville and Abbasi)	16
5.Brick Element	18
6.Failure Criterion for Joint Elements	20
7.Finite Element Model of Frame+Masonry Panel	26
8. Close-up View of Lower Left Corner of Fig.7.	26
9.2- Y Curve of Mortar	27
10.6- & Curve of Mortar	27
11.General View of Frame Encased Masonry Panel	28
12. Crack Pattern According to Failure Criterion Type I	30
13.Failure Criterion Type II	30
14. Crack Pattern According to Failure Criterion Type II	31
15.Failure Criterion Type III	31
16. Crack Pattern According to Failure Criterion Type III	32
17.Effect of Variation in Loading Condition and Material	
Properties of Mortar	33
18. Analysis without the Infill Panel	34
19.Load Deflection Curves	34

LIST OF SYMBOLS

- {u} :Displacements within the finite element
- {d} :Nodal displacements
- [N] :Shape functions
- [E] :Strain vector
- [A] :Linear operator
- [G] :Strain matrix
- [6] :Stress vector
- [D] :Elasticity matrix
- [S] ;5tress matrix
- TT :Potential energy
- U :Strain energy
- W :Work done by external loads
- {p_}:Body force vector
- {ps}:Distributed force vector
- {PN}: Nodal force vector
- [k] :Element stiffness matrix
- [6]:Initial stresses
- {En] : Initial strains
- {P} iload vector of the system
- {w} :Relative displacements of joint element
- [K] :System stiffness matrix
- {F} : Unit force vector
- [k.]: Joint unit property matrix
- k Unit shear stiffness of joint element
- k_n :Unit normal stiffness of joint element
 t_m :Joint thickness

: Wall thickness T :Transformation matrix TI Dimensionless coordinate in x-direction E Dimensionless coordinate in y-direction η :Maximum principal stress 6, :Minimum principal stress 6, :Stress vector of reinforced concrete element {s_} :Principal stress vector of reinforced concrete element {sco} :Principal stress vector of cracked reinforced concrete (Scop) :Angle of principal direction 8 :A sufficiently small number 8

Torrenation with the structure des to be into accountion caste

are an and the same same and the state of the same and the same

III

1. INTRODUCTION

1.1 GENERAL

In structures walls and partitions are created by infilling frames with construction materials such as bricks or concrete blocks. Although it is common practise that these masonry infills are not included in design calculations of framed structures, they obviously have some effect on the overall behaviour of the structure. Unless they are separated from the frame, their interaction with the structure has to be into account in design calculations. Overall stiffness, energy absorbtion capacity and shear distribution throughout the structure may then be predicted more realistically.

At low stress levels masonry can be considered as an assemblage of brick and mortar joints with isotropic and linear slastic behaviour. At higher stress levels, however, behaviour of mortar joints are nonlinear. Due to this fact and also due to the cracking of some mortar joints and bricks at certain areas stress redistributions occur, which can not be neglected. Methods such as using equivalent struts to represent the action of the infill panel may be useful in an approximate analysis at low stress levels, but at higher stress levels, especially near failure of the infill, a more sophisticated method accounting for the nonlinearities and cracks in masonry should be used.

1.2 FORMER STUDIES ON MASONRY INFILL PANELS AND THEIR INTERACTION, WITH FRAMES

Behaviour of masonry itself and its interaction with frames has been a subject of interest for a long time. Benjamin and Williams (4) performed a set of tests on one-storey reinforced concrete frames with brick masonry infills under lateral loading.Main variables in these tests were wall dimensions,mortar properties and scale of the structure.Results were expressed in load-deflection curves for various types of walls.Smith and Carter (15) examined the behaviour of multistorey infilled frames under the effect of lateral logding.Lateral strength was examined and empirical formulas and design graphs were given to predict the cracking and crushing strength of concrete and brickwork. Yekel and Fattal (16) made various studies about the load capacities of clay masonry walls subjected to a diagonal compressive load combined with a compressive edge load acting in the plane of the wall and normal to the direction of mortar bed joint. A failure hypothesis was also developed accounting for the observed failure modes. Tests were made by Meli (17) on full scale maronry panels subjected to lateral loads. Walls encased in concrete frames, walls with concrete tie columns and interiorly reinforced walls were included in this study.Strength, stiffness, modes of failure and postcracking behaviour of the walls were discussed. Umemura et al. (7) performed a series of tests on plain brick walls of one quarter size model with cement mortar and lime mortar, with and without frames. The purpose of these tests

were to observe the behaviour of plain brick walls under the action of a combination of lateral and vertical forces. An analytical approach to the behaviour of masonry as deep beams was made by Page (3). In his study Page used the finite element method to predict the cracking patterns of mortar joints in brick masonry deep beams, where he considered the nonlinear mortar joint deformation characteristics also. He made use of a failure criterion for joint elements, which he developed as a result of tests performed on masonry panels. Stress-strain curves of mortar joints, again resulting from tests, were presented also. Effects of infill panels on overall seismic response of structures were investigated by Dowrick (20) Mayes et al. (8) presented in their study a summary of works on the evaluation of the seismic design section of the 1972, 1973, 1974 and 1976 'Uniform Building Codes', and the recommended 'Comprehensive Seismic Design Provisions for Buildings' prepared by the Applied Technology Council.

1.3 OBJECT AND SCOPE

This study deals with masonry panels encased in reinforced concrete frames subjected to lateral loading or a combination of lateral and vertical loading. The main object of the study is to develop an analytical model which predicts the type and degree of cracking of the masonry panel at various load levels and to study the effect of masonry infills on the " haviour of the reinforced concrete frames.

An incremental finite element program modeling a)Nonlinear behaviour of mortar joints b)Tensile splitting in bricks

3

c)Effect of tensile cracks in reinforced concrete frame has been developed. The model allows progressive joint failure

to occur.

2. FINITE ELEMENT FORMULATION

2.1 INTRODUCTION

With the advances in digital computers, the finite element "*thod became a very popular technique in handling complicated engineering problems. By this method, a continuum is discretized and problems can generally be solved readily even for very complicated boundry conditions. In this chapter, after a general formulation of the finite element method, element details used in the structural model are presented.

2.2 GENERAL FINITE ELEMENT FORMULATION

The stress analysis of a continuous system can be performed by discretizing the system into a gridwork of finite sized, two dimensional elements interconnected at their corners. To avoid conceptual difficulties the problem is illustrated with a very simple example of plane stress analysis of a thin slice, shown in Fig. 1.

Fig. 1: Finite Element Discretization of a Plane Stress Region

A typical finite element, e, is defined by its nodes i, j,m and straight line boundaries. Let the displacements u at any point within the element be expressed as a column vector, $\{u\}$. $\{u\}$ can be written as a function of the nodal displacements as

$$\{u\} [N_{i}, N_{j}, \dots] \left\{ \begin{matrix} d_{i} \\ j \\ \vdots \end{matrix} \right\} = [N] \{d\}$$
(2.1)

Here, $\{d\}$ represents the nodal displacements for a particular element. [N] is the vector of shape functions and has to be so chosen as to give appropriate nodal displacements, when the coordinates of the appropriate nodes are inserted in equation (2.1).

With displacements known at all points within the element, strains at any point can be determined by the relation:

$\{ \xi \} = [\Delta] \{ u \}$ where $[\Delta]$ is a suitable linear operator. Using equation (2.1), the above equation can be expressed as:

 $\{\xi\} = [G] \{d\}$ (2.2) are $[G] = [\Delta][N]$ is called the strain matrix

For a plain stress case, strains are defined in terms of displacements by well-known relations (1) which define $[\Delta]$:

83 1 1 C	gn/g×		9/9×	0],.	2
{8} = {3}	gn/ga gn/ga	=	9/9^	9/9× { ~	
l				,	

In general, the material within the element boundaries may be subjected to initial strains due to temperature changes, shrin kage etc.. If such strains are denoted by $\{\mathcal{E}_0\}$, then stresses will be caused by the difference between the actual and initial strain In addition, it is convenient to assume that at the beginning of the analysis the body is stressed with initial stresses $\{G_0\}$. Thus, assuming general linear elastic behaviour, the relationship between stresses and strains will be of the form:

(2.3)

(2.4)

$$\{ \mathbf{5} \} = [\mathbf{D}] \left(\{ \mathbf{\xi} \} - \{ \mathbf{\xi}_0 \} \right) \ \{ \mathbf{5}_0 \}$$

$$[\mathbf{D}] = \frac{\mathbf{\xi}}{1 - \sqrt{2}} \begin{bmatrix} 1 & \gamma & 0 \\ \gamma & 1 & 0 \\ 0 & 0 & \frac{1 - \gamma}{2} \end{bmatrix}$$

is the elasticity matrix (1).

$$\{ \mathbf{6} \} = [\mathbf{D}] ([\mathbf{G}] \{ \mathbf{d} \} - \{ \mathbf{E}_0 \}) + \{ \mathbf{6}_0 \}$$

$$[\mathbf{S}] \{ \mathbf{d} \} - [\mathbf{D}] \{ \mathbf{E}_0 \} + \{ \mathbf{6}_0 \}$$

in which [S] = [D] [G] is called the stress matrix.

Because the displacement models are separately assumed for for each element of the continuum with interelement compatibility maintained to the necessary degree, total potential energy of the continuum, T, can be thought to be equal to the sum of the potenti-

al energies of individual elements:

 $T = \sum T_e$

The potential energy functional \mathbb{T}_{e} of an element is: $\mathbb{T}_{s} = \frac{1}{2} \int_{V} \{\xi\}^{T} \{6\} dV - \left[\int_{V} \{u\}^{T} \{p_{B}\} dV + \int_{V} \{u\}^{T} \{p_{s}\} ds + \{d\}^{T} \{p_{N}$

where

where

U: strain energy

W: work done by external loads

{PR : body force vector

{Ps} : distributed force vector (surface tractions)

[PN] : nodal force vector

Using equations (2.2) and (2.3) Π_e is obtained as:

 $\Pi_{e} = \frac{1}{2} \int \{d\}^{T} [G]^{T} [D] [G] \{d\} dv - \frac{1}{2} \int \{d\}^{T} [G]^{T} [D] \{\varepsilon_{0}\} dv +$ $+ \frac{1}{2} \int \{d\}^{\mathsf{T}} [G]^{\mathsf{T}} \{\mathbf{F}_{0}\} d\mathbf{v} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{B}}\} d\mathbf{v} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{p}_{\mathsf{s}}\} d\mathbf{s} - \int \{d\}^{\mathsf{T}} [\mathbf{N}]^{\mathsf{T}} [\mathbf{N$ - {d }T {p_N}

By the principle of minimum potential energy, of all the displacement configurations satisfying kinematic and geometric boundary conditions, the configuration which makes the potential energy minimum satisfies the equilibrium conditions. For the potential energy to be minimum, its first variation must vanish. $\delta \Pi_{\mu} = \delta U - \delta W = 0$

Thus,

$$\delta \Pi_{g} = 0 = \left[\delta d \right]^{T} \left[\left(\int \left[G \right]^{T} \left[0 \right] \left[G \right] dV \right) \left\{ d \right\} - \frac{1}{2} \left(\int \left[G \right]^{T} dV \right) \left[0 \right] \left\{ \epsilon_{0} \right\} + \frac{1}{2} \left(\int \left[G \right]^{T} dV \right) \left\{ \epsilon_{0} \right\} - \int \left[N \right]^{T} \left\{ p_{B} \right\} dV - \int \left[N \right]^{T} \left\{ p_{B} \right\} ds - \left\{ p_{N} \right\} \right]$$

Since the variations of the nodal displacements $\{\delta d\}$ are arbitrary,the expression in the brackets must vanish. This gives the equilibrium equations for the element:

$$[k] \{d\} = \{p_N\} - (\{f\}_{E_0} - \{f\}_{F_0} - \{f\}_{P_B} + \{f\}_{P_B})$$
 (2.5)

with

$$\begin{bmatrix} k \end{bmatrix} = \int \begin{bmatrix} G \end{bmatrix}^{T} \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} G \end{bmatrix} dV$$

$$\{ r \}_{\xi_{0}} = -\left(\frac{1}{2} \int \begin{bmatrix} G \end{bmatrix}^{T} dV \right) \begin{bmatrix} D \end{bmatrix} \{ \xi_{0} \}$$

$$\{ r \}_{\xi_{0}} = \left(\frac{1}{2} \int \begin{bmatrix} G \end{bmatrix}^{T} dV \right) \{ \delta_{0} \}$$

$$\{ r \}_{p_{B}} = -\int \begin{bmatrix} N \end{bmatrix}^{T} \{ p_{B} \} dV$$

$$\{ r \}_{p_{B}} = -\int \begin{bmatrix} N \end{bmatrix}^{T} \{ p_{B} \} dV$$

$$\{ r \}_{p_{B}} = -\int \begin{bmatrix} N \end{bmatrix}^{T} \{ p_{B} \} dS$$

Here [k] is called the stiffness matrix of the element.

The next step is to form the system stiffness matrix [K]and system load vector $\{P\}$. An efficient way of doing this is the code number technique ⁽¹⁰⁾. Thus equilibrium equations for the system takes the form:

$$[K]{d}_{sys}{P}$$
 (2.6)

where $\{d\}_{svs}$ is vector of system nodal displacements.

After solving equation (2.6) for $\{d\}_{sys}$, displacements for each element can be obtained from $\{d\}_{sys}$, and stresses in each element can be calculated using equation (2.4).

2.3 STRUCTURAL MODEL

The system under consideration is a brick masonry panel encased in a reinforced concrete frame. The inplane behaviour of masonry is modeled using an elastic continuum of plane stress brick elements with superimposed linkage elements simulating the mortar joints. For reinforced concrete frame, again plane stress elements are used taking into consideration the nonhomogeniuty caused by the reinforcing steel bars.

2.4 ELEMENT DETAILS

2.4.1 JDINT ELEMENTS

In modeling the mortar joint elements between brick elements, a one dimensional element capable of undergoing relative displacements is used. This element type was developed by Goodman et al.⁽²⁾ in their study of rock-joints, but it has been adopted

Fig.2. Joint Element (After Page (3))

Since the joint elements are extremely thin, pairs of nodes (1,2) and (3,4) in Fig.2 are specified by the same coordinates. Thus as far as geometry is concerned the thickness of the element is zero. However, a thickness t_m is used in computing joint element properties.

It is assumed that normal and shear displacements along the element vary linearly, and that the one dimensional element has zero thickness, as mentioned above. Since the joint element can deform only in normal and shear directions, the relative displacement vector $\{w\}$ at any point along the joint is given by:

$$\left\{ w \right\} = \begin{cases} w_{s}^{top} - w_{s}^{bottom} \\ w_{n}^{top} w_{n}^{bottom} \end{cases}$$
 (2.7)

Subscripts s and n denote shear and normal (x and y), respectively. If the vector of forces per unit length of joint element is then as

 $\left\{F\right\} = \left\{\begin{matrix}F_{s}\\F_{n}\end{matrix}\right\}$

it can be expressed in terms of the element relative displacements

$\{F\} = \left[k_{u}\right]\left\{w\right\}$

where $\begin{bmatrix} k \\ u \end{bmatrix}$ is a diagonal material property matrix expressing joint stiffness per unit length in shear and normal directions:

10

$$\begin{bmatrix} k_{u} \end{bmatrix} = \begin{bmatrix} k_{s} & 0 \\ 0 & k_{n} \end{bmatrix}$$

For the shear direction, substituting $A = T \cdot L$ and $L' = t_m$ (where T represents wall thickness) into the formula $\delta = \frac{PL'}{AG}$:

 $\delta = \frac{Pt_m}{T \cdot L \cdot G}$

solving for P

k is found as

$$k_{g} = \frac{G \cdot T}{t_{m}}$$

Similarly, for the normal direction with $\delta = \frac{P \cdot L^{\prime}}{AE}$, A=T \cdot L and L'=t_m k_ is determined as

$$k_n = \frac{E \cdot T}{t_m}$$

G and E are instantaneous shear and elastic moduli at the particular shear and normal stress levels and can be determined from stress-strain curves for mortar.

The strain energy of the joint element is

$$U = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \{w\}^{\mathsf{T}} \{F\} dx = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \{w\}^{\mathsf{T}} [k_{\mathsf{U}}] \{w\} dx \qquad (2.8)$$

The relative displacements $\{w\}$ can be expressed in terms of the nodal displacements $\{d\}$ through linear displacement formulas

$$w_{s}^{bottom} = (\frac{1}{2} - \frac{x}{L})d_{1} + (\frac{1}{2} + \frac{x}{L})d_{7}$$

$$w_{n}^{bottom} = (\frac{1}{2} - \frac{x}{L})d_{2} + (\frac{1}{2} + \frac{x}{L})d_{8}$$

$$w_{s}^{top} = (\frac{1}{2} - \frac{x}{L})d_{3} + (\frac{1}{2} + \frac{x}{L})d_{5}$$

$$w_{n}^{top} = (\frac{1}{2} - \frac{x}{L})d_{4} + (\frac{1}{2} + \frac{x}{L})d_{6}$$

$$\{w\} = \begin{cases} w_{s}^{top} - w_{s}^{bottom} \\ w_{n}^{top} - w_{n}^{bottom} \end{cases} = \frac{1}{2} \begin{bmatrix} -A & 0 & A & 0 & B & 0 & -B & 0 \\ 0 & -A & 0 & A & 0 & B & 0 & -B \end{bmatrix} \begin{cases} d_{3}^{2} \\ d_{4}^{2} \\ d_{5}^{2} \\ d_{6}^{2} \\ d_{7}^{2} \end{cases}$$

where

$$A = 1 - \frac{2x}{L} ; \quad B = 1 + \frac{2x}{L}$$

This equation can be written as

$$\{w\} = [G] \{d\}$$
 (2.9)

with

$$G = \frac{1}{2} \begin{bmatrix} -A & 0 & A & 0 & B & 0 & -B & 0 \\ 0 & -A & 0 & A & 0 & B & 0 & -B \end{bmatrix}$$

Substituting (2.9) into equation (2.8)

$$\Pi = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left\{ d \right\}^{\mathsf{T}} \left[\mathsf{G} \right]^{\mathsf{T}} \left[\mathsf{K}_{\mathsf{U}} \right] \left[\mathsf{G} \right] \left\{ d \right\} d\mathsf{x}$$
(2.10)

Carrying out the triple matrix multiplication yields

$$\left[c \right]^{T} \left[k_{0} \right] \left[c \right] = \begin{bmatrix} A^{2}k_{s} & 0 & -A^{2}k_{s} & 0 & -ABk_{s} & 0 & ABk_{s} & 0 \\ 0 & A^{2}k_{n} & 0 & -A^{2}k_{n} & 0 & -ABk_{n} & 0 & ABk_{n} \\ -A_{2}k_{s} & 0 & A^{2}k_{s} & 0 & ABk_{s} & 0 & -ABk_{s} & 0 \\ 0 & -A^{2}k_{n} & 0 & A^{2}k_{n} & 0 & ABk_{n} & 0 & -ABk_{n} \\ -ABk_{s} & 0 & ABk_{s} & 0 & B^{2}k_{s} & 0 & -B^{2}k_{s} & 0 \\ 0 & -ABk_{n} & 0 & ABk_{n} & 0 & B^{2}k_{n} & 0 & -B^{2}k_{n} \\ ABk_{s} & 0 & -ABk_{s} & 0 & -B^{2}k_{s} & 0 & B^{2}k_{s} & 0 \\ 0 & ABk_{n} & 0 & -ABk_{n} & 0 & -B^{2}k_{n} & 0 & B^{2}k_{n} \end{bmatrix}$$

$$(2.11)$$

In equation (2.11) the only terms varying along the x-direction are A^2 , B^2 and AB, that is, $(1-\frac{2x}{L})^2$, $(1+\frac{2x}{L})^2$ and $(1-\frac{2x}{L})(1+\frac{2x}{L})$. There are thus three types of integrals to be evaluated:

$$\int_{-\frac{1}{2}}^{\frac{72}{1-\frac{2x}{1-2}}^2} dx = \frac{4}{3} L$$

[8]

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} (1 + \frac{2x}{L})^2 dx = \frac{4}{3} L$$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} (1 - \frac{2x}{L}) (1 + \frac{2x}{L}) dx = \frac{2}{3} L$$

Substituting the resulting integrals into equation (2.10) and taking respective derivatives of U with respect to d_i , joint element stiffness matrix [k] is obtained:

$$\begin{bmatrix} 2k_{s} & 0 & -2k_{s} & 0 & -k_{s} & 0 & k_{s} & 0 \\ 0 & 2k_{n} & 0 & -2k_{n} & 0 & -k_{n} & 0 & k_{n} \\ -2k_{s} & 0 & 2k_{s} & 0 & k_{s} & 0 & -k_{s} & 0 \\ 0 & -2k_{n} & 0 & 2k_{n} & 0 & k_{n} & 0 & -k_{n} \\ -k_{s} & 0 & k_{s} & 0 & 2k_{s} & 0 & -2k_{s} & 0 \\ 0 & -k_{n} & 0 & k_{n} & 0 & 2k_{n} & 0 & -2k_{n} \\ k_{s} & 0 & -k_{s} & 0 & -2k_{s} & 0 & 2k_{s} & 0 \\ 0 & k_{n} & 0 & -k_{n} & 0 & -2k_{n} & 0 & 2k_{n} \end{bmatrix}$$

For horizontal joint elements local coordinates (x,y) and global coordinates (X, Y) coincide. However, to obtain the stiffness matrix of vertical joint elements in global coordinates a transformation from local to global coordinates is necessary. The trans formation matrix [T] is generated as follows:

$$[t] = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

and for $\theta = 90^{\circ}$

$$\begin{bmatrix} t \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

where [t] is a matrix of direction cosines.

13

[T] has the form:

$$\begin{bmatrix} t \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} t \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

and the stiffness matrix in global coordinates is obtained as:

14

$\left[k\right]_{XY} = \left[T\right]^{T} \left[k\right]_{XY} \left[T\right]$

The triple matrix multiplication gives:

 $\left[k^{*}\right]_{XY}^{*} = \begin{bmatrix} 2k_{n} & 0 & -2k_{n} & 0 & -k_{n} & 0 & k_{n} & 0 \\ 0 & 2k_{s} & 0 & -2k_{s} & 0 & -k_{s} & 0 & k_{s} \\ -2k_{n} & 0 & 2k_{n} & 0 & k_{n} & 0 & -k_{n} & 0 \\ 0 & -2k_{s} & 0 & 2k_{s} & 0 & k_{s} & 0 & -k_{s} \\ 0 & -2k_{s} & 0 & 2k_{s} & 0 & k_{s} & 0 & -k_{s} \\ -k_{n} & 0 & k_{n} & 0 & 2k_{n} & 0 & -2k_{n} & 0 \\ 0 & -k_{s} & 0 & k_{s} & 0 & 2k_{s} & 0 & -2k_{s} \\ k_{n} & 0 & -k_{n} & 0 & -2k_{n} & 0 & 2k_{s} & 0 \\ 0 & k_{s} & 0 & -k_{s} & 0 & -2k_{s} & 0 & 2k_{s} \end{bmatrix}$

In horizontal joint elements, element displacements in global and member axes are identical, but in vertical joint elements a transformation has to be applied to obtain element displacement in member axes, after the system of equations (2.6) are solved and element displacements are obtained in global axes. The transformation is done by using the matrix [T] again:

 $\{d\}_{XY} = [T] \{d\}_{XY}$

The element displacements are then used to calculate the stresses in the joint elements.Stresses are calculated at the middle of the joint elements, i.e. at x=0, as follows:

$$\left[F\right] \frac{1}{T} = \frac{1}{T} \left[k_{u}\right] \left\{w\right\} = \frac{1}{T} \left[k_{u}\right] \left[G\right] \left\{d\right\}_{\times y}$$
 (2.12)

Since A=B=1 at the middle of the element:

2...2 REINFORCED CONCRETE ELEMENTS

A rectangular element developed by Colville and Abbasi⁽⁵⁾ is used for modeling reinforced concrete.Linear edge displacements are assumed and non-dimensional coordinates are used in the derivation of element properties.This type of an element is shown below:

Fig.4. Reinforced Concrete Element(After Colville and Abbasi⁽⁵⁾)

Since the stresses are not constant over the element area, the element is divided into 9 subregions and stresses are computed at the at the centroids of these subregions.

Stiffness matrix of the reinforced concrete element, $[k_{c,s}]$ must be computed as the sum of stiffnesses of steel and concrete components.Considering concrete as a linearly elastic, isotropic and homogenious material,

$$\begin{bmatrix} k_c \end{bmatrix} = \int \begin{bmatrix} G \end{bmatrix}^T \begin{bmatrix} D_c \end{bmatrix} \begin{bmatrix} G \end{bmatrix} dV = T \int \begin{bmatrix} G \end{bmatrix}^T \begin{bmatrix} D_c \end{bmatrix} \begin{bmatrix} G \end{bmatrix} dA$$

Explicit form of $\begin{bmatrix} k_c \end{bmatrix}$ is given in Appendix 1.

$$[k_{c,s}] = [k_c] + \sum_{l=1}^{m} [k_{sl}]$$
 (2.13)

mbere

$$\begin{bmatrix} k_{s} \end{bmatrix} = \int \begin{bmatrix} G \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \breve{D}_{s} \end{bmatrix} \begin{bmatrix} G \end{bmatrix} dV_{s}$$

with

$$\left[\bar{\mathsf{D}}_{\mathsf{s}}\right] = \left[\mathsf{D}_{\mathsf{s}}\right] - \left[\mathsf{D}_{\mathsf{c}}\right]$$

m: number of reinforcing steel bars in the element

D_s : elasticity matrix of steel

D : elasticity matrix of concrete

Thus $\begin{bmatrix} k_s \end{bmatrix}$ is obtained by taking the line integral over the volume of steel contained in the element:

$$\begin{bmatrix} k_{0} \end{bmatrix} = \int_{a}^{b} \begin{bmatrix} 0 \end{bmatrix}^{T} \begin{bmatrix} \bar{0}_{0} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} dv_{0} = \int_{a}^{b} \int_{a}^{b} dv_{0} = A_{0} \int_{a}^{b} h \end{bmatrix} ds$$
where $h = \begin{bmatrix} 0 \end{bmatrix}^{T} \begin{bmatrix} \bar{0}_{0} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} dv_{0} = A_{0} \int_{a}^{b} dv_{0} = A_{0}$

Each item of $[k_s]$ is in the form $V_s(\psi + \psi' + \psi'')$, and the expressions for ψ , ψ'' and ψ''' are given in Appendix 2.

Repeating the procedure for evaluating $[k_s]$ for each reinforcing bar in the element, $[k_{c,s}]$ is obtained using equation (2.13)

2.4.3 BRICK ELEMENTS

Bricks are modeled using conventional eight-parameter rectangular plane stress elements with isotropic and elastic properties shown in Fig.5.

The strain matrix [G] and the stiffness matrix [k] are given in explicit form in Appendix 1.

Fig. 5. Brick Element

3. ESSENTIAL ASPECTS OF SOLUTION PROCEDURE

3.1 INTRODUCTION

Nonlinearities in material behaviour and local failures mecessitate a nonlinear analysis procedure. Therefore an incremental step-iteration method and failure criteria for joint, brick and reinforced concrete elements are adopted. These features are presented in this chapter. The finite element model of the structure is illustrated also.

3.2 FAILURE CRITERIA

3.2.1 FAILURE CRITERION FOR JOINT ELEMENTS

Failure criterion simulating joint failure characteristics under various types of stress combinations has been derived by Page⁽³⁾. This type of criterion is given in Fig.6. It has been obtained by plotting the test results in terms of ultimate shear and ultimate normal stresses. Two linear best fit curves have bee used for simplicity in the compressive stress region. The change in slope corresponds to a change in the failure modes from pure bond failure to a combined joint-brick failure.

Fig.6. Failure Criterion for Joint Elements (After Page

The relations adopted for the criterion are:

ζ=-0.666--29 Region 1 : τ_=-0.875_-29 Region 2 : Region 3 : 7=-0.116 -277

When used in the analytical model, this criterion allows progressive joint failure to occur. If the failure criterion is violated for a joint element, element properties are modified and the prob lem solved again. The residual properties allocated depend upon the stress state present. If the criterion of Region 1 is violate tensile bond failure is assumed to occur, and no residual capacit is assigned to that element (E=G=O). If failure occurs under a co bination of compressive and shear stress (Regions 2 and 3) a shear bond failure is simulated. The stiffness of the joint eleme in the normal direction is assumed to remain unchanged, and reduced shear stiffness is allocated depending upon the magnitude of compressive stress present. When the normal stress is high, some frictional shear capacity remains in the joint after failure, which will diminish as the compressive stress on the joint decre ses. Consequently for low τ/ϵ ratios (Region 3), a constant residual value for shear modulus G of 3630 psi is allocated. For

high $\mathcal{C}/\mathcal{F}_{U}$ ratios (Region 2), a shear modulus value varying from 3630 psi when $\mathcal{F}_{U} = 334$ psi, to zero for the condition of pure shear is used.

3.2.2 FAILURE CRITERION FOR REINFORCED CONCRETE ELEMENTS

In order to consider the effects of tension cracks in reinforced concrete elements, it is necessary to establish a criterion for the occurance of tension cracks. According to the criterion used by Zienkiewicz⁽⁶⁾ regarding rock type materials and which can be employed for concrete also, crack in an element occur perpendicular to the principal directions of the stress tensor, when the value of the principal stress exceeds the uniaxial tensile strength, δ_{tr} , of concrete. Procedure is as follows:

$$\begin{cases} \mathbf{e}_{\mathsf{x}} \\ \mathbf{e}_{\mathsf{y}} \\ \mathbf{z}_{\mathsf{x}} \end{cases} = \{ \mathbf{s}_{\mathsf{c}} \} = [\mathbf{0}_{\mathsf{c}}] [\mathbf{c}] \{ \mathsf{d} \}$$

Principal stress vector ${S_{cp}}$ is computed as:

8, angle defining the plane of the maximum or minimum normal strees is given by:

$$an2\theta = \frac{2z_{xy}}{(f_x - f_y)}$$

t

In order to find which one of the principal stresses act on the

plane defined by 8,8 is substituted into the equation

$$\mathbf{b}' = \frac{\mathbf{b}_{x} - \mathbf{b}_{y}}{2} + \frac{\mathbf{b}_{x} - \mathbf{b}_{y}}{2} \cos 2\theta + \mathcal{T}_{xy} \sin 2\theta$$

If $\vec{e}=\vec{e}_1$, then \vec{e}_1 acts on the plane defined by 8, but if $\vec{e}=\vec{e}_2$, then \vec{e}_1 acts on the plane defined by 8+90° After finding 8, \vec{e}_1 and \vec{e}_2 are compared with allowable tensile stress \vec{e}_{tc} :

If 525156 no tension crack (case 1)

 $6_2 < 6_t < 6_1$ cracking in one direction (case 2)

 $\epsilon_{tc} < \epsilon_2 < \epsilon_1$ cracking in both directions (case 3)

In case that any crack occurs (case 2 or 3) a pseudoload vector due to this crack has to be evaluated and added to the original load vector of the system.

Case 2: Element subdivision cracks only due to \mathfrak{S}_1 and it is assumed that no stress is taken anymore in that direction. So vector $\{S_{ccp}\}$ has the form $\{S_{ccp}\}=\begin{bmatrix}\mathfrak{S}_1\\0\\0\end{bmatrix}, \{S_{ccp}\}$ representing the released stresses.

Case 3: Element subdivision cracks due to both \mathcal{E}_1 and \mathcal{E}_2 and it is assumed that no stresses are taken in both principal directions anymore. So vector $\{S_{ccp}\}$ takes the form $\{S_{ccp}\}=\begin{cases} \mathcal{E}_1\\ \mathcal{E}_2\\ \mathcal{E}_2 \end{cases}$. In the next step $\{S_{ccp}\}$ is transformed into global coordinates:

 $\left\{ \begin{array}{c} S_{cc} \\ S_{cc} \\ \end{array} \right\} = \left\{ \begin{array}{c} S_{ccx} \\ S_{ccy} \\ S_{ccxy} \\ \end{array} \right\} = \left\{ \begin{array}{c} \cos^2\theta & \sin^2\theta & -2\sin\theta\cos\theta \\ \sin^2\theta & \cos^2\theta & 2\sin\theta\cos\theta \\ \sin\theta\cos\theta & -\sin\theta\cos\theta & \cos^2\theta - \sin^2\theta \\ \sin\theta\cos\theta & -\sin\theta\cos\theta & \cos^2\theta - \sin^2\theta \end{array} \right\} \left\{ \begin{array}{c} S_{ccp} \\ \end{array} \right\}$

These stresses are treated as a case of initial stresses at the next iteration. Thus from equation (2.5) the unbalanced forces at nodes adjacent to that element (pseudoloads) due to cracking are calculated as:

22

$$\left\{ pq_{cc} \right\} = V \left[G \right]^{T} \left\{ S_{cc} \right\}$$

where

{pq_cc}: pseudpload vector

V : volume of element subdivision, equal to $\frac{a \cdot b \cdot T}{q}$

T : wall thickness

3.2.3 FAILURE CRITERION FOR BRICK ELEMENTS

Same principles as derived for reinforced concrete elements in chapter 3.2.2 are applicable to brick elements also.

3.3 THE NONLINEAR ANALYSIS PROCEDURE

Element types given in chapter 3.1 are incorporated into an incremental finite element program. The procedure used is a stap-iteration utilizing a combination of incremental and iterative schemes. The load is applied incrementally, but after each increment successive iterations are performed.

At the ith increment, incremental load $\{\Delta P\}_i$ is applied and the equation of the system

$$[K]_{i-1} \{d\}_{i} = \{\Delta P\}_{i}$$
 (3.1)

is solved for $\{d\}_i$, where $[K]_{i-1}$ is the system stiffness matrix rom the previous increment. But because of the nonlinear behaviour of mortar joints and probable tension cracks in reinforced concrete and bricks, the system has not reached an equilibrium under $\{d\}_i$ yet, that is the applied force $\{\Delta P\}_i$ is not completely equilibrated due to the nonlinearity of mortar joint elements and due to the unbalanced forces in reinforced concrete and brick

(2.14)

elements in case of cracking .

Regarding mortar joints, stresses in each element are calculated as:

$$\left\{ \mathbf{G} \right\}_{i=1}^{*} = \left\{ \mathbf{G} \right\}_{i=1}^{*} + \frac{1}{T} \left[\mathbf{k}_{u} \right]_{i=1} \left[\mathbf{G} \right] \left\{ \mathbf{d} \right\}_{i=1}^{*}$$

• according to equation (2.12).Corrected unit joint stiffness matrix $[k_{ij}]_i$ corresponding to the stress state is obtained.

The stresses in each reinforced concrete and brick element subdivision is calculated as:

$$\left\{ \mathbf{G} \right\}_{i} = \left[\mathbf{D} \right] \left[\mathbf{G} \right] \left(\sum_{j=1}^{i} \left\{ \mathbf{d} \right\}_{j} \right)$$

according to equation (2.4)

If, after checking for cracks, any tension cracks are detected, corresponding pseudoload vector $\{pq_{cc}\}$ is calculated according to equation (2.14) as:

$$\left\{ pq_{cc} \right\} = \int \left[G \right]^{T} \left\{ G \right\}_{i} dV \qquad (3.2)$$

and this element subdivision is not checked for cracks in the following iterations of this increment.

The system stiffness matrix is rearranged due to the changes in $[k]_i$'s of joint elements to obtain $[K]_i$. The equilibrated part of $\{\Delta P\}_i$ can be represented as:

 $\left\{\Delta P\right\}_{ib} = \left[K\right]_{i} \left\{d\right\}_{i} \tag{3.3}$

After placing the pseudoload vectors of individual reinforced concrete and brick elements to their corresponding locations in the system by means of code number technique (10), equation (3.1) can be written as the new equation of the system as follows:

$$\left[\kappa\right]_{i}\left\{\Delta d\right\}_{i} = \left\{\Delta p\right\}_{i} - \left\{\Delta p\right\}_{ib} + \left\{Pq_{cc}\right\}_{II}$$

24
$$-\left[\Delta P\right]_{i} - \left[K\right]_{i} \left\{d\right]_{i} + \left\{Pq_{cc}\right\}$$
(3.4)

where part I represents the unbalanced force vector due to material nonlinearities in joint elements and part II represents the unbalanced forces due to cracking in reinforced concrete and brick elements.

After the necessary arrangment of equation (3.4), it takes the form

$$[K]_{i} (\{d\}_{i} + \{\Delta d\}_{i}) = \{\Delta P\}_{i} + \{Pq_{cc}\}$$

which means solving equation (3.1) with corrected system stiffness matrix and considering the effects of tension cracks, to obtain a new $\{d\}_i$. This process continues until

$$\frac{\|\{d\}_{i,n}-\{d\}_{i,n-1}\|}{\|\{d\}_{i,n}\|} < \delta$$

where δ is a sufficiently small number and $\|\cdot\|$ indicates a suitable norm of vectors.

At this stage joint elements are checked for cracks and residual stiffnesses are allocated as described in chapter 3.2.1 and the procedure upto this point is repeated until no more cracks in joint elements occur.Now the load on the system can be increased by one more increment.At the beginning of every new increment, increased stresses are calculated in already cracked element subdivisions of brick and reinforced concrete elements also, due to the incremented load on the system.In following itera tions, however, these element subdivisions shall be skipped, as mentioned before.By this way the already existing pseudoload vectors are corrected according to the increased stresses resulting from

BOĞAZİÇİ ÜNİVERSİTESİ KÜTÜPHANESI

the increased load on the system. (For a detailed flowchart of the solution procedure see Appendix 3.)

3.4 FINITE ELEMENT MODEL OF FRAME WITH MASONRY INFILL

The system under consideration is brick masonry panel encased in a reinforced concrete frame, finite element subdivision of which is shown in Fig.7 and Fig.8.

Fig.7. Finite Element Model of Frame-Masonry Panel

Fig.8. Close-up View of Lower Left Corner of Fig.7 It is assumed that at point A in Fig.8 nodes a,b and c coincide and so do nodes d,e and f at point B,although they are apart by a finite distance in reality. Consequently nodes of joint element AB are a-c-e-d.

3.5 MATERIAL PROPERTIES

Bricks are assumed isotropic, inherent variability of brick properties and small degree of anisotropy is neglected. Brick and reinforced concrete body in equilibrium is elastic only for the uncracked part of the body, and perfect bond exists between the steel and concrete. Joints are assumed to behave nonlinearly and joint deformation characteristics under normal and shear forces are obtained from stress-strain curves derived from tests on masonry panels performed by Page⁽³⁾, and which are given in Fig.9

4. APPLICATIONS AND RESULTS

4.1 INTRODUCTION

Fig.ll.General View of Frame Encased Masonry Panel The values of some material constants used in the analysis are as follows:

Modulus of elasticity of steel : 29 800 000 psi Modulus of elasticity of concrete : 3 500 000 psi Moudulus of elesticity of mortar : 292 100 psi

650 000 psi Modulus of elasticity of brick 2 Shear modulus of mortar 128 000 psi 1 0.20 Poisson ratio of concrete Poisson ratio of brick 0.17 Allowable tensile stress of brick (8,9); 55 psi Allowable tensile stress of concrete 650 psi 1 Poisson ratio of steel 0.17

The incremental finite element program isapplied to the structure given in Fig.ll.Ry doing this, failure criterion of Page⁽³⁾ and two modifications of it were used for mortar joint elements to calculate their cracking pattern.Thereafter, using failure criterion of Page, the structure is analysed for investigating the effect of

a) vertical loading

b) an increase of mortar joint elastic and shear moduli
 (E and G) by 50%

Finally the frame is analysed without the infill panel, in order to investigate the effect of infill panel on the frame.

4.2 ANALYSIS WITH THREE TYPES OF FAILURE CRITERIA

4.2.1 FAILURE CRITERION TYPE I (After Page)

The criterion illustrated in Fig.6 is used and the structure is loaded horizontally upto 10000 lb in ten increments.Resulting cracking pattern is illustrated in Fig.12.

Fig.12. Crack Pattern According to Failure Criterion Type I.

4.2.2 FAILURE CRITERION TYPE II

The relations adopted for this criterion are:

Region	1:	ζ _u =-1.05 _{nu} -42
Region	2:	℃_=-0.836_nu-42
Region	3:	ζ_=-0.116277.

Then used in the analytical model this criterion yields the crack pattern illustrated in Fig.14. The structure is again loaded with 10 000 1b horizontally in ten increments.

Fig.14. Crack Pattern According to Failure Criterion Type II.

4.2.3 FAILURE CRITERION TYPE III

Failure criterion illustrated in Fig.15 is used.

The relations adopted for the model are:

Region 1: 2 =- 1.446 -42

Region 2: 7=-0.836 -42

When used in the analytical model this criterion yields the crack pattern illustrated in Fig.16. The structure is again loaded with 10 000 lb horizontally in ten increments.

Fig.16. Crack Pattern According to Failure Criterion Type III.

4.3 EFFECT OF VERTICAL LOADING

The structure is loaded vertically with 4550 lb in addition to the horizontal load of 10 000 lb, again at ten increments and using failure criterion type I.Resulting crack pattern is shown in Fig.17 in comparison with crack pattern of only horizontal loading.

4.4 EFFECT OF AN INCREASE IN ELASTIC AND SHEAR MODULI OF MORTAR

In order to find out to which extent a variation in joint deformation characteristics (E and G) effects the behaviour of the masonry infill panel, elastic and shear moduli of mortar joint elements are increased by 50%. Resulting crack pattern of the structure is illustrated in Fig.17 in comparison with crack pat-. tern of the structure with original joint deformation characteristics. A horizontal load of 10 000 1b is applied

4.5 ANALYSIS OF THE FRAME WITHOUT INFILL PANEL

In order to investigate the effect of masonry infill panel on the behaviour of reinforced concrete frame, the frame without the infill panel is loaded horizontally at 10 000 lb as shown in Fig.18, with tension cracks in reinforced concrete marked also.

4.6 LOAD DEFLECTION CURVES

DISCUSSION AND CONCLUSIONS

In this study an incremental finite element program was prepared for analysing reinforced concrete frame encased masonry panels and this program is applied to a one-storey,one-bay frame under combinations of horizontal and vertical loading.

Fig.19 shows that lateral stiffness of reinforced concrete frames is increased by a great amount, if the effect of the infill is incorporated into the calculations. Comparing Fig.17 and Fig.18 it can be seen that the extent of tension cracks in reinforced concrete columns is reduced, so that in the analysis with the infill considered also, in the frame no more tension cracks appear, due to the stiffening of the structure.

Energy absorbtion capacity is increased also, when the infill is taken into account. As a result of this fact the areas under H-& curves of frames with infill in Fig.19 are greater than that of the empty frame.

Load deflection curve of the empty frame is linear until first cracks appear at load level 8 000 lb.After this load level. nonlinearity of the curve becomes easily visible.Although it is hardly visible in Fig.19,load deflection curves of frames with infill are from the beginning on nonlinear due to the nonlinear behaviour of mortar joints.This nonlinearity becomes easily visible as cracking in the mortar joints increase with the increa-

sing load on the system.

Presence of vertical loading increases the lateral stiffness of the structure furthermore, as the cracking in mortar joints are reduced (Fig.17). This reduction in cracks is obvious, because under vertical compression a horizontal joint element needs greater stress values in order to fail. This deletion of cracking increases the lateral stiffness of the structure.

As to be expected, an increase in material properties of mortar joints cause more joint elements to fail, in both tension and shear.

The computer program used demands a size of 97 K, for the problem in chapters 4.2,4.3 and 4.4, which is a fairly large size and is a consequence of assigning three joints at each node of the infill panel.For the same problem the execution time is approximately 30 minutes, a long but inevitable execution time due to the many successive iterations.The size of the problem could be reduced considerably by making use of symmetry of the structure, if loading were symmetrical also. (e.g. only vertical loading).But in this case, where loading is antisymmetrical, such an apolication would be very complicated if not impossible.

The conclusions which can be derived are as follows: 1. Masonry infills increase overall stiffness of the structure considerably.

2. Energy absorbtion capacity is increased also.

 Infill panels carry considerable portion of shear force.
 Application of the computer program to a frame and infill with larger dimensions would not be practical and also not feasible.
 Results lead to the conclusion that infills should be incor-

porated in the analysis and design of framed structures, if economy is desired. In case that the infill panel happens to fail in the analysis, this failed panel should be deleted and the analysis repeated.

the second fragment from the second second and the second s

-0-

3.2

REFERENCES

- .Timoshenko S.P., Goodier J.N., <u>Theory of Elasticity</u>, 3. ed. Newyork, McGraw Hill, 1963.
- .Goodman, R.E., Taylor, R.L. and Brekke, T.L., "A Model for the Mechanics of Jointed Rock", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, May 1968, pp. 637-659.
- .page, A., "Finite Element Model for Masonry", Journal of the Structural Division, ASCE, Vol. 104, August 1978, pp. 1267-1285.
- Benjamin, J.R., Williams, H.A., "The Behaviour of the One Storey Brick Shear Walls", Journal of the Structural Division, ASCE Vol.84, July 1958, pp. 1723-1-1723-30.
- . Colville, J., Abbasi, J., "Plane Stress Reinforced Concrete Finite Elements", Journal of the Structural Division, ASCE Vol.100, May 1974, pp.1067-1083.
- •Zienkiewicz, O. C., Valiappan, S. and King, I.P., "Stress Analysis of Rock as a 'No-tension' Material", <u>Geotechnique</u>, London, England, Vol. 18, 1968, pp. 56-66.
- Umemura, H., Aogama, H., Noguchi, H., "Test of Plain Brick Walls Subjected to Lateral Force", <u>Experimental Studies on Reinforced Concrete</u>
 <u>Members</u>, Vol. 3., Faculty of Engineering, Department of Architecture,
 The University of Tokyo, pp. 78-90.
- .L.Mayes, Clough, R., Omote Y. and Chen, S, "Expected Performance of Uniform Building Code Designed Masonry Buildings", <u>Earthquake Re-</u> <u>sistant Masonry Construction</u>, NBS B₁, ilding Science Series 106, pp. 91-109.
- Hacim, Ergül, "Effect of Number of Bars and Amount of Prestress on the Lateral Load Behaviour of Post-tensioned Brick Walls", <u>Master Thesis</u>, Civil Engineering Department, Boğaziçi University, July 1980.

- 10. Tezcan, Semih, <u>Çubuk Sistemlerin Elektronik Hesap Makineleri</u> ile Çözümü, İTÜ Matbaası, İstanbul, 1971.
- 11.Dawson,R. and Ward M.A., "Dynamic Response of Framed Structures with Infill Walls", Proc. 5th World Conference on Earthouake Engineering, Rome, 2., 1507-1516 (1973)
- 12. Wen R.K. and Natarajan, P.S., "Inelastic Seismic Behaviour of Frame-Wall Systems", Proc. 5th World Conference on Earthquake <u>Engineering</u>, Rome, 1, 1343-1352 (1973).
- 13. Moss, P.J. and Carr, A.J., "Aspects of the Analysis of Frame-Panel Interaction", <u>Bulln. New Zealand Society of Earthquake</u> <u>Engineering</u>, 4, No. 1, 126-144 (March, 1971).
- 14.Mallick,D.V and Severn,R.J.,"Dynamic Characteristics of Infilled Frames", Proc. Institution of Civil Engineers, 39, 261-287(1968)
- 15.Stafford Smith, B. and Carter, C., "A Method of Analysis for Infilled Frames", Proc. Institution of Civil Engineers, 44, 31-48, (1969).
- 16. Yokel, F. Y., Fattal, S.G., "Failure Hypothesis for Masonry Shear Shear Walls", <u>Journal of the Structural Division</u>, ASCE, Vol. 102, March 1976, pp. 515-531.
- 17.R. Meli, "Behaviour of Masonry Walls under Lateral Loads", <u>Proc. 5th World Conference on Earthquake Engineering</u>, Rome, 1973, pp. 853-862.
- 18.Zienkiewicz, O.C., The Finite Element Method, McGraw Hill Inc, Maidenhead, England, 1977.
- 19. Newmark, N.M., Rosenblueth, E., <u>Fundamentals of Earthquake Enginee</u>ring, Prentice-Hall Inc., Englewood Cliffs, N.J., 1971.
- 20.Dowrick, D.J., Earthquake Resistant Design, John Wiley and Sons, England, 1978.

APPENDIX 1 PROMINENT APPENDIX

RECTANGULAR PLANE STRESS ELEMENT

APPENDIX 2

STIFFNESS COEFFICIENT CONTRIBUTIONS FROM REINFORCING BARS

	UF R.C.	ELEMENIS	
	¥.	ψ"	ψ‴
⁽ 11	C ₁ ^p 1-C ₂ ^p 2	-T ₂ -T ₄	Rı
412	C ₃ P ₅	-T ₆ -T ₈	^R 2
413	C ₁ P ₃ -C ₂ P ₂	T ₄ -T ₁₇	-R ₁
414	-C4P5-C5P7	T ₈ -T ₁₄	-R ₂
415	-C1P3-C2P4	T ₁₇ -T ₁₈	R _l
416	-C ₄ P ₆ -C ₅ P ₇	-T ₁₄ -T ₁₅	R ₂
417	-C ₁ P ₁ -C ₂ P ₄	T ₂ -T ₁₈	-R ₁
418	C4P6-C5P5	T ₆ -T ₁₅	-R ₂
22	C ₆ P ₂ -C ₇ P ₁	-T ₁₀ -T ₁₂	R ₃
23	C ₄ P ₇ -C ₅ P ₅	T ₈ -T ₁₃	-R ₂
24	-C ₆ P ₂ -C ₇ P ₃	T ₁₀ -T ₂₀	-R ₃
25	-C ₄ P ₇ -C ₅ P ₆	T ₁₃ -T ₁₆	R ₂
26	-C ₆ P ₄ -C ₇ P ₃	-T ₁₉ -T ₂₀	R ₃
27	-C ₄ P ₅ -C ₅ P ₆	T ₆ -T ₁₆	-R ₂
28	C ₆ P ₄ -C ₇ P ₁	T ₁₂ -T ₁₉	-R3
33	C ₁ P ₉ -C ₂ P ₂	T1-T4	Rl
34	- C ₃ P ₇	T ₅ -T ₈	R2
35	$-C_{1}P_{9}-C_{2}P_{4}$	-T ₁ -T ₁₈	-R ₁
36	-C ₄ P ₈ -C ₅ P ₇	-T ₅ -T ₁₅	-R ₂
37	-C ₁ P ₃ -C ₂ P ₄	T ₁₇ -T ₁₈	Rl
38	C4P8-C5P5	T ₁₃ -T ₁₅	R2
44	C ₆ P ₂ -C ₇ P ₉	-T ₁₀ -T ₁₁	R ₃
45	C4P7-C5P8	-T ₅ -T ₁₆	-R ₂
46	$C_6 P_4 - C_7 P_9$	-T ₁₁ -T ₁₉	-R3

41

$$\begin{array}{ccccccccc} k_{47} & C_4 P_5 - C_5 P_8 & -T_{14} - T_{16} & R_2 \\ k_{48} & -C_6 P_4 - C_7 P_3 & -T_{19} - T_{20} & R_3 \\ k_{55} & C_1 P_9 - C_2 P_{10} & T_1 - T_3 & R_1 \\ k_{56} & C_3 P_8 & T_5 - T_7 & R_2 \\ k_{57} & C_1 P_3 - C_2 P_{10} & -T_3 - T_{17} & -R_1 \\ k_{58} & -C_4 P_8 - C_5 P_6 & -T_7 - T_{13} & -R_2 \\ k_{66} & C_6 P_{10} - C_7 P_9 & T_9 - T_{11} & R_3 \\ k_{67} & C_4 P_6 - C_5 P_8 & -T_7 - T_{14} & -R_2 \\ k_{68} & -C_6 P_{10} - C_7 P_3 & -T_9 - T_{20} & -R_3 \\ k_{77} & C_1 P_1 - C_2 P_{10} & -T_2 - T_3 & R_1 \\ k_{78} & -C_3 P_6 & -T_6 - T_7 & R_2 \\ k_{86} & C_6 P_{10} - C_7 P_1 & T_9 - T_{12} & R_3 \\ \end{array}$$

 $T_{1} = C_{1} \eta_{1} SL_{s}$ $T_{2} = C_{1} \eta SL_{s}$ $T_{3} = C_{2} \xi_{1} CL_{s}$ $T_{4} = C_{2} \xi CL_{s}$ $T_{5} = \frac{C_{3} \eta_{1} CL_{s}}{2}$ $T_{5} = \frac{C_{3} \eta_{1} CL_{s}}{2}$ $T_{6} = \frac{C_{3} \eta CL_{s}}{2}$ $T_{7} = \frac{C_{3} \xi_{1} SL_{s}}{2}$ $T_{9} = C_{6} \xi_{1} CL_{s}$ $T_{10} = C_{6} \xi CL_{s}$ $T_{11} = C_{7} \eta_{1} SL_{s}$

$$T_{12} = C_{7} \overline{\eta} SL_{s}$$

$$T_{13} = \frac{C(C_{4} \eta_{1} - C_{5} \overline{\eta})L_{s}}{2}$$

$$T_{13} = \frac{C(C_{4} \overline{\eta} - C_{5} \overline{\eta})L_{s}}{2}$$

$$T_{14} = \frac{C(C_{4} \overline{\eta} - C_{5} \overline{\eta})L_{s}}{2}$$

$$T_{15} = \frac{S(C_{4} \overline{\xi}_{1} - C_{5} \overline{\xi})L_{s}}{2}$$

$$T_{16} = \frac{S(C_{4} \overline{\xi} - C_{5} \overline{\xi}_{1})L_{s}}{2}$$

$$T_{16} = \frac{C_{1}S(\eta_{1} - \overline{\eta})L_{s}}{2}$$

$$T_{17} = \frac{C_{1}S(\eta_{1} - \overline{\eta})L_{s}}{2}$$

$$T_{18} = \frac{C_{2}C(\overline{\xi} - \overline{\xi}_{1})L_{s}}{2}$$

$$T_{19} = \frac{C_{6}C(\overline{\xi} - \overline{\xi}_{1})L_{s}}{2}$$

$$T_{20} = \frac{C_{7}S(\eta_{1} - \overline{\eta})L_{s}}{2}$$

THESIS*AMEF (1) . AMEREAL JL, KS, KN, KST1, KST2, NU1, NU2, KSTBAR, NUBAR DIMENSION DEF (600), SM (36), NCODE (8), LL (600), EDEP (600), S⁽²⁶⁰⁰⁰⁾ SKIP(110,9), JON(30), IDIR(30), MAG(30), POCC(8) DIMENSION DIMENSION JOX(600), JOY(600), NODE(500,4), TETA(500) A(500), B(500), SJ(2,8), SR(3,8), ITIP(500) DIMENSION DIMENSION SKIP1(250), GJJ(250), EJJ(250), PRINST(12,10) STRESS(250,2), TAUIN(250), SIGIN(250), EDEF(8) DIMENSION COMMON STRESS, TAUIN, SIGIN, TTER, SIGALB, PRINST, LX COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITIP, SKIP1, GJJ, EJJ, DELTA, ICK COMMON MSSITJ, EDEP, SKIP, MJ, JON, IDTR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC COMMON N, MS, INT, TINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB 12345678 LOC(II,J)=!I*MS-II*(II-1)/2-(MS-J) DEFINE FILE 10(600,50,V,LV) DEFINE DEFINE FILE 29(110,8,V,LY) MAIN PROGRAM FILE 10 STORES ELEMENT STIFFNESS COFFE. AND CODE NUMBERS 29 STORES PSEUDOLOAD VECTORS FOR R.C. ELEMENTS X: POINT OF JOINT ELEMENTS WHERE STRESSES ARE CALCULATED MAXS: CAPACITY OF SYSTEM EQUATIONS MATRIX 1222222222222222 C IINT: INCREMENT MSS: SIZE OF ONE DIMENSIONAL ELEMENT STIFFNESS MATRIX NLOAD: NO. OF LOADING CASES HALFBANDWIDTH OF , S, JBAND: NC: NO. OF CORNERS POCC. PSEUDOLOADVECTOR FOR R.C. ELEMENTS NCODF: CODE NUMBERS N: NO. OF UNKNOWNS TAUIN: CUMULATIVE SHEAR STRESS IN JOINT ELEMENTS SIGIN: CUMULATIVE NORMAL STRESS IN JOINT ELEMENTS SKIP: IF OF ENTER THE SUBREGION IN CONSIDERATION OF R.C. ELEMENTS F 31 333333333390 SKIP1: VARIABLE DETERMINING WHETHER TO ENTER A JOINT FOR STRESS CALC ULATIONS OR FOR CRACK CHECK ITIP: TYPE OF FLEMENT (1: JOINT, 2: BRICK, 3:R.C.) EDEP: CUMULATIVE DISPLACEMENTS OF THE SYSTEM X=0 MAXS=26000 IINT=1 MSS=36 MS=8 4123 NLOAD=1 JBAND=0 44 NC=4 DO 40 1=1.8 46 40 PQCC(I)=0. DO 50 LE=1'110

WRITE(29,LE)(PQCC(I),I=1,8) CALL ADATRE 50 DO 8 1=1, MEJ TAUIN(I)=0. SIGIN(I)=0. SKIP1(I)=0. D0 10 I=1.MEC 8 DO 20 L=1,9 SKIP(I,L)=0. CONTINUE DO 800 I=1,ME 20 LD=I CALL AJBAND(T) GO TO (801,802,803) CALL AJSTIF(I) GO TO 800 ITIP(I) 801 CALL ABSTIF(I) 802 CALL ACSTIF(I) WRITE(10,LD)(SM(K),K=1,MSS),(NCODE(M),M=1,MS) DO 23 J=1,N EDEP(J)=0. PRINT 600,IINT FORMAT(/40%,10HINCREMENT,12/) 803 800 2320 D0 25 J=1.N DEE(J)=0. 22222 ITER=1 DEPNOR=0 . DDNOR=0. LX=0 PRINT 650, ITER FORMAT (40X'10HITERASYON , 12) 650 CALL AGENER CALL AGELL DO 30 J=1,N K=LL(J+1)+J DEP=S(K) DD=DEP=DEF(J) DEPNOR=DEPNOR+DEP*DEP DDNOR=DDNOR+DD*DD DEF(J)=DEP DEPNOR=SOR!(DEPNOR) 30 DDNOR=SORT (DDNOR) DNORM=DDNOK/DEPNOR PRINT 1, DNORM FORMAT(40X'F6.4/) DO 900 I=1'ME TO (501'502,503) ITIP(I) GO

EALF ASPUSITY, 501 GO TO 900 502 CALL ABRIST(I) GO TO 900 503 CALL ACONSI(T) 900 CONTINUE ITFR=ITFR+1 IF(ITER.EQ.15) GO TO 1001 IF (DNORM. GI. DELTA) GO TO 28 TCR=0 DO 1000 T=1,ME GO TO (504,505,506) ITIP(I) 504 CALL ASJON(I) CALL AJCRAC(I) GO TO 1000 505 CONTINUE GO TO 1000 506 CONTINUE 1000 CONTINUE IF(ICR. FQ.1) GO TO 28 DO 169 J=1'N 169 EDEP(J) = EDEP(J) + DEF(J)IF (MEJ. FQ. 0) GO TO 171 DO 170 I=1'MEJ TAUIN(I)=TAUIN(I)+STRESS(I,1) SIGIN(I)=SIGIN(I)+STRESS(I,2) CONTINUE IINT=IINT+1 PRINT 2 FORMAT(36X:21HCONVERGENCE ACCHIEVED/) 171 2 IF (MEC.EQ.0) GO TO 172 PRINT 176 176 FORMAT (17X'55HDISPLACEMENTS OF CONCRETE ELEMENTS AT THIS LOAD LEVE *L ://2X,7HELM. NO.6X,2HD1,11X,2HD2,11X,2HD3,11X,2HD4,1TX,2HD5,11X, *2HD6,11X,2HD7,11X,2HD8/) LK=MEJ+MEB+1 DO 177 LD=LK.MF READ(10,LD)(SM(K),K=1,MSS),(NCODE(M),M=1,MS) DO 9 J=1.8 EDEF(J)=0. SAYN=1. IN=NCODE(J) IF(IN) 21,9,26 21 IN=-IN SAYN=-1. EDEF(J)=EDEP(IN)*SAYN 26 CONTINUE

4567 890	1) 177 11 4	PRINT 11,L0,(EDEF(J),J=1,8) FORMAT(4X,I3,8(5X,F8.6)) PRINT 4 FORMAT(/17X,44HSTRESSES AT X-SECTION A-A AT *LM. NO.,2X,5HSIGX2,5X,5HSIGY2,6X,4HTAU2,5X, *HTAU5,5X,5HSIGX8,5X,5HSIGY8,6X,4HTAU8/) DO 29 I=1,12 DO 29 I=1,12 DO 29 I=1,12	THIS LOAD 5HSIGX5,5X,	LEVEL/2X,8HE 5HSIGY5,6X,4	
512 553 555 556 558 558	29 5 172 1001 13 1002	FORMAT(2X,F5.1,9(4X,F6.1)) IF(IINT.LE.INT) GO TO 22 GO TO 1002 PRINT 13 FORMAT(32X,25HCONVERGENCE NOT ACCHIEVED/) STOP END	TILX AUTOELATION CONSTRUCTION SYSTEM GED	SR.RSI EC.ES.FR.VUC UAG.MAXS.MER METRY	
		DIR: DIRECTION 1			
189511	A REAL	TOTAL NO. OF HRICK ELEMENTS			
		ALL THICKNESS			
295677800		TEAL AND TENSTLE STRESS OF CONCRETE	1	T	
	E F				
104-15-16-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-1 19-14-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15-18-15- 19-14-15-18-18-18-18-18-18-18-18-18-18-18-18-18-		USI POISS, MATTO OF CONCRETE USI DO DINI HE OF THE LASTLY RESTRICTED JOIN NOT DOINT NO. 5 OF RESTRICTED JOINTS Y. 15 .0, UNRESTRICTED IN X DIR. OTHERWISE			
0100040			-7X-9HD12EC1	16N, 5X, 9HMAS	
		READ THENEILLIDIRITIAMAGILI			

THESTS*AMEF(1).ADATRE SUBROUTINE ADATRE DIMENSION JOX(600), JOY(600), NODE(500, 4), TETA(500) A(500), B(500), SR(3,8), EDEP(600), SKIP(110,9), JON(30) DIMENSION DIMENSION 1DIR(30), MAG(30), POCC(8), SM(36), NCODE(8) LL(600),S(26000),SJ(2,8),ITIP(500) SKIP1(250),GJJ(250),EJJ(250) DIMENSION DIMENSION STRESS(250,2), TAUIN(250), SIGIN(250), PRINST(12,10) DIMENSION COMMON STRESS, TAUIN, SIGIN, TTER, SIGALB, PRINST, LX COMMON VUS VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI 9 NU, X, SJ, KS, KN, SIGAL, ITIP, SKIP1, GJJ, EJJ, DELTA, ICK COMMON COMMON MSS, IJ, EDEP, SKIP, MJ, JON, IDIR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC 12314 COMMON N, MS, INT, IINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB SUBROUTINE FOR READING IN DATA AND EVALUATING SYSTEM GEOMETRY MJ: NO. OF NUDAL LOADINGS 15161718 JON: JOINT NO IDIR: DIRECTION MAG: MAGNITUDE NO. OF JOINT ELEMENTS MFJ: OF BRICK ELEMENTS NO. 12222222222223333333333334444 MFR . MEC: NO. ME: TOTAL NO. OF ELEMENTS NO. OF JUINTS WALL THICKNESS NJ: TH: JOINT THICKNESS TJ: OF INCREMENTS INT NO. SIGAL: ALL. TENSILE STRESS STRESS OF CONCRETE EJ: GJ: EC: ELASTIC MODULUS OF MORTAR JOINTS SHEAR FLASTIC MODULUS OF CONCRETE ES: EB* () STEEL BRICK VUC: POISS. RATIO OF CONCRETE BRICK VUB: ü ü STEFL VUS: Ö NO. OF THE LASTLY RESTRICTED JOINT JNN: JOINT JOINT NO., S OF RESTRICTED JOINTS VJN: DX: IF .0. UNRESTRICTED IN X DIR. OTHERWISE RESTRICTED DY: IF .0. PRINT 750 Ü Ü Ü 750 FORMAT(1H1'49X,9HLOAD DATA//37X,8HJOINT NO,7X,9HDIRECTION,5X,9HMAG *NITUDE/) READ 710, MJ 44 710 FORMAT(T2) DO 720 I=1'MJ READ 730, JON(I), IDIR(I), MAG(I) 46 47 730 FORMAT(3110)

720 740	PRINT 740, JON(I), IDIR(I), MAG(I) FORMAT(37X;3I10,2X;2HLB) READ 22.MEC MECHANER INTERTION	
	ME=MEC+MEJ+MEB PRINT 93, ME, MEC, MEJ, MEB, NJ, TH, TJ	
90	READ 90, INT, DELTA, SIGAL, SIGALB FORMAT(13, 3F10.4)	
89	FORMAT(/30X,17HNO. OF INTERVALS=,13/30X,17HDELTA 30X,17HSIGMA ALL OF RC=,5,1,2X,3HPSI/30X,20HSIGMA ALL.	OF BRICK-
in the second se	READ 96,EJ'GJ,EC,ES,EB,VUC,VUS,VUB	or onrout
97	PRINT 95, EJ, GJ, EC, ES, EB, VUC, VUS, VUB PRINT 700	
700	FORMAT(1H1'1X,130(,*,)/50X,7HRESULTS/1X,130(,*,)//) D0 5 I=1,MEJ	
5	GJJ(I)=GJ	
	IJ=1 READ 91, JNN	
91 70	ECAD 94, VJN, DX, DY	
94	JN=VJN IF(JN=F0, IJ) 60 TO 26	
	JND=JN-1 DO 10 J=IJ'JND	
	N=N+1 JOX(J)=N 30% SUBMODULUS DE FLASTICITY OF MORIAR = FIG.I.	1X134PS1/3
10	JOY(J)=N CONTINUE	
26		
	1×1 1	
41		
43	N=N+1 JQX(JN)=N*IX	
42	DY = -DY TY = -1	
46	N=N+1 JOY(JN)=N*IY	
51	IJ=JN+1	

.

FIL	1. AJI	IE (JN: NE: NJN' 680- J0178
		N=N+1 JOX(.))=N
		N=N+1 JOY(J)=N STARSASSASSASSASSASSASSASSASSASSASSASSASSA
	189	PRINT 99:N
	. 99	DO = 20 I=1, ME READ $P_2 = P_2 = P_2 = P_2 = P_2 = P_1 = P_2 $
	97	FORMAT(8F5.0, I5)
	31	ÎÊ(ÎÎ-I) 31,36,31 PRINT 903,1.11
	903	FORMAT (///30X, 7HELEMENT, 16, 5X, 15HIS OUT OF ORDER, 14/)
	36	NODE(I,1)=01 NODE(I,2)=02
		NODE(I,3)=D3 NODE(I,4)=D4
	20	FORMAT (/30X,26HNO, OF ELEMENTS
	1	2F BRICK ELEMENTS =, I4/30X, 26HNO. OF JOINTS =, I4/30X, 26H, 101NT THICKNESS
	06	FORMAT (8F10.0)
	95	FORMAT (730×,34HMODULUS OF ELASTICITY OF MORTAR =,F10.1,2X,3HPSI/3 10X,34HSHEAR MODULUS OF MORTAR =,F10.1,2X,3HPSI/30X,34HMOD
	61	2ULUS OF ELASTICITY OF CONCRETE; F10.1,2X,3HPSI/30X,34HMODULUS OF ELASTICITY 3LASTICITY OF STEEL =, F10.1,2X,3HPSI/30X,34HMODULUS OF ELASTICITY
	0025	+ OF BRICK =,F10.1.2X, 3HPSI//30X, 34HPOISSON RATIO OF CONCRETE =,F5.3/30X, 34HPOISSON RATIO OF STEEL =,F5.3/30X, 34HP
	92	$\frac{1}{10000000000000000000000000000000000$
		END

.

2034567 800		DIMENSION LETA(500), A(500), B(500), SR(3,8), EDEP DIMENSION LETA(500), A(500), B(500), SR(3,8), EDEP DIMENSION L(600), S(26000), SJ(2,8), SM(36), TITP DIMENSION L(600), S(26000), SJ(2,8), SM(36), TITP DIMENSION STRESS(250,2), TAUIN(250), SIGIN(250), COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PRINST, L COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B COMMON NUS, SJ, KS, KN, SIGAL, ITP, SKIP1, GJ, EJJ	(8),633(230),E33(230) (600) (500),5KIP1(250) PRINST(12,10) X LJB,NJB,SR,KSI DELTA,ICK
10123456	C STU	COMMON MSSIJ,EDEP,SKIP,MJ,JON,IDIR,MAG,PGCC/P COMMON N,MS,INT,IINT,NC,MEC,MEJ,GJ,EJ,SM,NCODE IM=0 DO 801 J=1'NC IM=IM+1 IN=NODE(I,J) NCODE(IM)=JOX(IN)	E,LL,S,NLUAD,MAXS,MEB
1/189	801	NCODE(IM)=JOY(IN) CONTINUE MSM=MS-1 DO 802 J=1'MSM JP=J+1 IJ=NCODE(J)	
2226789	12 13 14	IF(IJ) 12,802,13 IJ=-IJ DO 803 K=J ^P ,MS IK=NCODE(K) IF(IK) 14,803,15 IK=-IK	
301233 3333 335 356	15 803 802	KE=ABS(IK-IJ)+1 IF(JBAND-KF) 61,803,803 JBAND=KF CONTINUE CONTINUE RETURN END	
50		SM(14) =0 SM(15) = K2*, L/6. SM(15) = K2*, L/6. SM(16) =0.	
	1	SH 201=-K1*JL/6. SH 221=2.**2*JL/6. SH 221=2.**2*JL/6.	

.

THESIS*AMEF(1).AJ	SILESSADO	
1	REAL IL KSIKNAKIAK2	
5	DIMENSION A (500), B (500), SM (36), TETA (500)	
ŭ	DIMENSION JOX (600) . JOY (600) . NODE (500.4) .	SR(3:8), EDEP(600)
5	DIMENSION SKIP(110,9), JON(30), IDIR(30), M	AG(30)
67	DIMENSION SU(2, g) TIP(500) SKIP1(250) G	(100) (11(250), E + (250)
8	DIMENSION STRESS (250,2), TAUIN (250), SIGIN	(250), PRINST(12,10)
9	COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PR	INSTILX
10	COMMON VUS VUB, JOX, JOY, NODE, TELA, JL, JBAN	D.A.B.LJB.NJB. BR.KSI
112	COMMON MSSIT I. FOFP, SKIP .M. I. ION, IDIR .MAG.	PACC N.I. TH. MF. EC. FS. FR. VUC
13	COMMON N, MS, INT, IINT, NC, MEC, MEJ, GJ, EJ, SM	INCODE, LL, S, NLUAD, MAXS, MEB
14 C STI	FFNESS OF JUINT ELEMENTS	
15		
17	KN=F.I.J(T) * H/T.I	
18	IF(TETA(I) . NE.O.) GO TO 101	
19	K1=KS	
20	60 TO 102	
22 101	K1=KN	
23	K2=KS	
24 102	5M(1)=2.*KI*JL/6.	
26	$SM(3) = -2 \cdot *K + 1 \cdot JL/6$	
27	SM(4)=0.	
28	SM(5)=-K1*JL/6.	
30	$SM(7) = K_1 * J^{L}/6$.	
31	SM(8)=0.	
32	5M(9)=2.*K4*JL/6.	
34	SM(11)=-2.*K2*JL/6.	
35	SM(12)=0.	
36	SM(13)=-K2*JL/6.	
38	SM(15) = K2 * JL/6	
39	SM(16)=2.**1*JL/6.	
40	SM(17)=0	
41	SM(19)=0.	
43	SM(20)=-K1*JL/6.	
44	SM(21)=0.	
45	SM(23)=0	
47	SM(24)=K2*JL/6.	

.

SM(25)=0. SM(26)=-K2*JL/6. SM(27)=2.*K1*JL/6. SM(28)=0. SM(29)=-2.*K1*JL/6. SM(30)=0. SM(31)=2.*K2*JL/6. SM(32)=0. SM(34)=2.*K1*JL/6. SM(34)=2.*K1*JL/6. SM(35)=0. 445555555555566 SM(35)=0. SM(36)=2.*^K2*JL/6. RETURN END SM(1)=(1,*%ETA+2,*(1,*VUB)*ALF^)*COB SM(2)=3,20,*(1,*VUB)*COB SM(3)=(2,*META=3,*(1,-VUB)*ALF^)*COB SM(3)=(2,*META=3,*(1,-VUB)*ALF^)*COB SM(4)=3,22**(1,-3,*VUB)*COB SM(4)=3./2**(1 =3.*WURJ*CC9 SM(5)=(-9.*RFTA-(1.*VUR)*A(FA)*C08 'SM(5)=(-9.*RFTA-(1.*VUR)*C08 SM(5)=(-9.*RFTA)(1.*VUR)*C08 SM(5)=(-9.*RTA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*RETA)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*RETA)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*RETA)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SM(1)=(-9.*RTA)(FA)(1.*VUR)*C08 SW(21)=3, /2 =11, +VUR)*COR SW(20)=(4, 58LE5+2.*(1.-VUR)*RETA)*COR ##1201=(4, 58LE5+2.*(1.-VUR)*RETA)*COR ##1201=3./2.*(1.-3.*VUR)*COR ##1201=3./2.*(1.*VUR)*COR SW(20)=(4.58LE5+2.*(1.*VUR)*COR ##1201=3./2.*(1.*VUR)*COR ##1201=3./2.*(1.*VUR)*COR ##1201=3./2.*(1.*VUR)*COR A SALES PRIME AVINDIACOD A SALES PARTA 3.411, MOUNT AALMAIACOD

.

THESIS * AMER (1) . ABSTIE OUTINE ABSTIE (1) DIMENSION A (500), B(500), SM(36), TETA (500) DIMENSION JOX(600), JOY(600), NODE(500,4), SR(3,8), EDEP(600) DIMENSION SKTP(110,9), JON(30), TDTR(30), MAG(30) DIMENSION POCC(8), NCODE(8), LL(600), S(26000) SJ(2,8), ITIP(500), SKTP1(250), GJJ(250), EJJ(250) DIMENSION DIMENSION STRESS(250,2), TAUIN(250), SIGIN(250), PRINST(12,10) COMMON STRESS, TAUIN, SIGIN, TTER, SIGALB, PRINST, LX COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI a COMMON NU, X, SJ, KS, KN, SIGAL, ITIP, SKIPI, GJJ, EJJ, DELTA, ICK 10 COMMON MSS . TJ, EDEP, SKIP, MJ, JON, IDIR, MAG, PQCC, NJ, TH, ME, EC, ES, EB, VUC COMMON NOMS, TNT, TINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLVAD, MAXS, MEB 123415678 C STIFFNESS OF BRICK ELEMENTS COB=EB*TH/(12.*(1.-VUB**2)) AB=A(T) BB=B(I) ALFA=AB/BB BETA=BB/AB SM(1)=(4.*BETA+2.*(1.-VUB)*ALFA)*COB SM(2)=3./2.*(1.+VUB)*COB SM(3)=(2.*BETA-2.*(1.-VUB)*ALFA)*COB SM(4)=3./2.*(1.-3.*VUB)*COB SM(5)=(-2.*BETA-(1.-VUB)*ALFA)*COB SM(6)=-3./2.*(1.+VUB)*COB SM(7)=(-4.*BETA+(1.-VUB)*ALFA)*COB SM(8)=-3./2.*(1.-3.*VUB)*COB SM(9)=(4.*ALFA+2.*(1.-VUB)*BETA)*COB SM(10)=-3./2.*(1.-3.*VUB)*COB SM(11)=(-4.*ALFA+(1.-VUB)*BETA)*COB SM(12)=-3./2.*(1.+VUB)*COB SM(13)=(-2.*ALFA-(1.-VUB)*BETA)*COB SM(14)=(3./2.*(1.-3.*VUB))*COB SM(15)=(2.*ALFA-2.*(1.-VUB)*BETA)*COB SM(16)=(4.*BETA+2.*(1.-VUB)*ALFA)*COB SM(17)=-3./2.*(1.+VUB)*COB SM(18)=(-4.*BETA+(1.-VUB)*ALFA)*COB SM(19)=3./2.*(1.-3.*VUB)*COB 3890 SM(20)=(-2.*BETA-(1.-VUB)*ALFA)*COB SM(21)=3./2.*(1.+VUB)*COB SM(22)=(4.*ALFA+2.*(1.-VUB)*BETA)*COB SM(23)=-3./2.*(1.-3.*VUB)*COB SM(24)=(2.*ALFA-2.*(1.-VUB)*BETA)*COB SM(25)=3./2.*(1.+VUB)*COB 4123 SM(26)=(-2.*ALFA-(1.-VUB)*BETA)*COB SM(27)=(4.*BETA+2.*(1.-VUB)*ALFA)*COB SM(28)=3./2.*(1.+VUB)*COB 44 45 46 SM(29)=(2.*BETA-2.*(1.-VUB)*ALFA)*COB 47

8901204	SM(30)=3./2.*(13.*VUB)*COB SM(31)=(4.*ALFA+2.*(1VUB)*BET SM(32)=-3./2.*(13.*VUB)*COB SM(33)=(-4.*ALFA+(1VUB)*BETA) SM(34)=(4.*BETA+2.*(1VUB)*ALF SM(35)=-3./2.*(1.+VUB)*COB SM(36)=(4.*ALFA+2.*(1VUB)*BET	A) *COB A) *COB A) *COB
55	6 END	AND AND A ZICINIDSOL PRINST(12,10)
		A.JL.JBAND.A.H.LJP.NJP.SP.KSI
	2 COMMON NELLIKSIKSIKAISIGALIITI COMMON MSSITJIEDEPISTIPIMJIJON. COMMON NIMSINIIINTINCIMECIMEJ	INTRAMAG, PROCEAU, TH, MELEC, FS, ER, VUC INTRAMAG, PROCEAU, TH, MELEC, FS, ER, VUC INGJ, EJ, SM, NCODE, LL, S, NLUAN, MAXS, MER
15	COCEFCATU/112.*(1.~VUC**2))	
	0512#VUS+0311 0522#0511 0573#C5218##(1.+VUS)10 0511#EC7(1.+VUS)10 0511#EC7(1.+VUS)10 0511#EC7(1.+VUS)10	
N.2.5.0		
		CANIZ (L) SA(L) SL(L) SL(L) SL(L) SL(L) SL(L) SA(L) SL
	G GO FORMATICAFINED C READING IN REINFORCEMENT DATA C NRI NUMBER OF REINFORCING PARS C KSILLKSIZIMUL+NUZ ARE COORDINATES	OF STEEL BARS
	SVISTEEL VOLUME	
		LACE THE AC ELEMENTS

THESIS*AMEF(1).ACSTIF SUBROUTINE ACSTIF(1) REAL KSI1, KSI2, NU1, NU2, KSIBAR, NUBAR DIMENSION A(500), B(500), SM(36), TETA(500), KSI1(10) DIMENSION KSI2(10), NU2(10), SL(10), SA(10), SV(10), NU1(10), POCC(8) DIMENSION JOX(600), JOY(600), NODE(500,4), SR(3,8), EDEP(600) DIMENSION SKIP(110,9), JON(30), IDIR(30), MAG(30) NCODE(8), LL(600), S(26000), SJ(2,8), ITIP(500), SKIP1(250) DIMENSION DIMENSION GJJ(250), EJJ(250) DIMENSION STRESS(250,2), TAUIN(250), SIGIN(250), PRINST(12,10) COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PRINST, LX COMMON VUS VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITTP, SKTP1, GJJ, EJJ, DELTA, ICK COMMON MSS . TJ, EDEP, SKIP, MJ, JON, IDIR, MAG, PQCC, NJ, TH, ME, EC, ES, EB, VUC COMMON N, MS, INT, IINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB C STIFFNESS OF R.C. MEMBERS COC=EC*TH/(12.*(1.-VUC**2)) DS11=ES/(1.-VUS**2) DS12=VUS*DS11 DS22=DS11 DS33=ES/(2·*(1.+VUS)) DC11=EC/(1.-VUC**2) DC12=VUC*DC11 DC22=DC11 DC33=EC/(2.*(1.+VUC)) READ 89.NR 89 FORMAT(15) IF (NR.EQ.0' GO TO 13 READ 90, (KSI1(L), NU1(L), KSI2(L), NU2(L), SA(L), SL(L), L=1"NR) 90 FORMAT(6F10.0) READING IN REINFORCEMENT DATA NR: NUMBER OF REINFORCING BARS KSI1, KSI2, NU1, NU2 ARE COORDINATES OF STEEL BARS SA: STEEL AREA SL:STEEL LENGTH SV:STEEL VOLUME 13 C1=(DS11-DC11)/A(I)**2. C2=(DS33-DC33)/B(I)**2. C3=(DS12-DC12+DS33-DC33)/(A(I)*B(I)) C4=(DS12-DC12)/(A(I)*B(I)) C5=(DS33-DC33)/(A(I)*B(I)) C6=(DS22=DC22)/B(1)**2. C7=(DS33=DC33)/A(1)**2. ALFA=A(I)/B(I BETA=B(T)/A(T STIFFNESS COEFF. OF CONCRETE PART OF THE RC ELEMENTS C SM(1)=(4.*BETA+2.*(1.-VUC)*ALF^)*COC SM(2)=3./2.*(1.+VUC)*COC

P7=NU1(L)*KSTBAR

C

SM(3) = (2.*BETA-2.*(1.-VUC)*ALFA)*COC SM(4) = 3./2**(1.-3.*VUC)*COC SM(5) = (-2.*BETA-(1.-VUC)*ALFA)*COC SM(6) = -3./2**(1.+VUC)*COC SM(7) = (-4.*BETA+(1.-VUC)*ALFA)*COC SM(7) = (-4.*BETA+(1.-VUC)*ALFA)*COC SM(9) = (4.*ALFA+2*(1.-VUC)*BETA)*COC SM(10) = -3./2*(1.-3.*VUC)*COC SM(11) = (-4.*ALFA+(1.-VUC)*BETA)*COC SM(11) = (-4.*ALFA+(1.-VUC)*BETA)*COC SM(13) = (-2.*ALFA-(1.-VUC)*BETA)*COC SM(13) = (-2.*ALFA-(1.-VUC)*BETA)*COC SM(14) = (3./2*(1.-3.*VUC))*COC SM(15) = (2.*ALFA-2*(1.-VUC)*BETA)*COC SM(16) = (4.*BETA+2*(1.-VUC)*ALFA)*COC SM(16) = (4.*BETA+2*(1.-VUC)*ALFA)*COC SM(18) = (-4.*BETA+(1.-VUC)*ALFA)*COC SM(10)=(4.*BETA+2.*(1.*VUC)*ALFA)*COC SM(17)==-3./2.*(1.+VUC)*ALFA)*COC SM(18)=(-4.*BETA+(1.*VUC)*ALFA)*COC SM(20)=(-2.*BETA-(1.*VUC)*ALFA)*COC SM(21)=3./2.*(1.+VUC)*COC SM(22)=(4.*ALFA+2.*(1.*VUC)*BETA)*COC SM(23)=-3./2.*(1.*OUC)*BETA)*COC SM(24)=(2.*ALFA-2.*(1.*VUC)*BETA)*COC SM(26)=(-2.*ALFA-(1.*VUC)*BETA)*COC SM(26)=(-2.*ALFA-(1.*VUC)*ALFA)*COC SM(28)=3./2.*(1.*VUC)*COC SM(28)=3./2.*(1.*VUC)*ALFA)*COC SM(28)=3./2.*(1.*OUC)*ALFA)*COC SM(30)=3./2.*(1.*OUC)*BETA)*COC SM(31)=(4.*ALFA+2.*(1.*VUC)*ALFA)*COC SM(32)=-3./2.*(1.*OUC)*COC SM(33)=(-4.*ALFA+2.*(1.*VUC)*BETA)*COC SM(33)=(-4.*ALFA+2.*(1.*VUC)*ALFA)*COC SM(33)=(-4.*ALFA+2.*(1.*VUC)*ALFA)*COC SM(33)=(-4.*ALFA+2.*(1.*VUC)*BETA)*COC SM(33)=(-4.*ALFA+2.*(1.*VUC)*BETA)*COC SM(36)=(4.*ALFA+2.*(1.*VUC)*BETA)*COC SM(36)=(4.*ALFA+ SS=(NU2(L)-NU1(L))/SL(L) KSIBAR=1.-KSI1(L) NUBAR=1.-NU1(L) SV(L)=SA(L)*SL(L) P1=NUBAR**2 P2=KSIBAR**2 P3=NUBAR*NU1(L P4=KSIBAR*KSI1(L) P5=NUBAR*KSTBAR P6=NUBAR*KST1(L)

P8=NU1(L)**SI1(L) P9=NU1(L)**2 P10=KSI1(L)**2 R1=(C1*SS**2+C2*C**2)*SL(L)**2/3. R2=C3*S5*C*SL(L)**2/3. R3=(C6*C**2+C7*SS**2)*SL(L)**2/3. T1=C1*NU1(L)*SS*SL(L) T2=C1*NUBAR*SS*SL(L) T3=C2*KST1(L)*C+CL(L) T3=C2*KSI1(L)*C*SL(L T4=C2*KSIBAR*C*SL(L) T5=C3*NU1(L)*C*SL(L)/2. T6=C3*NUBAR*C*SL(L)/2. T7=C3*KSI1(L)*SS*SL(L)/2. T8=C3*KSIB^AR*SS*SL(L)/2. T9=C6*KSI1(L)*C*SL(L) T10=C6*KSIBAR*C*SL(L T11=C7*NU1(L)*SS*SL(L) T12=C7*NUBAR*SS*SL(L) T13=C*(C4*NU1(L)-C5*NUBAR)*SL(L)/2. T14=C*(C4*NUBAR-C5*NU1(L))*SL(L)/2. T15=SS*(C4*KSI1(L)-C5*KSIBAR)*SL(L)/2. T16=SS*(C4*KSIBAR-C5*KSI1(L))*SL(L)/2. 117=C1*SS*(NU1(L)-NUBAR)*SL(L) 12. T18=C2*C*(KSIBAR-KSI1(L))*SL(L)/2. T19=C6*C*(KSIBAR-KSI1(L))*SL(L)/2. T20=C7*SS*(NU1(L)-NUBAR)*SL(L)/2. FNESS_COEFF.OF_CONCRETE_AND_STEEL T20=C/*55+N01 CONCRETE AND STEEL PARTS SM(1)=SM(1)+SV(L)*(C1*P1+C2*P2-T2-T4+R1) SM(2)=SM(2)+SV(L)*(C3*P5-T6-T8+R2) SM(3)=SM(3)+SV(L)*(C1*P3-C2*P2+T4-T17-R1 SM(3)=SM(3)+SV(L)*(-C4*P5+C5*P7+T8+T14-R PARTS ARE SUMMED UP C STIFFNESS)*(C1*P3-C2*P2+T4-T17-R1) SM(4) SM(5) SM(4)=SM(4)+SV(L)* SM(5)=SM(5)+SV(L)* SM(6)=SM(6)+SV(L)* (-C4*P5+C5*P7+T8+T14-R2 (-C1*P3-C2*P4+T17-T18+R1 -C4*P6-C5*P7-T14+T15+R2) SM(7)=SM(7)+SV(L)* (-C1*P1+C2*P4+T2+T18-R1) =SM(8)+SV(L)*(C4*P6-C5*P5+T6-T15-R2) SM(a) SMigi =SM(9)+SV(L)* (C6*P2+C7*P1-T10-T12+R3) 10)+SV(L)*(C4*P7-C5*P5+T8-T13-R2) SM(10)=SM(SM(11)=SM(SM(12)=SM(*(-C6*P2+C7*P3+T10-T20-R3) *(-C4*P7-C5*P6+T13-T16+R2) 11) + SV(L) * (12)=SM(13)=SM(12)+5V(L)*(-C4*P7-C5*P6+T13-116+R2) 13)+5V(L)*(-C6*P4-C7*P3-T19+T20+R3) SM SM(14)=SM(SM(15)=SM(+SV(L)*(-C4*P5+C5*P6+T6+T16-R2) 14))*(C6*P4-C7*P1+T12+T19-R3) 15)+SV(L)*(C6*P4-C7*P1+T12+T19-R 16)+SV(L)*(C1*P9+C2*P2+T1-T4+R1) 15)=SM(SM(16)=SM(SM(17)=SM()*(-C3*P7+T5-T8+R2) 17)+SV(L SM(18)=SM(18)+SV(L)*(-C1*P9+C2*P4-T1+T18-R1) SM(19)=SM(19)+SV(L)*(-C4*P8+C5*P7-T5-T15-R2) SM(20)=SM(20)+SV(L)*(-C1*P3-C2*P4+T17-T18+R1) SM(21)=SM(21)+SV(L)*(C4*P8+C5*P5+T13+T15+R2)
APRT, S AMEF.AGENER, AGSEL, ASJON, AJONST, AJCRAC, ASREC .

.3/.1+ISK=ISK

THESIS * AMEF (1) . AGENER SUBROUTINE AGENER DIMENSION JOX(600), JOY(600), NCODE(8), SM(36), S(26000), I P(500) MAG(30), JON(30), TDIR(30), SKIP1(250) DIMENSION DIMENSION NODE (500,4), TETA (500), A (500), B (500), SR (3,8) EDEP(600), SKIP(110,9), LL(600), SJ(2,8) DIMENSION DIMENSION PACC(8), GJJ(250), EJJ(250) STRESS(250,2), TAUIN(250), SIGIN(250), PRINST(12,10) DIMENSION COMMON STRESS, TAUTN, SIGIN, TTER, SIGALB, PRINST, LX COMMON VUS VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITTP, SKTP1, GJJ, EJJ, DELTA, ICK COMMON MSS ! TJ, EDEP, SKIP, MJ, JON, IDIR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC C GENERATION OF SYSTEMS EQUATIONS MATRIX (UNIDIMENSIONAL) C WITH CODE NUMBER TECHNIQUE LOC(II,J) = II*MS - II*(II-1)/2 - (MS - J)IUCGEN(I) = (I - N + JBAND - 1) * (I - N + JBAND)/2NHEP=(N-JBAND)*JBAND+JBAND*(JBAND+1)/2+N*NLOAD IF (NHEP-MAXS) 70,70,71 PRINT 72, NHEP, MAXS 71 PRINT 777 72 MATRIX, 215) 777 FORMAT (1H1) CALL EXIT 70 CONTINUE DO 62 I=1, NHEP S(I)=0. DO 9 NM=1, ME 62 LD=NM READ (10,LD) (SM(K), K=1, MSS), (NCODE(M), M=1, MS) LJB=NLOAD+JBAND NJB=N-JBAND DO 8 L=1,MS SAYN=1. I=NCODE(L) IF(I) 20,8'22 20 SAYN=-1. T=-T 22 CONTINUE IX=(I-1)*LJB-I+1 IUC=TUCGEN(I-1) DO 77 M=1, MS SAYN2=1 J=NCODE(M) IF(J) 30,77,32 SAYN2=-1. 30 J=-J IF(J-I) 77'78,78 32

78	ID=LTER.NE-1) 60 70 10
123	IF(L-M) 122,122,123 ID=M
122	JD=L LS=LOC(ID,JD)
- 0	IE(I-NJB-1) 79,79,80
79	S(LO) = S(LO) + SAYN * SAYN2 * SM(LC)
8	CONTINUE
9	
81	60 TO $(81,82)$ ID NUM=JOX(TJ)
82	GO TO 83 NUM=JOY(IJ)
83	SAYN=1. I=NUM
51	IF(I) 51,700,52 SAYN=-1.
52	
0.01	IF(I-(NJB+1)) 791,791,801
791	S(LO) = S(LO) + SAYN * WI
100	MC=MEJ+1 DO 10 MN=MC.ME
	LD=MN LE=LD-MFJ
	READ $(10,LD)$ (SM(K), K=1, MSS), (NCODE(M) READ (29,LE) (PQCC(I), I=1,8)
	DO 45 NA=1'8 NN=NCODE(NA)
46	IF(NN) 46,45,48 SAYN=-1
48	NN=-NN L2=(NN-1)*LJB+JBAND+1
55	LO=LO-IUCGEN(NN)
49	CONTINUE

.

,M=1,MS)

96 97 999 1001 102	*AMER(1). AG 1 16 F 10 F	IE(ITER.NE:1) GO TO 10 DO 16 IM=1:8 PQCC(IM)=0: wRITE(29,LE)(PQCC(I):I=1.8) CONTINUE RETURN END	
		GUIVALENCE IS.Z) JB=JBAND Ni=N+1 Ni=N+2 NB=1 NB=1 NB=2JB=1 JBF=JB=1 NF=N+JBE	
	41	DELREANLOND VOREO VOREO VIELON VIE	
		ONTINGE 1 1 1 1 1 1 1 1 51.52.52 1 1 1 1 1 1 1 1 51.52.52 1 1 1 1 1 1 1 1 1 51.52.52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

THESIS*A 2 3 4 5	MEF(1).AG	EL SUBROUTINE AGSEL DIMENSION LL(600),S(26000),Z(26000),ITIP(500),SKIP1(250),GJJ(250) DIMENSION JOX(600),JOY(600),NODE(500,4),TETA(500) DIMENSION A(500),B(500),SR(3,8),EDEP(600),SKIP(110,9),JON(30) DIMENSION A(500),MAG(30),PQCC(8),SM(36),NCODE(8)
6 7 8 9 10 11		DIMENSION SJ(2,8),EJJ(250) DIMENSION STRESS(250,2),TAUIN(250),SIGIN(250),PRINST(12,10) COMMON STRESS,TAUIN,SIGIN,ITER,SIGALB,PRINST,LX COMMON VUS,VUB,JOX,JOY,NODE,TETA,JL,JBAND,A,B,LJB,NJB,SR,KSI COMMON NU,X,SJ,KS,KN,SIGAL,ITIP,SKIP1,GJJ,EJJ,DELTA,ICK COMMON MSS'TJ,EDEP,SKIP,MJ,JON,IDIR,MAG,PQCC,NJ,TH,ME,EC,ES,EB,VUC COMMON N,MS,INT,IINT,NC,MEC,MEJ,GJ,EJ,SM,NCODE,LL,S,NLVAD,MAXS,MEB
13 145 16 17 189		EQUIVALENCE (S,Z) JB=JBAND NE=N-1 N1=N+1 NL=N+NLOAD NM=NLOAD-1 JBE=JB-1
201223456		NF=N-JBE ND=JBE+NLOAD LL(1)=0 J2=0 JCOR=0 D0 40 I=1,N J1=J2+1
27890123	41 42 43 1000	IF(I-NF) 41,41,42 J2=J1+ND G0 T0 43 J2=J1+NL-I D0 1000 J=J1,J2 JC0R=JC0R+1 Z(J)=Z(JC0R)
33567 33567 3390	44 50	JA=J3+J1 DO 44 K=J1'J3 J=JA-K IF(Z(J)) 50,44,50 CONTINUE LI=J-J1+1
4434567	51 52 55	IF(LT+1=LL(I)) 51,52,52 LT=LL(I)=1 JT=J3=J1=LT+1 IF(JT) 40,40,55 JP=J3+1 D0 56 J=JP'J2 K=J=JT

С

56	$Z(K) \equiv Z(J)$
40	LL(1+1) = IT
2.4	NX=0
	D0 7 I=1.N
7	NAENX+LL(I+1)+NLOAD
1	NX - II (N) + N
	NYEN*NLOAD
	NZ=NX+NLOAD
FL	TMINACYON
66	DO 10 K=1,NE
	NBKELL(K)
	KK=NBK+K
20	Z(KK) = 0
	IB=K+1
	K2=LL(IB)+K
	ISEK2-NBK-NLOAD
11	IE=N
	IS=NL
12	GO TO 17
14	IF(IB-IF) 22.22.10
22	K1=K2-NM
17	J2=NBK+IS
	DO 13 ISTRITE
	KI=NBK+I
44	IF(Z(KI)), 14, 13, 14
14	TH = II (T) = NBK
	00 15 KJ=KI, J2
	IJ=KJ+IH
15	CONTINUE
10	IF(IN) 18,18,13
18	IH=CL(I+1)+I-K2
	Z(IJ)=Z(IJ)-TA*Z(KJ)
16	CONTINUE
13	CONTINUE
YE	RINE KOYMA
1 Non 1	KIENX+1

the superior and

THESIS*AMEF(1).ASJON	
1 SUBROUTINE ASJON(I)	
2 REAL JL, KSIKN	
3 DIMENSION 3J(2:8) POCC(8) SM(35) NCODE(8) LL(600) S(26000)	
4 DIMENSION SOLUCION SOLUCION NULL (500,4), LE A (500), A (500) (8(500))	
DIMENSION TITLECOLS SKIPLICEDU) SKIPLICEDU) SKIPLICEDU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPLU SKIPU SKI	
8 COMMON CTRESS TAUTO STGIN TEPSTCAL D. DDTNCT I V	
GOMMON VIIS VIIB. IOX. IOX. NODE TETA. IL. IPAND. A. B.I. IB. N. IB. SP. KST	
10 COMMON NULX SLIKS KNISTGAL TTTP SKTP1 GULF LUDELTA TCR	
11 COMMON MSS TJ FEEP SKIP MJ JON IDTR MAG POCCINJ TH ME LC FS FP V	UC
12 COMMON N, MS, TNT, TINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NL PAD, MAXS, M	ER
13 C SUBROUTINE FOR DEVELOPING STRESS MATRIX OF JOINT FLEMENTS	200
14 $JL=A(I)$	
15 AC=12.*X/JL	
$16 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	
17 $KS=GJJ(I)*!H/TJ$	
19 20(1,1) =- AC/2.*K5	
23 SJ(1.5)=BC/2.*KS	
5J(1,6)=0.	
25 $SJ(1,7) = -B^{C}/2 * KS$	
26 $SJ(1,8)=0$.	
27 $50(2,1)=0.$	
28 $5J(2,2) = -A^{C}/2 * KN$	
29 50(2+3)=0.	
30 20(2,4)=AC/2.*KN	
51/2·7)=0/2·8/N	
RETURN	
36 END	
· · · · · · · · · · · · · · · · · · ·	

THESIS*AMEF(1).AJONST SUBROUTINE AJONST(I) REAL JL, KS'KN DIMENSION SM(36), NCODE(8), EDEF(8), LL(600), SJ(2,8) DIMENSION STRESS(250,2), EDEP(600), S(26000), SEDEF(STRESS(250,2), EDEP(600), S(26000), SEDEF(8), TELA(500) DIMENSION LAUIN(250), SIGIN(250), CEDEF(8), PRINST(12,10) DIMENSION JOX(600), JOY(600), NODE(500,4), A(500), B(500) DIMENSION SR(3,8), SKIP(110,9), JON(30), TDTR(30), MAG(30) 890 DIMENSION POCC(8), ITIP(500), SKIP1(250), GJJ(250), EJJ(250) COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PRINST, LX COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITIP, SKIP1, GJJ, EJJ, DELTA, ICK 112345678COMMON MSS'TJ, EDEP, SKIP, MJ, JON, IDTR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC COMMON N, MS, INT, TINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB STRESS CALCULATION IN JOINT ELEMENTS AND REARRANGEMENT OF FLASTIC ç AND SHEAR MODULI ACC. TO STRESS STATE PRESENT IF (SKIP1(I', EQ.1.) RETURN LD=I READ (10,L^D)(SM(K),K=1,MSS),(NCODE(M),M=1,MS) D0 20 J=1,MS EDEF(J)=0. CEDEF(J)=0. SAYN=1. IN=NCODE(J) F(IN) 21,20,22 STAMA ST. L-GOD. 11 F. LITT - GETORE I SHERE ST IN=-IN 21 SAYN=-1. IX=LL(IN+1)+IN-(NLOAD-1) 22 EDEF(J)=S(IX)*SAYN CEDEF(J)=EDEF(J)+EDEP(IN)*SAYN CONTINUE 20 D0 24 J=1.8 SEDEF (J)=E^DEF (J) 24 CONTINUE IS TRANSFORMATION OF ELEMENT DISPLACEMENTS TF ELE POSITION IN VERTICAL IF (TETA(I) .EG.0.) GO TO 201 EDEF(1)=SEDEF(2) EDEF(2) = SEDEF(1)EDEF(3) = SEUEF(4)EDEF(4) = -SEDEF(3)41 EDEF(5)=SEUEF(6) 42 EDFF(6) = -SEDEF(5)43 EDFF(7) = SEDEF(8)EDFF(8) = -SEDEF(7)45 201 CONTINUE DO 30 L=1,2 46 SUM=0 . 47

SUM=SUM+SJ(L,M) *EDEF(M) 40 30 STRESS(I,L)=SUM/TH TAU=TAUIN(I)+STRESS(I,1) SIGMA=SIGIN(I)+STRESS(I,2) TAU=ABS(TAU) IF(SKIP1(I).EQ.0.) GO TO 35 C ASSIGNING NEW MATERIAL PROPERTIES TO ALREADY CRACKED JOINTS ACCORDING TO CALCULATED COMPRESSIVE STRESS IF (SIGMA.L. (-334.)) GO TO 15 GJJ(1)=-SIGMA*3630./334. GO TO 3000 15 GJJ(I)=3630. GO TO 3000 35 IF(SIGMA, LE. 28. AND. SIGMA.GT. (-100.)) EJJ(I)=292100.-ABS(SIGMA)/10 *0.*122000. IF (SIGMA, LE. (-100.). AND. SIGMA. GT. (-200.)) EJJ(I)=170100.- (ABS(SIGM *A)-100.)/100.*44100. IF (SIGMA, LE, (-200.) AND, SIGMA, GT, (-300.)) EJJ(I)=126000 - (ABS(SIGM *A)-200.)/100.*28200. IF(SIGMA.LL.(-300.).AND.SIGMA.GT.(-400.)) EJJ(I)=97800--(ABS(SIGMA *)-300.)/100.*15300. IF (SIGMA.LE. (-400.) AND.SIGMA.GT. (-500.)) EJJ(1)=82500 - (ABS(SIGMA *)-400.)/100.*17400. IF(SIGMA.LE.(-500.).AND.SIGMA.GT.(-600.)) EJJ(I)=65100--(ABS(SIGMA *)-500.)/100.*16800. IF(SIGMA.LE.(-600.).AND.SIGMA.GT.(-700.)) EJJ(I)=48300--(ABS(SIGMA *)-600.)/100.*5400. [F(SIGMA.LE.(-700.).AND.SIGMA.GT.(-800.)) EJJ(I)=42900.-(ABS(SIGMA *)-700.)/100.*6600. IF(SIGMA.LE.(-800.)) EJJ(I)=36300. IF(SIGMA.LE.(-800.)) EJJ(I)=128000.-TAU/25.*72500. IF(TAU.LT.25.) GJJ(I)=128000.-TAU/25.*72500.-(TAU-25.)/25.*33300. IF(TAU.GE.25.AND.TAU.LT.50.) GJJ(I)=55500.-(TAU-50.)/25.*8900. IF(TAU.GE.50.AND.TAU.LT.75.) GJJ(I)=22200.-(TAU-50.)/25.*8900. IF(TAU.GE.75.AND.TAU.LT.100.) GJJ(I)=13300.-(TAU-75.)/25.*4600. IF(TAU.GE.105.AND.TAU.LT.125.) GJJ(I)=8700.-(TAU-100.7/25.*3500. IF(TAU.GE.105.AND.TAU.LT.125.) GJJ(I)=8700.-(TAU-100.7/25.*3500. IF(TAU.GE.105.AND.TAU.LT.125.) GJJ(I)=8700.-(TAU-125.7/25.*1570. IF (TAU.GE.125., AND.TAU.LT.150., GJJ(I)=5200.-(TAU-125.)/25.*1570. IF (TAU.GE.125.) GJJ(I)=3630. 3000 CALL AJSTIF(I) WRITE(10, LU) (SM(K), K=1, MSS) RETURN END

THESTS*AMEF(1).AJCRAC SO, YETU SUBROUTINE AJCRAC(I) REAL JLIKS KN DIMENSION SM(36), NCODE(8), FDEF(8), LL(600), SJ(2,8) DIMENSION STRESS(250,2), EDEP(600), S(26000), SEDEF(8), TELA(500) DIMENSION JOX(600), JOY(600), NODE(500, 4), A(500), B(500)DIMENSION SR(3,8), SKIP(110,9), JON(30), TDTR(30), MAG(30) DIMENSION POCC(8), ITIP(500), SKIP1(250), GJJ(250), EJJ(250) DIMENSION TAUIN(250), SIGIN(250), PRINST(12,10) 8 COMMON STRESS, TAUTN, STGTN, TTER, STGAL B, PRINST, LX 9 COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITTP, SKTP1, GJJ, EJJ, DELTA, ICK COMMON MSS'TJ, EDEP.SKIP, MJ, JON, IDIR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC COMMON N, MS, TNT, TINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB SUBROUTINE FOR CHECKING CRACS IN JOINT ELEMENTS AND ASSIGNING RESIDUAL MATERIAL PROPERTIES IF NECESSARY C IF (SKIP1(I) .NE.O.) RETURN LD=I TAUETAUIN(I)+STRESS(I,1) SIGMA=SIGIN(I)+STRESS(I,2) TAU=ABS(TAU) C IREGIREGION OF JOINT FAILURE, IF 1 TENSILE, IF 2 OR 3 SHEAR FAILURE IRFG=0 F(SIGMA.LE.0.) GO TO 100 IF(SIGMA.LE.28.) GO TO 50 IREG=1 GO TO 1000 50 UTAU=-1.5*5IGMA+42 IF (TAU. GT. UTAU) IREG=1 GO TO 1000 100 IF (SIGMA.LT. (-334.)) GO TO 200 UTAU=-0.75*SIGMA+42. IF(TAU.GT.UTAU) IREG=2 GO TO 1000 200 UTAU=-0.11*SIGMA+254. IF(TAU.GT.UTAU) IREG=3 IF(IREG.EQ.O) RETURN 1000 TCR=1 TAU=TAUIN(I)+STRESS(I,1) GO TO (210'220,230) IREG 210 GJJ(T)=0. 41 423 EJJ(I)=0. SKIP1(I)=1. PRINT 80, I'IREG, TAU, SIGMA 44 80 FORMAT(100(,*,)/50X,18H CRACK IN JOINT , 13/40X, 24HTYPE OF FAILUR *E: TENSILE'6X, 8HREGION: , 11/40X, 6H TAU=, F10.2, 6X, 6HSIGMA=, F10.2/1 46 *00(,*,)) GO TO 3000

90	GUJ(I)=-SIGMA*3630./334. SKIPI(I)=2. PRINT 90.I:IREG.TAU.SIGMA EORMAT(100(.*.)/50X.18H CRACK IN JOINT *E: SHEAR '6X.8HREGION: ,11/40X.6H TAU=.F *00(.*.)) GO TO 3000	,13/40X,24HTYPE OF FAILUR F10.2,6X,6HSIGMA=,F10.2/1	
230	SKIP1(I)=2. PRINT 90.I'IREG.TAU.SIGMA		
3000	GO TO 3000 CALL AJSTIF(I) WRITE(10,LU)(SM(K),K=1,MSS) RETURN END	R.C. ELEMENTS	
	SR(1:1==C*(1,e=NU)/A(1)/R(1)/R(1)		
	SR(1,0)=C*V((C*(1,-KST)/D(1)		
	2011,97,=0.1, -NU1/7111 2011,97,=0.1, -NU1/7111 2011,178,=0.1, -NU1/7111 2011,181,-0.1, -NU1/7111 2011,181,201,0.1, -NU1/7111 2011,181,2011,181,201,0.1, -NU1/7111 2011,181,201,0.1, -NU		
)			
		1,	
	TT, ASBRIC, ABRIST .	CONTRACTO 0001	

THESIS	*AMEF(1).AS	SREC							
1		SUBROUTINE	ASREC(I))					
2×		DIMENSION	Porrios.	5.112.01.	TTP (500	AL PROPERTY			
5		DIMENSION	SKTP1 (25	0) 61.12	50) F.J.I	250)			
5		DIMENSION	A(500).8	(500) SR	(3,8),SN	(36) .NCC	DF(8).LL(E	5007,50	26000)
6		DIMENSION	JOX (600)	, JOY (600	I.NODE (S	00,4),TE	TA(500)		
7		DIMENSION	EDEP(600) SKIP(1	10.91.10	N(30),IC	DIR(30), MAG	(30)	1250)
8		DIMENSION	PIRESS(2	50,2),TA	UIN(250)	,SIGIN(2	250) PRINST	(12,10))
.9		COMMON SIR	SS, TAUI	N.SIGIN.	TIERIZIC	ALB, PRIM	ARITRA	10.50.K	CT
10		COMMON VUS	X CHILL	KNIGTON	TTTP	TP1 GILL	E LL DEL TA	TCR	.51
11		COMMON MSS	TILEDEP	SKTP.MI	ION TOT	P.MAG.PO	CC.N.I.TH.N	AF.EC.F	S.FR. VUI
13		COMMON N.N	S.TNT.TT	NT.NC.ME	C.MEJ.G.	I.F.I.SM.N	CODFILLS	NI UAD.	MAXS, MER
14	C S	SUBROUTINE F	UR CALCU	LATING S	TRESS MA	TRIX OF	R.C. ELEME	NTS	NAXSONER
15		C=EC/(1V	UC*VUC)	L. L. L. Martin - C.	PPFSSE	THE BEE S	FERENTE PE	(FCKING	
16		SR(1,1)=-0	*(1NU)	/A(I)	NING THE				
17		SR(1,2)=-0	*VUC*(1.	-KSI)/B(I)				
18		SR(1,3)=-0	VICTO	KST)/RIT	1				
20		SR(1.5)-C	NULATI	WD110(1	ANTE DE				
21		SR(1,6)=C*	VUC*KST/	B(I)					
22		SR(1,7)=C*	(1NU)/	'A(I)					
23		SR(1,8)=-0	*VUC*KSI	/B(I)					
24		SR(2,1)=-0	*VUC*(1	-NU)/A(I)		the management		
25		SR (2:2)=-0	*110+111	A(T)					
20		SR(2.4)=(*	(1KST)	/B(T)					
28		SR(2,5)=C*	VÚČ*NUŻA	(1)					
29		SR(2,6)=C*	KSI/B(I)						
30		SR(2,7)=C*	VUC*(1	NU)/A(I)					
31		28(2.8)=-0	*KSI/B(I	1+11 -45	-1/12 +0				
24		SR(3,2)=-0	*(1 -VIIC)*(1 -NII	1/12.*4	+++		1	
34		SR(3,3)=C*	(1VUC)	* (1 -KSI	1/(2.*8((Ť))			
35		SR(3,4)=-0	*(1VUC)*NU/(2.	*A(I))	a contraction of the			
36		SR(3,5)=C*	(1VUC)	*KSI/(2.	*B(I))				
37		SR(3,6)=C*	11VUC)	*NU/(2.*	A(I)				
38		SR(3,7)=-0	(1VUC)	1*NS1/(2	****	11			
29		RETURN		T.T1101	1120 ALI				
41		END							
APRT,S	AMEF . ACONS	T. ASBRIC.	ABRIST .				EUNI	TNOC O	001
10 2									

THESIS*AMEF(1).ACONST 2 SUBROUTINE ACONST(I) 2 REAL KSI,NU DIMENSION SM(36), NCODE(8), FDEF(8), LL(600), A(500), B(500) DIMENSION SR(3,8), SC(3), SCP(3), SCC(3), S(26000), EDEP(600) SKTP(110,9), POCC(8) DIMENSION DIMENSION JOX(600), JOY(600), NODE(500,4), TETA(500) DIMENSION JON(30), IDIR(30), MAG(30), SJ(2,8), ITIP(500), SKIP1(250) DIMENSION GJJ(250), EJJ(250) DIMENSION STRESS(250,2), TAUIN(250), SIGIN(250), PRINST(12,10) 9 COMMON STRESS, TAUTN, SIGIN, TTER, SIGALB, PRINST, LX 10 COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, SJ, KS, KN, SIGAL, ITIP, SKIP1, GJJ, EJJ, DELTA, ICR 1123456789012345678901234567890 COMMON MSS TJ, EDEP, SKIP, MJ, JON, IDIR, MAG, POCC, NJ, TH, ME, LC, ES, EB, VUC COMMON N, MS, INT, IINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB SUBROUTINE FOR CALCULATING STRESSES IN R.C ELEMENTS, CHECKING FOR TENSION CRACKS AND ASSIGNING THE ACCORDING PSEUDOLOAD VECTOR SC:STRESS VECTOR CCCC SCP:PRINCIPAL STRESS VECTOR TETAP: PRINCIPLE ANGLE SCC:STRESSES IN CRACKED CONCRETE ELEMENT IR: NUMBER OF SUBREGION C IUCGEN(NN) = (NN-N+JBAND-1)*(NN-N+JBAND)/2LD=I LE=LD-MEJ IF(LD.EQ.161.0R.LD.EQ.170.0R.LD.EQ.201.0R.LD.EQ.208) GO TO 16 GO TO 15 16 LX=LX+1 DL =LD PRINST(LX,1)=DL IREO 15 READ (10,LD) (SM(K), K=1, MSS), (NCODE(M), M=1, MS) DO 20 J=1,MS EDFF(J)=0. SAYN=1. IN=NCODE(J) IF(IN) 21,20,22 21 IN=-IN SAYN=-1 IX=LL(IN+1)+IN-(NLOAD-1)EDEF(J)=S(IX)*SAYN+EDEP(IN)*SAYN 41 20 CONTINUE 423 KSI=1./6. DO 30 IJ=1'3 44 NU=1./6. DO 40 IK=1'3 46 IR=IR+1 47 IF(SKIP(LE'IR).NE.O. AND. ITER.NE.1) GO TO 46

CALL ASREC(I) DO 50 L=1,3
SUM=0. D0 60 M=1,MS C0 SUM-SUM+SP(L,M)+EDEE(M)
50 SC(L)=SUM IF(LD.EQ.161.OR.LD.EQ.170.OR.LD.EQ.201.OR.LD.EQ.208) GU TO 17
17 IF (IR. EQ. 2. OR. IR. EQ. 5. OR. IR. EQ. 8) GO TO 18
18 IR1=IR+2
DO 10 LI = IR, IR1 J=J+1
10 PRINST(LX, L I)=SC(J) 31 CONTINUE SC(J)+CC(J)+CC(J)+CONT((SC(J))-CC(J))/2)++2+C(J)++2)
SCP(2)=(SC(1)+SC(2))/2SQRT(((SC(1)-SC(2))/2.)**2+SC(3)**2) SCP(3)=0
TETAP=0.5*ATAN(2.*SC(3)/(SC(1)-SC(2))) PI=ATAN(1.)*4.
TOL=0.00001 SIGX=(SC(1)+SC(2))/2.+(SC(1)-SC(2))/2.*COS(2.*TETAP)+SC(3)*SIN(2.*
IF (ABS(SIGX-SCP(1)).LE.TOL) GO TO 25 TETAP=TETAP+PI/2.
25 IF(SCP(1).LE.SIGAL) GO TO 46
IF(SKIP(LE'IR).EQ.0.) PRINT 1, I, IR, DTETAP, SC(1), SC(2), SC(3)
80 SCP(2)=0. IF(SKIP(LE'IR).EQ.0.) PRINT 2, I, IR, DTETAP, SC(1), SC(2), SC(3)
1 FORMAT (25X, 13, 9H. ELEMAN, 11, 24H. BOLGE IKI YONDE CATLAK, 5X, 113HCATLAK ACISI=, F5.0, 2X, 7HSIGMAX=, F6.1, 2X, 7HSIGMAY=, F6.1, 2X, 4HTAU
2 FORMAT(25X, 13, 9H. ELEMAN, 11, 24H. BOLGE BIR YONDE CATLAK, 5X, 113HCATLAK ACISI=, F5.0, 2X, 7HSIGMAX=, F6.1, 2X, 7HSIGMAY=, F6.1, 2X, 4HTAU
$\frac{22}{5}$
SCC(2)=SCP(1)*SIN(TETAP)*SIN(TETAP)+SCP(2)*COS(TETAP)*COS(TETAP) SCC(3)=SCP(1)*SIN(TETAP)*COS(TETAP)-SCP(2)*SIN(TETAP)*COS(TETAP) READ(29.1E)(POCC(KI)*KI=1.8)
PQCC(1)=PQCC(1)+(-B(I)*(1NU)*SCC(1)-A(I)*(1KSI)*SCC(3))*TH/9. PQCC(2)=PQCC(2)+(-A(I)*(1KSI)*SCC(2)-B(I)*(1NU)*SCC(3))*TH/9.
PQCC(3) = PQCC(3) + (-B(1)*NU*SCC(1)+A(1)*(1KS1)*SCC(3))*TH/9. $PQCC(4) = PQCC(4) + (A(1)*(1KS1)*SCC(2)-B(1)*KS1*SCC(3))*TH/9.$
PQ(C(5)=PQC(5)+(B(1)*N0*5CC(1)*A(1)*A(1)*A(51*5CC(5))*(B)) = 0

99 98 Pacc(6)=pacc(6)+(A(I)*KSI*Scc(2)+B(I)*NU*Scc(3))*TH/9. Pacc(7)=pacc(7)+(B(I)*(1.-NU)*Scc(1)-A(I)*KSI*Scc(3))*TH/9. Pacc(8)=pacc(8)+(-A(I)*KSI*Scc(2)+B(I)*(1.-NU)*Scc(3))*TH/9. WBITE(29,LE)(Pacc(KI)*KI=1,8) 99 100 SKTP(LE, TR)=1. 46 NU=NU+1./3. 101 102 40 CONTINUE KSI=KSI+1./3. 104 30 CONTINUE 105 RETURN END 106 CONNON MULLESS LARGER

THESIS*AMEF(1).ASBRIC SUBROUTINE ASBRIC(I) REAL KSI,NU DIMENSION POCC(8), SJ(2,8), TTIP(500) SKIP1 (250), GJJ(250), EJJ(250) DIMENSION DIMENSION A (500), B (500), SR (3,8), SM (36), NCODE (8), LL (600), S (26000) JOX(600), JOY(600), NODE(500,4), TETA(500) DIMENSION DIMENSION LDEP(600), SKIP(110,9), JON(30), IDIR(30), MAG(30) DIMENSION STRESS(250,2), TAUIN(250), STGIN(250), PRINST(12,10) COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PRINST, LX 89 COMMON VUS, VUB, JOX, JOY, NODE, TETA, JL, JBAND, A, B, LJB, NJB, SR, KSI 10 COMMON NU, X, SJ, KS, KN, SIGAL, ITIP, SKIP1, GJJ, EJJ, DELTA, ICR 11 1231 COMMON MSS'TJ, EDEP, SKIP, MJ, JON, IDTR, MAG, POCC, NJ, TH, ME, EC, ES, EB, VUC COMMON N,MS, TNT, IINT, NC, MEC, MEJ, GJ, EJ, SM, NCODE, LL, S, NLOAD, MAXS, MEB SUBROUTINE FOR CALCULATING STRESS MATRIX OF BRICK ELEMENIS C 15617 C=EB/(1.-VUB*VUB) SR(1,1)=-C*(1.-NU)/A(I) SR(1,2)=-C*VUB*(1.-KSI)/B(1) 112222222222222233 SR(1,3) = -C*NU/A(T)SR(1,4)=C*VUB*(1,-KSI)/B(I) SR(1,5)=C*NU/A(I) SRI (1,6)=C*VUB*KSI/B(I) SR(1,7)=C*(1.-NU)/A(I) SR(1,8) = -C*VUB*KSI/B(I)SR(2,1)=-C*VUB*(1.-NU)/A(I) SR(2,2)=-C*(1.-KSI)/B(I) SR(2,3) = -C*VUB*NU/A(I)SR(2,4)=C*(1.-KSI)/B(I) SR(2,5)=C*VUB*NU/A(I) SR(2,6)=C*KSI/B(I) SR(2,7)=C*VUB*(1.-NU)/A(I) SR(2,8)=-C*KSI/B(I) SR(3,1)=-C*(1.-VUB)*(1.-KST)/(2.*B(I)) 3333556 SR(3,2)=-C*(1.-VUB)*(1.-NU)/(2.*A(1) SR(3,3)=C*(1.-VUB)*(1.-KSI)/(2.*B(I)) SR(3,4)=-C*(1.-VUB)*NU/(2.*A(I)) SR(3,5)=C*(1.-VUB)*KSI/(2.*B(I)) 37890 SR(3,6)=C*(1 -VUB) *NU/(2.*A(T) SR(3,7)=-C*(1.-VUB)*KSI/(2.*B(1)) SR(3,8)=C*(1.-VUB)*(1.-NU)/(2.*A(I)) RETURN END 41

THESIS*AMEF(1)	· ABRIST	
Ż	REAL KSI NU	
34	DIMENSION $SR(3,8)$, $SC(3)$, $SCP(3)$, $SCC(3)$, $S(26000)$, $EDEP(600)$	
5	DIMENSION SKIP(110,9), POCC(8)	
07	DIMENSION JON(30), IDIR(30), MAG(30), SJ(2,8), ITIP(500), SKIP1(25	0)
8	DIMENSION $G_{JJ}(250)$, $E_{JJ}(250)$	
10	COMMON STRESS, TAUIN, SIGIN, ITER, SIGALB, PRINST, LX	
11	COMMON VUS VUB, JOX, JOY, NODE, TE 'A, JL, JBAND, A, B, LJB, NJB, SR, KSI COMMON NU, X, S. I. KS, KN, STGAL, TTTP, SKTP1, GJ, I, F. JJ, DELTA, ICK	
13	COMMON MSS TJ, EDEP , SKIP , MJ, JON , IDIR , MAG, POCC , NJ, TH, ME, EC, ES, E	BIVUC
14 15 C	SUBROUTINE FOR CALCULATING STRESSES IN BRICK ELEMENTS, CHECKING	FOR
16 C	TENSION CRACKS AND ASSIGNING PSEUDOLOAD VECTOR IF NECESSARY	
18		
19	IF(LD.EQ.105.0R.LD.EQ.112.0R.LD.EQ.119.0R.LD.EQ.126.0R.LD.EQ.	133.0
21	*R.LD.EQ.140.OR.LD.EQ.147.OR.LD.EQ.154) GO TO 27	
23	27 LX=LX+1	
24	PRINST(LX,1)=DL	
26	15 IR=0 (10-10) (SM(K) + K=1 + MSS) + (NCODE(M) + M=1 + MS)	
28	DO_20 J=1, MS	
29 30	EDEF(J)=0. SAYN=1.	
31		
33	21 IN=-IN	
34	22 IX = LL(IN+1) + IN - (NLOAD-1)	
36	EDEF(J)=S(IX)*SAYN+EDEP(IN)*SAYN	
38	KSI=1./6.	
39 40	NU=1./6.	1700 .
41	DO 40 IK=1'3	
43	IF(SKIP(LE:IR).NE.OAND.ITER.NE.1) GO TO 46	
44	$DO_{50} L=1,3$	
46	SUM=0. DO 60 M-1.MS	
40	DO DO MET. D	

60 SUM=SUM+SR(L,M) *EDEF(M)	
IF (LD.EQ.105.0R.LD.EQ.112.0R.LD.EQ.119.0R.LD.EQ.126.0R.LD.EQ.133.0 *R.LD.EQ.140.0R.LD.EQ.147.0R.LD.EQ.154) GO TO 28	
28 IF(IR.EQ.2.OR.IR.EQ.5.OR.IR.EQ.8) GO TO 29 GO TO 31	
$\begin{array}{c} 29 1R1 = 1R + 2 \\ J = 0 \\ D 0 10 L 1 = 1^{R} \cdot 1R1 \end{array}$	
J=J+1 10 PRINST(LX,LI)=SC(J) 31 CONTINUE	
SCP(1)=(SC(1)+SC(2))/2.+SORT(((SC(1)-SC(2))/2.)**2+SC(3)**2) SCP(2)=(SC(1)+SC(2))/2SORT(((SC(1)-SC(2))/2.)**2+SC(3)**2) SCP(2)=(SC(1)+SC(2))/2SORT(((SC(1)-SC(2))/2.)**2+SC(3)**2)	
TETAP=0.5*ATAN(2.*SC(3)/(SC(1)-SC(2))) $PI=ATAN(1.)*4.$	
SIGX=(SC(1)+SC(2))/2.+(SC(1)-SC(2))/2.*COS(2.*TETAP)+SC(3)*SIN(2.* 1TETAP)	
$IF(ABS(SIGX-SCP(1)) \cdot LE \cdot TOL) GO TO 25$ TETAP=TETAP+PI/2. 25 IF(SCP(1) \cdot LE \cdot SIGALB) GO TO 46	
DIETAP=TETAP/PI*180. IF(SCP(2).LE.SIGALB) GO TO 80 IF(SKIP(LE'IR).F0.0.)PRINT 1.1.IR.DIETAP.SC(1).SC(2).SC(3)	
GO TO 100 80 SCP(2)=0. IE(SKIP(LE)IR) FO.0.) PRINT 2.1.IR.DIETAP.SC(1).SC(2).SC(3)	
1 FORMAT(25X, I3, 9H. TUGLA , I1, 24H. BOLGE IKI YONDE CATLAK, 5X, 113HCATLAK ACISI=, F5.0, 2X, 7HSIGMAX=, F6.1, 2X, 7HSIGMAY=, F6.1, 2X, 4HTAU	
2 FORMAT (25X, 13, 9H. TUGLA , 11, 24H. BOLGE BIR YONDE CATLAK, 5X, 113HCATLAK ACISI=, F5.0, 2X, 7HSIGMAX=, F6.1, 2X, 7HSIGMAY=, F6.1, 2X, 4HTAL	,
$100 \frac{22}{5} \frac{1}{5}$	
SCC($\overline{3}$)=SCP($\overline{1}$)*STN(TETAP)*COS(TETAP)-SCP(2)*SIN(TETAP)*COS(TETAP) READ(29,LE)(PQCC(KI),KI=1,8) PQCC(1)=PQCC(1)+(-B(I)*(1,-NU)*SCC(1)-A(T)*(1,-KST)*SC ^C (3))*TH/9.	
$\begin{array}{l} PQCC(2) = PQCC(2) + (-A(1) * (1 - KSI) * SCC(2) - B(1) * (1 - NU) * SCC(3)) * TH/9 \\ PQCC(3) = PQCC(3) + (-B(1) * NU * SCC(1) + A(1) * (1 - KSI) * SCC(3)) * TH/9 \\ PQCC(4) = PQCC(4) + (A(1) * (1 - KSI) * SCC(2) - B(1) * KSI * SCC(3)) * TH/9 \\ \end{array}$	
PQCC(5) = PQCC(5) + (B(I) * NU*SCC(1) + A(I) * KSI*SCC(3)) * TH/9. PQCC(6) = PQCC(6) + (A(I) * KSI*SCC(2) + B(I) * NU*SCC(3)) * TH/9.	
PQCC(8) = PQCC(8) + (-A(I) * KSI * SCC(2) + B(I) * (1 - NU) * SCC(3) * TH/9.	

96 97 98 98 46 NU=NU+1./3. 100 100 101 102 ΔPRT,S AMEF.AMEF, ADATRE, AJBAND, AJSTIF, ABSTIF, ACSTIF. 0001 OT 0G