G:All UnIFEBD BOIFTG
 AliL
 WEUTMINO OSCTLLADIONO

$$
\begin{gathered}
\text { by } \\
\text { Fahrunisa Ne.zi' }
\end{gathered}
$$

Thesis
Submitted in Partial Fulfillment of iequirements for the Depree of

MASTER OH SCLEINCE
in
PHYELCS

Bogazici University Library

Bogaziçi University
Istanbul. Tuskey
January 1982

1. INTRODUCTION

> 1.1 The Historical Development of Weak interaction Fiysicis
> 1.2 Helicity. Charge Conju;ation and farity
> 1.3 Quarks and Families
> 1.4 Dirac and Majorana Mass Temms
2. GミAND UNTFIED MODEIS
2.1 Introduction
2.2 The Standard Theory:QCD and Weinberg-Salan Gauge Theor
2.3 Neutrino lasses in the Standard Theow,
2.4 The SU(5) Grand unified model
2.5 Heutsino Masses in the su(5) bodel
2.6 The $0(10)$ Grand Unitied Godel
2.7 Heutrino Masses in the $\mathrm{SO}(10) \mathrm{Hodel}$
3. NEUMKINO OSCILLAPIONS
4. CONCLUSIONS

APPENDIX A . The Two-Component theory of the ileutrino
APPENDIX B . Spontaneous Symmetry Breakdown
APPENDIX C . The Fifges viechanism
APPENDIX D . Two Family Oscillations

REFEREIVCES

1. INTRODUCTION
1.1 The Historical Development of Weak Interaction Physics

Discovery of the neutrino had its origins in nuclear physics. The neutrino was postulated by Pauli' in 1933, in order to account for some mysteries in beta decay. which were observed back in 1919. In that year. Chadwick noticed that there was a continuous spectrum of disintegration electrons as well as a well defined cutoff energy when a neutron transformed into a proton during a beta process. The spectrum extended from zero to a definite maximum enertiv corresponding to the total enerey available in the transiomatio

In addition to this apparent violation of the principle of conservation of energy, the principle of conservation of both linear and angular momentum seemed to be violated. It looked as though linear momentum was not conserved. because the trajectory of the emerging election was noncollinear with the trajectory of the nucleus. Furthermore, the neut, was a fermion with spin one-half' whereas the sum of the spins of proton and electron gave one or zero. a composite system which was statistically a boson. Only the electrical balance of the system needed no modification. Finally, to account for these inconsistencies, Pauli postulated the existence of an electrically neutral particle with spin one-half and mass equal to zero.

Historically, beta decay was the first manifestation of the weak interaction. In 1934, a year after Pauli postulated the existence of neutrinos Fermi ${ }^{3}$ consuructed a theors oi'
beta deca, whica came very close to being the correct one. Fermi hypothesized a vector interaction in close analous with quantuin electrodynamics without a propagator. The weak interaction was assumed to be a iour-fermion vertex interaction with tne transition matijx element fop beta decay given by :

$M=\frac{G}{\sqrt{2}}\left(\bar{\psi}_{p} r^{\mu} \psi_{n}\right)\left(\bar{\psi}_{e} r_{\mu} \psi_{\nu}\right)$

where \boldsymbol{r}^{\prime} 's are the Dirac matrices and $G / \sqrt{2}$ is the weak interaction coupling constant with the dimensions of inverse mass squared.

Fermi's theory had to be revised, because unlike quantum electrodynamics, it gave only first order diagrams. If this wore true, the electron-neutrino elastic crosssection, for example, would rise without linit at high neutrino energies. In addition to a vector interaction, axial vector interactions of the form $\bar{\Psi} \boldsymbol{r}^{\mu} r^{5} \psi$ were postulated.

The picture that emerged finally nas an intermediate vector boson to mediate the beta process. The matrix element and the diagram for it are as follows:

Fig. 1

$$
\begin{equation*}
M=g^{2}\left[\bar{u}_{p}\left(1-a r_{5}\right) r^{\alpha} u_{n}\right] \frac{1}{M_{w}^{2}-q^{2}} \quad\left[\bar{u}_{e}\left(1-r_{5}\right) r_{\alpha} u_{y}\right] \tag{1.1-2}
\end{equation*}
$$

where \boldsymbol{a} is the axial vector coeificient approximately equal to 1.25. The problem of a linitless crosssection is remedied in this picture because as momentum 9 rises, the propagator term suppresses the crosssection.
1.2 Helícity, Charge Conjuğation and Parit

The beta decay in which an electron is produced is called a beta minus decay to distinguisi it firom another beta decay in which positrons are produced. Actually, in beta minus decays anti-neutirinos are pioduced. The distinction between a neutrino and an anti-neutrino can be made as follows: The spin of a neutrino is anti-parallel to its momentum. whereas the spin of an anti-neutrino is parallel to its momentum. This deines a "handed-ness". We call a neutrino left-handed and an anti-neutrino $1 \cdot \mathrm{ight-handed}$. This concept is formulated b_{j} detining the helicity. which is the dot product of the spin $\overrightarrow{\boldsymbol{\theta}}$. and momentum \vec{p} divided by the norms of these vectors. For the neutino helicity is -1 and for the anti-neutrino it is 1 . This two component theory of neutrinos, in which half the states of four component fermions is suppressed for a massless particle was developed by weyl in 1929. In this scheme, anti-neutrino and neutino states appear as $1 / 2\left(1 \pm r_{5}\right) \Psi$ Assuming the validity of the two component neutrino theory, parity conservation and charge conjugation are violated separately. Parity conservation can be derined as follows: if the mirrof reflection of a physical situation is another possible pinenomen, this situation conserves parity. Mathematically, of course the mirror image represents
reversing the direction of the spatial vecton \vec{r}. Pasity (P) is conserved in strong and electromagetic interactions. On the other nand, chai, conjugat ...on(C) cat ges a parioto int lts anti-particle. It as conserved in strong and electromagnetic inteructions also.

The two component theory postulated for neutrinos has two consequences in relation to the C and P operations. The P operation reverses the neutrinos linear momentum. leaving its spin direction unchanged. So we get a neutrino in a positive helicity state. which is not a physical situation according to our hypothesis. Therefore, parity is not conserved. Similarly, charge conjugation is violated, because when we operate on a neutrino state with C, we get an anti-neutrino state with negative helicity. However, CP is conserved together, since it changes a left-handed neutrino into a right-handed anti-neutrino.

1.3 Quarks and Families

Until 1935 electrons, neutrinos and anti-neutrinos were the only known so called leptons. In 1936. Anderson and Neddermayer ${ }^{4}$ discovered a cosmic ray particle which acted like an electron but had a larger mass. Later it was called a muon (μ). In 194%, Powell ${ }^{\circ}$ demonstrated the decay of a pion into a muon.

The pion had another decay mode:

It was postulated in the late fifties that the two neutrinos were not the same. ν_{1} acted as though it remembered being born with a muon. Therefoce it was called a muon neutrino $\left(\boldsymbol{V}_{\mu}\right)$. \boldsymbol{V}_{2}, however seemed to couple to an electron. hence was called an electron neutrino $\left(\nu_{e}\right)$.

Experiments done in the firties and sixties verified that the neutrino did exist ana the electron neutrino was distinct from the muon neutrino. In 1953, Cowan and keines ${ }^{6}$ periormed an experiment in which the direct interaction of a free neutrino was clearly observed, giving pioof of the existence of the neutrino. In 1902. Iederaan, Schwartz, Steinberger et.al. used muon anti-neutrinos to bombard protons; muons not positrons, were formed. Finally. Perl et.al. found evidence for a heavier lepton tau($\mathbf{7}$); a tiniid particle actine like electrons and muons.

By that tine, the number of so called "elementary particles" had reached several hundred. They were classiried broadly into hadrons, leptons and vector bosons. Onlj hadions have strong interactions as well as electromagnetic and weak interactions. In the hadron group, baryons have spin one-half and mesons have integral spins. deptons include electrons, neutrinos and muons. Electsoweak vector bosons consist of the proton and the $W^{ \pm}$and Z_{0} of the weak interactions.

In order to reduce the number of elementary particles, GellMan and Zweig proposed in 1964 the existence of three types of quarks, namely up, down and strange quarks. During the same year Bjorisen and Glashow ${ }^{2}$ postulated anotnel type or flavor of quarks. called charm. In the quark model, three quarks make a bax, on; mesons a-e composed of
a quark and an anti-quark. This model led the wa, to acsociating quak multiplets (lateu calied wean isospir mutiplets) with leptonic ones.

Each quaik multiplet alon, vith its leptonic counterpart is called a tamily. If we detine a ramily number Le rol electrons and let it equal +1 for e^{-}and ν_{e} and -1 fo. e and ν_{e}, these numbers ane conserved in all known reactions. Similariy, the lepton number I_{μ} seems to be conserved so far.
1.4 Dirac and lajorana Mass Tems

We have seen that the conventional theory of neutinos rests on two pillars. Firstly tiat the neutrino is massless and therefore only the left-handed neutrino and the righthanded anti-neuticino exist. Secondly that iamily lepton numbers L_{e}, L_{μ} etc. and theil sums are good quantur numbers conserved in all known feactions.

If neutrinos nave nonzero mass and if trie mass eicenstates and weal interaction eienstates do not coincide, then neutionos will oscillate. if there is such a mismatch, then we can expect a neutrino being pooduced in a weak process at $t=0$ and thereby being in a pure weak interaction eigenstate, to have a nonzero provability of having tusned into:
a) A neutrino from another family

This process conserves total lepton number $L^{-}=L_{e}+L_{\mu}+L_{\tau}$, but violates each family lepton number separately.
b) An antineutrino from the same or another family

$$
\begin{aligned}
& \nu_{e_{f}} \rightarrow\left(\nu_{e_{e}}\right)^{c} \\
& \nu_{e f} \rightarrow\left(\nu_{\mu_{e}}\right)^{c}
\end{aligned}
$$

where c. means charge conjugation. This process violates total lepton number $b_{y} \pm 2$ units.

The usual weak interaction hamiltonian is a sum of the neutral current contribution and a part of the form
$G / \sqrt{2} j_{\alpha} J^{\alpha}$ where j_{α} is $\left(\bar{v}_{e} r_{\alpha} e_{l}\right)+\left(\bar{v}_{\mu_{l}} r_{\alpha} \mu_{l}\right)+\left(\bar{v}_{\imath_{l}} r_{\alpha} \tau_{l}\right)+$ a hadronic current term. Cleamij. each term conserves both the separate family lepton numbers and the total lepton number. (i.e. $\bar{\nu}_{e}$ has -1 and e_{e} as +1 , thenerore the sum is zero in tie $\bar{v}_{e} \gamma_{a} e_{e}$ term describing the following vertex :
). Thus if neutrino oscillations are to occur. we need additional terms in the lagrangian which violate the total $I O_{i} I_{i}, i \pi e, \tau, \mu$. If we want to violate just the family lepton number: as a good quantum number, we can acid just a Dirac ter to the above ifailtonian of the form $\bar{\nu}_{R} M \nu_{L}$ where $\nu_{L}=\left(\begin{array}{c}\nu_{\alpha L} \\ \nu_{\mu_{L}} \\ \nu_{i+}\end{array}\right)$ and M is a 3×3 ias matrix. This coupling obviously needs ifent-nanded neutrinos which do not exist in the minimal conventional theories.

If however. we allow the change in bott the family and the total lepton numbess to be nonzero, then we nave a Majojana tesin in the amiltonian of the ronim $\left(\bar{\nu}_{L}\right)^{c} M \nu_{L}$ (ow $\left.\left(\bar{\nu}_{R}\right)^{C} M \nu_{R}\right)$. Ihis tem will violate the total lepton number by. ± 2 units).

2. GEAND UNIFLED MODELS

2.1 Introduction

The basic theory that lies behind "grand unification" is that there exists a simple local symmetry group G, which unifies strong, weak and electromagnetic interactions. Because it is a simple group it has only one Ire gauge coupling constant B , which evolves differently for all three interactions once we come dom below tic : and unit cation scale oi 10^{15} Gev. At this catrowely high momentum scale (which is nevertheless below $10^{19} \mathrm{Gev}$ at which quantum gravitational effects become appreciable), G breaks down to $S U(3)_{c} X U(2) X U(1)$ which further breaks down to $\mathrm{SU}(3)_{6} \mathrm{XU} \mathrm{U}(1)_{m}$ at lower momenta ($\sim 100 \mathrm{Gev}$).

Fig 2. Slow logarithmic variations in the $\operatorname{SU}(3), S U(2)$ and $U(1)$ gauge coupling constants

In Grand Unified Theories quarks and leptons share the
same representations of G. Furthermore electric charge operator is a generator of G and when it acts on the multiplet which contains both quarks and leptons, we get a relation between quark and lepton charges. Another consequence of making quarks and leptons share the same representation is
that we can expect to find some relationship between their masses and decrease the number of free parameters in the standard $S U(3)$ color plus Weinberg-Salam theories. Since gauge bosons link all particles in a multiplet, quaiks and leptons, sitting in the same representation, will interact through these bosons and change into each other. Thereiore, baryon and lepton number conservation will be violated.

So far, the only constraints imposed on G were that it has to contain $S U(3)_{c} X S U(2) X U(1)$ as a subgroup and after all the symmetry breaking stages as we move down on the momentum scale, the unified theory must reduce to our low energy standard theory. We impose two other conditions. which limit our choices as to what specific group G will be. First, G must admit a complex representation in order to accomodate the complex representation of fermions in the standard theory. Second, G must be renormalizable. This means that infinities deriving from higher order terms can be compensated by adding a finite number of cancelling terms and redefining only mass terms and coupling constants, so that the final result is a finite physical quantity. These conditions reduce our possibilities a good deal. Since $\operatorname{SU}(3)$. $\operatorname{SU}(2)$ and $U(1)$ have ranks of 2,1 and 1 respectively. the smallest rank we can allow is 4, and the only group of rank. 4 which satisfies these conditions is $\mathrm{SU}(5)$. It is the minimal grand unified "scenario".
2.2 The Standard Theory: QCD and Weinber-balam Gauge theories

We have seen that the conventional theory ol neutirinos rests on two assumptions. Linst that neutrinos are massless therefore only left-inaried neutrinos and ribithanded anti-neutrinos exist. Second that family lepton numbers I_{μ}. Ise and their sums are good quantum nuaveis conserved in all known reactions so far. Let us then examine the standard gauge theory of stiong, weak and electiomagnetic interactions to see how these phenomenological assumptions fit into the theory and then search fow ways of modifyine the theory to give us neutirino masses and lepton number violations.

The standard theory asse-ts that the minimal group needed to describe known phenomena is :

$$
\begin{equation*}
G^{2}=\operatorname{SU}(3)_{C} X \operatorname{SU}(2)_{L} X U(1) \tag{2.2-1}
\end{equation*}
$$

where $S U(3)$ (color group) is the gauge group responsible for strong interactions and $S U(2)_{L} X U(I)$ is the gauge group of Glashow-Weinberg-Salam " responsiole for unified weak and electromagnetic interactions.

Fermions, i.e.. leptons and quarks, are placed in the simplest possible representations of these groups in the minimal theory. Quarks have three colors red, yellow, blue, and both right-handed and left-handed quarks are triplets under $S U(3)$. Leptons do not participate in strong interactions so they are $\mathrm{SU}(3)_{c}$ singlets. Under $\mathrm{SU}(2)$, on the other hand left handed quarks and leptons are doublets. Righthanded quarks and leptons, excluding neutrinos are singlets. fight-handed neutrinos do not exist. So for each family. we have :

$$
\begin{aligned}
& \binom{u}{d}_{L}^{\text {red }}\binom{\dot{u}}{d}_{L}^{\text {rellow }}\binom{u}{d}_{L}^{\text {blue }} \quad \begin{array}{l}
U_{R}^{r}, U_{R}^{r}, u_{R}^{b} \\
d_{R}^{r}, d_{R}^{r}, d_{R}^{b}
\end{array} \\
& \binom{v_{e}}{e}_{L} \\
& ; \quad e_{R}
\end{aligned}
$$

In addition to fermions which aie spin one inalf particles. the standard theory includes spin one and spin zero particles. These are called gauge bosons and Higecs scalars respectively. Gauge bosons are always in the adjoint representation of the group. This principle determines theic number. The number of generators in the group equals the number of ouge bosons of the group. $\operatorname{SU}(3)$ has $3^{2}-1=8$ bosons called sluons; $\operatorname{SU}(2) X U(1)$ mix to give $\left(?^{?}-1\right)+1=4$ bosons, and the massless photon of $U(1)$ e.M.

Higes particles are introduced in order to break the gauge s, mmetry without lettin; the theory acquice unwanted infinities, i.e. without spoiline "renomalizabilit. The G^{2} group breaks down into $G^{\prime} \equiv S U(3) c X U(1)$ and the existence of these exact local sjmmetries results in the conservation of color and electric charge. It is believed that G^{2}. breaks down to G^{\prime} thiough the intervention of the Higgs doublet. Otner representations of the figes fields are excluded because this theos pedicts $\cos \theta=M_{w} / M_{z}$ which has been tested experimentally. ${ }^{12}$

2.3 Neutrino Masses in the Standard 'theory

The conventional fermion masses come lon Dirac couplings to the weinbere-salan $1=1 / 2$ nice fields of the form :

$$
\begin{equation*}
\binom{H_{I=1 / 2}}{\Delta L=0} \quad \bar{f}_{R} f_{L}+H . C . \tag{2.3-1}
\end{equation*}
$$

In the absence of a right-handed neutrino field, neutrinos can acquire mass from a majorana coupling of the form:

$$
\begin{equation*}
\binom{H_{工=1}}{\Delta L=2} f_{L} f_{L}+H . C . \tag{2.3-2}
\end{equation*}
$$

A majorana mass term is absent in the minimal weinbergSalem theory. because it ont, has a niger doublet and it conserves lepton number.

However, another theory is proposed by Gemini and koncadelli 1^{13}, which has been recently, elaborated by Georgi, Glashow and Nussinov. According to this model, a complex Highs triplet with an electrically neutral component, which can develop a vacuum expectation value is introduced into the standard theory. The triplet has $|\Delta L|=2$ and gives a major ana mass to neutrinos.

Denoting the complex triplet b. a 2×2 inatrix

$$
\left[\begin{array}{ll}
x^{0} & x^{-} / \sqrt{2} \tag{2.3-3}\\
x^{-} / \sqrt{2} & x^{--}
\end{array}\right]=x
$$

The usual doublet $\varnothing b_{j}$

$$
\left[\begin{array}{l}
\phi^{0} \tag{2.3-4}\\
\phi^{-}
\end{array}\right]=\varnothing
$$

The covariant derivative by
$D^{\mu}=\partial^{\mu}+i \frac{e}{\sin \theta} \vec{T} \cdot \vec{W}^{\mu}+i \frac{e}{\cos \theta} s V^{\mu}$
where \vec{T} is the generator of the $S U(2)$ and $i s$ of $U(1)$;
And defining the action of the generators upon the scalar
fields $\not \subset$ and χ as:
$\vec{T} \phi=\vec{\theta} \phi / 2$
$\vec{T} x=\vec{\theta} x / 2+x \vec{\theta} \star / 2$
$s \phi=-\phi / 2, \quad s x=-x$
E's are the Pauli spin matrices
We can write the most general Lagrangian :

$$
\begin{equation*}
\mathcal{L}(\phi, x)=\left(D^{\mu} \phi\right)^{+} D_{\mu} \phi++r\left[\left(D^{\mu} x\right)^{+} D_{\mu} x\right]-v(\phi, x) \tag{2.3-7}
\end{equation*}
$$

where V includes $\%$ arbitrary parameters $\lambda_{i g} i=1, \ldots 5 \quad U, V$. V vanishes when $X^{0}=v / \sqrt{2} ; \quad \phi^{0}=v / \sqrt{2}$
If we take these to be the vacuum expectation values. then

$$
\begin{equation*}
M_{w}^{2} / M_{z}^{2}=\cos ^{2} \theta\left(u^{2}+2 v^{2}\right) /\left(u^{2}+4 v^{2}\right) \tag{2.3-9}
\end{equation*}
$$

But experimentally $M_{w} / M_{z}=\cos \theta$ therefore we deduce that $v \ll U$. The figs doublet and triplet together contain ten real fields. Of these, three are eaten up by the riggs mechanism, one is the Goldstone boson called Majoron, and the rest are massive. Of these remaining six massive particles, two are neutral, one is singly and the other is doubly charged. Of course, the coupling of X to leptons is of the form $\bar{\psi}_{R}^{C C} X^{+} \psi_{L}^{l}$.

As we have seen. B-L symnetri, is spontaneously broken in the model by a small vacuum expectation value of a Hibes triplet. A right-handed neutsino is not introduced, but the left-handed neutrino obtains a majorana mass.

Once we leave the realm of standard theories, otner models and rich possibilities open up; leading to theowies which $G O$ beyond the $G^{2}=S U(3)_{C} X S U(2) X U(1)$ group and including it as a subgroup. Advocating that G^{2} is a low energy relic of a bigger group which generates all interactions, Grand Unified theorists strive to answer questions unsolved by standard theories; such as why charge is quantized, why there are three families and why there is more than one coupling constant.
2.4 The SU(5) Grand Unified Model ${ }^{15}$

Let us first analyze the $\mathrm{SU}(5)$ grand unified model in terms of its gauge boson. Higgs meson and fermion content and see how the representations to which these particles belong decompose under $\operatorname{SU}(3) \mathrm{X}$ SU(2) subgroups. Gauge bosons necessarily belong to the adjoint representation $24=5^{2}-1$. This representation decomposes under $\operatorname{SU}(3) \times \operatorname{SU}(2)$
as $\quad 34=(3,2)+(3,2)+(8,1)+(1,3)+(1,1)$ (2.4-1)

The part inside curly brackets is familiar. These are the twelve bosons of the standard theory: Eight gluons, singlet under $\mathrm{SU}(2)$, and two color singlets combining to form $W^{ \pm}, Z^{0}$, \boldsymbol{r}. The remaining two (3.2) and ($\overline{3}, 2$) represent the isodoublets called X and Y, two superheavy bosons which come in three colors and have charges of $4 / 3$ and $1 / 3$ respectively.
$\operatorname{SU}(5)$ breaks down to $\mathrm{SU}(3) \times \operatorname{SU}(2) \mathrm{X} U(1)$ through the Higgs 24 -plet \varnothing; then $S U(3) X \operatorname{SU}(2) X U(1)$ breaks down to $S U(3) \times U(1)$ through the Higes $5-$ plet H^{H}. The vacuum expectation values of these mesons are
$\underbrace{0\left(10^{15}\right) \operatorname{Gom}}_{v}\left(\begin{array}{ccc:c}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ \hdashline 0 & & -3 / 2 & 0 \\ \hdashline & 0 & 0 & -3 / 3\end{array}\right)=\langle 0| \phi|0\rangle$
$\underbrace{0(100) G e v}_{V_{0}}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 / \sqrt{2}\end{array}\right)=\langle 0| H|0\rangle$
$\langle 0| \phi|0\rangle$ ives mass to X and Y bosons; <olio> b ives mass to the

$M_{x}^{2}=M_{y}^{2}=\frac{25}{8} g^{2} v^{2} \quad ; \quad m_{w \pm}^{2}=\frac{1}{4} g^{2} v_{0}^{2}$

Under SU(3) X SU(2) the 5-plet decomposes as
$\underline{5}=(3,1)+(1,2)$. The $(1,2)$ part is the isospin doublet which gives mass to fermions in the standard theory and achieves the breaking down of $\operatorname{SU}(3) \times \operatorname{SU}(2) \mathrm{X} U(1)$ to $\mathrm{SU}(3) \mathrm{X} U(1)$. The (3,1) part has a zero vacuum expectation value, because it is both colored and charged. It is superheavy and it also mediates proton decay.

Fermions are grouped into 15-dimensional reducible representations $12=\overline{5}+10$.

$$
\left.\overline{5}=\left(\begin{array}{l}
\bar{d}_{r} \tag{2.4-4}\\
\bar{d}_{y} \\
\bar{d}_{b} \\
e^{-} \\
\nu_{e}
\end{array}\right)_{L}=(\overline{3}, 1)+(1,2) \quad \text { of } \operatorname{su(} 3\right) \times \operatorname{su}(2)
$$

$10=1 / \sqrt{2}\left(\begin{array}{ccccc}0 & \bar{u}_{b} & -\bar{u}_{y}-u_{r}-d_{r} \\ -\bar{u}_{b} & 0 & \bar{u}_{r} & -u_{y}-d_{y} \\ \bar{u}_{y} & -\bar{u}_{r} & 0 & -u_{b} & -d_{b} \\ u_{r} & u_{y} & u_{b} & 0 & -e^{+} \\ d_{r} & d_{y} & d_{b} & e^{+} & 0\end{array}\right)_{L}=(3,2)+(\overline{3}, 1)+(1,1)$

Five is the fundamental representation of $\mathrm{SU}(\sqrt{\prime})$ and ter is the antisymmetric part of the product of two fives: $5 \times 5=15+10$. Where 15 is symmetric and 10 is antisymmetric.

Before we go on to examine neutino masses, we note some properties of the minimal grand unitied group SU(レ). Even though $\mathrm{SU}(\mathrm{b})$ is not a sale group the anomalies of each of the two irreducible repesentations $\overline{5}$ and 10 cancel. Therefore this particular reducible representation 15 is renornalizable. In $S U(5)$ the electric charge operator Q is a generator of the group. Therefore it is traceless and the sum of the electromagnetic charges in any representation must be zero. Taking $\overrightarrow{5}$:

$$
\left.\begin{array}{rl}
3 Q_{J}+Q_{e}+Q_{\nu} & =0 \tag{2.4-6}\\
Q_{\nu} & =0
\end{array}\right\} \quad \begin{aligned}
Q_{d} & =-1 / 3 Q_{e}^{-} \\
Q_{d} & =-1 / 3
\end{aligned}
$$

Another property of $S U(5)$ is that baryon minus lepton number. B-L, is conserved. B-L Elobal symetry is a linear combination of two symetries V_{1} and $l(1) ; V_{1}$ global symmetry is defined by the following transiomations which leave the Lagrancian invariant.

$$
\left.\left.\begin{array}{l}
\psi_{10} \rightarrow e^{i \phi} \Psi_{10} \tag{2.4-7}\\
\Psi_{5} \rightarrow e^{-3 i \phi} \psi_{5}
\end{array}\right\} \text { Fermions } \quad \begin{array}{ll}
H_{5} \rightarrow & e^{-2 i \phi} H_{5} \\
\phi_{24} \rightarrow & \phi_{24}
\end{array}\right\} \text { Higgs }
$$

$U(1)$ symmetry in $S U(5)$ is identified with the hypercharge $Y=Q-T_{3 L}$ where Q is the charge operator and $T_{3 L}$ is the third component of the weak $\operatorname{SU}(2)$ isospin. Now even though V_{1} Elobal symmetry is spontaneously broken, there are no massless Goldstone bosons around because a linear combination of and $U(1)$ remains unbroken. To find out what linear combination this is, one solves ${ }^{17}$

$$
\begin{equation*}
\left[a V_{1}+b Y\right]\left|H_{5}\right\rangle=0 \tag{2.4-8}
\end{equation*}
$$

since the definition of an unbroken symmetiy eeneiator L is $L|v\rangle=0$ where $|v\rangle$ is the vacuum state. Wirten explicitly,

We note that there is another global U(1) symmetry left
intact after the spontaneous beakdown. This is the B-L
global symmetry.
$B-L \propto a v_{1}+b Y \propto V_{1}+4 Y=1 / 5\left(V_{1}+4 Y\right)$
2. 5 meutrino Hasses in the $\mathrm{SU}(\dot{)}$) wodel

In the minimal $\operatorname{sif}(5)$ model fermions acquire mass through $\overline{5} \times 10$ and 10×10 couplings.

$$
\begin{align*}
& \overline{5} \times 10=5+45 \tag{1}\\
& 10 \times 10=\overline{5}+45+50 \tag{2}
\end{align*}
$$

Thererore, the rifess multiplet wiving mass to fermions should belong to 5 or 42 of $\mathrm{SU}(\mathrm{b})$. Since down quarks and charged leptons get masses through (1), while up quarks eet
masses through (2), we can relate the masses of down quarks and charged leptons for each family. Ier us use the simplest case, just a licks 2. The part of the a anglian mich denotes tic , mass of fermions is ${ }^{18}$

$$
\begin{equation*}
\mathcal{L}_{f}=1 / 2\left(x^{+}\right)^{\alpha \beta} \gamma^{0} M_{1}\left[H_{\alpha} \psi_{\beta}-H_{\beta} \psi_{\alpha}\right]-1 / 4 \epsilon^{\alpha \beta \gamma \delta \epsilon} x_{\alpha \beta} M_{2} H_{r} X_{\delta \epsilon} \tag{2.5-1}
\end{equation*}
$$

$$
\text { whose } \begin{aligned}
\Psi_{\alpha} & \rightarrow \text { fermion } 5 \\
& X_{\alpha \beta} \rightarrow \text { fermion } 10 \\
& M_{1,2}
\end{aligned}
$$

Concentrating on the first term only and diagonalizing M_{1} by rotating ψ and X. we notice that the vacuum expectation value of the Hides $\underline{5}$ gives a mass term

$$
\begin{equation*}
\mathcal{L}_{f} \ni \sum_{\beta=1,2,3,4} V_{0}^{-}\left(x^{+}\right)^{5 \beta} r^{0} \cdot M_{1}^{0} \psi_{\beta} \tag{2.5-2}
\end{equation*}
$$

For each family this means:

$$
\begin{equation*}
m_{d}=m_{c}, \quad m_{s}=m \mu, \quad m_{b}=m_{\tau} \tag{2.5-3}
\end{equation*}
$$

Thus, we arrive at the crucial issue of neutrino masses in $S U(5)$. In the minimal standard version of the $S U(5)$ model, all neutrino masses are zero. No Dirac mass term $\bar{\nu}_{R} \nu_{L}$ is allowed, since there is no right-handed neutrino in the $\overline{5}+10$ representations of fermions. On the other hand, the Majorana mass term $\mathcal{V}_{L} \mathcal{V}_{L}$ is also forbidden, because $B-L$ is a conserved number in $\mathrm{SU}(5)$. There are two mechanisms used to introduce neutrino mass into $\mathcal{S U}(5)$ theory. One is to put in ν_{R} by hand as an extra singlet of $\operatorname{SU}(5)$. Then. the Lagrangian will include a tern proportional to $\bar{\nu}_{\boldsymbol{R}} H_{\alpha} \psi^{\alpha}$ and the vacuum expectation value of the Hies $\frac{5}{2}$ will give mass to the neutrinos.

Another method is to look at the post $\cup \cup(\vdash)$ scale. Since the grand unification mass is only a lew oidens below the scale where gravity effects become appreciable, we may not be able to ignore the flanck mass scale. We may expect terms with two fermions coupled to two Miggs particles. scaled by an inverse power of the Planck mass. These teras. however. are non-renormalizable.

In addition to equations (1) and (2) fermion masses can arise from a coupling of the form

$$
\begin{equation*}
\overline{5} \times \overline{5}=\overline{15}+\overline{10} \tag{3}
\end{equation*}
$$

Using the first two equations, we have the allowed f $\overline{5}$ fio H_{5}^{-} and frofio H5 mass terms. which admit tie global U(I) gauge transformation (2.4-7) and conserve 8-L rumber. Equation (3) would have given mass to neutiinos of the form $f_{5} f_{5} H_{5} \quad$ if we had a Hiegs 15 in the minimal SU(5) model.

Using just a Hiees 24 and a Higes $\frac{5}{-}$ we consider the products of pairs of i ifges repsesentations :
$5 \times 24=5+45+70$
$5 \times 5=10+15$
We may have effective interactions of the form :
O ($\left.1 / m_{p}\right) f_{5} f_{10} H_{5} H_{24}$
O ($\left.1 / \mathrm{mp}_{\mathrm{p}}\right) f_{10} f_{10} H_{5} H_{24}$
$0\left(1 / m_{p}\right) f_{5} f_{5} \quad H_{5} H_{5}$

Equation (1) will modify (2.5-3) ; (2) will modify quark masses. but both of these will leave the global symmetry (2.4-7) and thereby B-L consevation intact. Only (3) will generate a Majorana neutrino mass of the order: $10^{-5} \mathrm{e}$ and violate the B-L conservation.

2.6 The SO(10) Grand Unified Model

As we have done for $S U(5)$. we can now examine the next smallest ranking grand unified aodel, $S O(10)^{20}$ in terms of its gauge boson, Higgs meson and fermion content, review their decomposition under $\mathrm{SU}(5)$ and finally see what tnis theory predicts for neutrino masses.

SO(10) is an orthogonal group of wank 5 and the gauge field associated with it transforms in the $45=(10 \times(10-1)) / 2$ dimensional adjoint representation. which transforms as a second rank antis, mmetric tensor. Under $\operatorname{SU}(5) .45$ decomposes as $24+10+\overline{10}+1$. The 24 represents the now familiar $\mathrm{Sl}(5)$ gauge bosons. The remaining 21 bosons are superheav, ones mediating proton decay.

The $S O(10)$ model is very ilexible in terms of the Higes meson content, because there are many ways of bueakin; $\mathrm{SO}(10)$ down to $\mathcal{S U}(3) \mathrm{Y} \operatorname{SU}(2) \mathrm{X} U(1)$. For example:

Concentrating on the most familiax path 3 , we note that the minimal set realizing this chain of symetw brearing is :

Since 45 decomposes as $24+10+\overline{10}+1$ as indicated above. and 10 decomposes as $5+\overline{5}$ we mecovex the digbs mesons of SU(5); namely the 24 -plet and 5 -plet that accomplish the breakdown of $\mathrm{SU}(\grave{y}$).
fermions ace all contained in the sixteen dinensional irreducible spinor representation of $30(10)$. Since 16 decomposes as $\overline{5}+10+1$, we recover the $S U(5)$ fermion content with $5+10$. 1 is the right-handed neutrino. The Hices particles that can couple to fermions in the $S O(10)$ model, thereby eiving mass to fermions, should appear in the decomposition of the product 16×16 under $16(5)$.

$$
16 \times 16 \cdot 10+120+126
$$

The 10 is a vector, the 120 is a thisd rank antismmetric tensor and the 126 is a fifth rank antisymmetric tensor. Let us analyze these three representations for their $\operatorname{Su}(\downarrow)$ content:

$$
\begin{align*}
& 10=\overline{5}+5 \\
& 120=45+45+10+\overline{10}+5+\overline{5} \\
& 126=50+45+\overline{15}+10+5+1 \tag{2.6-3}
\end{align*}
$$

We notice that only the 126 contains an $\operatorname{SU}(5)$ singlet component. Therefore, only the 126 can give the right-handed neutrino a mass at the tree level.
$B-L$ operator is a generator of $S O(10)$ denoted by $B-L=$ $2 Q-\left[T_{3 L}+T_{3 R}\right]$. Since it represents a gauge symmetry,
it has to be broken at least locally. Eurthermore.
belongs to the cartan algebra of the group. Therefore we cannot break this symmetry b the vacuum expectation value of the adjoint 45. Wie can break i.t either through some Hiegs mesons(which also couple to ternions) or we can put in some other Higes mesons explicitly for this purpose.

If we choose the first way we can use the part of ifiges 126 that transforms as 10115 under $\mathrm{Su}(\mathrm{b})$. These a-e the ones that couple to left and right-handed neutsinos. respectively. ${ }^{2}$ For the second method, we can use a higes 16-plet, which has both neutral entries हetting a nonzero vacuum expectation value. İ only one does, then B-L will still be conserved.
2.7 Neutrino Masses in the $\mathrm{SO}(10)$ fodel

As we have seen. the right-handed neutrino exists in $S O(10)$, therefore the $\bar{\nu}_{A} V_{L}$ Dirac mass term is allowed. Furthermore because B-L is a generato. of the group and there are no massless Goldstone bosons ayound. it must be violated. If $B-L$ is broken $\nu_{L} \nu_{L}$ and $\nu_{R} \nu_{R}$ type majoiana terms are allowed. So, $S O(10)$ does preaict neutrino masses naturally, unless there are some secret symmetries preventing it. We shall go through two models in detail : Tne Geoigí Nanopoulos model ${ }^{23}$ and the Witten ${ }^{24}$ model.

Georei and hanopoulos introduce an extra newtral leproit singlet E_{L} wach couplew the fen in lemet though the Higgs 10-plet. As we have seen beioce uns iges field has two neutal components whici rive a vacum expectation value and break B-L symmetry Globally. If only one neutral component has a nonzero vaclum expectation value the will be broken locally only and E_{L} and ν_{R} will bain a large Dirac mass and our faniliaw left-handed neutrino will remain massless. However. if the other neutial conponent of the Higes 16-plet also gets a vacuum expectation value, then ν_{L} will get a small Hajcrana mass in tie form $E_{L} \nu_{L}$.

This addition of an extra singlet as in the $\mathbb{U U}(y)$ model is a little arbitrary and this defect is remedied in Nitten's model. Witten's argument goes like tris: in $\operatorname{SU}(10)$. the risht-handed and left-nanded neutsinos will couple to eet Dirac masses comparable to the usual quark and lepton masses. Since we know that the left-hanced neutrinos are relativels light, if not massless, then this large Dirac mass temm must be avoided. This can be done b_{j} giving the right-handed neutrino a large Majorana mass. In matrix lown without the Majorana mass, the mass matrix would be :

$$
\nu_{R} \quad\left(\begin{array}{cc}
\nu_{R} & \nu_{L} \tag{2.7-1}\\
0 & m \\
m & 0
\end{array}\right)
$$

where m has the magnitude of a quarr or lepton rass. However. When we add a large Hajo-ana mass M, then the mass matrix becones :

Thé eigenvalues are approximately M and m^{2} / M these being the masses of the cight and leit-handed neutrinos. respectively.

As we have seen the only niges multiplets tiat can couple to fermions are those that appear in the product 16×16, namely 10,120 and 120. Since only 120 contains
an $u(g)$ singlet and since the $\cdot i$ mht-handed neutioino is a singlet, only 126 can give it mass at the tree level. However this value of mass M will then be a iree parameton. To avoid this Witten tries other metroas. His proposal is that the right-handed neutrino neceives a mass at the two loop level.

In the minimal form of the $\mathrm{SO}(10)$ model oniy Hi (30s l0-plet and gauee field 45 couple directly to lesuions. Also, Higes 16-plet is necessax, botn to brear $\mathrm{NO}(10)$ down to SU(5) and to break B-L symmetry. Hurtnemose, in ordes. to compensate for the higes l2o-plet, wica is a filth rank tensor, we need a vector and two second rank tensons. jo we need a 10 and two 45's coupling to iedmons. In adition, we ane allowed to use siges lo-plet. but not in cinect coupling to femions. Given ti.ese rules, we two loop adaram je ar ollowa :

Fi 3. The two loop diacen tsat aves aass to the ri...tnanded neutrino. S:own in parentheses are tio $U(10)$ and $S U(5)$ transfomation properties of eaci iicld.

~-

Gauge field A μ
fermion
Higes 10-plet
hie lemplet
Highs vacuum expectation value
$A: \quad \begin{array}{rlr}16 \times 10 & \supset \overline{16} & (S D(10)) \\ 5 \times \overline{5} & \supset 1 & (\operatorname{SU}(5))\end{array}$
$\mathcal{L} \supset g_{\text {yukawa }} \psi \bar{\psi} H_{10}$
$B: \quad \overline{16} \times \overline{16}>10$
5×125
$\mathcal{L} \supset \mu \mathrm{H}_{\overline{6}} \mathrm{H}_{\mathrm{ic}} \mathrm{H}_{\overline{10}}$
C :
$\overline{16} \times 45 \times 45>\overline{16}$
$5 \times 10 \times 1021$
$\mathcal{L} \supset g^{2}\left[\left(\vec{\imath} \cdot A_{\mu}\right) H_{16}\right]^{*}\left[\left(\vec{\imath} \cdot A_{\mu}\right) H_{16}\right]$
D : $\quad 16 \times \overline{16} \supset 45$
1×102.10
$\mathcal{L} \supset g \bar{\psi} Y_{\mu}\left(\vec{A}_{\mu} \cdot \vec{Z}\right) \psi$
E: $\quad 16 \times 45$ つ 16
$10 \times 10 \supset \overline{5}$
$\mathcal{L} \supset g \bar{\psi} \gamma_{\mu}\left(\vec{A}_{\mu} \cdot \vec{Z}\right) \psi$
Let us estimate the mass that the right-handed neutrino receives from this diagram. We let $[k]$ denote the contribution from the loop integral. We consider all the coupling constants at the vertices and the vacuum expectation values of the Hied fields. So we write a general expression :

$$
\begin{equation*}
m_{\nu_{R}} \sim g^{4} g_{\text {yukawa }} \mu\left\langle\phi_{16}\right\rangle\left\langle\phi_{16}\right\rangle[k] \tag{2.7-4}
\end{equation*}
$$

Since gykawa is a free parameter, in order to estimate
its value we note that the Higus 10 couples to doth quarks and vector bosons
$g_{\text {yukawa }}\left\langle\phi_{10}\right\rangle \psi \bar{\psi} \sim m_{9}$

$$
\begin{equation*}
g^{2}\left\langle\phi_{10}\right\rangle\left\langle\phi_{10}\right\rangle A_{\mu} A_{\mu} \sim m_{w}^{2} \tag{2.7-5}
\end{equation*}
$$

where m_{q} is the mass of quarks and m_{w} is the W boson mass. from (2.7-5) we get

$$
\begin{equation*}
g_{\text {yukawa }}=9 \frac{\mathrm{mq}_{\mathrm{q}}}{\mathrm{mw}} \tag{2.7-6}
\end{equation*}
$$

We find the contribution from the integrals using the following formula
$[k]=\wedge^{k}$
$k=p-(3 / 2) m-n$
$P=$ external lines $\quad(=4)$
$m=$ fermion lines $\quad(\approx 2)$
$n=$ boson lines $\quad(=2)$
$\hat{\lambda}=$ cut off

We get $k=-1$. All masses appearing in this diagram (vacuum expectation values and cut offs) are superheavy masses. Let us denote this scale as M. Using (2.7-6) and (2.7-7), (2.7-4) becomes

$$
\begin{equation*}
m_{\nu_{k}} \sim g^{4}\left(g m_{q} / m_{w}\right) \mu M^{2} / M \tag{2.7-8}
\end{equation*}
$$

If we use the following numbers

$$
\begin{align*}
& M \sim 10^{15} \text { Gev } \\
& g^{2} \sim \alpha / \pi \sim 2 \times 10^{-3} \\
& g \sim .05 \\
& \mu \sim 1 \\
& M_{w} \sim 20 \mathrm{Gev} \tag{2.7-9}
\end{align*}
$$

then we get

$$
\begin{equation*}
m_{v_{R}} \sim 4 \times 10^{-6} \times .05 \times .05 \times 10^{15} \mathrm{mq} \sim 10^{7} \mathrm{mq} \tag{2.7-10}
\end{equation*}
$$

We can estimate the mass that the left-handed neutrino gives from this process, since we know that $m_{\nu_{h}}=m_{q}{ }^{2} / m \nu_{R}$ So,

$$
\begin{equation*}
m_{v_{L}} \sim m_{q}^{2} \times\left(M_{w} / m_{q}\right)^{2} \times 1 / g \mu \times(\alpha / \pi)^{-3} \times 1 / M \tag{2.7-11}
\end{equation*}
$$

With our previous numbers this means that for each generation

$$
\begin{aligned}
& m_{\nu_{L}}=10^{-7} m_{q} . \text { Or explicitly: } \\
& m_{\nu_{L}} \sim 1 \mathrm{eV}, m_{\nu_{\mu}} \sim 100 \mathrm{cV}, m_{\nu_{t}} \sim 1-10 \mathrm{keV} .
\end{aligned}
$$

These estimates. although consistent with laboratory bounds on these masses. violate cosmological constraints, which say that the sum of all neutrino masses must be less than 40 eV . Hence, the estimated neutrino masses must be suppressed by a factor of 10^{2}. which means that the righthanded neutrino mass must be larger by a factor of 10^{2}. One obvious way of achieving this is by estimating to be $10^{19} \mathrm{GeV}$, i.e.. the Plans mass.

In order to estimate corrections rom higher order

 diagrams. we next consider one possible tare loop process. Since 10 X 10 contains a 42 instead of getting an effective 126 from $10 \times 45 \times 45$ we , wet it from $10 \times 10 \times 10 \times 4 \%$. So we consider the following process :

Fig 4. The three loop process that gives mass to the righthanded neutrino

We need to check only three vertices this time since the others are just like the two loop process.

F: $\begin{aligned} 10 \times \overline{16} & >16 & (50(10)) \\ 5 \times 5 & \supset 10 & (S \cup(5))\end{aligned}$
\& つ grukawa $\psi \bar{\psi} H \overrightarrow{i o}$
$G: \quad 10 \times 10 \supset 45$
$5 \times 5 \supset 10$

$$
\begin{equation*}
\mathcal{L} \partial g\left[\partial_{\mu} \phi^{*}\left(\lambda_{\mu} \times \phi\right)\right] \tag{2.7-12}
\end{equation*}
$$

II: $\quad T_{6} \times T_{16}>10$
5×125
$\mathcal{L} \supset 9$ yukawa $\psi \bar{\psi} H_{10}$

We can estimate the right-handed neutrino mass

$$
\begin{equation*}
m_{v_{R}} \sim g_{\text {yukawa }}^{3} g^{4} \mu\left\langle\phi_{16}\right\rangle\left\langle\phi_{16}\right\rangle[k] \tag{2.1-13}
\end{equation*}
$$

Using (2.7-6) and (2.7-7) we get
$m_{V R \sim}\left(\frac{m_{q}}{m_{w}}\right)^{3} g^{3} g^{4} \mu \frac{M^{2}}{M}$ $\sim\left(\frac{m_{q}}{m_{w}}\right)^{3}\left(\frac{\alpha}{\pi}\right)^{3} g \mu M$

Using our previous numbers and letting m_{q} be around 1 ven. (2.7-14) Gives

$$
\begin{align*}
m_{v_{k}} & \sim(.05)^{3} \times\left(8 \times 10^{-9}\right) \times .05 \times 10^{15} \mathrm{Gev} \\
& \sim 50 \mathrm{Gev} \\
& \sim 50 \mathrm{mq} \tag{2.7-15}
\end{align*}
$$

Comparing 50 mg with $10^{7} \mathrm{mg}$. we conclude that the higher order corrections do not contribute to any significant derive.
3. NEU'RINO OSCILLATIONS

So far we have seen how some theories predict nonzero neutrino masses. how let us direct our attention to one possible effect of such a prediction. If neutrinos have mass they may display the phenomenon of neutrino oscillations. This phenomenon occurs. because mass eigenstates and weak interaction eigenstates do not coincide.

Let $\left|V_{0}\right\rangle$ be a mass eigenstate of the Hamiltonian, ice., $H\left|V_{\sigma}\right\rangle=E_{\sigma}\left|V_{\sigma}\right\rangle$. Then we can express $\left.V_{e}\right\rangle$, the weak interaction eigenstate as a superposition of these:

$$
\begin{align*}
\left|\nu_{e}\right\rangle=\sum_{\theta} U_{e \sigma \mid}\left|\nu_{\theta}\right\rangle \quad & \quad \\
& =e, \mu \ldots \tag{3-1}\\
& \theta=1,2 \ldots
\end{align*}
$$

and,

$$
\begin{equation*}
\left|\nu_{\sigma}\right\rangle=\sum_{e} U_{e \sigma}\left|\nu_{e}\right\rangle \tag{3-2}
\end{equation*}
$$

where U is an orthogonal $n x$ matrix for a theory in which the lagrangian is $C-P$ invariant and n is the number: of families existing in nature.

Let a neutrino produced in a weak interaction and thereby in a pure state $\left|\nu_{c}\right\rangle$ at time 0 . be given $b_{j}\left|\nu_{c}(t)\right\rangle$ at a later time t. Then.

$$
\begin{equation*}
\left|\nu_{c}(t)\right\rangle=e^{-i H t}\left|\nu_{c}\right\rangle=\sum_{\sigma} L_{l} \sigma e^{-i E_{\sigma} t}\left|\nu_{\sigma}\right\rangle \tag{3-3}
\end{equation*}
$$

After we substitute for $\left|v_{e}\right\rangle$ in terms of $\left|v_{\sigma}\right\rangle$. Now let us go back and substitute for $\left|\nu_{\sigma}\right\rangle$ in terms of a primed set $\left|V_{e}{ }^{\prime}\right\rangle$

$$
\left|\nu_{e}(t)\right\rangle=\sum_{\sigma} u_{e \sigma} e^{-i E_{\sigma} t}\left(\sum_{e^{\prime}} u_{e^{\prime} \sigma}\left|\nu_{e^{\prime}}\right\rangle\right)
$$

$$
\text { - } \quad(3-4)
$$

The probability amplitude of finding ν_{i} chanced into ν_{e}, after a time t is given by $: \sum_{\sigma} U_{C \sigma} U_{e^{\prime} \sigma} e^{-i E_{\sigma} t}$.

And the transition arnplitude is ;iven b_{i} the seal part oi the square of this term :

$$
\begin{equation*}
P_{e \leftrightarrow e^{\prime}}=\sum_{\sigma \sigma^{\prime}} U_{e \sigma} U_{e^{\prime} \sigma} U_{e \sigma^{\prime}} U_{e^{\prime} \sigma^{\prime}} \cos \left(E_{\sigma}-E_{\sigma^{\prime}}\right) t \tag{3-5}
\end{equation*}
$$

Now to see what these formulas mean. let us look at a simple theory with two families only. A general form too
a 2×2 orthogonal matrix is

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{3-6}\\
-\sin \theta & \cos \theta
\end{array}\right) \quad \begin{aligned}
& u_{e 1}=\cos \theta \\
& u_{e_{2}}=\sin \theta \\
& u_{\mu 1}=-\sin \theta \\
& u_{\mu 2}=\cos \theta
\end{aligned}
$$

The transition provability for an electron neutrino to chance into a muon is given b_{j} :

$$
\sum_{\substack{0, \sigma^{\prime} \\ \theta_{0}^{\prime}=1,2}} \text { Leo U } U_{\mu \sigma^{\prime}} U_{\mu \sigma} U_{e \theta^{\prime}} \cos \left(E_{\sigma}-E_{\sigma^{\prime}}\right) t
$$

Writing this out we get :
Wei $U_{\mu 1} U_{e 1} U_{\mu 1} \cos O+U_{e 1} U_{\mu 1} U_{e 2} U_{\mu 2} \cos \left(E_{1}-E_{2}\right) t+$ $U_{e 2} U_{\mu_{2}} U_{e 1} U_{\mu 1} \cos \left(E_{2}-E_{1}\right) t+U_{e 2} U_{\mu_{2}} U_{e 2} U_{\mu_{2}} \cos O$ $=2 \cos ^{2} \theta \sin ^{2} \theta-2 \cos ^{2} \theta \sin ^{2} \theta\left(E_{1}-E_{2}\right) t$
$=1 / 2 \sin ^{2} 2 \theta\left(1-\cos \left(E_{1}-E_{2}\right) t\right)$

Similarly. the transition probability of finding an election neutrino at a time t after "creation" in a weak process is $1-1 / 2 \sin ^{2} 2 \theta\left(1-\cos \left(E_{1}-E_{2}\right) t\right)$. This is equal to 1 only if the mixing angle θ is O or $E_{1}=E_{2}$, i.e.. mass eigenstates are degenerate.

For this simple case we can show that:
$\tan 2 \theta=2 m_{\bar{\mu} e} / m_{\bar{\mu} \mu}-m_{\bar{\tau}}$
$m_{1,2}=1 / 2\left(m_{\bar{e}}+m_{\bar{\mu} \mu \pm} \sqrt{\left(m_{\bar{e} e}-m_{\mu} \mu\right)^{2}+4\left(m_{\bar{\mu} c}\right)^{2}}\right)^{*}$

For the oscillations to take place. we need $\theta \neq 0$ and m, $\neq m_{2}$. This will happen if $m_{\mu e}$ and at least one of the paraneters $m_{\text {ae }}$ and $m_{\mu \mu}$ is nonzero.
4. COnclusion

We can now briefly mention some phenomenological manifestations of nonzero neutrino maises. The first is the f'amous "solar neutrino puzzle". Davis and collaborators have been conducting an experiment in which solar neutrinos, hitting a detector target of chlorine at a depth of 4400 inetres convert some chlorine to arçon.

$$
\begin{equation*}
\nu_{p}+{ }^{37} \mathrm{Cl} \longrightarrow e^{-}+{ }^{37} \mathrm{Ar} \tag{4-1}
\end{equation*}
$$

Extracting argon and counting the number of "events" the experimentors found that the sola neutrino thux is much smaller than it should be. One possible solution would be that solar neutrinos are changing into othez neutrinos on their waj from the sun to tire earth. Whererere we on ear.th cannot detect thera all in an experment desioned to trace only election neutifinos.

Of course, the ereatest loophole in this expcrinent is that it is very hard to perdict the intenisity expected in the absence of oscillations. It turns out that in tiin particular Chlorine-Areon experiment, the uncertaint ${ }_{j}$ affectine the flux is quite laree. Co remed this. a Gallium experiment is designed. The expected ilux can be calculated in a reliable wav if low energ ($E<.4 \mathrm{Mcv}$) neutrinos emitted in the $p+p \rightarrow d+e^{+}+\nu e$ reaction can be detected. The Gallium experiment is sensitive to low energ neutrinos. The reaction coes like this :

$$
\begin{equation*}
v_{e+}{ }^{71} G_{a} \rightarrow{ }^{71} G_{e}+e^{-} \tag{4-2}
\end{equation*}
$$

Gallium replaces chlorine and gemanium replaces arison. One big obstacle against the realization of this experiment is financial; the amount of gallium requined is more than the annual slobal production.

In addition to the appasent deficit oi solar neutrinos. the existence of substantial amounts of non-luminous mass in the universe may be an indication for a nomzero neutrino mass. Of course. this mass does not have to weside in the form of massive neutrinos. However, if the neutrino masses explain the "missing mass" in the universe, this would imply that the neutrino mass is significant enough to provide sufficient mass to stop the explosion of the universe and make it collapse back onto itself.

All this is rather far-fetched. However. it is obvious that the neutrino mass problem is closely related to some cosmological problems. The most staingent bound on neutrino mass is of cosmolocical ougin. If the total neutrino mass remaining from the big bang is not to exceed the total cosuic mass densit, the sum of all neutrino masses must be less than 40 ev. Mhis close connection to cosmological mysteries makes the neutrino mass question and all possible manifestations of it, like neutrino oscillations, very intriguinc.

I would like to thank my adviso Metin Arrk fou his guidance and patience.

A massive $\operatorname{spin} 1 / 2$ particle obeys the Dirac equation

$$
\begin{equation*}
\left(i r^{\mu} \frac{\partial}{\partial x^{\mu}}-m\right) \psi=0 \tag{A-1}
\end{equation*}
$$

where Ψ is a four component spinor describing the two spin states of the particle wave function ana the two spin states of the anti-particle wave function.

Using the following weyl representation for the gama matrices :

$$
r^{0}=\left(\begin{array}{cc}
0 & -\frac{I}{\sim} \tag{A-2}\\
-I & 0
\end{array}\right) \quad r^{k}=\left(\begin{array}{cc}
0 & {\underset{\sim}{\sim}}^{k} \\
-{\underset{\sim}{\sigma}}^{k} & 0
\end{array}\right) \quad k=1,2,3
$$

with the wave function ψ written as :

$$
\psi=\left|\begin{array}{l}
u \tag{A-3}\\
v
\end{array}\right|
$$

where U and V are two component spinous, we can express the Dirac equation as two coupled equations

$$
\begin{align*}
& i \partial v / \partial t+i \theta \cdot \nabla u=-m v \\
& i \partial v / \partial t-i \sigma \cdot \nabla v=-m u \tag{A-4}
\end{align*}
$$

If the fermion is massless. these two equations are coupled. Using $\hbar=c=1$ notation:

$$
\langle i \partial / \partial t\rangle=E \quad\langle i \cdot \nabla\rangle=\langle\beta\rangle
$$

F'ON a massless particle $\langle E\rangle=\langle\vec{p}\rangle$
The equations (A-4) mean that

$$
\begin{equation*}
\langle\vec{\sigma} \cdot \vec{p}\rangle=+\langle\vec{p}\rangle \tag{A-6}
\end{equation*}
$$

for the u spinor and
$\langle\vec{\sigma} \cdot \vec{p}\rangle=-\langle\vec{p}\rangle$
for the V spinor. That is. V represents a left-nanded. positive helicity neutrino with anti-parallel spin and momentum. On the other hand, U is a risht-handed neutrino with parallel spin and momentuia.

In the weyl epresentation,
$r_{5}=i r^{0} r^{1} r^{2} r^{3}=\left(\begin{array}{cc}\underset{\sim}{I} & 0 \\ 0 & -I\end{array}\right)$
So that we can write :

$$
1 / 2\left(1+r_{5}\right) \psi=\binom{u}{0} \equiv \psi^{R}
$$

$$
\begin{equation*}
1 / 2\left(1-r_{\sigma}\right) \psi=\binom{0}{v} \equiv \psi^{L} \tag{A--}
\end{equation*}
$$

Experimental evidence sueste that the neutrino appeases only as ψ^{L} in weak interactions. In order to inc the antineutrino wave function. we note that a fermion in an electromagnetic field obeys the following equation :

$$
\begin{equation*}
\left[\left(\frac{i \partial}{\partial x_{\mu}}-e A_{\mu}\right) r^{\mu}-m\right] \psi=0 . \tag{A-10}
\end{equation*}
$$

Whereas an anti-fermion obeli s the equation

$$
\begin{equation*}
\left[\left(i \frac{\partial}{\partial x_{\mu}}+e \lambda_{\mu}\right) r \cdot \mu_{-m}\right] \psi_{c}=0 \tag{A-11}
\end{equation*}
$$

Taking the complex conjugate of (A-10) we get

$$
\begin{equation*}
\left[-\left(\gamma \frac{\partial}{\partial x_{\mu}}+e A_{\mu}\right) r^{*}-m\right] \psi^{*}=0 \tag{A-12}
\end{equation*}
$$

Operating with G, we get

$$
\begin{equation*}
\left[-\left(i \frac{\partial}{\partial x_{\mu}}+e A_{\mu}\right) G r^{* \mu} G^{-1}-m\right] G \Psi^{*}=0 \tag{A-13}
\end{equation*}
$$

This equation will be similar to (ASl) if we let

$$
\begin{align*}
-G Y^{\mu} G^{-1} & =Y^{\mu} \\
G \Psi^{*} & =\Psi_{c} \tag{A-14}
\end{align*}
$$

Solving for G using the We il representation for the jame matrices, we get

$$
\begin{aligned}
G=i r^{2} & =\left[\begin{array}{ccc}
0 & & 1 \\
1 & -1 & -1 \\
1 & & 0
\end{array}\right] \\
U^{L} & =G \psi^{L^{*}}=i r^{2}\left[\begin{array}{l}
0 \\
0 \\
v_{1}^{*} \\
v_{2}^{*}
\end{array}\right]=\left[\begin{array}{c}
v_{2}^{*} \\
-v_{1}^{*} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

which represents a right-handed particle.

APPENDIX B: SPONTANEOUS SYMRERGY BGEAKDOWT

The symmetry of the hamiltonian of a quantum mechanical system is not necessarily obvious from the ground state of the system. For example, nuclear forces are rotationally invariant; however. the ground state of a nucleus is not necessarily so, i.e.. it is not of spin zero. An example of a system which. unlike nuclei. is of infinite spatial extent is the Heisenberg ferromagnet, an infinite array of spin two magnetic dipoles with spin-spin interactions between neighbouring dipoles. The total hamiltonian is rotationally invariant, but the ground state is a state in which all dipoles are lined up in one arbitrary direction. Someone living inside such a magnet would never discover that the hamiltonian was rotationally invariant.

Generalizing to relativistic quantum mechanics, we substitute "vacuum" for the ground state and some "internal" symmetry for the rotational invariance. So, if we conclude that the laws of nature may possess symmetries hidden from us because the vacuum is not invariant under them. This is called "spontaneous symmetry breakdown".

Let us investigate spontaneous spymmetry breakdown in some systems. For a single real scalar field \varnothing, the Lagrangian density is

$$
\begin{equation*}
\mathcal{L}=1 / 2\left(\partial \mu \phi \partial^{\mu} \phi\right)-\mu^{2} / 2 \phi^{2}-\lambda / 4 \phi^{4} \tag{B-1}
\end{equation*}
$$

This Lagrangian has a discrete symmetry $\quad \phi \rightarrow-\phi$

Let us consider the potential $V(\phi)$ and find its minimum :

$$
\begin{align*}
& V(\phi)=\mu^{2} \phi^{2} / 2+\lambda / 4 \phi^{4} \\
& \partial V / \partial \phi=0=\left[\mu^{2}+\lambda \phi^{2}\right] \phi \tag{13-2}
\end{align*}
$$

$$
\partial^{2} V / \partial \phi^{2}=\mu^{2}+3 \lambda \phi^{2}>0 \text { to be a minimum }
$$

There are two cases :

$$
\begin{array}{ll}
\mu^{2}>0 & \langle\phi\rangle_{\min }=0 \\
\mu^{2}<0 & \langle\phi\rangle_{\min }= \pm \sqrt{-\mu^{2} / \lambda} \tag{B-4}
\end{array}
$$

$\mu^{2}>0$

$\mu^{2}<0$

We let μ^{2} be less than zero. Choosing the positive root for conventional reasons, $\langle\phi\rangle_{\min }=\sqrt{-\mu^{2}} / \lambda$

Now the vacuum is not at zero anymore. Therefore, we define a new field \emptyset^{\prime} for which the vacuum is at zero.

$$
\begin{equation*}
\phi^{\prime}=\varnothing-\sqrt{-\mu^{2} / \lambda}=\varnothing-\nu \tag{B-5}
\end{equation*}
$$

Substituting for \varnothing in terms of \varnothing^{\prime} and ν

$$
\begin{equation*}
\mathcal{L}=1 / 2\left(\partial^{\mu} \phi^{\prime} \partial_{\mu} \phi^{\prime}\right)-1 / 2 \mu^{2}\left(\phi^{\prime}+\nu\right)^{2}-\lambda / 4\left(\phi^{\prime}+\nu\right)^{4} \tag{b-5}
\end{equation*}
$$

Using $V^{2}=-\frac{\mu^{2}}{\lambda}$ we get
$\mathcal{L}=1 / 2\left(\partial^{4} \phi^{\prime} \partial_{\mu} \phi^{\prime}\right)+\mu^{2} \phi^{\prime 2}-\lambda \nu \phi^{\prime 3}-1 / 4 \lambda \phi^{\prime 4}+$ constants
Now. ϕ^{\prime} has a positive mass $-2 \mu^{2}$ and because we have a
$\phi^{\prime 3}$ term the Lagrangian does not exhibit the reflection symmetry of the original Lagrangian.

Let us next consider a complex scalar field

$$
\mathcal{L}=1 / 2\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-\mu^{2} / 3 \phi^{*} \phi-\lambda / 4\left(\phi^{*} \phi\right)^{2}
$$

$$
\begin{equation*}
\mu^{2}<0 \tag{b-8}
\end{equation*}
$$

This Lagrangian is invariant under the transformation $\phi \rightarrow e^{i \theta} \phi \quad$, where θ is not a function of the spacetime.

$$
\begin{align*}
& V\left(\phi, \phi^{\prime}\right)=\mu^{2} / 2 \phi^{*} \phi+\lambda / 4\left(\phi^{*} \phi\right)^{2} \\
& \partial V / \partial \phi^{\prime}=\left(\mu^{2} / 2+\lambda / 2 \phi^{\prime} \phi\right) \phi \\
& \partial V / \partial \phi=\left(\mu^{2} / 2+\lambda / 2 \phi^{*} \phi\right) \phi^{4} \tag{B-9}
\end{align*}
$$

Since μ^{2} is less than zero,
$\mu^{2} / 2+\lambda / 2 \phi^{*} \phi=0$

$$
\begin{equation*}
|\phi|^{2}=-\mu^{2} / \lambda \equiv \nu^{2} \tag{5-10}
\end{equation*}
$$

So the minimum is a circle with radius ν in the \varnothing plane.

Since the phase ancle θ is arbitrary we can take it to be zero. We now make the substitution

$$
\begin{equation*}
\phi=e^{i s / \nu}(\nu+\eta) \tag{B-11}
\end{equation*}
$$

where $\{$ represents perturbations in the angular direction and η represents perturbations in the radial direction. Doin. perturbation about $\operatorname{Re} \phi=V$ and $\operatorname{lm} \phi=0$ for small values of
\{ and η is equivalent to the equation

$$
\begin{equation*}
\phi=\nu+\eta+i \xi \tag{3-12}
\end{equation*}
$$

Substituting this value for in the oricinal Lagrangian we get

$$
\begin{equation*}
\mathcal{L}=1 / 2\left[\left(\partial_{\mu} s \partial^{\mu} \xi\right)+\left(\partial_{\mu} \eta \partial^{\mu} \eta\right)\right]+\mu^{2} \eta^{2}+\ldots \tag{5-13}
\end{equation*}
$$

So we get a mass term for η but not for $\{$. The mass η gains is due to trying to make displacements in the radial directions against restoring forces. \{ has no mas; it corresponds to displacements around the circle, the minimum surface where there are no restoring forces.

Wee now let ϕ be an n-component real field whose equation of motion can be derived from the Lagrangian

$$
\begin{equation*}
\mathcal{L}=1 / 2\left(\partial \mu \phi^{i} \partial^{\mu} \phi^{i}\right)-1 / 2 \mu^{2}\left(\phi^{i} \phi^{i}\right)-\lambda / 4\left(\phi^{i} \phi^{i}\right)^{2} \tag{B-14}
\end{equation*}
$$

This Lagrangian is invariant under the group $O(n)$

$$
\begin{gather*}
V\left(\phi^{i}\right)=1 / 2 \mu^{2}\left(\phi^{i} \phi^{l}\right)+\lambda / 4\left(\phi^{i} \phi^{i}\right)^{2} \\
\partial V / \partial \phi^{i}=\left[\mu^{2}+\lambda|\phi|^{2}\right] \phi^{i}=0 \tag{B-15}\\
|\phi|^{2}=-\mu^{2} / \lambda=\nu^{2}
\end{gather*}
$$

We can choose to satisfy (B-15) by letting ϕ_{i} for $i=1,2 \ldots n-1$ be zero and ϕ_{n} be ν. Then the vacuum has a lower symmetry than the Lagrangian; the vacuum is invariant under the group $O(n-1)$
$O(n)$ group has $1 / 2 n(n-1), O(n-1)$ Group has $1 / 2(n-1)(n-2)$ generators. The difference in the number of generators, therefore, is $n-1$. These $n-1$ generators correspond to the broken symmetry. We let $\mathcal{L}(j) i j \neq n$ be the $O(n-1)$ generators and $k_{1} \equiv \operatorname{Sin}$ be the $n-1$ unbroken generators, where

$$
\begin{equation*}
\left[\mathcal{L}_{i j}\right]_{k l}=-i\left[\delta_{i k} \delta_{j 1}-\delta_{i l} \delta_{j k}\right] \tag{13-16}
\end{equation*}
$$

We define the fields η and $\xi_{i} ; i=1,2 \ldots n-1$

$$
\phi=e^{i \varepsilon_{i} k_{i} / \nu}\left[\begin{array}{c}
0 \\
\vdots \\
\nu+\eta
\end{array}\right]
$$

Up to terms quadratic in the fields we nave

$$
\begin{equation*}
\phi \approx\left[I+\frac{i \xi_{1} k_{1}}{v}+\frac{i \xi_{2} k_{2}}{\nu} \cdot\right] \tag{B-18}
\end{equation*}
$$

$$
\left[\begin{array}{c}
0 \\
\vdots \\
v+\eta
\end{array}\right]
$$

Since \boldsymbol{k}_{j} has a minus i in the j th row. nth column and a plus i in the nth row j th column $k j$ operating on $\left[\begin{array}{c}0 \\ \vdots \\ \nu+\eta\end{array}\right]$ gives a vector with the only nonzero component in
its j th row. So

$$
\phi \approx\left[\begin{array}{c}
i \frac{s_{1}}{\nu}(-i(\nu+\eta)) \tag{B-19}\\
\vdots \\
\vdots \\
\nu+\eta
\end{array}\right] \sim\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
\xi_{n-1} \\
\nu+\eta
\end{array}\right]
$$

Substituting ξ_{i} for. ϕ_{i} for if n and $\boldsymbol{\nu}+\boldsymbol{\eta}$ for. ϕ_{n}. in ($B-14$). we get a Lagrangian with a mass term only jor η. Since $n-1$ vi have no mass we get $n-1$ massless "Goldstone bosons" corresponding to $n-1$ broken genewators.

APPEl, DIX C : THE WIGS MECHANLG:

If we nave a Lagrangian which possesses iloval sjmets, and if the minimum of our potential is not at zero, then we get massless Goldstone bosons. However, if the symmetry is local, then we need to intsociuce a vector. lela into our Lagrangian to make it gauge invariant. ene, spontaneously broken symmetry plus local gang invariance .. 1 ll lean bu a exceri on to tho whdatone theorem. Previulul: we had as many massless bosons as the oren enenatoms. Now, these massless bosons will be eaten up by the vector field i to five us as many massive vector mesons as the broken derenators. The vector bosons which remain massless will correspond to the unbroken symmetry of the Layiengian.

Let us briefly summarize sone requirements for a local gauge invariant theory.

$$
\begin{equation*}
\phi(x) \rightarrow U(\theta(x)) \phi(x) \rightarrow \exp \{-i L \cdot \theta(x)\} \phi \tag{C-1}
\end{equation*}
$$

L is the appropiate matrix representation of the symmetry group. We see that the number of components oi the column vector \varnothing should equal the dimension of the matrix L.

$$
\begin{align*}
L_{j k}^{i} & =-i c^{i j k} \\
D \mu & =\partial \mu-i g L \cdot A \mu(x) \tag{c-2}
\end{align*}
$$

D_{μ} is the covariant derivative and $A \mu$ is the vector field. We see that the number of generators lust equal the number. of components of the vector field.

$$
\begin{align*}
L \cdot A \mu & \rightarrow U(\theta) L \cdot A_{\mu} U^{-1}(\theta)-i / g(\partial \mu U(\theta)) U^{-1}(\theta) \\
F_{\mu \nu}{ }^{i} & \rightarrow \partial \mu A_{\nu}^{i}-\partial \nu A_{\mu}{ }^{2}+g c_{i j k} A_{\mu j} A_{\nu k} \tag{c-3}
\end{align*}
$$

Let us consider a Lagrangian invariant under a $v(1)$
transformation of the form $\phi \rightarrow e^{-1 \theta} \phi$

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-\mu^{2} \phi^{n} \phi-\lambda\left(\phi^{n} \phi\right)^{2} \tag{c-4}
\end{equation*}
$$

Following the above prescriptions for a local gauge invariant the ow and letting $L=1, g=e$ we construct
$\mathcal{L}=\left(\partial_{\mu}+i e A_{\mu}\right) \phi^{*}\left(\partial_{\mu}-i e A_{\mu}\right) \phi-\mu^{2} \phi^{*} \phi-\lambda\left(\phi^{*} \phi\right)^{2}-1 / 4 F_{\mu \nu} F^{\mu \nu}$

$$
\begin{equation*}
\mu^{2}<0 \tag{c-5}
\end{equation*}
$$

Under the local transformations of the form

$$
\begin{align*}
& \phi \rightarrow e^{-i \theta(x)} \phi \\
& A_{\mu} \rightarrow A_{\mu}-1 / e \partial_{\mu} \theta(x) \tag{c-6}
\end{align*}
$$

\mathcal{L} is invariant.
We give a nonzero vacuum expectation valueto \varnothing not ϕ^{*}

$$
\begin{align*}
\langle\phi\rangle_{0} & =\nu / \sqrt{2} \quad \nu^{2}=-\mu^{2} / \lambda \\
\phi & =\exp (i \xi / \nu)(\nu+\eta) / \sqrt{2} \\
& \approx 1 / \sqrt{2}(\nu+\eta+i \xi) \tag{c-7}
\end{align*}
$$

Substituting into ($\mathrm{C}-5$) we bet

$$
\begin{align*}
\mathcal{L}= & -1 / 4 F_{\mu \nu} F^{\mu \nu}+1 / 2 \partial^{\mu} \eta \partial \mu \eta+1 / 2 \partial_{\mu}\left\{\partial^{\mu} \xi+1 / 2 e^{2} \nu^{2} A_{\mu} A \mu\right. \\
& -e v A_{\mu} \partial^{\mu} \xi+\mu^{2} \eta^{2}+\ldots \tag{c-8}
\end{align*}
$$

Because of the $\cup \cup A \mu \partial^{\mu}\{$ term, this result is hard to interpret. So we let our gauge function $\theta(x)$ be $I(x) / \nu$

$$
\begin{aligned}
& \varnothing \rightarrow e^{-i \xi / \nu} \phi \rightarrow e^{-i \xi / \nu}\left[e^{i \xi / \nu}(\nu+\eta) / \sqrt{2}\right] \\
& \varnothing \rightarrow(\nu+\eta) / \sqrt{2}
\end{aligned}
$$

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}-1 / e \nu \partial_{\mu} \xi \tag{0-9}
\end{equation*}
$$

Substituting into ($C-8$) we get a mass term $1 / 2 e^{2} \nu^{2} A \mu^{\prime} A \mu^{\prime}$ for the redefined vector field. There is not a mass term for $\}$. $\{$, corresponding to the broken syminetry, has disappeared and A has grown massive. Originally we had
ϕ, ϕ^{\prime} and two polarizations for A_{μ}, adding up to four degrees of freedom. Now. we have a massive vector field with three degrees of freedom plus η. leaving us with four degrees of freedom again.

How let us consider a non-abelian example. We have a Lagrangian invariant under the gu (2) group. Following our gauge prescriptions and remembering that for $\operatorname{SU}(2) \quad c^{i j k}=e^{i k}$ we have

$$
\begin{align*}
D_{\mu} \vec{\phi} & =\left(\partial \mu-i g \underset{\sim}{\underset{L}{L}} \cdot \vec{A}_{\mu}\right) \vec{\phi} \\
& =\left(\partial_{\mu-i g}\left(b_{1} A_{\mu 1}+L_{2} A_{\mu_{2}}+b_{3} A_{\mu_{3}}\right) \vec{\phi}\right. \tag{C-10}
\end{align*}
$$

Here each $\underset{\sim}{L}$ is a matrix acting on a acton $\vec{\varnothing}$

$$
\begin{equation*}
\left(L_{\sim} \vec{\phi}\right)_{i}=L_{i k} \phi_{k} \tag{C-11}
\end{equation*}
$$

So using $L_{i k}^{m}=-i G_{m k}$ we get

$$
\begin{align*}
D_{\mu} \phi_{i} & =\partial_{\mu} \phi_{i}-i g L_{i k}^{m} A_{\mu}^{m} \phi_{k} \\
& =\partial_{\mu} \phi_{i}-g \epsilon_{\text {mik }} A_{\mu}^{m} \phi_{k} \\
& =\partial_{\mu} \phi_{i}+g \epsilon_{\text {mk }} A_{\mu}^{m} \phi_{k} \tag{0-12}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{L}=1 / 2\left(D_{\mu} \phi_{i}\right)\left(D^{\mu} \phi_{i}\right)-V\left(\phi^{2}\right) \tag{0-13}
\end{equation*}
$$

The potential V has a minimum at $\phi_{3}=\nu$

$$
\langle\phi\rangle_{\min }=\left(\begin{array}{c}
0 \tag{0-14}\\
0 \\
v
\end{array}\right) \equiv \vec{v}
$$

We also write our three generators explicitly

$$
L_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{c-15}\\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad L_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right) \quad L_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We see that $L_{\nu} \vec{v}$ and $L_{2} \vec{\nu}$ a e nonzero and $L_{3} \vec{\nu}$ is zero; so only bu remains as an unbroken symmetry generator. Li and ${\underset{\sim}{2}}_{2}$ are our broken symneti, generators and we define ξ_{1} and Σ_{2}, associated with the unbroken symmetry. We parameterize ϕ as

$$
\left.\left.\phi=\exp \left\{i / v\left(\varepsilon_{1} L^{1}+i_{2} L^{2}\right)\right\}\left(\begin{array}{c}
0 \tag{0-16}\\
0 \\
v+\eta
\end{array}\right) \approx \right\rvert\, \begin{array}{c}
-\varepsilon_{2} \\
\Sigma_{1} \\
v+\eta
\end{array}\right)
$$

We make our gauge transformation

$$
\begin{align*}
& U=\exp \left\{-i / \nu\left(\xi_{1} L_{1}+\xi_{2} L_{2}\right)\right\} \\
& \phi^{\prime}=\cup \phi=\left|\begin{array}{c}
0 \\
0 \\
\nu+\eta
\end{array}\right| \\
& {\left[L \cdot A \mu^{\prime}\right] \phi^{\prime}=\left[U L \cdot A_{\mu} U^{-1}-i / g\left(\partial_{\mu} U\right) \cup^{-1}\right] \cup \varnothing} \tag{C-17}
\end{align*}
$$

Ignoring terms higher than quadratic in the fields, we first calculate (UL. $\left.A_{\mu} U^{-1}\right) \cup \phi_{\text {term }}$

$$
\begin{align*}
& U L \cdot A \mu\left(\begin{array}{c}
-\xi_{2} \\
\xi_{1} \\
\nu+\eta
\end{array}\right)=U\left[L_{1} A_{\mu 1}+L_{2} A_{\mu_{1}}+L_{3} A_{\mu_{3}}\right]\left(\begin{array}{c}
-\xi_{2} \\
\xi_{1} \\
\nu+\eta
\end{array}\right) \tag{c-18}\\
&= U\left[A \mu\left(\begin{array}{c}
0 \\
-i(\nu+\eta) \\
i \xi_{1}
\end{array}\right)+A_{\mu 2}\left(\begin{array}{c}
i(\nu+\eta) \\
0 \\
i \xi_{2}
\end{array}\right)+A_{\mu 3}\left(\begin{array}{c}
-i \xi_{1} \\
-i \xi_{2} \\
0
\end{array}\right)\right] \tag{0-19}
\end{align*}
$$

$=\left(I-\frac{i \xi_{1} L_{1}}{\nu}-\frac{i \xi_{2} L_{2}}{\nu}\right)\left[\begin{array}{c}i A_{\mu_{2}}(\nu+\eta)-i A_{\mu_{3}} \xi_{1} \\ -i A_{\mu}(\nu+\eta)-i A \mu_{3} \xi_{2} \\ i A \mu_{1} \xi_{1}+i A_{\mu_{2}} \xi_{2}\end{array}\right]$

$$
\begin{align*}
& =\left[\begin{array}{c}
i A_{\mu}(\nu+\eta)-i A \mu s \xi_{1} \\
-i A_{1}(\nu+\eta)-i A_{\mu} \xi_{2} \\
i A_{\mu} \xi_{1}+i A_{\mu} \xi_{2}
\end{array}\right]-i \xi_{1}\left[\begin{array}{c}
0 \\
A_{\mu} \xi_{1}+A_{\mu 2} \xi_{2} \\
A \mu_{1}(\nu+\eta)+A_{\mu} \xi_{2}
\end{array}\right]-\frac{i \xi_{2}}{\nu}\left[\begin{array}{c}
-A \mu 1 \xi_{1}-A_{\mu 2} \xi_{2} \\
0 \\
A_{\mu 2}(\nu+\eta)-A_{\mu} s \xi_{1}
\end{array}\right] \\
& =i g(U L-21) \tag{c-2,2}\\
& \left(U \mu U^{-1}\right) U \phi=g\left[\begin{array}{c}
A \mu_{2}(\nu+\eta)-A A_{3} \xi_{1} \\
-A \mu(\nu+\eta)-A A_{3} \xi_{2} \\
0
\end{array}\right]
\end{align*}
$$

How we calculate $i / g\left(\partial_{\mu} u\right)\left(U^{-1}\right) \cup \emptyset$.
$i / g\left(\partial_{\mu} u\right)\left(u^{-}\right) \cup \phi=+i / g\left(\partial_{\mu} u\right)\left|\begin{array}{c}-s_{2} \\ \xi_{1} \\ v+\eta\end{array}\right|$
$=i / g\left[-i / \nu\left(\partial_{\mu} \xi_{1} L_{1}+\partial_{\mu} \xi_{2} L_{2}\right)\right]\left[I-i / \nu \xi_{1} L_{1}-i \xi_{2} L_{2} / \nu\right]\left[\begin{array}{c}-\xi_{2} \\ \xi_{1} \\ \nu+\eta\end{array}\right]$
$=1 / g \nu\left(\partial \mu \xi_{1} L_{1}+\partial \mu \xi_{2} L_{2}\right)\left[\left(\begin{array}{c}-\xi_{2} \\ \varepsilon_{1} \\ \nu+\eta\end{array}\right)-\frac{i}{\nu} \xi_{1}\left(\begin{array}{c}0 \\ -1(v+\eta) \\ i \xi_{1}\end{array}\right)-\frac{i \varepsilon_{2}}{\nu}\left(\begin{array}{c}i(v+\eta) \\ 0 \\ i \varepsilon_{2}\end{array}\right)\right]$
$=1 / g \nu\left(\partial \mu \xi_{1} L_{1}+\partial \mu \xi_{2} L_{2}\right)\left[\begin{array}{c}0 \\ 0 \\ \nu+\eta\end{array}\right]$

$$
\begin{align*}
& =1 / g \nu\left[\partial_{\mu} \varepsilon_{1}\left(\begin{array}{c}
0 \\
-i(\nu+\eta) \\
0
\end{array}\right)+\partial_{\mu} \varepsilon_{2}\left(\begin{array}{c}
i(\nu+\eta) \\
0 \\
0
\end{array}\right)\right] \tag{c-27}\\
& =i / g \nu\left(\begin{array}{c}
\partial \mu \xi_{2}(\nu+\eta) \\
-\partial \mu \varepsilon_{1}(\nu+\eta) \\
0
\end{array}\right) \tag{0-28}
\end{align*}
$$

$\lg \left(i \lg (\partial \mu u)\left(u^{-1}\right) \phi^{\prime}\right)=-1 / \nu\left(\begin{array}{c}\partial \mu \xi_{2}(\nu+\eta) \\ -\partial \mu \xi_{1}(\nu+\eta) \\ 0\end{array}\right)$

Putting ($\mathrm{C}-29$) and ($\mathrm{C}-22$) together: we find

$$
D \mu \vec{\phi}^{\prime}=\left[\left(\begin{array}{c}
0 \tag{0-30}\\
0 \\
\partial \mu \eta
\end{array}\right)+g\left(\begin{array}{c}
A_{\mu 2}(\nu+\eta)-A_{\mu} \xi_{1} \\
-A_{\mu 1}(\nu+\eta)-\varepsilon_{2} A_{\mu} \\
0
\end{array}\right)-\frac{1}{\nu}\left(\begin{array}{c}
\partial_{\mu} \varepsilon_{2}(\nu+\eta) \\
-\partial_{\mu} \varepsilon_{1}(\nu+\eta) \\
0
\end{array}\right)\right]
$$

Using ($\mathrm{C}-30$) we can now calculate the Lagrangian in terms of the transformed variables
$\mathcal{L}=1 / 2 \partial \mu \eta \partial^{\mu} \eta+1 / 2 \partial_{\mu} \xi^{\prime} \partial^{\mu} \varepsilon^{\prime}+1 / 2 \partial \mu \xi^{2} \partial^{\mu} \xi^{2}+$

$$
\begin{equation*}
y_{2} g^{2} \nu^{2}\left(A_{\mu 1}^{2}+A_{\mu_{2}}^{2}\right)-g \nu\left(A_{\mu 1} \partial_{\mu} \xi_{1}+A_{\mu 2} \partial_{\mu} \varepsilon_{2}\right) \tag{C-31}
\end{equation*}
$$

From the $1 / 2 g^{2} \nu^{2}\left(A \mu^{2}+A_{\mu}{ }^{2}\right)$ term we see that the factor mesons corresponding to the broken s,mmetif generators have acquired mass.

We are now ready to discuss the general case. We have a Lagrangian invariant under a group G. There acc N generators. theretione there are also N gauge mesons $A_{\mu}{ }^{\alpha} \quad \alpha=1, \ldots \quad N$ We choose an n-dimensional representation io.. these generator: So we have n scalar fields $\quad \phi_{i} \quad i=1 \ldots n$.

Let us suppose that there is a subgroup of \because called \mathcal{S} with M generators that leave the scum invariant. So we have $N-M$ gene aton s for which ${\underset{\sim}{c}}^{\alpha} \vec{v}$ is nonzero. \vec{v} is tie vacuurn. It is an n component vector which makes $V\left(\phi^{2}\right)$ a minimum.

We parameterize
$\phi=\exp \left(\sum_{\alpha} i \xi_{\alpha} L^{\alpha} / \nu\right)(\vec{v}+\vec{\eta}) \quad \alpha=1 \ldots N-M$
$\vec{\eta}$ represents the $n \cdot(N-M)$ fields. Next we make the following; gauge transformation
$U=\exp \left(\sum_{\beta} i\left(-\xi_{\beta} L^{\beta} / v\right)\right) \quad \beta=1 \ldots N-M$

As a result, we get $N-M$ gauge mesons gaining mas b, patin: up $N-M$ Goldstone bosons. M remaining vector bosons sta massless.

Let us now check the overall dienees of freedom. We started out with n scalar particles and N massless vector mesons. Therefore we had $n+2 N$ degrees of iteedon. After the spontaneous symmetry breaking we are left with $N-M$ massive. M massless vector bosons and $n-[N-M] \quad \eta$ fields.

Writing explicitly

$$
\begin{equation*}
2 N+n=(N-M)+M+n-[N-M] \tag{c-34}
\end{equation*}
$$

We see that the overall degrees of freedom remain unchanded, as expected.

APPENDIX D : TWO FAMILY OSCILLATIONS

In order to make allowance for the lepton number violation, the weak interaction lagrangian must have an additional part of the form

$$
\mathcal{L}_{1}=m z_{e} \bar{v}_{c_{R}} v_{C L}+m_{\mu} \mu \bar{v} c_{\mu R} \nu_{\mu L}+m_{\mu e}\left(\bar{v}_{\mu_{\mu}} v_{e_{L}}+\bar{v}_{C_{R}}^{C} v_{\mu L}\right)+H . C_{0}(D-1)
$$

Here we shall consider only hajorana fields. We define

We can write the full Lagrangian including the standard interaction reins as follows:

$$
\mathcal{L} T=\bar{v}_{R}^{c} M\left(v_{L}+v_{R}^{c}\right)+\bar{\nu}_{L} M\left(v_{R}^{c}+v_{L}\right) \equiv \bar{x} M X
$$

$$
\begin{equation*}
x=v_{L}+\nu_{R}^{c}=\binom{v_{C L}+v_{e R}^{c}}{v_{\mu L}+v_{\mu R}^{c}}=\binom{x_{1}}{x_{2}} \tag{1-3}
\end{equation*}
$$

In order to diagonalize the mass matrix, we let

$$
\begin{align*}
& x=U \varnothing \\
& \mathcal{L} T_{T}=\bar{X} M X=\bar{\phi} U^{\top} M U \phi \tag{D-4}\\
&=\bar{\phi} M_{D} \varnothing
\end{align*}
$$

M_{D} is the diagonal mass matrix :
$M_{D}=\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)=U^{\top} M U$

If we assume that the Lagrangian is CP invariant, then U is an orthogonal matrix which has the following general form
$U=\left|\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right|$

Using $x=4 \phi$ and $(D-3)$ we set
$\chi=\binom{\nu_{C L}+v_{C R}{ }^{c}}{\nu_{\mu L}+v_{\mu R} c}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{\phi_{L L}+\phi_{1 R}}{\phi_{2 L}+\phi_{2 R}}$
'raking only the left components we get

$$
\begin{align*}
& v_{e L}=\cos \theta \phi_{L L}+\sin \theta \phi_{2 L} \\
& \nu_{\mu L}=-\sin \theta \phi_{I L}+\cos \theta \phi_{2 L}
\end{align*}
$$

θ denotes the degree of mixing of the Majorana fields and $\phi_{1,2}$'s are the mass eigenstates with masses m_{1} and m_{2}. respectively. Using ($D-4$) We get
$M=\left(\begin{array}{ll}m \bar{e} e & m \bar{\mu} e \\ m \bar{\mu} e & m \bar{\mu} \mu\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

$$
\left|\begin{array}{ll}
\text { mes } & m \bar{\mu} e \tag{D-Y}\\
m \bar{\mu} e & m \dot{\mu} \mu
\end{array}\right|=\left(\begin{array}{ll}
\cos ^{2} \theta m_{1}+\sin ^{2} \theta m_{2} & \sin \theta \cos \theta\left(m_{2}-m_{1}\right) \\
\cos \theta \sin \theta\left(m_{2}-m_{1}\right) & \sin ^{2} \theta m_{1}+\cos ^{2} \theta m_{2}
\end{array}\right)
$$

We note from (D-9) that

$$
\begin{align*}
m \mu_{\mu}-m z e & =\cos ^{2} \theta\left(m_{2}-m_{1}\right)-\sin ^{2} \theta\left(m_{2}-m_{1}\right) \\
& =\left(m_{2}-m_{1}\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =\left(m_{2}-m_{1}\right) \cos 2 \theta \tag{L-10}
\end{align*}
$$

Using the value we found for in $(D-9)$, we get

$$
\begin{align*}
\frac{2 m \bar{\mu} e}{m_{\mu \mu-m e e}} & =\frac{2\left(m_{2}-m_{1}\right) \sin \theta \cos \theta}{\left(m_{2}-m_{1}\right) \cos 2 \theta} \\
& =\tan 2 \theta \tag{D-11}
\end{align*}
$$

We now try to solve for m_{1} and m_{2} using (D-9).

$$
\begin{equation*}
m_{z e}+m_{\mu \mu}=m_{1}+m_{2} \tag{1-12}
\end{equation*}
$$

$$
\begin{align*}
\left(m_{1}-m_{2}\right)^{2} & =\left(m_{1}-m_{2}\right)^{2}\left[(\cos 2 \theta)^{2}+(\sin 2 \theta)^{2}\right] \\
& =\left(m_{\mu \mu}-m_{\varepsilon \ell}\right)^{2}+4(m \bar{\mu} e)^{2} \\
\left(m_{1}-m_{2}\right) & =\left[\left(m_{\mu \mu}-m_{\varepsilon \varepsilon}\right)^{2}+4\left(m_{\mu}\right)^{2}\right]^{1 / 2} \tag{1}
\end{align*}
$$

$U \sin _{G}(D-12)$ and $(D-1 \ddot{)}$
$m_{2}^{\prime}=1 / 2\left(m_{\bar{e} e}+m_{\bar{\mu} \mu} \pm \sqrt{\left(m_{\bar{e} e}-m_{\mu \mu}\right)^{2}+4\left(m_{\bar{\mu} e}\right)^{2}}\right)$

1) Emilio iegre, huclei and Pa.ticlei . Secona dition, 391 (19\%).

2) E. Fermi "Versuch Einer meorie dex B-itiamlenif", z. Fus be , 161 (1934).
3) Anderson and Heddermer "Clond Chaber Ubservation of Comic Nays at 4300 Neters Zlevation and eaf Bea level" Phys. ser 20. 263 (1436).
4) C.M. Lattes H. Muirhead G.P.S. Occhialini and C.J. Powell "Processes Involving Chaired Hesons" Hature ly 694 (194%).
5) C.L. Cowan and ieines "Detection of the eee weutrino": Phys. lev 92830 (1953).
6) M.L. Perl et al "Evicience fo. Anomalous deptor Production in Anninilation". Phys. ev. Lett. 22, 140y (Iリ8).
7) H. Gell-mann, "A Bchematic Model of war ons and hesons", Fnjs. Lett 으, 214 (1564).
8) B.J. isjowken and S.f. Glashow. "hementar Fanticles and iv(4)", Flys. iet 11. 255 (1964).
9) H. Georgi, H. R. Quim and 3 . Veinbere, Fhysica wev. Lett. 32, 451 (1974).
10) B. Weinberg. Phys. ev. Lett. 19. 1264 (1969).

11) G. B. Melmini and l..oncadell Fhys. ev. L_ Fll (1981).
 AUTF-61/A026.
12) H. (eorgi and S.L.Glashow Fhys. Lev. Lett. 退, 430 (19/4).
13) A.J.Buras, J.Ellis,H.K.Gaillaid and D.V.Nanopoulos, Hucl. Fhis. 313466 (1978).
14) D.V. Nanopoulos CEN pieprint 2 H .2890 (1900).
15) J. Ellis CENH preprint Th. 2942 (1980).
16) J. Ellis and M.K.Gaillard, Ptiys. Lett. B8is 315 (1979). R.Barbieri, J. Zllis and M. G.Gaillard, Phys. Lett. gob, 249 (1980).
17) M.S. Chanowitz, J. Ellis and N.K.Gaillas: Nucl. Hinis. Elç 506 (1977).
if. Georgi and D.v. Nanopoulos, Hucl. Hhis. 13155 , 5? (19'9) and Phys. Lett. 3215 392 (19\%9).
18) See references in (1\%).
19) A. Georgi and D. Nanopoulos Sef l\%.
20) See references in (2?).
21) L. Witten Phys. Lett. 91E. 81 (1980).
22) S.M. Bilenky and B. Pontecorvo. Phys. Nep. 411104 (1998).
