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AA HEURISTIC FOR CAPACITY CONSTRAINED PRODUCTION SCHEDULING

ABSTRACT

In recent years, due toAhigh infereét rates and strict
monetary policy, reducing inventory holding costs.ﬁave become a
crucial iséuef Minimizing inventory holding costs has been an

remphatic obijective in sgarch for incréased_productive efficiency.
In the determination of efficient production schedules,
possibilities of time sUbstitutioﬁ-of a limiting resource with th
aim of having minimum inventory levels plays an important role.

This study proposes a model for scheduling production in
single—stage multi-item capacify constrained production Systemé}

"Our algorithm schedules produqtion'as~late as possible so as to
minimize inventory holding costs. Items are independent and‘have1
external demands to be met. Two main classes of capacity
constraints are conSideféd. Tﬁe algorithm deals with superoptimal
(infeasibie) solutions and moves backward in.time in order to

schedule production within the capacity bounds.



The exactness of the algorithm was tested and the
éomputational results seem to be very favourable.

The algorithm developed in this thesis functions in
determining efficient production schedules and in testing and

evaluating scheduling designs and strategies as well.
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5IGASI KISITLANMIS URETIM CIZELGELEMESI ICIN BULGUSAL BIR YONTEM

OZET

Monetarist istikrar ydntemleri ile yonetilen gunumuz Turk
Ekonomisinde envanter maliyetlerinin Bnehi giderek artmakﬁadir.
Uretkenlik veriminin artisinin saglanmasi icin yapilan |
¢alismalarda envanter maliyetlerinin enazlanmasi, uzerinde Snemle
durulan bir ama¢ olagelmistir. Verimli Uretim cizelgelerinin
belirlenmesinde sinirli kaynaklarin kullapiminin Zamanla
de§istirilmesi olanaklari, dusik envanter duzeylerinin amaglanmasi
ile birlikte etkin bir rol oynar.

Bu c¢alisma tek a$amaii, cok Urunli, siFasi kisitlanmis
Uretim sistemlerinde ﬁretimin ¢izelgelenmesi ig¢in bir model
Snérmektédir. Olugturulan algdritma envanter malivetlerinin
enazlanmasi amacina hizmet edecek sekilde uretimi mimkun oldugu
kadar geg¢ ¢izelgeler. Uriinler birbirlerinden baFimsiz olup,
karsilanmalari gereken piyasa talepleri vardir. ki temel siga
sinifi gozdnlnde tutulmugtur. Algoritma Usteniyi olursuz
cozimlerden baslayarak zaman ekseninde geri giderek ﬂrefimin siga

sinirlari i¢inde ¢izelgelenmesini sadlar.
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Algoritmanin pekinligi denenip, uygun sonuqiar elde
edilmigtir.

Bu tezde olusturulan algoritma ile verimli uretim
cizelgelerinin saptanmaéinin yanisira cizelgeleme tasarim ve

gengﬁdﬁmleri de denenebilir ve degderlendirilebilir.
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I.INTRODUCTION AND BACKGROUND

This study proposés a heuristic algorithm for
scheduling production_in multi—item single—stage capacity
constrained systems.

The objective is to minimize the total holding cost.
It is assumed that holdingvcost is nonnegative for each item
and the demand is deterministic.

Two main classes of capacity constraints are
considered. One.class is time Qarying preallocated capacity
bounds on the production rates of each item, namely bounds
on the production rates. |

The second class of capacity constraints involves
ehvironﬁents in which items compete for limited production
capacity, namely shared resourée cbnstréints.

The changeovers are'mode1ed as set—up times that
absorb capacity, and set—-up costs are assuﬁed to bev

negligible.



The algorithm begins with a lafe‘schedule which
schedules production as late as possible without satisfying
shared resource contraints, and sﬁarting at the last period
~ of the planning horizon, moves backward in time to échedule
production within the capacity bounds.

When set—ups are negligible, the problem reduces to
linear programming and the algorithm is tested for exactness
by solving 100 randomly generated problems of ﬁhis kind.

- Computational tests showed that our proposed algorithm is a
very effective tool in making capacity allocation decisions
in production planning. It is very easy to understand and
implement and seems to be very close to the exact optimﬁi
and much faster and simpler than solviﬁg large linear
programming problems.
- The algorithm is the same for both cases, namely where
~set—ups are negligible and not. The only difference betweeen
these two cases occurnin capacity consumption, so only a few
calculations differ.
| This problem can also be formulated as a minimal cost

network flow problem. Such ayrepreSentation is given and
discussed in the last chapter.
Backaround

The production planning and scheduling literature is
vast, and we review some of the relevant prévioué work.

In the single-stage, single—item lot éizing area

Wagner and Whitin [1958) presented a shortest path solution



for the single-stage ﬁncapaciﬁated dynamic lot sizing
problém.Although their algorithm‘is effieient, other
heuristic algorithms are deveioped'by the practitioner.

’ Flbrian and Klein [1971] considered the problem with
constant capacity.Using the characterization of the extreme
point schedules, they developed an efficient dynamic
progrémming algorithm. Lambre¢t and Vander Eecken [1978]"
considered the variable ¢apacity problem, and.they developed
an algorithm conditioning on the numberiofbpériods with zero
production. Bitran and Yanesse [1982], and Karayel [1984]
identified some special cases that are solvable by an
efficient algorithm.

In the singlé—stage lot sizing with shared capacity
area Manne [1958] provided a represantation of the
individual schedules as columns of'a linear program.. This -
approach was improved upon by Lasdon and Terjung [1971], who
employed large scale Optimization techniqﬁes. NeWson [1975]
-develoéed a dual heuristic which at first deéomposes the h
‘problem into seéarate uncapacitated single-item problems.
Recently, aggregation of items has been considered by many )
authors. |

Tﬁe hierarchical appfoach is becoming increasingly
popular among researchers; In this approach the production
planning and scheduling problem is partitioned into a
hierarchy of subproblems. Graves [1982] employved duality andr

relaxation principles to incorporate féedback between the



aggregate planning model, which determines the aggregate
capacity and inventory levels, énd the detailed scheduling
model that determines lot sizes. Bitran,Haas, and Hax [1981]
showed that in certain cases the hierarchical approach gives
‘near optimal solutions.

In multi-stage lot sizing area Love [1972] showed
that in the serial production system, if the costs are
nonincresing in time, then thé optimal solution must have
the so—-called nested property. |
‘That is, if there is no demand (dependent plus external) in
a given pefiod, then there should be no prodhction in that
period. Using this property, he devised an altérnaﬁe dynamic
programming solution.

In the material requirements planning area McLain et
al. [1981] developed a decomposition procedure to solve the
capacity constrained MRP problem with fixed time lags
between activities.

In the hierarchical production planning‘area'
Billington ét al. [1983] proposed_the method ;f product
structure compression in order to reduce the\problem size
and partially aggregate the many items thatrare linked.
Gabbay [1979] devised an aggregation/disaggregation
procedure for serial production linés in which items have to
go through the same set of production facilities which are
capacitéted. Bitran et al.[1982] analyzed a two-stage

production system using hierarchical planning concepts.



11. A HEURISTIC APPROACH
TO A MULTI-ITEM
SINGLE-STAGE

SCHEDULING PROBLEM

2.1. Formulation and Notation

In this section the production scheduling problem of
this thesis is formulated, and the basic assumptions of our
épproach are stated.

The production activity has a dynamic structure
represented by a finite number of time periods,
t=1,2,....,T.

The production process is defined by many
activities, each with a distinct output, i=1,2,..... JN. All
of these items are finished goods with external demands
only. Thus we consider the problem Qf scheduling the
production of N independent items over a time horizon of T
periods with given demand levels to be filled. The items are
coupled through the use of the same limiting resource.

(e.g.man-hours or machine—hours).



At time period t, zi+ units of i£em i are produced.
Together with the incoming inventory of item i, Isie-1, Zie
isvdistributed among the ending invehtory of item i, I.+« and
the external demand‘fdr item 1, wie.

It is assumed that li«=I:+=0 for all i=1,2,..... ,N. Another
assumption is that the demand data are deterministic.

Each time an item is produced some preparation
(set—up) is necessary before production stérts. The model
assumes that whenever there is production, there is a
set-up. Set-ups are represented by logical variables §:«

where

1 if zi+ >0
0 otherwise

51g={:
The set—up and the production of one unit of item 1
require d: and b: units of resource respectively, for which
items compete (for their set—up and production) and which |
has a capacity 1imit,.ct, through time.
At time period t, item 1 has a preallocated capacity
bound, Ejt; on its production rate.
The per unit cost of keeping stock of item i at the
end of time period t is denoted by hix. It is assumed that

the holding cost is nonnegative for each item, and constant

in time, that is hie=hs for all i=1,2,...... N in all

Set—up costs are assumed to be negligible.



Although in most production envi}ohments the
single-stage assumption does not hold, the production system .
may‘be modeled as a single stage if_any of the following'

. conditions are satisfied. First, there may be a bottleneck
stage in a multi-stage environment. Secondly, by a prﬁor
aggregation rﬁle several stages may have been aggregated
into a single stage. Finally, deadlines may have been set
for intermediate product outpﬁts in a multi—stage
environment. Also assembly lines can be modeled as a
single-stage.

Formally the single—stage multi—item production

scheduling problem may be stated as follows:

] T .
Min & Ehilse ' (0)

A=l el

Zit+1_1t—1—11t= Ui+ (1D

~N

E(bizit‘*'d»iigit);’;;»c*: (2)
iomeq .

Zit 423+ (3)
S Zaie, lie #0 »

L{itE (Or 1)



The objective of the problem is to minimize the
total holding cost.

Constraint set (1) represents the flow balance
. equation for each item i in each period t. As ouf concern is
single—stage systems, there is no interfelation between
items (no item is nécessary for the production of an other
item). It means that we deal only with extefnal demands.
Constraint set (1) ensures thét the production of.item iin
period t, together with ité incoming inventory is

distributed among its ending inventory and its external
demand in time period t.

Constraint set (2) represents the time varying
shared capacity constraints. In most productioﬁ systems
several activities compete for the use of each resource
which is fo be shared according’to éome rule. We denote
these systems by the term capacity-shared systems. In
capacity-shared systems the allocation of available
resources among different activities has to be doﬁe
explicitely. In the model the existence of only one shared
capacity is assumed.. |

Constraint set (3) represents the preallocated
capacity constraints, which are time varying capacity bounds
on the production rates of each item. These resources are
preallocated to items, and are represented as simple upper

bounds on the production rate of each item.



Table 1.1.

Summary of Basic Notation

N number of items

T number of. périods in the time horizon

Zit quantity of item i produced in time period t

Iie quantity of item i in inventory‘at the end of time
period t

Wi & external demand for item i at the end of period't

Vbi quéntity of resource needed per unit output of

activity i

£ie logical set—up variable for item i in the period t

ds quantity of resource needed for a set—up of
activity 1

hie holding cost of keeping a unit éf inventory of i‘
at the end of .period t

Ce availability of shared resource in time period t

Tae availability of preallocated resource of item i in
-period t

US4+ cumulative demand for item i at the end of period t
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2.2. A Fundamental Insight

When set—ups are negligible, then the problem

reduces to the below given problem denoted by P1l:

P1 . Min T  Fhilie | (0)

deml ey

Zit+tlie—s—Tie= Wie (1)

N

*biZied Ce (2)
qmag

i

Zit % Zae . (3)

CZie, lie % 0

Note that after a slight transformation in P1,
everything can be in uﬁits of shafed resource (as in Pl
preallocated capacities are in units of exXternal demand).

This transformation can be achieved as follows:
1) Multiply constraint set (1) with b:

=> bizZie+bi liw—a-bi lie=biwi«
2) Multiply consraint set (3) with b:
=> biZit(biiitb

3) Divide hi« by bs



Now ‘let's make the following

Z'i e =23 t.bi
I ':I.t=I:ltb:I.v
- h'if_=hs1~./b1

U'se=Usebs

21

'se=bi1Ei ¢

and consider

the
the
the

the

=
£

4t .

new external demand as u'is

definitions:

11

new decision variables as Z'se, I'ie

new inventory holding cost as h'i«

new bounds of preallocated capacities as

After the transformation problem Pl becomes and is

equal to P2,

P2

as given below:

Min =
d1==1 ‘el |

- :
zh'aI'se

Z'aietl'ie-1-T'1e= W'ae

~
fongliity |
KR A % Ct
FEE
1 JRE--
Z it % & 4«

Z'ive, I'ae = 0

Now everything is in resource units.

(0)

(1)
(2)

(3)
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Note that the obiective function of\PZ can also be

written as

N v

_Min &  Fh:I.« , which is the objective function of P1,

dmml e

as h'11'1=(h1/b1)(Iit/b1)=h1 I.ie

Proposition:

After this transformation it can be shown that the problem

data of P2 may be changed as follows:

. [\Y]
—— A |
ce=min{ce; ZZ'sgd
FR A

Proof :

In an arbitrarf period t, the maximum amount of resource
allocation to an item i (or resource consumption of item 1)
can't exceed its upperbound Z ':+. Then the maximum amount of
cumulative resource consumption, denoted by Z't is the sum

of the individual resource consumption bounds, that is

Ze= TEae
d mad
Two cases can occur:
‘Case 1: ce¥le |
If ce>Ze , then there is always a slack capacity of value
ce—Z«, as the bound on the cumulative resource consumption
is Ze (otherwise there wouid’be preallocated capacity

violation).
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Thus c« is no more an upperbound for shared capacity
constraint, which will be always inactive. The actual
upperbound for shared capacity constraint is Ze .

S50 when case I occurs the problem data is changed

as: Ce—>7Z¢.

Case I1: ce<Ze

In this case total resourée consumptioh is always below cCe
so that shared capacity constraints are not violated which

are always active and ce<'s are the upper bounds for them.

The intersection of the two cases is the general
'case by which the problem data is changed as:

N
e

ce=min { ce, FET sl
4

2.3. BEarly and Late Schedules

In this section two important schedules, naﬁely
early and late schedules are defined and their respective
algorithms given. In both algorithms it is assumed that
set—ups are negliglible and both algorithms are for systems,.

having only preallocated capacities.
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2.3.1.anr1y Schedule

Early schedule is the schedule that would schedule
production as early as possible, hencé_results with the
highest inventory levels. |

The aléorithm to find the early schedule solution is
summarized below

Early Schedule Algorithm:

Step 0: Let t=1, Yi=usx for all i=1,2,...,N.
where u=:+ is the cumulative demand of item i up
to T.

Stepl: For i=1,2,..... ,N do ESie=min{¥s:, Ea1el
Y. =Y: —ES: « |
where ES;+ is the early schedule production of
item i in period t.

Step2: Let t=t+1 . If t<T go to Step 1.

2.3.2.Late Schedule

Late échedule is that schedulé, that wbuld schedule
production as late as possible. In terms of cumuiative
production this means thdt with the given capacities a late
schedule algorithm that would schedule production as late as
possible would result in hinimum inventory.

The algorithm to find the late schedule is

summarized below.



l.ate Schedule Algorithm:

Step 0: Let t=T, Yix=0 for all i=1,2,..... ;N

Step 1: For i=N,N-1,........ 1 do |
LSie=min{fie, UWst—USse—2—Yael
Yieos=Yie+LSi«

where LS:+ is the late schedule of item i in

period t.

UWie—1 15 the cumulative production of item i up

to t-1.

Step 2: Let t=t-1. If t>0 go to Step 1.

2.3.3. Different View

In this part, using early and late schedules the
problem is seen from a different point of view.

Define,

+
TSC.= Cumulative production with
v shared and preallocated capacities

-4 .
~ES.= Cumulative production with
e early schedule

+
“1.S.= Cumulative production with
e late schedule

For every t,

+ . "
¥ ES.» £ SCu» = LS.

o g wvoma Vel
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Because, as explained before early schedule results in
maximum inventory meaning that in maximum cumulative
production; late schedule results inlminimum inventory.

- hence in minimum cumulative production. Thus cumulatiQe
early schedule constitutes an upper bound and cumulative
late schedule a lower bound on the cumulative production of
any schedule within the shared and preallocated capacities.

The wvariation of the cumulativerproduction through

time can be seen in Figure 2.1.

cumdative production

N

early
schedule

late |
‘schedule

>tiMme
T e

Figure 2.1
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| So, from another point of view our problem can be
stated as follows:
Find a path on the graph showing cdmulative production
through time (like the dotted one on Figure 2.1.) which is
between the cumulative early and late schedules and

minimizes

N +t

E Ehi (Ziv—'u:lv)
Cdmml smmy )

Subject to the shared Capacity constraint.

2.4. The Algorithm

A heuristic algofithm is developed which initially
- schedules production as late as poséible. Thus the initial
solution is obtained with the late schedule algorithm. This
solution is superoptimal, but méy be infeasible as shared
caracity costraints were not considered (recall that in'thé
late schedule algorithm only the preallocated capacity
constraints ara considered). Then to achieve feasibility,
starting atvthe last period and moving backward in time
iteratively, the production is shifted eaflier by saving

set—ups and increasing inventory levels.
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In each iteration only the production of a single item is
shifted earlier in a way thét preallocated capacit?
constraints are not violated. And it is that item which has
the least cost.increase, ACost, per capacity change,
ACapacity, in the current period. If the production of an
item is shifted earlier, in the current period capacity
consumption decreases, hence capacity availability increases
(ACapacity) at a cost of increasing inventory levels of that
item and hence a higher total cost(&4Cost).

&Cost/&Capacity ratio is affected by:
a)The cost structure: The effeét of the coét structure is
very obvious as the total cost consists of each indiyiddal
“holding costs.
and
b)The preallocated capacity bounds, because the tightness of
them in the later pefiods necessitates ﬁhe production shift
to earlier periods. Thué time length between production and _
usage periods will increase, as a result thé inventory
holding cost will increase also.
and
c)The set—ups, because if the production of an item in a
period drops to zero, then set-up sévings occur, resulting
in extra capacity availability.

Whether set—ups are negligible or not the aigorithm
is the same. The only change occurs in some calculations

used in the determination of fCost/ACapacity ratio.
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~The algorithm can be summarized as follows:

Step 0: In this step tﬁe production plan is set to
producing asylate as possible with the given
preallocated capacities, that is the solutioﬁ is
initialized,to late schedule. Then the shared
caéacity violations, cve, implied by this schedule
are calculated. If there are'no>capacity
violations, then the late schedule is optimal.
Otherwise current time is set to the last period
of the plaﬁning horizon and will be continued.
Formally:

(0.1): Calculate late schedule (with the late
schedulelalgorithm given in 2.3.2.),

zlate and set

zz:uv-r-ant ;zlmtm

N ) ,

(0.2): Find cve=ce—=(biZai++ds d1x)
. P

(0.3): Set t=T

Step 1: Moving backward in time,we check if the capacity in
this period is violated. If the capacity is not
violated, then we move on to an earlier period.
Otherwise a ratio test is performed to determine
which item to time subtitute‘in order to resolve
infeasibilities. The item that would be is the one
that vields the least additional cost per unit of

infeasibility that is resolved. Thus, the item
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with the minimum ratio is found and its schedule
updated, by decreasing its produétion in the
current period -and increasing it in early periods
(of course by the same amount ). Formally:
(1.1) If cve20, do Step 2.
(1.2) Calcﬁiate ACost/ACapacity ratio for each
| item. Find item j with the minimum |
&Cost/ﬂCapa&ity ratio, adjust schedule of
item j. | |
Step2: If there are no more infeasibilities in this time
period then we go back in fime, otherwise we shift
the schedule of some»other item to earlier time
‘periods. Formally:
(2.1): If cve<0, do Step 1.
(2.2): t=t-1; if t>1, do Step 1.
(2.3): If t=1 then check whether cve<0,
if it 1is lessrﬁhan zerb conclude that the

problem is infeasible.
2.4.1. Resolving Infeasibilities

In this section, the determination of the
ACost/ACapacity ratios, shifting process of the production
and adjustments of schedules dr formally Step 1 of the
algorithm —where infeasibility resolvement occurs—-will be

explained.
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It would be helpful to start with the_exblanation of

. the case with negligible set-ups in order_ﬁo set the ground

for the general case, namely the case when set—ups are not

negligibie.
2.4.1.1. Set—ups are négligible

Let the current period be t. Whén an item'é, say
item i, production in the periods preceding t equals to the
preallocated capacity bounds.that is if

Ziw=Ziw for all k=t—-1,t-2,......... ,1.
then that item's production can't be shifted earlier,
because otherwise the preallocated constraints in the
previous periods would be violated. And all items with this
feature have a ACost/ACapacity ratio as infinity and'all
form a set defined as MP.

"“Also note that -if ‘in any périod t. the shared
capacity violation is cve and item i is not an element of
the set MP the minimum amount of production by whlch the
production of item i can be shifted earlier is defined as
ai ,where |

a1=min{zit,.cvt/b;}
Becaﬁse as bs units of resource are neéessary per unit
butput for item 1, cve units of resource are used for thé
production of cve/b:s units of item i. So, if the production

of item i is shifted by cvt/bi units earlier, that is if the
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production of item i in period t reduces by cvs/bs units,
then the infeasibility in period t is resolQed as a result
of the reduced resource consumption (by an amount of cve).

- But,meanwhile the current production should also be
considered. The amount by which the production of item i is
shifted earlier, can nét exceed its current production zZ:«.
Otherwise the production of item i in period t will be a
negative amount, what is meaningleSS‘and alsb infeasible, as
nonnegativity constrains are violated. More than the
currently produced amount can not be shifted earlier (as the
algorithm goes backward through time; current period's
production must be feasible, because the algorithm does only-
one pass over time).

The algorithm starts with an infeasible solution and
aims at achieving feasibility at minimﬁm cost, and
feasibility is achieved in each consecutivé period. Only if
in any beriod ﬁ, the shared capacify constraints are no more
violated the algorithm proceds with time t-1. And nofe that,ﬂ
in earlier periods the shared capacity violations increase,
as production is shifted earlier. But from the beginning on
(late schedule) preallocated capacities are never violated,
therefore the amount to be shifted earlier is determined due

}to'the preallocated capacities in early periods. Thus, the
production in any early périod can be increased up to the
preailocated‘capacity bound in that period.'Thgn{ déi,m is

defined as the maximum amount by which the production of
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item i can be increased in a period k predéding the current
period t.
Where deiké min{as, Zinx—2:1}, for all k=t-1.t-2...... »1
Recall that the maximum amount by which item i can
Be shifted earlier was defined as a: . We aim at increasing
the production of item i in any period k (k<t) by a.; but in
order not to vioiate the preallocated capacities, we are
allowed to increase it only by the amount £in.-2Ziy, as it is
- the slack of the preallocated capacities.
The actual amount of production (of item i in period
t) that is shifted earlier is defined as tei+, where

-1
tese = Edesw

bewm 1
The reason is as follows: The amount of production
that is shifted earlier (i.e. is not prdduced currently),
must be produced earlier and therefore carried as inventory,
because the demand must be met. Theﬁ-the amount of the
. current period's production that is shifted earlier equals
to the increase in the incoming inventory, which in turn
must be equal to the amount of production that can be
increased in periods preceding current period t. Ahd as
tes.+ is the total production increase before current period
t (since it'is the sum of the indiVidual production
increases, i.e. production increases in each time period

from t=t-1 to t=1), then it is also the amount of the
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currenf production that is shifted earlier.
After having given the necessary definitidns and
explanations, the mechanism of the infeasibility resolvement
(or step 1 of the'algorithm) can be illustrated in detail.

Step 1 in detail will be formally as follows:

(1.1.1) - Calculate cvi=ce- %biZit
- If cve<0 then check whether the number of elements

in set MP equals N; if it eguals then éonclude
that the broblem is infeasible.
Otherwise continue with Step 1.2.
If cve0, do Step 2.

(1.2.1) Bet 1i=1

(1.2.2) If i£MP then setv(ﬂCost/ACapacity)i to a very large
number and go to 1.2.7. If zi+=0, again sét
(ACost/ACapacity)s to a very large number and go
to 1.2.7.

(1.2.3) Set ais=min{zic,CVe/bsl

tes+=0, (ACost):=0

(1.2.4) Set k=t-1

(1.2.5) ACost/ACapacity ratio of each item is calculated as
a result of the following calculations:
(1.2.5.1) If (Eiwn—21w)=0 go to 1.2.6°

otherwise desi.=minfai ,f1—Ziwl
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(1.2.5.2) (ACost):=(ACost)s+hs *desw* (t—k)
(1.2.5.3) tesc=teir+desw ‘

(1.2.5.4) (ACapacity)s=teic*b,

(1.2.5.5) Find (ACost/ LCapacity)a

(1.2.5.6) ai=a:—desw. If a:=0 then go to 1.2.7

otherwise continue with 1.2.6.
(1.2.6) k=k-1. If ki1 then go to 1.2.5.
‘(1.2.7) i=i+l. If i#N then g§ to 1.2.2.
(1.2.8) Find item j with’the minimum ACost/ﬁCapacity ratio.
| 'j=argmin(&C6st/ﬁCapacity)1
(1.2.9) Schedule of item j is adjdsted as follows:
(1.2.9.1) zie=zZse—-tess
(1.2.9.2) Set k=t-1, f4=0
(1.2.9.3)  zin=2zju.+desn
fa=fa4E 5u—2Za0c
(1.2.9.4) If k&l go to‘1.2.9.37otherwise continue -

(1.2.10) If f4=0 then item j joins the MP set.

In 1.1.1. the MP set is checked for its number of
elements; because if there is resource violation and all
items are in the MP set, then no item exists of which thé
production can be shifted‘earlier,-as’there is no slack in
the preallocated capacities in pfeVious periods and the -

problem is infeasible.

From 1.2.1 to 1.2.6 ACost/ACapacity ratio of each

item is calculated by determining the set of periods

BOGAZICH UNIVERSITES] KUTGPHANES]
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(denoted with k) to which the production is shifted and the
amount of production increase in these periods. If the |
production is shifted by de:. amount to period k, then
(ACost)s =hs *des .* (t-k), because an inventory of de:w units
is carried (t-k) periods (the production is in k and usage
is in t) at a cost of hi_per unit.

(ACapacity): in time period t is equal to the
product of tes+ and b: because if the production of iteh i
is shifted by an amount ofvteit, then in the current period
t, shared resource consqmption decreases by teie*b:.

As seen in (1.2.5.6), whenevér production increases
by an amount dei. in a preceding period k, ai» is adjusted
(decreased by desw), as it‘is the amount of production that
we want to shift. Thus, when ai. reaches zero, we no more
need to check former periods for production increase as we
shifted production as much as we wanted.

" From 1.2.9.1 to.1.2.9.4, the schedule of the item
with the minimum ACost/ACapacity ratio, j, is adjusted. In
1.2.9.1. the préduction of item j in the current period is
decreased by te:= and in 1.2.9.2 to 1.2.9.4 its production
is increased in the preceding periods. Also i£ is checked
whether item j will be an element of the set MP, by
calculatlng the sum of the slack in the preallocated
capacities in the previous periods. If this sum, fs, is

zero, then item j joins the MP set.
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After the explanation of the concepts and the main

logic, we can proceed with the general case.

- 2.4.1.2. The General Case

As previously stated, the only change between the
general case and the case with negligible set—-ups occurs in
the ACost/aCapacity structure; as a resﬁlt of set-up
savings.’

First set-up savings are explained and then
ACost/ACapacity structure will be analyzed.

Again let the current period be t and the item under
consideration be i.
(1) Set—up Savinés

When the production of item i in t is adjusted to
zero, then no more resource is needed for the set—up of it
in.t_aS'éet—ups are preparations made for production. So
set—up savings occur. Therefore, we need variablesrwhichv
indicate the resource amounts necessary in the set-ups for
tﬁe productions of items in time periods, and which are
updated as any schedule adjustment occurs. And Variables
éit's stand for the above mentioned set—up necessities. When
the production of item i in period t dfops to zero, then Si+
drops to zero as well. si¢'s vary through time,_where di's
are always constant. Note, that at the beginning s:<=ds for

all t=1,2,..... ,T. When the schedule of an item is adjusted
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such that its production is reduced to zero, then its

variable set—up necessity, si+, is also adjusted to zero.

There are mainly two cases, which can be summarised

as follows:

Case 1) ter1 <21 ¢

Case 2)

The amount of production to be shifted earlier is
less than the current production.

After the schedule adjustment (récall that schedule
of item i is adjusted only if it has the least
ACost/ACapacity ratio), the production in t reduces
by an amount of tei+ and becomes zi+«—tei+, that is
Zie———>Zse—te1x .

As there is production, there is need for set-up.
Thus si+ does no£ change. Case 1 is stated formally
as:

If tesx<Zi+ then s:+ does not change for all
i=1,2,...,N; and for all t=1,2,.....T.

teie=2Zsx |

If item i is chosen to be the item with the minimum
ACost/ACapacity ratio, then its production in time-t
is adjusted to zero. As no production of it takes
place, there is no need for set—up and Six drops to
Zero.

Case 2 isvstated formally as:

If tes.=zir, then siv=0 for all i=1,2,....,N and for

all t=1.2,....T.
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(2) ACost/ACapacity Structure
There are mainly three cases: A, B and C
These can be summarized as follows:
. Case A: If te.«=0 then ﬁéost/ACapacity=()D
Case B: If tes«<zi« then |
| (ACost/ACapacity)s =(ACost)s / (tess*by )
Case C: If teie=zis ‘
Case C has 2 subcases: Cl and C2
Cl. If Zzi«*bi=cve then
(ACost/ACapacity): =(ACost)s /cve
C2. If zit¥bi<ove
C2 again has 2 subcases: C2i and C2ii
C2i: If zit*b1+sit(cv5, then
(ACost/ACapacaity)s=(ACost)s /(tesw*bs +S:¢)
C2ii: If Zie*bsi+SceCve, then

{(ACost/ACapacity) s =(ACost)s /cve

Case A is the case where item i is an elemen£ of the '
MP set and therefore its production can not be shifted
earlier.

Case B is the case where the production of the
current period can not be Shifted earlier as a whole (only a
portion of it can be shifted) because of thevpreallocated
capacities, that is .

e
Al k—2Zi w21 &
et -
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The portion of the current period's production can be
sufficiént to resolve the infeasibility or not. If it is not
sufficient, then resource consumption in period t will be
- reduced only by an amount of (ACapacity):=teisx*b:s, as the
production of item 1 in t can only be reduced by te:s
If it is sufficient then in t, the change in the capacity,
ACapacity, equals to the infeasibility, cve.

‘Case C is the case’whére thé production of the
current period can be shifted earlier as a whole, that is

+
Lo
BEd e T2 ke F 24

be< ®
(Or the sum of the slacks in .the preallocated capacities'in'
the periods preceding t is larger than the current periods
production amountj

In Subcase Ci the violation is resolved by shifting
the current production (of item i in period t) earlier, so
the change in the capacity, ACapacity, equals to the
infeasibility cve, as resource availability increases by
CVe .

Whereas in Subcase C2, the current period's
production shift is not enough ﬁo resolve the violation.
But, when the amount of production in period t (as a whole)
ijs shifted earlier, that is when item i is not produced i
pericd t, then no resource is necessary for set-up, as

set—ups are preparations done for production. As a result,

set—up saving occur.
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‘Then, the sum of the resource units used for the
current period's production and for its set;up, namely,
biteie4sie (Or bizZice+sS:« as teit=ziti'is either sufficient
(Case C2ii) to resolve the violation, i.e. biZie+SieiCVe OF
not enough (Case 2i) to resolve it, i.e. biZi++S:e<{CVe.
ACapacity in Case C2ii is cve, as the change in the capacity
availability or consumption is by cve; it is biziets:ie in
Case C21 as only bizi«+Si« units of resource is saved.

Then in the general case Steﬁ 1 of the‘algorithm in
detail is formally given as:

(1.1.1) Set sie=ds for all i=1,2,....,N; t=1,2,....,T

N :
(1.1.2) Calculate cve=Ce— = (byizZietSsedse)

w1
If cve<0 then check whether the number of eleménts
in the set MP equals to N; if it equals then

~ conclude that the problem is infeasible. Otherwise

continue with Step 1.2.
If cve®0, do siep 2

(1.2.1) Set 1i=1

(1.2.2) 1If ifMP then set (ACost/ACapacity): to a very large
number and go to Step (1.2.7).

Also, if zi+«=0, set (ACost/&Capacity)irto a very

large number and go to Step (1.2.7)



32

(1.2.3) Set a1=min{zit; CVe /by 2
| ‘teqe=0, (ACost).=0
(1.2.4) Set k=t-1
. (1.2.5) ACost/ACapacity ratio of each item is calculated by
doing:
(1.2.5.1) If (§su—2:w)=0 goto (1.2.6); otherwise set
desw=min{as ,F4n—2snl
(1.2.5.2) (ACost)i=(ACo'st)i+hi*dei.;*(t—k)
(1.2.5.3) tesc=te.«-+desn |
(1.2.5.4) Check whether
| B) teit<z;t or
C) teir=2Zi« 1is
1f (B) occurs then (ACapacity)s=teic*bs
If (C) occurs then check again whether
Cl) zie*bi=cve oOTr
C2) zie*bilcve is
If (Cl) occurs then (Aéapacity)1=CV£
If (C2) occurs then check ﬁhether
C21) Zie*bi+sie{CVe Or
C2ii) zZix*bi+sSiczcve 18
If (C21) occurs tﬁen
(ACapacity)s =Zi« *¥bs +51 «
If (C2ii) occurs then (ACapacity):=cvs
(1.2.5.5) Find (ACost/ACapacity)s |
(1.2.5.6) a1=a1—deig. If as=0 then go tor(1.2.7),

otherwise continue with (1.2.6)
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(1.2.6) k=k-1. If k1 then go to (1.2.5)

(1.2.7) "i=i+1. If i<N then go to (1.2.2).

(1.2.8) Find item j with the minimum ACost/ACapacity ratio

j= argmin(&Cost/ﬂCapacity)i |

(1.2.9) Schedule of item j is adjusted as follows:

(1.2.9.1) | |
(1.2.9.1.1) If tese<zse o to (1.2.9.1.3)
(1.2.9.1.2) 1If tese=zs;« then set sjt=b

(1.2.9.1.3) Zie=Zse—tesx

(1.2.9.2) Set k=t-1, fi=0
(1.2.9.3) Zaw=Zswntdesr
fi=fs48 5021k
(1.2.9.4) If k*1 go to (1.2.9.3)
(1.2.10) 1If f.,=0 then include item j to the MP set.

Note, that the geheral case differs from the case
where set—ups are negligible only in step (1.2.5.4) and the
general case has 2 additional substeps under (1.2.9.1),
namely (1.2.9.1.1) and (1.2.9.1.2).

In (1.2.9.1.2) si« is adjusted to zero as production

in period t is reduced to zero.
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2.5.Recapulitation and Optimality Analysis

In this part, the logic of the algorithm is analyzed
and reasons for its unexactness are given and shown on an
example problem.

Our heuristic is mainly based on the following two
ideas: |
1) Producing as late as possible minimizes holding costs.

2) In order to achieve fedsibility, if it is nécessary to
decrease the production in a certain period, then shift the
pfoduction 6f that item earlier that contributes the least
additional holding cost per increase in resource
availability resulting from its resourcé consﬁmption
decrease in that period.

Our algorithm is similar to the dual simplex method,
because both deal directly with superoptimal solutions. But
our algﬁrithm differs from the dual simplex method due to
the fact that dual simplex method moves toward an obtimal
solution by s£riving to achieve feasibility, whereas our
algorithm moves toward a feasible solution; that may not
necessarily bé the optimal solution.

Our algorithm reabhes feasibility by performing
necessary adjustments so that feasible production schedules
are achieved in each individual time period starting at the

last period in the planning horizon and moving backward.
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As stated before,the problem is reduced to linear
programming when set—ups are neglected. In\that case, both
solutions, ﬁamely the solution found using our algorithm and
~ the optimal solution found using any linear programming
method can be compared. The result of this comparison is
that our algorithm is not exact. And the reasons for this
are the myopic structure of the algorithm and the existence
of the preallocated capacity constraints. |

Myopicity alone does not contitute a reason for
unexactness, but myopicity and preallocated capacities
together make the algorithm unexact. Karayel [5] used the
éame heuristic for the problem‘in which only the shared
capacities were considered (preallocated capacities were not
taken into account) and obtained the result that the
algorithm is exact.(Of course he used another late schedule
algorithm to initilize the solution as preallocated
capacitiés were not considered. His late schedule was
obtained by setting the production of each item to their
demand by ignoring the capacity constraints. And as his
problem was multi-stage, the demand was the sum of dependent
and external demands. But the main logic of the algorithm ié
the same.)

Now, reasons for unexactness afe discussed in
detail. In our algorifhm, in each iteration only a single

period is considered. But decreasing the production of an

item in the current period can be the most economical choice
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when previous periods are not considered, but in the long
run total holding cost may be lower when another item is
chosen. |

The decision taken in a certain time periodvalso
_effects other periods, as a result of preallocated
capacities. Because, in a certain period t, the capacity
violation may.be more than the violation in t-1 and the
preallocated capacity bounds may be of such nature that
cheaper items have very tight preallocated capacity
constraints. In such cases to resolve the violation in t-1,
the cheaper items' production shifts are not enough as their
productions were shifted earlier to resolve the violation in
t and have very little slack capacities in the periods
preceding t. As a result,in the next iteration a large
amount of production of expensive items must be shifted
earlier. But, if in period t, the production of expensive
items were shifted (in a less amoUpt as, cvelCVe~1), of
coufse at' a higher cost increase, then we cbuld shift more
of the cheaper items in t—-1 and at a lower cost increase.
Tﬁen the nét difference between the higher cost in t and the
lower cost in t—1 would be a lower cost.

In other words, as the algorithm is myopic, to
reduce a less amount of violation the small amount of slack
capacities of the éheaper'items are used. But if they were
used in the reduction of a larger amount of violation, the

production of the expensive items were shifted in less
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amounts and the total cost would be less.

An Example Problem

Analyzing the above discusséd matter with an example
- would be helpful and following single—stage multi-item

production scheduling problem is giwven:

I t i Ure | Uze | Uzme ] 21¢ | BExe | Exe 11 Ce |
| |1 1 ] 1 I B i1 1
| il | | il : | ! 1l |
| 1 1 2 1.3 113 1 301 30 i1 80 1|
| i1 | | 11 i | iR I i hy bi
1 2 11 2 1 4 + 5 11 2 1 101 110 11 301 1 1 1
| Pl | | 1 | 1. 1 I 2 2 1
| 3. 11 3 1 6 1 7 41 3 1 5 1 5 L. 51 3 3 1
| I R ] il (. I i1 |, (Set—ups
1 4 1] 4 | 8 1 9 I 4 | 5 | 5 11 10 1 are
' negligible)

The optimal solution found with simplex method is as

follows:

It 1{z*1e 1Z2%2e 12%ze |
| Pl | | |
| i i | |
P12 i3 1 9 | 5 |
| il | | I
f 2 11 2 1 1ot 10 1
| il | | |
I 3 11 1 1 0 1 4 |
I b | | I
| 4 11 4 1 11 5 1

Now, let's solve it with>our-algorithm. (One iteration is
taken as the number of times Step 1 is performed and only

Step 1 on this page is shown in detail)



Step 0: Set the current schedule to the iate schedule:

Iteration 1:

Step 1:

| Il Zie | Zee | Zme |
| 11 | | |
1 1 | | |
|3 111 ] 2 | 4 |
| i1 | | |
| 2 11 2 1 8 i 10 |
| Il | |
3 11 3 1 5 | 5 |
| I | l |
i 4 11 4 1| 5 1 5 |

t=T=4

cv4=14f10=4A

(1.2.1) i=1

(1.2.2)  ifMp

(1.2.3) ai=min{zsia,cVa/bat=minf4,4/1 =4}

tei1a4=0, (ﬁCOSt) 1 =0

(1.2.4) k=t-1=3

(1.2.5.1) 513—21:';-’0

(1.2.6) k=2

(1.2.5.1) 512—Z1E=0

(1.2.6) k=1

(1.2.5.1) 511—Z1a.=3—l?2,

de:s=minf{as ,£11-Za1l
=min{4,2}=2
(1.2.5.2) (&Cost)1=(&Cost)1+h1*de11*(tfk)

=(0+1*2*3) =6

38
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.0.3) teia=teisa+des =0+2=2

.5.4) (ACapacity)i=tesa*bs=2%1=2
.9.5) ACost/ACapacity=6/2=3
.5.6) ai=4-2=2

.6) k=0
7y i=2
2) ifwp

.3)-(1.2.6) The production of item 2 can be
increased in time period t=2 by two
units and in time period t=1 by 2 units.

Because, Eox—Zox=0, Efzz~2Zz2z=2,

(21}

Z=1-221=2. (There is no slack capacity
in period 3 and slack capacity is 2 in
time periods 2 and 1). Then item 2's
production can‘be(decreased in the
current period (t=4) by 4 units as a
.result violation wiil be decreased by 4
units. Thus

(ACapacity)==4

(ACostL) ==2%2%2+2% 3% 2=20
because an inventbry of 2 units is
carried 2 periéds (from 2=2 to t=4) at a
unit cost of 2 and another inventory of
2 units is carried 3 periods (from t=1
to t=4) again at a unit cost of 2.

(LCost/ACapacity)==207/4=5
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(1.2.7) 1=3

(1.2.2) iEMP

(1.2.3)-(1.2.6) The production of item 3 can be
increased in t=1 by 4 units, so
(ACapacity)==4 and (ACost)==4%3%*3=36, as
an inventory of 4 units is carried 3
periods (from t=1 to t=4) at a unit cost
of 3.

(BCost/&Capacity)3¥36/4=9
(1.2.8) j=1 (item 1 has the minimum
fCost/ACapacity ratio
(1.2.9) As item 1 is the item with the minimum
ratio, its schedule is adjusted:
Its production is decreased in the

current period by 2 units

=2Z14=214-2=4-2=2(1.2.9.1) and increased

in the first period by 2 units

=>Z11=Z13+2=3 (1.2.9.2-1.2.9.4)

The adjusted schedule is as follows:

bt D zZie | Zoe | Zxe |

| 1! | | i

| 11 ] | |

| N B D 2 | 4 | , .

| 1 | 1 | Cost increase=(ACost).=6
| 2 11 2 1 8 1~ 10 1| Total cost increase=6

| 11 | ! 1

| 3 113 1 5 | 5 1

| i1 | | |

| 4 11 2 | 5 1 5 1
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(1.2.10) £.=0, thus item 1 joins the MP set. (it is

the first element of the éet)
Step 2:

(2.1) CVa=2

Iteration 2:

Stepl:

(1.2.1) i=1

(1.2.2) 1£MP, (ACost/ACapacity):=a very large number
(dctually infinity)

(1.2.7) 1i=2

(1.2.2) 2¢MP

(1.2.3)—-(1.2.6) a==2 (we want to shift the production of

item 2 by 2 units earlier, because this

amount is enough to resolve the violation:

cva=2 and b==1)

=>(ACapacity)==2

(ACost)==2%2%2=8, because an inventory of 2

units is carried 2 periods from t=2 to t=4

at a cost 2 per unit.
(ACost/ACapacity)==8/2=4
(1.2.7) 1i=3

4
(1.2.8) %fMP
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(1.2.3)-(1.2.6) (ACapacity)==2
(ACost)==2%3%3=18

(ACost/ACapacity)==18/2=9
(1.2.8) j=2

(1.2.9) 24 =Zoa—2=3

Pt 1 Zie | Zoe | Zxe | Cost increase=(ACost)==8
| 4 | | i Total cost increase
| 11 1 { ] in t=4 = 8+6=14
i1 11 3 1 2 1 4 | Total cost increase=14
| 1 | l | : ‘
i 2 11 2 1 10 1 10 |
| | | | |
{3 11 3 | 5 | 5 |
| i | | |
P4 11 2 1 3 1 5 |
Step 2:
(2.1) cva=0
(2.2) t=3

Tteration 3:

Step 1:
(1.1.1) cv==8

(1.2.1) i=1



(1.

(1.
(1.

(1.

(1.
(1.

(1.

(1.

(1.
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1EMP, (ACost/ACapacity)s=a very large number

(actually infinity)

.2)

7)  i=2

.2) 25w
.3)=(1.2.6)
7)) i=3

2) 3P
.3)~(1.2.6)
.8) j=2
.9)

The production of item 2 in the current
period(t=3) is 5 units, so we can shift its
production by only 5§ units earlier=>a:=5.
The sum’ of the slack capacities in the
previous periods (30-2=28) exéeeds 5,
therefore

(ACapacity)==5

(ACost) ==5%2%2=20

(ACost/ACapacity)==20/5=4

(ACapacity)==5 ( The reasoning is the same
as that with item 2)
(ACost)==5*2%3=30

(isCost/ACapacity)==30/5=6
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The adjusted schedule is as follows:

Step

: t :: Zat | Zoe | Zme | Cost incfease=(ACost)z=20
i | |

| il | | |

: 1 1t 3 1 7 1 4 | Total cost increase=14+20=34
1 | | | .

| 2 112 1 310 1 10 1

| 11 | | ]

i 3 1t 3 1 0 | 5 1

| i | | |

i 4 11 2 | 3 1 5 |

2:

(2.1) CV=

il
)

Iteration 4:

Step 1:

(1.2.1) 1i=1
(1.2.2) 1leMP, (ACost/ACapacity)a= a very large number

(1.

(1.

(1.
(1.

(1.

(1.

(actually infinity)

.7)  i=2

.2)  zZa=x=0 => (&Cost/&Capacityiz= a very large number

because its production in the current period is

zero and therefore can't be shifted.

.7)  i=3
.2) - 3¢MP
.3)—(1.2.7) (ACapacitY)s=cv:=3

(ﬁCost)3=3*2*3=18

(&Cost/ﬂCapacity)z=6
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. The adjusted schedule ( and also the final one as will be

seen below) is as follows:

| Hl Zzae | Zoe | Zme | Cost increase=(ACost)==18

| il [ | | Total cost increase

| 11 ] | | in t=3 =20+18=38

P 1 it 3 1 7 1 7 1 Total cost increase=34+18=52
| I | | {

P 2 1t 2 1 10 1 10 1

| (N i | ]

1.3 11 3 1 0 | 2 |

[ 1 ! ] I

| 4 11 2 1 3 1 5 1

Step?2:
(2.1) cv==0
(2.2) t=2

Iteration 5:

Step 1:
(1.1.1) cv=>0
Step 2:

(2.2)  t=1

Iteration 6:

Step 1:

(1.1.1) cva 20
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The algorithm terminates and the final schedule is

the last given adjusted schedule.

Now we can analyze what in the structure makes the
algorithm unexact:
In t=4, if we don't shift the production of item 1 earlier
and shift the production of item 2 by 4 units (instead of 2
as done in the algorithm) then total holding cost would
increase by 2%2*2+2%3%2=20 (as an inventory of 2 units is
carried 2 periods and an other.inventory of 2 units is
carried 3 periods). Our algorithm found the cost increase in
period 4 to be 14, so the new decision has arhighef cost
increase and this difference is 20-14=6 (in t=4). Then in
£t=3, if 2 units of item 1, 5 units of item 2 and 1 unit of
item 3 are shifted earlier to period 1, then total holding
cost increase in time period 3 would be 2%1*2+43%2%2+1*3*2=30
(as 2 units item 1, 5 units item é and 1 unit item 3 are |
carried 2 periods, at a cost of 1,2 and 3 respectively)
Recall that our algorithm found the cost increase in t%B to
be 38: then the difference between the cost in@reases (in
t=3) is 38-30=8.
Then the net difference (between the approaches) in the cost
is 2, as our algorithm had in t=4 a lower cost increase by

6, but in t=3 a higher cost increase by 8.
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- That difference arises from the m§opic choice in
t=4. If in t=4 only the production of item 2 were shifted
earlier, instead of shifting 2 units of item 1 and 2 units
‘ of item 2, holdiné cost in t=4 would increase more, but then
in t=3 less units of item 3- which is the item with thé
highest holding cost—- were necessary to shift earlier. Thus,
the deciéion taken in time period 4 effected pfevious time
periods.

But, if the preallocafed capacities of item 1 in thé early
periods were not so ﬁight, then the myopic choice had no
effect on exactness énd the solution would be optimal. Also, -
if the shared capacity constraint bounds are increased, the
effect of thevtight preallocated capacities of item 1 would’

vanish and the solution again would be optimal.
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2.6. Test and Evaluation

In order to find out the frequency the algorithm
reaches optimal solutions and the pefcent deviation from
optimal solutions, we have set up a test in which 100
randomly generated problems (in which N ranges‘from 3 to 30
and T ranges from 3 to 12) are solved by using our algorithm
and linear programming packages; after which the final
solutions have been compared. And the following results are
obtained (K-B stands for Karayel-Biton Algorithmiand

problems for which optimal and K-B solutions are equal are

marked) :

!} Problem! | | Optimal | K-B { deviation from |
! No I N I T | Solution | Solution | optimal solution |
| 1 L4 1 31 717 728.25 | 0.001569 |
] 2% 14 1 5 1 1118 1118 | - |
| 3* 1 7 1 3 1 1633 | 1633 i - |
| 4% - | 3 1 7 1 1773 | 1773 ] - |
| 5* i 6 1 4 | 677 | 677 | = ]
| 6 1 41 8 1 1351 | 1363 ] 8.88231*10"= i
| 7* i 3 1311 | 5034.5 | 5034.5 | - ‘ i
| 8 | 3 111 | 5192.5 | 5484 | 0.05614 |
| - O* i 7 1.5 1 1577 | 1577 ] — |
| __10* | 6 1 6 1 36983.5 | 3993.5 | — |
{ I N 112 1 3 1 2855 | 2855 ] - ]
i 12 112 { 3 | 1947.25 1 1953 | 2.9529*%10—"= |
i 13* | 3 112 ¢ 6393.75 | 6393.75 |  — : 1
[ 14> 1 3 112 1 7878 | 7878 | - |
| 15* | 3 112 1 5348 | 5348 [ — {
| __16* I 3 112 | 5466.1991  5466.1991 — ]
1 .17 i 4 1| 9 | 4516 | 5363 1 0.18756 |
] 18 i 8 | 5 1 4663.2 1 4720.6 1 0.01231 |
1 19 {110 | 4 | - 1948.5 | 1974.75 | 0.01295 ]
| 20 | 4 110 | 5493.5 |1 5531.5 | 6.91727%10—= |
|21 110 1 4 1| 509 1 509 | — |
i 22 1 5 1 8 1 843 ] 859..4 1| 0.01945 |
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| Probleml | | Optimal | K-B i deviation from |
| No I N | T | Solution | Solution | optimal solution |
123 I 6 | 7 1 3847.3331 4225.5 1| .0.09829 |
| 24 P 6 1 7 1 3748.2 | 4017 } 0.071714 |
| 25 1 5 1. 9 | 2924 | 2952 1 9.57592*%10-= i
| 26* I 5 1.9 1 2924 | 2924 - } - i
| 27> | 5 1.9 1 3531.8 | 3531.8 1 — 1
| 28 112 1 4 1 2522.5 | 2580 t 0.0228 |
| 28* | 8 1 6 | 4723 1 4723 } — ]
| 30 1 6 1 8 1 6145 16369 | 0.0364 i
|31 I 7 V7 1 4243.25 | 4370.8 | 0.03006 1
|32 i 5 110 | 6378 | 6534 i 0.02446 i
133 110 | 5 1 4205 | 4388 b 0.04352 ]
| 34 110 | 5 1 31418 ° 1 1435.2 1 0.01213 1
I 35 113 1 4 1 31052.5 | 1230 I 0.16865 |
|  36* 118 | 3. 1 3216 3216 | — ' ]
1 37 1 5 1112 1 5989.75 | 6321 i 0.05530 |
1 38 116 | 4 | 2202.3 1 2231 | 0.01295 |
| 39 113 1 5 | 2489 | 2863 I 0.15026 |
| 40 117 1 4 | 2956 1 3288 | 0.11231 {
| 41 123. 1 3 | 3249 | 3249 i = i
| 42 124 1 3 | 3402 ] 3402 } - |
| 43 1. 9 1 8 1 5446 1 .5898 i 0.0829 |
| 44* 1 6 112 1 11249 {11249 ] - i
1 45 - 115 1 5 | 5364 | 5692 { 0.06115 |
| __46* 119 1 4 1 3953 | 3953 I — |
{47 119 | 4 1 2764 i 2951.5 1 0.0678 i
| 48 120 1 4 | 8306.5 | 8582 | 0.03317 i
] 49* 116 1 5 | 5755 15755 1l = |
| 50 110 | 8 | 6023 | 6197 i 0.0289 ]
| 51 127 1 3 1 7133 | 7445 .5 1 0.0438 i
] 52 {11 | 8 1| 5846 | 6012.75 -1 0.02852 J
| 53* - 130 1 3 1 4006 i 4006 o ]
| 54* | 9 110 1| 5681.4 1 5681.4 | - i
| 5b* 1] 9 110 | 5842 i 5842 i — ) ]
1 56 116 | 6 | 8388 8434 | 5.48402%10~= i
| 57 125 1 4 | 5578.25 1 5606.5 1 5.0643*10—= |
| 58 120 1 5 1 7426.6 1 7631 1 0.027523 ]
| 59* 112 1 9 1 10355 { 10355 ! - ]
| __60* 127 | 4 | 8347 i 8347 i — |
I 61 112 | 9 | 11264.75 | 11849.25 | 0.05189 |
1. 62 11 110 | 10856 -} .11208.25 | 0.03245 |
1 63 111 110 | 11561.25 1 11703.45 | 0.0123 |
| 64 (11 110 | 11795.5 1.11821.5 1 2.20423*%10-= |
| __65* {16 | 7 | . 9347 | 9347 1 — I
| 66 {17 + 7 | 9578 - |  9772.5 1 0.02031 |
1 67 115 | 8 | 5774 | 6157 | 0.06633 i




Probleml

| 1 | Optimal | K-B | deviation from |
1 No I NI T | Solution | Solution | optimal solution |
1 _68 . 124 1 5 | 3497 | 3782 | -~ 0.0815 |
| 69 111 111 | 14007 | 14799 1 0.0565 |
1 70 118 1 7 1 12629.75 | 13182.25 | 0.04375 |
| 71x 112 1311 | 13486 | 13486 | — |
I 72 112 111 | 28934 { 30780 | 0.0638 |
| 73* 128 15 | 10809 i 10809 i - ]
i 74 {18 | 8 1 13992 | 14648 | 0.04689 |
| 75% 117 1 9 | 12517 | 12517 i - |
| 76% 113 112 |1 22370 | 22370 | — : i
| 77 127 1 6 1 14112 | 14272 | 0.01134 i
| 78* 124 17 114842 | 14842 | — |
| 79% 117 130 1 12531.25 1.12531.25 | — |
| 80 120 1 9 | 21497 | 22543 | 0.04866 {
1 81 127 1 7 1.16924.25 | 17031 | 6.30752*10~-= i
|  82* i28 | 7 | 18737 | 18737 | — |
1 83 118 111 | 47158 | 47377.25 | 4.,7558*10~= ]
1 84 123 110 | 41139 | 41899 i 0.01847 |
| 85 121 110 | 28641 | 28893.5 | 8.816*%10-= ]
| 86 i24 | 9 | 26748 | 27411.5 1| 0.025 ]
|  B87* 128 1| 8 | 13846.5 | 13846.5 1 — ]
| 88 119 112 | 26429.4 | 26576.2 | 5.2139*%10—= 1
| _ 89 123 110 | 41139 { 41899 i 0.01847 ‘|
| 90 120 | 8 1 33289 | 33425 | 4.08543*%10°= |
| 91x* iI30 1 8 1| 26873.5 | 26873.5 1| - |
1| 92 {30 | 8 | 30356 i 31627.5 | 0.04189 {
| 93 126 110 | 41843 | 41941.25 2.34806*10-= |
1 94 128 | 9 | 37175.25 1 37177.75 6.7249%10°= |
| 95 125 111 | 32770.6 | 32936.25 | 5.054836*10= i
|  96* 123 112 1 69803 1 69803 | - {
|  97* 127 112 1 63385.5 i 63385.5 | — |
] 98 . {27 112 | 59743 | 59922 | 2.9962*10-= i
| 99 {29 112 | 48232 | 48244.5 | 2.59164*10-“ [
| 100* i29 112 | 56345 | 56345 { — . 3
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- Our algorithm is coded in BASIC and 100 problems are
run on Commodore 128 Personql Computer. As linear
’ programming packages LINbO and MPOS were used. Small size
problem were sbived on Olivetti M24 PC and Commodore PC—ZO
using linear programming package LINDO. But LINDO has a very |
limited capacity of 60 constraints. Therefore large size
problems are solved on CDC system at.Bogazici University
using MPOS package.

Our algorithm's reSponse time is considerably
shorter than MPOS. For example{ a problem having N=28, T=12
had a response time of fourty three seconds when it was
solved with our algorithm on Commodore 128, whereas it had %
response time of twentyone minutes when it was solved with
MPOS package on CDC.

On the other hand, a company facing a problem where
N*¥T>60 can not solve it on its PC and of course s&stems such
as CDC are usually not évailable in companies. Furthermore,
since production planning problems are solved again and
agaiﬁ to answer "what if" type of questions, using a
mainframe becomes cumbersome.

| Evén for small size problems (N?T<60) the response
time is longer using LINDO on PC's fhan using our algorithm
on Commodore 128, although PC's operate with a clock rate of

4 .77 MHz and Commodore 128 operates with a clock rate of 2

Mhz.
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Also, since memory limitations is‘a rather crucial
issue on microcomputers (usérs are highly restricted because
of memory limitations), the small mem¢ry occupation of our
program is worth close attention.

Furthermore, 39 out of 100 problems haVe optimal
solutions and the mean deviation from optimal solution is

only 1.96 per cent.
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III. A NETWORK FLOW APPROACH

In this chapter, it will be shown that the single’
stage multi—item capacity constrained scheduling probleﬁ can
be formulated as a minimal cost network flow problem when
set-ups are negligible. Also some suggestions are given for
the use of such a formulation:

Before starting, recall_our problem (P1):

N T

P1 © Min E  Ehilae | (0)

ESLC S S

s.t.
Zit+lae—a=lae= Wis (1)

nN

=biZix 4 Ce (2)
" dmmy

1w (3)

Zite

Zie, lie # 0 )

First, we want to illustrate the minimal cost
network flow problem. Then, it will be shown that after
performing necessary changes, i.e. variable transformation
and adapting the shared capacity constraints to network
fofmat, Pl can be formulatéd as a minimal cost network flow |

problem and the graph of the netwofk will be illustrated.
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3.1 Minimum—Cost Network Flow Problem (MCNFP)

Consider the pr&blem of sending a specified amount
of flow value & from source s to sink d in a network G in
’ which‘every edge (arc) (k,l) has a capacity cu: és well as a
nonnegative cost dwa éssociated with it.

Our purpose is to find the‘flow pattern which
minimizes the total cost. This problem is called the minimal

cost network flow problem and may be stated more formally as

follows:

/Min = Edkafua (0')

(il EG

s.t.
Efomk—':-.“_-fkm'—‘e (1 ')
|3 ke .
Tfan—rfwa=—58 : (2')
b (3 .
Ty 1= =0 ’ (3")
|9 [ -
fruidcws for every (k,1)EG (4")
fi2 20 for every (k,1)tG (5")

3.2. Variable Transformation

Recail that in Chapter 2.2. transformation of

variables has been presented. After the transformation the

problem P2 was obtained equaling to P1l.
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P2 was stated as:

X T .
P2 Min ¥ "h's1'sx ' (0"
. doemd homd .
s.t.
Z'ieF+l'se—a-T'ie= U'se (1)
~
221k % Ce » (2“)
FETY
Z'ie % E'3e (3")
Z':L-t:, I's¢ » 0 (4")

3.3 Adaptation of Shared Capacity Constraints

On figure 3.1. the network representation of (P2) is
givenf On each arc (i,j) the flow on it, the lower bbunds of
flow, upper bounds of flow and the cost of éending one unit
of flow are given respectively. Whén analyzing carefully, it
can be seen that it is the network for the minimal cost
network flow problem. Node s is.the source node, which has a
supply of the sum of all external demands i.e.‘

-
Land ]
SU 1+
o A

r. ‘.-l z

»
i
-
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1’ 1]
U, 0]

/uulu

1

(1,

1T-1 7

0 /9%, hllr./ ) 1

(L,-., ,0 ;°°,hzr-:

!

{JBT-I . 0

, o0

7 / ’
{Uyy, Uur Unr, 0)

3.1

Figure
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Node d is the sink node which haé‘a demand equéling
to the above sum. Arcs between nodes s and t=1,2,..... . T
carry the.tbtal production of periods t=1,2,..... ,T i.e.
they carry

N

- A for every t.
3 wen g

Arcs betwéen nodes t (t=1,2,..... ,T) and it (for
i=1,2,...... N;: for t=1,2,..... .T) carry the production of

each individual item in t, z'ie. Arcs between nodes it and
it+l have inventory flows, I'ie.

Finally arcs between nodes'iﬁ and d carry the demand
of items i=1,2,.....T, u'ix.

With the presence of the nodes t=1,2,....,T and arcs
leaving source node s and entering into these nodes, we
meanwhile adapted the shared capacity Constraints to netwérk
format, beééuse the flow entering any node t is the total

) ) o

production in period t, Zz':+«. Then the arc connecting
i==y .

source s and t must_have the capacity of ce, because the

~N ) .
flow value on arc (s,t) is Zz':+ which has a capacity of ce.
4wy . '
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- 3.4. Eguivalence of the two approaches

In the last section, it was illustrated that the
" network represantatioﬁs of both P2 and MCNFP are equal. Now,
it will be shown that P2 is a MCNFP by equating MCNFP'S
constraints to constraints of P2.
3.4.1. Equivalence of the objective functions

‘In this part we will show that the objective
function‘of P2(0") is equivalent to the objective function

of MCNFP(0'). That is,

) ™ T
= ZEdiifwa 1is equivalent to = *h':I'1¢.
vl €Es it s i

dwa ié the cosﬁ associated with flow fi.. on arc (k,1l) where
hi+« is the cost associated'with item i's inventory carried
from period t to period t+l. On figuré 3.1. ha 's are the
costs associated with the arcs connecting nodes it and it+1
for every i=1,2,....,N;'t=1,2,...lT. Flows on arcs
connectingrnodes t and it have zero_costs, as only the
inventory holding costs are considered (production costs are
not included in the objective function). A

Then, for every (k,1)€6; i=1,2,....,N and t=1,2,....,T on
Figure 3.1.

dva=hs for every arc (k,1)=(it,it+1)

di.1 =0 for every arc (k,15=(t,it)

dica =0 for every arc (k,1)=(it,d)
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- 3.4.2. Equivalence of flow balances

Constraint set (3') in MCNFP is equivalent to

. constraint set (1") in P2, because both are flow balance
equations for every intermediary node (a node which is
neither source nor sink node).

zfiw 1s the sum of the flows outgoing from an
be : :

intermediary node k.
It corresponds on Figure 3.1. to the sum of the following

flows: For each node it (i=1,2,...,N; t=1,2,...,T) the
outgoing arcs are (it,it+1) and (it,d) which carry flows
I'is and‘u';t respectively. Then a total flow of I'1t+ﬁ'it
leaves that node. |
Thus gflk is equivaleht to (I'set+u'ae)
(As figure 3.1 is also the network of MCNFP)
Zfi: is the sum of the floﬁs entering an intermediary

b

node k.

It corresponds on Figure 3.1. to the sum of the following
flows. For each node it, the incoming arcs are (it-1, it)

and (t,it) which carry flows I'ie—1 and z'se respectively.

Then a total flow of I'ie-1+Z's+ enters that node.

-

Thus =fw.a: is equivalent to (I'se—1+Z'1¢)
e ’

As a result - Efiw—E=fka =0 - (3")

b LY

is equivalent to zZ'ie+l'ie~1-I'se-U'1£=0 whlch is constralnt

(1") in P2.
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3.4.3. Equivalence of Capacities

In this section we illustraﬁe how constraint sets
(2") and (3") in P2 are equivalent to constraint set (4') in
MCNFP. | o

" (4') stands for the capacity of each individual
flow. Our problem has capécity restrictions only for
production (thus on figure 3.1. only arcs (é,t) and (t,it)
have capacities, as they represent production flows). No
restriction is brought for inventories (then arcs (it, it+1)
have zero capacities as they represent inventory flows).

Then fof every (k,1)€6, cw: (in MCNFP) corresponds
to the folléwing capacities on Figure 3.1. (again for '
i=1,2,...,N; t=1,2,....,T).
Preallocated capacities

If arc (k,1)=(t,it) then cw1=E's+«, because the
amount of production of item i in period t is limited by
F'y+. Then in Figure 3;1. Elix ié the capacity of each arc
going out from node t and entering it, (t,it), due to the
~ fact that the flows on arcs leaving node t and entering it
carry the production of item i in period t, Z'se (thé
capacity of z's+ is E'ie). | |

If arc (k,1)=(it,it+1) then cu..=0, because arcs
(it,it+1) 's have inventory flows, which are without

capacity. They are restricted only to be nonnegative (4" in

P2) .
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Shared Capacity Constraints

If arc (k,1)=(s,t) then Giua=ce.
The sum of the flows entering node t mustAbe equal to the
sum of the flows leaving node t. Oniy the arc between source
s and t enters t, which has a flow value of f«.
The sum of the'flows‘oh arcs leaving node t, is the total

o .
production in period t, Zz':i+, as each arc (t,it) carries a

i e

flow of z':« (and‘there are N arcs leaving t).

N
Then, fe=Fz'is
4 wad

— N .
As the total production in t, Tz'i+, is restricted by
4 ma} . .
the shared capacity constraint ce, the arcs leaving sink
node s, (s,t)'s., have capacities of ce's.

(Recall that the same argument was given in Section 3.3.)

To sum up,

Tl'wr, 1f (k,1)E6=(Lt,1it) on Figure (3.1).

g

Cr1= u Ct » if (k,1)EG=(s,t) on Figure (3.1).

g

0,  if (k,1)€G=(it,it+1) on Figure (3.1).
If, - | o
Ckr=% 'y« then (4') in MCNFP is equivalent to (2") in (P2)
Cw1=Ce, then (4') in MCNFP is equivalent to (3") in (P2)

Cra =0, then (4') in MCNFP is equivalent to (5") in (P2)
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3.4.5. Nonnegativity of flows
. It is very obvious that constraint set (5') in MCNFP

is equivalent to set (4") indicating the nonnegativity of

" flows.

3.4.6. Total flow value and source-sink nodes

Constraint set (1') in MCNFP states that the supply
of the source node is &, or the difference between the sum
of the flows leaving source node and entering source node is
€. As no flow enters source node, the sum of the flows

entering it is =zero.

T

On Figure 3.1. the sum of the flows leaving s is =f«.
€ -y

~N
As fr=xZ'sie, then the sum of the flows leaving

4 sm 3
N T
- Load — 4
S 15 =~ &2 1 e
ey el

Also, (2') states that the sum of the flows entering
the sink node (as no flow 1eaves>it) is zero.
On Figure 3.1. the sum of the flows entering sink

T

N
node, d, is the sum of the external demands, = “u'se
. de=1 +fLexi

N T
(1') in MCNFP states that = Fz'yiw=6
deml ol
‘ N RN »
(2*') in MCNFP states that = Fzlie=—06
1wl bl
BN T . N T
Then, = Tetlie = E u'ae
4emd bmed it tewi
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The same result will be obtained by summing each
flow balance equation in P2, namely 1"'s (as 1" in P2

represents N*T flow balances).

3.5. A Suggestion

In section 3.3. and 3;4. it was shown that our
scheduling problem can be formulated as a minimal cost
network flow problem (as its objective function and
constraints can be transformed to ﬁhose of a minimal cost
network flow problem).

Due to the fact that linear programming methods are
slow, the following suggestion is made to find optimal
solutions.

As our algorithm provides near—optimal solutions, it
is advisable to solve the problem with dur algorithm and
then transform the problem to MCNFP and solve it b& using
any MCNFP algorithm in which the solution of our alg&rithm
is taken as an initial solution. Thus, in only a few

iterations the optimal solutions are obtained.
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iv. CONCLUSION

In the preceding chapters the single stage
multi-item capacity constrained problem was anaiyzed and a
heuristic algorithm for its efficient solutions was
introduced.

The algorithm provides a very important advantage,
by settling the tradeoff‘between exactness and speed
favourably.

One can think of many appliéations for the
scheduling‘algofithm. It can also be implemented in the
multi-stage case. Another application may be using it as an
aid in making the decisions of using overtime in a period or
not.

- The algorithm can be used to generate good initial
solutions for the miniﬁal cost nétwork flow problem. The
major advantages of our algorithm is its simplicity and
implementability on a microcomputer. Large problems can be
solved in a short amount of time on a microéomputer. Common
problems in industry exhibit the ?roperty that for a given.
item the preallocated capracity usage, the shared capacity
demand and the holding costs are closely related in which
case our algorithm.finds very good (usually bétimal)

solutions.
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