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mTRODUCTION 

In recent years-! the dynamic analysis of structures 

has seen more and more prominence in engineering. design 

considerat~ons~ Having sufficient knowledge of dynamic stability 

of stuctures enables us to prevent possible catastrophic 

failure •. 

Parametric· instability. of ~olumnsunder. periodic axial 

loads has been investigated by many· autl;to~s [6].Rec~ntlY, 
much attention has been focused on the existence of·combina-

tion resonances in addition to simple 

[4]. In most/ studies, however, only the 

parametric 

horizontal 

resonances 

accelerations 

are considered as these would appear to dominate over the 

effects of the much smaller vertical acc~leratio·ns [iO].However 

these vertical . accelerations cau·se;, instability depending on 

the dimensions of the sjstem and the amplitude of the exci

tation frequency. 

A column, when excited along its longitudinal .axis, 

m~y vibrate in a direction transverse .to this axis, under 

small perturbations. For certain relations between the para

meters of the system and those of the excitation, the amp

litudes of these transverse vibrations will become extremely 

large, and the column will collapse. It should be emphasized 

that the failure is caused by the interaction of the 

various properties of the structure and its exci:tatlon 

although it is a factor.· The dependence of this resonance 

behaviour' on the parameters of the system is known as 
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"parametric resonance ". 

A detailed literature survey on the dynamic stabilit 

of elastic - systems is given in Bolotin's book [51 Bolotin 

made the stability am,lysia according to the Floquet the,ory 

which preyents us to investigate the combination resonances 

of a structure under dynamic loading. Recently, Iwatsubo, Su

giyama and Ogino [6J analyzed tb,e. stability of a uniform . 

elastic column under periodic axial loads for several sets 

of boundary conditions-. Laura eta all. [7J examined the vibra-

tions of a horizontal clamped-free beam with a mass at 

the free end, such, a structure is also known as Beck"s 

column. The e:tfects of 

column were studied by 

these studies, analysis 

where the structure is 

and excited by a time 

ntthe free end. 

shear and rotatory inertia on Back's 

Kounadi's and Katsikadelis "[81. In all 

has been restricted to those cases 
I 

resting on a .stationary foundation 

dependent tangential or axial load 

In this vlOrk, the dynamic stability of an elastic 

column with a large mass at the free end will be studied 

The excitation will be taken to be in the direction of 

its longitudinal axis, simulating the vertical accelerations 

of earthquakes, and the su~sequent motion of the column 

transverse to this axis will 

of motion will be derived in 

we will consider the case of 

be investigated. The equation I 

I 

Chapter II. In Chapter III I. 

free vibrations and determinel, 

the frequency equation of the system. Stability analysis 

based on a method introduced by Hsu [4J will be given in 



.. ' 

Chapter IV. Finally, experimental studies and results will 

be presented in Chapter V • 
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. CHAPTER . TI, 

EQUATiON OF MOTioN 

II.I.Formulation of the Problem: 

4 

In this section, the equation of motion governing the 

transverse vibrations,due to axial exli:itation,of a structure 

supporting a large mass' wlllbe derived.Wewill model the 

structure as a cantile,,&red 'elastic column with a large mass 

at its ·.free end,(Fig.2.I) 

The parameters of the system will be defined as 

follows, 

M:~ass of the supported body 

·m:Mass per unit length of the column 

l:Length of the colUinll 

E:Modulus of elasticity' of 

I:Moment of inertia of the column cross-section 

A:Cross-sectional area -of the column. 

In. the analysis of the problem, the effects of the 

rotatory inertia :imd shear deformation will be neglected 
. ' , 

and the defiections of the column will-':be .. ' taken to be 

small in comparison to the smallest dimension of. the stuc-' 

ture. The . stability of the, ,system" Will. be ,determined b'y the 

boundednessof the solutionao.'to the'irari'~verse ·.···e~1i~tion 
motion. That is, the column will be said'.,:tobe· unstable 

when the' solutions grow indefinetely iri' :::"tim'e. , .. ' . 

of 

Before we derive the equation of <'tD.Otion, . 'expressions 

for the . longitudinal and transverse components " of the acce'~ 

'leration of a material' particsl will be .... giyen 'in the first. 

" 
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part of the following· section and -the. equation of motion 

will· be derived subsequently. 
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Mathematical Model of the structure 

Fig.(2.I) 
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11.2. The Equation of Motion: 

In order to arrive at the transverse equation of 
nd 

motion of the column, Newton's 2 Law of Motion will be 

applied to an element of the column under ·the assumptions 

of the classical Bernoulli-Euler theory. To this end, the 

kinetics of a particjle along the column· will be discussed 

first and subsequently the equation of motion will be 

derived. 

2. I. Kinematics of a Mat eriaL Particle - Velocity and Acceleration % 

Figure (2.2) shows the three successi-ve positions of 

the system. The first one, which will be referred to as 

reference configuration (undeformed configuration) is the posi

tion at t=O. The system is . at rest .... in the'· inertiai ·frame 

fixed to the ground. The second pOSition, a hypothetical one, 

is the one where the entire structure is rigidly displaced 
I 

vertically with a time dependency given by 'X (t). Finally, 

the third position, deformed position, 

of the structure a.t any time t. 

represents the 

' ...... ' 

The coordinates and the displacements of an 
, . 

material· particle in each aforementioned position 

.. 

state 

arbi trarj 
I 

are giveJ 

below. The first term represents transverse (horizontal) 

dir ect ions. 

CX,Y) : Locates a material particle in the r~ference 

configuration expressed in a coordinate system 

measured from a fixed inertial frame. 

(1,1) : Coordinates of the material particle in the 

hypothetical configuration (rigid body motion) 
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measured from the origin of the fixed inertial 

frame. 

(1tL) :Coordinates of the material . particle in the 

deformed position relative t6 the fixed inertial 

frame. 

(x,y) :Locates the material particle in the undeformed 

state with respect to the coordinate system 

moving with the support. 

8 

(u;w) :Components of displacement of a material particle 

relative to its reference position. 

The axial and the transverse components of displace

ment in the hypothetical state can be written as, (Fig.2.1) 

*" U=f-'r 1 -)t ,.[ = 7. - '1. 
(2.I.1) 

and the displacements with respect to the reference position 

are 
~ 

} 8 =~- X=u +'X x 
~ 

8y= ''1='1- Y 

(2.I.2) 

Note that the position of a material particle in the fixed 

inertial frame is determined by the coordinate X, and its 

velocity is the rate of change of the displacement function 

Sx ,holding X constant, i.e., 

V '68 
x-::~ 

X 
Since Sx is also a func·tion of l' and t ,applying the chain 

rule of differentiation to Sx we get, 



-: ... 

_~ o~ a? 
vx- at +d cr : 01: 

where . from Eq. (2.12) 

We also have,:> 

. '" . ·:~t~~,~1~E&Y":~ 

9 

Substituting 

yields 

all these .. relations in the expr~ssion . for v\ 
x\ . 

\ 

Neglecting the axial strain ~~", and the· strain velocity ~~ . 
compared to 'X ,the expression for the axial." component of 

. I 

the velocity of that material particJ;e reduces to 

Showing that the major contribution" to the motion is. due 

to the motion of the support, that is 

ct u· •• 
ox1. «( X 

Taking the time derivative of the equation (2.1.4) holding. 

X constant will yield the general expression for the lon

gitudinal component of the acceleration, 

a =.dV?( = "0 Vx+X 'oVx 
x 0 t at "0 'r 

or x 



•• 
0=.0(+ 
~ 

Neglecting second and the higher order terms the above 

expression reduces to 
It 

10 

a = At-\:) .' " (2.1.5) 

For the transverse components of velocity and acce

leration of the material particle, going through the sama 

procedure jields . 

V _ d S~ r _ "dS~ + aS~. 0 '{ 
.Y - d t 1x - C>1: , d '( 'd t . 

v: dW rV ¢W 
~== ~1:: + A O~ (2.I.6) 

and" the general, :expression' for.' the 'transverse ,.component ~ of' 

the accelerat~on .is •• ,.:, •.••..•. ",;~; .••. , " .. "."'::':<:,.,: •. ,: ' .. " 

.•. a~·~~;+')C~~+'X~·~· .. [ l··~r+-X·'~~J· 
. Considering' only the first two terms and n~glecting ,thEJ 

. . , 

remaining, the expression for the. transverse acceleratio-ri.· 

reduces to 
,'2. ... .. ~' .' ow .. oW 

Q!j = 0 -I:?- + rx. '0 i 

2.2. The' Equation of Motion : 

A differential material element of the' cQlumn which 

is deformed due to the bending moment is ,sho~m in Fig. 

(2.3) in a coordinate system (x,y) moving with the support. 

It will be assumed that shear deformation and rotatory 

inertia effects are neg;t.igible.P, V and Mo represent, the 
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inertial axial force, shear force and bending moment respec-

tively. 

The equations of motion both along the x and y 

directions obtained. by applying Newton's 2nd Law of Motion 

to the di~ferential element of the column are 

(2.2.1) 

,(, 

.. " '. ~ 

. . :, ...... ' 

where we have used the fact that 

to 

. ~ a 
'0'/ - :0" 

Summing. up the moments about an axis·".perpEmdicular .' 

the (x,y) .. plane andPasSingthf~~~;,~.·'~~·~':;:~;()~lit.n •. we:' get· 

dMo J 'X ~ v d~- ~v (J?C)2. _ P~Wd?C_d(v·.;~P~"(d1C)~~'O .. 
. dX d?( "O~ .~. OX .... . 

Considering only' the first order terms and neglecting· the 

remaining .. ·· on'e~ .'. we obtain the equation of angular. motion of 

the system as 

"'a Mo _ P 'Ow _ V = 0 . 
d X o?C. 

Recall the relation between the bending moment· Mo and the 
. .' 

curvature at the same point for a beam in. flextural motion 

Eliminating Mo between the equations (2.2.3) and (2~2.4) we 

get an equation for the. shear force 
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Differentiating' the above" equa.tio~ wi ih']re~p~c;t . to', x . and 
')'." ,",:.;. 

using . the equations ,(2.2~ I) and (2.2.2)Yie~ds 
' .... 

'(2.2.6) 

Note· that the axial force P is a fwi'ction of x and t 

and is given by , 
, ' l .,: . 

p ( ')(. , t) =- M l ~. - Q?( ) -\-f me (.~ - ~.) d ?! '. 
/ 

x 

where, gis the gravitational acceleration'. 

Substi tl1ting'Xfor 'ax' the ;ab6~e 'eq'U~t;ion':: reduces ·to 

p (~. t)· .. [M + m~ l t.--~)l ('i!-~y ...•.. 

Since the beam considered is slender and the mass of, the 

top weight is very large compared to that of column 

( M» mc 1 ) ,inertial forces' of the column can be neglected. 
/' 

Hence, the expression for the 'axial force reduces to 
, 

Pt-l:)=- MC~- X) 

which is only a function~of time. The ,governing equation 

of motion for the system described is then obtained by 

substituting (2.2.7) into the equation (2.2.6) 

'CJ4 •• ) (?w "OlW 
EI·~+M(Q -ry... - + Tn -=-O axlf a a xl. c. di? : (2.2.8) 

This is a fourth order partial differential .equation, hence, 

there should be four boundary' conditions. At . the lower end, 



I ~ •• . . ,. 

the beam is built . into its foundation meaning that the 

displacement and._ the slope must vanish,' i. e. , 

wi -0-
1(:0 

dw =- 0 
O?( 

x::.o 
The other end is free .' With a .. large inasS'~-"'lIetlce, one" of" 

the boundary condition· at :x =1. is zero b'ending moment 

14 

. E1 ~~~ = 0 (2.2.9c) " .' .. ' ox ". 
d6nditio:ri,.rJ.·~te:,·,thai the 'inertial 

." .. , ~' :', 

force . :balanced':t>y.: shear force at 

• this •.. elld·.',(··;;;~;i·<,c:f.c,.)J;:;,;~:·i::::;>,'·· " 

V (l) t)= - Ma.~-(l,"l:}"·:~M:_.~ t.~::l't':.{;;,.':?o?< ........... . 
. ' .... " .' ".:';',::.' :c.:::;.", ?C::.l 

is the remaining boundary condition. Subst:i.~uting (2.2.7) into 

(2.2.5) and evaluating at x=l will give us the .shearf6rce 

appearing. oti-' the left-hand side' of the· above····· equation. Thus,'.· 

the above 'expi-ession: i~~dtices';to 
\ . "" . ....., 0' 

f! ~:3 +MS ~: - M~~lM~~: 
~::.L :it=.L 

(2.2.9d.) 

In this work we will assume that the excitation, is 

a harmonic function of time, that is 

'X l-l:.):= Xo C05...o.. t 
where Xo and..fL are constants c·orresponding.· to the amplitude 

an~ the frequency of the .forcing function. The expression 

for the acceleration of the base 1s then 
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0(. -- .£l. i X"'f . '.' 
. °EI' (2~2.I.I.)' 

:~quat:ton{2.2 •. ,~ol"together with ·its 'boundary. condi

tions (2.2.9) ·descri~~~.,'th~~,>t~~sve~'s~:-,,-'m~:titJti:·.:C)t;·the· column 
<:-"'0,' _ "::.;.,'",,_ .:' 

in the (x, y) planestl1)jij6;~t-tb<-;:,~'a '4eitid~'~"/ei:6iiat-iO!)"'X (t). 
Since we will 'be only interest~d "'iIi. . :the' steady-state 

motion no initial, conditions will be prescribed for this 

problem. 

:." - I 

, ' 
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'", :-.:: ;' ,"-' , .~'. 

In: this, chapter, thegerie~al 
equ~tion of the system 

If the forcing :fun.ctioii 'rx (t) 
. ; . . 

is' 'taken ,; as zero in 

the 'equation, (2.2.10), the ' equ~t:J.6nofmoti6n ',describing the 

. ·ff~~··. V~'~~~}~~~~i;:j~~J~~x~~;~e~~~~i{~c;'~i;~&F·· .. *~a~:~:'I:O·. 
where ~ end'! are the 'quant.ities defirieq. "in' '(2.2. II) • The 

boundary conditions, ( Eq.(2.2.9)), can be Written ,as 

(3.I.2a) 

(3. I.2b) 

'(3.1.2c) , 

(:3.I.2d) 

',can be 
.. 

obtained by applying the method of separation:. of variables. 

That is , we assume a' solutioll, of 
'. '.' ' 

'G'wt', 
w t X 1 t) ::=. V ( 'X)~ ,e , ' 

•••• ". ',> 

.',' . 

Substituting the above equation" into ,·Eq~.(3.}.*);;the equation 

. '. ~;'.\ . 

. .., 
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of motion reduces to an \ ordinary differential equa,tion of 

the form 

where OJ ,is the ,natural frequency of the system. The .', ex-

pressions ,', in 'bracketsnlust:vaftish in 
., ' 

.' 

hold. true for all time t.Then 

eigenvalue problem of the form 

the problem reduces 

where £: '. : , 

is a linear 

to an 

; (}. I.5) 

_ d~ :,' d2. 
L= d?l'l+ f?>dll~ (}. I.6) 

. ,,','::;:~,;,.t~/(:;,:·'.;::> ,>,,: " " ", " 
AssUniirig':',·a.·':;:~61iiti6n::·~f::i,:'the:'i,:-fci:rrif V (~)~,:C:.~/,:.~;,::~tEq}( 3.I. 5 );,- ,', yi~lds 

',}:~. ',;: ,:-' • .' .. ;..... ',.. '-*!" >, . i;"':' ._ 

the chara~t~ilf~ifc '~~~atio~' ,;' 
',,+, ,,~ .~. 

'A +\?>A- W (f' = 0 . 
I 

(}.I.rr) 

The 'roots of this fourth order' equation can' be "written as 

where 

A=~k -
2. , ' 0 

-(3 + J{3~+4()J~)f I 

~ 

~' ~ l\<',',,'" ""\;"'Yk ','(}. I.'S) " , :r-" ,/\,,=- , , 

k= 1 

1 t · f V (x') can be ' written ,'as Hence the so u 10n or 

where 

from 

A, B, Ci and D are the constants to be determined 

the four boundary conditions given' by Eq.(}.I.2). 

The general solution of the free vibrations, case is then i 

,- \ . 
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III.2. Self-adjolntness . of the System 'I .' 

EQ.(3.I.5) corresponding to the e:i.genv~lue problem 'can 

be put into the non-dimensional form by' introducing the 
x' (1'\). . .. " ' •... • .,... ' 

variables z:,- ,t =w of: corresponding to.· the non-dimensional 

~,; lenght and :tt~:~ " r'esp~diiveiy,~nr is , the', llth<n~tural'freQuency . 

with the boundary conditions 

where 

and 

, . 
v (0)= 0 
-I . ' 

V (0)= O· 

_11 

v (i)==O 

-Ill f3 _I . (w)2 ~ --"- ." 
V (O+-·V(i)=- -. -V(i) 

. ~ w(n) ~ 

-' V v=l 
{3 = Ll, 13 

~ - ,If (nl y. 
(f=LW,O 

) ( 

form 

(3.2.I) 

(3.2.2a) ., 

. (3.2.2b) 
I 

(3.2.20) . 

(3.2.2d) 
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In ,general an eigenvalue ,problem ',is said to be self'- , 

adjoint provided ' ,thef'ollowing - relations ~aS:e'satisfied, [9] . 
'- '-', - .-. . . 

i " "', ',' " ' "If ',,1 -\", il'T'" ", 

.·fr;£ [~] d t+ E I r B[ s]d ~ -1st [r]J9-f~:~:itBEfJdi .... (:5~ 2.}a) 
. °i" .... '. . 4J' I : J.. 01 '.' ".: j'I·~.J' •....• 

[r =r s di: + 21 Ir CJ[s]h ~fs i' rd~+bfsCJ[r-]h (:5.2.:5b) 
, J"'1 0) 0, ., "J-:'i,Oc" , '" " ,,' 

where rand, s are any, two :functions'sJi~~1tilig' the "boUlida~1' ,! 

conditions, while ,'B j and OJ are'operat6rsappearing in the 

, boundary conditions. in : our ' case these' operators are 

B '; '1 
J 

"", B¥>"(*,,,',·',-..: ~,;:')\ ' 
o "j 1 

C~ ~ t 11 .. '.' . '. . •.. '" ..<. .Cj-O 
It . is obvious 'tllat.'.th~;ilp~i~~~t.~ '1r~',l~Ci(~f~~~l;}and '(l4 are 
only multiplications 'by;const~ta, hence'·Ecr~{"~2.~) ',1s' satis

fied identically and there 're~ilins only" to 'show that' 'the 

operator £, sati'sfies the, relation' , 

f~r[sJd~' fs L[r]d:a 
o '. 0' ",'" 

" " ' 1 .,' 'i .,,' 2. ' f r (5(1
0

) + ~ still) d ~ = J r~~:t d~ +It'~ ~~~d~ 
° ° ' 0 

Integrating the above 1ntegrals by parts' we get, 

r (d'ls + p:~) _ S(d3

f +~ L, r ,)' , 
d %.3 ,r' d z. d t.3 ,- d;t , 

'L 
1 J~ ~ . -1'd~" , 

+ ;;, .sJ1. +J ~d:'-· sch 
o , 0 

Using the boundary condition (3.2.2d) 
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.' ':"'-.' . -"" .•... ,:':t,~.··,·· 

( 
.2. (b) ( ... 2.~<(')'I·'·f· "'(',[. J '.' 

. = r.," ~)~~.s ,-S"- ~.) .. ~'!,+o5~.rd~ 

:us isth: :::ad!:::tn:::t· O:he th:ig:~:~~~~~iJ\;~t2~~:~o:~:y::m) .. 
are orthogonal [9 J. The orthogonality' ot~ik:~ii¥Wi:dt;i~ri:s 'can: be 

stated as 

..,~~~t~)~.<VjY~)dZ_N dlbij .... 

~iJ ... f~ (Z}dZ 
o and 

when 

/I 

." " .. ~ 

Let qi (z) be the':' normai:i.z~d;fJrii1 . ot',tli~:<:fuction. 'Vi(z) such 

that 
, . Vi'(z), 

q{z)--.-'--
i ifNi' 

Then qi(z) forman orthonormal, set' With the property 

'ing 

j
i , 

qi (z) • qj(Z) dz -cSij 
o 

(3.2.6) . ' 

.. ' ,> . ..,.1' ", .. "... '. :,-' 

' .. ", Frequenc1~'~eqtiati()n of a systek:,}:is';i':";,~1;ta.irt·ed .byapply:"',,' 

th~boJn~k-:y/"cokd1ticin~td," "'th~:,,'~~'J!Jttg~:D~'oi;\'the,' eq'u:ation' ':: 
• • • • ~~ > •• '. c": '. .-

of motion. Thus, applying the boundary co~ait"ioxiat x~O yields 

w'(o,t)=o - ... _- A.=-C 

. '. ,.~:, .:.' -



Hence. the 

ow(O,t) =0 
OX 

'., 
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. - . " :'" -
.', :.' ,,' """ - .' 

... w (~, -l) --[A (CcJ, ko7< _ Cos k, 7t) + e,(S;n\'k}~~l~{~,~)leiwt( 3.:L 2) 
. .... .... ',' \(" ... ~ " 

Now ap~iYib.i,·· the bOtin'dary' condi tionat x -1' will yield. two 

. equa tiona for. the .unkn()~ :C·OliS~8.n ts .A .. and.B, that: '1.~" 
, 

0= A ( k: Cosh kJ + k~ C~sk, L) -t S(k.l, Sin\' k.l-\- k.,k, Sin k, l) 

o =A(k.VSinkk,l - k,k~ Sin k,t + .. ~ wZl C~h\;oLCo~ I., l) ] 

+ Q, [k. k ~ COSh\'ot 4-~:Co~~:r4~'(S\~B~li;~Sin k, L)] . (3. Mb) 
. <J. ' .. K, 

Equations (,.,.,) 'can be written in matrix form as 

o 
.. 

0, 

. where the. coefficients 

, .. -

Q:= \<oS·,l\h ko l + k)<.S·,n 'kJ .'. 
\~ . .'.. _. ," " I;, .' 

;, .... ;.; .. , 

Q
21 

= \<.1<; ~,,,\, kJ - ~ I, , Sink, l +t w~ (9~k~~(iiCosk,l) 
. Q: kok~ Lh 1.0 l + k: Cosk,L+ ~ W 

2 (t;nhko t~:.I<oSin k,L J 
.1.1. . ' .ca .. . ........ , ,.,' ·.K J · •... .' ....... . 



In order to .have a 'non-trivial'·solut1.on.,;:for the 

,('.'.~)" t~e" determinant 

vani sh', "1..~., , ' 

det 9. =0 
, "'" 
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equation 

0:'< Substitution of Qij' (i,j 1,2)' into, the above, equation will 

yield the desired frequency equatiori' . 

i [ If 'I ) , " I/. 2. ,~'k:: ~, 2,' ,,] ~kow Y + k.( k. + k, COSK,t- V13 +4 to ?t k;oTw Sink,L • 

Co5hk.l +[v'f3" +4 W" ~' 1- ~iCos",l-(6k: k,Si~,kJ Sinl,k.L = 0 ·(3.3.6) 
. . ~ . . '~', ; .. - :;; ; . ~ '~' .. 

The equation', {3.,.6>' canb~::,>¥'6:iv~;d):'i~~~rlCallY for 

W when the constants koand \~ are' knoWn' 'f~r a' spesific 

structure. The roots of the frequency equation c.J~} (j 1,2, •• n) 

are known as the natural ,frequencies of the beam-oolumn 

wi th a hea.vy tip mass at the free' end. 

The constants' A and B ,are related to each other 

with 

. . ," 

Therefore the 'complete 

"'. '",' 



,-:.4 

Each term in 

of the free 

this· series is known 

vibration. 

as 

23 

the . normal mode 

.,1. 
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CHAPTER IV, 

STABILITY ANALYSIS 
. , . . 

In find the unstable· . regions 
". -'- :.. .' 

in which 

this chapter, we will 

instabili.ty is taken as the unboUnd'edhess of the 

solutions to the transverse equation of motion. Tn Section 

III.3, orthogonality· of the normal modes was proven for the 

free vibration ' problem,:· therefore the solution to the forced 

vibration·· problem can be taken . as a superposition of these 

normal modes (eigenfunction expansion) [.9J. The. coefficient 

of each term in this series . expans.ion will be· in general 

a function of time. Such an approach . will ' yield coupled 

Mathieu equations to be solved. 

The method generalized by C.S. be used 

in this chapter in·· solving the above-mentioned Mathieu equa-

tions. This simple and 
I 

method enables us to observe both 

combination resonances while 

_:Bolotin [5 J enables us to 

the one introduced by V~V. 
( 

ob~erVe .' only' the former • ! 

" - .. 

. In Hsu" s ,'methoa.,theboundfir~es·· .of the';::stable· and 
. . ~.'. ,'" ," '. - ."'. , -. ' : -'., .' 

unstable regions . are found. ,'isin:~·s. combination of perturba-
".' . -

tion and variation of parameters . techniques. 

IV. I. Derivation of . the Space· 'Independent Eg;li.ation· , 
The general equation of motion (2.2.10) '. can· . be written 

in terms of dimensionless . variable,s z and, 'z . as 

(4. I. I) 

:. ! 



.... 
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where G(t:) = Cos)) z , 

)J == ~n) 
1. 

ex =- l ex. 

w= w 
l 

Note that the ith non-dimensional natural frequency tUi is 
(n 

W 
w.=-(. (0) 

W 

The solution to equation (4. I. I) can be assumed to be of 

the form 
"0 

w(z, z:) = L ~i (Z) • qi (z) (4. I.2) 
. .(,:1 . 

where qi(z) '1s the ith normal mode and ·.di(~). 1s its 

corresponding time dependent amplitude. This assumption is 

known as eigenfunction expansion[9]. By substituting (4.I.2) 

into the equation (4. I. I) and applying Galerkins method, a 

system of coupled Mathieu equations whose solutions will 

determine the stabili ty of the system :Ls obtained. 
. 0() t ¢'(:r) £, [9,c,,)] + '6 E ~ (7:)9p:) + 

(; =1 C...,.i 00 . . 

, , 
, 

- «X G(~)L¢.(~)9(~)~O (4.I.3) 
l-i ( . '. c· . . 

'. 
/ d 

( )=rz where • d ( ) =(fi; 

Multiplying the above equation by qj (z) and" integrating over 

( 0, I) and recalling the orthogonaiityrelation, (3.2.6), 

we get 

~ . 



, ' 

~ .. . '. 

26 

.. f 

¢ ('L) + wi ¢(7::) + ~ .G(z}f.cA(?:)f9~~9 d~ =0 (4.I.4) 
, 'lr ~ i=i t ·0 ' J . '-

Defining 
Eij= f~; (z) • qi (z) dz 

o . 
the above equation takes. the form 

'where 

and 

~. Vl) + w~ ¢. (~)+E b G(Z) \: E. ~(Z) ==. 0 
L ~ {J ~ .. J 

5 _.~M~ 
mc 1 

6 -=))~b 

Xo is the amplitude' otthe' excitation of 

the, ' support'. 

Definihg the '. following matricies 

E11 E 2 • • • (j 1 

E2l. E :',22 .. ' 
fl· ' 

1 
'(6 : 

2 

£ • -- • • -- • ~ -- • 0 

¢= • 
"-J ' • 

• ~n 
0 • 

" of 

- ., 

.! 
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equation (4. 1.5) can be wri tt'en in matrix form as 
0' 

f + [~ + £ t; Gt'~)~J~ = Q. (4. 1.7)' 

IV.2. The Stability of a System of' Coupied';:>Ma'thieu Equations I;' 

The solution to the equation '(4~ 1.5)'-, according to 

the method introduced'bY'C.S. 'HBU [4], ' is·'" aS~Umed ,"to be 

composed' of ,,' two parts.Sincee is a small parameter, the 

'first part of the solution will be' the perturbation part. 

The second part of the solution is found from the undeter

mined coefficients method and is of the form of the solu- , , , 

t10n tob'e perturbed ,about with time dependent ·coefficients.,' 
-,"-.':'." 

first 

The': ,system'ofequations.(4.I.5) can::'ber'educed to 

order • system of -equation~'by d~:fi:hi~~·:·\:;K: "new ' :fUnction, 
: '" ", 

as 

(4.2. I) 

. ~ 

hi=¢i 

,Yti + cu~ ¢i " -E: bG('l);Eij ¢j 

>, 

Note that if'Jihe 'sma.ll parameter E.tends', to ,zero 'the / 

solution of ,,(4~2 •. i) ',,' bee,omes 

¢i (Z) = ~ cosw,'l ;-Bi Sinw£ rc 

hi (z) ~ - ~A:t Sin~:Z ;-wli Cos Wi Z. 

where 'At and Bi are constants. 

For ~ == 0 ,the above solutions 'f6i ". ¢'~ ,," and hi can 

be assumed \ to be in the form of perturbation about the 

" above solutions with time, dependent coefficients., Combining 

the method of undetermine'd coefficients with, the perturbation 
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method ''fe assume a solution of the form 

~ n q(q) 

¢i(C:):=Ai(t:) cos~Z+Bi(L.) sinw/(;+LC::f2\ ('C) 
9=1 (4~2.2) 

, n 9 (q) 
h

1
, (z:)= -W.Ai (Z) Sinw.6+wBi ('(;) Cosw.~+ ~ E hi ('0) 

( ~ t: "L.. cH 
(q) (q) 

'\;.'lhere Ai and Bi as itlell as·. 01 and hi are all functions 

of time. i 
Substitution of (4 .. 2 .. _2) into I (4,,2. I) and' applying 

,the method of lliLdetermined coefficients yields 

Y '0 

Ai(L) COS~'G+Bi('[) Sinwil,=O (402.3a) 

o .• C\ 9 •• (9) 2. (q) 
_ w.Ai Sin w,.t + W-. e,'-Cos w. {: + " E (ri., +w. rI.. ) 

, •. " , ~ ~ l,'f:, . <1:1 l. 

= - E-'S G ('L) '\' E. [A 'Cos'w L + B S'IOW l + t E,'19'2('l)] ( ) 
. ,~, c. J J ~ J J ~:: I J 4 " 2 • 3b 

Considering only the terms. \oJ'i th coe:L'ficients upto the first 

power of E: ( first 

equation (4~2~3b) 

approximation )9 and 
\ 

yi~lds . a second order 

substi~utl.ng G('L) I into 

differential equation 

for the time dependent coefficients.. Equating the terms 

having E on both sides of the above equation yields 

G. (i) 2 (1) b \' 1 [ ] 
(j +Wi ¢ ---:--L £: A (os(wJ-v)c+Cos(w+Y)'G (. " 2 (J J J 

.T . . 

. + Bj [SIn (wj -)J h.+ S'n (wJ+)J) z.] 1 (4.2.4) 

Particular solution of the above equation is 

-s;tl = - b2, \ {fi] r
A 

Coo (w +V)'C + G S\o(::~;~J------··-------·----·------i-
t p . L ,2.( )2 J J J 

J We: - tA).\-)J -

+ '- E" 2[A/O'(WJ-V)Z:+<'JS'O(u.>J-v)z:J~ (4.2.5) 
LU. - (w,-y) 

G " 
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(l.) 
Note that ¢i being the time dependent coefficient of the 

p 
solution to the equation (4. I. I) - ,,7111 become infinete1y 

large as , Wi 1-lw
J
+,)) I and this corresponds to some sort of 

a resonance phenomena. The essential feature of the method 

we have used is to associate resonance causing terms with 

the variational part of the solution [4 J . These troublesome 

terms can be removed from the perturbation part. of the 

solution. Now·. let us consider several resonance cases ·found 

from the perturbation analysis. 

Case I : ))= Wk+U>J+ G", k;ej .( 'A is areal finite numbe:r ) 

If we . set i=k in (4.2.5), it is seen. that ·when 
... th 

the forcing frequ~ncy Vis give1l. as· abovet.th~· jterm (j=j) 
:th 

of the second expression on the . right-hand'.side.of. the k 

equation .(4.2.5) will go to infinity as E- -r-O. Similarly we 

get the same resonance case by interchanging' the indicies 

as' i = j and j =k in the summation. Since resonance crase is 

related with the variational. part, we obtain ·.fourd1.fferEmtia1 
. . 

equations for Ak , Bkt .1\.j andB j by considering only the 

variational part of the equation' (4.2.3) 

• • 
Ak Coswk~+Bk Sinwk't""O 

• E. - [ 
-UJkPtkSil"lWk(; + Wk(?,kCoswkL:: - 2" b £kJ~CoS(WI<+EA)L 

_~S·I" (Wk+E.'A)'t] (4.2.6b) 

: . 
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• • 
Aj COSW.t~+Bj' Sin~(;=o 

- "-!J ~ St~ ~ 'l: + W}/OS WJ 'l: - - ~b ~k [Akeo. lw
J

+ EII)7: 

"- C% Sin (WL -+ fA)Z:] ( ) ... 4.2.7b 

Solving • 
for A' k 

• 
and Bk we, get 

~ .' 
~= ~ 8. Ek '[A (Cos"w Sin W C, os, fA?: _Sir}2~'Sjr)EI\Z),' 

, .Q Wk J J Tk k " , , ',1< 

. - (3) ( Sln2.1t COS E'A G + Cos V{5tn It SinE'A 7:)] (4.2.8b) 

where ~::::. Wk' /7: 

In order to simplify the equatio~s (4.2.8a -b), we' take tp~ 

average values of the right-hand 'sides'of them with 'respect 

toW over 'a "'I,>~rI()d of: 2traccording o:to,' th~', me~hod " of ," 

KrYl~ff-BOgoliUbhI:t~vander " poitr]~ :tnt: ':th~t'::cKi~u1~tiori "'A
j 

, 

and B
j 

are considered to be constants. In this 

~=_ E ~ E" fA 'StnE';A'(; +e.J Co5 E'A 'Z]. 
4Wk J C J ' 

B =: - E 5 Ek [' A Cos E:~ '(; - 6
J 

SinE.A rz;l " ' 
k 4wk J J " "J 

way we get 

(4.2.9a) 

>I: Since E:A«W
k
, rapid oscillations do not contribute ,to the 

chan~ ~s occurring in Aj and B j. 

, , ' 

, . 



.' 

• • Similarly for Aj and B
j 

Ak , Bk 

Aj = -~!J ~k [Ak Sin 6'A'r + Bk Cos E?lZ] 

B j. - t ~J E;k [ A k Cos o'Z -,. Bk 'SinE 'A '(;] 

\fe will now: solve. the coupled equations 
." 

:st~l>ility , A ~iid·, B , then,,·' th~. problem j j 
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(4.2.9) for 

reduces to 

determining, when these' time dependent', coefficients appearing 

in the . solution' of the equation (4.1. I) remain bounded or 

increase indefinetely, with' time. 

. We will now define the: following functions ..... in order, 
, , 

to decouple the eq~tions . (4.2.9) .' . 
: ~: ,,:; '",: . / i· .: . -; 

(4.2.10) 

j 

" , 

, 
.: I 

.. , ., 

" 

Differentiating, (4.2.10J .. once .. with respect, . . to. 7;,an~ :substitutin~ 
.! 
' .. ! 

gives the following system offirst'·ord.er· a.ii£er~h- ., 

(4.2.11a) 

(4.2.11c) 

(4.2.11d) 

Consider the 
" 

coupled equations (4.2.11a) and (4.2.11d) 
). 
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differentiating the first with respect to G we get 

• 
Substituting now Y2 (Eq. 4.2.IId) into the above equa~ion 

,yields 

Similarly we obtain for the others 

•• . • E2. F/~" '. " 
Y - L EA Y - £ E. Y = 0" 
~' . 2. 16 w W, KJ J k 2 , " 

k', Jj , 

" " .. "2,::"'.2.. 

X-iE'AX-' E ·8E E X - 0 
z ,.2. 16 wk

w
J 

I<J Jk 1,-

• • • 

The general form of the 'characteristic equations of the 

second order differential equations (4.2. I2 ;..I5)· is 

, 2, -~ 

ml-+ (i 0) m - 1~ £' EkJoS".....: 0 
WkWJ 

On the other hand, the general solution of, these differen

tial equations is of the form 

where OJ. and 02 are constants to be determined and mJ. 

andm2 are the roots of the characteristic equation which 



are in general complex numbers ,with real and imaginary 

parts. The imaginary parts giving - rise to oscillatory type 

motion do not contribute to instability, howeve:t: ,'the 

determines. th£" stability 
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real part depending on its sign 

of the structure~ Therefore t from 
• '..: • I.., " <~ ~ " " 4 

equatioh'(4.'2·~'IO) 'we have 

. ,1-' 
. Aj _ y (-:' Y1 + Y2 ~ 

":]~;' ~ ( Y
2 
~ Yl.· ) 

Consider~ng the equations (4.1.2) ,(4.2.5) and the ,above 

ones we get 

: ..... ", .:" .. :: .-
Hence , the instability of the ' system ,is·' determined by the 

real part of the roots ml. and m2 which is equal to 

All the terms 

the signs of the elements of E matrix., determine whether 
~ 

the system, is stable or not. If the Sign of the terms 

under radical sign is negative the solutions are stable, 

otherwise unstable. 

6. < 0 ---.. Stable 
I >0 - Unstable 

are of opposite signs, the quantity, 

under the radical sign is always negative and the system 

' .... 

, ,1 



is stable. 

34 
\ 

In the ,case where ,E
kj 

and· Ejk ,ar~ "of ,. the sanie 

sign" the product of these terms, will>aiways:;~:e:,>poBitive. 
, . 

Then we inequali ty " '~','.' 

for 

ww , ,kl 

substituting E'A -:-V- (UJJ+Wk): we ,obtain the .bounda:rlesofthe 

unstable, ,regions, as 

This . .,' 

resonance case is known as ,n combination, 

resonance of sum 'tyPe n[6]. 

Case II : " " 

.i ='J,J.~ 
'., ; ';.", 

In this case, when the forcing frequency is 'equal 

to or nearly equal to twice ~y of, the natural frequencies 

of the system, the'kth ~erm" of: the' second expression on 

\ the right-liand side of the equation will be infi-

. net ely large. Following the same procedure as, in Oase I , 

we ,remove the terms causing resonance' phenomena from the 

equations (4.2.3) and associate' them with "the variational 

analysis. Thus we obtain 
• • 

for Ak arid B' .k 

i ' 
I 
I 
I 

, I • 

1 : 
·l; 
.~. l ) 

, 

1/ 
,~ 

r 
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" .' 

[Ak SiO~G'AZ +~kCO~:G'~LJ 

[Ak CO~ E?- Z -Bk.S"n~~ 7:1 

Differentiating X
1

, and X.2 defined in (4.2~ 10) with respect 

to 7: once· we get 

(4.2.17a) 

Elimination ofX1 and X2 between these· two .equations will 

yield • " ,-- . ~.:t . 
•• '.' • ...• E 6. 2 . 
X +~GA X -~li''';k"X' = 0 

J. 1 16 Wk ~lC J. 

(4.2.19 ) 
•• "". e2.E;2 2 
x2-tE A X2-

16 
w'lEkkaX2 = 0 
'k \ 

The real part of the roots of the character~stic . equation 

of the above .diffe~ential· equations dete~~ines. the inst~bility> 

and is equal 

Instability will occur when ~1I >0 or 
2. _20 ., . 

12,·E:E> .. '~ > 
_E: 'A + 4w~ E\<k 0 

By examining this second order. inequality, instability region 

'is obtained as 
. ES <.; E:~" 

2, wk- -. - El<k ))" Z Wk + -2 EI~k 
2wk wk 
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This region is' known as n principal . instability 

region n [6] . 

Case III I 

When 

values, the 

the 
th 

j 

k-=j= J<J) k 
forcing frequency )J approaches' the ab()ve 

term of the second expression on the right-
th th 

hand side of thek equation of (4.2.5) and k term of 
- --. _ th 

the first' expression .on the right-hand. : side of the - j 

-equation 'of (4~2.5) become unbounded. Removing. these -_.resonance 

causing' terms from equations (4.2.4). and ·as~~c·iatlngthem. _. 

with the variational part of (4.2.3),as- was:-done- in the 

first two cases, will yieldfonr differential equations for 

the functi ons ~-, ~ , A j and. B j 

• • 
Ak · COSWkL+Bk ' Sinw",,'C=O (4.2.20a) 

~ ~" Sin,,\,/; +Bk" Cos wJ = - ~ ~" Ekj [ Aj" Cos (wk-E?) '(; . 

B j .Sin(Wk':E-A)Z] (4~2.20b) 

(4.2.2Ia) 

Ejk [Ak cos(wj-t-f'A)Z 

Bk Sin (wJ+E: ~)~l. ,;,(4. 2.2Ib) j 

- '.' ~ -. 
Solving equations (4.2.20) and (4.2.21) for;-:~~k t Bk ., Aj 

and . B
j 

and averaging with respect to <pk··.and:~· ~ - over. a 

period of. 21r yields 

- i , 



If the ' .~quatloi,.s<,(4.'2.22} . ,aresubsti tutedizl.tb 

tives ,of (4.2.~",I9r.~eget 

. ,'. .' 
. -,' 
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(4.2.22b) 

(.4.2.23a) 

/ (4.2.24) 

.:; .' 

, ! 

Once again, the real parts of the roots of the characteris-, 

tic ~quations. of the above equations are the same, ,and 

", 
. '; 
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equal to 

_6:2 ')..'- _ E'l. A2 'E E ~ If/\' 
4w

J wk Jk ~ = V flm: 
Instability will occur when ElJIL)O' or 

, 2. -2 
_E2.j: _6 0 E E > 0 

4~Wk Jk kJ" "c,L ~ 

It is obvious that when ~j and Ej~ are of the same 

sign there would be no instability but, if they are of 

opposite signs instability will occur in the following range 

of » 
(w _wk)- E S _ E,., ~k '<)J <' (w -w )~E-6 

J 2 WW ,J k 2 
k J " " ' 

Thisr·esonance.cas~ ,. is' kn:own' 'as' ", combina.tion 

r~sonarice of differen~e': type "[6] . 

Case IV , i=j=k 

This 
th 

case corresponds to very sIIlflll': forcing frequency. 

seconcl'.'exP~e~S1ons 'on . the The k term of the "first, and 
th 

right-hand side of the k eqttationof' (502.5) will 'become 

very large. Following a',; ~'similar procedure as' 'in the previous . .-. 
cases, differential equations for Ak and 'Bk are obtained as 

Similarly we get 
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By applying separatfon of variables method the above equa

tions are solved and the results become 

l 8 
X2 = 02· exp ( 2WkA Ekk Sinf A 7:) 

Upon examining (4.2.3I) ,it is seen that for this 

case instabili ty uccurs only if' Ekk or Wk have imaginary 

parts , thus the case of very small forcing frequecy does 

not affect the stability of the structure. 

; 
",I 
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CHAPTER V 

THEORETICAL and EXPERIMENTAL STUDIES-

The stability criteria derived in Chapter IV will 

now be applied to specific structures and the experimental 

results will be compared with theory. The roots of the fre

quency equations are found numerically and the elements of 

€ matricies are evaluated by numerical integrations. The boun

daries of the unstable regions are found for each case 

according to the inequalities given in Chapter IV. These re

gions . will then" be graphically presented. 
\ 

~V.I. Theoretical Calculations: 

Circular steel and~brass bars have been selected 

for the theoretical and experimental studies in order to 

make easy interpretations of the results. All the bars are 

in equal lenght and diameter supporting equal tip masses. 

The columns having diameters of 2 mm are tested with the 

weights of 90,IOO,IIO and I20 gr and the ones with dia

meters of 3 mm are tested' with the weights of 250,300 and 

350 gr. Modulus of elasticity 

6 

of the bars are 

and the 

IO kg/cm2 Eb . =I. I2 
ro.~ 

6 . 
IO kg/cm2 

Es~ecl =2. I 
corresponding densities .are 

d I l 7.8 gr/cm3 
51&« 

d, =8. 7 gr/cm~ 
Dt"OS~ 

of the columns were L =270. mm in all cases. 

The natural frequencies of a given structure are 

found froin the equation (3.3.6). by giving values to w from 

zero onward. A root is found each time the left-hand side 

of . the frequency equation chances sign. Some of these 
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roots are tabulated in Table (5.I). 

The perturbation method is valid 

Xo .£, )I: ~ // i 
l 'J . me L ,\" • 

if E f> E. «lor 
IJ 

The other restriction on the criteria developed in Chapter 
" II 

IV is about the averaging technique' which states. that W,.»EA 
where A is fini te.Therefore the parameters of the system 

must be properly chosen or the amplitude of the excitation 

should be chosen as small as possible in: order to preserve 

the validity of the above inequalities. 

The elements of ! matrix are computed from -

A computer program is given in· the Appendix for the evalua~ 

tion of the elements of E by numerical integration using 
~ 

* the trapezoidal method. 

The difference type of combination resonance will not 

occur for this kind of systems due to the fact that the 

matrix E has no negative e1ements.The instability range is 

then 

If kiFj it is called combination resonance of' sum type 

A di for the computer Programs used • . ' See ppen. x 



i and .. if k=j it is known as simple resonance. The expected 

• unstable frequencies of the selected .models are given in 

Table (5.2). 

The first four mode shapes for the specimens are 

schematically shown below. 

(a) 

.(c) 

. ~ 
I 

/ 

~ . 

(b) 

(d) 

Fig. (5. I) 

, , 
i r f ' 

i 

I i 

I 
I 

I : 
, i 

i 
;j' 
.. 

L 
:: 

• j 

.. i 
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~e~ Tip 
BRASS 

e 
"'Y,,>-ro-~ iJIass 2 Wi W{ +- W1. ~()J'2. W{ + vJ 3 W 2 + W3 

(mm) (gr) The. Ex. The. Ex. The. Exp. The. Exp. The. Exp. 

90 3.20 - 60.53 41 1-17.86 115 194.20 215 251.53 260 

100 2.98 - 60.26 40 117.54 110 193.92 210 251.20 255 
2 

110 2.80 - 60.03 37 117.26 105 193.67 205 250.90 250 

120 2.60 - 59.78 34 116.96 100 193.41 200 250.59 245 

250 4.76 91.72 55 178.68 150 292.99 379.95 360 
, - -

. - . 
3 300 4.26 - 91.24 50 178.22 144 292.47 - 379.45 355 

! 350 3.88 - 90.82 45 177.76 140 292.03 - 378.97 350 , 

Theoretical and experimental unstable frequencies ('Hz) 

Table ( $.2 ) 

-l>-
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Theoretical unstable regions found from the computer 

program for the case 

Tip mass : M =120 gr. 

Length of' C. : L = 270 mm. 

Diameter of C: D = 2mm. 

Material of C: Brass 

are illustrated in Fig.(5.2). The elements of Eij matrix 

where i and j taken upto 3 are given below. 

0.0046995 

~k = 0.0042487 

0.0033405 

0.0185771 

0.018693,8 

0.0178469 

0.0611296 

0.0648045 

0.0675349 

By chosing the first natural frequency as the normalizing 

frequency the first three non-dimensional 'natural frequencies 

are 

W2. = 44.8I7 

Wg = 147.207 

'1 
i 
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v 

I45.465 _ 

90.005 

89.268 

46.127 ... -----.---~,------.---... -.- -_ .. -._------_._----_.--=-.. .. _---_ .. _----_. __ ... __ . __ .. _- -. -.-

45.514 .. - -.. -.. --.-- ..•. -.- - .. --------------------------~-.. -.. ----,. 

2.002 

0;.02 . O~06 0.10 o. I4 0.18 0.22 E E) 

Fig.(5.2) 



Theoretical unstable regions for the case 

Tip mass : M =120 gr. 

Length of C. L=270 mm. 

Diameter of C.: D= 2 mm. 

Materialuof,-,C.I',Steel 

are shown in the Fig.(5.3) 

The elements of the Eij matrix are, 

0.0054095 0.0191745 0.0619598 

0.0192865 0.0654339 

0.0040241 0.0184391 0.0681137 

and the non-dimensional natural frequencies are 

w~ =- I. 

W2. = 42.046 

W3 = 137.093 

47 

" 
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I4I.044 .... . .............. "-. .._ ..... __ ..... _ .•. _. __ .. _._------,-_._ .. __ . ---... . 

I35. 375· ··1--"---..,---'--.-.· .• ·._ ..•.. _ ....... __ .. _____ . __ . ...:.... .... __ ._ ... :. __ .. __ .. ___ ._ ... _ .... _______ ..... . 

. 84.453 

83.739 

43.358 

w+w =43.046 
1 2. 

42.774 

2.002 

2w =2.000 
I . 

I.997 

--_ ..... _ .... __ .... _-_ .... _ ... = ...... _ ... _== ... __ ._._.-=: ............ _===._. ~--.. -.. . .. 

------~---~- .. --~---.--------.- .... ----. 
I 

1----.,._--------... - -_ .. -... -....... - ," .. -- -............... - .. ----.---------

---....... __ ...... -------'------

i . 
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V.2.I. Experimental Set-up: 

The experimental apparatus is shown in Fig.(5.4 ). 

The arrangement depicted satisfies the boundary conditions 

described in analytical section, one end fixed the other is 

free with a large mass. The time dependent load (excitation) 

is applied to the column by means of a shaker as shown. 

Function Generatc)f Type TM 50l is connected to the' input 

of' the Power Amplifier ~ype 2706 whose ·output supplies 

sine wave with the required amplitude to the Vibration 

Exciter Type 4809. 

Fund'ion 
Generator 

Power 
. Amp\\~ter 

Vibf'ahOfl 
flCGiief"-

,j 

I 
'1 



0~ Tip 
- IZ;~--
'?7~ !vIass 2w-/ ~ 

-<y (rom) (gr) The. Ex. 

90 4.78 -

2 100 4.54 -
110 4.24 -
120 4.06 -

250 6.80 -
3 300 6016 -

350 5.66 -

-

Theoretical 

, 

STEEL 

UJ-{ + c.v~ 2..0J2 UJi + W3 W 2 + W'3 

The. Ex. The. Exp. The. Exp. The. Exp. 

88.40 . lOB 172.02 155 282.07 315 365.69 350 

88.18 100 171.82 150 281.82 305 365.46 347 
~ 

87.90 95 171.56 145- 281.53 2'95- 365.19 345 

87.68 90 171.30 140 )281.31 285 364.93 --342 

133.35 - 259.90 205 424.87 - 551.42 -

132.80 - 259.44- 200 424.31 - 550.95 --
132.66 - 249.06 195 423 084- - 550.54 -

, 

( Hz ) and ,experimental unstable frequencies 

Table ( 5.3 ) 
-

. 

\Jl 
r. 
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V.2.2. Experiments: 

Coordinates of the nodes change with the constant 

5=M/mc .l • In the reference [7J ' some of the 

coordinates were given for the various values 

non-dimension.al 
( 

of b • We have 

found experimentally the change in coordinates of the nodes 

with the increasing tip mass M. It is experimentally verified 

that the coordinate z increases as the tip mass. M increases • 

. Material'l . 
··L:eng·th·:.' il')"U\--", 

Dlamei;eri: . 
. Tip/niass'~ T .. ; ,:.~';;':'" 

Vib~Fre~:.; 
~ -'. .' f,· '.' ' 



r-1at erial :Brass 
Length" : 270mni 
Diameter:, 2mm 
Tip mass·:I20gr 
Vib .Fre.: ,34Hz 

Il?stexbilit.J 

Material:Brass 
Length : 270mm 
Diameter: 2mm 
Tip mass:I20gr 
Vib.Fre.:62Hz 

Mode sha~ 
V1 
J\:) 



Ivlaterial :BrasS 

Length : 270mm 
Diameter: 2mm 
Tip mass: 120gr 
Vib .Fre. : 100Hz 

Iflsfc:l. bi};fJ' 

, -~. -- ---. -~ -.-~.-~-""""""'-'---------".'-

Mode . .shape 

_~~,~_.~~. ___ ~_"""._'~"'.""-'.Jo""......c.."'--'---<...' ____ '_'_'~_ -----------

\11 
\)l 



Material:Brass 
Length :270mm 
Diameter: 2mm 
Tip mass:I20gr 
Vi b .Fre. :245Hz 

T ns-fa.biliIJ 

Mat erial :Brass 
Length :270mm 

. Diameter: 2mm 
Tip mass: 120gr 
Vib.Fre.:440Hz 

Mode ~afe 

j' 

\Jl 
.po. 
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CONCLUDING REMARKS 
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In. this . work, the -importance of combination resonances 

on the stability of a structure composed of a cantilevered 

elastic column supporting a large mass at the free end and 

subjected to vertical harmonic excitation at the support has 

been examined. Theoretical results along with the experimental 

results were presented and compared. 

It was found that for a system described in the 

analytical section combination resonance of difference type 

does not occur due to the characteristics of the elements 

of the coupling matrix 1. 
Experiments showed that ,internal 

resonance phenomena to begin at the 

that (or excitation amplitude) 

E8 

material damping allows 

higher values of E ~ suel 

__ Theoretical . 
____ Experimental 

The effects of the tip mass, Young Modulus of the 

column and length of the column on the natural frequencies 

and the stability of the column have been examined.Experi

mentally found natural frequencies are more appropriate to 

the theoretical ones than the frequencies cousing instability. 

This is due to the fact that,we have made an additional 



approximation in 

shear deformatio~ 

experimental and 

the stability analysis.Rotatory 

effects cause - the differences 

theoretical natural frequencies. 

inertia 

between 

56 

and 

the 
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APPENDIX 

COMPUTER PROGRAMS 



DOUBLE PREC IS ION UM, Z ,FZ,QUO,SO ,S I, TI, T2, T3, T4, T5, T6, T7 ,A, 

$B,SQRT;DCOS,DSIN,DABS,ABSTOT,TOT,SAL 

DIMENSION FZ(4IOO) ,ABSFZ(4IQO) 

C ROOTS OF FREQUENCY EQUATION : FZ = 0 

C Z = NATURAL FREQUENCY , 

READ(5 ,*) G,AL,W,E,RHO,AI,AREA 

EI= E*AI 

UM=RHO*AREA/G 

A=UM/EI 

B=W/EI 

J=O 

Z=O. 
DO 100 I 1,4000. 

QUO=DSQRTC(B**2)+4.*A~(Z*"*2) ) 
SO=DSQRT«-B-QUO)/2.) 

S l-=DSQRT( (B-QUO )/2 ~) 

TI=2 •• S0*A*(Z**2) 

SAL=SI*AL 

T2=SO*( (SOH4)-(S!-}H(4) )*DCOS(SA~) 

T3=QUO*(SO/S I)-(B/G )*.(Z**2 )*DS meSAL) 

X!=SO*AL 

T4=(T2-T3)*COSH(XI) 

T5=QUO~(B/G)*(Z~~2)~DCOS(SAL) 

T6=B*(SO**2 )*S !~DS IN(SAL) 

T7=(T5-T6)* S INH(XI) 

FZ( I)=T4-T7-TI 

Z=Z-I. 
ABSFZ(I)~DABS(FZ(I» 

IF(~.EQ.1) GO TO 100 

J=I-1 
ABSTOT=ABSFZ(I)-ABSFZ(J) 

TOT=DABS(FZ(I)-FZ(J») 

IF(ABSTOT.GT.TOT) GO TO 80 

GO-TO 100 

, 
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80 \'TRITE(6,60) Z,FZ(J) ,FZ( I) 

60 FORMAT(5X" ... Z:::. .... ,D28.16,iOX,"'FZ='" ,D28.16,5X,li'Z2='" ,D2S.16,/) 

J.OO CONTINUE 

STOP 

END 

59 
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C 'CALCULATION OF R-MATRIX BY NUMERiCAL INTEGRATION 

C TRAPEZOIDAL METHOD 

DIr>1ENS ION W(S) ,SO(S) ,S (S) ,BKeS) ,CK (S) ,AK(S) ,T(S) ,TT(S, S) 

$QUO(S) ,U(S) ,E(S,S) ,UW(S), V(5) ,F(5,S) ,R(5,5) ,FF(5) ,RR(5) ,PN(5) 
REAL NG ' 

READ(S,*) (W(I),I~i,3) 

READ(5,*)G,AL,MG,S,RHO,AI,AREA 

UM=RHO*AREA!G 

EI",S*AI 

A=UM/EI 

B=MG/EI 

C N=-NUMBER, OF MODES CONSIDERED 

C -M=~MBER OF INTERVALS FOR INTEGRATION 

. C H=DELTA Z 

N=3 

\ M=5000 

L=M-i 

H=AL/5000. 

DO 10 I=1,N' 

UO (1)= SQRT«B~.y. 2) -4 .'tA*(\'l( 1)**2) ) 

SO (I)=SQRT( (-B-QUO (I) )/2.) i 

8 l(I):::SQRT( (B-QUO( I) )/2. ) 

BK( I)=(80(I)~*2)*C08H(SO( I)*AL)+{Sl (Ih·*2)*COS(S1 (I) h .. AL) 

CK( I)=(SO (Ih-*2)-*SINH(SO( I)*AL)+SO( I)~ Si( I)*S m(Si( I)-XAL) 

AK( I)=BK( I)/CK( I) 

1. 0 CONT !NUE 

DO iOOI== ! ,N ' 

DO iOO J-: 1 ,N 

Z""O. 

DO 200 K=J,L " 
V( I)=COSH(SO( I)*Z)-COS (Si (I)4C Z)+AK( 1).)( (s INH(SO( I)*Z)- (So( 1)/ 

$8 i( 1»* S IN(Si( I)*Z» 

, U(J)::::(SO (J)~.)( 2)-* COSH(SO (J)~ Z)+S I( J)~ ~2)*COS (s1 (J)*Z) .AK(J)¥( 

'$ (SO(J)-x~2)*SINH(SO (J)*Z)+SO(J)*Si(J)* S IN(sJ.(J)*Z)) 

'F( I,J)=V( I}-x-U( J) 

FF( I)=V( I)~V( I) 

• 



IF(Z.EQ.O.) GO TO 500 

IF(Z·.EQ.AL) GO TO 550 
GO TO 600 

500 T(I,J)=0.5*E(I,J)+T(I,J) 
TT( 1)=0. 5*FF( I)_'!H1-( :: 

GO TO 650 

600 T(I,J)=F(I,J)+T(I,J) 
TT(I)=FF(1)+TT(1) 

650 CONTINUE 

Z=Z-H 
200 CONT INUE 

R(1,J)=Hi-T(I,J) 
RR ( I)=H~TT (i~ 

PN(I)=SQRT(RR(1» 

li 0 CONT INUE 

i 00 CONT INUE 

DO 75 1=1,3 
75 WR1TE(6,64) (R(I,J),J=1,3) 

WRITE(6,66) (PN(I),I~!,3) 

61 

66 FORMAT (5X,'PN(1)=' ,Fi5.9,/;5X,PN(2):' ,Fi5.9,/,'PN(3)=' ,Fi5.9) 
DO 400 I",!, 3 

DO 400 Jc.l, 3 

E(1,J)=R(1,J)/PN(I)/PN(J) 

400 CONT INUE 

DO 40 1=:1,3 
40 WR1TE(6,64) (E(1,J),J:.l,3) 

64 FORMAT{//,3(F 5.9,SX» 

C UNSTABLE REGION BOUNDARIES 

DO 450 1=i,3 
450 U\v(1)=W(I)/S./w(1) 

V1R1TE(6, 68) (W( I), 1=-1,3) . 
68 FORMAT(/,SX,'UW(1)=' ,F8.S,/,5X,'UW(2)=' ,F8.5,/,SX,'u\1(3)=', 

$F8.5,/) . 
DO 800 1= 1,3 

DO 900 J= 1,3 
IF( 1.EQ. 2 .AND. J .EQ. i) GO TO 900' 



IF ( I. EQ. i. AND ., J • EQ • 3) GO TO 900 

IF(I.EQ.2.AND.J.EQ.3)GO TO 900 
'" UU=-UW( I)-UW(J) 

WRITE(6,67) I,J,UU 

67 FORMAT(iox,'Uu=ml( ',Ii,' )+1;1111(' ,Ii,' )::::" ,FiO.5) 

EPSDdJ. 

850 EPSD=EPSD~0.02 

DEL1.=.SQRT(E( I,J)~E(J, I)/UW( I)/UW(J») 

DEL2:SQRT(i.-2.*(UW(I)-UW(J»*EPSD*DELi) 

DEL 3=SQRT ( i. - 2. * (UW (I)-UW (J) )~ EPSD~DELi ) 

ALTS=(DEL2-i.)/EPSD/DEL 

USTS=(!.-DEL3)/EPSD/DEL 

WRITE(6,65) ALTS,U5TS,EPSD 

65 FORMAT(/ ,5X,;" ALT smIR=' ,Fi2.8, lOX, 'UST SlliIR=" ,'Fi2.8,5X, 

$'EPSD=" ,F5. 2) 

IF(EPSD.GT.0.2) GO TO 900 

GO TO 850 
·900 CONTINUE 

800 CONT INUE 

STOP 

END 
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1 

mTRODUCTION 

In recent years-! the dynamic analysis of structures 

has seen more and more prominence in engineering. design 

considerat~ons~ Having sufficient knowledge of dynamic stability 

of stuctures enables us to prevent possible catastrophic 

failure •. 

Parametric· instability. of ~olumnsunder. periodic axial 

loads has been investigated by many· autl;to~s [6].Rec~ntlY, 
much attention has been focused on the existence of·combina-

tion resonances in addition to simple 

[4]. In most/ studies, however, only the 

parametric 

horizontal 

resonances 

accelerations 

are considered as these would appear to dominate over the 

effects of the much smaller vertical acc~leratio·ns [iO].However 

these vertical . accelerations cau·se;, instability depending on 

the dimensions of the sjstem and the amplitude of the exci

tation frequency. 

A column, when excited along its longitudinal .axis, 

m~y vibrate in a direction transverse .to this axis, under 

small perturbations. For certain relations between the para

meters of the system and those of the excitation, the amp

litudes of these transverse vibrations will become extremely 

large, and the column will collapse. It should be emphasized 

that the failure is caused by the interaction of the 

various properties of the structure and its exci:tatlon 

although it is a factor.· The dependence of this resonance 

behaviour' on the parameters of the system is known as 



..... 

2 

"parametric resonance ". 

A detailed literature survey on the dynamic stabilit 

of elastic - systems is given in Bolotin's book [51 Bolotin 

made the stability am,lysia according to the Floquet the,ory 

which preyents us to investigate the combination resonances 

of a structure under dynamic loading. Recently, Iwatsubo, Su

giyama and Ogino [6J analyzed tb,e. stability of a uniform . 

elastic column under periodic axial loads for several sets 

of boundary conditions-. Laura eta all. [7J examined the vibra-

tions of a horizontal clamped-free beam with a mass at 

the free end, such, a structure is also known as Beck"s 

column. The e:tfects of 

column were studied by 

these studies, analysis 

where the structure is 

and excited by a time 

ntthe free end. 

shear and rotatory inertia on Back's 

Kounadi's and Katsikadelis "[81. In all 

has been restricted to those cases 
I 

resting on a .stationary foundation 

dependent tangential or axial load 

In this vlOrk, the dynamic stability of an elastic 

column with a large mass at the free end will be studied 

The excitation will be taken to be in the direction of 

its longitudinal axis, simulating the vertical accelerations 

of earthquakes, and the su~sequent motion of the column 

transverse to this axis will 

of motion will be derived in 

we will consider the case of 

be investigated. The equation I 

I 

Chapter II. In Chapter III I. 

free vibrations and determinel, 

the frequency equation of the system. Stability analysis 

based on a method introduced by Hsu [4J will be given in 



.. ' 

Chapter IV. Finally, experimental studies and results will 

be presented in Chapter V • 

3 



( 

. CHAPTER . TI, 

EQUATiON OF MOTioN 

II.I.Formulation of the Problem: 

4 

In this section, the equation of motion governing the 

transverse vibrations,due to axial exli:itation,of a structure 

supporting a large mass' wlllbe derived.Wewill model the 

structure as a cantile,,&red 'elastic column with a large mass 

at its ·.free end,(Fig.2.I) 

The parameters of the system will be defined as 

follows, 

M:~ass of the supported body 

·m:Mass per unit length of the column 

l:Length of the colUinll 

E:Modulus of elasticity' of 

I:Moment of inertia of the column cross-section 

A:Cross-sectional area -of the column. 

In. the analysis of the problem, the effects of the 

rotatory inertia :imd shear deformation will be neglected 
. ' , 

and the defiections of the column will-':be .. ' taken to be 

small in comparison to the smallest dimension of. the stuc-' 

ture. The . stability of the, ,system" Will. be ,determined b'y the 

boundednessof the solutionao.'to the'irari'~verse ·.···e~1i~tion 
motion. That is, the column will be said'.,:tobe· unstable 

when the' solutions grow indefinetely iri' :::"tim'e. , .. ' . 

of 

Before we derive the equation of <'tD.Otion, . 'expressions 

for the . longitudinal and transverse components " of the acce'~ 

'leration of a material' particsl will be .... giyen 'in the first. 

" 



.... 

part of the following· section and -the. equation of motion 

will· be derived subsequently. 

L 

/ 

" 

--,. " /. \ .. r . \ . 
\ I 
\ / 
j-_/ . 

/ 
/ 

I mc ' E, I, A 
I 
I 
I 
I , 
I 
I 
I 

Mathematical Model of the structure 

Fig.(2.I) 

5 
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11.2. The Equation of Motion: 

In order to arrive at the transverse equation of 
nd 

motion of the column, Newton's 2 Law of Motion will be 

applied to an element of the column under ·the assumptions 

of the classical Bernoulli-Euler theory. To this end, the 

kinetics of a particjle along the column· will be discussed 

first and subsequently the equation of motion will be 

derived. 

2. I. Kinematics of a Mat eriaL Particle - Velocity and Acceleration % 

Figure (2.2) shows the three successi-ve positions of 

the system. The first one, which will be referred to as 

reference configuration (undeformed configuration) is the posi

tion at t=O. The system is . at rest .... in the'· inertiai ·frame 

fixed to the ground. The second pOSition, a hypothetical one, 

is the one where the entire structure is rigidly displaced 
I 

vertically with a time dependency given by 'X (t). Finally, 

the third position, deformed position, 

of the structure a.t any time t. 

represents the 

' ...... ' 

The coordinates and the displacements of an 
, . 

material· particle in each aforementioned position 

.. 

state 

arbi trarj 
I 

are giveJ 

below. The first term represents transverse (horizontal) 

dir ect ions. 

CX,Y) : Locates a material particle in the r~ference 

configuration expressed in a coordinate system 

measured from a fixed inertial frame. 

(1,1) : Coordinates of the material particle in the 

hypothetical configuration (rigid body motion) 
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measured from the origin of the fixed inertial 

frame. 

(1tL) :Coordinates of the material . particle in the 

deformed position relative t6 the fixed inertial 

frame. 

(x,y) :Locates the material particle in the undeformed 

state with respect to the coordinate system 

moving with the support. 

8 

(u;w) :Components of displacement of a material particle 

relative to its reference position. 

The axial and the transverse components of displace

ment in the hypothetical state can be written as, (Fig.2.1) 

*" U=f-'r 1 -)t ,.[ = 7. - '1. 
(2.I.1) 

and the displacements with respect to the reference position 

are 
~ 

} 8 =~- X=u +'X x 
~ 

8y= ''1='1- Y 

(2.I.2) 

Note that the position of a material particle in the fixed 

inertial frame is determined by the coordinate X, and its 

velocity is the rate of change of the displacement function 

Sx ,holding X constant, i.e., 

V '68 
x-::~ 

X 
Since Sx is also a func·tion of l' and t ,applying the chain 

rule of differentiation to Sx we get, 



-: ... 

_~ o~ a? 
vx- at +d cr : 01: 

where . from Eq. (2.12) 

We also have,:> 

. '" . ·:~t~~,~1~E&Y":~ 

9 

Substituting 

yields 

all these .. relations in the expr~ssion . for v\ 
x\ . 

\ 

Neglecting the axial strain ~~", and the· strain velocity ~~ . 
compared to 'X ,the expression for the axial." component of 

. I 

the velocity of that material particJ;e reduces to 

Showing that the major contribution" to the motion is. due 

to the motion of the support, that is 

ct u· •• 
ox1. «( X 

Taking the time derivative of the equation (2.1.4) holding. 

X constant will yield the general expression for the lon

gitudinal component of the acceleration, 

a =.dV?( = "0 Vx+X 'oVx 
x 0 t at "0 'r 

or x 



•• 
0=.0(+ 
~ 

Neglecting second and the higher order terms the above 

expression reduces to 
It 

10 

a = At-\:) .' " (2.1.5) 

For the transverse components of velocity and acce

leration of the material particle, going through the sama 

procedure jields . 

V _ d S~ r _ "dS~ + aS~. 0 '{ 
.Y - d t 1x - C>1: , d '( 'd t . 

v: dW rV ¢W 
~== ~1:: + A O~ (2.I.6) 

and" the general, :expression' for.' the 'transverse ,.component ~ of' 

the accelerat~on .is •• ,.:, •.••..•. ",;~; .••. , " .. "."'::':<:,.,: •. ,: ' .. " 

.•. a~·~~;+')C~~+'X~·~· .. [ l··~r+-X·'~~J· 
. Considering' only the first two terms and n~glecting ,thEJ 

. . , 

remaining, the expression for the. transverse acceleratio-ri.· 

reduces to 
,'2. ... .. ~' .' ow .. oW 

Q!j = 0 -I:?- + rx. '0 i 

2.2. The' Equation of Motion : 

A differential material element of the' cQlumn which 

is deformed due to the bending moment is ,sho~m in Fig. 

(2.3) in a coordinate system (x,y) moving with the support. 

It will be assumed that shear deformation and rotatory 

inertia effects are neg;t.igible.P, V and Mo represent, the 
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inertial axial force, shear force and bending moment respec-

tively. 

The equations of motion both along the x and y 

directions obtained. by applying Newton's 2nd Law of Motion 

to the di~ferential element of the column are 

(2.2.1) 

,(, 

.. " '. ~ 

. . :, ...... ' 

where we have used the fact that 

to 

. ~ a 
'0'/ - :0" 

Summing. up the moments about an axis·".perpEmdicular .' 

the (x,y) .. plane andPasSingthf~~~;,~.·'~~·~':;:~;()~lit.n •. we:' get· 

dMo J 'X ~ v d~- ~v (J?C)2. _ P~Wd?C_d(v·.;~P~"(d1C)~~'O .. 
. dX d?( "O~ .~. OX .... . 

Considering only' the first order terms and neglecting· the 

remaining .. ·· on'e~ .'. we obtain the equation of angular. motion of 

the system as 

"'a Mo _ P 'Ow _ V = 0 . 
d X o?C. 

Recall the relation between the bending moment· Mo and the 
. .' 

curvature at the same point for a beam in. flextural motion 

Eliminating Mo between the equations (2.2.3) and (2~2.4) we 

get an equation for the. shear force 
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Differentiating' the above" equa.tio~ wi ih']re~p~c;t . to', x . and 
')'." ,",:.;. 

using . the equations ,(2.2~ I) and (2.2.2)Yie~ds 
' .... 

'(2.2.6) 

Note· that the axial force P is a fwi'ction of x and t 

and is given by , 
, ' l .,: . 

p ( ')(. , t) =- M l ~. - Q?( ) -\-f me (.~ - ~.) d ?! '. 
/ 

x 

where, gis the gravitational acceleration'. 

Substi tl1ting'Xfor 'ax' the ;ab6~e 'eq'U~t;ion':: reduces ·to 

p (~. t)· .. [M + m~ l t.--~)l ('i!-~y ...•.. 

Since the beam considered is slender and the mass of, the 

top weight is very large compared to that of column 

( M» mc 1 ) ,inertial forces' of the column can be neglected. 
/' 

Hence, the expression for the 'axial force reduces to 
, 

Pt-l:)=- MC~- X) 

which is only a function~of time. The ,governing equation 

of motion for the system described is then obtained by 

substituting (2.2.7) into the equation (2.2.6) 

'CJ4 •• ) (?w "OlW 
EI·~+M(Q -ry... - + Tn -=-O axlf a a xl. c. di? : (2.2.8) 

This is a fourth order partial differential .equation, hence, 

there should be four boundary' conditions. At . the lower end, 



I ~ •• . . ,. 

the beam is built . into its foundation meaning that the 

displacement and._ the slope must vanish,' i. e. , 

wi -0-
1(:0 

dw =- 0 
O?( 

x::.o 
The other end is free .' With a .. large inasS'~-"'lIetlce, one" of" 

the boundary condition· at :x =1. is zero b'ending moment 

14 

. E1 ~~~ = 0 (2.2.9c) " .' .. ' ox ". 
d6nditio:ri,.rJ.·~te:,·,thai the 'inertial 

." .. , ~' :', 

force . :balanced':t>y.: shear force at 

• this •.. elld·.',(··;;;~;i·<,c:f.c,.)J;:;,;~:·i::::;>,'·· " 

V (l) t)= - Ma.~-(l,"l:}"·:~M:_.~ t.~::l't':.{;;,.':?o?< ........... . 
. ' .... " .' ".:';',::.' :c.:::;.", ?C::.l 

is the remaining boundary condition. Subst:i.~uting (2.2.7) into 

(2.2.5) and evaluating at x=l will give us the .shearf6rce 

appearing. oti-' the left-hand side' of the· above····· equation. Thus,'.· 

the above 'expi-ession: i~~dtices';to 
\ . "" . ....., 0' 

f! ~:3 +MS ~: - M~~lM~~: 
~::.L :it=.L 

(2.2.9d.) 

In this work we will assume that the excitation, is 

a harmonic function of time, that is 

'X l-l:.):= Xo C05...o.. t 
where Xo and..fL are constants c·orresponding.· to the amplitude 

an~ the frequency of the .forcing function. The expression 

for the acceleration of the base 1s then 
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0(. -- .£l. i X"'f . '.' 
. °EI' (2~2.I.I.)' 

:~quat:ton{2.2 •. ,~ol"together with ·its 'boundary. condi

tions (2.2.9) ·descri~~~.,'th~~,>t~~sve~'s~:-,,-'m~:titJti:·.:C)t;·the· column 
<:-"'0,' _ "::.;.,'",,_ .:' 

in the (x, y) planestl1)jij6;~t-tb<-;:,~'a '4eitid~'~"/ei:6iiat-iO!)"'X (t). 
Since we will 'be only interest~d "'iIi. . :the' steady-state 

motion no initial, conditions will be prescribed for this 

problem. 

:." - I 

, ' 
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'", :-.:: ;' ,"-' , .~'. 

In: this, chapter, thegerie~al 
equ~tion of the system 

If the forcing :fun.ctioii 'rx (t) 
. ; . . 

is' 'taken ,; as zero in 

the 'equation, (2.2.10), the ' equ~t:J.6nofmoti6n ',describing the 

. ·ff~~··. V~'~~~}~~~~i;:j~~J~~x~~;~e~~~~i{~c;'~i;~&F·· .. *~a~:~:'I:O·. 
where ~ end'! are the 'quant.ities defirieq. "in' '(2.2. II) • The 

boundary conditions, ( Eq.(2.2.9)), can be Written ,as 

(3.I.2a) 

(3. I.2b) 

'(3.1.2c) , 

(:3.I.2d) 

',can be 
.. 

obtained by applying the method of separation:. of variables. 

That is , we assume a' solutioll, of 
'. '.' ' 

'G'wt', 
w t X 1 t) ::=. V ( 'X)~ ,e , ' 

•••• ". ',> 

.',' . 

Substituting the above equation" into ,·Eq~.(3.}.*);;the equation 

. '. ~;'.\ . 

. .., 
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of motion reduces to an \ ordinary differential equa,tion of 

the form 

where OJ ,is the ,natural frequency of the system. The .', ex-

pressions ,', in 'bracketsnlust:vaftish in 
., ' 

.' 

hold. true for all time t.Then 

eigenvalue problem of the form 

the problem reduces 

where £: '. : , 

is a linear 

to an 

; (}. I.5) 

_ d~ :,' d2. 
L= d?l'l+ f?>dll~ (}. I.6) 

. ,,','::;:~,;,.t~/(:;,:·'.;::> ,>,,: " " ", " 
AssUniirig':',·a.·':;:~61iiti6n::·~f::i,:'the:'i,:-fci:rrif V (~)~,:C:.~/,:.~;,::~tEq}( 3.I. 5 );,- ,', yi~lds 

',}:~. ',;: ,:-' • .' .. ;..... ',.. '-*!" >, . i;"':' ._ 

the chara~t~ilf~ifc '~~~atio~' ,;' 
',,+, ,,~ .~. 

'A +\?>A- W (f' = 0 . 
I 

(}.I.rr) 

The 'roots of this fourth order' equation can' be "written as 

where 

A=~k -
2. , ' 0 

-(3 + J{3~+4()J~)f I 

~ 

~' ~ l\<',',,'" ""\;"'Yk ','(}. I.'S) " , :r-" ,/\,,=- , , 

k= 1 

1 t · f V (x') can be ' written ,'as Hence the so u 10n or 

where 

from 

A, B, Ci and D are the constants to be determined 

the four boundary conditions given' by Eq.(}.I.2). 

The general solution of the free vibrations, case is then i 

,- \ . 
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III.2. Self-adjolntness . of the System 'I .' 

EQ.(3.I.5) corresponding to the e:i.genv~lue problem 'can 

be put into the non-dimensional form by' introducing the 
x' (1'\). . .. " ' •... • .,... ' 

variables z:,- ,t =w of: corresponding to.· the non-dimensional 

~,; lenght and :tt~:~ " r'esp~diiveiy,~nr is , the', llth<n~tural'freQuency . 

with the boundary conditions 

where 

and 

, . 
v (0)= 0 
-I . ' 

V (0)= O· 

_11 

v (i)==O 

-Ill f3 _I . (w)2 ~ --"- ." 
V (O+-·V(i)=- -. -V(i) 

. ~ w(n) ~ 

-' V v=l 
{3 = Ll, 13 

~ - ,If (nl y. 
(f=LW,O 

) ( 

form 

(3.2.I) 

(3.2.2a) ., 

. (3.2.2b) 
I 

(3.2.20) . 

(3.2.2d) 
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In ,general an eigenvalue ,problem ',is said to be self'- , 

adjoint provided ' ,thef'ollowing - relations ~aS:e'satisfied, [9] . 
'- '-', - .-. . . 

i " "', ',' " ' "If ',,1 -\", il'T'" ", 

.·fr;£ [~] d t+ E I r B[ s]d ~ -1st [r]J9-f~:~:itBEfJdi .... (:5~ 2.}a) 
. °i" .... '. . 4J' I : J.. 01 '.' ".: j'I·~.J' •....• 

[r =r s di: + 21 Ir CJ[s]h ~fs i' rd~+bfsCJ[r-]h (:5.2.:5b) 
, J"'1 0) 0, ., "J-:'i,Oc" , '" " ,,' 

where rand, s are any, two :functions'sJi~~1tilig' the "boUlida~1' ,! 

conditions, while ,'B j and OJ are'operat6rsappearing in the 

, boundary conditions. in : our ' case these' operators are 

B '; '1 
J 

"", B¥>"(*,,,',·',-..: ~,;:')\ ' 
o "j 1 

C~ ~ t 11 .. '.' . '. . •.. '" ..<. .Cj-O 
It . is obvious 'tllat.'.th~;ilp~i~~~t.~ '1r~',l~Ci(~f~~~l;}and '(l4 are 
only multiplications 'by;const~ta, hence'·Ecr~{"~2.~) ',1s' satis

fied identically and there 're~ilins only" to 'show that' 'the 

operator £, sati'sfies the, relation' , 

f~r[sJd~' fs L[r]d:a 
o '. 0' ",'" 

" " ' 1 .,' 'i .,,' 2. ' f r (5(1
0

) + ~ still) d ~ = J r~~:t d~ +It'~ ~~~d~ 
° ° ' 0 

Integrating the above 1ntegrals by parts' we get, 

r (d'ls + p:~) _ S(d3

f +~ L, r ,)' , 
d %.3 ,r' d z. d t.3 ,- d;t , 

'L 
1 J~ ~ . -1'd~" , 

+ ;;, .sJ1. +J ~d:'-· sch 
o , 0 

Using the boundary condition (3.2.2d) 
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.' ':"'-.' . -"" .•... ,:':t,~.··,·· 

( 
.2. (b) ( ... 2.~<(')'I·'·f· "'(',[. J '.' 

. = r.," ~)~~.s ,-S"- ~.) .. ~'!,+o5~.rd~ 

:us isth: :::ad!:::tn:::t· O:he th:ig:~:~~~~~iJ\;~t2~~:~o:~:y::m) .. 
are orthogonal [9 J. The orthogonality' ot~ik:~ii¥Wi:dt;i~ri:s 'can: be 

stated as 

..,~~~t~)~.<VjY~)dZ_N dlbij .... 

~iJ ... f~ (Z}dZ 
o and 

when 

/I 

." " .. ~ 

Let qi (z) be the':' normai:i.z~d;fJrii1 . ot',tli~:<:fuction. 'Vi(z) such 

that 
, . Vi'(z), 

q{z)--.-'--
i ifNi' 

Then qi(z) forman orthonormal, set' With the property 

'ing 

j
i , 

qi (z) • qj(Z) dz -cSij 
o 

(3.2.6) . ' 

.. ' ,> . ..,.1' ", .. "... '. :,-' 

' .. ", Frequenc1~'~eqtiati()n of a systek:,}:is';i':";,~1;ta.irt·ed .byapply:"',,' 

th~boJn~k-:y/"cokd1ticin~td," "'th~:,,'~~'J!Jttg~:D~'oi;\'the,' eq'u:ation' ':: 
• • • • ~~ > •• '. c": '. .-

of motion. Thus, applying the boundary co~ait"ioxiat x~O yields 

w'(o,t)=o - ... _- A.=-C 

. '. ,.~:, .:.' -



Hence. the 

ow(O,t) =0 
OX 
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. - . " :'" -
.', :.' ,,' """ - .' 

... w (~, -l) --[A (CcJ, ko7< _ Cos k, 7t) + e,(S;n\'k}~~l~{~,~)leiwt( 3.:L 2) 
. .... .... ',' \(" ... ~ " 

Now ap~iYib.i,·· the bOtin'dary' condi tionat x -1' will yield. two 

. equa tiona for. the .unkn()~ :C·OliS~8.n ts .A .. and.B, that: '1.~" 
, 

0= A ( k: Cosh kJ + k~ C~sk, L) -t S(k.l, Sin\' k.l-\- k.,k, Sin k, l) 

o =A(k.VSinkk,l - k,k~ Sin k,t + .. ~ wZl C~h\;oLCo~ I., l) ] 

+ Q, [k. k ~ COSh\'ot 4-~:Co~~:r4~'(S\~B~li;~Sin k, L)] . (3. Mb) 
. <J. ' .. K, 

Equations (,.,.,) 'can be written in matrix form as 

o 
.. 

0, 

. where the. coefficients 

, .. -

Q:= \<oS·,l\h ko l + k)<.S·,n 'kJ .'. 
\~ . .'.. _. ," " I;, .' 

;, .... ;.; .. , 

Q
21 

= \<.1<; ~,,,\, kJ - ~ I, , Sink, l +t w~ (9~k~~(iiCosk,l) 
. Q: kok~ Lh 1.0 l + k: Cosk,L+ ~ W 

2 (t;nhko t~:.I<oSin k,L J 
.1.1. . ' .ca .. . ........ , ,.,' ·.K J · •... .' ....... . 



In order to .have a 'non-trivial'·solut1.on.,;:for the 

,('.'.~)" t~e" determinant 

vani sh', "1..~., , ' 

det 9. =0 
, "'" 
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equation 

0:'< Substitution of Qij' (i,j 1,2)' into, the above, equation will 

yield the desired frequency equatiori' . 

i [ If 'I ) , " I/. 2. ,~'k:: ~, 2,' ,,] ~kow Y + k.( k. + k, COSK,t- V13 +4 to ?t k;oTw Sink,L • 

Co5hk.l +[v'f3" +4 W" ~' 1- ~iCos",l-(6k: k,Si~,kJ Sinl,k.L = 0 ·(3.3.6) 
. . ~ . . '~', ; .. - :;; ; . ~ '~' .. 

The equation', {3.,.6>' canb~::,>¥'6:iv~;d):'i~~~rlCallY for 

W when the constants koand \~ are' knoWn' 'f~r a' spesific 

structure. The roots of the frequency equation c.J~} (j 1,2, •• n) 

are known as the natural ,frequencies of the beam-oolumn 

wi th a hea.vy tip mass at the free' end. 

The constants' A and B ,are related to each other 

with 

. . ," 

Therefore the 'complete 

"'. '",' 
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vibration. 
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the . normal mode 

.,1. 
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CHAPTER IV, 

STABILITY ANALYSIS 
. , . . 

In find the unstable· . regions 
". -'- :.. .' 

in which 

this chapter, we will 

instabili.ty is taken as the unboUnd'edhess of the 

solutions to the transverse equation of motion. Tn Section 

III.3, orthogonality· of the normal modes was proven for the 

free vibration ' problem,:· therefore the solution to the forced 

vibration·· problem can be taken . as a superposition of these 

normal modes (eigenfunction expansion) [.9J. The. coefficient 

of each term in this series . expans.ion will be· in general 

a function of time. Such an approach . will ' yield coupled 

Mathieu equations to be solved. 

The method generalized by C.S. be used 

in this chapter in·· solving the above-mentioned Mathieu equa-

tions. This simple and 
I 

method enables us to observe both 

combination resonances while 

_:Bolotin [5 J enables us to 

the one introduced by V~V. 
( 

ob~erVe .' only' the former • ! 

" - .. 

. In Hsu" s ,'methoa.,theboundfir~es·· .of the';::stable· and 
. . ~.'. ,'" ," '. - ."'. , -. ' : -'., .' 

unstable regions . are found. ,'isin:~·s. combination of perturba-
".' . -

tion and variation of parameters . techniques. 

IV. I. Derivation of . the Space· 'Independent Eg;li.ation· , 
The general equation of motion (2.2.10) '. can· . be written 

in terms of dimensionless . variable,s z and, 'z . as 

(4. I. I) 

:. ! 



.... 

25 

where G(t:) = Cos)) z , 

)J == ~n) 
1. 

ex =- l ex. 

w= w 
l 

Note that the ith non-dimensional natural frequency tUi is 
(n 

W 
w.=-(. (0) 

W 

The solution to equation (4. I. I) can be assumed to be of 

the form 
"0 

w(z, z:) = L ~i (Z) • qi (z) (4. I.2) 
. .(,:1 . 

where qi(z) '1s the ith normal mode and ·.di(~). 1s its 

corresponding time dependent amplitude. This assumption is 

known as eigenfunction expansion[9]. By substituting (4.I.2) 

into the equation (4. I. I) and applying Galerkins method, a 

system of coupled Mathieu equations whose solutions will 

determine the stabili ty of the system :Ls obtained. 
. 0() t ¢'(:r) £, [9,c,,)] + '6 E ~ (7:)9p:) + 

(; =1 C...,.i 00 . . 

, , 
, 

- «X G(~)L¢.(~)9(~)~O (4.I.3) 
l-i ( . '. c· . . 

'. 
/ d 

( )=rz where • d ( ) =(fi; 

Multiplying the above equation by qj (z) and" integrating over 

( 0, I) and recalling the orthogonaiityrelation, (3.2.6), 

we get 

~ . 
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.. f 

¢ ('L) + wi ¢(7::) + ~ .G(z}f.cA(?:)f9~~9 d~ =0 (4.I.4) 
, 'lr ~ i=i t ·0 ' J . '-

Defining 
Eij= f~; (z) • qi (z) dz 

o . 
the above equation takes. the form 

'where 

and 

~. Vl) + w~ ¢. (~)+E b G(Z) \: E. ~(Z) ==. 0 
L ~ {J ~ .. J 

5 _.~M~ 
mc 1 

6 -=))~b 

Xo is the amplitude' otthe' excitation of 

the, ' support'. 

Definihg the '. following matricies 

E11 E 2 • • • (j 1 

E2l. E :',22 .. ' 
fl· ' 

1 
'(6 : 

2 

£ • -- • • -- • ~ -- • 0 

¢= • 
"-J ' • 

• ~n 
0 • 

" of 

- ., 

.! 
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equation (4. 1.5) can be wri tt'en in matrix form as 
0' 

f + [~ + £ t; Gt'~)~J~ = Q. (4. 1.7)' 

IV.2. The Stability of a System of' Coupied';:>Ma'thieu Equations I;' 

The solution to the equation '(4~ 1.5)'-, according to 

the method introduced'bY'C.S. 'HBU [4], ' is·'" aS~Umed ,"to be 

composed' of ,,' two parts.Sincee is a small parameter, the 

'first part of the solution will be' the perturbation part. 

The second part of the solution is found from the undeter

mined coefficients method and is of the form of the solu- , , , 

t10n tob'e perturbed ,about with time dependent ·coefficients.,' 
-,"-.':'." 

first 

The': ,system'ofequations.(4.I.5) can::'ber'educed to 

order • system of -equation~'by d~:fi:hi~~·:·\:;K: "new ' :fUnction, 
: '" ", 

as 

(4.2. I) 

. ~ 

hi=¢i 

,Yti + cu~ ¢i " -E: bG('l);Eij ¢j 

>, 

Note that if'Jihe 'sma.ll parameter E.tends', to ,zero 'the / 

solution of ,,(4~2 •. i) ',,' bee,omes 

¢i (Z) = ~ cosw,'l ;-Bi Sinw£ rc 

hi (z) ~ - ~A:t Sin~:Z ;-wli Cos Wi Z. 

where 'At and Bi are constants. 

For ~ == 0 ,the above solutions 'f6i ". ¢'~ ,," and hi can 

be assumed \ to be in the form of perturbation about the 

" above solutions with time, dependent coefficients., Combining 

the method of undetermine'd coefficients with, the perturbation 
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method ''fe assume a solution of the form 

~ n q(q) 

¢i(C:):=Ai(t:) cos~Z+Bi(L.) sinw/(;+LC::f2\ ('C) 
9=1 (4~2.2) 

, n 9 (q) 
h

1
, (z:)= -W.Ai (Z) Sinw.6+wBi ('(;) Cosw.~+ ~ E hi ('0) 

( ~ t: "L.. cH 
(q) (q) 

'\;.'lhere Ai and Bi as itlell as·. 01 and hi are all functions 

of time. i 
Substitution of (4 .. 2 .. _2) into I (4,,2. I) and' applying 

,the method of lliLdetermined coefficients yields 

Y '0 

Ai(L) COS~'G+Bi('[) Sinwil,=O (402.3a) 

o .• C\ 9 •• (9) 2. (q) 
_ w.Ai Sin w,.t + W-. e,'-Cos w. {: + " E (ri., +w. rI.. ) 

, •. " , ~ ~ l,'f:, . <1:1 l. 

= - E-'S G ('L) '\' E. [A 'Cos'w L + B S'IOW l + t E,'19'2('l)] ( ) 
. ,~, c. J J ~ J J ~:: I J 4 " 2 • 3b 

Considering only the terms. \oJ'i th coe:L'ficients upto the first 

power of E: ( first 

equation (4~2~3b) 

approximation )9 and 
\ 

yi~lds . a second order 

substi~utl.ng G('L) I into 

differential equation 

for the time dependent coefficients.. Equating the terms 

having E on both sides of the above equation yields 

G. (i) 2 (1) b \' 1 [ ] 
(j +Wi ¢ ---:--L £: A (os(wJ-v)c+Cos(w+Y)'G (. " 2 (J J J 

.T . . 

. + Bj [SIn (wj -)J h.+ S'n (wJ+)J) z.] 1 (4.2.4) 

Particular solution of the above equation is 

-s;tl = - b2, \ {fi] r
A 

Coo (w +V)'C + G S\o(::~;~J------··-------·----·------i-
t p . L ,2.( )2 J J J 

J We: - tA).\-)J -

+ '- E" 2[A/O'(WJ-V)Z:+<'JS'O(u.>J-v)z:J~ (4.2.5) 
LU. - (w,-y) 

G " 
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(l.) 
Note that ¢i being the time dependent coefficient of the 

p 
solution to the equation (4. I. I) - ,,7111 become infinete1y 

large as , Wi 1-lw
J
+,)) I and this corresponds to some sort of 

a resonance phenomena. The essential feature of the method 

we have used is to associate resonance causing terms with 

the variational part of the solution [4 J . These troublesome 

terms can be removed from the perturbation part. of the 

solution. Now·. let us consider several resonance cases ·found 

from the perturbation analysis. 

Case I : ))= Wk+U>J+ G", k;ej .( 'A is areal finite numbe:r ) 

If we . set i=k in (4.2.5), it is seen. that ·when 
... th 

the forcing frequ~ncy Vis give1l. as· abovet.th~· jterm (j=j) 
:th 

of the second expression on the . right-hand'.side.of. the k 

equation .(4.2.5) will go to infinity as E- -r-O. Similarly we 

get the same resonance case by interchanging' the indicies 

as' i = j and j =k in the summation. Since resonance crase is 

related with the variational. part, we obtain ·.fourd1.fferEmtia1 
. . 

equations for Ak , Bkt .1\.j andB j by considering only the 

variational part of the equation' (4.2.3) 

• • 
Ak Coswk~+Bk Sinwk't""O 

• E. - [ 
-UJkPtkSil"lWk(; + Wk(?,kCoswkL:: - 2" b £kJ~CoS(WI<+EA)L 

_~S·I" (Wk+E.'A)'t] (4.2.6b) 

: . 
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• • 
Aj COSW.t~+Bj' Sin~(;=o 

- "-!J ~ St~ ~ 'l: + W}/OS WJ 'l: - - ~b ~k [Akeo. lw
J

+ EII)7: 

"- C% Sin (WL -+ fA)Z:] ( ) ... 4.2.7b 

Solving • 
for A' k 

• 
and Bk we, get 

~ .' 
~= ~ 8. Ek '[A (Cos"w Sin W C, os, fA?: _Sir}2~'Sjr)EI\Z),' 

, .Q Wk J J Tk k " , , ',1< 

. - (3) ( Sln2.1t COS E'A G + Cos V{5tn It SinE'A 7:)] (4.2.8b) 

where ~::::. Wk' /7: 

In order to simplify the equatio~s (4.2.8a -b), we' take tp~ 

average values of the right-hand 'sides'of them with 'respect 

toW over 'a "'I,>~rI()d of: 2traccording o:to,' th~', me~hod " of ," 

KrYl~ff-BOgoliUbhI:t~vander " poitr]~ :tnt: ':th~t'::cKi~u1~tiori "'A
j 

, 

and B
j 

are considered to be constants. In this 

~=_ E ~ E" fA 'StnE';A'(; +e.J Co5 E'A 'Z]. 
4Wk J C J ' 

B =: - E 5 Ek [' A Cos E:~ '(; - 6
J 

SinE.A rz;l " ' 
k 4wk J J " "J 

way we get 

(4.2.9a) 

>I: Since E:A«W
k
, rapid oscillations do not contribute ,to the 

chan~ ~s occurring in Aj and B j. 

, , ' 

, . 



.' 

• • Similarly for Aj and B
j 

Ak , Bk 

Aj = -~!J ~k [Ak Sin 6'A'r + Bk Cos E?lZ] 

B j. - t ~J E;k [ A k Cos o'Z -,. Bk 'SinE 'A '(;] 

\fe will now: solve. the coupled equations 
." 

:st~l>ility , A ~iid·, B , then,,·' th~. problem j j 
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(4.2.9) for 

reduces to 

determining, when these' time dependent', coefficients appearing 

in the . solution' of the equation (4.1. I) remain bounded or 

increase indefinetely, with' time. 

. We will now define the: following functions ..... in order, 
, , 

to decouple the eq~tions . (4.2.9) .' . 
: ~: ,,:; '",: . / i· .: . -; 

(4.2.10) 

j 

" , 

, 
.: I 

.. , ., 

" 

Differentiating, (4.2.10J .. once .. with respect, . . to. 7;,an~ :substitutin~ 
.! 
' .. ! 

gives the following system offirst'·ord.er· a.ii£er~h- ., 

(4.2.11a) 

(4.2.11c) 

(4.2.11d) 

Consider the 
" 

coupled equations (4.2.11a) and (4.2.11d) 
). 
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differentiating the first with respect to G we get 

• 
Substituting now Y2 (Eq. 4.2.IId) into the above equa~ion 

,yields 

Similarly we obtain for the others 

•• . • E2. F/~" '. " 
Y - L EA Y - £ E. Y = 0" 
~' . 2. 16 w W, KJ J k 2 , " 

k', Jj , 

" " .. "2,::"'.2.. 

X-iE'AX-' E ·8E E X - 0 
z ,.2. 16 wk

w
J 

I<J Jk 1,-

• • • 

The general form of the 'characteristic equations of the 

second order differential equations (4.2. I2 ;..I5)· is 

, 2, -~ 

ml-+ (i 0) m - 1~ £' EkJoS".....: 0 
WkWJ 

On the other hand, the general solution of, these differen

tial equations is of the form 

where OJ. and 02 are constants to be determined and mJ. 

andm2 are the roots of the characteristic equation which 



are in general complex numbers ,with real and imaginary 

parts. The imaginary parts giving - rise to oscillatory type 

motion do not contribute to instability, howeve:t: ,'the 

determines. th£" stability 
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real part depending on its sign 

of the structure~ Therefore t from 
• '..: • I.., " <~ ~ " " 4 

equatioh'(4.'2·~'IO) 'we have 

. ,1-' 
. Aj _ y (-:' Y1 + Y2 ~ 

":]~;' ~ ( Y
2 
~ Yl.· ) 

Consider~ng the equations (4.1.2) ,(4.2.5) and the ,above 

ones we get 

: ..... ", .:" .. :: .-
Hence , the instability of the ' system ,is·' determined by the 

real part of the roots ml. and m2 which is equal to 

All the terms 

the signs of the elements of E matrix., determine whether 
~ 

the system, is stable or not. If the Sign of the terms 

under radical sign is negative the solutions are stable, 

otherwise unstable. 

6. < 0 ---.. Stable 
I >0 - Unstable 

are of opposite signs, the quantity, 

under the radical sign is always negative and the system 

' .... 

, ,1 



is stable. 
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\ 

In the ,case where ,E
kj 

and· Ejk ,ar~ "of ,. the sanie 

sign" the product of these terms, will>aiways:;~:e:,>poBitive. 
, . 

Then we inequali ty " '~','.' 

for 

ww , ,kl 

substituting E'A -:-V- (UJJ+Wk): we ,obtain the .bounda:rlesofthe 

unstable, ,regions, as 

This . .,' 

resonance case is known as ,n combination, 

resonance of sum 'tyPe n[6]. 

Case II : " " 

.i ='J,J.~ 
'., ; ';.", 

In this case, when the forcing frequency is 'equal 

to or nearly equal to twice ~y of, the natural frequencies 

of the system, the'kth ~erm" of: the' second expression on 

\ the right-liand side of the equation will be infi-

. net ely large. Following the same procedure as, in Oase I , 

we ,remove the terms causing resonance' phenomena from the 

equations (4.2.3) and associate' them with "the variational 

analysis. Thus we obtain 
• • 

for Ak arid B' .k 

i ' 
I 
I 
I 

, I • 

1 : 
·l; 
.~. l ) 

, 

1/ 
,~ 

r 
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" .' 

[Ak SiO~G'AZ +~kCO~:G'~LJ 

[Ak CO~ E?- Z -Bk.S"n~~ 7:1 

Differentiating X
1

, and X.2 defined in (4.2~ 10) with respect 

to 7: once· we get 

(4.2.17a) 

Elimination ofX1 and X2 between these· two .equations will 

yield • " ,-- . ~.:t . 
•• '.' • ...• E 6. 2 . 
X +~GA X -~li''';k"X' = 0 

J. 1 16 Wk ~lC J. 

(4.2.19 ) 
•• "". e2.E;2 2 
x2-tE A X2-

16 
w'lEkkaX2 = 0 
'k \ 

The real part of the roots of the character~stic . equation 

of the above .diffe~ential· equations dete~~ines. the inst~bility> 

and is equal 

Instability will occur when ~1I >0 or 
2. _20 ., . 

12,·E:E> .. '~ > 
_E: 'A + 4w~ E\<k 0 

By examining this second order. inequality, instability region 

'is obtained as 
. ES <.; E:~" 

2, wk- -. - El<k ))" Z Wk + -2 EI~k 
2wk wk 
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This region is' known as n principal . instability 

region n [6] . 

Case III I 

When 

values, the 

the 
th 

j 

k-=j= J<J) k 
forcing frequency )J approaches' the ab()ve 

term of the second expression on the right-
th th 

hand side of thek equation of (4.2.5) and k term of 
- --. _ th 

the first' expression .on the right-hand. : side of the - j 

-equation 'of (4~2.5) become unbounded. Removing. these -_.resonance 

causing' terms from equations (4.2.4). and ·as~~c·iatlngthem. _. 

with the variational part of (4.2.3),as- was:-done- in the 

first two cases, will yieldfonr differential equations for 

the functi ons ~-, ~ , A j and. B j 

• • 
Ak · COSWkL+Bk ' Sinw",,'C=O (4.2.20a) 

~ ~" Sin,,\,/; +Bk" Cos wJ = - ~ ~" Ekj [ Aj" Cos (wk-E?) '(; . 

B j .Sin(Wk':E-A)Z] (4~2.20b) 

(4.2.2Ia) 

Ejk [Ak cos(wj-t-f'A)Z 

Bk Sin (wJ+E: ~)~l. ,;,(4. 2.2Ib) j 

- '.' ~ -. 
Solving equations (4.2.20) and (4.2.21) for;-:~~k t Bk ., Aj 

and . B
j 

and averaging with respect to <pk··.and:~· ~ - over. a 

period of. 21r yields 

- i , 



If the ' .~quatloi,.s<,(4.'2.22} . ,aresubsti tutedizl.tb 

tives ,of (4.2.~",I9r.~eget 

. ,'. .' 
. -,' 
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(4.2.22b) 

(.4.2.23a) 

/ (4.2.24) 

.:; .' 

, ! 

Once again, the real parts of the roots of the characteris-, 

tic ~quations. of the above equations are the same, ,and 

", 
. '; 
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equal to 

_6:2 ')..'- _ E'l. A2 'E E ~ If/\' 
4w

J wk Jk ~ = V flm: 
Instability will occur when ElJIL)O' or 

, 2. -2 
_E2.j: _6 0 E E > 0 

4~Wk Jk kJ" "c,L ~ 

It is obvious that when ~j and Ej~ are of the same 

sign there would be no instability but, if they are of 

opposite signs instability will occur in the following range 

of » 
(w _wk)- E S _ E,., ~k '<)J <' (w -w )~E-6 

J 2 WW ,J k 2 
k J " " ' 

Thisr·esonance.cas~ ,. is' kn:own' 'as' ", combina.tion 

r~sonarice of differen~e': type "[6] . 

Case IV , i=j=k 

This 
th 

case corresponds to very sIIlflll': forcing frequency. 

seconcl'.'exP~e~S1ons 'on . the The k term of the "first, and 
th 

right-hand side of the k eqttationof' (502.5) will 'become 

very large. Following a',; ~'similar procedure as' 'in the previous . .-. 
cases, differential equations for Ak and 'Bk are obtained as 

Similarly we get 
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By applying separatfon of variables method the above equa

tions are solved and the results become 

l 8 
X2 = 02· exp ( 2WkA Ekk Sinf A 7:) 

Upon examining (4.2.3I) ,it is seen that for this 

case instabili ty uccurs only if' Ekk or Wk have imaginary 

parts , thus the case of very small forcing frequecy does 

not affect the stability of the structure. 

; 
",I 
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CHAPTER V 

THEORETICAL and EXPERIMENTAL STUDIES-

The stability criteria derived in Chapter IV will 

now be applied to specific structures and the experimental 

results will be compared with theory. The roots of the fre

quency equations are found numerically and the elements of 

€ matricies are evaluated by numerical integrations. The boun

daries of the unstable regions are found for each case 

according to the inequalities given in Chapter IV. These re

gions . will then" be graphically presented. 
\ 

~V.I. Theoretical Calculations: 

Circular steel and~brass bars have been selected 

for the theoretical and experimental studies in order to 

make easy interpretations of the results. All the bars are 

in equal lenght and diameter supporting equal tip masses. 

The columns having diameters of 2 mm are tested with the 

weights of 90,IOO,IIO and I20 gr and the ones with dia

meters of 3 mm are tested' with the weights of 250,300 and 

350 gr. Modulus of elasticity 

6 

of the bars are 

and the 

IO kg/cm2 Eb . =I. I2 
ro.~ 

6 . 
IO kg/cm2 

Es~ecl =2. I 
corresponding densities .are 

d I l 7.8 gr/cm3 
51&« 

d, =8. 7 gr/cm~ 
Dt"OS~ 

of the columns were L =270. mm in all cases. 

The natural frequencies of a given structure are 

found froin the equation (3.3.6). by giving values to w from 

zero onward. A root is found each time the left-hand side 

of . the frequency equation chances sign. Some of these 
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roots are tabulated in Table (5.I). 

The perturbation method is valid 

Xo .£, )I: ~ // i 
l 'J . me L ,\" • 

if E f> E. «lor 
IJ 

The other restriction on the criteria developed in Chapter 
" II 

IV is about the averaging technique' which states. that W,.»EA 
where A is fini te.Therefore the parameters of the system 

must be properly chosen or the amplitude of the excitation 

should be chosen as small as possible in: order to preserve 

the validity of the above inequalities. 

The elements of ! matrix are computed from -

A computer program is given in· the Appendix for the evalua~ 

tion of the elements of E by numerical integration using 
~ 

* the trapezoidal method. 

The difference type of combination resonance will not 

occur for this kind of systems due to the fact that the 

matrix E has no negative e1ements.The instability range is 

then 

If kiFj it is called combination resonance of' sum type 

A di for the computer Programs used • . ' See ppen. x 



i and .. if k=j it is known as simple resonance. The expected 

• unstable frequencies of the selected .models are given in 

Table (5.2). 

The first four mode shapes for the specimens are 

schematically shown below. 

(a) 

.(c) 

. ~ 
I 

/ 

~ . 

(b) 

(d) 

Fig. (5. I) 

, , 
i r f ' 

i 

I i 

I 
I 

I : 
, i 

i 
;j' 
.. 

L 
:: 

• j 

.. i 

/ . 



~e~ Tip 
BRASS 

e 
"'Y,,>-ro-~ iJIass 2 Wi W{ +- W1. ~()J'2. W{ + vJ 3 W 2 + W3 

(mm) (gr) The. Ex. The. Ex. The. Exp. The. Exp. The. Exp. 

90 3.20 - 60.53 41 1-17.86 115 194.20 215 251.53 260 

100 2.98 - 60.26 40 117.54 110 193.92 210 251.20 255 
2 

110 2.80 - 60.03 37 117.26 105 193.67 205 250.90 250 

120 2.60 - 59.78 34 116.96 100 193.41 200 250.59 245 

250 4.76 91.72 55 178.68 150 292.99 379.95 360 
, - -

. - . 
3 300 4.26 - 91.24 50 178.22 144 292.47 - 379.45 355 

! 350 3.88 - 90.82 45 177.76 140 292.03 - 378.97 350 , 

Theoretical and experimental unstable frequencies ('Hz) 

Table ( $.2 ) 

-l>-
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Theoretical unstable regions found from the computer 

program for the case 

Tip mass : M =120 gr. 

Length of' C. : L = 270 mm. 

Diameter of C: D = 2mm. 

Material of C: Brass 

are illustrated in Fig.(5.2). The elements of Eij matrix 

where i and j taken upto 3 are given below. 

0.0046995 

~k = 0.0042487 

0.0033405 

0.0185771 

0.018693,8 

0.0178469 

0.0611296 

0.0648045 

0.0675349 

By chosing the first natural frequency as the normalizing 

frequency the first three non-dimensional 'natural frequencies 

are 

W2. = 44.8I7 

Wg = 147.207 

'1 
i 
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v 

I45.465 _ 

90.005 

89.268 

46.127 ... -----.---~,------.---... -.- -_ .. -._------_._----_.--=-.. .. _---_ .. _----_. __ ... __ . __ .. _- -. -.-

45.514 .. - -.. -.. --.-- ..•. -.- - .. --------------------------~-.. -.. ----,. 

2.002 

0;.02 . O~06 0.10 o. I4 0.18 0.22 E E) 

Fig.(5.2) 



Theoretical unstable regions for the case 

Tip mass : M =120 gr. 

Length of C. L=270 mm. 

Diameter of C.: D= 2 mm. 

Materialuof,-,C.I',Steel 

are shown in the Fig.(5.3) 

The elements of the Eij matrix are, 

0.0054095 0.0191745 0.0619598 

0.0192865 0.0654339 

0.0040241 0.0184391 0.0681137 

and the non-dimensional natural frequencies are 

w~ =- I. 

W2. = 42.046 

W3 = 137.093 

47 

" 

, ' 
, ~ 

i 
I 

i. 
I 
I 

I 

i 
i, : 



)J 
I4I.044 .... . .............. "-. .._ ..... __ ..... _ .•. _. __ .. _._------,-_._ .. __ . ---... . 

I35. 375· ··1--"---..,---'--.-.· .• ·._ ..•.. _ ....... __ .. _____ . __ . ...:.... .... __ ._ ... :. __ .. __ .. ___ ._ ... _ .... _______ ..... . 

. 84.453 

83.739 

43.358 

w+w =43.046 
1 2. 

42.774 

2.002 

2w =2.000 
I . 

I.997 

--_ ..... _ .... __ .... _-_ .... _ ... = ...... _ ... _== ... __ ._._.-=: ............ _===._. ~--.. -.. . .. 

------~---~- .. --~---.--------.- .... ----. 
I 

1----.,._--------... - -_ .. -... -....... - ," .. -- -............... - .. ----.---------

---....... __ ...... -------'------

i . 

48 
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V.2.I. Experimental Set-up: 

The experimental apparatus is shown in Fig.(5.4 ). 

The arrangement depicted satisfies the boundary conditions 

described in analytical section, one end fixed the other is 

free with a large mass. The time dependent load (excitation) 

is applied to the column by means of a shaker as shown. 

Function Generatc)f Type TM 50l is connected to the' input 

of' the Power Amplifier ~ype 2706 whose ·output supplies 

sine wave with the required amplitude to the Vibration 

Exciter Type 4809. 

Fund'ion 
Generator 

Power 
. Amp\\~ter 

Vibf'ahOfl 
flCGiief"-

,j 

I 
'1 



0~ Tip 
- IZ;~--
'?7~ !vIass 2w-/ ~ 

-<y (rom) (gr) The. Ex. 

90 4.78 -

2 100 4.54 -
110 4.24 -
120 4.06 -

250 6.80 -
3 300 6016 -

350 5.66 -

-

Theoretical 

, 

STEEL 

UJ-{ + c.v~ 2..0J2 UJi + W3 W 2 + W'3 

The. Ex. The. Exp. The. Exp. The. Exp. 

88.40 . lOB 172.02 155 282.07 315 365.69 350 

88.18 100 171.82 150 281.82 305 365.46 347 
~ 

87.90 95 171.56 145- 281.53 2'95- 365.19 345 

87.68 90 171.30 140 )281.31 285 364.93 --342 

133.35 - 259.90 205 424.87 - 551.42 -

132.80 - 259.44- 200 424.31 - 550.95 --
132.66 - 249.06 195 423 084- - 550.54 -

, 

( Hz ) and ,experimental unstable frequencies 

Table ( 5.3 ) 
-

. 

\Jl 
r. 
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V.2.2. Experiments: 

Coordinates of the nodes change with the constant 

5=M/mc .l • In the reference [7J ' some of the 

coordinates were given for the various values 

non-dimension.al 
( 

of b • We have 

found experimentally the change in coordinates of the nodes 

with the increasing tip mass M. It is experimentally verified 

that the coordinate z increases as the tip mass. M increases • 

. Material'l . 
··L:eng·th·:.' il')"U\--", 

Dlamei;eri: . 
. Tip/niass'~ T .. ; ,:.~';;':'" 

Vib~Fre~:.; 
~ -'. .' f,· '.' ' 



r-1at erial :Brass 
Length" : 270mni 
Diameter:, 2mm 
Tip mass·:I20gr 
Vib .Fre.: ,34Hz 

Il?stexbilit.J 

Material:Brass 
Length : 270mm 
Diameter: 2mm 
Tip mass:I20gr 
Vib.Fre.:62Hz 

Mode sha~ 
V1 
J\:) 



Ivlaterial :BrasS 

Length : 270mm 
Diameter: 2mm 
Tip mass: 120gr 
Vib .Fre. : 100Hz 

Iflsfc:l. bi};fJ' 

, -~. -- ---. -~ -.-~.-~-""""""'-'---------".'-

Mode . .shape 

_~~,~_.~~. ___ ~_"""._'~"'.""-'.Jo""......c.."'--'---<...' ____ '_'_'~_ -----------

\11 
\)l 



Material:Brass 
Length :270mm 
Diameter: 2mm 
Tip mass:I20gr 
Vi b .Fre. :245Hz 

T ns-fa.biliIJ 

Mat erial :Brass 
Length :270mm 

. Diameter: 2mm 
Tip mass: 120gr 
Vib.Fre.:440Hz 

Mode ~afe 

j' 

\Jl 
.po. 
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CONCLUDING REMARKS 
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In. this . work, the -importance of combination resonances 

on the stability of a structure composed of a cantilevered 

elastic column supporting a large mass at the free end and 

subjected to vertical harmonic excitation at the support has 

been examined. Theoretical results along with the experimental 

results were presented and compared. 

It was found that for a system described in the 

analytical section combination resonance of difference type 

does not occur due to the characteristics of the elements 

of the coupling matrix 1. 
Experiments showed that ,internal 

resonance phenomena to begin at the 

that (or excitation amplitude) 

E8 

material damping allows 

higher values of E ~ suel 

__ Theoretical . 
____ Experimental 

The effects of the tip mass, Young Modulus of the 

column and length of the column on the natural frequencies 

and the stability of the column have been examined.Experi

mentally found natural frequencies are more appropriate to 

the theoretical ones than the frequencies cousing instability. 

This is due to the fact that,we have made an additional 



approximation in 

shear deformatio~ 

experimental and 

the stability analysis.Rotatory 

effects cause - the differences 

theoretical natural frequencies. 

inertia 

between 

56 

and 

the 
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APPENDIX 

COMPUTER PROGRAMS 



DOUBLE PREC IS ION UM, Z ,FZ,QUO,SO ,S I, TI, T2, T3, T4, T5, T6, T7 ,A, 

$B,SQRT;DCOS,DSIN,DABS,ABSTOT,TOT,SAL 

DIMENSION FZ(4IOO) ,ABSFZ(4IQO) 

C ROOTS OF FREQUENCY EQUATION : FZ = 0 

C Z = NATURAL FREQUENCY , 

READ(5 ,*) G,AL,W,E,RHO,AI,AREA 

EI= E*AI 

UM=RHO*AREA/G 

A=UM/EI 

B=W/EI 

J=O 

Z=O. 
DO 100 I 1,4000. 

QUO=DSQRTC(B**2)+4.*A~(Z*"*2) ) 
SO=DSQRT«-B-QUO)/2.) 

S l-=DSQRT( (B-QUO )/2 ~) 

TI=2 •• S0*A*(Z**2) 

SAL=SI*AL 

T2=SO*( (SOH4)-(S!-}H(4) )*DCOS(SA~) 

T3=QUO*(SO/S I)-(B/G )*.(Z**2 )*DS meSAL) 

X!=SO*AL 

T4=(T2-T3)*COSH(XI) 

T5=QUO~(B/G)*(Z~~2)~DCOS(SAL) 

T6=B*(SO**2 )*S !~DS IN(SAL) 

T7=(T5-T6)* S INH(XI) 

FZ( I)=T4-T7-TI 

Z=Z-I. 
ABSFZ(I)~DABS(FZ(I» 

IF(~.EQ.1) GO TO 100 

J=I-1 
ABSTOT=ABSFZ(I)-ABSFZ(J) 

TOT=DABS(FZ(I)-FZ(J») 

IF(ABSTOT.GT.TOT) GO TO 80 

GO-TO 100 

, 
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80 \'TRITE(6,60) Z,FZ(J) ,FZ( I) 

60 FORMAT(5X" ... Z:::. .... ,D28.16,iOX,"'FZ='" ,D28.16,5X,li'Z2='" ,D2S.16,/) 

J.OO CONTINUE 

STOP 

END 
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C 'CALCULATION OF R-MATRIX BY NUMERiCAL INTEGRATION 

C TRAPEZOIDAL METHOD 

DIr>1ENS ION W(S) ,SO(S) ,S (S) ,BKeS) ,CK (S) ,AK(S) ,T(S) ,TT(S, S) 

$QUO(S) ,U(S) ,E(S,S) ,UW(S), V(5) ,F(5,S) ,R(5,5) ,FF(5) ,RR(5) ,PN(5) 
REAL NG ' 

READ(S,*) (W(I),I~i,3) 

READ(5,*)G,AL,MG,S,RHO,AI,AREA 

UM=RHO*AREA!G 

EI",S*AI 

A=UM/EI 

B=MG/EI 

C N=-NUMBER, OF MODES CONSIDERED 

C -M=~MBER OF INTERVALS FOR INTEGRATION 

. C H=DELTA Z 

N=3 

\ M=5000 

L=M-i 

H=AL/5000. 

DO 10 I=1,N' 

UO (1)= SQRT«B~.y. 2) -4 .'tA*(\'l( 1)**2) ) 

SO (I)=SQRT( (-B-QUO (I) )/2.) i 

8 l(I):::SQRT( (B-QUO( I) )/2. ) 

BK( I)=(80(I)~*2)*C08H(SO( I)*AL)+{Sl (Ih·*2)*COS(S1 (I) h .. AL) 

CK( I)=(SO (Ih-*2)-*SINH(SO( I)*AL)+SO( I)~ Si( I)*S m(Si( I)-XAL) 

AK( I)=BK( I)/CK( I) 

1. 0 CONT !NUE 

DO iOOI== ! ,N ' 

DO iOO J-: 1 ,N 

Z""O. 

DO 200 K=J,L " 
V( I)=COSH(SO( I)*Z)-COS (Si (I)4C Z)+AK( 1).)( (s INH(SO( I)*Z)- (So( 1)/ 

$8 i( 1»* S IN(Si( I)*Z» 

, U(J)::::(SO (J)~.)( 2)-* COSH(SO (J)~ Z)+S I( J)~ ~2)*COS (s1 (J)*Z) .AK(J)¥( 

'$ (SO(J)-x~2)*SINH(SO (J)*Z)+SO(J)*Si(J)* S IN(sJ.(J)*Z)) 

'F( I,J)=V( I}-x-U( J) 

FF( I)=V( I)~V( I) 

• 



IF(Z.EQ.O.) GO TO 500 

IF(Z·.EQ.AL) GO TO 550 
GO TO 600 

500 T(I,J)=0.5*E(I,J)+T(I,J) 
TT( 1)=0. 5*FF( I)_'!H1-( :: 

GO TO 650 

600 T(I,J)=F(I,J)+T(I,J) 
TT(I)=FF(1)+TT(1) 

650 CONTINUE 

Z=Z-H 
200 CONT INUE 

R(1,J)=Hi-T(I,J) 
RR ( I)=H~TT (i~ 

PN(I)=SQRT(RR(1» 

li 0 CONT INUE 

i 00 CONT INUE 

DO 75 1=1,3 
75 WR1TE(6,64) (R(I,J),J=1,3) 

WRITE(6,66) (PN(I),I~!,3) 

61 

66 FORMAT (5X,'PN(1)=' ,Fi5.9,/;5X,PN(2):' ,Fi5.9,/,'PN(3)=' ,Fi5.9) 
DO 400 I",!, 3 

DO 400 Jc.l, 3 

E(1,J)=R(1,J)/PN(I)/PN(J) 

400 CONT INUE 

DO 40 1=:1,3 
40 WR1TE(6,64) (E(1,J),J:.l,3) 

64 FORMAT{//,3(F 5.9,SX» 

C UNSTABLE REGION BOUNDARIES 

DO 450 1=i,3 
450 U\v(1)=W(I)/S./w(1) 

V1R1TE(6, 68) (W( I), 1=-1,3) . 
68 FORMAT(/,SX,'UW(1)=' ,F8.S,/,5X,'UW(2)=' ,F8.5,/,SX,'u\1(3)=', 

$F8.5,/) . 
DO 800 1= 1,3 

DO 900 J= 1,3 
IF( 1.EQ. 2 .AND. J .EQ. i) GO TO 900' 



IF ( I. EQ. i. AND ., J • EQ • 3) GO TO 900 

IF(I.EQ.2.AND.J.EQ.3)GO TO 900 
'" UU=-UW( I)-UW(J) 

WRITE(6,67) I,J,UU 

67 FORMAT(iox,'Uu=ml( ',Ii,' )+1;1111(' ,Ii,' )::::" ,FiO.5) 

EPSDdJ. 

850 EPSD=EPSD~0.02 

DEL1.=.SQRT(E( I,J)~E(J, I)/UW( I)/UW(J») 

DEL2:SQRT(i.-2.*(UW(I)-UW(J»*EPSD*DELi) 

DEL 3=SQRT ( i. - 2. * (UW (I)-UW (J) )~ EPSD~DELi ) 

ALTS=(DEL2-i.)/EPSD/DEL 

USTS=(!.-DEL3)/EPSD/DEL 

WRITE(6,65) ALTS,U5TS,EPSD 

65 FORMAT(/ ,5X,;" ALT smIR=' ,Fi2.8, lOX, 'UST SlliIR=" ,'Fi2.8,5X, 

$'EPSD=" ,F5. 2) 

IF(EPSD.GT.0.2) GO TO 900 

GO TO 850 
·900 CONTINUE 

800 CONT INUE 

STOP 

END 
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