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Thesis Abstract

Ahmed Emin Orhan, �Unsupervised Learning of High-Level Invariant Visual

Representations through Temporal Coherence�

Temporal coherence principle is the idea of neglecting rapidly changing compo-

nents of a temporal signal while keeping to the slowly varying ones, in order to extract

useful invariances from the signal. We note that most of the applications of tempo-

ral coherence principle to visual stimuli aim at modeling invariances in early vision

(mostly deriving invariance properties of complex cells in primary visual cortex).

Temporal coherence implementing networks that can accomplish the more challeng-

ing task of modelling invariances in higher vision and perform reasonably well on

real-world object data-sets requiring some such complex invariant recognition capa-

bility are scarcely found. In this work, we try to address this issue by investigating

whether a speci�c variant of the idea of temporal coherence, i.e. slow feature analysis

(SFA), can be used to build high-level visual representations that might be useful

for invariant object recognition tasks. To date, we know of no network implementa-

tion of SFA that is put to challenge on a real-world data-set, rather than on some

toy sets of simple, arti�cial stimuli. To this end, we use single SFA implementing

nodes and very generic feed-forward network architectures to see whether SFA itself

is capable of modeling high-level invariances in realistic object datasets. We test

our models on two datasets that require some such capability for good recognition

performance: �rstly, on a dataset of letters undergoing translation, planar rotation

and scale changes, and secondly on the COIL-20 dataset to see whether SFA can

successfully learn view-point invariance. Our results suggest that SFA can yield sat-

isfactory results on these datasets especially when used as a pre-processing step for
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even very simple supervised classi�cation algorithms. The major limitations for the

application of SFA to realistic object databases have been the requirement of large

training sets for successful learning and the tendency to quickly over�t the training

data as the SFA models become slightly more complex (especially for SFA-3 and

SFA-4).
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Tez Özeti

Ahmed Emin Orhan, �Zamansal Uyumluluk Yoluyla Yüksek-Düzey De§i³mez

Görsel Temsillerin Denetim Olmaks�z�n Ö§renilmesi�

Zamansal uyumluluk ilkesi, zamana ba§l� bir sinyalden faydal� de§i³mezlikler

ö§renmek amac�yla, sinyalin h�zl� de§i³en bile³enlerini bir kenara b�rak�p, yava³

de§i³en bile³enlerine ay�rmay� ifade eder. Zamansal uyumluluk ilkesinin görsel uyaran-

lara uygulanmas� ³imdiye dek daha çok erken görme a³amalar�ndaki degi³mezlik-

leri, özellikle de birincil görsel korteksteki karma³�k hücrelerin de§i³mezlik özel-

liklerini, modellemeyi amaçlam�³t�r. Daha zor bir görev olan yüksek görme a³a-

malar�ndaki de§i³mezlikleri modellemeyi ba³arabilen, ve bu tür bir beceriyi ³art

ko³an gerçekçi nesne veritabanlar�nda yüksek performansla nesne tan�yabilen, za-

mansal uyumluluk ilkesi tabanl� yapay a§lar literatürde nadir bulunmaktad�r. Bu

çal�³ma, zamansal uyumluluk �krinin belli bir türü olan yava³ öznitelik analizinin

de§i³mez nesne tan�ma uygulamar�nda faydal� olabilecek yüksek a³ama görsel tem-

siller olusturulmas�nda kullan�l�p kullan�lamayaca§�n� ara³t�rarak, önceki cümlede

bahsi geçen eksikli§in giderilmesine katk�da bulunmay� amaçlamaktad�r. Bugüne

kadar bildi§imiz kadar�yla literatürde yava³ öznitelik analizinin basit, yapay uyaran-

lar�n aksine gerçekçi nesne veritabanlar�na uygulanmas� gerçekle³tirilmemi³tir. Bu

amaçla, bu cal�³mada yava³ öznitelik analizinin kendisinin gerçekçi nesne veritaban-

lar�ndaki yüksek derece degi³mezlikleri modellemeye uygun olup olmad�§�n� ara³t�ra-

bilmek için herbiri `yava³ öznitelik analizi' yapan ünitelerden olu³an basit ileri-

beslemeli a§ mimarileri kullan�lm�³t�r. Bu modeller iki çe³it veritaban� üzerinde test

edilmi³tir: birincisi, düzlemsel pozisyon, düzlemsel rotasyon ve ölçek de§i³iklikleri

uygulanan har�erden olu³an veritabanlar�; ikincisi, bak�³ aç�s� de§i³mezli§i ö§reni-

minin test edilmesi için COIL-20 nesne veritaban�. Bu testlerden elde edilen sonuçlar,
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yava³ öznitelik analizinin çok basit denetimli s�n��and�rma algoritmalar� için bile

bir ön-i³leme ad�m� olarak kullan�ld�§�nda oldukça tatmin edici s�n��and�rma per-

formanslar� elde edilebilece§ini göstermektedir. Yava³ öznitelik analizinin gerçekçi

veritabanlar�na rahatl�kla uygulanabilmesinin önündeki ba³l�ca engellerin ba³ar�l�

ö§renme için çok büyük ö§renme veri-kümeleri gerektirmesi, ve kullan�lan modeller

karma³�kla³t�kça (özellikle SFA-3 ve SFA-4 modelleri için) çok çabuk ö§renme veri-

kümesine a³�r�-uyum e§ilimi göstermesi oldu§u gözlenmi³tir.
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CHAPTER 1

INTRODUCTION

Since Horace Barlow's seminal work suggesting that the chief aim of sensory

representations in biological organisms is to reduce the redundancy inherent in a

lower level representation so as to make the code more e�cient (Barlow, 1961), a

lot of progress has been made in sensory coding research. From an evolutionary

perspective, and following Barlow, it is reasonable to assume that over the course of

evolution and individual development, visual cortex has adapted itself to the statis-

tics of the natural environment so as to make e�cient use of its valuable resources

and to extract `useful' information out of the input signal (Olshausen & Field, 1997).

This might presumably be achieved by devising e�cient encoding-decoding schemes

for extracting `useful' information from the sensory input (Olshausen & Field, 1997).

Various studies suggested di�erent ideas as to what exactly an `e�cient' and `use-

ful' encoding-decoding scheme might amount to or involve: predictive coding (Deco

& Schurmann, 2001), sparseness of the representations (Olshausen & Field, 1997),

maximization of mutual information (Bell & Sejnowski, 1997), extraction of the sta-

tistically independent components (Hoyer & Hyvarinen, 2000), or temporal slowness

(Berkes & Wiskott, 2005).

Some encouraging results have been obtained within these frameworks, especially

in the visual domain. Quasi-analytic derivation of response properties of V1 cells

from these �rst principles provided deep insight into the behavior of these cells from

a computational point of view. It is now well-known for instance that sparse coding

of natural images under a linear generative image model, or similarly extracting the

independent components of natural images, can reproduce some important response
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properties of simple cells in the primary visual cortex. More recently, it has been

shown that variants of the temporal coherence principle (i.e. slow feature analy-

sis) and independent component analysis, applied to natural image sequences, yield

representations whose behavior closely resemble those of the complex cells in the pri-

mary visual cortex. These include some important invariance properties in complex

cell responses like spatial phase invariance (Berkes & Wiskott, 2005).

One of the shortcomings of these approaches, as we see it, has been the scarcity of

sound statistical models extending these insights to higher level representations. It is

not known for instance to what extent, or in what ways, the principle of maximization

of the sparseness of the representations, or maximization of the temporal coherence of

responses can be optimally exploited to develop high-level representations or features

that could potentially account for the response properties of cells in the higher visual

cortices beyond the primary visual cortex, say, in the infero-temporal cortex. This

would, for instance, amount to developing sound statistical models mapping Gabors

to object representations.

In this work, we investigate whether a speci�c variant of the idea of temporal

coherence, i.e. slow feature analysis (SFA), can be used to build high-level visual

representations that might be useful for invariant object recognition tasks. We use

single SFA implementing nodes and very generic feed-forward network architectures

to see whether SFA itself is capable of modeling high-level invariances in realistic

object datasets. We test our model on two di�erent object datasets that require

some such capability for good recognition performance.

Invariant Recognition in Human Vision

A fairly large body of evidence suggests that the recognition of visual objects that
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are categorizable in some sense is robustly insensitive to various sorts of transfor-

mations (within certain ranges) in the sense that there is no statistically signi�cant

di�erence between the recognition of a stimulus and some transformed version of it

with respect to accuracy and reaction time measures (Wiskott, 2003).

For instance, Biederman & Cooper (1991, 1992) found that recognition of line

drawings of ordinary objects was not a�ected when the stimulus was shifted by as

far as 4.8o of the visual �eld, or when its diameter is increased in size from 3.5o to

6.2o or decreased from 6.2o to 3.5o .

Electro-physiological evidence also supports some of these �ndings on the invari-

ance properties of object recognition. Tovee et al. (1994) found that a large portion

of the neurons in the infero-temporal cortex and superior temporal sulcus of macaque

monkeys respond shift-invariantly to presented face stimuli, in terms of their �ring

rates.

Of course, there are limits to the transformation invariant recognition capability

of the visual system, at least in three respects: First, the type of stimuli matters.

The visual system does not respond invariantly to the `admissible' transformations of

all sorts of stimuli. Dill & Fahle (1998) found that performance on the recognition of

random dot patterns degrades signi�cantly when the stimulus is shifted, suggesting

that the stimuli should be categorizable (or `meaningful' in some sense) for the visual

system to respond invariantly to the translations thereof. But it is not known what

the exact criteria are that de�ne the class of invariantly recognizable stimuli. It might

well be the case that, for instance, extensive training with random dot patterns makes

them invariantly recognizable.

Second, even for invariantly recognizable stimuli and for admissible transforma-

tions (i.e. transformations under which the visual system responds invariantly), in-
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variance holds within a limited range. So, for instance, in the Biederman & Cooper

(1992) experiment mentioned above, shifts of stimuli beyond 4.8o begin to cause

degradations in the recognition performance. Similarly, for human subjects, in-

verted frontal face images are notoriously more di�cult to process and recognize

than upright frontal face images, whereas presumably, recognizing frontal face im-

ages slightly rotated from the upright position would be nearly as easy as recognizing

upright faces.

Thirdly, not all transformations are admissible, i.e. the visual system is capable

of responding invariantly only to some transformations of visual objects. Again, the

exact criteria de�ning this class of admissible transformations are not clear.

A good theory of invariant object recognition should be able to explain these

limitations in a principled way.
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CHAPTER 2

PREVIOUS WORKS

Various neural (network) models for invariant object recognition have been pro-

posed in the literature and these models can be broadly divided into two categories

(Wiskott & Sejnowski, 2002): a �rst group of models more or less build invariances

into the architecture of the model. The Neocognitron (Fukushima et al., 1983) and

weight-sharing networks are of this type. Here, much of the burden is on the ar-

chitecture and thus it becomes possible to use very general learning algorithms (e.g.

back-propagation) that do not depend on the structure of the input (i.e. the statistics

of the natural visual environment in our case) in any way.

The second group of models take just the reverse route. They assume a generic

architecture (e.g. layers of neurons with all-to-all or dense connections) and take

advantage of the special structure of the input to learn invariances. It is clear that

in this case the burden is on the learning algorithm which has to devise special

strategies to be able to exploit the structure of the input. The basic idea here is

to neglect rapidly changing components of the stimuli while keeping to the slowly

varying ones, which is quite reasonable and intuitive if one wants to learn invariances

(Einhauser et al., 2005). It was Foldiak's (1991) in�uential paper which �rst used

this idea to demonstrate how translation (phase)-invariant representations of simple

oriented bars can be learned from temporally structured visual experience alone,

where the relevant temporal structure is the slower dynamics of local orientation

compared to the fast dynamics of local position (or phase).

Now, we believe that, for a couple of reasons, the �rst approach mentioned

above (the architecture driven generation of invariances) is not the right way to go

5



about if we want to have a good model of invariant object recognition in biological

systems. First, these models usually assume biologically implausible architectures,

like in weight-sharing networks. Second, and perhaps more important, in building

these models, the desired invariances should be speci�ed in advance by the designer

(Wiskott & Sejnowski, 2002). This restricts the applicability of these models, be-

cause we do not know the full range of invariances. In any case, it is better to be

able to extract whatever invariances it is theoretically possible to extract, given the

statistics of natural visual stimuli, without restricting ourselves to a few pre-de�ned

ones.

On the other hand, again for a number of reasons, the second approach (that of

input driven generation of invariances) seems to us to be a promising one. Firstly,

the idea of temporal coherence is a general, powerful and intuitive one, potentially

capable of extracting any possible invariance and assuming little dependence on

a speci�c form of architecture. Secondly, note that some of the limits on invariant

recognition that are touched upon in the �rst chapter can be quite naturally explained

within this framework. It all depends on the temporal statistics of the natural

visual environment. Take, for instance, Foldiak's explanation of the generation of

phase-invariance. This emerges because it just happens that in our environment

local orientation changes more slowly than local position (or phase), so truncating

rapidly changing components (here, position or phase) in accordance with temporal

coherence principle causes invariance to that feature. Had this temporal relation

between local orientation and local position been somehow the other way around,

there wouldn't have been any orientation-selective, phase-invariant representations,

there would rather have been phase-sensitive, orientation-invariant ones. So, this

goes some way in explaining why we have certain invariances rather than others.
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Similarly, stimulus-speci�city of invariant recognition might be explained by the fact

that di�erent types of stimuli display di�erent temporal statistics. For instance,

the fact that random dot patterns are not translation-invariantly recognizable might

be explained by their di�erent temporal statistics from that of the common visual

objects, i.e. it might be that local position is not the fastest changing feature for

random dot patterns, so it doesn't get truncated by temporal coherence requirements

etc.

There are a couple of di�erent speci�c proposals within the temporal coherence

framework. Einhauser et al. (2005) propose a feed-forward hierarchical model and

update the weights at the highest layer by gradient ascent so as to maximize a certain

temporal coherence criterion called `stability'. The stability objective maximized in

Einhauser et al. (2005) is the following:

Ψstable =
∑

i

ψstable
i =

∑
i

−
〈
( d

dt
Ai(t))

2
〉

vart(Ai(t))
, (1)

where Ai(t) represents the activity of the unit i (called an `object cell', OC)

at the top layer at time t. They also put an additional decorrelation term into the

objective, to make sure that di�erent object cells acquire di�erent object selectivities.

The objective in (1) is thus to minimize the average squared derivative of the object

cells, hence to obtain more `stable' OC responses so that as the object within the

visual �eld gets transformed, the OC response stays more or less the same, thus

acquiring invariance to that transformation.

Einhauser et al. (2005) shows that OCs trained with the objective in (1) can

be used to achieve a high level of invariance to changes in view-point and a good

recognition performance in the COIL-100 object database even using a very simple

unsupervised classi�cation schema (basically, using k -means clustering as a classi�-
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cation algorithm).

Stone (1996) and Stone & Bray (1995) use another objective for learning in-

variances from temporally structured signals. The objective that they use for this

purpose is the following:

F =
1

2
log

V

U
=

1

2
log

(∑T
t=1(y

t − ȳt)2∑T
t=1(y

t − ỹt)2

)
, (2)

where y t represents the activity of one output unit at time t, ȳt represents a

long-term average of outputs y (an exponentially weighted sum of outputs prior to

time t, with a long decay time) and ỹt represents a short-term average of outputs y

(similarly, an exponentially weighted sum of outputs prior to time t, this time with

a shorter decay time). Maximizing this objective amounts to maximizing the long-

term variability (or long-term predictability) of the signal y, while simultaneously

minimizing its short-term variability (or short-term predictability).

Using simple stimuli, Stone (1996) shows that using the objective in (2), one can

extract some useful low level visual information such as stereo disparity or surface

depth from a rapidly changing visual stream. Again, the key feature of visual stimuli

enabling the extraction of such information is the relatively slow change of these

features over time, compared with the much more rapid change of sensor (i.e. retinal)

inputs. A learning algorithm maximizing an objective function such as the one in

(2) will be able to extract those features by maximizing the short-term variability

(or predictability) of the outputs.

Bray & Martinez (2002) develops a kernel-based version of Stone's (1996) algo-

rithm and shows that disparity and translation-invariant complex cell-like features

can be learned by applying their algorithm to temporally structured visual sequences.

In Martinez & Bray (2003), they also show that the same algorithm can be success-
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fully used for non-linear blind source separation. This kernel-based version of the

algorithm has the additional advantage that it can search for the slowly changing

components in much more complex and higher-dimensional spaces.

Another proposal along the lines of temporal coherence principle is `Slow Feature

Analysis (SFA)' which is particularly interesting because it can learn to extract

multiple invariances (scale-invariance, shift-invariance, rotation-invariance, contrast-

invariance, luminance-invariance etc.) simultaneously, which seems to be a more

realistic scenario under conditions of natural visual stimulation than the sequential

learning of invariances by separate, `favorable' sets of visual stimuli that involve only

certain transformations. SFA was �rst introduced in Wiskott and Sejnowski (2002)

which also presents a purely feed-forward hierarchical network of SFA-modules as

a simple model of how multiple invariances might be learned simultaneously, using

one-dimensional, simple, arti�cial stimuli. They note, though, that performance

degrades signi�cantly as the network tries to learn more and more invariances.

It is interesting to note that most of these temporal coherence networks aim

at modeling invariances in early vision (mostly deriving invariance properties of

complex cells in primary visual cortex). Temporal coherence implementing networks

that can accomplish the more challenging task of modelling invariances in higher

vision and perform reasonably well on real-world object data-sets requiring some such

complex invariant recognition capability are scarcely found. Notable exceptions are

the Einhauser et al. (2005) network mentioned above which performs quite well on

the COIL-100 object database and Wallis & Rolls (1997) network which implements

Foldiak's trace rule in successive layers iteratively and learns to recognize faces.

In particular, we know of no network implementation of SFA that is put to

challenge on a real-world data-set, rather than on some toy sets of simple, arti�cial

9



stimuli. In this work, we try to address this issue by suggesting, among other things, a

straightforward 2-D extension to the 1-D hierarchical feed-forward network presented

in Wiskott & Sejnowski (2002).

10



CHAPTER 3

SLOW FEATURE ANALYSIS (SFA)

Slow feature analysis was introduced in Wiskott & Sejnowski (2002). As in other

implementations of the temporal coherence principle, the motivation behind slow fea-

ture analysis is the simple observation that meaningful variables of the environment

vary on a much slower time scale than the raw sensor inputs. Thus, one might expect

to extract useful information about the environment by simply �nding a mapping

of the rapidly changing sensor signal such that the output signal of the mapping,

in contrast to the raw sensor signal, changes as slowly as possible. Thus, similarly

to the optimization carried out in Einhauser et al. (2005), SFA basically �nds the

directions along which the average derivative of a time-varying signal is minimal,

and to be able to extract `interesting' features, it does this not directly in the input

space, but in a non-linearly expanded high dimensional space.

SFA: Problem Statement and the Algorithm

More formally, the learning problem in Wiskott & Sejnowski (2002) consists of

�nding an input-output function g : RN → RM such that for a given input signal

x(t) = [x1 (t), . . . , xN (t)]T and for each m ∈ {1 , . . . ,M }:

∆m ≡
〈
ẏ2
m

〉
=
〈
ġm(x)2

〉
is minimized (3)

subject to the constraints:
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〈ym〉 = 0 (4)

〈
y2

m

〉
= 1 (5)

∀m′ < m : 〈ym′ym〉 = 0 (6)

Here, 〈〉 always denotes a time average. Constraints (4) and (5) are introduced

for avoiding the trivial solutions ym(t) = constant, while constraint (6) ensures that

di�erent functions are learned in each dimension. In general, this is an ill-de�ned

optimization problem, unless we restrict the function space from which g comes. In

Wiskott & Sejnowski (2002), this restriction is done by requiring each gm to be a

weighted sum of K pre-de�ned non-linear basis functions, hk(x). Usually K is much

bigger than the input and output dimensions, N and M . More formally, this can be

expressed as:

gm(x) =
K∑

k=1

wmkhk(x). (7)

Possible choices for the set of non-linear basis functions hk(x) to be used in this

expansion might, for instance, be the set of all monomials of the input of degree

one, or of one and two, yielding di�erent variants of the SFA algorithm (to be in-

troduced shortly) called SFA-1 and SFA-2 respectively. Now, the expansion in (7)

reduces the optimization problem de�ned in (3)-(6) to one of �nding the weights,

wm = [wm1 , . . . , wmK ]T , that satisfy (3)-(7), which is a linear problem in the expan-

sion space, h.

The algorithm for solving this optimization problem consists of the following

steps:
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1. Normalization: First, normalize the input signal so that in each dimension, n,

the input has zero mean and unit variance:

〈xn〉 = 0 (8)

and

〈
x 2

n

〉
= 1 (9)

2. Non-linear expansion: Expand the signal into a high-dimensional space, e.g.

the space of all �rst- and second-order monomials of the input, for which case the

algorithm is called SFA-2, or quadratic SFA:

z̃(t) ≡h(x(t)) = [x1 (t), . . . , xN (t), x1 (t)x1 (t), x1 (t)x2 (t), . . . , xN (t)xN (t)]T (10)

Other choices for the non-linear expansion space are possible. Besides the quadratic

expansion, we will be using third-order (SFA-3) and fourth-order (SFA-4) expansions

in the simulations below. Similar to the quadratic expansion, third-order expansion

involves expansion into the space of all �rst, second, and third-order monomials of

the input and fourth-order expansion involves expansion into the space of all �rst,

second, third and fourth-order monomials of the input. Note that if the original input

signal is N-dimensional, the expanded signal becomes N + N(N+1)/2 dimensional in

quadratic SFA (i.e., SFA-2), N + N(N+1)/2 + N(N+1)(N+2)/6 dimensional in SFA-

3, and N + N(N+1)/2 + N(N+1)(N+2)/6 + N(N+1)(N+2)(N+3)/24 dimensional

in SFA-4.

3. Sphering: Sphere the data in the expanded space (e.g. by using PCA), i.e.
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�nd a linear transformation, S, in the expanded space such that the transformed

input, z(t) ≡ S(z̃(t)− 〈z̃〉 ), has the following properties:

〈z〉 = 0 (11)

and

〈
z zT

〉
= I (12)

4. PCA: Apply PCA to the matrix
〈
ż żT

〉
to solve the following eigenvalue prob-

lem:

〈
ż żT

〉
wm = λmwm (13)

with λ1 ≤ λ2 ≤ . . . ≤ λM . Note that this induces an ordering on the output

components (henceforward called slow components), ym , according to their average

rate of change 〈ẏ2
m〉, with y1 being the most slowly changing variable, and yM the

least.

It is also important to note that in some cases, successive applications of the

algorithm might be required for properly extracting the slowly varying components

of the input signal, as will be the case in some of the simulations below.

Applications and Extensions of SFA

Berkes & Wiskott (2005) shows that applying quadratic SFA to natural image

sequences that involve rotation, translation and scale changes yields features that,

both qualitatively and quantitatively, display many of the important characteris-
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tics of the complex cells in primary visual cortex (V1), such as phase-invariance,

direction-selectivity, non-orthogonal inhibition, side- and end-inhibition.

Similarly, Franzius et al. (2007) uses a hierarchical network of SFA implementing

nodes together with a sparse coding (or similarly independent component analysis)

node at the top layer and shows that the network, when trained on quasi-natural

image sequences intended to model what a simulated animal sees while freely moving

on a small grid, can learn to generate responses highly resembling the responses of

various types of cells in the hippocampal formation such as place cells, head-direction

cells and spatial view cells.

These results together suggest that extraction of slow components might be one

of the principles or objectives underlying (or guiding) cortical computation at large.

In another application of SFA that is most closely related to what we are doing

in this work, Berkes (2006) applies SFA to a recognition task: recognition of hand-

written digits from the MNIST database. Since it is essentially the derivative signal,

and not the raw input signal, that is relevant to the computation of the slow com-

ponents, Berkes (2006) �rst forms a huge dataset (~1,000,000 training instances in

total) consisting of the di�erences of randomly selected image pairs belonging to the

same class. After applying SFA to this new dataset, he uses a simple classi�cation

strategy to assign classes to instances from the test set. He shows that combined

with even such a simple classi�cation strategy, an unsupervised SFA-3 (with 35 in-

put dimensions) yields an error rate of 1.5% on the test set, which is comparable to

the performances of more sophisticated supervised learning algorithms, such as an

SVM with �fth degree polynomials. The requirement of large datasets for successful

training of SFA is one of the major limitations of the algorithm, as we will see in the

simulations below.
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Sprekeler et al. (2007) provides a concrete link between the abstract SFA algo-

rithm and its biologically plausible implementation within the neural-ware. They

show that an experimentally veri�ed and well-known synaptic plasticity rule called

`spike time dependent plasticity' (STDP) might be interpreted as a possible imple-

mentation of the slowness principle. This paper also provides a unifying framework

for di�erent variations of the temporal coherence principle by showing that a simple

modi�ed Hebbian learning rule such as:

ẇi = γ
[
f in ◦ ain

i

] [
f out ◦ aout

]
(14)

can be used to implement di�erent variants of the temporal coherence principle.

Here, ain
i denotes the i -th input, f in is the input �lter; aout denotes the output

activity, f out is the output �lter and ◦ denotes the convolution operation. They

show that with di�erent choices of f in and f out, one can implement Foldiak's trace

rule, Stone's (1996) algorithm, or SFA, using one and the same �ltered Hebbian rule

in (14).

More theoretical results concern the relationships between SFA and independent

component analysis (ICA).

Blaschke et al. (2006) shows that linear slow feature analysis (SFA-1) is equivalent

to second-order ICA with one time-delay and Blaschke et al. (2007) shows that

temporal slowness might be used as a useful complementary constraint to statistical

independence in non-linear blind source separation problems and they also develop

an algorithm that combines both of these objectives to extract both slowly changing

and independent components from a non-linearly mixed input signal. Note that in

the form presented in the previous section, SFA algorithm extracts components that

are slowly changing and only de-correlated (not necessarily independent).

16



CHAPTER 4

MODELS AND DATASETS

Two datasets have been used in the simulations below. The �rst dataset consists

of the �rst 15 letters of the English alphabet (in Times New Roman font). Letters

in the dataset have been transformed in three ways: random translation, random

translation plus planar rotation and random translation plus scale changes. These

di�erent cases are treated in di�erent subsections in the next chapter. In each case,

6000 instances from each class were generated by applying the transformation (or

transformations) to the last generated instance of each class. Two di�erent general-

ization performances were assessed: generalization to unseen instances and general-

ization to unseen classes. In the �rst case, some views of each training letter were

retained for testing, and in the second case, all instances of all letters not used during

the training phase were included in the test set. Classi�cation performance on the

training sets was also assessed. Generalization to unseen instances (and classi�cation

performance on the training set as well) was assessed by training multivariate linear

classi�ers on the outputs of the models, but only the outputs to those instances used

for training the model were included in the training set of the linear classi�er.

For testing generalization to unseen classes, a di�erent procedure based on k -

means clustering was used. This method is essentially borrowed from Einhauser et

al. (2005) and will be described in the next chapter in more detail.

The second dataset used in the simulations below is the COIL-20 object database

(Nene et al., 1996). We used this database to investigate whether SFA can learn

view-point invariance in a complex object database. The large number of images

required for training SFA necessitated some pre-processing. We have chosen to use
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the pre-processing employed in Einhauser et al. (2005), again described in the next

chapter. Performance evaluation of the models were done in the same way as in the

letters dataset.

The models compared here include two-layered hierarchical networks of SFA

nodes, single SFA nodes, PCA nodes, and for the COIL-20 database, pre-processed

inputs themselves. Three types of SFA nodes have been tested: SFA-2, SFA-3 and

SFA-4, all described in Chapter 3. For the network SFA models, the �rst layer con-

sisted of 3x3 SFA nodes with overlapping receptive �elds of size 8x8 each. The second

layer consisted of a single SFA node that received inputs from all of the 9 layer-1

nodes. At each node, dimensionality reduction (if necessary) was made with SFA-1.

Thus, in the simulations we used the linear SFA model as a dimensionality reduction

method. The term `input dimensionality' refers to the dimensionality of the space

thus reduced by SFA-1. The input dimensionalities of all nodes in a network were

kept equal in order to reduce the free parameters of the model. The number of slow

components retained at each node was held �xed and equal to 7 for all the simula-

tions below, unless explicitly stated otherwise. Experiments with `deeper' networks

demonstrated that they had poor generalization performance presumably because of

the explosion in the number of parameters to be estimated.

For the simulations with COIL-20 database, we did not use the network models,

since the low dimensionality of the input after pre-processing made this unnecessary.

All simulations were done using MATLAB (The Mathworks, Natick, NJ) software

(R13). Basic MATLAB routines for performing slow feature analysis were obtained

from Sfa_tk: Slow feature analysis toolkit for MATLAB provided in Berkes (2003).
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CHAPTER 5

SIMULATION RESULTS

Experiments with Letters

We �rst use simple letter stimuli for training single SFA nodes and networks

of SFA nodes. 32x32 images of the �rst 15 letters (Times New Roman font) of the

English alphabet were created using CorelDRAW computer-graphics software (Corel

Corp., Ottawa, ON). Each letter was centered in the image and the image consisted

of the smallest square containing the letter.

Translation Invariance with Letters

Random Translation - Using Single SFA Nodes versus Networks of SFA Nodes

To obtain stimuli for training SFA for translation invariance, we prepared a 64x64

background image. Letters were placed on a random initial position on the back-

ground image and then randomly translated across the image such that at each

step the letter (i.e. the central pixel of the image letter) moved randomly to one

of the eight neighboring pixels on the background image, if that pixel indeed exists,

otherwise the letter moved to one of the existing neighbors. The background pixel

intensities were all set to random values (all pixels uniform between [0,1]) using a

simple threshold technique. The resulting image was down-sampled to 16x16. 6000

such images were generated for each of the 15 letters (classes). Note that this num-

ber is larger than the number of possible positions that the letter might occupy on
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the background image (which is 1089). However, since it is the di�erence between

consecutive images, i.e. linear approximation to the derivative of the training signal,

that is relevant for the training of a SFA node (and not single images themselves),

this does not necessarily imply a redundancy in the training set.

We �rst trained single SFA nodes, and then two-layered hierarchical networks of

SFA nodes on this training set. Three types of SFA nodes have been tested: SFA-2,

where the expansion space is the space of all monomials of the input up to order 2 (i.e.

a quadratic kernel), SFA-3, where the expansion space is the space of all monomials

of the input up to order 3, and SFA-4, where the expansion space is the space of all

monomials of the input up to order 4. We have also tested the dependence of the

classi�cation performance of the algorithm on the number of input dimensions used

(i.e. the dimensionality of the reduced space before the application of SFA-2, SFA-3

or SFA-4) and on training set size.

In this case, the �rst 10 letters were used for training and the remaining 5 let-

ters for validation (test set). So for this case, we did not test the generalization

performance of the model to unseen instances of the training set. The classi�cation

performance on the training set was assessed by training simple linear classi�ers on

the output of each model. On the other hand, classi�cation performance on the test

set was assessed as suggested by Einhauser et al. (2005). K -means clustering was

applied to the output of the model multiple times, with di�erent initial settings. The

number of clusters was not learned, but simply given to the clustering algorithm as

the actual number of classes in the test set, which is 5 in this case. Classes are then

assigned to the learned clusters according to the procedure described in Einhauser

et al. (2005): �rst, a kxk hit-matrix was constructed, whose (i,j) entry showed

how many items cluster i shared with class j ; the maximum entry of this matrix
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was found and the corresponding class was assigned to the corresponding cluster;

after eliminating the row and the column corresponding to that class and the clus-

ter, this procedure was repeated until all classes were assigned to a cluster and vice

versa. Classi�cation performance was then assessed according to this classi�cation

schema. K -means algorithm was run 5 times and averages over these runs were

taken to determine the classi�cation performance on test set. In the �gures below,

unless otherwise stated, error bars show (one) standard deviation of the classi�cation

performance over di�erent runs of the k -means clustering.

As an illustration, we �rst show the kinds of responses learned by one of our

models. Figure 1 shows responses of the �rst 3 slow components to 8 classes of

the training set in a two-layered hierarchical network of SFA-2 nodes. This network

consisted of two layers of SFA-2 implementing nodes. As mentioned in Chapter 4,

the �rst layer consisted of 3x3 SFA-2 nodes with overlapping receptive �elds of size

8x8 each. The second layer consisted of a single SFA-2 that received inputs from

all of the 9 layer-1 nodes. Thus, at each layer-1 node the input received was 64-

dimensional. This 64-dimensional input was �rst reduced to 34 dimensions using

linear SFA, i.e. SFA-1, and then SFA-2 was applied. Each SFA-2 node extracted 7

slow components, and fed those to the layer-2 node. Thus, the layer-2 node received

a 9 x 7 = 63-dimensional input. This 63-dimensional input was, in turn, reduced

to 34 dimensions again using SFA-1, and �nally 7 slow components were extracted

by the layer-2 node. This network architecture was held �xed in all the simulations

below, unless otherwise stated. We only tested the dependence of the classi�cation

performance on the reduced input dimensionality, which is 34 in this example.

This network was able to linearly separate all training classes from each other,

yielding zero classi�cation error with a linear classi�er that used just the �rst 4
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Figure 1: Responses of the �rst 3 slow components to 8 classes of the training set in
a two-layered hierarchical network of SFA-2 nodes.

components extracted at the top layer-2 node. This is illustrated in Figure 2, where

we plot the projection of the training set on the �rst 3 slow components extracted

at the top layer-2 node. As can be seen from the �gure, all classes except A and

F become pair-wise linearly separable. Adding one more component made them

linearly separable as well.

Generalization to Unseen Classes - Using Hierarchical Networks of SFA Nodes

We �rst present the results for hierarchical networks of SFA nodes. Figure 5

shows k -means classi�cation performance of networks with di�erent types of SFA

nodes and reduced input dimensionalities under di�erent training set sizes: (a) 3000

instances from each of the 10 classes, (b) 4000 instances, (c) 5000 instances and
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Figure 2: Projection of the training set on the �rst 3 slow components extracted at
the top layer-2 node.

(d) 6000 instances from each class. In each sub�gure, x -axis is the reduced input

dimensionality, used in all the nodes throughout the network, and y-axis is the k -

means correct classi�cation rate on the test set. Note that with 5 classes in the test

set, the chance level for the k -means correct classi�cation rate would be 0.2. Again,

in each sub�gure magenta indicates a network with SFA-2 nodes, black indicates

a network with SFA-3 nodes, and red, a network with SFA-4 nodes. The large

memory costs associated with explicitly working in a high-dimensional expanded

space, especially for the case of networks with SFA-3 and SFA-4 nodes precluded us

from carrying out an extensive search of the parameter space for these cases. For

instance, an input dimensionality of 9 at a SFA-4 node would mean working in a 714-

dimensional space after the expansion. Similarly, an input dimensionality of 14 at a

SFA-3 node would mean working in a 679-dimensional space after the expansion. On
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the other hand, even an input dimensionality of 34 at a SFA-2 node means working

in a 629-dimensional space after the non-linear expansion, which is still a smaller

space than the two. Working in a higher dimensional space means learning of more

parameters, which in turn necessitates using larger training sets to avoid over�tting

and poor test set performances. Indeed this is re�ected in Figure 5. With smaller

training sets, e.g. in (a) and (b), one can notice the sharp decrease in classi�cation

performance in networks of SFA-3 nodes (black lines), as input dimensionality is

increased from 9 to 14 inputs, whereas classi�cation performance on training set

actually increases. Training errors of linear classi�ers are shown for hierarchical

models and single SFA nodes, in Figures 3 and 4 respectively.
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Figure 3: Average training errors of linear classi�ers trained on the outputs of hi-
erarchical networks of SFA nodes, with di�erent training set sizes: 3000 (top left),
4000 (top right), 5000 (bottom left), 6000 (bottom right) instances per class.
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Figure 4: Average training errors of linear classi�ers trained on the outputs of single
SFA nodes, with di�erent training set sizes: 3000 (top left), 4000 (top right), 5000
(bottom left), 6000 (bottom right) instances per class.

Overall, the best classi�cation performance on the test set was achieved with

a SFA-2 network using 29-dimensional inputs at each node, which corresponds to

a 319-dimensional expanded space in which SFA �nds the directions of minimum

average rate of change. K -means correct classi�cation rate achieved in this case was

a mean rate of 0.7244, with a standard deviation of 0.005.
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Figure 5: K -means correct classi�cation performance of networks with di�erent types
of SFA nodes and reduced input dimensionalities under di�erent training set sizes:
(a) 3000 instances, (b) 4000 instances, (c) 5000 instances and (d) 6000 instances
from each of the 10 classes.

Generalization to Unseen Classes - Using Single SFA Nodes

We now present the results for single SFA nodes. Here, the 256-dimensional

raw input was �rst reduced to a much lower-dimensional input, using a linear SFA

step, SFA-1, and then fed to a SFA-2, SFA-3 or a SFA-4 node. Similar to Figure

5, Figure 6 shows k -means classi�cation performances of di�erent types of single

SFA nodes, with di�erent input dimensionalities, under di�erent training set sizes:

again (a) 3000, (b) 4000, (c) 5000 and (d) 6000 instances from each of the 10 classes.
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Here for comparison, we also include the k -means correct classi�cation performance

of PCA nodes with 7 components, i.e. PCA nodes which extract the leading 7

orthogonal directions of maximum variance of the 256-dimensional training set (blue

lines in (a), (b), (c) and magenta line in (d)). Again, in each sub�gure, x -axis is

the reduced input dimensionality, and y-axis is the k -means correct classi�cation

rate on the test set. In (d), we were only able to calculate values for SFA-2 and

SFA-3 nodes (red and black lines, respectively), so (d) does not include classi�cation

performance values for SFA-4 nodes. For larger training sets, i.e. (c) and (d), we

observe a sharper increase in classi�cation performance, as the input dimensionality

is increased, whereas performance increases more gradually with smaller training

sets, i.e. (a) and (b); note especially the sharp increase in performance as the input

dimensionality is increased from 19 to 24 in (c) and (d).

Overall, the best classi�cation performance on the test set was achieved with a

SFA-2 node of input dimensionality 29. K -means correct classi�cation rate achieved

in this case was a mean rate of 0.8711, with a standard deviation of 0.0004.
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Figure 6: K -means classi�cation performances of di�erent types of single SFA nodes,
with di�erent input dimensionalities, under di�erent training set sizes: again (a)
3000, (b) 4000, (c) 5000 and (d) 6000 instances from each of the 10 classes.

Comparison of Network Models and Single SFA Nodes

Figure 7 compares the k -means classi�cation performances of network models

with SFA-2 nodes and that of single SFA-2 nodes. We observe that for small input

dimensions, say, up to 20 inputs, it would be more advantageous to use a network

model, since for such small input dimensions, network models outperform single SFA

nodes with the same dimensionality. On the other hand, for larger input dimensions,

single SFA nodes outperform network models in terms of classi�cation on the test

set. For network models, as the input dimension becomes larger, the increase in

28



classi�cation performance becomes more gradual, or even vanishes with possibly a

slight decrease (red dashed line in Figure 7). This stands to reason, since with

the same number of input dimensions in the nodes, much more parameters need to

be learned in a network model compared to a single SFA node. In fact, with the

architecture that we are using here, the number of parameters to be estimated in a

network with, say, SFA-2 nodes is 10 times larger than the number of parameters to

be estimated in a single SFA-2 node with the same number of input dimensions. So,

the kind of over�tting observed with the network models in Figure 7 is to be expected.

One advantage of network models would be to make some infeasible computations

more feasible, by simply dividing up the computation into smaller and more feasibly

computable problems. Another advantage, especially when using non-linear nodes

in the network as in our case, would be to increase the complexity of the model.

For instance, in our case, using two layers of SFA-2 nodes would make the model

essentially equivalent to a SFA-4 node. But, as we see here, that comes with the

cost of increasing the necessary training set size needed to estimate the parameters

of the model.
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Figure 7: Comparison of the k-means classi�cation performances of network models
and single SFA nodes. Dashed lines correspond to network models, continuous lines
to single SFA nodes. Red represents the cases where the training set size is 6000
instances per class and black represents the cases where the training set size is 5000
instances per class. All data are from SFA-2 type nodes and networks with SFA-2
nodes.

Dependence on the Training Set Size

Figure 8 shows the dependence of classi�cation performance on training set size

for the case of single SFA-2 nodes. Again, for larger training sets, we observe a

sharper increase in classi�cation performance, as the input dimensionality is in-

creased, whereas performance increases more gradually with smaller training sets.
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Figure 8: Dependence of classi�cation performance on training set size. All data are
from single SFA-2 nodes with di�erent input dimensions

Rotation and Translation Invariance with Letters

We faced a di�culty with the generation of datasets containing variation in only

rotation or in only scale size. SFA nodes require large amounts of data for training,

but there is simply no room for generating 6000 su�ciently distinct images of size

32x32 (down-sampling to 16x16 makes it even worse) with all having di�erent angles

of rotation. Small angles of rotation do not make any di�erence to the image. We

�rst reminded ourselves that it was the derivative of the training signal that is

relevant for the training of a SFA node (and not single images themselves), and

tried generating randomly rotating letters with steps of 10 between the angles of

rotation of consecutive images, either increasing or decreasing (determined randomly

at each step). But this wouldn't do, since, we were using a linear approximation for
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calculating the derivative signal and no matter what the signal might be like 20 steps

ago, with a linear approximation, the only thing that matters for the calculation of

the derivative is what the signal was like just one step ago, or will be like one step

ahead. So most of the training set turn out to be redundant for the computation

of slow components. To all intents and purposes, such a training set is e�ectively

equivalent to another one which just traverses the available rotations from one end

to the other and then back again (say, from 300 to -290 and back to 300 in steps

of 10). This is only true for a linear approximation to the derivative signal. If we

were using higher-order approximations, these two datasets would not be e�ectively

equivalent. We have tried using higher-order approximations, but this proved to be

infeasible for large datasets.

The same problem applies to the generation of a dataset containing variation in

only scale size.

To overcome this problem, we decided to generate a dataset containing simulta-

neous variation in both position (random translation) and planar rotation. The same

strategy was applied to generate a dataset containing simultaneous variation in both

position and scale size.

Thus, for the following set of experiments, we prepared 15 letter stimuli undergo-

ing planar rotation as well as random translation as in the previous subsection. From

one frame to the next the angle of rotation varied in steps of 10 between 300 and

-290. The change in rotation angle was ordered, i.e. it always went from -290 to 300

and back in steps of 10. This also allowed us to assess generalization performance to

unseen instances. The rotation was implemented with the imrotate function in Mat-

lab Image Processing Toolbox using the bicubic interpolation method. The rotated

image was then cropped to its original size (32x32), using the `crop' option, and
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embedded into the 64x64 background image, across which it also randomly moved.

The �nal image was obtained by down-sampling to 16x16 as in the previous section.

The �rst 10 letters were used for training and the remaining 5 letters were reserved

for testing the generalization performance of the models to previously unseen classes.

We also assessed the generalization performance of the models to unseen instances

by training them only with certain views of the letters. As in the previous section,

generalization to unseen classes was assessed by the average correct classi�cation

rate of multiple applications of k -means clustering on the outputs of SFA models.

Generalization to unseen instances, on the other hand, was assessed by the average

test error rates of linear classi�ers trained on the outputs of SFA models.

As an illustration, we �rst show in Figure 9 the projection of the training set on

the �rst 3 of the 7 slow components extracted by a hierarchical network of SFA-3

nodes with 14 input dimensions. Note how letters with `similar' features are clustered

together, e.g. the letters C, D, G form a cloud, A, B, F form a separate cloud and

I and J are a separate cloud. The training set in this illustration consisted of 3000

instances from each class, and half of the views of each letter were not shown to the

model during training, so that the model saw only 30 views (corresponding to the

views with odd angles of rotation, i.e. -290, -270, ..., 290) of each letter presented 100

times at random positions. Average training error of a (multivariate) linear classi�er

trained on the 7-dimensional output of this model was 0.22.

33



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

−3

−2

−1

0

1

2

3

4

projection of training set on the first 3 slow components

A 

B C 

D 

E 

F 

G 

H 

I 

J 

Figure 9: Projection of the training set on the �rst 3 of the 7 slow components
extracted by a hierarchical network of SFA-3 nodes with 14 input dimensions.

Generalization to Unseen Instances

For testing generalization to unseen instances, the models were presented only

with certain views (corresponding to only certain angles of rotation) of the letters. In

the �rst experiment, every second view of each of the 10 training letters was retained

for training (corresponding to the views with odd angles of rotation, i.e. -290, -270, ...,

290). So the models saw only 30 views of each letter presented 100 times at random

positions. In a second condition, every third view of each object was retained for

training, so that the models saw only 20 views of each letter presented 100 times at

random positions. Finally, in the third condition, every sixth object was retained

for training, so that the models saw only 10 views of each letter presented 100 times

at random positions. In each condition, all the images not used for training were
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included in the test set.

For each condition, linear classi�ers were trained on the outputs of the models.

For each of the models compared below, the outputs were always 7-dimensional,

that is, for SFA models, we retained only the �rst 7 slow components and for the

PCA model, the leading 7 principal components were retained. Average classi�cation

errors of the linear classi�ers were computed.

Figure 10 compares the classi�cation performances of 7 types of models: a hier-

archical network of SFA-2 nodes (hSFA-2), a hierarchical network of SFA-3 nodes

(hSFA-3), a hierarchical network of SFA-4 nodes (hSFA-4), a single SFA-2 node

(sSFA-2), a single SFA-3 node (sSFA-3), a single SFA-4 node (sSFA-4), and �nally a

PCA node with 7 components (PCA-7). We also considered the e�ect of the number

of input dimensions on classi�cation performance; Figure 10 shows, for each type

(except for the PCA model), the performance of the best model among the models

of that type. For instance, among the single SFA-2 type models, the model with

32 input dimensions had the best average (over three conditions mentioned above)

classi�cation performance on the test set. So, the average classi�cation errors of the

sSFA-2 model shown in Figure 10 is that of a sSFA-2 model with 32 dimensions.

Average training errors are shown in blue, average classi�cation errors on test sets is

shown in red.
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Figure 10: Classi�cation performances of 7 types of models. Average training errors
are shown in blue, average classi�cation errors on test sets are shown in red. Top row
corresponds to the condition where the training set consisted of every second view
of each letter, middle row to the condition where the training set consisted of every
third view of each letter and the bottom row to the condition where the training set
consisted of every sixth view of each letter.

Overall, the best performances were achieved with single and network SFA-2

models (for the sSFA-2 model, 0.177 and 0.1781 for training and test errors averaged

over three di�erent training set sizes). SFA-3 (except perhaps hierarchical SFA-3

models) and SFA-4 models did not do as well as the SFA-2 models. However, for

SFA-3 and SFA-4 type models, using a hierarchical network model can be observed to

improve the classi�cation performance compared to single SFA-3 and SFA-4 nodes.

Average training and test errors are comparable in each case and comparing the three

rows in Figure 10 we can see that training set size does not have a signi�cant e�ect

on generalization to unseen instances. Also note that average training errors are sig-

ni�cantly higher than those achieved on the random translation dataset with similar
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models and training set sizes. For instance, with a training set size of 3000 instances

per class and using a hierarchical network of SFA-3 nodes with 14 input dimensions,

average training error on the random translation dataset was 0.013, whereas on the

rotation and translation dataset the average training error was 0.2245. Most likely,

this can be explained by the fact that rotation plus random translation dataset con-

tains more variation, hence, is probably more di�cult to learn than learning just

translation invariance.

Generalization to Unseen Classes

Generalization to unseen classes was assessed by the k -means classi�cation pro-

cedure described in the previous section. The test set in this case consisted of all

views of 5 letters not used during training, that is, 60 views of each letter presented

100 times at random positions, making a total of 6000 instances per letter. Figure

11 shows the k -means correct classi�cation rates of hierarchical networks of SFA-2,

SFA-3 and SFA-4 nodes. The models compared in the graph were trained on 30

views (every second) of each of the 10 training letters presented 100 times at random

positions. Again only the best performing models of each type are shown in the

�gure. A hierarchical network of SFA-3 nodes with 14 input dimensions performed

the best, with mean k -means correct classi�cation rate of 0.5702 and standard devi-

ation of 0.0594. This is somewhat similar to the mean k -means correct classi�cation

rate achieved with the best performing network SFA-3 model trained on the random

translation dataset with the same size, which was 0.5646 with a standard deviation

of 0.0845. On the other hand, SFA-2 and SFA-4 models showed signi�cantly better

generalization performances on the random translation dataset than on the rotation
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plus translation dataset. Compared to the mean k -means correct classi�cation rates

of 0.6220 and 0.4358 on the random translation dataset, the best performing SFA-2

and SFA-4 network models, trained on the same-sized training sets, had k -means cor-

rect classi�cation rates of 0.4231 and 0.3711, respectively, on the random translation

plus rotation dataset.
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Figure 11: K -means correct classi�cation rates of hierarchical networks of SFA-2,
SFA-3 and SFA-4 nodes. Only the best performing models of each type are shown.

Scale and Translation Invariance with Letters

As explained at the beginning of the previous subsection, for the experiments in

this subsection letters were generated that underwent scale changes simultaneously

with random translation. Scale changes were modeled by simply up-sampling the

32x32 pixel original images to larger sizes. Sizes up to 61x61 pixels were used, making

a total of 30 di�erent scale sizes. The change in scale was ordered, i.e. it always
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went from 32x32 pixels to 61x61 pixels and back in steps of 1 pixel per edge from

one frame to the next. Translation, as always, was modeled as random movement

across a 64x64 background image. At a certain step, all the pixels of the image

containing the letter randomly moved one pixel on the background image along one

of the available directions. The �nal images were obtained by down-sampling the

64x64 image to 16x16 pixels.

Again as in the previous subsection, the �rst 10 letters were used for training

and the remaining 5 letters were reserved for testing the generalization performance

of the models to previously unseen classes. Generalization to unseen instances was

assessed by training the models only with certain views of the letters. Generalization

to unseen classes was assessed by the average correct classi�cation rate of multiple

applications of k -means clustering on the outputs of SFA models. Generalization

to unseen instances was assessed by the average test error rates of linear classi�ers

trained on the outputs of SFA models.

As an example, we �rst show in Figure 12 the projection of the training set on

the �rst 3 of the 7 slow components extracted by a hierarchical network of SFA-2

nodes with 32 input dimensions. Note how the letters E and F on the one hand, and

C and G on the other are projected onto neighboring places on the 3-dimensional

space and thus form distinct clusters. The training set in this illustration consisted

of 3000 instances from each class, and half of the views of each letter were not shown

to the model during training, so that the model saw only 15 views (corresponding

to the views with odd scale sizes, i.e. 33x33, 35x35, ..., 61x61 pixels) of each letter

presented 200 times at random positions. Average training error of a (multivariate)

linear classi�er trained on the 7-dimensional output of this model was 0.0004.

39



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5−2

0

2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Projection of training set on the first 3 slow components

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

Figure 12: Projection of the training set on the �rst 3 of the 7 slow components
extracted by a hierarchical network of SFA-2 nodes with 32 input dimensions.

Generalization to Unseen Instances

For testing generalization to unseen instances, the models were presented only

with certain views (corresponding to only certain scale sizes) of the letters. In the

�rst experiment, every second view of each of the 10 training letters was retained

for training (corresponding to the views with odd scale sizes, i.e. 33x33, 35x35, ...,

61x61 pixels). So the models saw only 15 views of each letter presented 200 times at

random positions. In a second condition, every third view of each object was retained

for training, so that the models saw only 10 views of each letter presented 200 times

at random positions. Finally, in the third condition, every sixth object was retained

for training, so that the models saw only 5 views of each letter presented 200 times

at random positions. In each condition, all the images not used for training were
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included in the test set.

For each condition, linear classi�ers were trained on the outputs of the models.

For each of the models compared below, the outputs were always 7-dimensional,

that is, for SFA models, we retained only the �rst 7 slow components and for the

PCA model, the leading 7 principal components were retained. Average classi�cation

errors of the linear classi�ers were computed.

Figure 13 compares the classi�cation performances of 6 types of models: a hier-

archical network of SFA-2 nodes (hSFA-2), a hierarchical network of SFA-3 nodes

(hSFA-3), a hierarchical network of SFA-4 nodes (hSFA-4), a single SFA-2 node

(sSFA-2), a single SFA-3 node (sSFA-3) and a single SFA-4 node (sSFA-4). Results

for the PCA model with 7 components were not included in the �gure, since classi-

�cation errors for this case were much higher than the SFA models considered here

(on the order of 0.4 for both training and test errors and in all conditions). Again,

we also considered the e�ect of the number of input dimensions on classi�cation

performance. Figure 13 shows, for each type, the performance of the best model

among the models of that type. For instance, among the single SFA-3 type mod-

els, the model with 14 input dimensions had the best average (over three conditions

mentioned above) classi�cation performance on the test set. So, the average classi�-

cation errors of the sSFA-3 model shown in Figure 13 is that of a sSFA-3 model with

14 dimensions. Average training errors are shown in blue and average classi�cation

errors on test sets is shown in red.
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Figure 13: Classi�cation performances of 6 types of models. Average training errors
are shown in blue, average classi�cation errors on test sets are shown in red. Top row
corresponds to the condition where the training set consisted of every second view
of each letter, middle row to the condition where the training set consisted of every
third view of each letter and the bottom row to the condition where the training set
consisted of every sixth view of each letter.

The �rst thing to be noted about these results is the signi�cantly low classi�cation

errors achieved by all models. Comparing Figure 10 with Figure 13, we see that in

the random translation plus rotation dataset, the error rates are all on the order of

0.2, e.g. the best training error rate achieved was 0.177. However, in the random

translation plus scale change dataset, we can see that the error rates are much lower

than 0.005 (on the order of 0.001). This might perhaps be explained by hypothesizing

that scale invariance is much easier to learn than rotation invariance, which has also

been demonstrated in Wiskott & Sejnowski (2002) for the case of one-dimensional,

synthetic datasets. However, what is perhaps more surprising is that the error rates

achieved in most of the cases here are even lower than the ones achieved in the
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random translation dataset with comparable models and training set sizes. To give an

example, with a training set size of 3000 instances per class and using a hierarchical

network of SFA-3 nodes with 14 input dimensions, average training error on the

random translation dataset was 0.013, whereas on the translation and scale change

dataset the average training error was 0.00055. But surely, one might think, learning

translation invariance must be easier than learning translation and scale invariance.

This apparent tension might be resolved by noting one important feature of the

translation plus scale change dataset. In this dataset, as the scale size grows larger

and larger than the original image size, which is, 32x32 pixels, the number of positions

that the letter could occupy on the background image decreases. So, for instance,

there are 33x33 di�erent ways to position an image of size 32x32 on a background

image of size 64x64, whereas there are just 4x4 di�erent ways to position an image

of size 61x61 on the same background image. So, we might hypothesize that in

this dataset, distinct from the translation and translation plus rotation datasets,

changes in scale size o�set some of the variation that would be induced by translation.

Wiskott & Sejnowski (2002) has also demonstrated, for the case of one-dimensional,

synthetic datasets, that learning scale invariance is easier than learning translation

invariance. The apparent tension in our results can thus be explained by combining

these two pieces together: that some of the variation that would be induced by

translation is o�set by changes in scale, and this variation caused by scale change,

in turn, is easier to accommodate than translation.

Other points worth noting about these results are the increases in test errors

observed for the hierarchical models (largest for the hierarchical SFA-4 model) when

the training set size becomes smaller (bottom row in Figure 13) and the relatively

worse performance of sSFA-4 model (and to some extent, that of sSFA-3 as well)
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compared with its hierarchical counterpart.
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Figure 14: K -means correct classi�cation rates of hierarchical networks of SFA-2,
SFA-3 and SFA-4 nodes. Only the best performing models of each type are shown.

Generalization to Unseen Classes

Similar to previous sections and subsections, generalization to unseen classes was

assessed by the k -means classi�cation procedure. The test set in this case consisted of

all views of 5 letters not used during training, that is, 30 views of each letter presented

200 times at random positions, making a total of 6000 instances per letter. Figure

14 shows the k -means correct classi�cation rates of hierarchical networks of SFA-2,

SFA-3 and SFA-4 nodes. The models compared in the graph were trained on 15

views (every second) of each of the 10 training letters presented 200 times at random

positions. Again only the best performing models of each type are shown in the �gure.

A hierarchical network of SFA-2 nodes with 32 input dimensions performed the best,
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with mean k -means correct classi�cation rate of 0.6171 and standard deviation of

0.0522, which is comparable to the mean k -means correct classi�cation rate achieved

with the best performing network SFA-2 model trained on the random translation

dataset with the same size: a correct classi�cation rate of 0.6220 with a standard

deviation of 0.0935.

Results on COIL-20 Database

COIL-20 database is an object database of 1440 views of 20 objects (72 each,

and 5o changes in viewpoint between adjacent views of the same object). Images

are all 128x128 pixel grey-scale images. In this section, we consider the application

of slow feature analysis to COIL-20 database. Objects moved randomly across a

homogeneous 256x256 background image, simultaneously with a change in viewpoint.

These images were then all down-sampled to 64x64 pixels. The pre-processing of

these 64x64 images was similar to the one in Einhauser et al. (2005). All images

were �ltered through a bank of 24 complex Gabor �lters (scales: 1/32, 1/16, 1/8,

1/4 pixel-1, orientations: 00, 300, 600, 900, 1200, 1500), and in a way mimicking

the behavior of complex cells in V1, each �ltered image was spatially summed (i.e.

absolute values of pixels of each �ltered image were summed up to yield a single value

per �lter). The �nal representation is thus a 24-dimensional vector, each dimension

of which is being called a complex cell (CC) unit. These CC units roughly signal the

presence or absence of a particular feature in the image regardless of its position. So,

this pre-processing already guarantees a signi�cant amount of translation invariance,

thus the real task here is to learn viewpoint invariance as in Einhauser et al. (2005).

Given the low dimensionality of the input signal, the models to be considered in this

section will always be single SFA nodes.
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In a second series of experiments, the e�ect of `distractor' objects on the training

and testing performances of the models were tested. For this condition, a randomly

selected distractor object was placed on the background image during both train-

ing and testing phases. Partial overlap between distractor and target objects was

allowed, but the target image always appeared in the front, with the distractor ob-

ject being seen occluded by the target in such cases. The remaining pre-processing

stages in this condition were the same as in the �rst condition: images were �rst

down-sampled to 64x64, then �ltered through a bank of 24 complex Gabor �lters

and then spatially summed up to yield a single value per �lter. In accordance with

Einhauser et al. (2005), the �rst condition will be referred to as `the plain condition'

and the second one as `the cluttered condition'.
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Figure 15: Projection of the training set on the �rst two slow components (top) and
on the �rst two principal components (bottom) respectively.
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Results for the Plain Condition

We �rst show, as an illustration, in Figures 15 and 16 the projection of the

training set on the �rst two of the seven slow components extracted by a single

SFA-3 node with 9 input dimensions, on the �rst two principal components, and on

the most discriminative two dimensions of the 24-dimensional input. The training

set in this illustration consisted of 1200 instances each from the �rst 10 classes, and

every third view of each object was shown to the model during training, so that the

model saw only 24 views (out of 72) of each object presented 50 times at random

positions. Average training error of a (multivariate) linear classi�er trained on the

7-dimensional output of this model was 0, that is all 10 classes were pair-wise linearly

separable. Indeed using just three of the seven slow components extracted by the

SFA-3 model was su�cient for ensuring the pair-wise linear separability of all the

classes in the training set.

The most discriminative two dimensions of the input shown in Figure 16 were

found by a simple forward feature subset selection procedure. Visually, these �g-

ures again illustrate the usefulness of SFA as a pre-processing step for classi�cation

algorithms on invariant recognition tasks.
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Figure 16: Projection of the training set on the most discriminative two dimensions
of the input.

Invariance of the Slow Component Responses

In a separate experiment, we compared the invariance of the complex cell (CC)

and slow component responses across di�erent views of the same object. We trained

a single SFA-3 node with 9 input dimensions on a training set consisting of 1800

instances each from the �rst ten objects in the database, i.e. every second view (out

of 72 views) of the �rst ten objects was presented to the model 50 times at random

positions during training. Then, the responses of 24 complex cell (CC) units, and

7 slow components to all views of all objects in the database (including the views

and objects that were not in the training set), each presented 50 times at random

positions, were computed.

As in Einhauser et al. (2005), for each view of each object, normalized aver-

age responses of a unit (CC or slow component) were computed by averaging the
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responses of the unit over 50 presentations of that view at di�erent positions and

normalizing this to zero mean and unit variance over the whole dataset. Figure 17

shows the normalized average responses of a selected complex cell (black) to each

view of the 10 objects from the training set. Shown in red is the similarly normalized

average responses of the �rst slow component to each view of the same 10 objects.
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Figure 17: Normalized average responses of a selected complex cell (black) and the
�rst slow component (red) to each view (72 views in total for each object) of the
10 objects from the training set. Di�erent views of the objects are indexed by their
angle of rotation in depth, from 00 to 3600 with increments of 50 between adjacent
views.

With the �rst slow component responses, the increase in the invariance of the

responses to di�erent views of the same object is clearly visible, compared to those

of the selected complex cell. Whereas the complex cell exhibits several peaks and

troughs in its response during the presentation of di�erent views of the same object,

the �rst slow component gives a more or less stable response to di�erent views of the
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same object.

This invariance can be quanti�ed by an invariance index as in Einhauser et al.

(2005): one minus the standard deviation of the normalized average responses of the

unit to di�erent views of the same object. Figure 18 plots the mean invariance index

for the complex cell units (CC) averaged over all 24 units, versus the mean invariance

index for the slow components averaged over the seven slow components. Each dot

corresponds to a di�erent object. Again, it can be seen that most of the dots are

above the diagonal indicating that on average the responses of the slow components

to di�erent views of the same object are more invariant than the responses of the

complex cell units (CCs).
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Figure 18: Mean invariance index for the complex cell units (CC) averaged over all
24 units, versus mean invariance index for the slow components averaged over all 7
slow components extracted by the SFA-3 algorithm.
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Generalization to Unseen Instances

For testing generalization to unseen instances, the models were presented only

with certain views of the objects. In the �rst experiment, every third view of each of

the 10 training objects was retained for training. So the models saw only 24 views

of each letter presented 50 times at random positions. In a second condition, every

sixth view of each object was retained for training, so that the models saw only 12

views of each object presented 50 times at random positions. Finally, in the third

condition, every ninth view was retained for training, so that the models saw only 8

views of each letter presented 50 times at random positions. In each condition, all

views of the training objects not used for training were included in the test set.

For each condition, linear classi�ers were trained on the outputs of the models.

For each of the models compared below, the outputs were always 7-dimensional,

that is, for SFA models, we retained only the �rst 7 slow components; for the PCA

model, the leading 7 principal components were retained; and for the complex cell

(CC) model, the most discriminative 7 complex cell responses were used as the input

to the linear classi�er (again there is no learning involved in the latter case). Average

classi�cation errors of the linear classi�ers were computed both on the training and

test sets.

Figure 19 shows the training and test errors of �ve di�erent types of models for

the three conditions mentioned above, corresponding to di�erent training set sizes.

The models compared in the �gure are: single SFA-2, SFA-3 and SFA-4 models,

PCA model with 7 components, and a model consisting of the 7 most discriminative

of the complex cells. For the latter case, the most discriminative complex cells

were again found by a forward feature selection routine. In addition, for the SFA

models, dependence of the classi�cation performance on the input dimensionality is
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graphed as well. In all conditions (except the last one where the training set consisted

of every ninth view of each object presented 50 times at di�erent positions), SFA

models perform better than the PCA and CC models. Among SFA models, more

complex models have lower training and test errors for a given number of input

dimensions. However, especially with smaller training sets, more complex models

(SFA-3 and SFA-4) very quickly begin to show signs of over�tting, as the number of

input dimensions is increased. When the training set consists of just 400 instances

per class (every ninth view of each object presented 50 times at di�erent positions),

presumably because of the insu�cient number of training instances, PCA model

performs better than all the other models on the test set for a large range of input

dimensions.

Generalization to Unseen Classes

Similar to previous sections and subsections, generalization to unseen classes was

assessed by the k -means classi�cation procedure. In di�erent conditions, the training

set consisted of every second view (1800 instances per class) of 5, 10 and 15 objects

from the database. A single SFA-3 node of input dimensionality 9 (with 7 extracted

slow components, or outputs) was used for assessing the generalization performance.

For comparison, generalization performance using the most discriminative 7 complex

cell responses as the input to the k -means algorithm was computed (there was no

learning involved in this case). For the latter case, the most discriminative complex

cells were again found by a (greedy) forward feature selection algorithm. Figure 21

(upper panel) compares the k -means correct classi�cation rates of the SFA-3 model
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Figure 19: Results for the plain condition: training (left column) and test errors
(right column) of �ve di�erent types of models for di�erent training set sizes: 1200
instances per object (top row), 600 instances per object (middle row), 400 instances
per object (bottom row).

(of input dimensionality 9, and with 7 extracted slow components, or outputs) with

those of the most discriminative 7 complex cell units (CC) under di�erent training

and test set sizes: 15 objects: 5 objects used for training, the remaining for testing; 10

objects: 10 objects used for training, the remaining for testing; 5 objects: 15 objects

used for training, the remaining for testing. In all three conditions, SFA-3 model

can be observed to have signi�cantly better generalization to unseen classes. As the

training set size increases (and the test set size decreases), accuracy rate increases

for both models. In the condition where 1800 instances each from 10 objects were

used as our training set, and all the views of the remaining 10 objects were used

as our test set, the SFA-3 model had a correct classi�cation rate of 0.7747 (with a

standard deviation of 0.0296), and the most discriminative 7 complex cells had a
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correct classi�cation rate of 0.6851 (with a standard deviation of 0.0101). Note that

chance levels would be 0.067 for a test set consisting of 15 objects, 0.1 for 10 test

objects and 0.2 for 5 test objects.

Results for the Cluttered Condition

In the cluttered condition, both training and testing were made in the presence

of distractors. Distractors were always chosen randomly from the whole dataset.

Otherwise, experimental procedures for the cluttered condition were the same as in

the plain condition.

Generalization to Unseen Instances

Similar to the plain condition, for testing generalization to unseen instances,

models were presented only with certain views of the objects. In the �rst experiment,

every third view of each of the 10 training objects was retained for training. So the

models saw only 24 views of each object presented 50 times at random positions. In

a second condition, every sixth view of each object was retained for training, so that

the models saw only 12 views of each object presented 50 times at random positions.

Finally, in the third condition, every ninth view was retained for training, so that the

models saw only 8 views of each letter presented 50 times at random positions. In

each condition, all views of the training objects not used for training were included

in the test set.

For each condition, linear classi�ers were trained on the outputs of the models.

For each of the models compared below, the outputs were always 7-dimensional,
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that is, for SFA models, we retained only the �rst 7 slow components; for the PCA

model, the leading 7 principal components were retained; and for the complex cell

(CC) model, the most discriminative 7 complex cell responses were used as the input

to the linear classi�er (again there is no learning involved in the latter case). Average

classi�cation errors of the linear classi�ers were computed both on the training and

test sets.

Figure 20 shows the training and test errors of �ve di�erent types of models for

the three conditions mentioned above, corresponding to di�erent training set sizes.

The models compared in the �gure are: single SFA-2, SFA-3 and SFA-4 models,

PCA model with 7 components, and a model consisting of the 7 most discriminative

of the complex cells. For the latter case, the most discriminative complex cells were

again found by a forward feature selection routine. In addition, for the SFA models,

dependence of the classi�cation performance on the input dimensionality is graphed

as well.
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Figure 20: Results for the cluttered condition: training (left column) and test errors
(right column) of �ve di�erent types of models for di�erent training set sizes: 1200
instances per object (top row), 600 instances per object (middle row), 400 instances
per object (bottom row).

One can immediately notice that both training and test errors are overall sig-

ni�cantly lower for the cluttered condition compared to the plain condition. For

instance training errors are around 0.2 for the best of the SFA models, and the test

errors are never better than about 0.48. Besides that, some of the similar trends ob-

served in the plain condition can be observed here in the cluttered condition as well.

For instance, SFA models outperform PCA and CC models alike in all the condi-

tions. Among SFA models, more complex models have, in general, lower training and

test errors for a given number of input dimensions. However, again especially with

smaller training sets, more complex models (SFA-3 and SFA-4) very quickly begin to

show signs of over�tting, as the number of input dimensions is increased. Compare,
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for instance, the black (SFA-3) and red (SFA-4) dashed lines (right column) in the

second and third rows in Figure 20.

Generalization to Unseen Classes

Similar to the plain condition, generalization to unseen classes was assessed by

the k -means classi�cation procedure. In di�erent conditions, the training set con-

sisted of every second view (1800 instances per class) of 5, 10 and 15 objects from the

database. A single SFA-3 node of input dimensionality 9 (with 7 extracted slow com-

ponents, or outputs) was used for assessing the generalization performance. Again

for comparison, generalization performance using the most discriminative 7 complex

cell responses as the input to the k -means algorithm was computed (there was no

learning involved in this case). For the latter case, the most discriminative complex

cells were again found by a (greedy) forward feature selection algorithm. Figure 21

(upper panel) compares the k -means correct classi�cation rates of the SFA-3 model

(of input dimensionality 9, and with 7 extracted slow components, or outputs) with

those of the most discriminative 7 complex cell units (CC) under di�erent training

and test set sizes: 15 objects: 5 objects used for training, the remaining for testing;

10 objects: 10 objects used for training, the remaining for testing; 5 objects: 15

objects used for training, the remaining for testing. Again in all three conditions,

SFA-3 model can be observed to have better generalization to unseen classes. In

conformity with the results for the plain condition, as the training set size increases

(and the test set size decreases), accuracy rate increases for both models. However,

similar to what we have observed for generalization to unseen instances, overall ac-

curacy rates are signi�cantly lower for the cluttered condition compared to the plain
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condition. For instance, in the condition where 1800 instances each from 10 objects

were used as our training set, and all the views of the remaining 10 objects were used

as our test set, the SFA-3 model had a correct classi�cation rate of 0.2428 (with a

standard deviation of 0.0220), and the most discriminative 7 complex cells had a

correct classi�cation rate of 0.2218 (with a standard deviation of 0.0126).
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Figure 21: K -means correct classi�cation rates of a single SFA-3 node of input
dimensionality 9, with 7 extracted slow components compared with those of the best
7 complex cell units (CC) under di�erent training and test set sizes: 15 objects:
5 objects used for training, the remaining for testing; 10 objects: 10 objects used
for training, the remaining for testing; 5 objects: 15 objects used for training, the
remaining for testing. Upper panel shows the results for the plain condition, the
lower panel for the cluttered condition.
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CHAPTER 6

DISCUSSION

We have tested various SFA implementing models on two di�erent datasets: one

dataset consisting of letters undergoing various transformations, and the COIL-20

object database. Several observations can be made from the results that we have

obtained by our simulations.

First, SFA models can achieve quite satisfactory classi�cation performances even

with very simple classi�ers. We have intentionally used simple classi�ers (linear clas-

si�ers and an unsupervised classi�cation procedure based on k -means clustering) to

see if SFA itself can extract useful features for invariant object recognition tasks.

Using more sophisticated classi�ers might yield even better performances. Our re-

sults, thus, demonstrate the usefulness of SFA as perhaps a pre-processing step for

classi�cation algorithms on invariant recognition tasks.

Secondly, in conformity with the �ndings of Wiskott & Sejnowski (2002), some

of the transformations have been observed to be easier to learn than others. For

instance, learning scale invariance was easier than learning translation invariance or

rotation invariance. This might be related to the intrinsic di�culty of the respective

learning problems, or to an artifact in the generation of our data.

Thirdly, among SFA models tested here, for a given number of input dimensions,

more complex models generally outperform simpler SFA models. As an instance of

this general pattern, network models tend to do better than single node SFA models

with the same number of input dimensions. However, especially with small training

sets, more complex models (SFA-3 and SFA-4) very quickly begin to show signs of

over�tting, as the number of input dimensions is increased. This is related to the
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exponential increase in the dimensionality of the expansion space, as the SFA model

becomes more complex.

Fourthly, in general, SFA models require very large datasets for successful train-

ing. This makes it especially harder to apply SFA to high-dimensional dataset, such

as images.

Fifthly, and related to the previous observation, for most cases, explicit expansion

into a high-dimensional space used in SFA is impractical. Similar to Martinez & Bray

(2003), a kernel-based version of SFA might be developed to remedy this. This would

also make it easier to apply SFA to high-dimensional dataset, and therefore lift some

of the memory costs involved in working with very large datasets required for the

training of SFA.

Lastly, as we have observed in the cluttered condition for the COIL-20 database,

SFA performs signi�cantly worse in the presence of distractor objects. But, real-

world visual stimuli always involve some degree of clutter, so this makes SFA, in

its present form, unsuitable for more realistic visual learning scenarios. Indeed, all

temporal coherence approaches are known to have problems with cluttered images

(Wallis & Rolls, 1997). Therefore, it might be necessary to include further spatial

continuity constraints, as well as temporal ones, to be able to accommodate such

cases.

Other questions worth pursuing, but not pursued here include:

• Testing whether incorporation of further objectives besides temporal slowness,

such as independence or sparseness as in Franzius et al. (2007) can improve the

performance of the models. Experiments with models in which independent

component analysis (ICA) nodes were cascaded after SFA nodes did not always
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yield consistent results and therefore were not included here.

• Interpretation of the functions learned at each SFA node. For a single SFA-2

node, it is possible to analytically determine its optimal excitatory and in-

hibitory stimuli, as in Berkes and Wiskott (2005). However, for SFA-3 or

SFA-4 (or yet more complex) nodes, and similarly for network models, it is not

clear, at the moment, how to determine the stimuli they prefer the most or the

least, or the invariances they exhibit.
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