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ABSTRACT 

. . ," 

. In this thesi~, general TPBVP's in Optimal Control have 

been analyzed using the sensitivity method •. A solution 

method, which uses the traje.ctory sensi ti vi ties to solve 

general TPBVP's, is developed. Existence of the solutions 

for the boundary value problems with linear boundary con-

ditions is also studied. 

The proposed method allows us to parametrize the boundary 

conditions. If the analytic expressions for the parametric 

~functions are not available then it determines their nume-

rical values. In this way, the method easily converts the 

original problem into an initial value problem. Then by. 

changing the parameters and using the trajectory sensiti-

vities, it calculates the true parameter values that satisfy 

the problem constraints, hence finds a solution for the 

given problem. 



aZET· 

Bu tezde, en iyi denetimde ortaya gJ.kan genel iki-nokta 

sJ.nJ.r de~er problemleri duyarlJ.lJ.k yontemi kullanJ.larak 

incelenmilil, yoriinge duyarlJ.IJ.klarJ.nJ. kullanarak bu tip 

problemleri gozebilen bir yontem geli9tirilmi9 ve dogru-

sal sJ.nJ.r ko 9ullu SlnJ.r de~er problemlemlerinin gozlimle­

rininvarlJ.k sorununa de~inilmi~.tir. 

v 

Onerilen yontem, sJ.nJ.r k09ullarJ.nJ.de~i9tirgenler kulla­

narak yeniden tanJ.mlamamJ.za olanak verir. Eger de~i9tirgen 

i 9levlerigin <1ozlimsel ifadeler bulmak olesJ. degilse, yon­

tem kendisi bu ifade.lerin sayJ.sal deg;erlerini belirler. Bu 

gekilde, sJ.nJ.r-deiSer problernini·kolayca ilk-de~er proble­

mine donli9tlirlir. Daha sonra ise .degi9tirgenleri degi9tire­

rek ve yorlinge duyarlJ.1J.klarJ.nJ. kullanarak, deg;i~tirgenle­

rin problem kJ.sJ.tlar~nJ. sa~layan doiSrudegerlerini hesaplar, 

doI8·YJ.sJ.yla probleinin gozlimlinli bulmu9 olur. 
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I. INTRODUCTION 

When we apply· the calculus of variations to the optimal 

control problems, we generally end up with nonlinear two 

pOint boundary value problems. Unless the resulting problems 

are quite simple, we have to use a numerical technique to 

determine the . optimal control, and trajectories. 

The nonlinear two pOint boundary value problems encountered 

in a large class of optimal control problems can be summa­

rized as finding 2n state and costate variables· and m control 

inputs, while satisfy.ing the 2nstate and costate differen­

tia~ equations, the m optimality conditions, and the initial 

and the final conditions. 

Most of the numerical methods for the solution of such 

problems necessarily use iterative procedures. Generally a 

nominal solution is chosen that satisfies some but not all 

.of the necessary conditions, then it is modified so that the 

rest of the conditions are also· satisfied. The mos~ popular 

methods of this kind are Gradient Methods, Quasi·linearization 

Methods, and Variation of Extremals. 

Gradient Methods were developed to overcome the initial 

guess difficulty associate·d with direct integration methods. 

In this approach nominal solution is chosen to satisfy the 

2n differential equations., and is characterized by the 

iterative algorithms for- improving the estimates of control 
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~nputs so as to come closer t6 s~tisfying the optimality 

and boundary conditions.,Alth01.lgh, it is considerably easy 
, , 

to start thi fJ method, as an e)ctremal is, approached, the 

gradient becomes small and the method has a tendency to 

converge slowly. 

One version of Quasilinearization Methods chooses nominal 
• 

functions for states and costates that'satisfy as many of 

the'bou.nda.!'y conditions as possible. Then the nominal control 

inputs are determined by use of optimality conditions. The 
- , 

state and costate differential equations are linearized about 

the nominal solutions, and successive linear two point boun­

dary value problems are solved to' modify the solution until 
. . ' . 

it satisfies the state and costate differential equations. 
. , 

The sequence of solutions of the linearized equations of 

states and costates, with a rate that is at least quadratic, 

converges to the desired solutions, if the riorm of the 

deviation of the initial guess from the desired solutions 

is sufficiently small. 

In the Method of Variations of Extremals, every trajectory 

generated by the algorithm satisfies the state and costate 

differential equations, hence is an extremal. This method 

is characterized by iterative algorithms for improving the 

estimates of the unspecified initini (or final) conditions 

so·as to satisfy the specified final (or initial) conditions. 

This is achivedby finding the transition matrix between the 

unspecified boundary conditions at one end and the specified 
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boundary' conditions at the other;~ end. 

The main difficulty of this method is getting started, in 

other words finding a first estimate of the unspecified con-
~ 

ditions at one end. The'reason for this difficulty is that 

the extremal solutions are often very sensitive to small 

changes in the unspecified boundary conditions and very small 

per:turbations may significantly increase the effects of the 
, , 

inaccuracies caused 'by numerical integration, and truncation 
, , 

and round off errors. These difficulties can be avoided'to 

some extent by the method we have offered to evaluate the 

transition matrices which we call sensitivity matrices,in 

otQ,er words, the i:n~thod determines the differential equat:;'ons 

that th~ sensitivity matrices satisfy. Those matrices can be 

obtained all over the interval by integrating these differen­

tial equations simultaneously with the state and costate 

differential equations. The appropriate initial conditions 

for the sensitivity matrices may be calculated very accurately 

using the method of parametrization of the nonlinear boundary 

condi.lGions. 

Thus in thesiS, we have developed a solution method using 

,trajectory sensitivities to determine the optimal control 

and trajectories. In Chapter 2, the necessary conditions for 

optimal control problem are given, the various boundary con-

ditions that may occur are discussed, and the general for-

mulation of two point boundary value· problems is presented. 
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Chapter 3 discusses the solution method based on trajectory' 

sensitivities. First the idea is introduced by a special 

case, then the general case is considered and the paramet­

rization of nonlinear boundary conditions,to determine the 

final values of states, costates, and the sensitivity matrices" 

are'explained. Finally it is shown-that, if parametric 

functions do not . exist analytic.ally, then their numerical 

values and derivatives with respect to parameters can be 

determined. ' ' 

InChapter'4, wed~scuss the two point boundary value problems 

w:j.th linear boundary conditions, and show that the problem 

can be reduced to finding the roots of a system of trans­

cendental equations. Necessary oonditions for the existence 

of,the solution and convergence of the 'iterative method for 

thisspecial.case are examin~d. 

A set of nUmerical examples are studied in Chapter 5. These 

.examples illustrate how the method given in Chapter 3 is 

applied to a particular problem. 



II. GENERAL FORMULATION OF TPBVP FOR SOLVING· 

OPTIMAL CONTROL PROBLEMS 

2.1 ·The Optimal Control Problem 

5 

The Optimal Control Problem is to find .an admissib1eJ(t) 

that causes the system 

i(t) = a(x(t),u(t),t) 

to follow an admissible trajectory x(t) that mininizes 

the performance measure 

. t . 

J(u) = cp(x(tf),tf ) + tff.n.(x(t),u(t),t) dt 
o . . 

where cJ>(x(tf ) ,ti) is the final state pena1ty,and 

J1(x(t),u(t),t) is an appropriate cost function.We shall 
. . 

a$sume that the admissible state and control regions are 

2.1.1 

2.1.2 

not bounded, and initial conditions x(to ) and the initial 

time to are specified. As usual x(t) is the n-dimensional 

state vector and u(t) is the m-dimensional vector of 

control inputs. 

2.? Necessary Conditions for Optimal Control 

If we apply variational methods to the optimal control prob-

1emgiven in equations. 2.1.1 and. 2.1.2, then the necessary 

conditions for optimal control are: 
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.-If aH .fl.. -1(. '* . 2.2.1.a x(t) = ay (x ( t ) ,y ( t) , u ( t ) , t ) 

• '* . aH:1( -AI.* for all 
yet) = - ~i (x(t),y(t),u(t),t) 

[to,tf ] 
2.2.1.b 

t E 
QH * .J(. *- . 2.2.1.c 0 = (x(t),y(t),u(t),t) 
~u 

~ . '* *,. act> ~ 
+ ( H(x(tf),y(tf),u(tf),tr ) + ~~ (x(tf),tr ) ) ~tf ~ 0 

where 
H(x(t),y(t),u(t),t) 

~Sl.(x(t),u(t),t) + yT(t) (a(x(t),u(t),t» 

is the Hamiltonian, and 

is the n-dimensional costate vector. Equation 2.2.2 is 

also known as the natural boundary conditions, and $xf 

2.2.2 

2~2.4 

cSt f are the variations introduced on x(tf ) and t f , 

respectively throughout. the derivations of equations 2~2.1 

and 2.2.2. Since the derivation of the necessary conditions 

is beyond the scope of this work, we give only the results 

here. For those who are interested, details can be found 

in Kirk (1970) pp: 185-188. 

Notice that these necessary conditions consist of a set of 

2n, first order differential equations - the state and co­

state equations 2.2.1.a and b - and a set of m algebric 

relations - 2.2.1.c - which must be satisfied throughout 
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.the. interval [to,trJ. The solutions of the state and costate 

equation~ will contain 2n constants of integration. To evaluate 

these constants we will use the n equations given at the initial 

time 
2.2.5 

and an addition'al set of n· (or n+l), rela11ionships from 

equation 2.2.2 which are all at the final time. Thus we have 

to solve a two point boundary value problem to determine the 
:Ii( 

optimal control uCt). 

Before stating the general formulation of two point boundary' 

value problems we are going to deal with, let us discuss the 

various boundary conditions that may occur as a result of 

equation 2.2.2. 

2.3 Boundary Conditions 

To determine the boundary conditions of a.particular problem 

is a matter of making the appropriate substitutions in 

equation' 2.2.2. In all cases we will assume that we have the 

n equations 

'PROBLEMS WITH FIXED FINAL TIME: If the final time t f is 

specified, then the variation &t f .= 0, for the following 

cases. 

CASE i. (Final state specified) Since xCtf ) is also specified 

then aXf = ° and equation 2.2.2 is automatically satisfied. 



Thus the required n equations are 

-1i 
x(tf ) = xf · 

CASE ii. (Final state free) In" this case, variation. a x£ 

will no more vanish. So we have n equations 

to.satisfy equation 2.2.2. 

CASE iii. (Final state lying on a surface defined by 

8 

m(x(t)) = 0.) Now we have n state variables and 1 ~ k ~ n-l 

relationships that the states must satisfy at t = t f , namely 

m
1 
(x~t)) 

· m(x(t)) · ° 2.3.3 = . . = • · mk(x(t)) 

where each component of m represents a hypersurface in the 

n-dimensional state space. Thus the final state lies on the 

intersection of these hypersurfaces, and, $xf is tangent to 
" lit ' 

each of the hypersurr'aces at point (x(tr ) ,tf ) ~ This means 

that $ x:r is normal to each of the gradient vectors 

dm1 ~ " dmk * 
ax (x(tr)),·······'-ax (x(t f )) 

,which are assumed to; be linearly independent, and normal 

also to their linear combination. Thus 

where 
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is a k-dimensional coefficient vector. Since 

we have ne~uations 

act> .. -- (x(t f )) ax _ 

and k equations 

2.}.9 

to determine the integration constants and v, and to satisfy 

the equation 2.2.2. 

PROBLEMS WITH FREE FINAL TIME: If. the fip.aL time:-is:free', ' ::, 

then the assumption atf = 0 is no more valid. 

CASE iv. (Final state fixedJ The appropriate substitution in 

equation 2.2.2 is aXf = O. So we obtain (2n+l)st rel'ationship, 

to determine the final ijime t f , as 

~ 
whereas the other 2n equations are x(to)=xo ' and 

CASE v. (Final state free) In this case both oXf and 

&tf are arbitrary, and furthermore, independent. So to 

satisfy equation 2.2.2 we must have their coefficients to 

vanish. Thus 

2.3.10 

2.,.11 

2.,.12 
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and 
.: ".' . " .' 

H(:f(tf),y(tf),u*(tf),tf ) + ~t (£(tf),tf ) = 0 

CASE vi. (x(t f ) lies on the moving point 

and cStf are related by _ 

9(t» Now, ax -
f 

to a first order, making this substitution into equation 

-2.2.2 yields 

* 1(.;110 alP * H(x(tf),y(tf),u(tf)',tr ) + at (x(tf),t f ) 

acP ,. *' - T de 
+ ( ai(x(tf),t f ) - y(tf) )( 2t (tf » = 0 2.,.15 

This gives one equatioI;l and remaining n required relation­

ships are 

CASE vii •. (Final state lying on the surface defined by 
. . 

_ m(x(t»=O) T?-e reasoning used in CASE iii with fixed final 

time also applies here-. Since the surface where the final._ 

state lies does not move,i.e., has no explicit dependence 

_on t ,then the variation in xC·t f ), namely aXf is indepen­

dent of atf • Thus the required n+k+l equations are 

C}q, II< ;It- 8m ~T 
ax (x(tf),tf ) ~ y(tf) = ( ~i (x(tf » ) v 2.3.17 

'* . m(x(tf » = 0 
and 

CASE viii. (Final state lying on the moving surface defined 

by m(x(t),t)=O) Notice that ~tf now influences the admissible 
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values of .& xf ' thntis , to. remain on the surface 

m(x(t),t)=O, the value of . aXf does depend onatfe The 

.vector with components 6xf and cStf must be contained in 

a plane tangent to the surface at point (t( t f ), t f ). This . 

means that 

is normal to each of the gradient vectors 

am ~ -8'i (x( t f ) ,tf ) . . . . . . . . . . . . . . . . . . . . ~ . . 
dm 11-

-a~ (x(tf ), tfl 

which. are assumed to be linearly independent,and normal 

also to their linear. combination. Rewriting the equation . 

. '. . 
. yields the necessary n+k+l equations 

* *( *( del> If H(x(tf),y tf),u tf)~tf) + at(x(tf),tr ) 

= [~~(x"c t f ), t f } ] T v 

and 
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2.4 General Formulation 

Now let us try to state the general formulation of two point 

boundary value problems such that it covers all cases· w·e have 

discussed above. 

Since the technique we have offered determines an open-loop 

control, we will assume that equation 2.2.l.c· can be solved 

t bt · . f ult
( t ) . f ~() *() .0 0 a~n an express~on or ·~n terms 0 x t, Y t , 

and t, that is 

:* *.~ 
u(t) = z(x(t),y(t),t) 2.4.1' . 

If this expression is substituted into equations 2.2.l.a; 

and 2.2.l.b, we have a set of 2nfirst o.rder ordinary 

differential equations (so called the reduced differential 

* -* equations) involving only x(t), y(~), and t, namely 

~(t) = h(x(t),y(t)~t) 
where 

!:. aH .. . 
! ( x ( t) ,y ( t ) , t ) gy ( x ( t ) , y ( t ) , z ( x ( t) , y ( t ) , t ) , t ) 

h(x(t) ,yet) ,t) !:. - ~~(x(t) ,yet) ,z(x(t) ,yet) ,t},t) 

t From now on we will not use ~ to indicate . ()* is 
an optimal quantity 

2.4.2 . 

2.4.3 

2.4.4 



The boundary conditions for these 'differential equations 

(which are of nonlinear nature) can be ,generalized as 

x(t o) = x~ 

m(x(tf),t f ) = 0 

l(x(tf)~y(tf),v,tf) = 0 

g(x(tf),y(tf),v,t f ) = 0 

13 

where equation 2.'+'5.a ts given n relationships. Equation 

2.4.5.b forms O<'k:<'n-l relationship(s) to define the' 

surface where x(tf ) will lie at the final time. Inequation~ 

2.4.5.c and 2.4.5.d, 1 and g are an n-dimensional vector, and 

a scalar valued functions respectively" to satisfy the 

equation 2.2.2. 

Notice that, 'a very little effort is necessary to put the 

boundary conditions we have discussed into the form of equation 



,III. THE SOLUTION METHoD USING 

,TRAJECTORY SENSITIVITIES 

,.1", Introduct~on ",,' 
-

14 

As we see in the prev~os chapter, in general·' the variational 

apprbach to optimal control problems leads toa· nonlinear 

two point boundary value problem that cannot ,be solved 

analytically to obtain the optimal control. So, somehmv we 

have to use a numerical technique to determine the op~imal 

control and trajectory functions. 

If the boundary conditions were given, all at either to or 

t f , we could numerically integrate' the reduced differential 

equations to obtain x(t), yet) for tE[to,tfJo The optimal' 

control ·history could then be found by s,ubsti tuting x( t) , ' 

yet) into equation 2.4.1. Unfortunately the boundary con­

ditions are split, so this method cannot be directly applied. 

But the iterative method we have developed somehow, makes 

, . use of this .fact. In other words, we make an initial guess 

for. x(tf ), ' y(tf ), v, an~ tfto convert the problem into 
( . 

an'initia:lvalue I>roblem in which equations 2.4.5.b through 

2.4 0 5.d are satisfied. Then we integrate the differential 

equations 2.4.2 and 2.4.3 backwards numerically, to ·obtain 

a value for x(t o)' which will most probably be different 

from x • Then this value is used to adjust the initial o 

, guess in an attempt to make next value of x(to) come 

closer to xo. If these steps are repeated and the iterative 
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" 

procedure converges, then the o,ptima'l trajectories and control 

satisfying all boundary <?oIiditionswill eventually be found. 

To introduce the idea of the methoa., let us' c,onsider the 

,following special case of 'two point boundary value problem 

given by equations 2.4.2 through 2.4.5. 

. 
x(t) = f(x(t),y(t),t) 3.2.1 

__ yet) = h(x(t),y(t),t) 3. 2,.2. 

x(to ) = Xo , y(t f } = Yf 3.2., 

where x(t), and yet) are n-vectors, xo ' Yf are known and 

t f is fixed. Furthermore let us as'sume that f(x(t),y(t),t) 

and h(x(t) ,yet) ,t) are' bounded and continuous functions of 

x(t), yet), and t, 'and that satisfy a uniform Lipschitz 

condition to ensure a unique solution of the initial value 

problem for a given set of initial (or as in our case final) 

conditions. ' 

Suppose we make an initial guess for x(t
f

) , then we have' 

x(tf ) = x f , y(tf ) = Yf 3.2.4 

and the equation ,.2.4 together wi1ih the equations ,.2.1 

and 3.2.2 convert the original problem into an initial value 

problem that' can be solved, e.g. by integration, easily. But 

now, the calculated x(t o ) will probably differ from the 
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desired value xo. So, somehow we_ have to, adjust our initial 

guess xf to catch the desired valuexo • 

Certainly, introduction of ,xf causes a parametric dependence 

of x(t) and yet) on xf' that is 

,Now also suppose that"we introduce small changes in xf. 

Since theassu.mptions made on f and hensure that the solu­

tions x(t) and yet) are continuously differentiable with 

respect to xf,the effect of such changes on x(t) and yet) 

can be predicted by the trajectory sensitivities. Furthermore 

the sensitivities can be calculated while the initial value 

is being integrated. 

Let us define the sensitivity matrices as, 

R(t) ~ 
dX(t;Xf ) 
-------- 3.2.6 

aXf 

Set) /J 
ay(t;xf ) 
--------

d;Xf 

then R(t) and Set) happens to be nxnma.trices, and 

d d nt R(t) = nt 3.2.8 

Si~ce- t and xf are not dependent, the order of the 

differentiation in equation 3.2.8 can be changed, yielding 
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or substituting x(t)' from equation 3.2.1 into equation . 

. 3.2.9, we obtain 

· R(t) = 3.2.10 

Momentarily' omitting theargurncnt~, and applying the chain 

rules of partial differenti~tion, 

· af dX of a' RCt) = ,.-- + --~ 
. ~x aXf aYdXf 

or 
• ~f RCt) af R(t) = + -- Set) ax " ay 3.2.11 

Simi.larly 
• ~~ RCt) dh S(t) = + -- SCt) ax ay 3.2.12 

T6 integrate the equations' 3.2.11.and 3.2.12 we also have 

, to knoVl' the values of the sensitivity matrices at t f , there 

follows Irom the definition of RCt), 

or first evaluating x(t;xf ) at t f and then taking the 

derivative with respect to xf' we have 

3.2.13 

3.2.14 ! 



· and'·si~ilarly· S(tf ), can be ~ound as 

If we want to write these results in a more compact form, 

we' obtain 

. (if ar R R ax ay 
= 

• ah ah S 
·ax ay S 

and 

= 

18 

3.2.15 

,3.2.16 

3.2.17 

3.2.18 

Now, we can integrate the system of equations 3.2.1, 3.2.2 

and 3.2.17 using 3.2.4 and 3.2.18 to obtain a value for x(to) 

and its ~ensitivity for the variations in xf ' namely R(to)' 

Suppose that we introduce a finite change .6 xf on the initial 

guess. x!' then ther~~ulting change in x(to ) can be 

. approximated by 
1 ." 

3.2.19 

Since our aim is to make x(to) equal to xo,,' the desired 

· change in x(to) is ~x(to)=x(to)-xo' and the necessary 
, . 

change in xf can be found approximately by using the formula 

3.2.20 

· provided that R(to) is invertable. If the system given by 
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equations·3,2.1 and3.2~~ is linear Csee Appendix B) or the 

, initial guess is very close to' the tr~e value, then it is 

possible to have x(t,) to be very close to xo ' afterm~king 
. 0 

. the change on xf found from equation 3.2.20, and solving 

the initial value problem again. But in general this is not 

the case and a few more iterations are necessary. 

ALGORITHM 

Now we can summarize the method described above as an algorithm 

, 1. Choose a norm in ]£ri and an accuracy Gx • 

2. Make" an initial guess for xf • 

3. Solve the initial value problems given by equations 
3.2.1, 3.2.2 and 3.2.4 for states and costates, and 
trie one given by 3.2.17 and 3.2.18 for sensitivities 
from tfto to. Store only the valuesxCt o) and nxn 
matrix RCto ) •. 

4. Check to see if the termination criterion IlxCto)-xoll(d-x 
is satisfied. If this is the' case,' use the final 
iterated value. of xf to:oeintegrate the system equations 
3.2.1 and 3.2.2 while evaluating the optimal control 
history using lCt)=zc/Ct) ,ICt), t). If the stopping 
criterion is not satisfied, then determine the new 
value Ofxf , using 

i 

3.2.2~, 

and return to step 3. 
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3., General,Gase with Analytic, Parametric Functions 

'Now let us turn back to general Two Point Boundary Value 

Problem that, we have stated at the, end of Chapter 2, and, 

for the sake of c.orilpleteness let 'us restate it again. We 

have a set of 2n first order differential equations, namely 

i(t) = f(x(t),y(t),t) 
'and 

~(t) = h(x(t),y(t),t) 

where x(t), and yet) are n-vectors and f(x(t),y(t),t), 

and h(x(t);y(t),t) are bounded and continuous functions 
. ' 

of x(t),y(t), and t. Furthermore they satisfy a uniform 

Lipschitz cO:lc,iit~on. 

We have also a set ,of boundary conditions 

3..3.4. a 

3.3.4.b 

whereto'and t f are the initial and the final times res­

pectively. It is assumed that to and xo are given a priori. 

m(x( t f ), t f ) is an 0" k' n~l' dirnensional vector function 

to define the surface where x(tf ) will lie at t=tfo 

Of course if k=O then there will be no constraint on x(t
f

) 

defined by ro, so k-dimensional coefficient vector v will 
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also disappear from, equatlons3."3.4.band 3.3.4.c.l and g , 

are an n-dimensional vector function and a scalar, valued 

function respectively to sat"isf;y the" generalized natural 

boundary conditions. If t f is also fixed, then g will 

necessarily disappear. We also assume that m,l, and g 

are continuous functions of their arguments. 

The first thing we have to do, is to somehow determine' x(tf ), 

y(tf ), v, and tfto satisfy e'quations 3.3.4. But we have 

2n+k+l unknowns with only n+k+l equations. Thus we can 

determine n+k+l of them interms of remainin,gn unknowns, at 

least in principle. Alternatively we can parametrize the 

equations 3.3.4 such that 

, x( t f ) ~ xf(p) 

y(t f ) A 
Yf(P) 

v /;) yep) 

t f 
/;) 

Tep) = 

where p is an n-dimensional parameter vector, 

v(p), and Tep) are coq.tinuous functions of p, and equations 

3.3.4 are satisfied for all values of p. 

Now a question may come to mind tb.at "Is it always possible 

to find tho,se parametric functions in equations 3,3.5 

analytically?". Answer to this question is, unfortunately 

and of course "no". But; we leave the answer of the question 

"What shall we do then?" to the nex:t section and at the 



22 

moment, assume that they exist. 

Suppose that we make an initial guess for p, then'through 

equations 3.3.5, we have the necessary set of final values' 

x(t f), yetf), and t f to integrate the differential equations 

3.3.1 and 3.3.2 as an ,initial value problem. 

Since the 'different values of p, give different set of final 

values, thus different solutions for the initial value prob­

iem, then x( t), . and y( t ) depend on final values, . i.e. , 

x(t) t. x(t ;X~(p) ,y f(P), v(p) ,T(p)) 

yet) t. y(t;Xf(P)"Yf(P),v(p),T(p)) 

and consequently depend on p parametrically, that is 

x( t) ~ x( t ; P ) y (t) ~ y ( t ; P ) 

Furthermore, they are continuously differentiable with 

, respect to p. Differentiability is guaranteed by the 

assumptions on f and h. , 

3.3.6.a 

3.3.6.b 

The second thing is to determine the trajectory sensitivities 

in the sense that we can predict the effects of sm~ll 

changes in p, on the system response. W~ define the sen­

sitivity matrices in a same manner as, we did before. Let 

Ret) 
dX( t;p) 

~ -------
ap 
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and 
·S ( t ). ~. ::~~~~~ 3.3.9 

ap 

where R(t)andS(t) happen to benxn matrices. The diffe­

rential equ~tions wf:tich R( t) and ,S( t) satisfy ca,n be 

obtained by taking the derivative of the equations 3.3.1 

and 3.3.2 with respect to p, as 

cp 

oy(t ;p) 
-------

op 
or . 

R 

• s 

afax(t;P) 
= -- -------ax 

ah = ax 

af 
ax 

ah 
ax 

a p 

ax(t;p) 
-------

op 

of 
ay 

ah 
ay 

af oy(t;p) 
+ -- -------

;}y Clp 

ah dy(t;p) 
+ -------ay ap 

R 

s 

Calculation of the :final values of R(t) and Set) is not 

3.3.11 

very simple as the previous case and should be considered 

. very carefully and in detail. Let us begin from the deflnition 

of R(t) to calculate R(t f ). 

dX(t;p) 
3.3.12 

op 
t=tf 

. 
Making use. of equations 3.3.5 and 3.3.6, equation 3.3.12 

can be rewritten as 

-------~-------------------
C3p t=T(p) 

i 

. I 



Expanding equation'3.3.13, by ,employing chain rules of 

partial differentiation,it follows'that 

dx(t;Xf(P)'Yf(P),v(p),T(p)) . axf(p) 
= --------------------------- ------

. axf(p) t=T(p) . c3p 

, 

axe t;xr(p) ,Y f(P) ,v(p), T(p)) a Y f(P) 
+ --------------------------- ------

oy f(P) t=T(p) . ap . 

ax(t;xr(P)'Yf(P) ,v(p) ,T(p)) ov(p) 
+ --------------------------- ------

a v (p ) t =T (p ) a P 

ox(t;xr(P)'Yf(P),v(p),T(p)) dT(p) 
+ --------------------------- ------

aT(p) t=T(p) dP 
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Momentarily dropping the p arguments, let us evaluate the 

expression in the first line of equation 3.3.14, namely 

a xC t ; x f ' Y f ' v , T) 
---------------

axf · t=T 

Since the evaluation of the expression at t=Tbrings no 

extra terms involving xf' we can first do that and then 

take the partial derivative with respect to xf' so we have 

ox(t;xi'Yf,V,T) -ox(T;xf'Yf,v,T) 
--------------- = 

~xf t=T 
---------------

. aX
f 

, 
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. dx(t;xf 'Yf,v,T)c3xf _ 
--------------- = = I 

aXf t=T. ax.f 

. Same reasoning also applies to the expressions in the second 

and the third lines of equation 3.3~14, yielding 

3.3.17 

For the last expression of equation 3.3.14, situation is a 

bit different. It can be shown that (see Appendix A), 

ax(t;xf ,Y f' v, T) 
---------------aT 

Substituting the values of the expressions found in equations 

3.3.15 through 3.3.18 into equation 3.3.14, we have 

Similarly· S(t f ) can be calculated as 

dT(p) 
h(xf(p)'Yf(P),T(p)) ----­

dP 

or in a more compact form 

SOGAzlcl ONlvERSiTESI KOTOPHANES\ 

3.3.19 
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Thus we have now two initial value problems,"for x{t),y(t) 

given by equations 3.,.1 and 3.,.2, and for R(t),S(t) 

given by equations ,.3.11, and their values at t=tf given' 
. , 

by/equations 3.3.5 and 3.3.21, respectively. So we can 

integrate them simultaneously. 

TEe rest of the method is the same as the previous case. 

To repeat, ,as a .result of the. initial value problems, we 

obtain a value for x(t o)' which is probably different from 

the desired value xo ' and a value for its sensitivity to 

the variations in p, namely R(t o). Then these values 

. x(to)' R(t o)' and Xo . are used to adjust the .initial guess 

p.in an attempt to make·the next value of x(to ) come 

closer to xo ' namely 

. P R-l. (to') (x(t o) - xo) Pnew = old- 3.3.22 

provided that R(t o) is nonsingular. 

Algorithm that summarizes the. method for the general case 

is almost same as the one we have 'discussed before, however 

for the sake of completeness let us go over it again, while 

making the appropriate modifications. 

/ 



1. Choose a norm in En. and an ,accuracy ax. 

2. Make an initial guess for the parameter vector p. 

3. Determine the values for ~f(P)' Yf(P),v(p), and 
T(p)· using; equations 3.3.5,.and the values for 
Retf), and Setf) using equations3.3.21. 
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4 •. '.Using· these value.s, solve the 'ini tial value problems 
given by equations. 3.3.1, and 3.3.2 for states 
and costat~s, and given by equations 3.3.11 for 
sensitivities, from t f to to. Store only values 
x(t o) and nxn matrix R(t o). 

5. Check to 'see .if the termination criterionJlx(to)-'xoll< Gx 
is satisfied. If this the case, use the final 
iterated value of p to reintegrate the system equ~tions 
3.3.1 and 3.3.2 while evaluating the optimal control 

~ * * . . history using u(t)=z(x(t),y(t),t). If the stopping 
criterion is not satisfied, then determine the new 

. . 

. value ofp using equation '.3.22 and return to' step 3. 

3.4 Determination of The Values of The Parametric Functions 

For a Given p, Numerically 

Let us now answer the question "What.shall we do if the 

parametric functions given in equation 3.3.5 do not exist, 

analytically?". What we have" done is to parametrize a given 

set of n+k+l nonlinear. algebraic equations 

3.4.1.a 

3.4.1.b 

3.4.1.c 

using an n-dimensional parameter vector p,yielding 
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x(t f ) 6 
Xf(p) - 3.4.2.a 

y(tf) 
'to 

Yf(P) 3.4.2.b 
"'.: ' 

V 
-t. v(p) 3.4.2.c 

t f 
t. T(p) 3.4.2.d 

'such thatxf(p), Yf(P), v(p), and T(p) 'are continuous 

functions of p , and, 'equations 3.4.1 are satisfied for all' 

possible values ofp. Since wecan'not always find analytic 

expressions for parametric functions given in equation, 

3~4.2, we will determine them numerically. 

Suppose that we know a',set' of values- for xf(p), Yf(P) ,v(p), 

and T(p) such that they satisfy equations 3.4.1. If we 

now introduce some finite changes on those values, then 

'the resulting- changes in ,m, 1, and g : can be approximated 

by the ,algebraic vector-matrix equation 

m 
~xf(P) 

1 Q 
~Y rep) 

3.4.3 = 
~v(p) 

g 
JiT(p) 

where Q happens to be n+k+lx2n+k;t-l mnt:i:'ix 

M M Mt ~ x Y 

L L Lv ~ 3.4.1j. x Y 

G. G G GT x Y v 
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and 
ivl Il am L Il 01 Gx ~ £~-x aXf ::c aXf ax f 

l:1 am Il <31 'CJ ' 
IvI = 0 L' --- G ~ -g- , 

Y CJYf Y aYf Y C)Yf 
3.4.5 

M Il am 0 L A al Gv 
c1 ~g-= v av v 2;V av 

l'fu 
Il am 

~, 
A al GT 

Il ~~-;§T- = aT-

Of course the equation 3.4.3 can be used to determine ,the 

necessary changes on the values of xf(p), Y f(P), v(p), 

and T(p), to sat.Lsfy eguatio:ls 3.4.1~ This can be done 

only if we have fixed n out of 2n+k+l unknowns beforehand, 

such that Q is reduced to i3 square matrix. Without loss 

of generality we can set xf(p) equal to p, then by the 

ini tial gue,ss made for p, the values of Xf(p) , become 

fixed, namely 

3.4.6 

Now suppose that we guess also the' values of the remaining 

n+k+l unknowns, namely Y f(P), v(p), and T(p) and eVI.lluate 

the functions m, 1, and g which probably do not vanish. 

Then we have to change the values' of Y f(P), v(p), and T(p) 

'to satisfy equations 3.4,.1 while the values of xf(p) kept 

fixed. Thus the desired changes, in order to make the next 

values of , m, 1, and g com~ closer to zero, can be 

obtained by substituting .6xf (p)=O in equation 3.4.3, 

yielding 
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-1 

,6Yf(P) 0 0 MT In 

6v(p) = JJ L LT 1 ,.4.7 y v 

LlT(p) Gy G G g v T 

provided that the indicated inverse exists. 

Certainly any n of the unknowns,. as 'well as 

- beset equal to p, _ and will lead a square_ matrix, by­

substituting zero for their variations in equation 3.4.3. 

We also have -to determine the 'derivatives of the parametric 

functions with-respect to p numerically, to use in the 

evaluation of R(t f ) and S(t f ). Taking the partial deriva­

tives of the equations ,.4.1 with respect to p, we obtain 

M My !Vi IVl.r 
dXf(p)/ap 

x v ay f(p)/ap 
L-- L L Lrr = 0 x y v av(p)/ap 

3.4.8 

G G Gv G-x Y T, 
dT(p)/ap 

or substituting 

then the equation ,.4.8 reduces to 

-1 

aYf(p)/ap 0 0 If M ~ x 

dv(p)/ap = Ly L LT L 3.4.9 v' x 

aT(p)/dP G Gv GT G y _x 

where the matrix inverted is the same as we have used in 

equation 3.4.7. 
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In the view of this section only the steps 2, and 3 of, 

the algorithm, needs to be modified as follows. 

2a Choose n of the final values to for~ t~e parameter 
vector p, and make an initial guess for p. 

2b Choose norms' ;n ' En, Ek and accuracies c. c c-.... am' 01' Og' 

,2c Also guess the remaining n+k+l final values 

3a Evaluate m, 1, and g, ,and check to see if 

, ,11m ( x f (p ) , T (p )) II < Sm' and III ( x f (p ) ,y f (p ) , v (p ) , T (p ) ) Il < G 1 ' 
,and Ig(xf(p)'Yf(P),v(p),T(p))I<ag are satisfied.' 
If ~t is" store the values of xf(P),yf(p),-v(p), T(p) 
to use in the next iterate (or as true values) and 
goto step 3c. 

'3b If it is not, then making the appropriate substitutions, 
solve the algebraic equations 3.4.3 to determine new 
final values and return to step 3a. 

3c Using the final values found in step 3a, and again 
making the appropriate substitutions, solve the equation 
3.4'.8 to determine the partial derivatives of xf(p), 
Y r(p), ,v(p), ' T(p )withrespeot top, and evaluate 
R(tf ) and S(t f ) using equation 3.3.21. 
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IV. EXISTENCE 0]' SOLUTIONS AND. CONVERGENCE 

4.1 Introduction 

·In the preYious chapter, we made some assumptions on 

f(x,y,t} and h(x,y,t) .to ensure that the initial yalue 

problem has a unique solution fora given set of initial 

conditions ~ Infact .t118 uniqueness of the solution of the 

initial vc.\lue problem is nece·ssary,· since thEm. we are 

s·olving transcendental equations. (in which initial values 

are the variables of the equations) to find its roots and 

evid.ently determine the solution of.the boundary value 

problem. 

In this chapter, we will study the necessary conditions 

for the existence of solutions for the boundary value prob­

lems oia special type, namely with linear boundary condi­

tions, by stating the necessary theorems and proving some 

of them. This study is done simply to give an intuition . 

. The existence theory for more general boundary value prob-

lems should be considered as an independent research topic. 

4.2 Initial Value Problems 

. 
One of the basic results of the initial value problems can 

be stated as follows .. 

THEOREM 4.1 Let an n-vector So and positive numbers S·,K, 

and M be given such that, with 



RS,M(SO) ~{(t'U)IIU-Sol(~+j~(t-tO); . to.{t.{ t r ]; ... 

(a) f(t, u) is continuous in HS, M(so) . 

(b). If(t,u)I~M fqr 'all (t,u)ERS,lv.l(So) 
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(0) If(t,u)-f(t,v)I~Klu-Ylfor all (t,u),(t,v)ER,5',M(so). 

Then the initial value problem 

.. 
u = f(t,u) , 

has a unique solution u=u(t;s) on [to,tfJ for each 

Furthermore, the solution is Lipschitz-continuous in s, 

more precisely 

Proof: For the moment suppose that· u(t) is known and 

satisfies the relation 

. t 

u(t) = So +.{.: f(C,u(e)) d~ 
o 

Now regard u(t) as unknown, let t lie in the interval 

&o,trJ, and consider the sequence of functions ua(t), 
. 

u ( t) , . . . . . , un ( t ) 
]. . 

defined as follows, 

uJ.(t) 

4.2.1 

4.2.2 

4.2.3 



u2(t) = So +It f(Z:,u~("C'» dZ: 

· to · " • · · · ,t '. 
+1 u: (t) ,,- So f(C,un~~(~) de ,n 

to 

It will now be proved 

, i), that as n increases indefinitely, the sequence of 

functions u~(t) tends to limit which isa continuous 
function of t', 

ii) that the limit function satisfies the differential 

equation 4.2.1, 

iii) that solution is unique an'd assumes 

We have to show, that/un(t)-sol~s+M(t-to) 

Suppose that: "/un_~(t)-so/~~+M(t-"to)' then 

If(t,un_J. (t»/~M 

and 'consequently 

,,' , t 

IUn(t)~sol ~;: (f(-C'Un_:t('C'»! de 
o 

" 5 + M(t-t o ) 
Clearly 

lu~ (t)-so I ~' ~ + M(t-t o ). , 

it is therefore true that 

for all values of n. 

when t=t . o 



CLAIM: 

For n=l, it is obvious. Suppose it to be true that when 

t f [to,tfJ' 

then. 

MKn - 2 

IUn-.J. (t)-un_2(t. )1' ~ ------ (t-to)n-l.', 
(n-l)! 
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t I un (t )-un_J. (t) I£.;;' I f( Z", un_J. ('C) )-f( ?:,un_2 (C)) J ' d 'C 
o 

. t.M Kn- 2 

~1 K ------ (C-t )n-J. d 'C 
to (n-l)J 0 

It follows that the series 

·is absolutely and uniformly convergent when t to,tf , 

moreover each term is .a continuous function of t. But . 

. ' ' 

consequently the limit function 



, ,u(t) = lim, u (t) , n . 
n-t-.j)() , 

exists and continuousfuncti6n of, tE[t 0' tfJ. It can be 

shown that 

lim u (t) = So + lim it f( 't', U n_ i ('2:")) ar 
D. n .... 0<1 n+oo t 

·0 

t 
= So +1 lim f( t", u (~)) 9-~ 

n-~ 
to n .... oo , 

= So +It 
f(Z:,u(z-)) d'C' , 

to 
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thus u(t) isa solution of the integral equation 4.3.2, 

and since f is a continuous function 

d u(t) 

dt 
d it = dt t f(r,u(~)) dt: 

o 

= f(t,u(t)) 

Now suppose that there exists U(t) which is a solution 

distinct fr6mu(t) satisfying the initiar condition 

,U(to)=so and continuous in an interval [to,t~J where , ' 

tf<t f such that 

-
then it satisfies the integral equation 

U(t) 

.. 
= s + r: f('C,U(C)) d'C 

o Jt o 
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and consequently 

t 
U(t) - un(t) =~ {f(Z:-,U(z:'))'- f.(z:,Un_l.('C))} dC 
,0, 

Successive, applications of the Lipschitz condition, yield 

Hence 

Kn (~+M(t~to)) (t-to)n 
IU(t)-Un_l.(t)1 ~' ---------~I-----------. 

U(t) = lim un(t) = u(t) 
n-+I)O 

for all values :)f' t in the interval [to' t~ J, and therefore 

the new solution is identical with the old one. 

Demostrationof equation 4.2.2 can be found in Keller .(1968) 

pp3. I . 

Replacing condition (c) of Th·~orem 4.1 by the requirement 

that Jf(t,u)/au 'be continuous on RS,M(so)' one can show 

that th.e solution u(t;s) of e'quation 4.2.1 are continuously 

differentiable with respect to s in NS(so) and tf(to,tfJ. 

Ince (1944), pp 68-69, ha.d shown it for scalar case, and 

its extention to vector case is immediate • 

. 40 j Two-Point BbUno.ary-Va1ue Problems (TPBVP) 

Let us consider the general system of n first order 

differential equations 

. 
y .- f(t,y) , 4.3.1.a 



. , 

subjectt;6theru'ost .. general linear boundar.ycondi tions 

where yet) is an n;..dimensional vector, f(t,y) is an 

n-vector functionoft and y. iVlost of the TPBVP's with 

linear boundary conditions can be written in the form of 
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4.3.1.b 

equation 4.3.1.b, and they are linearly independent if and 

only if the nx2n order matrix [A, BJ has rank n~ JJet us 

also consid~rthe initial value problem 

u = f(t,u) 4.3.2 

where s is an n-vector to be determined. In terms of the 

u=u(t;s) of the problem 4.3.2 we define ,the system of n 

equations', ' namely 

~(s) .~. As + Bu(tf;s) - t>< = 0 

;It 
Clearly, if s=s is a root of this equation, we expect that 

. *' yet) = u(t;s) 

is. a.solution of the boundary value problem 4.3.1. In fact' 

it is and we have 'the followine; theorem. 

THEOREM 4.2" Let f(~,u),be continuous on 

R: t~ ~ t ~ t f . /u/<ca 

and satisfy there a uniform Lipschitz condition in u. Then 

the boundary value problem 4.3.1 has many solutions as 

there are distinct roots s=si of equation 4.3.3. These 

solutions 
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are also the solutions of the initial value problem 4.3.2 

with i s=s • 

Proof: ,In Keller 1968, pp 8':'9, it is proved for n=2, and 

tn this case, the proof is almost identical. I 

We have now reduced the problem of solving the boundary 

value problem 4.3.1 to that of f:Lnding the roots of a 

system of n transcendental equations. A very effective 

class of numerical methods are based on thisequivalance. 

It, is generally quite difficult to prove the existence of 

roots of such systems. For the special case that we are 

dealing with" we have the following theorem. 

THEOREM 4.3 Let an n-vector So and positive constants 3, 

, K, M jatisfy, for 

(a) f(t,u) is continuous in RS,M(so) 

(b) ( f ( t , u) I ~ M in ,R 5' , M ( so) 

. (c) "(f(t,u)-f(t,v)/~Klu-vl for all (t,u), (t,v)ERS,M(SO) 

Further, let the matrices 'and the .interval length, I tf-to I, 
be such that 

Cd) (A+B) is nonsingular 
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Then the bounda~y value problem 

. 
y f(t,y), 4.3.4 

has at least one solution with y(to) E N5'(so). 

Proof: From conditions (a) through'(c), theorem,4.1 is 

applicable, hence 4.3.4 has a solution if and only if the 

n~transcendental equations 

pes) 1>. As + Bu(tf;s) 0<: = 0 = -
has 

' ,~; 

CP(s)=O a solution. We also know that has identical 

roots with that of s=g(s) where 

g(s) ~ s- Q(s)~(s) , 

if Q(s} is any n-th order matrix which is bounded and 

'nonsingular for all s. Without loss of generalit'y we can 

choose Q(s)=(A+B)-~ by condition (d), then 

,g(s) = s - (A+B)-~ [AS + Bu(tf;s) - 0<:] , 

=s - (A~B)-~[(A+B)S,~ B(u(tf';s)-s)- <X] 

= (A+B)-~~ -~(A+B)-~B(u(t!;s)-s) 

Since u(tf;s) is continuous with respect to~ ,in Ng(so); 

so g(s) is also continuous with respect to s in NS(so)' 

CLAIMl 'g(s) maps the closed sph,ere NS(so) into, itself, 

tha.t is to say:, 

The expression for g(s)-so is 



'" " 

g(s)-so 
.. ~ 

= (A+B) - ex: -9 . 
. 0 

conseql,le'ntly 

.. ,b,ut we have 

u(ti;s) . itf = 9 + f(t,u(t» d~ 
, t 
" 0 

which implies 

!uCtf; S )-:-8 11(..(f I f(t,u( t)) II dt 
o ' ' . 

4-1 

substituting above inequality into equation 4-.3.5, we have 

, . 

Ilg(s)-so II , II(A+B)-~B 11'M(tf-to ) + II (A+B)-k -so II ' 

and it follows, from the condition (e), ,that 

, which shows that g(s). mapsNS(~o) into itself. Then by 
. 

Brouwer Fixed Point' Theorem, ,s=g(s) has at least one 

,root in NS(So)' so ~(s)=o does. Therefore boundary value 

problem has at least one solution with. y(to ) NS(so). 2, 

.£t.4- ' Convergenpe 

To solve equations of the form, 

g(s) = s - Q(s)~(s) 



42·' 

we need only to determine the mairix Q(s) such that g(s) 

is continuous and maps NS(So) into itself. A particularly 

effectiv~ procedure ,of this method is Newton I s Method, ,'in 

which we take, ,Q( s}~ J-~ (s) where 

~ d~(S) 
J(s) = --~-­

,as 

is the Jacobian matrix' of cP with respect to s. Thecorres­

ponding iteration scheme is then 

i=O, l, •• 

The convergence of the Newton's method is frequently rapid, 

even better. than the geometric type of convergenge. We do 

not go into the details here, but simply state the following 

theorem. 

THEOREM 4.4 Let the function ~(s) 'have a zero 

continuous first order derivatives in some neighbourhood 

N
3

(so) of So and nonsingular Jacobian at so' that is, 

det J(so)#'O'. Then for each A in 0(/-,(1 there exists a 

positive number 5,. such that for any s(o) N3? (so) the 

Newton iterates (4.4.1) converge to So with 

Proof: It is given in Keller 1968, pp 33-35. I 
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. V •. NUMERICAL EXAtJil?.LES AND RESULTS 

. We are now going to study some examples to illustrat.e the 

method, we have "discussed so far. 

EXANLPLE 5.1 Assume that the system equations are given by 

x(t) = x(t) yet) 

yet) = x(t) + yet) 

and that the bounda,ryconditions are 

x(O) = 1 

y(t f )-(3e2 =o 

t 
x(t

f
) -O(e f = 0 

5.l.1.a 

5.1.1.b 

5,1.2.a 

5·1.2.b 

where . ~·=Gos2-Sin2, and ,G=Cos2+Sin2. Since the analytic 

solution is known for parametric functions of this particular 

. problem, we have chosen t f to be our parameter p, then 

it follows that 

T(p) = P 

and from equation 3.3.21, we· have 

R(tf ) = cx:eP - (rxe P-(3e 2 ) 1 

= (3e 2 5.1.4.a 
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and 
5.1.4.b 

The differential equations for R(t) and Set) are found as 

• 
R(t) = R(t) -Set) 

Set) =R(t) + Set) 

,The initial guess used to strart the iterative procedure was ' 

p = 2.7000 
and 

was used as a stopping criterion. The method converged after 

4 iterations'(with a'norm 0.000016164) to 

,p = 2.000014904' 

which yielded as the initial value 'of state 

x(O) = 0.999983836 

TABLE '5.1 Solution of ,the:'~x~mp1e 5.1 

Iteration ' Sensitivity Final Time Initial X 

R(O) p x(O) 

'0 0.2017 ~.7000 1.27393 

1 0.5681 1.3420 0.63375 

2 0.5225 1.9867 0.99251 

3 0.5394 2.0010 1.00046 
~ 

4 0.5384 2.0001 0.99998 
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EXAMPliE 5.2 We worked with the s-ame problem again except 

that the boundary condition 5.1.2.b was changed to 

5.2.1-

then it follows that 

Yf(P) =tB eP 5.2.2 
and 

S(tf ) = -iXeP 5.2.3 

and the other relationship, remained unchanged. The initial 

guess used to start the iterative procedure was 

P = 2.6000 

which yielded the solution given in Table 5.2. An initial 

guess of p=2.7000w~s also tried. The first iteration 

found a negative value asa f:inal··.:time ~ This. points out 

the importance of making a good initial guess. 

TABLE 5.2 . Solution of the example 5.2 

Iteration Sensitivity Final Time Final X Initial. X 

R(O) p' xf(p) x(O) 

0 0.2443 2.6000 -17.8456 1.37867 
1. 1.3602 1.0501 -3.7882 -0.18420 
2 1.0185 1.9207 -9.0476 0.92142 

3 0.9780 1.9979 -9.7732 .0.99780 
4 0.9802' 2.0001 -9.7952 1.00000 
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EXAMPLE 5.3 The version of example 5.2 wa.s Vlorked.again, 

but this time . x(tf ). was taken as the parameter p. Then 

we hCave 

Yf(P) 
(3 .. 

= -- p .. 0< . . 

T(p) = In (.l'_) 
0<. 

and 

R(t f ) 1 (p (3 1 = - - --p) --e>< ,P 

= p-
o<. 

SCt!) P- CP !3 1 = - + --1») --
IX e><- p 

= -1 

An initial guess of 

p = -3.0000 

was used to start the iterative procedure. We obtained the 

results given in ~able 5.3. 

EXAMPLE 5.4 The last version of the same problem ~as 

worked once mo're. This time the values of the parametric 

function~ were determined numerically rather 'than analytically. 

The set of initial g~esses 

p = -3.0000 

Yf CP) = 6.0000 
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TABLE 5.3 Solution of theexaI;Ilples 5.3 and 5.4 

" 

Iteration "Sensi tivi ty , Final Time 
, 

H(Q) T(p) 

0 -0.4287 0.8169 
1 -0.1940 ' 1.5919 
2 -0.1191 1.9010 

3 -0.1001 1.9917 
4, -0.1001 2.0002 

5 -0.1001 2.0001 

and 
T(p) = 2.5000 ' 

and the corresponding matrix 

[

0 
Q =', 
,-'~ :,,', 1 

1 ,-t3eT(P)], 
o _oeeT(p)' 

Final X Initial X 

p x(O) 

-3.0000 -0.5056, 

-6.5123 ' 0.5423 

-8.8710 0.8997 

-9.7135 0.9917 
-9.7964 1.0002 

-9.7947 1.0000 

were used to start the procedure, and we obtained the same 

results given,in Table 5.3. 

EXAMPLE 5.5 Consider the' following nonlinear system of 

equations 
• x(t) =y(t) 

5.5.1.b' 

and the boundary conditions 

x(O) = 0 
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5.5.2.0 

where the last equation is pecessary to determine the free 

boundary t f • Analytic expressions for the boundary conditions 

are 

T(p) = p 

·The differential equations that. the sensitivities satisfy 

are 
• 
R(t) = Set) 

. . , 

Set) = -R(t) - ?y(t)S(t) 5-.5.4. b ' 
! 

and their corresponding final values are found as 

, 

For an initial guess of p=l.OOOO, and the stopping criteria 

of Ix(o)l<o.Ol, we obtained the results given in the, 

following table. For this particular problem, we could not 

reach to the desired value of x(O) with an error less 

TAB~ 5.4 Solution of example 5.5 

Iteration Sensitivity :B~inal Time Initial X 

R(O) P x(O) , 

1 

0 -6.1555 1.0000 -0.61312 

1 -3.7646 ' 0.9004 -0.13561 

2 -3.2390 0.8644 0.00400 
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than 0.004. When we have used a- stopping crit~ria·of greater 

accuracy, the method has converged to x(0)=0.00400 and 

stayed there. This is becau~e of the truncation errors and 

the nonlinear nature of the problem. 

EXAMPLE 5.6 The·last example that will be considered is a 

. 2-dimensional problem given by 

Xl.( t ) =y i ( t ) 

.. if l. (t) =x2( t ) , 

and the boundary cond~tions for the problem are 

and 

x2 (O) =.0 

1 2 x2(t f )- 2t f=O 

·2xl.(tf)x2(tf)+lOyl.(tf)tf+6Yl.(tf) 

+Y2(tf)t~-y~(tf)-Y~(tf) = 0 

5.6.1. a 

5.6.l.b 

5·6.2.a 

5.6.2.b 

Notice that the last equation is too complex to find an 

analytic expression for either Yl.(tf ) o~ Y2(tr ), whereas 

the other equations are so simple to apply a numerical 

technique to determine the values of xl.(tf ) and x2(tr ), 

of course if t f is chosen to be one of the parameters. 

So in such a case, we can combine the methods, discussed 

in sections 3.3 and 3.4, to reduce the dimension of the 

matrix Q which needs to be inverted. We proceed as follows: 

Letting 



then we have 

xl.f(p) = 5Pl.+3 

x2f (P) 
1'2 

= 2Pl. 

Yl.f(P) = P2 

T(p) = P l. 

" 

and the equation, that we are going to make use of, to 

. determine· Y2f(P) numerically, 

For this particular problem, equation 3.4.3 reduces to 

where 

50 

5.6.4.a 

5.6.4.b 

5.6.4.c 

5.6.4.d 

5.6.6 

. and the corresponding derivatives of Y2f(P) with respect 

tOPll and P2 may be found from 

where 

JG/C)pl. 

and 

= -

= lap +6-2P2 . l. 
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Sensitivity matrices Ret) and Set) satisfy the following 

differential equations 

• 
Ret) :: Set) 5.6.10.a 

and 

[0 1J .. 
Set) = ... . R(t) 

'. 1 0 .. 
5.6.10.b 

and their final values may be calculated as 

R(t f ) 

5.6.11.a 

and 

0 1· 
1 2 
2P~ 

~. 0] S(tf ) = 'dY2f(P) . oY2f(P) 
------- ------- 5p~+3 

'Bp 'dP2 ~. 

1~ 2 
-2P .~ 1 

= 5.6.11.b 
'OY2f(P) 

-5p -3 
'aY2f(P) 

------- ------- .-~. 

.~p 
~ 

oP2 ~ 

The set of initial guesses 

P~ = 1.0000 

P2 = 5.0000 

Y2f(P) = 10.0000 
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TABLE 5.5 Solution of the example 5.6 

Itr •. Sensitivity Matrix Initial X Final Y Final Time 

0 

1 

2 

3 

4 

R(O) x~(0),x2(0) P2'Y2f(P) .P~ 

-14.1184 -3.1548 -5.4'5909 5.0000 2.0000 

-5~2136 -2.8204 -9.28671 14.6887 

0.3711 -7.7273 11.25268 0.6078 2.5948 

16.99.81'. -7.8836 14.84934 15.1111 

-7.2626 ·-5.5864 2.54387 2.0542 2.3921 
'. 

7.1809 -5.6203 2.81605 15.1508 

~9.7499 -5.4024 -0.08058· 2.5326 2.3'144-

4.61,89 -5.3844 0.28539 15.4958 

~9.5580 . -5.2308 0.04247 2.5638 2.3489 

4.4542 -5.2092 -0.03663 15.3278 

and the stopping criteria 

were· used to start the procedure, and.we obtained the 

results given in the above table. 

. 



53 

VI. CONCLUSION 

·Letus now summartze the features of the method. 

An initial n-vector. parameter p must be selected to star~ 

the iterative procedure. It is advisable and may be better 

to set the final values "about which we 'have more knowledge 

from the physical nature of the problem" equal to the para-

. ~eter vector p. 

If the para::netri~:functions introduced in equations 3.3.5 

cannot be solved analytically, then it is necessary to guess 

the remaining final values, but this not a drawback. As 

explained in section 3.4, the algorithm brings them to 

the necessary values to satisfy the boundary conditions, 

before starting each iteration. 

No trajectories need to·bc·stored.Only the values of the 

sensitivity ~atrix Reto)' the iterated final values or 

simply the parameter vector p, the given initial state 

value, and the appropriate boundary conditions (if the 

analytic parametric functions do not exist) are retained 

. in the computer memory. 

If the initial guesses are such'.,that the iterated final 

values are sufficiently close to the true values, then 

the method will converge quite rapidly. However if the 

initial guesses. are very poor, then the method may not 

converge at all. In this case, it should be restarted using 



a .different set ofini tial guesses. Of course·· all physical 

insight should be used to guide us in selecting tllepara­

meter vectorp. 

2nen+l) first order differential equations given by 3.3.1, 

3 .. 3.2, and 3.3.11 .mustbe numerically integrated and nxn 

matrix Reto) inverted in each iteration. If again the 

parametric functions cannot be solved analytically, an 

additional n+k+lxn+k+l (at most) matrix inversion is I 

necessary. 

The iterative procedure is terminated when 

is satisfied, where x is a pre-selected positive constant. 

Higher accuracy needs more iterations. But,·because of the 

truncation and roundoff errors in some nonlinear complex 

problems, accuracy has an upper limit. 

Fina~ly, it should be noted that the algorithms presented 

.above are quite easy to understand. The simplifying and 

unifying view of the sensitivity theory has made this 

.possible. 

.' 
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APPENDIX A 

Derivation of Equation ,.,.18 
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'Let us consider the following simple TPBVP problem 

~(t) = f(x(t),t) , ,A.l 

A.2 

where to ,xo ,xf are known', whereas t f , is unknown. Ii' we ' 

tJ;'Y to apply our method to this particular problem, we 
I • 

obtain 

xf(p) = xf , A .3a 

T(p) = P 

. (}f R(t) = R(t) . ax A.4 

and 

R(tf ) = ~~1~.iE2 8P t=p 
. . A. 5 

where equation A.5 should be evaluated to solve the problem. 

Suppose that we want, to calculate the change .6x( t, p) when 

both t and p are changed by ~p, thus we have 

Llx(t;p) = X(t+DP;P+L\P) - X(t;p) A.6 

or expanding the right-hand side of the equation A.6 into 

its Tay16r series, we obtain 

X(~+AP;P+~p) - x(t;p) 

Simplifying and· dividing both sides by .6p, we get 



ax(t' n 2 - dx(t'E2' 
--~-~~ + --~-~ + at ap oC~p) 

Let us evaluate both sides at t=p, then we have 

+ 
t=p 

+ 
t=p 

taking the limit of ,both sides as bp+O 

dXf 
--- = 
8p 

o CAp) 
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A.8 

A.10 

but xf is fixed while p varies then dxf/8p=O. Therefore 

or 

, c3x(t' n2 o =' --~-~,/;. 
at 

= 

A.Il 
t=p 

A.12 

Equation 3.3.18 fs simply an extention of the equation 

A.12, where we have , more variables but are refered as fixed 

with respect to T(p). 
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APPENDIX·B 

one-step Convergenge 

of 

Linear Systems 

· . \ 



Let us consider .the following linear ',rPBVP , given by 

i(t) = A(t)x(t) +B(t)y(t)+ e(t) 

~(t)~ C(t)x(t) + D(t)y(t) + f(t) 

and the. boundary conditions 

. where to' Xo ,tf ,Y f are all known quanti ties. The time 

response of this. system may be found from 

d'C 

where 

is the state-transition matrix and x(t f ) needs to be 

determined. In terms of x(tf ), x(t) can be found as 

,I.' ,;::; ... 

and its value at t=t­o 
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B.la 

'. B.lb 

B.le 

13.2 
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where·the constant·X is equal to 
o 

60 

Now let us apply our method to determine the value of x(tf~. 

We are going to guess x(tf ),· so we need to know the changes 

caused on x(to)' when we change the value of x(t f ). From 

. equation·B.5this relation is given by 

dX(t
O

) 

= ------ = B.6 
dX(t f ) 

Then by the algorithm 

If we now substitute this new value value of x( t f ) into 

equation B.5, then the next value of x(to) 

or 

Hence, whatever the initial guess for x(tf ), the algorithm 

converges to the desired solution in one-step if the system 

is linear. 



AP.PENDIX C 

Realization of example 5.6 

BAste Program Listing 

" 



IPR#1~POYE1657,80 

;:~" PFnNT~1 . SEI\!E;j:TIVITYivh~iJ'PIC!=::::3' ::\1(0), X2 (0), 
" Yl eT):, Y2 en FIN{~L TIr:'iE" 

~; :.' F'F<*I:,'" <) 

" :L t~i . DT lVI' , VI::' (r:" ' r} 'I ":;"'1" (r" r.,)' 1.::::.,.', ;:'.' ".') I:~'J' ''',:, '''.' \ (~'] '( ":.' .' ':, \ " '::;'1:-' (r:, 
, ... . I ., .. ,' .,~' :,1 .. · .oS-"."'-. !t· ... .'~ I \.I:"'!I . .'.: .... !I \ ,\.I:"!I ",: .. ~ .~: .... h ~_, .I''''',~I t \ ,\.c::-

,,2) • PS (2., 2) .GlR (2.,2)" OS (2. ~n .F~F~ U. :;n.; 1::;:£'; C;~,,:'2) • f5F~ ( 
;::'t ':>; C:)' Q (;.) ,:",\,' f';'I\1 t ,::.\ ""}'.'. C' ..... I . {;'7' ''') \ I:'~' "f' (;',:1 ':".\) _ . . . 
. 1_!1.l-., , '-...., ".I._!! .' ..... '.' '. "':_!' .1 ... / , .... >1"1 '.'!:"!I'::." .:i \.1. 01_.:1.1 .... 

20 REM INITIALIZATION 
p(i) = 2.34886795~P(2) = 2.56156465 

30 Y (2) =" :1,::';; •• :32'7B46!=;; 
':3:!'5 L,( 1.) ~':'.! ,~:i ·li- P (1.) .j- ~~;::L. en :"= j=' 0:: 1) ·li· P (:I.) / :2 

40 G = 5 * P(l) *P'(l) * pel) + 3 * P(l)'~ P(l~ + 1.0 

P(2) * P(~) - '1(2) * '1(2) . , . 
ElY ( 2) :=:: F~' ( 1) ·li·· P ( 1) ...:. :2 -j.,i. Y (:2) 

~jO IF ABS (G) < 6.01001 THEN 60 
55Y(:2) = Y(2) - G / ElY(2)~ 80TO 40 
60 GP ( 1) ;..-~ :i. 5 ·ii· P ( :i.) ·li· F' (l) + 6 ·li· P ( 1) + :I. 0 ·Il· P (2) + 

2. * \(2) * P(1.)~GP(2) = ID * pel) + 6 - :2 * P(2 
. ) 

6::i VP(2:, 1) ~ 
, Y (2) 

__ . FF' (j) / l:''{ ('''.'). VP (r;, r;.\ :: 
.J '. ~ \ ,I:". II t . \ .1. •. , .t: .. I • . 

70 - F'r-::INT P(l);; ". ,II;P(2)~; ", "", Y(2) 
,150 . REM FfNAL' VA~UES 

15!:i TF:::: pel) 
160 'XT (],) . ::.~; L (1) ~XTC:::~) :: ·L.en 
16:5 '{Tn) == Pcn:YT(2) :=: Y(:2),· 
170 RT(l,l) = 5 - P(2):RT(i,Z), =0 
175RT(2,1) =·P(l) - Y(2):RT(2,2) = 0 

_. GP (2) / G 

180 !3T(:!.:I:!.) -- ._. pel) ·ii· F'(l)/ 2:ST(:l:,::n ._- 1 
185"8T(2,:!.) = YF'(2,1) - 5 *P(:!.) 

2) 
200 REM INTEGRATION,VARIABLES 

:,2 (x::; IJ :::: T F 
:;';~l.O X,](:!.) :=:: XT(:I.)::CJ(2) ::: XT(2) 

YJel) = YT(1)~VJ(2) = YT(2) 

3~ST(2,2) - VP(2, 

220, Fil! U. :11) ='" RT (1,:!.) ,:: !:~a( 1:1 :.2) - RT(1,2)~RJ(2,1) 

( .-, 'I,' F"'T (r, r'\, -- f"'l- ( .. ) r:, .. 
. :'::'" d. I : \,_ .. ::.·!I .... :. I •• _. .... .f:":1 •• : .. I . 

225 Sl! ( 1 , 1 ). :::: f;T ( 1. , 1 ) ~!:;~'J ( 1 , :;~) . --
<:2, :[) ;: B,J <:'2!, ::~). :::: ~rr (:~~, ~2) 

2301-1 ::::: O. O~~; 
250 ·REM BACKWARD INTEGRATION 
275 REM FOURtH-ORDER RUNGE-KUllA 

F:EI"! 1ST STEP 
PX ( 1. ) -- '{,} ( :!. ) ·H· I-! 

310 PX (;2 ) .- YJ I '-'j , 
\ .::. , .~. H 

315 PY ( :I. ) ._. X,) ( r~ ~ 
,L} .ft- 1,-) 

32(> F'Y ( ~t2 ) -- X~h 1 ) 'k~ !.,,! 
:3:2~5 Pfi ( 1 , 1) == S(J ( 1 :1 :I.) .~~. !-i 
330 PR(1,2) =. SJ(1,2) * H 
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PRC2,2} - SJ(2,2) * H 
~5"1·~i PS ( 1 !' :I.) :::: F~J' (2!, :I. ;''*·!-·I 
350 'PS(i~2) - RJ(2;2) * H 

Pf3(2:,1).= R~J(l,:I.) .;4.. H 
PS(2,2) - RJ(1,2) * H ~3;60 

400 F:H'I ~.:~I\ID STEI:::' 
40!:i G!X (1) --(YJ (:I.) 
410 QX(2)- (YJC2) 

PY( 1) / ~.'2) .j(. : •. : 

PY ( 2 ) ; 2) .j(. 1 .. ·: 
.lI.1 ,;;;' , .,.w G!Y ( l) •. - (XJ(~2) - PX(2)! 2) *H 
4:.20 GlY (2) ._. ( X ~r .: 1. ) PY ( :I.) / 2) ·li· H' 

.LI·2~j OF:(1.,1.) -- ·(t~ • .J(.1.,:!.) 1=:'8(:1.:,:1.) / ~2) * H 
430 QR(1,2) - (SJC1,2) PSi:l.,2)! 2) * H' 
4~~:;~3 QF~ (2!, :I.) ._. 

440 QRC2,?) - (SJ(2,2) 
1.1.Lj.~5 DS ( :I. :' :I.) .-. (n,J (~:~!, :[ ) 

4;:'iO 
4!:i~i 

C!~-J ( :I. !' :? ) 
G~S (~.2~1 1) 

_.. ( r.;: a ('::':~; :;:: ) 
._.( R II ( :!. , :I. ) 

J~rE) (~?!I J.) / ~2;' 'S\' (,,,1 

PS(2,2) 12) * H 
PR(2~1) 12) * H 
PRC2,2) ; 2) * H 
PH ( 1 !' :I.) 1 :.:~) .". 1 .. -1: 

460 em c.;;::, 2) -'-. (F:,] (1 !,2)" PF:;; (l!,~:n ; :.n oli· H 
500 REM 3RD 8TEP 
;:iO!::i nx (:I) _. (Y~J (1·) GlY (:I.) ,I 2) ·li· l .. j. 
510 RX(2) - (YJ(2) OY(2) / 2) *H 
~5:i.5 J:~\{(l) _ .. (X\J'(:';~?· ,E.~X.(:2) / ::;':~) -:~. j-l 

520 RY(2) - (XJe:l.) QY(l); 2) * H 
~5:::::;=:.'i I~{F~ ( :!. !' :I.) .... (~3~r ( :I. !' :I.) _. DS'::i.:,:I;' / 2) ~;. H 
5~'::'()· rm ( 1, 2) _. (F).,] ( :!. !' 2 ;. 
~j :~:; ~~.i 1:;1 F: { ,..:,. . i', -- ," c~ ,.·r (. ~:£:, :i. '\, 

, 'I. ........ :' .1... . "1-1 .. 

540 RR(2,2) - (8J(2,2) 
545 RSel,l) - (RJ(2,:I.) 

. ~5~5(). FiS (1 !f·::~) -. (F~~a (:~~, :~:) 

~355 RS <:2:, 1) _.. '( F:J ( 1 !' 1) 
560 RS(2,2) = (RJ(1,2) 
600 REYI l.].'fH t:;'T'EP 

iY::; (:i.:, 2) / :2)~' 1 .. ·1 
(}f.' (.~:;~.!' :l.) / "'} \ * I-! 

- OS(2,2)' / 2) * H 
OR(Z,l) .1 2) * H 
E! F;: (~;~ ~, :2 ) / ~I~:) ,~, 1"1 
C!R (,1 ~i 1.) / :;::) i~' !.M!. 
DR(:l.i2) ; 2) * H 

60~5 SX(l) .'-' (YJel) 
(SlO EiXC2) ..... ('y\),C2) 

HY ( 1. » .,+ j·;·1 
FN(;'~» 'ii'l--! 

61:=5 BY ( 1 ). ..... (X J (:?) F~ X (:';;;» ·f;· I .. ·! 
1:,::;;:0 8Y (2) ..... (x.:-r (1-) -- fW (1.)) -H. H 
L"/.7~;:i E;F~ '(1, 1.) .- ,( t3~J ( :!.:, :I. ) HS ( 1. , :i. » ·il·. H 
1:,::::;(1 f:3F~ ( :I. , 2)' -- ,{ S,JC :i. !' :2) 

635 8R(2,:!.) - (SJ(2,:!.~ 

H~; ( :!. :.2) )' .+,. I .. ·! 
. F\~:~ (~:?!! 1. ) ) . '~'. l·~! 

640 SR(2,2) - (sJ(2,1) RS(2,2» * H 
645 88(1.,l) - (nJ(2,:I.) - RR(2,~» * H 
650 S8(1,2) - (RJ(2,2) 

..... (F~.J ( :[ !' :l ) Rf~:(:l,l» .;;. H 
660 SS(2,2) -CRJC1,2) - RRC1,2» * H 

. 700 REM NEXT STATE 
705 XN(l) = XJ(l) (PX(:!.) + 2 ~ OX(:!.) + 2 * RX(l) + 

8X(:I.» 1 (-:, 
'~1 .... < ... 1..1 (PX(2) + 2 *OX(2) ~ ::::: * RX(2) + 
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XJ ., .... \' 
t ...• ::. } (PX ( ~:~ ) + r, .. ::. ~i' P" :,. ;\ ( ::? ) + ::: ·li· FiX ( :2) + 

/ l 
C) 

715 YN ( :1. )::-" ya ( 1 ;. (py ( 1 ) + ;~ .~~. G!Y ( :1 ) -1-
,., 

.;.~ PV ( :l. ) + .:::. , . 
/ 6 
,{.] ( :::~ ) ( r.::·y en + r" '$-,-.1::' Uy (:2 ) + ~.~: .j~ pv ( .-, .1:::' ) + 

SY(2») / 6 
72;:i F:t'.l(l;,lJ ;:= F{,}(':I.;U· --(PF:(:I.;,l) +2 * G!RO,:i.) +:.2·* 

Fm ( 1 , :I.) +SR (1, 3. ;.) /6 
730RN(~,2) = RJ(:1.,2) - (PR(:1.,2) + 2*QR(:I.~2) + 2 * 

Fm ( 1 , 2) + Si:::: ( 1 ;' 2» /-6 
735 RN(2,1) = RJ(2,:I.) - (PR(2,:I.) + 2 * b~(2,1) + 2 * 

Hn ( 2 ;' :I.) + SF: ( :2;, 1» I. 6 
740 RN(2,2) = RJ(2,2) -

RR(2,2) + SR(2,2J) 
"l4~)' SN ( :1. ;' :I.) ::.:: S,} (:1. ;' :1. )-

. F~!3 ( 1 , l) + SS ( :!. ;' 1) ) 
750 SN(l,2) = 8J(1,2) ~ 

RB ( 1. ;' :2) + :3::; ( 1 , :2). ) 

755 9N(2,1) = 8J(2,l) -

_.,. t ('\ 
I,.J· .. · 

r.;:~:) (~2, :J.) .. !- S? (:2:1 ). ) ) 

SN(2,2) = SJ(2,2) -
l~fj (:2:1 ~2;' .+. ~3E) (~.2:, :2;' ;. 

(PR 
/ 6 
( F'8 
/ 6 
(PS 
/ 6 
( F'S 
/ 6 
( F'E1 
./ 6 

( 1:',1 
.I... ~; 

( 1 ;' 

( 1 ;' 

( ~~ ;' 

( ... ) 
~- ;' 

900 REM END OF INTEGRATION 
910 J ::=: ,} - 1·-1 

1') \ + 
'. 
r" ·il· C!I~( .t: .• ~ .~:. 

:I. ) .. ! .. ,-, 
.~. '" 'r,' C!~:; 

'"' i + 0 ... ·' .-t~ C1!3 .. ::. .. :: . 

1 ) + ::.;~ -l(. Q:;:; 

:;~ ) .+. "':.'1 
",., -rt. C!~:; 

. 9~2() F1 t1: I i\rr J r. II If; r<f,j ( :t.!1 :~~) ; II . II ~ 1="\:1\1'( :'~!I :'2;-
930 IF J < - 0 THEN 1000 
940 X~J (1) ::::: Xl\! (n :: X,J <:2) :::: XI\! en 
945 YJ(l) = ,{N(3.)~VJ(2) = VN(2) 

<:2, 1)':F~:,JC:Z,2) '::::: F\I'~(2;,2)· 

( ~:~~ , r" { ,,::. 

( 1 :I. \ , 
( 1 2) ... , 
( r" , .a::. , :I. ) 

" 
,,:) 

~:;~ ;. ..... , 

~-3,} ( :I. , :I.) ::::: SI\I ( 1 , :I." ~ t,,} ( 1 ~ :~:) .'" '31\! ( :!. , :'.~~;' :: El,} (::~;, 1. ) 

.960 (30TO 2;:.')0 
1.000 nE::I··li.' I 1:3 PF~Cl:t3L.E!v!, SCli ... VED',? 
1.010 PFH::I. 
:l.Ol~i PRlj\j'r 

+ ~.;:~ 

+ 
,.... 
..::. 

+ ~:2 

+ .... } 

.,.::. 

+ ~:2 

:1.020 FPII\!T" ",Rl\i(l,l)," . ";:F;:i\j(1,2')!:" ",XN(l)," 

1 0:::;;0 PFH!: 0 

-H. 

.* 

~.' 

-l(. 

"*' 

10:::':;0 IF ( (')B9 (XI\! (l» < 0.:1.) f~I\!:O ( (~IB!:; (Xi\1 (2» < 0 .. 
1 ) THEN !3TOP 

1:1.00 M = RN(:!.,l) * RN(2,2) - PN(:!.,2) * RN(2,1) 
1110 RI(l,1.) :::: nN(2,2;' /1"1:1::::1(1;,2) ::::: c- FiN(1;,2)',f t,! 
1120 F~I (:;~:, :I.;' :::: _. Pi\! (2;11) / !Vl:: F:T (2,2) :::: F~:j\I( 1!, :I.) .f iv! 
:I. :1.::-::;0 F (1) _. PO;' FH (l;, 1) .l\. Xl\! (U fU 0,2) . ·li· XI\! <:"2) 

:I. :1. 40 P (:? ) _. P (2)' .... r;: I (:;~!I l) ·H· X !\I ( :I.;' •.• f~: I (:2, :~:;. ·il· :~ 1\1 (2) 
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