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A HEURISTIC FOR CAPACITY CONSTRAINED .PRODUCTION SCHEDULING 

ABSTRAC~T 

In recent years. due to high interest rates and strict 

monetary policy. reducing inventory holding costs have become a 

crucial issue. Minimizing inventory holding costs has been an 

emphatic objective in search for increased productive efficiency. 

In the determination of efficient production schedules. 

possibilities of time substitution·of a limiting resource with th 

aim of having minimum inventory levels plays an important role. 

This study proposes a model for scheduling production in 

single-stage multi-item capacity constrained production systems. 

Our algorithm schedules production as late as possible so as· to 

minimize inventory holding costs. Items are independent and have! 

external demands to be met. Two main classes of capacity 

constraints are considered. The algorithm deals with superoptimal 

(infeasible) solutions and moves backward in time in order to 

schedule production within the capacity bounds. 



The exactness of the algorithm was tested and the 

computational results seem to be very favourable. 

v 

The algorithm developed in this thesis functions in 

determining efficient production schedules and in testing and 

evaluating scheduling designs and strategies as well. 
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SIGASI KISITLANMI9 URETIM cizELGELEMESI ieiN BULGUSAL BiR YONTEM 

. , 
OZET 

Monetarist istikrar yontemleri ile yonetilen gunUmuz Turk 

Ekonornisinde envanter maliyetlerinin onemi giderek artmaktadir . 
. , 
Uretkenlik veriminin arti 9 inin saglanmasi icin yapilan 

yali~rnalarda envanter maliyetlerinin enazlanmasi, uzerinde onemle 

durulan bir amay olagelrni~tir. Verimli uretirn cizelgelerinin 

belirlenmesinde sinirli kaynaklarin kullaniminin zamanla 

degi~tirilmesi olanaklari, du~Uk envanter duzeylerinin ama~lanmasi 

ile birlikte etkin bir rol oynar. 

Bu yali~ma tek a~amali, cok urunlu, sigasi kisitlanmi9 

uretirn sistemlerinde uretimin cizelgelenmesi icin bir model 

onermektedir. Olu~turulan algoritma envanter maliyetlerinin 

enazlanmasi amacina hizmet edecek ~ekilde uretimi mlirnkun oldugu 

kadar ge~ cizelgeler. Urunlerbirbirlerinden bagimsiz olup, 

kar9ilanmalari gereken piyasa talepleri vardir. Iki ternel siga 

sinifi gozonunde tutulmu~tur. Algoritma usteniyi olursuz 

cozUmlerden ba~layarak zaman ekseninde geri giderek uretirnin siga 

sinirlari icinde cizelgeienmesini saglar. 
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Algoritmanin pekinligi denenip, uygun sonuqlar elde 

edilmi~tir. 

-Bu tezde olu9turulan algoritma ile verimli uretim 

~izelgelerinin saptanmasinin yanisira cizelgeleme tasarim ve 

gengudUmleri de denenebilir ve degerlendirilebilir. 
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I.INTRODUCTION AND BACKGROUND 

This study proposes a heuristic algorithm for 

scheduling production in multi-item single-stage capacity 

constrained systems. 

The objective is to minimize the total holding cost. 

1 

It is assumed that holding cost is nonnegative for each item 

and the demand is deterministic. 

Two main classes of capacity constraints are 

considered. One class is time varying preallocated capacity 

bounds on the production rates of each item. namely bounds 

on the production rates. 

The second class of capacity constraints involves 

environments in which items compete for limited production 

capacity, namely shared resource constraints. 

The changeovers are modeled as set:...up times that 

absorb capacity, and set-up costs are assumed to be 

negligible. 



The algorithm begins with a late schedule which 

schedules production as late as possible without satisfying 

shared resource contraints, and starting at the last period 

of the planning horizon, moves backward in time to schedule 

production within the capacity bounds. 

2 

When set-ups are negligible. the problem reduces to 

linear programming and the algorithm is tested for exactness 

by solving 100 randomly generated problems of this kind. 

Computational tests showed that our proposed algorithm is a 

very effective tool in making capacity allocation decisions 

in production planning. It is very easy to understand and 

implement and seems to be very close to the exact optimal 

and much faster and simpler than solving large linear 

programming problems. 

The algorithm is the same for both cases, namely where 

set-ups are negligible and not. The only difference betweeen 

these two cases occur in capacity consumption, so only a few 

calculations differ. 

This problem can also be formulated as a minimal cost 

network flow problem. Such a representation is given and 

discussed in the last chapter. 

Backqround 

The production planning and scheduling literature is 

vast, and we review some of the relevant previous work . 

.In the single-stage. single-item lot sizing area 

Wagner and Whitin [1958) presented a shortest path solution 
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for the single-stage uncapacitated dynamic lot sizing 

problem. Although their algorithm is efficient, other 

heuristic algorithms are developed by the practitioner. 

Florian and Klein [1971] considered the problem with 

constant capacity.Using the characterization of the extreme 

point schedules, they developed an efficient dynamic 

programming algorithm. Lambrect and Vander Eecken [1978] 

considered the variable capacity problem, and they developed 

an algorithm conditioning on the number of periods with zero 

production. Bitran and Yanesse [1982], and Karayel [1984] 

identified some special cases that are solvable by an 

efficient algorithm. 

In the single-stage lot sizing with shared capacity 

area Manne [1958) provided a represantation of the 

individual schedules as columns of a linear program. This 

approach was improved upon by Lasdon and Terjung [1971], who 

employed large scale optimization techniques. Newson [1975] 

developed a dual heuristic which at first decomposes the 

problem into separate uncapacitated single-item problems. 

Recently, aggregation of items has been considered by many 

authors. 

The hierarchical approach is becoming increasingly 

popular among researchers. In this approach the production 

planning and scheduling problem is partitioned irito a 

hierarchy of subproblems. Graves [1982J employed duality and 

relaxation principles to incorporate feedback between the 
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aggregate planning model, which determines the aggregate 

capacity and inventory levels, and the detailed scheduling 

model that determines lot sizes. Bitran,Haas, and Hax [1981] 

showed that in certain cases the hierarchical approach gives 

near optimal solutions. 

In multi-stage lot sizing area Love [1972] showed 

that in the serial production system, if the costs are 

nonincresing in time, then the optimal solution must have 

the so-called nested property. 

That is, if there is no demand (dependent plus external) in 

a given period, then there should be no production in that 

period. Using this property, he devised an alternate dyn~ic 

programming solution. 

In the material requirements planning area McLain et 

al. [1981] developed a decomposition procedure to solve the 

capacity constrained MRP problem with fixed time lags 

between activities. 

In the hierarchical production planning area 

Billington et al. [1983] proposed the method of product 

structure compression in order to reduce the problem size 

and partially aggregate the many items that are linked. 

Gabbay [1979] devised an aggregation/disaggregation 

procedure for serial production lines in which items have to 

go through the same set of production facilities_ which are 

capacitated. Bitran et al. [1982J analyzed a two-stage 

production system using hierarchical planning concepts. 



,I I. A HEURISTIC APPROACH 

TO A MULTI-ITEM 

SINGLE-STAGE 

SCHEDULING PROBLEM 

2.1. Formulation and Notation 

5 

In this section the production scheduling problem of 

this thesis is formulated, and the basic assumptions of our 

approach are stated. 

The production activity has a dynamic structure 

represented by a finite number of time periods, 

t=1,2, .... ,T. 

The production process is defined by many 

activities, each 'with a distinct output, i=1,2, ..... ,N. All 

of these items are finished goods with external demands 

only. Thus we consider the problem of scheduling the 

production of N independent items over a time horizon of T 

periods with given demand levels to be filled. The items are 

coupled through the use of the same limiting resource. 

(e.g.man-hours or machine-hours). 
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At time period t, Z~t units of item i are produced. 

Together with the incoming inventory of item i, Iit-1, Zit 

is distributed among the ending inventory of item i, I:lt and 

the external demand for item i, Uit. 

It is assumed that I:I.c.=IiT=O for all i=1,2, ..... ,N. Another 

assumption is that the demand data are deterministic. 

Each time an item is produced some preparation 

(set-up) is necessary before production starts. The model 

assumes that whenever there is production, there is a 

set-up. Set-ups are represented by logical variables bit 

where 

[ _ 01''' 1 if Zi t )0 
\.':l. t. - eH _ 

'I." 0 otherwlse 

The set-up and the production of one unit of item i 

require d:i. and bi units of resource respectively, for which 

items compete (for their set-up and production) and which 

has a capacity limit, Ct, through time. 

At time period t, item i has a preallocated capacity 

bound, Zit, on its production rate. 

The per unit cost of keeping stock of item i at the 

end of time period t is denoted by hit. It is assumed that 

the holding cost is nonnegative for each item, and constant 

in time, that is hit=hi for all i=1,2, ...... N in all 

t=1,2, ...... ,t. 

Set-up costs are assumed to be neglig"ible. 
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Although in-most production environments the 

single-stage assumption does not hold, the production system 

may be modeled as a single stage if any of the following 

conditions are satisfied. First, there may be a bottleneck 

stage in a multi-stage environment. Secondly, by a prior 

aggregation rule several stages may have been aggregated 

into a single stage. Finally, deadlines may have been set 

(or intermediate product outputs in a multi-stage 

environment. Also assembly lines can be modeled as a 

single-stage. 

Formally the single-stage multi-item production 

scheduling problem may be stated as follows: 

N T 

Min:E: :E:h:l. 1:1. t (0) 
:L-1. t--1 

s.t. 

Z:l t + 1:1. t - :I. - 1:l t = U:l. t (1) 

N 

:E: (b:l. Zi t +d:l. [. :I. t ) ::;;: Ct. (2) 
:1.-:1. 

Zi t. ·(2:l t ( 3) 

Z:I. t, I :I. t :;:;·0 • [. :I. t f. (0. 1) 



The objective of the problem is to minimize the 

total holding cost. 

8 

Constraint set (1) represents the flow balance 

equation for each item i in each period t. As our concern is 

single-stage systems, there is no interrelation between 

items (no item is necessary for the production of an other 

item). It means that we deal only with external demands. 

Constraint set (1) ensures that the production of item i in 

period t, together with its incoming inventory is 

distributed among its ending inventory and its external 

demand in time period t. 

Constraint set (2) represents the time varying 

shared capacity constraints. In most production systems 

several activities compete for the use of each resource 

which is to be shared according to some rule. We denote 

these systems by the term capacity-shared systems. In 

capacity-shared systems the allocation of available 

resources among different activities has to be done 

explicitely. In the model the existence of only one shared 

capacity is assumed. 

Constraint set (3) represents the preallocated 

capacity constraints, which are time varying capacity bounds 

on the production rates of each item. These resources are 

preallocated to items, and are represented as simple upper 

bounds on the production rate of each item. 



Table 1.1. 

Summary of Basic Notation 

N number of items 

T number of, periods in the time horizon 

z~. t quantity of item i produced in time period t 

I~. t quantity of item i in inventory at the end of time 

period t 

U~t external demand for item i at the end of periodt 

b~ quantity of resource needed per unit output of 

activity i 

S~t logical set-up variable for item i in the period t 

dol quantity of resource needed for a set-up of 

activity i 

h:Lt holding cost of keeping a unit of inventory of i 

at the end of.period t 

Ct availability of shared resource in time period t 

z~.t availability of preallocated resource of item i in 

period t 

UC:L t cumulative demand for item i at the end of period t 

9 



2.2. A Fundamental Insight 

When set-ups are negligible, then the problem 

reduces to the below given problem denoted by P1: 

N 

P1 Min :E: (0) 

s.t. 

Zi t + I i t - 1 - I i t. = u~. t (1) 

N 

:Eb:L Zi t·::;: Ct (2) 
:1.-1 

Z:I. t. .... 
Z:l.t '0:;- (3) 

Zit , I:I. t. " 0 .::., 

Note that after a slight .transformation in P1, 

everything can be in units of shared resource (as in P1 

preallocated capacities are in units of external demand) . 

This transformation can be achieved as follows: 

1) Multiply constraint set (1) with bi 

= ) bi Z:I. t + bi Ii t - :to - bi I~. t = bi Ui t 

2) Multiply consraint set (3) with bi 

= ) bi Z:I. t < b:l Zit 

3) Divide hi t by bi 

10 
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Now let's make the following definitions: 

Z' :I. t. =Z:I. t.b:l. 

h':I. t. =h:l. t. /b:i. 

z ' :I. t. =b:l. Z:I. t 

and consider the new decision variables as Z':l.t.. l'i1::. 

the new inventory holding cost as h':l.t. 

the new external demand as U':l.t 

the new bounds of preallocated capacities as 

Z 1:1. t. • 

After the transformation problem P1 becomes and is 

equal to P2. as given below: 

N T 

P2 Min ~ ~h':I. I ':I. t. CO) 
:1.-1 t-1 

s.t. 

(1) 

N 

:E:z lit. .:;;: Ct. ( 2) 
:1.=1 

Z':l.t. .::;: Z ' •. t (3) 

Z':l.t.. I ':l.t }- 0 

Now everything is in resource units. 
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Note that the objective function of P2 can also be 

written as 

N T 

Min Z Zh:l. I~_·t: , which is the obj ective function of Pi, 

Proposition: 

After this transformation it can be shown that the problem 

data of P2 may be changed as follows: 

ct. =mi n{ Ct. : 

Proof: 

N 
r:-:; I 1 
L~ :L t. J' 

:I.-i 

In an arbitrary period t, the maximum amount of resource 

allocation to an item i (or resource consumption of item i) 

can't exceed its upperboundz ':l.t.. Then the maximum amount of 

cumulative resource consumption, denoted by Z't. is the sum 

of the individual resource consumption bounds, that is 

N 

Zt. = ZZ:l t. 
:1.-:1. 

Two cases can occur: 

Case I: Ct :;,:·Zt. 

If Ct >Zt. , then there is always a slack capacity of value 

ct.-Zt., as the bound on the cumulative resource consumption 

is Zt. (otherwise there would be preallocat.ed capacity 

violation) . 
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Thus Ct is no more an upperbound for shared capacity 

constraint, which will be always inactive. The actual 

upperbound for shared capacity constraint is Zt .. 

So when case I occurs the problem data is changed 

as : Ct --...;>--Zt . 

Case II: Ct<Zt. 

In this case total resource consumption is always below Ct 

so that shared capacity constraints are not violated which 

are always active and Ct'S are the upper bounds for them. 

The intersection of the twO cases is the general 

case by which the problem data is changed as: 

N 

Ct =mi n .[ Ct., LZ·:I. t} 
:1.-:1. 

2.3. Early and Late Schedules 

In this section two important schedules, namely 

early and late schedules are defined and their respective 

algorithms given. In both algorithms it is assumed that 

set-ups are negliglible and both algorithms are for systems,. 

having only preallocated capacities. 



2.3.1. Early Schedule 

Early schedule is the schedule that would schedule 

production as early as possible. hence.results with the 

highest inventory levels. 

14 

The algorithm to find the early schedule solution is 

summarized below 

Early Schedule Algorithm: 

Step 0: Let t=l. Yi=uciT for all i=1.2 •...• N. 

where UCiT is the cumulative demand of item i up 

to T. 

Step1: For i=l, 2 •.....• N do ESi"t:.=min{Y:I. • 

where ESit is the early schedule production of 

item i in period t. 

Step2: Let t=t+1 . If t·{T go to Step 1. 

2.3.2.Late Schedule 

Late schedule is that schedule. that would schedule 

production as late as possible. In terms of cumulative 

production this means that with the given capacities a late 

schedule algorithm that would schedule production as late as 

possible would result in minimum inventory. 

_ The algorithm to find the late schedule is 

summarized below. 
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Late Schedule Alqorithm: 

Step 0: Let t=T, Y~t=O for all i=1,2, ..... ;N: 

Step 1: For i=N,N-1, ........ ,1 do 

LS~t=mine~:Lt. uC::Lt-uC:~t_:l.-Y~t.} 

Yi t.-:I. =Y~ t. +LS:t t 

where LS:Lt is the late schedule of item i in 

period t. 

uC::i.t_:I. is the cumulative production of item i up 

to t-1. 

Step 2: Let t=t-l. If t>O gO to Step 1. 

2.3.3. Different View 

In this part, using early and late schedules the 

problem is seen from a different point of view. 

Define, 

t 

ZSCv= Cumulative production with 
~-:I. shared and preallocated capacities 

t 

ZESv= Cumulative production with 
v-:I. early schedule 

t 

ZLSv= Cumulative production with 
~-:I. late schedule 

For every t, 

t t t 

Z ES",} L BC,,:;,:· L LB" 
v-:I. ,,-:I. ,,-:I. 
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Because, as explained before early schedule results in 

maximum inventory meaning that in maximum cumulative 

production; late schedule results in minimum inventory, 

hence in minimum cumulative production. Thus cumulative 

early schedule constitutes an upper bound and cumulative 

late schedule a lower bound on the cumulative production of 

any schedule within the shared and preallocated capacities. 

The variation of the cumulative production through 

time can be seen in Figure 2.1. 

cunlulative production 

earty·. 
schedule ~ 

~ i-~I .-J :- __ J ,-

;--' -.il 
I 

r-_J 
I 

r.J 
I 

r--.J 
1 
I 

r-I 
I 
I 

r--.J 
1 

r ... J 

c::::::-_~ ta. t e 
schedule 

LL.-L-------------:T::;::---~t i file 

Figure 2.1 
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So, from another point of view our problem can be 

stated as follows: 

Find a path on the graph showing cumulative production 

through time (like the dotted one on Figure 2.1.) which is 

between the cumulative early and late schedules and 

minimizes 

N t 

:E ~h:l (Zi v -U:l v ) 
:l.-1 v-:t. 

Subject to the shared capacity constraint. 

2.4. The Algorithm 

A heuristic algorithm is developed which initially 

schedules production as late as possible. Thus the initial 

solution is obtained with the late schedule algorithm. This 

solution is superoptimal, but may be infeasible as shared 

capacity costraints were hot considered (recall that in the 

late schedule algorithm only the preallocated capacity 

constraints ara considered). Then to achieve feasibility, 

starting at the last period and moving backward in time 

iteratively, the production is shifted earlier by saving 

set-ups and increasing inventory levels. 
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In each iteration only the production of a single item is 

shifted earlier in. a way that preallocated capacity 

constraints are not violated.· And it is that item which has 

the least cost increase, nCost, per capacity change, 

~Capacity, in the current period. If the production of an 

item is shifted earlier, in the current period capacity 

consumption decreases, hence capacity availability increases 

(~Capacity) at a cost of increasing inventory levels of that 

item and hence a higher total cost (ACost) . 

~Cost/6Capacity ratio is affected by: 
, 

a)The cost structure: The effect of the cost structure is 

very obvious as the total cost consists of each individual 

holding costs. 

and 

b)The preallocated capacity bounds, because the tightness of 

them in the later periods necessitates the production shift 

to earlier periods. Thus time length between production and 

usage periods will increase, as a result the inventory 

holding cost will increase also. 

and 

c)The set-ups, because if the production of an item in a 

period drops to zero, then set-up savings occur, resulting 

in extra capacity ava~lability. 

Whether set-ups are negligible or not the algorithm 

is the same. The only change occurs in some calculations 

used in the determination of ACost/ACapacity ratio. 
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The algorithm can be summarized as follows: 

step 0: In this step the production plan is set to 

producing as late as possible with the given 

preallocated capacities, that is the solution is 

initialized to late schedule. Then the shared 

capacity violations, CVt. implied by this schedule 

are calculated. If there aren,o capacity 

violations. then the late schedule is optimal. 

Otherwise current time is set to the last period 

of the planning horizon and will be continued. 

Formally: 

(0.1): Calculate late schedule (with the late 

schedule algorithm given in 2.3.2.). 

z1 eAts. and set 

N 

(0.2): Find CVt=ct~(b:l.z:l.t+d:l.S:lt) 

(0.3): Set t=T 

step 1: Moving backward in time,we check if the capacity in 

this period is violated. If the capacity is not 

violated, then we move on to an earlier period. 

Otherwise a ratio test is performed to determine 

which item to time subtitute in order to resolve 

inf easibi 1i ties. The i tern that wou ld be is the one 

that yields the least additional cost per unit of 

infeasibility that is resolved. Thus, the item 
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with the minimum ratio is found and its schedule 

updated, by decreasing its production in the 

current period and increasing it in early periods 

(of course by the same amount). Formally: 

(1.1) If CVt >'-0, do Step 2. 

(1.2) Calculate 6Cost/ACapacity ratio for each 

item. Find item j with the minimum 

ACost/6Capacity ratio, adjust schedule of 

item j . 

Step2: If there are no more infeasibilities in this time 

period then we go back in time, otherwise we shift 

the schedule of some other item to earlier time 

periods. Formally: 

(2.1): If CVt(O, do Step 1. 

(2.2): t=t-1; if t>l, do Step 1. 

(2.3): If t=l then check whether CVt(O, 

if it is less than zero conclude that the 

problem is infeasible. 

2.4.1. Resolving Infeasibilities 

In this section, the determination of the 

6Cost/6Capacity ratios, shifting process of the production 

and adjustments of schedules or formally Step 1 of the 

algorithm -where infeasibility resolvement occurs--will be 

explained. 
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It would be helpful to start with the explanation of 

the case with negligible set-ups in order to set the ground 

for the general case, namely the case when set-ups are not 

negligible. 

2.4.1.1. Set-ups are negligible 

Let the current period be t. When an item's, say 

item i, production in the periods preceding t equals to the 

preallocated capacity bounds. that is if 

Z'k=ZUC for all k=t-l,t-2, ......... ,1. 

then that item's production can't be shifted earlier, 

because otherwise the preallocated constraints in the 

previous periods would be violated. And all items with this 

feature have a ~Cost/~Capacity ratio as infinity and all 

form a set defined as MP . 

. Also note that·if in any period t. the shared 

capacity violation is CVt and item i is not an element of 

the set MP, the minimum amount of production by which the 

production of item i can be shifted earlier is defined as 

a, ,where 

a, =mi n{ z, t., CVt fbi ]. 

Because as bi units of resource are necessary per unit 

output for item i, CVt units of resource are used for the 

production of cVt/bi units of item i. So, if the production 

of item i is shifted by cVt./bi units earlier, that is if the 



production of item i in period t reduces by cVt/b~ units, 

then the infeasibility in period t is resolved as a result 

22 

of the reduced resource consumption (by an amount of CVt). 

But,meanwhile the current production should also be 

considered. The amount by which the production of item i is 

shifted earlier, can not exceed its current production Z~t. 

Otherwise the production of item i in period t will be a 

negative amount, what is meaningless and also infeasible, as 

nonnegativity constrains are violated. More than the 

currently produced amount can not be shifted earlier (as the 

algorithm goes backward through time, current period's 

production must be feasible, because the algorithm does only­

one pass over time) . 

The algorithm starts with an infeasible solution and 

aims at achieving ~easibility at minimum cost, and 

feasibility is achieved in each consecutive period. Only if 

in any period t, the shared capacity constraints are no more 

violated the algorithm proceds with time t-l. And note that, 

in earlier periods the shared capacity violations increase, 

as production is shifted earlier. But from the beginning on 

(late schedule) preallocated capacities are never violated, 

therefore the amount to be shifted earlier is determined due 

to the preallocated capacities in early periods. Thus, the 

production in any early period can be increased up to the 

preallocated capacity bound in that period. Then, de~ .1.: is 

defined as the maximum amount by which the production of 
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item i can be increased in a period k preceding the current 

period t. 

Where dei~(=:= min{a:l, Zi~(-Zih:}' for all k=t-1.t-2 ...... ,1 

Recall that the maximum amount by which item i can 

be shifted earlier was defined as at. We aim at increasing 

the pr·oduction of item i in any period k (k<t) by ai; but in 

order not to violate the preallocated capacities, we are 

allowed to increase it only by the amount Zik-Zi~:, as it is 

the slack of the preallocated capacities. 

The actual amount of production (of item i in period 

t) that is shifted earlier is defined as teit, where 

&.(-1. 

The reason is as follows: The amount of production 

that is shifted earlier (i.e. is not produced currently), 

must be produced earlier and therefore carried as inventory, 

because the demand must be met. Then.the amount of the 

current period's production that is shifted earlier equals 

to the increase in the incoming inventory, which in turn 

must be equal to the amount of production that can be 

increased in periods preceding current period t. And as 

tei.t is the total production increase before current period 

t (since it is the sum of the individual production 

increases, i.e. production increases in each time period 

from t=t-1 to t=l), then it is also the amount of the 
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current production that is shifted earlier. 

After having given the necessary definitions and 

explanations. the mechanism of the infeasibility resolvement 

(or step 1 of the algorithm) can be illustrated in detail. 

(1.1.1) 

Step 1 in detail will be formally as follows: 

N 

Calculate CVt=Ct.- Eb:l.Zit 
:1.-1 

If CVt<O then check whether the number of elements 

in set MP equals N; if it equals then conclude 

that the problem is infeasible. 

otherwise continue with Step 1.2. 

If CVt :;::·0. do Step 2. 

(1.2.1) Set i=l 

(1.2.2) If iEMP then set (6Cost/6CapacitY)i to a very large 

number and go to 1.2.7. If Z:l.t=O, again set 

(~Cost/~Capacity):I. to a very large number and go 

to 1.2.7. 

(1.2.3) Set ai=min{zit,cvt./b:i.} 

te:l. t =0 , (6Cost) :l =0 

(1.2.4) Set k=t-l 

(1.2.5) ACost/6Capacity ratio of each item is calculat~d as 

a result of the following calculations: 

(1. 2 .5.1) If (Z He -Z1I<:) =0 go to 1. 2 .6 

otherwise de~. ~e=min{ a:l. ,Z:I. k-:-Zi.I.:} 



(1.2.5.2) (ACost)~. = (b.Cost):I. +hi *de:l. k * (t-k) 

(1.2.5.3) te:l.t=te:l.t+de:l.k 

(1.2.5.4) C{:I.Capaci tY):I. =te:i. t *b:l. 

(1.2.5.5) Find (bCost/ bCapacity):I. 

( 1 .2.5 .6) a:l. =a:l. -de:l. ~,. If a:l. =0 then gO to 1.2.7 

otherwise continue with 1.2.6. 

(1.2.6) k=k-1. If k;,:·l then go to 1.2.5. 

(1.2.7) i=i+1. If i·:,;:N then go to 1.2.2. 
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(1.2.8) Find item j with the minimum bCost/fiCapacity ratio. 

j=argmin(ACost/ACapacity):I. 
:I. 

(1.2.9) Schedule of item j is adjusted as follows: 

(1.2.9.2) Set k=t-l, f~=O 

( 1 . 2 . 9 . 3) z~ k =2:..:1 J,: +de_i k 

(1.2.9.4) If k}l go to 1.2.9.3 otherwise continue 

(1.2.10) If f~=O then item j joins the MP set. 

In 1.1.1. the MP set is checked for its number of 

elements, because if there is resource violation and all 

items are in the MP set, then no item exists of which the 

production can be shifted earlier, as there is no slack in 

the preallocated capacities in previous periods and the 

problem is infeasible. 

From 1.2.1 to 1~2.6 ACost/ACapacity ratio of each 

item is calculated by determining the set of periods 

80GAZi~i UNivERSiTESI KOrUPHANESi 
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(denoted with k) to which the production is shifted and the 

amount of production increase in these periods. If the 

production is shifted by de:l ~c amount to period k. then 

(LiCost):l =h:l. *de:l. ~,* (t-k). because an inventory of de:lk units 

is carried (t-k) periods (the production is in k and usage 

is in t) at a cost of hsper unit. 

(LiCapacitY):l in time period t is equal to the 

product of te:lt and bs because if the production of item i 

is shifted by an amount of te:lt, then in the current period 

t. shared resource consumption decreases by te:lt*b:l. 

As seen in (1.2.5.6), whenever production increases 

by an amount de:l .. : in a preceding period k. a:l. is adjusted 

(decreased by deik), as it is the amount of production that 

we want to shift. Thus. when a:l. reaches zero. we no more 

need to check former periods for production increase as we 

shifted production as much as we wanted. 

From 1.2.9.1 to 1.2.9.4. the schedule of the item 

with the minimum tCost/tCapacity ratio, j. is adjusted. In 

1.2.9.1. the production of item j in the current period is 

decreased by teSt and in 1.2.9.2 to 1.2.9.4 its production 

is increased in the preceding periods. Also it is checked 

whether item j will be an element of the set MP, by 

calculating the sum of the slack in the preallocated 

capacities. in the previous periods. If this sum, f.:J! is 

zero. then item j joins the MP set. 



After the explanation of the concepts and the main 

logic, we can proceed with the general case~ 

2.4.1.2. The General Case 
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As previously stated, the only change between the 

general case and the case with negligible set-ups occurs in 

the fiCost/~Capacity structure, as a result of set-up 

savings .. 

First set-up savings are explained and then 

hCost/ACapacity structure will be analyzed. 

Again let the current period be t and the item under 

consideration be i. 

(1) Set-up Savings 

When the production of item i in t is adjusted to 

zero, then no more resource is needed for the set-up of it 

in t as set-ups are preparations made for production. So 

set-up savings occur. Therefore, we need variables which 

indicate the resource amounts necessary in the set-ups for 

the productions of items in time periods, and which are 

updated as any schedule adjustment occurs. And variables 

Sit'S stand for the above mentioned set-up necessities. When 

the production of item i in period t drops to zero, then Sit 

drops to zero as well. Sit'S vary through time, where di's 

are always constant. Note, that at the beginning sit=di for 

all t=l,2, ..... ,T. When the schedule of an item is adjusted 



such that its production is reduced to zero, then its 

variable set-up necessity, Sit, is also adjusted to zero. 
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There are mainly two cases, which can be summarised 

as fo 1 lows : 

Case 1) teit(zit 

The amount of production to be shifted earlier is 

less than the current production. 

After the schedule adjustment (recall that schedule 

of item i is adjusted only if it has the least 

6Cost/6Capacity ratio), the production in t reduces 

by an amount of teit and becomes Zit-teit, that is 

z~. t i>Zi t -tei t . 

As there is production, there 1S need for set-up. 

Thus Sit does not change. Case 1 is stated formally 

as: 

If teit(zit then Sit does not change for all 

i=l, 2, ... ,N; and for all t=l, 2, .... , T. 

Case 2) teit=zit 

If item i is chosen to be the item with the minimum 

ACost/6Capacity ratio, then its production in time·t 

is adjusted to zero. As no production of it takes 

place, there is no need for set-up and Sit drops to 

zero. 

Case 2 is stated formally as: 

If teit=zit, then Sit=O for all i=1,2 •..... N and for 

all t=1,2 ..... T. 



(2) 6Cost/6Capacity Structure 

There are mainly three cases: A, Band C 

These can be summarized as follows: 

Case A: If te~t=O then nCost/nCapacity= 00 

Case B: If te~t<z:l.t then 

Case C: I f te~ t =Z:l t 

Case C has 2 subcases: Cl and C2" 

Cl. If Zi t *b:l. =CVt then 

C2 again has 2 subcases: C2i and C2ii 

C2i: If Z:I. t *b:l. +S:l.t < CVt, then 
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(L~"Cost/llCapacai ty):I. = (b.Cost):I. / (te:l. t *bi +s~ t) 

C2 i i: If Zi t * b:l. +S:l. t }-CVt, then 

Case A is the case where item i is an element of the 

MP set and therefore its production can not be shifted 

earlier. 

Case B is the case where the production of the 

current period can not be shifted earlier as a whole (only a 

portion of it can be shifted) because of the preallocated 

capacities, that is 

a :i. ~( -Zi k < Zi t 
~,<t 
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The portion of the current period's production can be 

sufficient to resolve the infeasibility or not. If it is not 

sufficient, then resource consumption in period t will be 

reduced only by an amount of (fiCapacity)~=te~t*b~, as the 

production of item i in t can only be reduced by te~t 

If it is sufficient then in t, the change in the capacity, 

~Capacity, equals to the infeasibility, CVt. 

Case C is the case where the production of the 

current period can be shifted earlier as a whole, that is 

t 

~z :l 1-( -Z:l h: :;::'Z:L t 
~,<t 

(Or the sum of the slacks in the preallocated capacities in 

the periods preceding t is larger than the current periods 

production amount) 

In Subcase Cl the violation is resolved by shifting 

the current production (of item i in period t) earlier, so 

the change in the capacity, nCapacity, equals to the 

infeasibility CVt, as resource availability increases by 

CVt. 

Whereas in Subcase C2, the current period's 

production shift is not enough to resolve the violation. 

But, when the amount of production in period t (as a whole) 

is shifted earlier, that is when item i is not produced i 

period t, then no resource is necessary for set-up, as 

set-ups are preparations done for production. As a result, 

set-up saving occur. 
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Then, the sum of the resource units used for the 

current period's production and for its set-up, namely, 

bi tei 10 +S1 10 (or hi. Z1 10 +S1 10 as tei 10 =Z1 10) . is either suff icient 

(Case C2i i) to resolve the vio lation, i. e. bi z~. 10 +Si 10 :;~·cvt. or 

not enough (Case 2 i) to reso 1 ve it, i. e. bi z~. 10 +Si 10 < CV10 . 

ilCapacity in Case C2ii is CV1o, as the change in the capacity 

availability or consumption is by CV1o; it is biZi1o+Si1o in 

Case C2i as only bi Z~.1o+Si1o units of resource is saved. 

Then in the general case St.ep 1 of the algorithm in 

detail is formally given as: 

(1.1.1) Set s1.1o=d:l. for all i=1,2, .... ,N; t=L2, .... ,T 

:1.-1 

If CV1o<O then check whether the number of elements 

in the set MP equals to N; if it equals then 

conclude that the problem is infeasible. Otherwise 

continue with Step 1.2. 

If CV1o:;::·O, do step 2 

(1.2.1) Set i=l 

(1.2.2) If iEMP then set (~Cost/A-CapacitY)i to a very large 

number and go to Step (1.2.7). 

Also, if Zi1o=O, set (ilCost/ilCapacitY)i to a very 

large number and go to Step (1.2.7) 



( 1 . 2. 3) Set a:L =mi n{ Z:I. t." CVt Ib:l. ]­

. te:L t =0, (.6Cost):I. =0 

(1.2.4) Set k=t-1 

\ 
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(1.2.5) llCost/flCapacity ratio of each item is calculate.d by 

doing: 

(1.2.5.1) If (Z:L~' -Z:lI.: ) =0 goto (1.2.6); otherwise set 

(1.2.5.2) (.6Cost):I.=(flCost):L+hi*de:Lk*(t-k) 

(1.2.5.3) teit:. =te:L t +de~. k 

(1.2.5.4) Check whether 

B) te:l. t < Zi t or 

C) te:l. t=Z:I.'l~ is 

If (B) occurs then (flCapaci ty):I. =te:l. t. *bi 

If (C) occurs then check again whether 

C1) Z:I. t *bi =CVt or 

C2) Z:l.t *b:l. <CVt is 

If (C1) occurs then (ACapacity):I.=cvt. 

If (C2) occurs then check 

C2i) Z:I. t *bi +S:l. t< CVt or 

C2ii) z:l.t*b:l.+s:l.t).cVt is 

If (C2i) occurs then 

(llCapacitY):I.=z:l.t*bi+s:l.t 

whether . 

If (C2ii) occurs then (flCapacitY):I.=cVt 

(1.2.5.5) Find (ACost/flCapacity):I. 

(1.2.5.6) a:l.=a:l.-de:Lk. If a:l.=O then go to (1.2.7), 

otherwise continue with (1.2.6) 



(1.2.6) k=k-1. If k;::.l then go to (1.2.5) 

(1.2.7) . i=i+1. If i<N then go to (1.2.2) 
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(1.2.8) Find item j with the minimum.6.Cost/.6.Capacity ratio 

j= argmin(.6.Cost/.6.CapacitY)i 
i 

(1.2.9) Schedule of item j is adjusted as follows: 

(1.2.9.1) 

(1.2.9.1.1) If te.;t.(z.:It. go to (1.2.9.1.3) 

( 1 . 2 . 9 . 1 . 3) Z_1 t. =Z.:I t. -te..; t. 

(1.2.9.2) Set k=t-1, f.:l=O 

(1.2.9.4) If k)l go to (1.2.9.3) 

(1.2.10) If f.:l=O then include item j to the MP set. 

Note, that the general case differs from the case 

where set-ups are negligible only in step (1.2.5.4) and the 

general case has 2 additional substeps under (1.2.9.1), 

namely (1.2.9.1.1) and (1.2.9.1.2). 

In (1.2.9.1.2) S_1°1:: is adjusted to zero as production 

in period t is reduced to zero. 
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2.5.Recapulitation and Optimality Analysis 

In this part. the logic of the algorithm is analyzed 

and reasons for its unexactness are given and shown on an 

example problem. 

Our heuristic is mainly based on the following two 

ideas: 

1) Producing as late as possible minimizes holding costs. 

2) In order to achieve feasibility. if it is necessary to 

decrease the production in a certain period. then shift the 

production of that item earlier that contributes the least 

additional holdIng cost per increase in resource 

availability resulting from its resource consumption 

decrease in that period. 

Our algorithm is similar to the dual simplex method. 

because both deal directly with superoptimal solutions. But 

our algorithm differs from the dual simplex method due to 

the fact that dual simplex method moves toward an optimal 

solution by striving to achieve feasibility. whereas our 

algori thm moves toward a feasible soluti,on; that may not 

necessarily be the optimal solution. 

Our algorithm reaches feasibility by performing 

necessary adjustments so that feasible production schedules 

are achieved in each individual time period starting at the 

last period in the planning horizon and moving backward. 
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As stated before,the problem is reduced to linear 

programming when set-ups are neglected. In that case, both 

solutions, namely the solution found using our algorithm and 

the optimal solution found using any linear programming 

method can be compared. The result of this comparison is 

that our algorithm is not exact. And the reasons for this 

are the myopic structure of the algorithm and the existence 

of the preallocated capacity constraints. 

Myopicity alone does ,not contitute a reason for 

unexactness, but myopicity and preallocated capacities 

together make the ,a 1 gori thm unexact. Karaye 1 [5] used the 

same heuristic for the problem in which only the shared 

capacities were considered (preallocated capacities were not 

taken into account) and obtained the ,result that the 

algorithm is exact. (Of course he used another late schedule 

algorithm to initilize the solution as preallocated 

capacities were not considered. Hi~ late schedule was 

obtained by setting the production of each item to their 

demand by ignoring the capacity constraints. And as his 

problem was multi-stage, the demand was the sum of dependent 

and external demands. But the main logic of the algorithm is 

the same.) 

Now, reasons for unexactness are discussed in 

detail. In our algorithm, in each iteration only a single 

period is considered. But decreasing the production of an 

item in the current period can be the most economical choice 



when previous periods are not considered, but in the long 

run total holding cost may be lower when another item is 

chosen. 
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The decision taken in a certain time period also 

effects other periods, as a result of preallocated 

capacities. Because, in a certain period t, the capacity 

violation may be more than the violation in t-l and the 

preallocated capacity bounds may be of such nature that 

cheaper items have very tight preallocated capacity 

cons~raints. In such cases to resolve the violation in t-l, 

the cheaper items' production shifts are not enough as their 

productions were shifted earlier to resolve the violation in 

t and have very little slack capacities in the periods 

preceding t. As a result,in the next iteration a large 

amount of production of expensive items must be shifted 

earlier. But, if in period t, the production of expensive 

items were shifted (in a less amount as, CVt(CVt-1), of 

course at- a higher cost increase, then we could shift more 

of the cheaper items in t-l and at a lower cost increase. 

Then the net difference between the higher cost in t and the 

lower cost in t-l would be a lower cost. 

In other words, as the algorithm is myopic, to 

reduce a less amount of violation the small amount of slack 

capacities of the cheaper items are used. But if theY were 

used in the reduction of a larger amount of violation, the 

production of the expensive items were shifted in less 
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amounts and the total cost would be less. 

An Example Problem 

Analyzing the above discussed matter with an example 

would be helpful and following single~stage multi-item 

production scheduling problem is given: 

t I I U:l.t. U:2t. \13t. I I Z:l.t. Z2t Z31: I I Ct. I 
I I I I I I I 
I I I I I I I 

1 I I 1 2 3 I I 3 30 30 I I 80 I 
I I I I I I I i h ·b _L .... i.. 

2 I I 2 4 5 I I 2 10 10 I I 30 I 1 1 1 
I I I I I I I 2 2 1 

3 I I 3 6 7 I I 3 5 5 I I 5 I 3 3 1 
I I I I I I I (Set-ups 

4 I I 4 8 9 I I 4 5 5 I I 10 I are 
negl igible) 

The optimal solution found with simplex method is as 

follows: 

t Ilz*1.t IZ*:.;:!t - IZ*3t 
I I . I I 
I I I I 

1 I I 3 I 9 I 5 
I I I I 

2 I I 2 I 10 I 10 
I I I I 

3 I I 1 I 0 I 4 
I I I I 

4 I I 4 I 1 I 5 

Now, let's solve it with our algorithm. (One iterat-ion is 

taken as the number of times Step 1 is performeq and only 

Step 1 on this page is shown in detail) 



Step 0: Set the current schedule to the late schedule: 

I t I I Zlol~ Z:;~t I Z3t 

I I , , 
I I I I , 1 I , 1 2 I 4 
I I I I 
I 2 I , 2 8 0' 10 
I I I I 
I 3 I I 3 5 I 5 
I I I I 
I 4 I I 4 5 I 5 

t=T=4 

cV4=14-10=4 

Iteration 1: 

Step 1: 

(1.2.1) 

(1.2.2) 

(1.2.3) 

i=l 

(1.2.4) k=t-1=3 

(1. 2.6) k=2 

(1.2.6) k=l 

=min{4,2}=2 

(1.2.5.2) (LlCost) 1 = (.6.Cost):I. +hl *del1 * (t-k) 

=(0+1*2*3)=6 

38 
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(1.2.5.3) te14=te14+de11=O+2=2 

(1.2.5.4) (bCapaci ty) 1 =te14 *b1 =2* 1=2 

(1.2.5.5) bCost/bCapacity=6/2=3 

(1.2.5.6) a1=4-2=2 

(1.2.6) k=O 

(1.2.7) 

(1.2.2) 

(1.2.3)-(1.2.6) The production of item 2 can be 

increased in time period t=2 by two 

units and in time period t=l by 2 units. 

Z.21-Z23.=2. (There'is no slack capacity 

in period 3 and slack capacity is 2 in 

time periods 2 and 1). Then item 2's 

production can be decreased in the 

current period (t=4) by 4 units as a 

result violation will be decreased by 4 

units. Thus 

(flCapac i ty) .2=4 

(~Cost).2=2*2*2+2*3*2=20 

because an inventory of 2 units is 

carried 2 periods (from 2=2 to t=4) at a 

unit cost of 2 and another inventory of 

2 units is carried 3 periods (from t=l 

to t=4) again at a unit cost of 2. 

(6Cost/ACapacitY)2~20/4=5 
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(1.2.7) i=3 

(1.2.2) iEMP 

(1.2.3)-(1.2.6) The production of item 3 can be 

increased in t=l by 4 units, so 

an inventory of 4 units is carried 3 

periods (from t=l to t=4) at a unit cost 

of 3. 

(ilCost/ilCapacitY)3=36/4=9 

(1.2.8) j =1 (item 1 has the minimum 

ilCost/ilCapacity ratio 

(1.2.9) As item 1 is the item with the minimum 

ratio, its schedule is adjusted: 

Its production is decreased in the 

current period by 2 units 

=)z14=z14-2=4-2=2(1.2.9.1) and increased 

in the first period by 2 units 

=)Z11=Z11+2=3 (1.2.9.2-1.2.9.4) 

The adjusted schedule is as follows: 

t I I Z11':. Z21':. I Z31':. 
I I I 
I I I 

1 I I 3 2 I 4 
I I I Cost increase=(~Cost)1=6 

2 I I 2 8 I· 10 Total cost increase=6 
I I I 

3 I I 3 5 I 5 
I I I 

4 I I 2 5 I 5 
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(1.2.10) f i -O, thus item 1 joins the MP set. (it is 

the first element of the set) 

Step 2: 

(2.1) cV.q.=2 

Iteration 2: 

Step1: 

(1.2.1) i=l 

(1.2.2) 1EMP, (bCost/bCapacitY)i=a very large number 

(actually infinity) 

(1.2.7) i=2 

(1. 2.2) 2¢MP 

(1.2.3)-(1.2.6) 82=2 (we want to shift the production of 

(1.2.7) 

0.2.8) 

i=3 

item 2 by 2 units earlier, because this 

amount is enough to resolve the violation: 

cv.q.=2 and ~=1) 

=) U\Capaci tY)z=2 

(~Cost)z=2*2*2=8. because an inventory of 2 

units is carried 2 periods from t=2 to t=4 

at a cost 2 per unit. 

(~Cost/6CapacitY)2=8/2=4 
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. (1.2.3)-(1.2.6) 

(ilCost)3=2*3*3=18 

(6Cost/6CapacitY)3=18/2=9 

(1.2.8) 

(1.2.9) 

j=2 

Z:24.=Z24-2=3 

The adjusted schedule is as follows: 

t I I Zit 

Step 2: 

I I 
I I 

1 I I 
I I 

2 I I 
I I 

3 I I 
I I 

4 I I 

(2.1) 

(2.2) 

Iteration 3: 

Step 1: 

( 1 . 1 . 1) CV3 =8 

(1.2.1) i=l 

3 

2 

3 

2 

Z2t Z::!.~t 

2 4 

10 10 

5 5 

3 5 

CV4=0 

t=3 

Cost increase=(6Cost)2=8 
Total cost increase 

in t=4 = 8+6=14 
Total cost increase=14 



( 1 . 2 .2) 1EM? ' (6Costl 6Cap ac i ty) 1 =a very 1 arge number 

(actually infinity) 

'( 1. 2 . 7) i = 2 

(1. 2.2) 21MP 
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(1.2.3)-(1.2.6) The production of item 2 in the current 

period(t=3) is 5 units, so we can shift its 

production by only 5 units earlier=>a1=5. 

The sum' of the slack capacities in the 

previous periods (30-2=28) exceeds 5, 

therefore 

(6CapacitY)2=5 

(ACost)2=5*2*2=20 

(ACost/ACapacitY)2=20/5=4 

(1.2.7) i=3 

(1. 2.2) 3¥MP 
(1.2.3)-(1.2.6) (ACapacitY)3=5 ( The reasoning is the same 

as that with item 2) 

(1.2.8) 

(1.2.9) 

f 

j=2 

(6Cost)3=5*2*3=30 

(ACost/6CapacitY)3=30/5=6 

Z23=Z23-5=O 

Z21 =Z21 +5=7 
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The adjusted schedule is as follows: 

t I I Z:lt. Z2t. Z3t. Cost increase=(~Cost)2=20 
I I 
I I 

1 I I 3 7 4 Total cost increase=14+20=34 
I I 

2 I I 2 10 10 
I I 

3 I I 3 0 5 
I I 

4 I I 2 3 5 

Step 2: 

(2.1) cV3=3 

Iteration 4: 

Step 1: 

(1.2.1) i=l 

(1.2.2) lEMP, (bCost/bCapacitY)1= a ~ery large number 

(actually infinity) 

(1.2.7) i=2 

(1.2.2) Z23=O =) (bCost/bCapacitY)2= a very large number 

because its production in the current period is 

zero and therefore can't be shifted. 

(1.2.7) i=3 

(1.2.2)· 3rjMP 

(1.2.3)-(1.2.7) 

(1.2.8) j=3 

(bCapacity)~=cv~=3 

(6Cost)~=3*2*3=18 
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(1.2.9) 

The adjusted schedule ( and also the final one as will be 

seen below) is as follows: 

I t I I Z1t. I Z2t. I Z3t. I Cost increase={6Cost)3=18 
I I I I I I Total cost increase 
I I I I I I in t=3 =20+18=38 
I 1 I I 3 I 7 I 7 I Total cost increase=34+18=52 
I I I I I I 
I 2 I I 2 I 10 I 10 I 
I I I 1 1 1 
I 3 I I 3 1 0 I 2 I 
I -I I 1 I 1 
1 4 1 I 2 1 3 1 5 I 

Step2: 

(2.1) CV3=0 

(2.2) t=2 

Iteration 5: 

Step 1: 

( 1 . 1 . 1) cv::z)O 

Step 2: 

(2.2) t=l 

Iteration 6: 

Step 1: 

( 1. 1. 1) CV1)0 



The algorithm terminates and the final schedule is 

the last given adjusted schedule. 

Now we can analyze what in the structure makes the 

algorithm unexact: 

46 

In t=4, if we don't shift the production of item 1 earlier 

and shift the production of item 2 by 4 units (instead of 2 

as done in the algorithm) then total holding cost would 

increase by 2*2*2+2*3*2=20 (as an inventory of 2 units is 

carried 2 periods and an other inventory of 2 units is 

carried 3 periods). Our algorithm found the cost increase in 

period 4 to be 14, so the new decision has a higher cost 

increase and this difference is 20-14=6 (in t=4). Then in 

t=3, if 2 units of item 1, 5 units of item 2 and 1 unit of 

item 3 are shifted earlier to period 1, then total holding 

cost increase in time period 3 would be 2*1*2+5*2*2+1*3*2=30 

(as 2 units item 1, 5 units item 2 and 1 unit item 3 are 

carried 2 periods, at a cost of 1,2 and 3 respectively) 

Recall that our algorithm found the cost increase in t=3 to 

be 38; then the difference between the cost increases (in 

t=3) is 38-30=8. 

Then the net difference (between the approaches) in the cost 

is 2, as our algorithm had in t=4 a lower cost increase by 

6, but in t=3 a higher cost increase by 8. 
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That difference arises from the myopic choice in 

t=4. If in t=4 only the production of item-2 were shifted 

earlier, instead of shifting 2 units of item 1 and 2 units 

of item 2, holding cost in t=4 would increase more, but then 

in t=3 less units of item 3- which is the item with the 

highest holding cost-were necessary to shift earlier. Thus, 

the decision taken in time period 4 effected previous time 

periods. 

Bu~, if the preallocated capacities of item 1 in the early 

periods were not so tight, then the myopic choice had no 

effect on exactness and the solution would be optimal. Also, 

if the shared capacity constraint bounds are increased, the 

effect of the tight preallocated capacities of item 1 would 

vanish and the solution again would be optimal. 
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2.6. Test and Evaluation 

In order to find out the frequency the algorithm 

reaches optimal solutions and the percent deviation from 

optimal solutions. we have set up a test in which 100 

randomly generated problems (in which N ranges from 3 to 30 

and T ranges from 3 to 12) are solved by using our algorithm 

and linear programming packages; after which the final 

solutions have been compared. And the following results are 

obtained (K-B stands for Karayel-Biton Algorithm and 

problems for which optimal and K-B solutions are equal are 

marked) : 

Probleml . I Optimal K-B I deviation from I 
No I N I T Solution Solution I optimal solution I 
1 I 4 I 3 717 728.25 I 0.001569 I 
2* I 4 I 5 1118 1118 I I 
3* I 7 I 3 1633 1633 I I 
4* I 3 I 7 1773 1773 I I 
5* . I 6 I 4 677 677 I I 
6 I 4 I 8 1351 1363 I 8.88231*10 ;!!; I 
7* I 3 111 5034.5 5034.5 I r 
8 I 3 11 5192.5 5484 I 0.05614 I 

·9* I 7 5 1577 1577 I I 
10~. I 6 6 3993.5 3993.5 I I 
11~ 112 3 2855 2855 I I 
12 112 3 1947.25 1953 I 2.9529* 10 ;!!; I 
13* I 3 12 6393.75 6393.75 I I 
14~. I 3 12 7878 7878 I I' 
15~. I 3 12 5348 5348 I I 
16*. I 3 12 5466.199 5466.1991 I 
17 I 4 9 4516 5363 I 0.18756 I 
18 I 8 5 4663.2 I 4720.6 I 0.01231 I 
19 110 4 1949.5 I 1974.75 I 0.01295 I 
20 I 4 10 5493.5 I 5531.5 I 6.91727*1Q-;!!; I 
21 110 4 509 509 I I 
22 I 5 8 843' 859.4 I 0.01945 I 
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Probleml Optimal K-B f deviation from 
No I N T Solution I Solution I optimal solution 

23 I 6 7 3847.3331 4225.5 I -0.09829 
24 I 6 7 3748.2 I 4017 J 0.071714 
25 I 5 9 2924 I 2952 I 9.57592*10-3 

26* I 5 9 2924 :1 2924 1 
27* I 5 ·9 3531.8 1 3531.8 r 
28 112 4 2522.5 1 2580 J 0.0228 
29* 8 6 4723 I 4723 I 
30 6 8 6145 I 6369 I 0.0364 
31 7 7 4243.25 1 4370.8 1 0.03006 
32 5 10 6378 1 6534 l 0.02446 
33· 10 5 4205 1 4388 t 0.04352 
34 10 5 1418 

, 
1 1435.2 l 0.01213 

35 13 4 1052.5 1 1230 f 0.16865 
36* 18 3 3216 1 3216 I 
37 5 11 5989.75 1 6321 t 0.05530 
38 16 4 2202.3 2231 I 0.01295 
39 13 5 2489 2863 1 0.15026 
40 17 4 2956 3288 I 0.11231 
41* 23 3 3249 3249 I 
42 24 3 3402 3402 I 
43 9 I 8 5446 ,5898 I 0.0829 
44* 6 112 11249 11249 1 
45 15 1 5 5364 5692 I 0.06115 
46* 19 I 4 3953 3953 I 
47 19 I 4 2764 2951.5 I 0.0678 
48 20 I 4 8306.5 8582 I 0.03317 
49* 16 1 5 5755 5755 I 
50 10 I 8 6023 6197 I 0.0289 
51 27 I 3 7133 7445.5 I 0.0438 
52 11 1 8 5846 6012.75 [ 0.02852 
53* 30 I 3 4006 4006 1 
54* 9 10 5681.4 5681.4 I 
55* 9 10 5842 5842 I 
56 116 6 8388 8434 I 5 .48402* 10 ::s 

57 125 4 5578.25 5606.5 ~ 5.0643*10 3 

58 120 5 7426.6 7631 I 0.027523 
59*_ 112 9 10355 10355 1 
60* 127 4 8347 8347 t 
61 112 9 11264.75 11849.25 I 0.05189 
62 111 10 10856 11208.25 J 0.03245 
63 111 10 11561.25 11703.45 I 0.0123 
64 111 10 11795.5 11821.5 I 2.20423*10.::S 
65* 116 7 ·9347 9347 I 

66 117 7 9578 " 9772.5 1 0.02031 

67 115 8 5774 6157 I 0.06633 
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Probleml I I Optimal I K-B I deviation from I 
No I N I T I Solution I Solution I optimal solution I 

68 124 I 5 I 3497 I 3782 I 0.0815 I 
69 111 111 I 14007 I 14799 I 0.0565 I 
70 118 I 7 I 12629.75 I 13182.25 t 0.04375 t 
71* 112 111 I 13486 I 13486 t I 
72 112 111 I 28934 I 30780 t 0.0638 I 
73* 128 I 5 t 10809 I 10809 I t 
74 118 I 8 I 13992 I 14648 I 0.04689 I 
75* 117 I 9 I 12517 1 12517 t I 
76* 113 112 I 22370 I 22370 I I 
77 127 I 6 I 14112 I 14272 I 0.01134 I 
78* 124 I 7 I 14842 I 14842 I I 
79* 117 110 I 12531. 25 I 12531.25 I I 
80 120 I 9 I 21497 I 22543 t 0.04866 I 
81 127 I 7 I 16924.25 I 17031 I 6.30752*10-3 I 
82* 128 I 7 I 18737 I 18737 I I 
83 118 111 I 47158 I 47377.25 I 4. 7558* 10-:~ I 
84 123 110 I 41139 I 41899 I 0.01847 I 
85 121 110 I 28641 I 28893.5 t 8.816*10-3 I 
86 124 I 9 I 26748 I 27411.5 t 0.025 I 
87* 128 I 8 I 13846.5 I 13846.5 t I 
88 119 112 26429.4 I 26576.2 I 5.2139*10 ,3 I 
89 123 110 41139 I 41899 I 0.01847 'I 
90 129 I 8 33289 I 33425 4.08543*10, :: I 
91* 130 I 8 26873.5 I 26873.5 I 
92 130 I 8 30356 I 31627.5 0.04189 I 
93 126 110 41843 I 41941. 25 2.34806*10 3 I 
94 128 I 9 37175.25 I 37177.75 6.7249* 10 !5 I 
95 125 111 32770.6 I 32936.25 5.054836*10 3 I 

96~ 123 112 69803 I 69803 I 
97* 127 112 63385.5 I 63385.5 t 
98 ' 127 112 59743 I 59922 2.9962*10 3 I 
99 129 112 48232 I 48244.5 2.59164*10 4· I 

100* 129 112 56345 I 56345 ,I 
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. Our algorithm is coded in BASIC and 100 problems are 

run on Commodore 128 Personal Computer. As linear 

programming packages LINDO and MPOS were used. Small size 

problem were solved on Olivetti M24 PC and Commodore PC-20 

using linear programming package LINDO. But LINDO has a very 

limited capacity of 60 constraints. Therefore large size 

problems are solved on CDC system at Bogazici University 

using MPOS package. 

Our algorithm's response time is considerably 

shorter than MPOS. For example. a problem having N=28. T=12 

had a response time of fourty three seconds when it was 

solved with our algorithm on Commodore 128. whereas it had a 

response time of twentyone minutes when it was solved with 

MPOS package on CDC. 

On the other hand. a company facing a problem where 

N*T)60 can not solve it on its PC_and of course systems such 

as CDC are usually not available in companies. Furthermore. 

since production planning problems are solved again and 

again to answer "what if" type of questions, using a 

mainframe becomes cumbersome. 

Even for small size problems (N*T~60) the response 

time is longer using LINDO on PC's than using our algorithm 

on Commodore 128, although PC's operate with a clock rate of 

4.77 MHz and Commodore 128 operates with a clock rate of 2 

Mhz. 
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Also, since memory limitations is a rather crucial 

issue on microcomputers (users are highly restricted because 

of memory limitations), the small memory occupation of our 

program is worth close attention. 

Furthermore, 39 out of 100 problems have optimal 

solutions and the mean deviation from optimal solution is 

only 1.96 per cent. 
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III. A NETWORK FLOW APPROACH 

In this chapter, it will be shown that the single­

stage mUlti-item capacity constrained scheduling problem can 

be formulated as a minimal cost network flow problem when 

set-ups are negligible. Also some suggestions are given for 

the use of such a formulation; 

Pi 

Before starting, recall our problem (Pi): 

N 

Min :E: 

s.t. 

T 

~h:l.I:l.t 

Z:l.t 

Z:L t , I:l.t 

.::;: Ct 

.:~: Z:it. 

.. , 0 .::.' 

(0) 

(1) 

(2) 

(3) 

First, we want to illustrate the minimal cost 

network flow problem. Then, it will be shown that after 

performing necessary changes, i.e. variable transformation 

and adapting the shared capacity constraints to network 

format, Pi can be formulated as a minimal cost network flow 

problem and the graph of the network will be illustrated. 
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3.1 Minimum-Cost Network Flow Problem (MCNFP) 

Consider the problem of sending a specified amount 

of flow value ~ from source s to sink d in a network G in 

which every edge (arc) (k,l) has a capacity Ckl as weli as a 

nonnegative cost dkl associated with it. 

Our purpose is to find the flow pattern which 

minimizes the total cost. This problem is called the minimal 

cost network flow problem and may be stated more formally as 

follows: 

Mi n Z :E:dk 1 f""l 
(k.l ) €G 

s.t. 

:Efw.sl-( -Ef"c!Hl =e 
~, k 

:E:f d~: -:;:::f ~:d =--t} 
~, "" 

:E:fl ~:-:E:f~:l =0 
~, k 

f~:l<c"':l. for every (k,l)EG 

fkl)O for every (k,l)EG 

3.2. Variable Transformation 

(0' ) 

(1' ) 

(2' ) 

(3' ) 

(4' ) 

(5' ) 

Recall that in Chapter 2.2. transformation of 

variables has been presented. After the transformation the 

problem P2 was obtained equaling to Pl. 



P2 

P2 was stated as: 

N T 

Min ::!: 

s.t. 

N 

:E:z' it 
i-:I. 

,. 
<::. Ct 

Z':l.t -{ Z'it 

z ' it, 1':1. t\ ~> 0 

3.3 Adaptation of Shared Capacity Constraints 

(0" ) 

(1" ) 

(2" ) 

(3" ) 

(4" ) 
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On figure 3.1. the network representation of (P2) is 

given. On each arc (i,j) the flow on it, the lower bounds of 

flow, upper bounds of flow and the cost of sending one unit 

of flow are given respectively. When analyzing carefully, it 
) . 

can be seen that it is the network for the minimal cost 

network flow problem. Node s is the source node, which has a 

supply of the sum of all external demands i.e. 

N T 

:E :E:u I:L t 

:1. .... 1 t-:L 
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Node d is the sink node which has a demand equaling 

to the above sum. Arcs between nodes sand t=1,2, ..... ,T 

carry the total production of periods t=1,2, ..... ,T i.e. 

they carry 

N 

Zzl:tt 
:1.-1 

for every t. 

Arcs between nodes t (t=1,2, ..... ,T) and it (for 

i=1,2, ...... N; for t=1,2, ..... ,T) carry the production of 

each individual item in t, Z'it .. Arcs between nodes it and 

it+l have inventory flows, I'~t. 

Finally arcs between nodes it and d carry the demand 

of items i=1,2, .... ,T, U':l.t. 

With the presence of the nodes t=1,2, .... ,T and arcs 

leaving source node s and entering into these nodes, we 

meanwhile adapted the'shared capacity constraints to network 

format, because the flow entering any node t is the total 

production in period t, 
N 

Ez':t t. . 
i-1 

Then the arc connecting 

source sand t must have the capacity of Ct, because the 

N 

flow value on arc (s,t) is EZ'it which has a capacity of Ct. 
:1.-1 
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3.4. Equivalence of the two approaches 

In the last section, it was illustrated that the 

network represantations of both P2 and MCNFP are equal. Now, 

it will be shown that P2 is a MCNFP by equating MCNFP's 

constraints to constraints of P2. 

3.4.1. Equivalence of the objective functions 

In this part we will show that the objective 

function of P2(0") is equivalent to the objective function 

of MCNFP(O'). That is, 

N T 

:Eh':L I ':L t . 
(~:. , ) EG 

d":1 is the cost associated with flow f~c]. on arc (k,l) where 

h~.t is the cost associated with item i' s inventory carried 

from period t to period t+1. On figure 3.1. h:L 's are the 

costs associated with the arcs connecting nodes it and it+1 

for every i=1,2, .... ,N;t=1,2, .... T. Flows on arcs 

connecting nodes t and it have zero costs, as only the 

inventory holding costs are considered (production costs are 

not included in the objective ftinction) . 

Then, for every (k,l)EG; i=1,2, .... ,N and t=1,2, .... ,T on 

Figure 3.1. 

dk1=h:L for every arc (k,1)=(it,it+1) 

dk1=0 for every arc (k,l)=(t,it) 

dk 1 =0 f or every arc (k, 1) = ( it, d) 
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3.4.2. Equivalence of flow balances 

Constraint set (3') in MCNFP is equivalent to 

constraint set (1") in P2. because both are flow balance 

equations for every intermediary node (a node which· is 

neither source nor sink node) . 

Zf1~' is the sum of the flows outgoing from an 

intermediary node k. 
It corresponds on Figure 3.1. to the sum of the following 

flows: For each node it (i=1.2 •...• N; t=1.2 •...• T) the 

outgoing arcs are (it.it+1) and (it.d) which carry flows 

I'it and U'it respectively. Then a total flow of I'it+u'it 

leaves that node. 

Thus ZfJ.": is equivalent to (I'it+U':l.t) 

(As figure 3.1 is also the network of MCNFP) 

ZfkJ. is the sum of the flows entering an intermediary 
~, 

node k. 

It corresponds on Figure 3.1. to the sum of the following 

flows. For each node it. the incoming arcs are (it-1. it) 

and. (t.it) which carry flows I':l.t.-1 and Z'it respectively. 

Then a total flow of I'it-1+Z'it enters that node. 

Thus Zf,,:J. is equivalent to (I' i t-1 +z':I. t) 
~, 

As a result :E:f1 ~,-Zf~'1 =0 (3' ) 
~, ,,: 

is equivalent to z':l.t+I ':i.t.-:l.-I ':l.t-U'it=O which is constraint 

(1") in P2. 
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3.4.3 .. Equivalence of Capacities 

In this section we illustrate how constraint sets 

(2") and (3") in P2 are equivalent to constraint set (4') in 

MCNFP. 

(4') stands for the capacity of eacQ individual 

flow. Our problem has capacity restrictions only for 

production (thus on figure 3.1. only arcs (s,t) and (t,it) 

have capacities, as they represent production flows). No 

restriction is brought for inventories (then arcs (it, it+1) 

have zero capacities as they represent inventory flows) . 

Then for every (k,I)EG. Ck1 (in MCNFP) corresponds 

to the following capacities on Figure 3.1. (again for 

i=1.2 •... ,N; t=1.2 ....• T}. 

Preallocated capacities 

If arc (k.l)=(t.it) then Ck1=Z '1t. because the 

amount of production of item i in period t is limited by 

Then in Figure 3.1. ::;, 
~ :.It is the capacity of each arc 

going out from node t and entering it, (t,it), due to the 

f act that the f lows on arcs leaving node t and ent.ering it 

carry the production of item i in period t, Z'1t (the 

capacity of Z'1t is Z '1t). 

If arc (k,I)=(it,it+1) then Ck1=O, because arcs 

(it.it+1) 's have inventory flows, which are without 

capacity. They are restricted only to be nonnegative (4" in 

P2) . 
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Shared Capacity Constraints 

If arc (k.l)-(s.t) then Ck1=Ct. 

The sum of the flows entering node t must be equal to the 

sum of the flows leaving node t. Only the arc between source 

sand tenters t. which has a flow value of ft. 

The sum of the flows on arcs leaving node t, is the total 

N 

production in period t, ~ , 
~z :l.t. as each arc (t.it) carries a 

flow of Z':l.t (and there are N arcs leaving t) . 

N 

Then, ft=:Ez':l.t 

N 

As the total production in t, LZ':l.t, is restricted ·by 
:1.-1 

the shared capacity constraint Ct, the arcs leaving sink 

node s, (s,t) 's. have capacities of Ct's. 

(Recall that the same argument was given in Se.ction 3.3.) 

To sum up, 

Z I ... :1. ~ if (k.I)EG=(t. it) on Figure (3.1) ; 

C":1.= Ct" .• if 
~ 

(k.I)EG=(s.t) on Figure (3.1) . 

O. if (k.llEG=(it.it+l) on Figure (3.1) . 

If, . 

C~'1 =z ':I. t then (4' ) in MCNFP is equivalent to (2" ) in (P2) 

C .. :1 =Ct, then (4' ) in MCNFP is equivalent to (3" ) in (P2) 

Ck1 =0, then (4' ) in MCNFP is equivalent to (5 ") in (P2) 
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3.4.5. Nonnegativity of flows 

It is very obvious that constraint set (5') in MCNFP 

is equivalent to set (4") indicating the nonnegativity of 

flows. 

3.4.6. Total flow value and source-sink nodes 

Constraint set (1') in MCNFP states that the supply 

of the source node is ~. or the difference between the sum 

of the flows leaving source node and entering source node is 

~. As no flow enters source node, the sum of the flows 

entering it is zero. 

T 

On Figure 3.1. the sum of the flows leaving s is Zft. 
t-:I. 

N 

As ft=Zz'~t. then the sum of the flows leaving 
:1.-:1. 

N T 

S is Z ZZ'i.t 

Also, (2') states that the sum of the flows entering 

the sink node (as no flow leaves i.t) is zero. 

On Figure 3.1. the sum of the flows entering sink 

N T 

node, d, is the sum of the external demands, ~ Zu':l.t. 
:1.-1 t.-i. 

N T 

(1' ) in MCNFP states that Z Zz' i t=~ 
:1."'1 t-:I. 
N T 

(2') in MCNFP states that r.- ZZ':I. t =--G .::.-
:I.~:I. t-:I. 

N T N T 

Then, r.- :E:z • it. 
0:;;- Ell 1:Lt. I~ "-

:l '*"'i t-1 :1.-:1. t-1 



The same result will be obtained by summing each 

flow balance equation in P2, namely l"'s (as 1" in P2 

represents N*T fiow balances) . 

3.5. A Suggestion 

In section 3.3. and 3.4. it was shown that our 

scheduling problem can be formulated as a minimal cost 

network flow problem (as its objective fUnction and 

constraints can be transformed to those of a minimal cost 

network flow problem) . 
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Due to the fact that linear programming methods are 

slow, the following suggestion is made to find optimal 

solutions. 

As our algorithm provides near-optimal solutions, it 

is advis~ble to solve the problem with our algorithm and 

then transform the problem to MCNFP and solve it by using 

any MCNFP algorithm in which the solution of our algorithm 

is taken as an initial solution. Thus, in only a few 

iterations the optimal solutions are obtained. 



IV. CONCLUSION 

In the preceding chapters the single stage 

multi-item capacity constrained problem was analyzed and a 

heuristic algorithm for its efficient solutions was 

introduced. 

The algorithm provides a very important advantage, 

by settling the tradeoff between exactness and speed 

favourably. 

64 

One can think of many applications for the 

scheduling algorithm. It can also be implemented in the 

multi-stage case. Another application may be using it as an 

aid in making the decisions of using overtime in a period or 

not. 

The algorithm can be used to generate good initial 

solutions for the minimal cost network flow problem. The 

major advanta'ges of our algorithm is its simplicity and 

implementability on a microcomputer. Large problems can be 

solved in a short amount of time on a microcomputer. Common 

problems in industry exhibit the property that for a given 

item the preallocated capacity usage, the shared capacity 

demand and the holding costs are closely related in which 

case our algorithm finds very good (usually optimal) 

solutions. 
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