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1. INTAODUCTION
1.1 The Historical Development of Weak Interaction Physics

Discovery of the neutrino nad its origins in nuclear
physics. The neutrino was postulated by Pauli' in 1933,
in order to accounf for some mysteries in beta decay. which
were observed back in 1919. In that year. Chadwick® noticed
that there was a continuous spectrum of disintegration
electrons as well as a well defined cutoff energy when a
neutron transformed intc a proton during a befa process.
The spectrum extended from zero to a definite maximum eneriy
corresponding to the total eneryy available in the transformatio
in addition to this apparent violation of the principle
of conservation of energy. the principle of conservgtion
of both linear and angular momenfum seemed to be violated.
It looked as though linear momentum was not conserved.
because the trajgctory of the emerging electron was noncollinear
with the trajectory of the nucleus. Furtnermore. the neut.on
was a fermion with spin one-half whereas the sum of the .
spins of proton and electron gzave one or zero., a composite
system which was statistically a boson. Only the electrical
balance of the system needed no modification. Finally, to
account for these inconsistencies, Paulili postulated the
existence of an electrically neutral particle with spin
one-half and mass eqﬁal to zero.
Historically, beta decay was the first manifestation
of the weak interaction. In 19%4, a &ear after Paull postulated

the existence of neutrinos Fermi3 consvducited a theory ol



beta decay. wihilica came vely close to being the cowsrect oue,
Fermi hypothesized a vector interaction in close analogy
with quentuuw electrodynamics without a propajatos. lhe weak
interaction was assumed to be a lour-fermion vertex
interacfion with tne transition matiix element Ior beta .

decay given by

MaS (Fp T* WY P Vs Wo) (1.1-1)

where Y'S are the Dirac matrices and G/¥3 is the weak
interaction coupling constant with the dimensions of inverse
mass squared.

Fermi's theory had to be revised, because unlike guantum
electrodynamics, i1t gave only first order diagrams. 1f tuis
wexre true, the electron-neutrinoe elastic crosssection, for
example, would irise without limit at high neutrino energles.
In addition to & vector interaction, axialAvector interactions
of the rorm Y¥*¥®y were postulated.

The picture that emerped tfinally nas an intermediate
vector boson to mediate the beta process. The matrix

elenment and the diagram for it are as follows:

n Vv
VN ye"+p
Fig. 1
Ma g*LUp(1-aYg) ¥* upl | L Ge (1-Y5)Yq Uy]

- (1.1-2)



where @ 1s the axial vector coeificient approximately
equal to 1.25. The problem of a limitless crosssection is
remedied in this picture because as momentun q rises, \

the propagator term suppresses the crosssection,

1.2 Hel%icity. Charge Conjugation and Parity

The beta decay in which an electron is produced is
called & beta minus decay to distingulsy it rrom another
beta decay in which positrons are produced, Actually, iﬁ
beta minus decays anti-neutiinos are produced, The distinction
between a neutrino and a&n anti-neutrino can be made as
follows: The spin of & neutrino is anti-parallel to its
monmentum. whereas the spin of an anti-neutrino is parallel
to its momentum. This defines a ﬁnanded-ness“. We call a
neutrino left-~handed and an anti-neutrinoe rigpht-handed.

This concept is formulated b, defining tne helicity. which

is the dot product of the spin E;. and momentumn 'ﬁ divided

by the ﬁorms ol tnese vectors. roi the neutisino helicity

is -1 and for the anti-neutrino it is 1. This two couponent
theory of neutrinos, in which hali the states of four
component fermions is suppressed ior a massless pacrticle

was developed by Weyl in 1929) In this scheme, anti-neutrino
and neutrino states appear as Y2 (Ixv) @y .

Assuming the validity of the two component neutrino
theory, périty conservatiep and charge conjugation are
violated separately. Parity conservation can be defined
as follows: if the mirvor reflection of a physical situation
is another possible puenomenon, this situation conserves

parity. Mathematically, of course the mirror image represents

*Tee Appendix A



Teversing the direction of the spatial vector T Farity(F)
is conserved in strong and electromajuetlc inteructions,
On the other nand. chai_ ¢ conjupat on(C) civizes a pavt.olo
ints rts enti-particle. Lt ‘o coaserved in strond and
electromagnetic inteructions also.

The two component theory postulated for neutrinos
has two consequences in relation to the C and P operations.
The P operation reverses thne neutrinos linear momentun.
leaving its spin directign unchanped. So we et a neutrino
in a positive helicity state. which is not a physical
situation according to our hypothesis. Therefore. parity
is not conserved. Similarly. cnacge conjusation is violated.,
because when we operate on a neutrino state with C, we get
an anti-neutrino state with negative helicity. However,
CP is conserved together, since it changes a left-handed

neutrino into a right-~handed anti-neutrino.

1,3 Quarks and Families

Until 1936 electrons, neutirinos and anti-neutrinos were
the only known so called leptons. In 19%6. Anderson and
Neddermayer‘“ discovered a cosmic ray particle which acted
like an electron but had a larger mass, Later it was called

a muon(/u). In 1947, Powell®

demonstrated the decay of
& pion into a muon.
Tri — ,Jt' + lh (\’l) (1'5_1)

The pion had snother decay mode:

T* ., e* v, (F) | (1.3-2)



It was postulated in the late fifties that the two -
neutrinos were not the same. V; acted as though it remembered
being born with & ﬁuon. Pherefore. it was called & muon
neutrino(QP). V, .however seemed to couple to an electron.
nence was called an electron neutrino( Ve).

Experiments done in the fiirties and sixties verified
that the neutrino did exist ana the electron neutrino was
distinct from the muon neutrino, In 1953, Cowan and neines‘
performed an experiment in which the direct interaction of
a free neutrino was clearl; observed., giving proof of the
gxistence of the neutrino. In 1Y62. Lederwan,Schwartz,
Steinberger et.al. used muon anti-neutrinos to boﬁbard
protons;. muons. not positrons, were formed. Finally. Perl
et.al?' tound evidence for a hedvier lepton tau( €); & taiwrd
particle aecting like electrons and nuons.

By that time, the number ol so called "elementary particles"
had reached several nundred. Tne; were classilied broadly
into hadrons. leptons and vector bosons. Unl, hadrons have
strong interactions as well as electromagnetic and weak
interactions. In the hadron group, bauryons have spin one-half
and mesons nave integral spins., .septons include electrons,
neutrinos -and muohs.‘Elect:oweak vector bosons counsist of the
proton and the WZ* and #,o0f tie weak interactions.

In order to reduce the number of elementary particles.
Gellllan and Zweig'proposed in 1964 the existence of three
types of quarks. namely -up, down and strange qQuarks.

During the same yesar Ljorken and Glashow’ postulated
anotner type or flavor of quarks. called cuaim, In the quari

model, three quasks make a bar;on; mesons a’e coimposed of



a quark and an anti-quark. Tuls model led the wa, lo assoclatiugg
quark multiplets (later called weai: isonpis wultiplets)

with leptounic ones,

r na o —
U c t ‘V‘ \’}{ 1’:

) N
I 9 i 1 T i

Lach quaik multiplet alon,, witi 1ts leptonic countlelpart
is called a tamily. I we deiine a ramiiy number Lg o
electrons and let it equal + 1 for € and V, and -1 fou
€ and Ve ., these numbers are conserved in all known
reactions. bimilaciy. the lepton nunber Iy‘seems to be

conserved so far,

1.4 Dirac and ajo.ana liass Terms
J

We have seen that the conventional theor; ol neutiinos
rests on two pillacvs. Pirstl; tuzat the neutrino is nassleus
and theretfore only the lefit-nanded neutsliuno and the rigiit-
handed anti-neutrino exist. Becoundly. tnat lamily lepton
numbers Le ,L,A ‘etc, and thel. sums are good quantuic
numbers conserved in all known reactions.

If neutrinos nave nonzero mass and ii the wass ei;gn-
states and weal interaction eigenstates do not coincide,
then neutrinos will oscillate. if there is such a mismatel,
then we can expect a neutrino being produced 1in a weak
process at t=0 and thereby being in a pure weak interaction
eigenstate. to have a nonzero prowvability oi having tuirned into:

-



&) A neutrino from another ifawily

Ve ge——3 7 Ve

Vp
This process conserves total lepton number LielLe+Lly+ L. ,
but violates each family lepton nuuber sepa.ately.
b) An anti-neutrino from tne same or another family
Ve, —» (ve,)

c
Ve —» (Vpg)

where ¢ means charge conjugation. This process'violates
total lepton number by £ 2 units,

I'he usual weak interaction pHamiltonisan 1s & sum ol tue
neutral current contribution and a part of the form
GIVE [ J* wnere j, is (Ve Ve )t (Vp vypo) + (Voo Y Te) +
a hadronic current term. Clearl;. each term couserves botu
the separate family lepton nunbe.s and the total lepton
number., (i.e. Ve, has -1 and €gaas + 1. tneJerore the suw

is zero in tne Ve Ya®e term. descoibing thne {ollowing
Se

vertex :
/"V‘

¢
are to occur. we need additional terms in the lLagcangian

). Thus if neutrino oscillatious

which violate the total L o Liy o= e, u . Ii we want
to viclate just the family lepton numoe. as a good gquantum

number, we can add Jjust a Di.ac tern to the above damiltonian

Ve
of the form VaMv, where Y s (\'ﬁu) and M is a 3%% uass
Vi

matrix. This coupling obviousl, ieeds right-nanded neutoinos

whici: do not exist in the minimal conventional theories.



11t however. we allow Lihe clhiange in both the fawily
and tie total lepton numbecs to be uonzero., then we uave
a fiajo.ana tesm in the Lamiltoaian of the Lolu ('ﬁh)c M V.
(ox l'?)-,j‘M\Jg ). 'fhis tesm will violate the total lepton

nuwber by 2 uwalts).
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2. GLAND UNIFLED NMODELS

2.1 Introduction

The basic theory that lies behind "irand unirication
is that there exists a simple local symmetyy pgroup G,
which unifies strong, weak and electrowagnetic interactioas.
Because it is a simple group it has only one Iiree gauge
coupling congtant 5, which evolves differvently Ior all
tiiree interactions once we come aowil below Liu : .and
unii.cation scale ol lO15 Gev. At Talz extocuely high
momentum scale (which is nevertucless below 1019 Gev at
whicn guantum gravitational erfects become appreciable),
G breaks down to SU(§%‘K SU{(2) X U(1l) which furtuer breaks

down to SU(B)‘X U(l)“ at lower momenta (~ 100 Gev).

! @A, ( Gav)

\ .
Fig 2.5low logarithmic variations in tue 3U(3).,8U(2) and U(1)
gauge coupling constants

In Grand Unified Theories quarks and leptons share the
same representations of G, Furthermore. electric charge
operator is & generator of { and when it acts on the multiplet .
which contains both quarks and leptons. we get a relation
between quark and lepton charges. Another consequence of

making quarks and leptons share the same representation 1is
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that we can expect to find some relationship between their
masses and decrease the number of free parameters in the
standard SU(3%) color plus Weinberg-Balam theories. Bince
gauge bosons link all particles in & multiplet, quarks and
leptons, sitting in the same representation, will interact
through these bosons and change into each other, Therelore,
baryon and lepton numbecr conservation will be violated.

So far. the only constraints imposed on C were that .
it has to contain SU(5%.X SU(2) X U(1l) as a subgroup and |
after all the symmetry breaking stages as we move down on the
momentum scale, the unified theory must reduce to our low
energy standard theory. We impose two other conditions.
which limit our choices as to what specific group G will be.
First. G must admit & complex I'epreseritation in order to
accomodate the complex representvation of fermions in the
standard theory. Second, G must be renormalizable., This means
that infinities deriving from higher order terms can Dbe
compensated by adding a finite number of cancelling terms
end redefining only mass terms and coupling constants, so
that the final result is a finite physical quantity. These
conditions reduce our possibilities & good deal, Since
SU(3). SU(2) and U(1l) have ranks of 2.1 and 1 respectiveij.
the smallest rank we can allow is 4. and the only group
of rank 4 which satisfies these conditions is SU(5). it is

the minimal grand unified "scenario".
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2.2 The Standard Theory: QUL and Weinberp-ovalam Gaupge lheoiles

We have seen that the conventional theory ol neutrinos
rests on two assumptions. Liisst. that neutrinos arve
massless therefore only left-nanced neutsinos and right-
handed anti-neutrinos exist. Second. tnat family lepton
numbers I,;.Le . and thel:s suwms &re BoOCG gquantul nuapvess
conserved in all known reactilouns so far, Let us Lhénrs exaniue
the standard gaugé theoiy of stiong, veak and electiomagnetic
interactions to see how these puencwmenological assumptions
fit into the theory and then search Ior ways of modifying
the theory to give us neutrinc masses and lepton number
violations.

The standard theoxry asse;ts tnat the minimal group
needed to describe known phenonena is

¥ = 8U(3), X Su(2), ¥ U(1) . (2.2-1)
where SU(3) (color group) is thé pause group respohsible
for strong interactions and SU(2)_ X U(L) is the sauge
group of Glashow-Weinberg-Salam’y responsicle foi' unified
weak and electromagnetic interactions,

Fermions. i.e.. leptons and quarks, are placed in the
simplest possible representations of these groups in the>
minimal theory. Quarks have three colors rved, yellow, blue,
and both right-handed and left-handed quarks are triplets
undexr SU(3%). Leptons do not participate in strong interactions
so they are SU(3)c sinplets. Under SU(2) . on the other
hand 1left handed quarks and leptons are doublets., right-
handed quarks and leptons. excluding neutrinos. are singlets.
jiight-handed neutrinos do not exist. So for each family.

we have :
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red yellow blue
: e
W u U y Yr, Up, Ur
r Y b
d d d dr, dg, d&
L L [
Ve
e )  ©r (2.2-2)
le

In addition to fermions which are spin one half particies.
the standard theory includes spin one and spin zero particles.
These are called aupe bosons and lilggs scalars. respectively.*
Gauge bosons are always in the adjoint representation of
the group. This principle determines thei:r number. The number
of generators in the group equals the nuaber of jauge bosons
of the group. SU(3) has 52-J.=ta bosons. called gluons;

8U(2) X U(1) uix to give (P °=1)+ l=4 bosons,
. and the massless photon of U(1l)g.pm -

Higgs particles are intioduced in order to break tie
gauge s, mmevtry without lettin,; tihe theory acquire unwanted
inifinities, i.e. without spoilin” "renormalizabilit ",

The G* group breaks down into G''2 BU(3)e¢ X U(1l) g.m and
the existence of these exact local s mmetries results in fhe
congervation of color and electric charge, 1t is believed
that 3 breaks down to G' tlisouph tne intervéntion of

the Hdipggs doublet. Cther representations of tne Higys fields
are excluded because: this tieosy predicts cos B8s Mw / Mz

. . |
which has been tested experlmentaliy,z

* DLee Appendix C
** See Appendix B



2.% lieutrino Masses in the Standaid '[heory

'he conventional fermion wasses come .0 Lirac
couplings to the Weinpevy-isalam 1= 1/2 jiigps lields of

the Iorm ;

Hy. - .
:l.:l: 'FR‘fl. + H.C. | (2.%=-1)

In the absence of a rignt-handed neutrino rield, neutrinos

can acquire mass from & majorana coupling of the foom:

Hze .t v H.C. (2.3%=2)

Hlel

A majoréna mass term 1s absent 1n the minimal Weinberpg-
Salam theory. because it onl; Las a nlg;s doudblet asnd it
conserves lepton nunve..

iuowever, another theory is p.oposed by Gelminili and
ﬂoncadellf? which has been recentl; elaborated by Geowrpi,
Glashow and Nussinov?.According to this model, & couplex
Hipggs triplet with an electiically neutral coumponent, which
can develop a vacuum expectation value is introduced into
the standard theory. The triplet has joLl=2 and gives a
majorana mass to neutrinos.
Denoting the complex triplet by a 2 X 2 matrix

x /7 |
‘x../v..‘?:. x_,_, = X (2- 5—3)

The usual doublet p by

;6“ = P (2.23-4)
) ¢



The covariant derivative by

(2.3=5)

DY 2"+ ie T.W® 4 ie sy
5inG cos O

-— . .

where T is the generator of the SU(2) and & of U(1);
And defining the action of the xenerators upon the scalar
fields @ and X as:

anadls -l

TP = & g/

= - -

TX = & xR+ 8%

S@E = - gr2 SX=-X (2.5=6)

8’ .are the Pauli spin matiices

Ve can write the most general Lagcangian

Legx) e (o) Dug + +r L (0" X)) DuX1 - VX (2.3-7)

where V includes 7 arbitrary paraumeters Alg iz),.b UV,
V venishes when X%z v/VT ; P unT (2.3-8)
If we take these to be the vacuun expectation values. then
‘ a
Mw’'s e® (vi+av?) ; Ma = _el (V+yv?)
ysin*e 45in’0 0s*0

Mw/Ma? . 058 (u212v)) [(L2+pv*) (2.3-9)

But experimentallj' Hw.m;,gasetherefore we deduce that v& U,

The Higgs doublet and triplet together contain ten real
fields. Of these, three are eaten up. by the Hizgs wechanism,
one is the Goldstone boson called llajoron, aud the rest are
massive. Of these remaining six mnassive particles, two a.e
neutral, one is singly and the other is doubly charged. Of

course. the coupling of X to leptons is of the form 'q;;.c ?cr q"t. '



As we have seen. B~L symmetr; is spontaneously broken
in the model by a small vacuum expectation. value of a Liygs
triplet. A right-handed neutrino is not introduced. but
the lett-~handed neutrino obtains & wajorana mass.

Once we leave the realuw of standard theories. otner
wodels and rich possibilities open up; leading to theoriles
which go beyond the G?* = SU(3), X 8U(2) X U(1) group and
including it as a subgroup. Advocating that G* is a low
energy relic of a bigger group which generates all interactions,
Grand Unified theorists strive to answer questions unsolved
by standard theories; such as wh; charge is gquantized,
why there are three families and why there is more than one

coupling constant.



)
2.4 The SU(5) Grand Unified iodel

Let us first analyze the 30(%) grand unified model
in terms of its gauge boson. Hipzgs ﬁeson and fermion content
and see how the representations to which these particles
belong decompose under SU(3) X 8U(2) subgroups. Gauge -
bosons necessarily belong to the adjoint representation
24 = 52—1. This representation decomposes under SU(3) X B3U(2)
as 24 = (3.2 + (3.2) 4+ (8. 1)+(1.3)+(1.1) (2.4-1)
The part inside curly brackets is familiar. These are the
twelve bosons of the standard theory: Eight gluons, singlet
under SU(2). and two color singlets combining to form W ) ib,
Y . The remaining two (3.2) and (3.2) represent the
isodoublets called X and¥Y , two superheavy bosons which come
in three colors and have chavges of 4/3 and 1/% respectively.
SU(5) breaks down to SU(3) x 8U(2) X U(1l) tarough tne
Higgs 24-plet P ; then BSU(3) X Su(2) X U(1l) pbreaks down to
SU(3) X U(l) through the !iis;s bS-plet H"® Gue vacuunm

expectation values of these mesons are

| o 0|
I
0 { ] 1 O
0006l 0 o0 | | = <olgloy
v ~3 0
0 |~ (2.4=2)
I o -y
|
0
0
— 2. b
Vo 0 ( 3)

YA



<olgloy sives mass to X and Y bosous; <oiHIOY ives uass to the
o o . w: 0 . 3 L : e e . e .
standa.d and B° bosons and levwlons in the ro.om

1 3 H3
My=My = &_5_ a.vz 7 Myse 4 q? Vz'
- 9 J w '= m 9 )

Under SU(3) X SU(2) the S-plet deconposes as
5= (5,1) +(1.2). The (1,2) part is the isospin doublet which
glives mass to fermions in the standard theoiy; and acnieves
the breaking down of SU(3) X 8U(2) X U(1l) to 8U(3) X u(l).
The (3,1) part has a zero vacuwn expectation value, because
it 1s both colored and charged. It is superheavy and it
also mediates proton decay,

Fermions are grouped into ll-dimensional reducible

representations lbo= 5+ 10.

dr
dy |
dy = (31)+0.2)  of su(3)xsula)

(2.4-4)

10s 3| -U, O Ur -Uy-dy = (3,2)+1%,1) + (1,1)
UI‘ Ur Ub 0 "'C* . ' (2-4_5)
Five is the fundamental representation of 2U(%) and ten is

the antisymmetric part of the product of two fives:

5 X %= 154 10. wihere 15 is symnmetric and 10 is antisymmetyic,
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Before we o on to examine neutrino wasses, we note
some properties of the minimal srand unitied group SU(b);
Even though 3U(Y) is not a safe group. the anomalies of
each of the two irreducible rep.esentations & and 10 cancel.
Therelfore. this particular reducible representation 15 is
renormalizable, In SU(Y) thne electric chaiye operatoi Q
is a generator of the group. Therefore. 1t 1ls traceless and
the sum of the electromagnetic charges in any representation

must be zero, Taking 5 :

307+ Qz+ Qu =0 } Qq = - Y3 Qe-
Quas © Qa--v3 (2.4-6)

Another property of SU(5) is that baryon minus lepton
number. B-L. 18 conserved. B-L lobal symnmetyy is & lineav
combination of twe symmetries V, and L{(1l); V, slobal
symmetry is defined by the following transiormations. which
leave tne Lagrangian invariant,

Yo e W { Fermions Hs - f-'-szs Higgs

Y —» éa‘p VU ¢:q-> Py (2.4=7)

U(1) symmetry in 3U(Y) is identiried with tae hypercharge

Y« Q- Ty where @ is the charge operator and T3 is the

third component of the weak SU(2§ isospin. low even though

V, global symmetry is spontaneously broken, tnere are no
massless toldstone bosons around. because a linear combination
or and U(1l) remains unbroken. To [ind out what linear

. X 1%
combination this is, one solives

[aV. +bY)IHs? =0 . (2.4-8)



since the definition of an unbroken symuetsy generator

is Llv)= 0 where Iv)
explicitly, \
B .
-2
-2 O
Q Fa -+
O 4
-2
-\, -
Ir b= 4a Tthen.
! 0 :
[ | ©
gafle i
A

| 0

1Y -

18 the vacuunm state.

- l-lg

0

N

L vo__]

- VS

~if3

'/.:J
Y > ‘

I

0

[ 2 ]

L

Wiitten

We note that there is another pglobal U(l) syumetry left

intact after the

global symmetry.

B-L & oav,+bY & v+ 4Y =

Vi (VI*HY)

2.5 ileutrino Masses in the SU(3) rodel

In the minimal SU(Y) model

3 x 10 and 10 x 10 couplings.

should belong to >

charged leptons pget masses through (1), while up quarks get

———

5 x 10
10 x 10

s S+ 45

= Se ke s0

spontaneous b.oeakdown. This is the

-
[
0
) 0

- .
B-L

(2.4=9)

(2.4-10;

(2.4-11)

fermions acquire mass througu

(1)
(2)

Thereiore, the niggs multiplet piving wass to iermiouns

of 3U(5). Since down guarks and
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masses through (2). we can relate the masses of down quéxms
and charged leptons for each family. et us use the si.plest
cave. just & i{i ;s . The past oy thc " rcangia: W ich
denotes t.c sau:s ol fermions is“
L= (x')*# yo M, [ Ha Ya - Ha fud - Yy g pY e XagMiie X5¢
| (2.5-1)
wheoe Yu + fernion S
X «p » fermion 10
Mi,2 o, gencrator uwatrices
Concentiating on the first teru only and diajgonalizing ™,
by rotating ¢ and X . we notice that tae L acuu expectation
value of the Higgs 5 gives a mass termw
Lip = Vo (x*)*® yo Mp Y (2.5=2)
Beid,3 4
I'or each family this means:

m = Mg Mce=m m, = m
4 7 ) S Yl b 2 (2.5-3)

Thus, we avryive at the crucial issue of neutrino masses
in SU(%). In the minimal standard version of the SU(5) model,
all neutrino masses are zero. ;o Dirac mass term VaVe
is allowed, since there is no right-handed neutrino in
the §+ 10 representations of fermions. On the other hand,
the Majorana mass term VoV, is also forbidden. because B-(.
is a conserved number in 3U(5). There are two mechanisms
used to introduce neutrino mass into SU(H) theory. One is
to put in VR by hand as an extra singlet of SU(5). Then.
the Lagrangian will include a tewm proportional to wa H,‘w*
and the vacuum expectation value of the Higgs 5 will

zive mass to the neutrinos.
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Another method is to look at the post sU(YH) scale.
Since the grand unification mass is only a i'ew orders below
the scale where gravity effects become appreciable, we way
not be able to ignore the Planck mass scale? We may
expect terms with two fermions coupled to two iliggs pavticles,
scaled by an inverse power of the Planck mass, These terus.
however. are non-renormalizable.

In addition to equations (1) and (R2) feruwion masses
can arise from & coupling of the form

T x5: 15+ 10 (%)

Usins the first two equations. we have tie allowed 5 fwo Hg
and £f0 Hs ness terms. which admit tue yglobal U(1)

gause transformation (2.4-7) and conserve 8-. number.
Equation (3) would have given mass to neutvinos ol the form
{Efg He if we had a Higzs 15 in the minimal 30(5)

'model.

Usin@ just a iHipsgs 24 and a lipggs 5. we consider thne
products of pairs of iiiggs representations

5 X 24a L+45+ 770

L x 5 = 10+ 15 (2.59=14)
We may have effective interactions of the form :

O (/mp) £5fi Hz Hay

0 (’/mp) 'fm ‘F]n Hs H?-"f

O (Ymp) fz{s Hs Hs (2.5=5)

Equatioﬁ (1) will modify (2.5=3) ; (2) will modify quarx
masSes. bﬁt both of these will leave the global symmetiy
(2.4~7) and thereby B-L conservation intact. Unly (3) will
generate a liajorana neutrino mass of tne order 1077 eV

and violate the 8-L conservation.



- 2P0 -

2.6 The 80(10) Grand Unified jiodel

As we have done for SU(5). we can now examine the next
smallest ranking grand unitied model. So(lo)? in terms of
its gauge boson, Higgs meson and ferumion content, review
their decomposition under SU{%) and finally see what tanis
theory predicts for neutrino masses.

S0(10) is an orthogonal gioup of rank 5 and the
gauge Ifield associated with it transforms in the
45 = (10 x (10-1))/2 dimensional adjoint representation.
which tirensforms as a second rank antisjyumetric tensor.
Under SU(5). 45 décomposes as 24+ 10+ 10+ 1. The 24
represents the now familiar 5U(5) wawze bosons. The
remaining 21 bosons are superiheav, ones mediating proton
decay.

The 50(10) model is very flexible in.texms of the
lligy;s meson content. because there aie wany ways ol breaking

$0(10) down to SU(3) % SU(2) X U(Ll). For example:

v o SUH) X SU(2) X 8U(2)

3 SUCH) X 3U(2) x8U(L)
3 \

SU(2) ———3U(3) ®* 3U(2) *» U(L)

\sU(B) » Su(2) X SU(2) % U(l)/

Concentrating on the wmost familiar path 5. we note tnat

80(10)

(2.6-1)

the minimal set realizing this chain of symuetry breaking
is : .
217 (I TF [ ¢ ) J——— sulaxsulayxu) _____  sul xuli)
Higgs Higgs Higgs
6 45 i0 (2.6-2)



Since i2 decomposes &8s 24+ 10+ 10+ 1 as indicéted above.
and 1Q decomposes as 5¢ 5 we .ecover the 'liy3s mesous of
SU(5); namely the 24-plet and S-plet that accomplish the
breakdown of SU(Y).
rermions are all contained in the sixteen dimensional
irreducible spinor representation of BU(10). bince 1o
decomposes as 5+ 10 +1. we recover the SU(D):rermion coutent
with 5+ 10, 1 is the right-handed neutrino, The Higgs
particles that can couple to rervinions in tne S50(10) model,
thereby giving nmass to fermions. siould appear in the
decomposition of the product 16 x 16 under SU(5).
16 X 16 10+ 120+ 126
The 10 is a vector, the 120 is a third rank antisymmetric
tensor and the 126 is a fifth rank antisymmetric tensor.
Let us analvze these three representations for their SU(5)
content:
10=x5+5
120= 45+ 55+ 10+10r 5+ 5
126250 + 45+ 15+ 10+ 5+ 1 (2.6-%)
We notice that only the 126 contains an SU(H) singlet
component. Therefore, only the 126 can give the right-handed
neutrino & mass at the tree level.
B-L operator 1s & generatob_of S0(10) denoted by B-L =
2a-[ Ta.:. + Tar] . Since it represents a gauge symmetry,
it has to be broken at least locally. Furthermore.
belongs to the Cartan algebra ol the pgroup.Tlherefore. we
cannot break this symmetry by the vacuum expectation value
of the adjoint 4D, We can break it eitier through sonme
Higgs mesons(which also couple to feruions) or we can put

in some other iiggs mesons expliclitl; ror this purpose.



1f we choose the first way we can use the pact of liigps

126 that transforms as 1 or 1Y% under SU(H). These ave the

AN

l

ones that couple to left and rignt-handed neutiinos.
respectively.‘I ¥or the second metnod, we can use a Hiugs
16-plet, which has both neutral entries gcetting a nonzero
vacuun expectation value?' I only one does. then B-L

will still be conserved,

2.7 Neutrino Masses in the S0(10) Model

As we have seen. the right-nanded neut.ino exists in
80(10), therefore the ¥aV, Dirac mass term is allowed.
Furthermore. because B-L. is a gmenerato: of the group and
there are no massless Goldstone bosons around. it must be
violated. If B-L is broken. v.¥. and Vg type Majo:ana
terms are allowed. So, S0(10) does predict neutrino masses
naturally. unless there are sonre secret symmetries preventing
it. We shall go through two models in detail : The Geoigi-
Henopoulos model®® and tue Wittenaﬁodel.

Georpl end hanopoulos introduce an extra neuwiral leplown
singlet €, wiich couples 50 the fe.:' o lo-—-_led Tiooush

the Higgs 1o-plet. As we have seen belore Uais iggs field

2

has two neutral components whici .ive & vacuuw expectation
value and bresk B-L symmetry globally. 1f only one neutral
compouent has & nonzero vacuui expectation value. the

will be broken loqaily only and EL and v wWill 7a3in a

large Dirac mass and our familiar left-handed neutrino will
remain méssless. tiowever. 1I the other neutial couponent

of the Iliggs l6-plet also pets a vacuum expectation value,

then V. will get a small Fajorana mass in tue rorm Ep W,



Tuis addition of an extra singlet as in the wu(y) model

is a litile arbitrary and this defect is remedied in Witten's
model, Witten's argument goes like tunis: In Su(l0). the
right-tnanded and lett-nanded neutsinos will couple to et
Dirac masses comparable to tne usual quark and lepton uasses.
Hince we know that the lelt-hanaed heutrinos are relativel,
light. 1! not massless., then tiis large Dirac nass tern

must be avoided. This can be doue by ilving the ripht-handed
neutrino & large liajorana mass. 1n matrix lorwm, without

the Majorana mass. the mass matrix would be :

'\)g '9|_
Ve O m
(2.7-1)
v, m ) |

where m has the nma;nitude of a quark or lepton nass. :idowever,
when we add a large Wajorang mass M . then tne wass watrix

becones :

Ve Ve
YR m
™M M>m
Vo ™ 0o (2.7-2)

The eigenvalues are approximatelrs M ana mY/M . these
being the masses of the right and leit-handed neutrinos.
respectively.

As we haeve seen tne only iigps multiplets tnat can
couple to rermions are tiose that appear in the pioduct
16 x 16, namely 10. 120 and 126, Since only 12v contains

il
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an »U(S) singlet and since tue right-handed acutoino is &
singlet, only 126 can give it mass at tue tiee level.
However. this value of mass M will then be a iree pavametcs.
To avold this Witten tries otlier metvhous. liis proposal

is that the right-handed neutirino receives a mass at the

two loop level,

In the minimal form of thne SC(10) model . oniy dipzs
10-plet and gsuge field &% couple directly to 1ermions,
Also. iipggs le-plet is necessar, bota to breéﬁ'bu(lo) aown
to SU(5) and to break B-L gymumebry. durtnermore., in orcew
to compensate ror the lliggs l2o=-plet, wnica 1s @ Liltn rank
tensol, we need a vector and two second rang tensc.s, oo
we need a 10 and twb 45's coupling to Teruwlons. In adaltiou,
we acre allowed to use .ilgps lo=-plet. tut nolb 1n airect
coupling to feiumions, Given ticvie rules. uvue two loop

Geagraw ieoan Jollowo

(15.1)

(T‘"‘: ') '

(10,5)

b A L. 3y Dl
(Ti,ﬁ na,?)' (TAJO) (Te. 1)

Fi-- %. 4he two loop diazue. toat lves nass to tae o1 i~
wanded neutrino. LSiowin Lu pareutieses ave tuc o(10)

and SU(5) transforuatios propecsties or eacn iicld.



~_\ Gauge tfield A/u
Fermion
AN Higgs 10-plet

igns loe-plet

D Higgs vacuum expectation value
A 6 %10 D16 ( SOO0)
§%x5 5| (suls)
LD g yukawa, Ly\-{;Hm
B 16 % 16 210
| 51 OFf
L D M Hi Hii Hi
c 16 » 45245 > It

5y 10 10 o |

L o g*l{Z. AuYHLI [ (7. a) HU

D lexT > y5

I x10 5. o

L 29¥Yu (Au-2)Y
E lex45 D IL

jox 10 D5

L 95 L..FYF (;ﬂ.?)q (L.-/_j)

J.et us estimate the mass tnat the risght-handed neutrino
receives from this diagram. We let [K) denote tne contribution
from the loop inteyral. We cousider a&ll the coupling constants
at the vertices and the vacuum expectation values ql the

Higgs fields. S0 we write a general expression :

Myg ~ 9“ 9yukav;a- /" Bu>< Pu? Lkl (2.7=4)

Since 9 yukawa is a free parameter, in order to estimatle
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- 2o -

its value we note that the Higgs 10 couples to both quavrks
and vector bosons

gyukawa <¢|¢> q}:y- ~ My |
gt < P> < Fu) AuAp ~ my? (2.7-5)

where Mgq is the mass of quarks and Mw is the W boson mass.
rom (2.7=5) we get

Qyukawa = g Mg (2.7=6)

mw

We find the contribution from the integrals using the
following formula

[ K1 = A"

k= p- (3/2Y m - n

(2.7=7)

external lines { =4#)

P
m

= fermion lines (~2)
n : boson lines ( 22)
A = cut off

We get k=~-! . All masses appearing in this diagram

(vacuum expectation values and cut offs) are superheavy
masses. Let us denote this scale as M

Using (2.7-6) and
(2.7-7), (2.7-4) becones

Myg~ g (9 Myl ) M/ M (2.78)



I we use the following numbers

M ~ 10° Gev

gt~ o~ 2107

9 ~ .05

o

Mw ~ 20 Gev ' (2.9=9)

then we get

Muyg~v qxlO"x.DS’x.OF »i0'° mq v 1o? mq (2.'7/=10)

We can estimate the mass that the left-handed neutsino
gives from this plocess, since we know that My, = nw‘/rnu‘
50,

My~ Mg x (Muimg x 1gux () 1/M (2.7-11)

With our previous numbers tinis means that for each generation
My, = 107 my . Oc explicitly :

My, ~ lev ) mV/t ~ 100 eV ) myeg ~ |=I0 ke V ,

These estimates. although consistent with laboratory

bounds on these masses. violate cosmological constraints,
which say that the sum of all neutiino masses must be less
than 40 eV, ience., the estimated neutrino masses must be
suppressed by a ifactor of 102 . which means tnat tine right-
handed neutrino mass must be larger by a factor of 102.

One obvious way of achieving tuis is by estimating to be

1019 GeV, i.e.. the Planck mass,



| In order to ectimate corrections rrom higher order
diasrams. we next consider one possible tiuree loop process.
Since 10 X 10 contains a 45 instead of cetting an eflective
126 rrom 10 X 45 X 45. we pget it rrom 10 X 10 X 10 X 4L,

850 we consider tne following piocess :

(10,5)

F . H
(16,5)

(16, 10) (18,1)

Fig 4. The three loop process that gives mass to the right-

handed neutzino

We need to check only three vertices this time since Tue

others are just like the two lLoop process.

Fo: 10%16 216 (s0UD))

5%x5 o140 (suts)

L D Oyukawa YY HiE
[ tox10 > 45

x5 D 10

Lo o Loug® (Auntl] ooy
10 Te x 16210 '

5»1 58

L O 9yukawa LP"P HTO



We can estimate the right-handed neutrino muss

3
Muyg v §yukawa gq/u <Pir < ¢y LK) | (2.7=13)

Using (2.7=6) and (2.7-7) we get

m m 334’ b
vn”(_,,_«_)ﬂfi MM

My M

Mq ’ o : M |
(2] (2]
" My T (2.7=14)

Using our previous numbers and letting Mg be around 1 e .

(2.7-14) gives

Mygv (05)¥x (2x107%) x .05 % 107 Gev
.~ 50 (Gev

(2.7-15)

Couparing 5Om1 Wwith lO/ m‘i' we conclude thaet the higher

order corrections do not contribute to any signiiicant degrlee,



3. NEUTRINO OSCILLATICHS

S0 lar we have seen how some theories predict nonze.o
neutrino wmasses. lLiow let us direct our attention to one
possible effect of such & prediction.: If neutrinos have
nass. they way display the phenomenon of neutrino
oscillations‘.’ This phendmenon occuxs. because mass eia.;,-en-‘
states and weak interaction eigenstates do not coincide.

Let IVo) be a mass eigenstate or the ilawiltouian, i.c.,

HiVe? w Eoive? . Then we can express V) , the weak inbteraction
eigenstate as a superposition oi these:

I Ve = %_ Uee 1vor = € m..

&z 1,2.. (3-1)
and,

| Vey = % Uer Ived> , . (5=-2).
where U is an orthoponal n x n watrix. for &a theory in
which the Tagrangian is C-F invariant and n is the number
of families existing in natuie.

Let a neutrino  produced in a wealk interaction and
thereby in & pure state lVeyat time O . be given by [velt))
at a later time t. Then

~iHt

-1 Ep
i“&(ﬂ) z € [ Ve = E’-j; lJu:-e

t
| ve? (3-3%)

After we substitute forlvw? in terms of IVe) . Low let us go
back and substitute for IVey in teims of a primed set Ve’

l‘v‘(ﬂ>‘= % LJU,. c-iEUt ‘Ee} LJ‘:’ I'\)Cl>) (3_4)

'the probability amplitude of finding Ve changed into Ve ¢
~iEpt -
after a time t is iven by ¢ % uc, uv, e



And the transition awplitude is ,iven b, the real part ol
the square of thnis term :

PCG—)Q‘ = %" utg ug‘a- u(a’ ue'ﬂ’.CDS(Ecr—-Eo-’)t

(3=5)
how to see what these formulas nmean. let us' loor at a
simple theoxy with two families only, A rene:ral form o
a 2 ¥ 2 orthogonal mat:rix is
Uegj = ¢0sO
cos® 5iné Uez = SinB
~-~5ing co§9 Vi = -sing
U'/uz = PO (5"'6)

The transition provability for an electron neutiino to cnange

into & muon is given by

Z Llee U)ub" u/uo- ue&' cos (Eo-- Ea”)t
0,0 | | (3=7)
o012
Writing this ocut we get
Uer UpsUer U 050+ Uey UpiUeaUus cos (E,-Ea)t +
U¢z L.l/uz Ue. L.'/ul (<213 (El" E.)t + UGJ. L.l,m ngz u,uz Cos O
= 2c0s%65in20 - 2 cos*Osin?B ( B,-Ex)t
s 13 6in*26 (1~ os (E,-Et) (3-8)

Similarly. the transition probability oif findin; an ellectron

neutrino at a time t aiter "creation" in a weak process is

I_.stm"za(I—ws(.E,-E-z){:) . This is equa_l to 1 only if the mixing

ancle B is 0 or E;=E; . i.e.. mass eigenstates are degenerate.
For this simple case we can show that:

tan 20 = 2mpue /m/i/a-mae

Mz Y2 (Mzes Mipt Vimae - mam)* + ymza® )

e TYE—— R N T ey Y



For the oscillations to take place. we nced © O and m,
# My - This will happen if Muc and at least one oi the

parameters Mze and mga 1is nonzero.



4, CONCLUS1O0N

We can now briefly mention some phenomenclopical
manifestations of nonzero neutrino macses. The first is
the famous "solar neutrino puzzle". Davis and collaborators
have been conducting an experimeat in which solar neutriuos.
hitting a detector térget o chlorine at a depth of 4400 metres
convert some chlorine to argon.

v+ Ly e+ VA (4-1)

Extracting argon and counting the number of "events" the
experimentors found that the sola. neutrino flux is much
spaller than it should be. One possible solution would be
that solar neutrinos are cnanging inte other neutirinos
on their way from the sun to the eaxrth., Jhe.elore. we on
ea:;th cannot detect taem all in an expeciment vesipued to
trace only electron neutrinos,

Of course, the grealesl locphole in this expcuiment
is that it is very unard to predict tTie intenusity expected
in tie absence of oscillations. It turns out that in this
particular Chlorine-~Arpon experiment. Tthe uncertainty
affecting the flux is quite larpe. To remed; this. a Galliium
experiment is designed. The expected ilux can be calculated
in a.reliéble weay if low energ; ( E £ .4 Mev ) neutrinos
emitted in the p+p—> dret+ Ve reaction can be detected.
The Gallium experiment is sensitive to low eherg3 neutrinos.
The reaction goes like this

Vet | Ga --,"Ge + e (4-2)
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Gallium replaces chlorine and gzermanium replaces argon. (ne
big obstacle against the realization ol this experiwment is

financial; the amount of gallium required is more than the

ennual global production.

" In eddition to the apparent deficit oi solar neutsinos.
the existence of substantial amounts of non-luminous uass
in the universe may be an indication [for & nonzeiro neutrino
mass, 01 course. this mass does not have to reside in the
form of massive neutrinos. However, if the neutrino masses
explain the "missing mass" in the universe, this would
imply that the neutrino mass is significant enough to
provide suftficient mass to stop the explosion of the
universe and make it collapse back onto itsell,

All this is rather far-fetched. Rowever. it is
obvious that the neutrino mass problem is closely related
to some cosmological problems.‘The most stringent bound on
neutrino mass is of cosmological origin., If the total
neut:iino mass reméining from the biy; bang 1s not to exceed
the total cosmic mass densit,. the sum of all neutrino
masses nust be less than 40 ev. This close connection to
cosmological mysteries makes the neutrino wass gquestlon
and all possible manifestations of it. like neutiino

oscillations, very intriguing.
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APPELDIX A : THE TWO COMPONGHL THEU.Y OF Lok heUialHNG

A massive spin 1/2 particle obeys the birac equation

(iv*d —m)y =0 | C (a-1)

axM
where Y is a four component spinor. describing the two
spin states of the particle wave function ana the two spin
states of the anti-particle wave function.
Using the following Weyl representation Lo: the gamma
matrices :

o - ~r k. i12n3

- g% 0 _ (4-2)

¥

O I
(]
Q
r

- X

with the wave function ¢ written as :
U
¥ v | (h-5)
where U and V are two component SpPinors, We can express

the Dirac equation as two coupled equations

ivot + .9V = -mv

yavidt - 0. ev a = mu (A=t

If the fermion is wassless. these two equations are coupled.

Using hestw] notation :

L i%t 7€ <i.o> = <PY

For a massless particle CE? ™ (]5) (A-5)

The equations (A-4) mean that

TPy = + <p> (A=)



for the Yy spinor and
KT Py = -<p> (A=)
for the V spinor. That is. V represents a left-nanded.
positive helicity neutirino with anti-parallel spin and
momentum. Un the other hand. J 1is a rigat-handed neulilno
with parallel spin and momentuii.
in the Weyl .epresenvacion,

e i¥'rr* o [ 1 o

(A-2)
0 -1
S0 that we cau write
Ya (\aYs) Y = (%) 3 gk
. (2) s ¢t |
Ali-v)We (v)E Y (A~.)

Experime-tal evidence s. - ¢ute that the neutrins anpedss
only as lPL in weak intesactions., 1ln order to ri.d tue
anti-neutrino wave iunction. we note that a fermlon 1n an

electromagnetic field obeys the lollowing equatlon :

Qhp (A-10)
whevreas an anti-fermion obe;s tThe equation
(id .reA,aH"/“-mJ Yo = O
e (A=11)

Taking the complex conjugate OL (4-10) we get

[-(f%;' veAu) Y om] Yt 20
M (4-12)
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Qpevrating with G, we get

[_( i ceAu)GYHG -m] GY* <0
M

(A-13)
This equation will be similar to (A-11). if we let
- G”(!ﬂ G-d =M
GY' = Ye (A-14)

Solving for G using the We, 1l representation for the jamma
matrices, we get

6=ir*s | o !

i O )
- d . - j (A-15)
0 Va' :
0 -
Le . !
Yi= 69T 2 i oy . |
N va‘-i b O p

which represents a right-handed particle.
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APPERDIX B :  SPONTANEQUS SYMRET.Y BLZAKDOWL

The symmetry of the hamiltonian of & quantum mechanical
system is not necessarily obvious from tine giouund state
of the system. Ior example, nuclear forcés are rotationally
invariant; however. the ground state of a nucleus is not
necessarily so, i.e.. it is not of spin zero. An example
of a system which. unlike nuclei. is of infinite spatial
extent is the Heisenberg ferromagnet. an infinite array of
spin two magnetic dipoles with spin-spin interactions
between neighbouring dipoles. The total hamiltonian is
rotationally invariant, but the ground state is a state
in which all dipoles are lined up in one arbitirary direction.
Someone living inside such & magnet would never discover
that the hamiltonian was rotationally invariant.

Generalizing to relativistic gquantum mechanics, we
substitute “vaquuﬁ" for the ground state and some "internal
symmetry for the rotational invariance. So, 1f we conclude
that the laws of nature nmay possess symmetrles hidden from
us because the vacuum is not invariant under them, This is
called "spontaneous symmetr, breakdown".

Let us investigate spontaneous spymmetry breakdown
in some systems. For & single real scalar field P . the
Lagrangian density is

Le o (2upd*P) - u*ha g* - 27y B
| (8-1)

This Lagrangian has a discrete symmetry ¢ -> - P
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Let us consider the potential V(P) and find its minimum

V() = 4283 + 2/u gt

IV/3g « 0« [u’+6¢’3¢ (15=2)

2? V/a¢2 = Al4 3’7i¢a >0 to be a minimum

There are two cases :

ut >0 & B Dmin =0 (B=%)
w30 <& Ymin = £ V5 (B-4)
'y V A~ v

Y 4
6L

» v
o p .
'

ol 27 SRR R

2?0 wico

We let /q?' be less than zero. Chooslng the positive 1oot
for conventional reasons, <@ Pmin = Y- 432
How the vacuum is not at zero anymore. Therefore, we define

/ .
& new field ﬁ for which the vacuum is at zero.
v

. > ¢
-y |
i



Blap- Va7 = g-v | (5=5)

Substituting for p in terms of ﬂ/and Y

LV (0%p up’) - 4/2}19(‘2,:*0)2 - 2y (g'e0)t (B=-6)

Using v'=-A' we get
a .

b= 2 (34879, 9')+ /"Jﬁm‘ 7“’}3’3" Yy A ﬁm-r cwnstants (3=7)

/ . .
Now. @’ has a positive mass - Zu® and because we have a
¢'3 term the Lagrangian does not exhibit the reflection
symmetry of the original Lagrangian.

Let us next consider a complex scalar 1ield ﬂ

L= Vlu@) (@) - % g @ - A1y (3" B)°
w0 (5-8)

This Lagrangian is invariant under the transformation
jﬂ -y ew [/ , where 8 is not a function of the space-

time.
V(F.8") « w2 B"¢ + d/y (ge@)?
VI P (u‘/u M3 ¢'¢) #

av/idg . (u‘/.e-t Mz p'g) @ (8-9)

Since }J; is less than zero,



s+ agtFa0
| @le - /A 3v? ' (5-10)

So the minimum is a cirele with radius ¥ in the @ plane.

» “qp

Since the phase angle ® is arbitrary we can take it
to be zero. We now make the substitution
14/

P=e (v+n) (B=-11)
where | represents perturbations in the angular direction
and ") represents perturbations in the radial direction., Doing
perturbation about Re PsV and Im@s 0 for small values of |

‘ and 7 is equivalent to the equation

¢’ ‘V-l"?-};f' (;5—12)

Substituting this value for in the original Lagrangian

we pet
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Lot [ (01 0%1) #(aum 2%7)] + pints . (sm13)

So we get a mass term tor % buv not for § . The mass 7
gains is due to trying to‘make displacewments in the radial
directions against restoring torces. { has no‘mass; it
corresponds to displacements around the circle, the minimuw
surface where there are no restoring forces.

Ve now let ¢ be an n-couponent real iield whose

equation of motion can be derived from the Lagrangian

LaVa (upi 244) =0 put (9490 =My (P g1)* (5-14)

This Lagrangien is invaciant under the group Oln)
V)= Yo u? (B°84) + 2ry (BEp4)°
aV/pgt - [fml;ﬂ‘] @ =0 | (B-15)
V@ 1%= ~Afa = v?

We can choose to satisfy (B-15) by letting Pifor cCwl2-.. A=l
be zero &and ¢n‘be 4 ., Then the vacuum has a lower symmetry
than the Lagrangian; the vacuun 1s invariant under the
group 0(n=i) |

O0(n) group has  Yanin-1), 0(n-) group has Ya(n-N (n-2)
generators. The diflerence in the number ol generators,
tnererore, is n-l . ‘These n-1 generators correspond to
the broken symmetry. We let L yj#N e the Ot} generators

and ki % Lin be tne n-l unbroken generators, where

i



[Lij]k; e ~i[ Sik8ji - 8Su Sju] | (3-10)

We define the fields 7 and iy iwl2... Nl

0
11k fv '
¢= 6 f
. (8-17)
V+7)
b i
Up to terms quadratic in The f{lelds we have
0
|
' .,
P [Irs.i_nb.u + Gk .. ! (B-18)
v v
v+7
b -
Since kj has & minus i in the j th row. n th coluwn and
a plus & in the n th row J th column. kj operating on
o . : | |
' zives & vector with the onl, nonzero couponent in
v+
its j th zow. 50
ri§_-_(-ffvﬂy)) H 1
v
X i,
9 = : ~ -‘
V19 2o (3-19)
Y+
» - L. e

Substituting i; four ¢; for ign and V9 fouv Pn . in (B-14).
we get a Lagrangian with a mass term only ior 7 . Since n-i £
have no mass we get n-l massless "Goldstone bosons®

corresponding to n-l DbIoken [jenexatorls.



APPLELDIX C ¢ LHE HIGGS #kCilAnlbi

11 'we nave a Lapianslan wuich possesses olopal s jumeviy .
and if the minimum ol our potential is not al zero, then
we et wassless Uoldstone bosons, powever, 1r Cpe s,uwumetoy
is local. then we need to int.oouuce a vecto. iiela into ouw
Lagraniian to wmake it jaupe invasiuat. ‘dhen, spoutaneousl)
broken s-wunetry plue Local gaee ravariance will leaw oo .o
excens. on to the Loildscone theorem, Previoeol ve had as
man, massless bosonslas the vronen enerators, Now, these
naLsless bosons will be eaten up by the vectoy fields Lo
pive us as wany massive vectol me:’sonl&s as Lhe broken enerators.
The vector bosons which remain massless will correspond to
the unbioken symmetly ol tne lagisupian,

Let us briefly summarize some requirements ior a local

gauge invariant theouwy,

P —» U6} G —» exp { -iL. 6} ¢ (C-1)

L is the appropiate matrix representation of the symmeti s
group. We see that the number of components ol the coluun

vectow p should equal the dimension of the matrix b .

L.ijk } i i
Du = du-igh. Aulx) (C-2)

Qﬂ.is the covariant derivative and AM is the vector rield.
We see that the number ol penerators wust equal the nuuwbcc

of components of the vector field.



-4 -

L.Au ~ Jie) L. Au J-' (e - ifg ( Opu U U~ e
F/;v i- — a/u Aui - ayA/uL + gc_i_jk A/uJ Ayk (C=3)

et us consider a Lagrangian in.sariant undev a U(1)

' : N . -8
transformation of the form ¢—)e ¢

b= (Qup)(2“B) - u g g~ alp)’ o (c-8)

Following the above prescriptions for a local gauge invariant

theowry and letting L. =) , g=¢€ we construct

L- (b,u-fieA/u) ¢'(Bﬂ-[eA/‘\¢_ﬂa¢l¢_‘ Af¢'¢)1"'/l{ F/n) F)HV
M2 <0 -~ (C=5)

Under the loceal t.ansformations of the form

- | Blx)
p e @
A/J—y A/u- l/eB/u 9(!)

(C-6)
§, is invariant,
We glve & nonzero vacuum expectation value+o¢ not ¢"
P2 = VIVZ vzt
¢ = exp Litp)(vem) (Vg
T (Vimeit) (c-7)

Substituting into (C-%) we et



Lo =y Fuv F% 2 3% 0um+ Y2 0u10%1 + Y2 &2 AuAu
- ev Ay oY% +/4‘973+ | (C~8)

Because of the Q\JA/AE)“I term, this result is hard to inte:pi-et.
So we let our gauge function O(x) be I(x)/V

\
L]

~-if/v e...-l/u [eii/v (W")”ﬁ:]

P >e g -
¢ > (vim) V2
A,u - A,u - ljev a/ui (C=9)

Substituting into (C-8) we get a mass term Y2 e*y? A/u'A,u'
for the redefined vector field., There is not a mass term
tor ¥ | { , corresponding to the broken symmetry, nas
disappeared and A/uhas grown massive. Originally we had

@, @' and two polarizations for Apm, adding up to four
degrees of freedom. low. we have a massive vector field with
three degrees of freedom plus 17 . leaving us with four
degirees of Ireedom &again.

iow let us consider a non-abelian example., We nave a

Lagranzian inveriaant under the ©U(2) group. Following our

jh jk

gaupe prescriptions and remembering that for 3U(2) ¢ -.-.eb

we have

D/‘a = (b}""’g.:l: '—Af‘)a
= (Qu-iglliAur ba ApatlhsAud @ (C-10)



- 44 -

Here each §; 1is a matrix actin: on a .ecto.. 5
(L ?); =L & (c-11)
1 o m .
S50 using Lik = ~16mik we et
Dudi = 2ufi ~ig Lik AL P

ou Pi- g Emik AL P
ou Pi+ g Emk AL @ (C~12)

u

&= 2 (0up) (0440 - V(g?) (C-13)
The potential V has a minimum at @s =V

< ¢>mln - 0 = ;.;
0 (C-14)
1Y

We also write our three generators explicitly

O 0 0D OOt 0 =i 0O
L=l o 0-i Lasi o oo | b*l L 00
O 0 -i 00O 0 00D

(c-15)

- -3 - .
We see that LV and Lav ave nonzero and L3V is zero;
~
50 only L,-, remaing as an unburolken symmetiy generator, L‘J
and L are our broken symmeti, ienersators and we derine >

and 21 .associated witn tie unbroken symuetry., We pacameterige

P as



0 ' -1, .
= axp L it (f.uumn( 0 \ % ( 3 ) (c-16)
: 1J+'7 .

We make our gause transformation

Ua G%Pi'ilv(ilLl*zaLz\}

, 0

@'= UG = ( 0
\J'I"Y) .

[LANIp = LuLALU! =g (2. W)U ] UG (C=17)

lgnoring terms hipgher than quadiatic in the fields, we ricst

calculate (UWL. A,uU")U¢ teLrm

- ig "il
UL Au g, | m UTkAm * LA LAm) [ g, ‘
v+y v+'9 (C=-1&)
0 i(ven)\ R ENSTY
= U A/ul -i(U*Tﬂ + A)uz 0 + AﬂS -iéa
i i1, 0

(¢-19)

" A (ven) - iAus E ]
] ( I-i6 b <150, ) U A (vl i A s g,
v v

i A/‘IZj o I'A}‘lg.z
(C=20)




-

= ig (UL.AMUTIUB 2 g

i Aps (van) - iAusd,
~i A (van)- i Aust,
l'A/le'j'f IA)I.I iz

—

flow we calculate

ilg (duMU™ug = +i/g(Quu)

= ilg [-ilv (0;45, Lyt Ou ?JLJ)][I—ilvi.Ll-iizL;/V]

o= gy {duiL, +ui,L,)

= tlgv (Oui,Ly+ omui L,)

<l

-

ilg (3uu)(U)UP .

-1, o
- -_51_' 1, {=-10vm) L.
‘\H'? i![
- -
0
0
Ve
3 "7J

[
A}Il 1| ¥ A/ﬂ jz
A/.u(wnh Aus
i

b ]

A}u ('\Jf'q)-' ﬁf‘! 1‘
- A}u (1“7] - A/us i,

0

- ;2
3,

VN

s

]
- A/uli. - Ajufz
-ifs| O
M Aualven)- £
paveqi hush (c-21)
. =
] (C-02)
) | (C=25)
1
"'iz
i
L V7 (C=24)
ilvem)
i 0
L4
1 (c-2v)
(C-26)



.
0 i{vem)
= 'gu i Zitven)) 4 Out, 0
0 0
- 4 (C-27)
a)“i.a ('Utf))
= i/gv -3F5:‘”’w
0
(C=28)
duip (Vi)
1g (ilg (uudu™) @) 2 = /v { -au 1, (ve7)
0
(C=29)
Putting (C-29) and (C-22) together. we find
[ T
0 A}u ('ﬂf’))-hﬂji, 3)‘73 C""’"?)
DP.T’:’: (»} + 9 - A}dl (""’?)'?33 -t ‘aﬂil l‘Vf'JJ)
7 .0 0
e - (C-50)

Using (C=%0) we can now calculate the Lagrangian in teirms of

the transiormed variables

S0 ANt el dui'oMi' 4 Yy Juit 2HT2 +
2 g*w? (Aute Aus) - gv (Au gui +Aaduta)  (C-31)



. 3,32 2 1 :

From the Y29'v*(Au -rA;u) tern we See that tioe Jeclor mesonu
coirresponding to the broxen s,muetry; generators have acgui.ed
nass.

We are now read; to discuss tihe meneral case. We have a
Lagrangian invariant under a group G. Therse ace N enerators,

} . . ‘ L)

theretrore tuere are also N gauge mesons A a=z i,... N
We choose an n-dimensional iepresentation Io. these genelaltols.
S0 we have n scalar rields ¢ tal... n.

L.et us suppose that there is a subgroup of % called © with
M genc.uators that leave the .acuun lnvariant, Do we have N-M

. - - : - : :

gene.ato.s ror wiilch LV is nonzeroc, Vo Lo the vacuul.
It is an n component vector which nmaves VI(P') & winlmus.

We pavameterize ?

. a -
ﬁ: exp (% lidL/'U)(V -f'q) Azl... N-M (C=-%2)
o 3 . .
7 represents tie n-(N-M) fields. lLext we make the followiln:

gauge transiormation

(C=53)

As a result. we get N-M gauge nesons paining nass by eatin
up N-M Goldstone bosons. M remaining vector bosons stay
massless,

Tet us now check the overall deprees of freedou. Ve
started out witn n scalar particles and N wassless vector
‘mesons. Therefore we had n+aN deglees of Iieedom. Aftev
the spontaneous s;mmetiy breaxing we are left with N‘Wﬂ_

massive. M massless vector bosons and N ~Ln-M) ‘7 rields.



1.
- i =

Writing explicitly

2N*‘n = (N""M)Q‘ M+n" [N"M] (U“D"’f)

We see tuat the overall degrees of freedom remain unchanged,

&8s expected.



APPENDIX D : TWO FAMILY OSCLLLATIONS

In order to make allowance lor the lepton nwaber violation,

the weak interactlon iLaygrangilan must have an additional part

of the form

ttu *Mze Var Var T Mip VR Vur ¢ Mjie (VSurVeu + Vr V) + H.C, (D-1)

Here we shall consider only hajorana fields. We deline

¢ mge mae
Y 1 Ven Vi: VeR M

Vur 'u,uac mjie m i (L=2)

we can w.ite the full Lagrangian. including tne standaid

interaction terms as follows:

L1« Va MUV + WM (VE+ V) = X MY

<
')L = Vp +'\’cn, = Ver + Vea = Fi (L-3)

1’}“- + V/ch X2

In order to diagonalize the uass matrix. we let

L-r:)—CM)C:aUTMU? | (D-4)



- g -

Mp is the diaponal mass watrix

m
Mp = 0 ) L uTmu

0 m
! (u=5)

1t we assume that the Laprangian is CP  invariant,
then U is an orthogonal matiix wpich has the rollowing

general form

¢0s8 sin 6

U a

-5in® cDs® . (lJ—O)

-

Using 'X--Ll¢ and (D-3) we et

Vei + Ver® c0s® siné Pi + Pr

i

X =

v ut -r\),un‘ ~sin® ¢os8 Pa+ Far (D=7)
Taking only the left components we get

VeL = ¢056 @i + sinB PaL

Vaul = -sin® ¢u. + C0s6 @ar . (D~&)

© denotes the degree of wixing of the Majorana tields and
¢1,:. !s are the mass eigenstates with masses m, and my .
respectively. Using (D-4). we pet

Mee  mje ws® sinb m, 0 08  -Sind

Ma , = o o
mje mjip -Sin8 oSO 0 m; sin cos (5=9)



-V -

Mege  Mie cos'@mM, +5in'em, sin8c0s 8 {my-m)
Mpe  Mipm h cos08in OLmy~-my) SIntem, + WEOmM, ( )
D=9
We note from (D=9) that
MpPu - Mge = cos’e (M3-m,) -sin*8(my-m,)
=z (mMi-m)) (0s*6 -5in*e)
= (my-m,} c0s2B : (L-10)
Using the value we found fovr in (b6=9), we get
2mjc = 2{my-m,) SinBcosb
Mjiiju-Mee (my-m,) cos28
= tani#® {(L-11)
e now try to solve for m, aud m, using {(U-9).
Mae + Miu = m+rm, (b-12)
(mi-m)? = (m,-m,)? [ (ws26)? + (sin20)?]
oz (mau -mee)®+ 4 (mjel
]
‘ ) v
(memy) = [ (Mau - mee )+ 4 (mae)*]
(U=13%)

Using (D=12) and (D-13)

1
my = Y2 (Mge + Mpu 2 ‘/‘mac”mf‘/‘)z" 4 (m e’ )
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