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Thesis Abstract 

İnci Aksoy, “Finding Hidden Patterns of Hospital Infections on The Newborn 

in Turkey: A Data Mining Approach” 

 
The increasing number of hospital infections with considerable morbidity, mortality 

and economic burden attracts the attention of not only the health-care environment, 

but also the whole society. In some medical centers, hospital infections are traced 

with more controlled and extensive surveillance methods, which adopt data mining 

applications. Data mining methods are applied to find the outbreaks, which cannot be 

determined easily by infection control teams.  

This study presents an application of data mining methods for hospital 

infection detection in a newborn intensive care unit. The data set is provided by 

Department of Clinical Microbiology and Infectious Diseases, Eskişehir Osmangazi 

University, Faculty of Medicine. Decision tree, neural network and logistic 

regression classification models are built with holdout sampling and cross validation. 

In model comparison, accuracy and sensitivity measures are taken into consideration. 

Bagging and boosting methods are applied on neural network and decision trees in 

order to increase the performance of these models. 

According to the results, antibiotics and urinary catheter usage, peripheral 

catheter duration, enteral and total parenteral nutrition durations, and birth weight for 

gestational age are prominent risk factors. Among the models, neural network 

performs well on hospital infections detection representing 83% accuracy and 30% 

sensitivity on test data set. Furthermore, the sensitivity is improved with boosted 

neural network model to 44%. 
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Tez Özeti 

İnci Aksoy, “Türkiye’deki Yenidoğan Hastane Enfeksiyonlarının Gizli 

Örüntülerini Bulmak: Bir Veri Madenciliği Yaklaşımı” 

 

Her geçen gün görülme sıklığı artan hastane enfeksiyonları, önemli derecede 

morbidite, mortalite ve ekonomik yüklere neden olmakta ve yalnızca sağlık 

sektörünü değil, tüm toplumu ilgilendirmektedir. Bazı sağlık merkezlerinde hastane 

enfeksiyonları veri madenciliği uygulamalarını kapsayan daha kontrollü ve kapsamlı 

sürveyans yöntemleriyle takip edilebilmektedir. Bu uygulamalarda veri madenciliği 

yöntemleri kolaylıkla belirlenemeyen salgınların tespitinde kullanılmaktadır. 

Bu çalışmada, yenidoğan yoğun bakım ünitesindeki hastane enfeksiyonlarının 

tespit edilmesi için veri madenciliği yöntemlerinin uygulaması sunulmaktadır. Veri 

seti Eskişehir Osmangazi Üniversitesi, Tıp Fakültesi, Klinik Mikrobiyoloji ve 

Enfeksiyon Hastalıkları Bölümü tarafından hazırlanmıştır. Basit ve çapraz doğrulama 

yöntemleri ile karar ağaçları, yapay sinir ağları ve lojistik regresyon sınıflandırma 

modelleri kurulmuştur. Model karşılaştırmada doğruluk ve duyarlılık oranları dikkate 

alınmıştır. Doğruluk oranını arttırmak amacıyla karar ağaçları ve yapay sinir ağları 

modellerinde bagging ve boosting yöntemleri uygulanmıştır. 

Sonuçlara göre, antibiyotik ve üriner kateter kullanımı, periferik kateter 

kullanım süresi, enteral ve total parenteral beslenme süreleri ve doğum ağırlığının 

gestasyonel yaşa oranı önemli risk faktörleri arasındadır. Yapay sinir ağları, test 

setinde %83 doğruluk ve %30 duyarlılık oranı ile hastane enfeksiyonları tespitinde 

başarılı olmuştur. Bunun yanında boosting yöntemi yapay sinir ağlarında duyarlılık 

oranının %44’e çıkmasını sağlamıştır. 
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CHAPTER 1 

 

INTRODUCTION 

 

Hospital infections are health care related infections, which indicate an important 

problem in both developing and developed countries because of high morbidity, 

mortality and heavy economic burden they cause. They can spread to public from 

patients, hospital staff and caregivers. Bacteria, which cause hospital infections, 

become stronger and less responsive to antibiotic treatment over time. Because of 

these characteristics, they require advanced and expensive tests for diagnosis, 

expensive antibiotics for treatment and thus lengthened hospital stays. 

 In order to control and prevent hospital infections, surveillance methods, 

which comprise systematic data collection, analysis, interpretation and reporting, are 

employed. According to the results of these surveillance methods, infection control 

programs are created, applied and monitored. In some medical centers, hospital 

information systems are used and through the data provided by these systems, 

hospital infections can be traced online with more controlled and extensive 

surveillance methods. Some of these systems adopt data mining applications to 

detect outbreaks, which cannot be determined easily by infection control teams.  

Both descriptive and predictive data mining techniques can be exploited by 

hospital infections. Using lab data including test results for each department, 

descriptive techniques can be used to build models that produce early warning 

signals for outbreaks or new bacteria. On the other hand, predictive techniques can 

be used to determine risky patients which allow early intervention opportunity before 
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the patient is infected or before applying unnecessary tests and treatments to 

noninfected patients.  

In this study, predictive data mining techniques CHAID, CART and entropy 

decision trees, neural networks and logistic regression are applied on the newborn 

hospital infections data set collected by the Department of Clinical Microbiology and 

Infectious Diseases in Eskişehir Osmangazi University, Faculty of Medicine. 

Knowledge Discovery in Databases (KDD) methodology is followed throughout the 

study. Models are built with holdout sampling and cross validation methods and 

compared regarding accuracy and sensitivity measures of the test data set. Besides 

these measures, specificity, area under ROC curve, gini coefficient and average 

squared error measures are taken into consideration. In addition, bagging and 

boosting methods are applied on neural network and decision trees in order to 

increase the accuracy of these models. 

The organization of the study is as follows: In Chapter 2, the literature on 

hospital infections in newborn intensive care units and data mining applications in 

the field are overviewed. In Chapter 3, data mining methodology, data mining 

techniques used in the study and important features of medical data mining are 

provided in detail. In Chapter 4, problem definition is presented, data preprocessing 

steps are explained. In Chapter 5, model results with applied accuracy estimation and 

increasing methods are analyzed. Finally in Chapter 6, the conclusions drawn from 

the study and possible further research directions are expressed.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter introduces literature review about hospital infections on newborn 

infants and data mining applications for hospital infection control. Appendix A 

comprises medical terms mentioned in this study. 

 

Hospital Infections 

 

Hospital infections or nosocomial infections are infections that originate or occur in a 

hospital or in a health care service unit. They are not in incubation period when the 

patient is admitted to the hospital and first appear after admission in 48 hours or after 

discharge within 10 days. Despite the improvements in hospital services, they can be 

seen in both developing and developed countries with increasing morbidity. They 

may cause functional disorder, emotional stress, decrease in quality of life, and 

death. In addition they increase hospital costs by lengthened hospital stay, antibiotics 

usage, isolation needs and other additional treatment methods (Ertek, 2008). 

In a study conducted at a university hospital in Turkey, researchers found 

higher device-associated infection rates in intensive care units (ICU) than those 

reported by National Nosocomial Infections Surveillance (NNIS) System in United 

States. It is also reported that an infection control program is required to reduce the 

rate of device-associated nosocomial infections (Usluer et al., 2006). 



 

 
4

As reported by Perk (2008), the risk of nosocomial infections on newborn has 

been increased in recent years, because of various invasive methods that are used to 

increase the living rate of newborn with very low birth weight (VLBW). Before 

birth, a newborn does not have a flora that protects him from colonization with 

harmful microorganisms. Moreover, prematures are immunologically immature and 

very open to any infection. Some of the risk factors can be listed as follows: 

premature birth, low gestational age, VLBW, invasive methods (mechanical 

ventilation, catheters), antibiotics and steroids usage, parenteral feeding, lipid usage, 

and the population in neonatal intensive care units (NICU). NICUs differ in the 

percentage and type of nosocomial infections regarding the risk level of neonates. In 

NICUs of neonates with high risk level, blood related infections are seen and the 

percentage of nosocomial infections is higher than those with low risk level. With 

low risk premature neonates, skin and mucosa colonizations are widely met. 

According to a study of Borghesi and Stronati (2008); immunological 

immaturity, frequent use of invasive procedures and prolonged hospitalization 

account for the high incidence of infection in a population subgroup of 21% of all 

VLBW infants and up to 43% of neonates with birth weights of 401 - 750 g proven 

sepsis (sepsis with positive blood culture) was developed. They have also introduced 

strategies for the prevention of nosocomial infections such as hand hygiene practices, 

prevention of central venous catheter (CVC)-related bloodstream infections 

(CRBSI), and judicious use of antimicrobials for therapy and chemoprophylaxis, 

enhancement of host defenses, skin care and early enteral feeding with human milk. 

In the study of Sameshima and Ikenoue (2006) examining newborn infants 

exposed to intrauterine infection, it is introduced that premature infants are more 



 

 
5

susceptible to intrauterine infection to cause death or cerebral palsy than mature 

infants. The critical gestational age for death (<28 weeks) is younger than that for 

cerebral palsy (<34 weeks) with these infants. It has been found that both infection 

and acidosis were required in mature infants to cause cerebral palsy whereas 

infection alone can cause brain damage in less mature infants. 

A study of van Rossem et al. (2007) shows that colonization of neonates with 

Enterobacter spp. (species) does not usually lead to clinical infection. Colonization of 

neonates treated in a NICU of a tertiary care hospital with Enterobacter spp. was 

associated with prolonged antibiotic use and low Apgar scores, reflecting the severity 

of underlying illness. 

The results of Matussek, Taipalensuu, Einemo, Tiefenthal and Löfgren’s 

(2007) study confirms a high level of transmission of Staphylococcus aureus from 

staff members to infants (13 cases of 44) compared with parents (11 cases of 44) and 

spa typing epidemiological tool is suggested to improve hospital hygiene control 

programs. 

Septicemia is the most common neonatal infection in the NICU (45-55%), 

followed by respiratory infections (16-30%), and urinary tract infections (8-18%) 

(Clark, Powers, White, Bloom, Sanchez, & Benjamin, 2004) 

It is claimed by Pittet (2005) that annually 5 to 15 % of in-patients are being 

diagnosed with hospital infections in US, which inferred to ca. 2,000,000 diagnosis. 

44,000 to 98,000 of those result in death. Infections also add an estimated $17 to $29 

billion to the US’s hospital costs annually. 25 to 50 % of hospital infections are 

observed in ICUs in US.  

Görenek (2002) reported that hospital infections have been seen on 3.1 to 
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14.1% of in-patients in Turkey. Hospital infections bring $1,500 cost per patient at 

an average of two weeks lengthened hospital stay. For pediatric patients this cost can 

reach up to $10,000. The risk of infection is 8 to 10 times higher by ICUs in 

comparison with others. Effective surveillance and appropriate actions can reduce 

this risk only by 20-30%. 

These statistics represent the importance of hospital infections and witness 

high mortality and morbidity, lengthened hospital stays and increased hospital costs. 

Thus preventive programs have to be developed for this public health care problem. 

Very effective programs were shown to reduce infection by 32% in the study 

of the Efficacy of Nosocomial Infection Control (SENIC (1970-1975)). Among key 

results from the SENIC project was the information that between 35% and 50% of all 

nosocomial infections were associated with a few patient care practices: use and care 

of urinary catheters; use and care of vascular access lines; therapy and support of 

pulmonary functions; experience with surgical procedures; and appropriate hand 

hygiene and use of isolation precautions (Pittet, 2005). According to SENIC results, 

the most important basic elements of handling nosocomial infections are: nosocomial 

infections surveillance and its control activities, a control team of nosocomial 

infections experts with enough number of members according to the size of the 

health care institution, and finally sharing the results of surveillance with related 

parties (Erol, 2008).  

In the following section, how data mining is adopted in such surveillance 

systems and the success in those systems are reviewed. 
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Data Mining Applications in Infection Detection 

 

The Infection Control Department at St. Luke’s Episcopal Hospital is committed to 

provide high quality health care to the community they serve. In order to fulfill their 

commitment, they implement technology to collect and store data and applied data 

mining techniques (Dao, 2006). 

Pittet (2005) referred to data mining derived epidemiology as one of the 

major challenges for future: Fully computerized patient records bring new 

opportunities for the development of “at risk” patient profiles, thus prompting earlier 

intervention strategies. It may also allow for data mining to help sort patient 

characteristics associated with higher or specific risks for health care-associated 

complications and, in particular, infection. 

According to the January 2004 automated data mining surveillance system 

(DMSS) report in Saint Francis Hospital, Memphis, Tennessee, a mini-cluster of four 

Escherichia coli (EC) urinary isolates related to patients originating from the 

orthopedic unit was found. The finding was investigated and urinary catheter 

selection in emergency room was found to be the reason. Infection control specialists 

changed the program and DMSS resulted in an improvement chart with 3 

consecutive months of zero EC urinary isolates. (Breaux, Baker, Wilburn, Monteith, 

& Umstead, 2005). 

Kreuze (2001) cites DMSS success in a 600-bed tertiary-care medical center 

in Alabama, US. The system has detected 41 suspected outbreaks, subsequent 

inspection of patients’ charts revealed that 97% actually had hospital infections. 

During that same period, the medical center’s infection control staff has flagged only 
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9 potential outbreaks of which three of them were turned out to be true. 

Effective data mining permits microbial pattern recognition and detects the 

presence of microbial clusters that warrants early investigation to enhance patient 

safety and prevent costly outbreaks (Dao, Zabaneh, Holmes, Disrude, Price, & 

Gentry, 2008). 

In the study of Meek and Tinney (2006), it is reported that data from hospital 

databases including patient admissions and results of lab tests are analyzed for 

infection trends. Before nosocomial infections spread, the data mining service in the 

hospital looks across the entire facility for early indications. 

As high risks and costs are associated to nosocomial infections, in order to 

monitor them in various areas of the hospital and to identify and report the critical 

situations for patients, Lamma, Manservigi, Mello, Storari, and Riguzzi (2000) 

developed a descriptive system in which clustering algorithms are used. They 

compute the frequency of infections and expect them to highlight possible hygienic 

problems and to be used for early diagnosis and therapy over time. The system also 

generates alarms regarding newly identified bacteria: when an unexpectedly resistant 

bacterium is found, when a contagion among patients of a unit is detected, or when 

the therapy is found to be ineffective. 
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CHAPTER 3 

 

METHODOLOGY 

 

In this chapter, knowledge discovery process, data mining techniques used in the 

study, model accuracy, techniques for evaluating and increasing the accuracy and 

finally important features of medical data mining that need attention are discussed. 

 

Knowledge Discovery in Databases 

 

The data that build up the information can be in a complex structure and also be 

incomplete, inconsistent, incomparable, extreme or even unnecessary. In order to 

obtain useful knowledge from these data for decision support; knowledge discovery 

in databases process (KDD process) is used.  

The process of KDD has been defined by Fayyad, Piatetsky-Shapiro, Smyth, 

and Uthurusamy (1996) as “the non-trivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data” (pp.6). According 

to this definition, features of a pattern can be expressed as follows. A pattern is 

“valid”, if the degree of certainty is acceptable, when applied on a new data set. A 

pattern is “novel”, when compared to previous values or knowledge. A pattern is 

“potentially useful”, as measured by some utility function, as an increase in profits. 

Finally, a pattern is needed to be “ultimately understandable”, which can be 

measured by the simplicity of the pattern, in order to facilitate a better understanding 

of the underlying data. 
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KDD process covers mainly goal identification, data cleaning, data 

integration, data selection, data transformation, data mining, pattern evaluation and 

knowledge presentation steps. Out of these steps, data mining is concerned with 

extracting a pattern with relevant features from large amounts of data under some 

computational limitations. Though it is the core step in KDD process, it can be also 

used as a synonym for KDD (Fayyad, Piatetsky-Shapiro, Smyth, & Uthurusamy, 

1996). Figure 1 represents the basic flow of KDD process with interactions between 

the steps. 

 

 
Figure 1. Basic flow of KDD process 

 

KDD process is an interactive and iterative process, meaning, many decisions about 

parameters, measures and thresholds are met by user and loops are allowed between 

any steps in order to constitute a meaningful knowledge at the end of the process.  
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The process is first defined by Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy 

(1996), and comprises the following steps:  

1) Developing an understanding of the application domain: Gathering 

information about application domain, relevant characteristics and other 

prior knowledge. Understanding end-user goals. 

2) Creating a data set: Selecting and integrating variables of the data set in 

order to use in the discovery process. 

3) Data cleaning and preprocessing: The removal of noise or outliers if 

appropriate, and deciding the strategies for handling missing values 

regarding the characteristics or changes in the source. 

4) Data reduction and transformation: Depending on the goal of the data 

mining task, from a list of variables, relevant ones are chosen and 

transformed in order to increase the relevancy. 

5) Choosing appropriate data mining task: Regarding the goal of the KDD 

process, appropriate data mining task is selected. 

6) Choosing the data mining algorithm: The specific method with its 

appropriate parameters is chosen to be used for searching patterns in line 

with the (expected features of result) consideration. For instance, if end-

user needs to understand the pattern, not to have a precise one, then 

decision tree algorithms can be used instead of neural networks. 

7) Data mining: Employing the algorithm and generating the patterns; if 

necessary, adjusting its parameters in order to obtain satisfied results. 

8) Evaluation: Pattern evaluation and interpretation regarding predefined 

goals. Previous steps are considered to be repeated considering their 
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effects on data mining results and patterns are evaluated in terms of 

comprehensibility and usefulness. 

9) Using the discovered knowledge: Deploying the data mining algorithm 

into performing systems to take actions, or report the results to end-users 

for them to compare the results with previously known. The effectiveness 

of the entire KDD process can be acquired at this step. A successful 

pattern will face several challenges in this step, such as a dynamic 

environment with changes in variables either because of data structure or 

data domain. 

The first four steps are considered as goal definition and data preprocessing. The 

success of the process mostly depends on the quality and quantity of the data. 

Therefore, data preprocessing needs extra effort and covers an important portion of 

the process. The consequent three steps represent the preparation for data mining and 

applying data mining. Finally, the last two steps are the evaluation and interpretation 

of the results and monitoring the model after it is deployed into a performing system.  

After Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy (1996) described 

this first KDD process model, Anand and Buchner (1998) developed an eight step 

model. Other than these academic research models, industry specific models were 

also developed. The most known and used industry specific models are the “Cabena, 

Hadjinian, Stadler, Verhees, and Zanasi” (1998) model, developed with the support 

of IBM and the “CRISP-DM” (CRoss-Industry Standard Process for Data Mining) 

model, developed by a large consortium of European companies (CRISP-DM Web, 

n.d.). 
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Next section explains data mining, the core step of KDD process in more 

detail. For this, the classification of data mining techniques are defined and 

summarized. In following sections, a comprehensive overview of data mining 

techniques that were used in the study and methods for estimating and increasing 

classifier accuracy are introduced. 

 

Data Mining 

 

Data mining is a step in KDD process that refers to extracting or “mining” 

knowledge from large amounts of data (Han & Kamber, 2006). For specified data 

mining tasks, relevant data mining techniques are applied in order to find novel and 

useful patterns that might be unknown, if not searched with these techniques.  

Data mining tasks are generally classified into two broad categories as 

descriptive and predictive. Descriptive data mining tasks are exploratory tasks and 

they search for the general properties like trends, correlations, clusters, and 

anomalies representing the underlying relationships in the data. On the other hand, 

predictive data mining tasks make predictions for a variable called dependent 

variable or target, based on other variables called independent or input variables. 

Two types of predictive data mining tasks can be performed: classification 

and prediction. Classification is the process of finding a model that describes and 

distinguishes data classes, for the purpose of predicting the discrete target variable 

whose class label is unknown. Decision trees, neural networks, and logistic 

regression are examples for classification techniques. Whilst classification predicts 

discrete (categorical) labels, prediction models continuous-valued functions: missing 
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or unavailable numerical data values (Han & Kamber, 2006). Regression analysis is 

an example for continuous target models.  

Association analysis, cluster analysis, outlier analysis and evolution analysis 

are groups of different descriptive data mining tasks. 

Patterns that occur frequently and describe strongly associated features in 

data are called frequent patterns. Association analysis discovers the patterns of 

associations and correlations represented in the form of implication rules in 

sequences or frequent item sets.  

Unlike classification and prediction, clustering analyzes the data without a 

known dependent variable and tries to find groups of closely related observations 

based on the principle of maximizing the intraclass similarity and minimizing the 

interclass similarity. In other words, clustering tries to form clusters of objects that 

are homogenous inside and heterogeneous between each other. 

Outlier analysis or anomaly detection identifies observations that have 

significantly different characteristics from the general behavior of data. These are 

called outliers or anomalies and they are eliminated from most data mining methods 

as noise or exceptions. However, the goal of this analysis is to discover the real 

outliers and avoid assigning normal observations as outliers. Outlier analysis is used 

in fraud detection, network intrusions and unusual patterns of disease. 

The above mentioned techniques are mostly used on simple and structured 

data sets, such as data extracted from relational databases and data warehouses. 

Complex forms of data like spatial and temporal data, hypertext and multimedia data 

and semi-structured or unstructured data needs to be mined with more advanced data 

mining techniques. Evolution analysis comprises the analysis of such data and 
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models regularities or trends for observations whose behavior change over time: 

Time-series data analysis, sequence or periodicity pattern matching, and similarity-

based data analysis (Han & Kamber, 2006). 

 

Classification Techniques Used in the Study 

 

The goal of the study is to classify nosocomial infection on new born infants based 

on its relevant characteristics. This section introduces the classification techniques 

decision trees, neural networks, and logistic regression in more detail that are used in 

the study.  

 

Decision Trees 

 

Decision trees are one of the most popular classification and prediction methods used 

in data mining. As mathematical inference techniques are hard to be understood by 

users, decision trees are developed by machine learning researchers with the purpose 

of providing ease of human use and interpretation. 

Han and Kamber (2006) defined decision tree as a flowchart-like tree 

structure, where each internal node (nonleaf node) denotes a test on an attribute, each 

branch represents an outcome of the test, and each leaf node (or terminal node) holds 

a class label. The topmost node in a tree is the root node.  
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Figure 2. Decision tree representing the presence of hospital infections. 

 

Figure 2 describes a decision tree structure that represents the presence of hospital 

infections on patients. Each internal node represents a test on an attribute (premature 

or not, male or female) whereas each leaf represents a class (infected or not). 

Classification rules can easily be derived from decision trees by starting from 

the root node to a leaf node that suggests the class prediction. In the above example, 

the classification rule “If the patient is a newborn and premature, then the patient is 

likely to be diagnosed with hospital infections.” can be derived from the decision tree 

structure. 

Decision trees are mostly preferable because they do not require any domain 

knowledge or parameter setting that complicates the construction; besides they 

provide easy implementation and integration to databases. They can also handle 

several types of variables like nominal, interval, and ordinal. In addition to the main 

goal of prediction, decision trees can be used for interaction detection, stratification, 

missing value imputation, and model interpretation. They are also used for variable 

selection from a wide range of variables before applying other data mining methods 

like regression or neural networks. 

The fundamental principle underlying tree creation is that of simplicity: 

Decisions that lead to simple, compact tree with few nodes are preferred (Duda, Hart, 
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& Stork, 2001). The tree complexity is also explicitly controlled by the stopping 

criteria used and the pruning method employed (Maimon & Rokach, 2005). 

To be able to construct such an accurate decision tree, best splitting variable 

is searched, which will make the descendent node as pure as possible. For 

formulization, defining impurity is more convenient than purity of a node. Although 

there are several splitting measures having the same behavior of defining impurity, 

three of them will be discussed in this study: information gain, gain ratio and Gini 

index. 

Information gain is the most popular measure originated from information 

theory. Input variable with the highest information gain is selected in order to 

decrease the information need of descendent nodes and represents their impurity. Let 

I(S) be the impurity of a node S and n(S) be the number of observations in node S. 

The information impurity (or entropy impurity) will be defined as follows: 

I(S) = - ∑
=

m

i 1
i2i )(plog p  

where pi is the probability of class i in node S and is estimated by n(Si)/n(S). I(S) 

gives the average information value needed to classify the observations in node S, 

which is based on the proportions of observations of each class. The expected 

information to find an exact classification after further partitioning of node S, is 

measured as follows: 
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where j is the class label of new feature A until v, and Sj  is the subsequent node of S. 

The smaller the expected information, the greater the purity of partitions. 



 

 
18

The difference between the original information impurity and expected 

information is the information gain:
 

Gain(A) = I(S)-E(A) 

Knowing the value of feature A will reduce the information requirement and the 

attribute with the highest information gain will be chosen for splitting.  

Information gain has a drawback that it prefers to select features with large 

number of values. Because a feature with large number of values will provide more 

partitions and will reduce the impurity more than another one with small number of 

values will. For instance, a unique identifier will provide expected information of 0 

and therefore the information gain will be maximal (Han & Kamber, 2006). To 

overcome this bias, gain ratio is introduced, which applies a kind of normalization to 

information gain using split information. The split information is defined as follows: 

SplitI(A) = ⎟⎟
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For each outcome, the number of observations having that outcome with respect to 

the total number of observations in S is considered. On the other hand, information 

gain measures the information with respect to classification that is obtained based on 

the same partitioning. The maximum value of gain ratio is selected for splitting 

which can be calculated with the following equation: 

GainRatio(A) = ( )
( )ASplitI
AGain  

Another measure of impurity is the Gini index that considers a binary split for each 

feature. For discrete features the subset, and for continuous features the split point  

that gives the minimum gini index is selected for splitting. Gini index is expressed as 
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follows: 

Gini(S) = ∑
=

−
m

i
ip

1

21  

Although these splitting measures have some bias, they are used successfully in 

practice. However, growing a tree until the lowest impurity is met at leaf nodes will 

cause overfitting. Thus it is not expected for fully grown trees to generalize the noisy 

problems well. In return, the error will not be low enough and performance of the 

tree will be week, if splitting is stopped early. To overcome these problems, cross-

validation can be used, which will be explained in further sections. Other than cross-

validation, a stopping criterion (pre-pruning approach) can be used by defining a 

threshold value in advance. This approach avoids generating too complex subtrees, 

nevertheless, it is often difficult to set the threshold, because there is rarely a simple 

relationship between the preset threshold and the ultimate performance. Too high 

thresholds will result in underfitted models, while low values may not be sufficient to 

overcome the overfitting problem. 

In pre-pruning approach, there is the risk to cut off the possibility of 

beneficial splits in subsequent nodes by meeting the stopping threshold too early. In 

post-pruning, pruning can be done by merging leaf nodes whose elimination provides 

a satisfactory increase in impurity to an antecedent node. Although this is the most 

common approach, in cost-complexity pruning, a complex subtree can be replaced 

with a leaf directly. Post- pruning approach is more likely to be used with small data 

sets because of computational expense, when building the decision tree. 

Decision tree algorithms automatically derive decision trees from training 

data sets. Most decision tree algorithms adopt top-down recursive approach, which is 

also known as divide-and-conquer during the construction of a decision tree. 
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Algorithms start with partitioning the training data into subsets with the most 

appropriate splitting variable, according to some splitting measure. Until sufficient 

splitting measure is not fulfilled or one of stopping criteria is met, internal nodes 

continue to partition the training data.  

ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART (Breiman, Friedman, 

Olshen, & Stone, 1984) and CHAID (Kass, 1980) algorithms are the examples of 

top-down approach performing decision tree inducers. ID3 and C4.5 algorithms were 

developed in the field of machine learning, whereas CART and CHAID were 

developed in the field of applied statistics. 

The ID3 algorithm is a simple decision tree algorithm, which adopts 

information gain as a splitting criterion and does not perform any pruning method. 

The decision tree stops growing when information gain is not greater than zero or all 

the observations in a node belong to the same class. This algorithm also does not 

work with interval and missing values. As a successor of ID3 algorithm, C4.5 

algorithm uses gain ratio as a splitting criterion and error based pruning. It can 

handle both numeric and missing values. 

The CART (Classification and Regression Trees) algorithm generates binary 

trees using Gini and twoing splitting criteria and cost-complexity pruning. For 

interval targets CART algorithm constructs regression trees and reduction in squared 

error is used as splitting criteria. 

The CHAID (Chi-Squared Automatic Interaction Detection) algorithm uses 

statistical Pearson chi-square for nominal targets, likelihood-ratio for ordinal targets 

and F test for continuous targets, nevertheless does not perform any pruning method. 

Missing values are handled as a single category. CHAID evaluates all values of an 
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input variable and derives least significantly different (the greatest p value) pair of 

values concerning target variable. If the p value is greater than a previously specified 

merge threshold, than CHAID merges these values into a single category. After 

adjusted p values are computed, input variable with the smallest adjusted p value is 

selected and compared with a previously specified splitting level. If p value is 

smaller or equal to the splitting level, splitting continues with the related input 

variable, otherwise no split is performed. CHAID also stops when the stopping rules 

such as maximum tree depth, minimum number of observations in an internal node 

or minimum number of observations in a leaf node are met.  

 

Neural Networks 

 

Neural nets or networks are relatively simple mathematical models that simulate the 

biological nervous system. The common characteristics of neural networks and 

biological neurons are parallel processing of information and learning and 

generalizing from experience. Neural networks are used for many data mining tasks, 

such as pattern classification, time series analysis, prediction and clustering.  

Neural networks can be used when there is a poor relationship between inputs 

and outputs and they are also successful on incomplete and noisy data and classifying 

patterns on which they have not been trained (Han & Kamber, 2006). As a classifier 

type, neural networks are mostly nonparametric unlike the normal linear classifiers. 

No assumption is made about the underlying population distribution. 

Han and Kamber (2006) described neural networks as “a set of connected 

input/output units where each connection has a weight associated with it”. Network 
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learns by adjusting the weights to predict the correct class label of the sample cases.  

The simplest neural network device is single layer perceptron with only one 

input and one output layer of neurons. It is the equivalent of a linear discriminant that 

is simply a weighted scoring function and successful only when the two classes are 

linearly separable (Weiss & Kulikowski, 1991). As an extension to single layer 

perceptron, multilayer perceptron is introduced, which overcomes the restriction of 

linearly not separable problems and consists of one input, one or multiple hidden 

layers, and one output layer. Figure 3 (Tan, Steinbach, & Kumar, 2006) represents a 

multilayer feed-forward network with one hidden layer. 

 

 
Figure 3. Multilayer feed-forward perceptron with one hidden layer 

 

Feed-forward networks consist of nodes that are connected only to the nodes in the 

next layer. None of the weights returns back to an input or output node of a previous 

layer. On the other hand, in recurrent networks nodes in the same layer can be 

connected to each other.  

When designing a network topology, number of nodes in input layer is 

determined by the type of input variables. Each numeric variable is normalized to 

speed up learning and assigned to an input node. Besides each character variable 
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value is encoded as binary variables and like other binary variables each of these are 

assigned to one input node. Only one node in output layer is sufficient if the target is 

binary. If the target variable has n-classes, then the number of output nodes is n. To 

find correct number of hidden layers is a trial-and-error process and may affect the 

accuracy of the network. The initial values of weights and biases, which are chosen 

randomly also affects the accuracy. Therefore, small random numbers will be 

appropriate. 

There are several types of neural network algorithms. Here the most popular 

one, backpropagation, is referred, which performs on multilayer feed-forward 

networks. Figure 4 illustrates the forward processing of information in a hidden or 

output node. 

 

 
Figure 4. Process in a single hidden (output) layer node 

 

Backpropagation algorithm processes each training observation sequentially and 

works iteratively. It starts with propagating the inputs forward, feeding the training 

observation to the input layer and assigning initial weights and bias for the first 

iteration. For an input layer node j, the output Oj is equal to the actual input value Ij 

(Oj =  Ij). For hidden or output layers, the input and output value of each node are 
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computed with the weights obtained from the previous iteration. The input Ij is 

∑ +=
i

jj OI θiij w
 

where wij represents the weight of connection from node i in the previous layer to 

node j, Oi represents the output of node i from previous layer, and θ represents the 

bias. Bias is a threshold that varies the activity in the node. In order to compute the 

output values that are nonlinear, a logistic activation (transfer) function is applied to 

input Ij . 

jIj
e

O −+
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where Oj is the output of the logistic activation function applied on input Ij. As the 

goal is to minimize the mean squared error between predicted and actual target value, 

the weights are modified in backward direction, starting from output layer through 

the hidden layers and input layer. First, the error (Errorj) for each output layer node j 

is computed 

))(1( jjjjj OTOOError −−=  

where Oj is the predicted and Tj  is the actual value of output. Second, the error in 

each hidden layer output is computed. Therefore, from the last to the first hidden 

layer, the weighted sum of the errors of the next higher layer node are taken into 

consideration. 

∑−=
k

jkjjjj wErrorOOError )1(  

where wjk is the weight of the link between node j and the node k in previous layer 

and Errork is the error of node k. 

Finally, the weights and the biases are adjusted. While backpropagation 



 

 
25

learns by a method of gradient descent, there is a risk to meet local minimum instead 

of global minimum when computing the mean square error between prediction and 

actual. Therefore, a constant variable l, namely learning rate is used to compute the 

change. Weights are adjusted as follows 

∑=Δ
k

ijij OErrorlw )(
 

ijijij www Δ+=  

where Δwij is the change in weight wij and biases are adjusted as follows 

∑=Δ
k

jj Errorl)(θ
 

jjj θθθ Δ+=  

where Δθj is the change in bias θi.  

One iteration through all observations of a training set is called an epoch. In 

theory, adjustments are made after all observations of the training set are processed 

and this approach is called epoch updating. However in practice, adjustments after 

training each observation give more accurate results. 

Backpropagation stops training when the changes in weights are smaller than 

a predefined threshold, misclassification rate is below a predefined threshold or 

maximum number of iterations has reached. 

Neural networks are poorly interpretable, because the importance of 

independent variables is difficult to be measured as independent variables are 

associated with both hidden and output layer weight estimates. These estimated 

weights don’t explain the degree or rate of change in the relationship between the 

dependent and independent variables in the model. Hence, several methods were 

developed to extract rules from trained networks. These can be grouped into 
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following categories (Chakraborty and Chakraborty, 1999):  

• Algorithms that extract rules by analyzing the effect of an individual input on 

an individual output as a whole. 

• Algorithms that examine the effect of the inputs on activation of the hidden 

units and extract rules by clustering inputs. 

• Algorithms that try to interpret the connection weights to find out decision 

rules. 

• Algorithms that extract rules by analyzing the function learned by the neural 

net and the effects of the input on learned function. 

 

Logistic Regression 

 

Logistic regression is a predictive modeling technique, a special form of regression, 

which is developed for binary categorical targets. It finds out the relationship 

between two or more independent variables and a single binary dependent variable.  

Logistic regression differs from multiple regression by the type of dependent 

variable, estimation methods, and assumptions about the underlying distribution 

(Hair, Anderson, Tatham, & Black, 1998). It violates two assumptions of linear 

regression: Instead of a normal distribution, the error term of discrete variables 

follows the binomial distribution and the variance of a binary variable is not 

constant.  

On the other hand, logistic regression differs from multiple discriminant 

analysis, another multivariate technique, by being less affected when the basic 

assumptions, particularly normality of the variables are not met (Hair, Anderson, 
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Tatham, & Black, 1998).  

Logistic regression predicts the probability of an event occurring, however to 

hold the predicted value in a range of zero and one, it uses an S-shaped logistic curve 

that symbolizes a relationship between independent and dependent variables. 

Figure 5 illustrates a logistic curve drawn for a single independent variable x. 

At very low values of the independent variable, probability approaches to zero. For a 

certain range of intermediate values, probability increases rapidly and at very high 

values, it approaches to one, but never exceeds these boudaries. 

 
Figure 5. Logistic curve 

 

Given several independent variables, logistic function is defined as the following 

equation, 

pi = )( nnjje χβχβχβχβα ++++++−+ ......22111
1

 

where α is the intercept, βj is the coefficient of independent variable xj  and pi is the 

probability of the binary dependent variable y being 1. P(y = 1) = pi, P(y = 0) = 1- pi 

In order to obtain the unknown parameters, the intercept (α) and the 

coefficients (βj), logistic regression uses maximum likelihood method because of its 

nonlinear structure. Therefore, likelihood value is used to calculate the measure of 
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overall model fit. On the other side, multiple regression mostly uses least squares 

method to estimate the coefficients and sum of squares for the measure of overall 

model fit. 

To transform the values of binary dependent variable into logistic curve that 

represents the probability of an event, logit transformation is used.  

logit(pi) = nnjj
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logit transformation is the log of odds ratio, which is an important measure for 

logistic regression that compares the probability of an event with the probability of 

an event not happening, and is calculated as follows: 

Odds ratio (OR) = 
p

p
−1  

The estimated coefficient βj in logit function represent the changes in log odds ratio 

for a unit change in χj. Positive coefficient values increase; negative coefficients 

decrease the predicted probability. For instance, if βj is positive, its transformation 

will be greater than 1, the odds ratio will increase and therefore, the model will 

predict y = 1 better. 

In order to test the significance of estimated coefficients, Wald statistic is 

mostly used (Hair, Anderson, Tatham, & Black, 1998). It can be interpreted like F or 

t values used for significance testing of regression coefficients. The Wald statistic is 

not used when the coefficient is extremely large, especially when there is a binary 

independent variable with a mean closer to 0 or 1. In such situations, likelihood ratio 

or score statistic, a measure of association in logistic regression, should be used. 

Logistic regression maximizes the likelihood of the dependent variable being 

1 (y = 1), whereas multiple regression minimizes the squared deviations. Likelihood 
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measure is an overall measure of goodness of fit and used as -2 times the log of the 

likelihood value. It is referred to as -2 log likelihood or -2LL. The smaller values of -

2LL indicate good models. The change in -2LL with chi-square test and significance 

also provide a measure of improvement in model when a new independent variable is 

added. In order to measure the change, a Pseudo R-Square is calculated by using the 

information from the -2LL for the full model and the intercept only with the 

following equation: 

)(-2LL
)(-2LL - )(-2LL

null

modelnull2 =RPseudo  

where -2LLnull is -2LL of only the intercept model and -2LLmodel is -2LL of the final 

model (Hair, Anderson, Tatham, & Black, 1998). This pseudo R-Square is known as 

McFadden’s R-Square and it can be as low as zero but can never be one.  

Another measure of assessment is the Hosmer & Lemeshow measure of 

overall model fit. This measures the correspondence of the actual and the predicted 

values of dependent variable. For this measure, the greater is the significance value, 

the more similar are the observed and predicted classifications. 

 

 Classifier Accuracy 

 

This section summarizes classifier accuracy and methods for estimating and 

increasing the accuracy. Classification models are built on a training set that consists 

of records whose class labels are known, and if needed, a validation set can be used 

for model fine-tuning (e.g. for pruning a decision tree). Most classification 

algorithms seek for models, which perform successfully on previously unseen test 
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data set. The success is measured either by classifier’s accuracy or error rate. 

Accuracy reflects the overall correctness of the classifier, and calculated as follows. 

nsobservatioofnumber
spredictioncorrectofnumberAccuracy =  

The error rate is the ratio of the number of errors to the number of observations, 

where the error is simply misclassification, the number of cases that the classifier 

classified incorrectly.  

nsobservatioofnumber
errorsofnumberRateError =

 

Error rate is also calculated as 1- Accuracy. 

As the classification models are built on a training set, error represents only 

the misclassification on the training set and is called the training error. The expected 

error on previously unseen test data set is called generalization error. A good model 

is expected to have both low training and low generalization error. If a model with 

low training error has a higher generalization error than a model with higher training 

error, then this is called overfitting (Tan, Steinbach, & Kumar, 2006). When a model 

is overfitted, after a certain point, generalization error starts to increase, while 

training error continues to decrease. If a model has not learned the pattern well, and 

performs poorly, then it has high training and generalization error rates and this is 

called underfitting (Tan, Steinbach, & Kumar, 2006).  Both overfitting and 

underfitting are originated from model complexity. 

In order to build a model that has the appropriate level of complexity to avoid 

overfitting, lowest generalization error is sought. Hence, several methods for 

estimating the generalization error are used during training. After the model is built, 

it can be tested on a data set, which is unknown to training model before. 
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In some fields like medicine, the distinctions among different types of errors 

are important. For such cases, confusion matrix that lists the actual against predicted 

classification can be used. Figure 6 represents a confusion matrix, where a binary 

target is modeled. 

  Actual 
   1 0 

Pr
ed

ic
te

d 1 True Positive 
(TP) 

False Positive 
(FP) 

0 False Negative 
(FN) 

True Negative 
(TN) 

Figure 6. Confusion matrix for binary target 
 

In medicine, false negatives and false positives are not treated equally, especially in 

life-threatening illnesses. Diagnosing a healthy person with cancer is expected to be 

determined later with further tests however, treating a cancer patient as healthy may 

cause death. Besides, accuracy rate of 90% does not provide much information, 

where no information about the true positive rate is given. Therefore, measures like 

sensitivity and specificity are widely used, which are derived from confusion matrix 

(Tan, Steinbach, & Kumar, 2006). Sensitivity is the proportion of positive 

observations, whereas specificity is the proportion of negative observations that are 

correctly classified. The formulas of sensitivity and specificity regarding confusion 

matrix are as follows: 

FNTP
TPySensitivit
+

=  

FPTN
TNySpecificit
+

=  

A graphical approach that shows the trade-off between the sensitivity (also known as 

true positive rate) and 1-specificity (false positive rate) for a given model is the 
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Receiver Operating Characteristic (ROC) curve (Han & Kamber, 2006). ROC curve 

also allows for comparing the relative performance among several classifiers. Figure 

7 shows the ROC curves of classifiers M1 and M2. 

 
Figure 7. ROC curves for classifiers M1 and M2 

 

Figure also represents a diagonal base line, where for every true positive; it is equally 

likely to find a false positive. This could be a model that makes random guesses. 

Hence, the closer the ROC curve of a model to this base line, the less accurate the 

model and it is suggested to operate always above this line, where true positive rate 

is always greater than false positive rate. An ideal model would be at the point where 

true positive rate is 1 and false positive rate is 0. So, a good model should be as close 

as possible to the upper left corner of the diagram. Area under ROC curve (AUC) is 

also used to assess the accuracy of a model and is equal to 1 if the model is perfect, 

equal to 0.5 if the model makes random guesses. 
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Costs and benefits can also be incorporated by computing the average cost 

and benefit per decision using confusion matrix. A misclassification cost is simply a 

number that is assigned as a penalty for making a mistake. By assigning different 

costs to different types of error, they can be outweighed over another. For instance, 

in cancer diagnosis false negatives can be assigned a cost twice the false positives. 

The same logic can also be applied for benefits, where benefit numbers reward the 

true predictions. 

 

Accuracy Estimation Methods 

 

Training error rate poorly estimates the future performance and tends to be biased 

optimistically. On the other hand, partitioning the data into train and test samples, 

and measuring the performance of the classifier on test sample provides unbiased 

estimates of generalization error. Accuracy and error rate of test samples can also be 

used to compare different classifiers. In order to make an overview of the methods to 

assess the accuracy holdout, random subsampling, cross-validation, and bootstrap 

methods are introduced in this section. 

Holdout method is a basic method for evaluating the classifier’s accuracy. 

Data set is partitioned into two subsets, training and test respectively. Typical ratio 

for partitioning is 2/3 for training and 1/3 for test set (Weiss & Kulikowski, 1991). 

The classifier is trained on training set and its accuracy is estimated with test set. 

Holdout method is not suitable for small samples, considering the insufficient sizes 

of subsets for both training and test. 

Random subsampling method lets the classifier run on more than one 
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different train and test samples and provides the average of accuracies as the overall 

accuracy estimate. It can produce better results than a single train and test partition. 

Cross-validation method basically uses each record the same number of times 

for training and exactly once for testing. It has three different variations and all of 

them are iterative (Tan, Steinbach, & Kumar, 2006). In k-fold cross-validation, data 

is partitioned into k equal-sized partitions. In each iteration a different partition is 

selected as test sample and the classification algorithm derives the pattern from the 

rest. The average of the accuracies that are derived from each iteration provides the 

overall accuracy. A special case of k-fold cross-validation, where k is equal to the 

number of sample cases, is leave-one-out cross validation. Only one sample case is 

used for testing in each iteration. Although it is computationally expensive, it is 

almost an unbiased estimator of the generalization error. In stratified cross-

validation, the partitions are stratified so that the class distribution of target variable 

is approximately the same as the original sample. The great advantage of cross-

validation method is that all cases in original sample are used for test, and almost all 

of them are used for training. While for small samples (ca. 30 cases) leave-one-out 

method is suggested, for moderate and large samples 10-fold cross-validation is 

suggested. 

Unlike the methods mentioned before, bootstrap method samples the training 

set with replacement. Sampling with replacement means that the training cases are 

drawn from the data set and put back into the original data set after they are used. 

Thus duplicate records are allowed in the training data set. .632 bootstrap is a 

commonly used bootstrap estimator. When the original data set has N observations, it 

is shown that a bootstrap with N observations contains 63.2% of all the observations 
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in original data set. The observations that are not included in bootstrap sample are 

used as the test sample and the sampling procedure is repeated k times. The overall 

accuracy is computed by combining the accuracies of each bootstrap sample 

(Acc(Mi)test) with the accuracy computed from a training set that contains all the 

labeled examples in the original data set (Acc(Ms)train) where M represents the 

classifier. The formula for overall accuracy is as follows: 

))(368.0)(632.0(1)(
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trainstesti

k

i
MAccMAcc

k
MAcc ×+×= ∑

=

 

Although bootstrap method is not always superior to leave-one-out cross-validation 

method on small data sets, it is preferred while leave-one-out method has a high 

variance. 

 

Accuracy Improving Methods 

 

In addition to accuracy evaluation methods, this section introduces the methods that 

increase the accuracy of a classifier. Accuracy of decision tree classifiers can be 

increased with pruning. Other than decision trees, in general, ensemble methods like 

bagging and boosting help to increase the accuracy by combining a series models to 

create an improved composite model.  

Bagging is also known as bootstrap aggregation and uses sampling with 

replacement method to create training and test samples, which makes it less 

susceptible to overfitting when applied to noisy data (Han & Kamber, 2006). One or 

several classification algorithms are applied on each training set and return their class 

predictions. Each prediction is taken as a vote, and majority vote is assigned as the 

final class by the bagged classifier. Bagging can also be applied to continuous valued 
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targets by taking the average value of each prediction for a given test observation. 

Figure 8 (Tan, Steinbach, & Kumar, 2006) represents the basic procedure for 

bagging algorithm. 

 
Figure 8. Bagging algorithm 

 

After training the classifiers, an observation is assigned to the class that has the 

majority vote. The bagged classifier has significantly greater accuracy than a single 

classifier. However, as it decreases the generalization error by reducing the variance 

of the base classifiers, the performance depends on the stability of the base 

classifiers. If a base classifier is unstable, by reducing the errors associated with 

random fluctuations in training data, the accuracy can be increased. On the other 

hand, if a base classifier is stable, the error of the bagging classifier is primarily 

caused by bias in the base classifier and bagging may not be able to improve the 

performance significantly, even it may decrease the performance as the training set 

used contains only the 63% of the original data set. 

The other method for increasing the accuracy is boosting, which iteratively 

changes the distribution of observations in the training set to focus on observations 

that are hard to classify (Tan, Steinbach, & Kumar, 2006). There are several boosting 

algorithms, which differ in the way the weights are updated at the end of each 

boosting round and the way the predictions of each classifier are combined. 
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Adaboost is a popular boosting algorithm proposed by Freund and Schapire, where 

the importance of a base classifier (Mi) depends on its error rate. Figure 9 (Tan, 

Steinbach, & Kumar, 2006) represents the basic procedure of AdaBoost. 
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Figure 9. AdaBoost boosting algorithm 

 

Boosting changes the distribution by assigning a weight to each training observation. 

Training sets are formed by sampling with replacement regarding these weights. 

Hence, an observation can be selected more than once. In each boosting round, a 

classifier is learned on the selected training set and at the end weights are updated. 

Initial weight for all observations is 1/N where N is the number of training 

observations. Thus each observation has the equal probability of being selected at the 

beginning. Afterwards, for the observations that are misclassified, the weights are 

increased and for those that are correctly classified, the weights are decreased and 
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each subsequent classifier is trained on a set which contains observations with higher 

weights. At the end, boosting classifier takes a weighted average of the predictions 

made by each classifier as its final prediction.  

 

Medical Data Mining 

 

Knowledge management and data mining techniques are adopted in various 

successful biomedical applications in recent years. Knowledge management 

techniques and methodologies have been used to support the management of 

multimedia and mission critical tacit and explicit biomedical knowledge. Data 

mining techniques have been used to discover various biological, drug discovery, and 

clinical diagnosis and prognosis patterns using selected statistical analyses, machine 

learning and neural networks methods. (Chen, Fuller, Friedman, & Hersh, 2005). 

Several data mining techniques from different research fields are used in 

biomedical applications (Chen, Fuller, Friedman, & Hersh, 2005). Statistical 

techniques such as regression analysis, discriminant analysis, time series analysis, 

principal component analysis, and multi-dimensional scaling are used widely as 

benchmarks for comparison with other techniques, such as Bayesian learning from 

pattern recognition. Bayesian learning has been widely used in biomedical data 

mining research, in particular, genomic and microarray analysis. Other techniques 

from machine learning are rule induction/decision trees and support vector machines 

(SVMs) that are also suitable for various biomedical classification problems, such as 

disease state classification based on genetic variables or medical diagnosis based on 

patient indicators. Artificial neural networks have been also used in experiments and 
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critical biomedical classification and clustering problems due to their predictive 

power and classification accuracy. 

The disease identification, diagnosis and the prediction of patient outcome, 

prognosis are the fundamental activities of medicine, which can be investigated using 

probabilistic models. The desirable features of a general clinical probability model 

are listed by Dybowski and Roberts (2005) as follows: high accuracy, namely 

predicting classes correctly, high discrimination or in other words the lowest possible 

misclassification rate, accessible interpretation that explains input-output relations 

instead of a black box model, short construction time if the model is being updated 

regularly with new data, short running time particularly for real-time applications, 

robust to missing data that are a common problem in medical data sets and ability to 

incorporate pre-existing knowledge in order to aid model development and ease the 

interpretation of a model. 

According to Braithwaite, Dripps, Lyon, and Murray (2001), when 

developing a system for a medical application, when comparing the results of above 

mentioned techniques, the selectivity measure that represents the false alarm rate of 

the system is very important, especially when the clinical system requires low levels 

of false alarm. Besides, sensitivity is of extreme importance as it shows the number 

of actual occurrences of a condition remain undiagnosed. 
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CHAPTER 4 

 

PROBLEM STATEMENT 

 

This chapter defines the aim of this study, introduces the dataset and data 

preprocessing steps before applying classification techniques. All analysis in the 

study was generated using SAS Enterprise Miner® software, Version 5.3 of the SAS 

System for Unix. 

 

Problem Definition 

 

The increasing number of hospital infection incidents with considerable physical and 

moral costs causes worries in health care environment. The aim of this research 

project is to discover a pattern with prominent reasons of hospital infections on 

newborn by applying data mining techniques on the data collected in Eskişehir 

Osmangazi University Practice and Research Hospital.  

The greatest challenge in handling the data analysis was similar to most other 

medical data problems such as small sample size, difficulties in measuring attributes, 

inconsistencies due to manual data collection and missing values. In order to 

overcome these problems, domain knowledge was investigated; expert opinion and 

related assumptions were taken into consideration. 

KDD process was strictly followed in the study to avoid interesting but 

meaningless and for end-user useless results. 
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Data Description 

 

The data is provided by Department of Clinical Microbiology and Infectious 

Diseases, Eskişehir Osmangazi University, Faculty of Medicine from the study to 

determine the prominent indicators of hospital infections and to prepare a form to 

track the progress of these indicators in newborn unit overall Turkey. 

The data were collected between January 1, 2005 and December 31, 2005 in 

the NICU with a capacity of serving 16 patients. During the observation period 545 

patients admitted to the unit and 120 of them were diagnosed with hospital 

infections. 102 attributes representing those patients were collected. Common 

characteristics of these attributes are related to patient, medical problem and 

treatment: 

• information about the patient such as gestational age, weight, premature, 

congenital anomaly, 

• indicators of particular medical problems such as meconium aspiration 

syndrome, acute renal failure, perinatal asphyxia, and 

• indicators of particular medical treatments such as phototherapy, mechanical 

ventilation, catheter or antibiotic usage. 

Variables such as lab-, antibiotics-, and hospital-costs, types of infections, types of 

bacteria causing the infection, C-reactive protein test results as an indicator of 

infection and exitus as the indicator of death were excluded in the study, as they were 

determined during/after the diagnosis. The list of 83 variables considered in the study 

is presented in Table 1. The dependent variable is HospInfec. If the newborn is 

infected, the variable takes the value of “1”, else “0”.  
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Table 1. List of Variables 
Variable Type Explanation 

AgeDay Ratio Age of the observation in days as of NBU admission 

AntibioticUsage 
Nominal 
(Binary) Indicator of antibiotic usage 

APGAR Ordinal APGAR score of the observation 

ARF 
Nominal 
(Binary) Indicator of acute renal failure 

Aspiration 
Nominal 
(Binary) Indicator of aspiration 

AspirDur Ratio Aspiration duration 

BirthOption 
Nominal 
(Binary) Indicator of birth option: c-section or normal 

BirthPlace 
Nominal 
(Binary) Indicator of birth place: inside or outside a health center 

BirthWeek Ratio Gestational age 

BirthWGroup2 
Ordinal 
(Binary) 

Gestational age in 2 groups (0: BirthWeek =<32, 1: BirthWeek 
>32) 

BirthWGroup4 Ordinal 
Gestational age in 4 groups (1: BirthWeek =<28, 2: 28< 
BirthWeek =<32, 3: 32< BirthWeek =<36, 4: BirthWeek >36) 

CatRelBloodFlow 
Nominal 
(Binary) Indicator of catheter-associated blood flow infection 

CentCatDur Ratio Central Catheter Duration 

CentCatheter 
Nominal 
(Binary) Indicator of centeral catheter usage 

ChestTube 
Nominal 
(Binary) Indicator of chest tube 

Chorioamnio 
Nominal 
(Binary) Indicator of chorioamnionitis 

CongAno 
Nominal 
(Binary) Indicator of congenital anomaly 

CutDown 
Nominal 
(Binary) Indicator of cut down 

DetailBirthPlace Nominal 
Detailed Birth Place: Birth Center, Hospital, OGU Hospital, 
Home, Other 

EMR 
Nominal 
(Binary) Indicator of early membrane rupture 

ENDur Ratio Enteral nutrition duration in days 

EnteralNut 
Nominal 
(Binary) Indicator of enteral nutrition 

Gender 
Nominal 
(Binary) Gender of the observation (0: boy, 1: girl) 

h2blockPPI 
Nominal 
(Binary) Indicator of H2 blockers or Proton-pump inhibitors (PPIs) 

HBM 
Nominal 
(Binary) Indicator of hyperbilirubinemia 

HospDur Ratio Hospital duration in days 

HospDurLong2 
Ordinal 
(Binary) 

Indicator of long hospital duration, long if duration is greater than 
or equal to 7 days 

HospInfec 
Nominal 
(Binary) Indicator of hospital infections 
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Table 1. Continued 
Variable Type Explanation 

HydropsFetalis 
Nominal 
(Binary) Indicator of hydrops fetalis 

Immunosupp 
Nominal 
(Binary) Indicator of immunosuppression 

InfectionDur Ratio Infection duration 

ICU 
Nominal 
(Binary) Indicator of newborn intensive care unit (NICU) stay 

ICUDur Ratio Duration in NICU 

Intubation 
Nominal 
(Binary) Indicator of intubation 

IntubDur Ratio Intubation duration 

Invasive 
Nominal 
(Binary) Indicator of invasive procedures 

IUGR 
Nominal 
(Binary) Indicator of intrauterine growth restriction 

LBW 
Nominal 
(Binary) Indicator of low birth weight 

LowAPGAR 
Nominal 
(Binary) Indicator of low APGAR score, low if score is less than 5 

LowGISBleed 
Nominal 
(Binary) Indicator of low gastrointestinal system bleeding 

MecAspSyn 
Nominal 
(Binary) Indicator of meconium aspiration syndrome 

MechVent 
Nominal 
(Binary) Indicator of mechanical ventilation 

NasogTube 
Nominal 
(Binary) Indicator of nasogastric intubation 

Ncpap 
Nominal 
(Binary) Indicator of nasal continuous positive airway pressure (nCPAP)  

NcpapDur Ratio Nasal continuous positive airway pressure (nCPAP) duration 

NgUseDur Ratio Duration of nasogastric tube usage 

NurseNum Ratio Number of nurses serving in NBU as of patient's admission 

OgUseDur Ratio Duration of orogastric tube usage 

Oligohyd 
Nominal 
(Binary) Indicator of oligohydramnios 

OrogTube 
Nominal 
(Binary) Indicator of orogastric intubation 

PAsphyxia 
Nominal 
(Binary) Indicator of perinatal asphyxia 

PatientNum Ratio Number of patients in NBU as of patient's admission 

PerCatDur Ratio Peripheral Catheter Duration 

PeripCatheter 
Nominal 
(Binary) Indicator of peripheral catheter usage 

Phlebotomy 
Nominal 
(Binary) Indicator of phlebotomy 

PhototerDur Ratio Phototherapy duration 

Phototherapy 
Nominal 
(Binary) Indicator of phototherapy 
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Table 1. Continued 
Variable Type Explanation 

Polycythemia 
Nominal 
(Binary) Indicator of polycythemia 

PPV 
Nominal 
(Binary) Indicator of positive pressure ventilation 

PPVDur Ratio Positive pressure ventilation duration 

Premature 
Nominal 
(Binary) Indicator of premature birth 

Preterm 
Nominal 
(Binary) Indicator of preterm parturition syndrome 

RDS 
Nominal 
(Binary) Indicator of respiratory distress syndrome  

SteroidUsage 
Nominal 
(Binary) Indicator of steroid usage 

SurgInterv 
Nominal 
(Binary) Indicator of surgical intervention 

TPN 
Nominal 
(Binary) Indicator of total parenteral nutrition 

TPNDur Ratio Total parenteral nutrition duration 

TPNLipid 
Nominal 
(Binary) Indicator of total parenteral feeding including lipids 

Trakeos 
Nominal 
(Binary) Indicator of tracheostomy 

TTN 
Nominal 
(Binary) Indicator of transient tachypnea of newborn 

Twin 
Nominal 
(Binary) Indicator of twin sister/brother 

UmbCatDur Ratio Umbilical Catheter Duration 

UmbCatheter 
Nominal 
(Binary) Indicator of umbilical catheter usage 

UriCatDur Ratio Urinary Catheter Duration 

UriCatRelUrinary 
Nominal 
(Binary) Indicator of urinary catheter-associated urinary infection 

UrinCatheter 
Nominal 
(Binary) Indicator of urinary catheter usage 

VenDur Ratio Ventilation Duration 

VenRelPneum 
Nominal 
(Binary) Indicator of ventilatory-associated pneumonia 

Weight Ratio Weight of the observation at birth 

WeightGroup2 
Ordinal 
(Binary) Birth weight in 2 groups (0: Weight > 2500, 1: Weight =< 2500) 

WeightGroup3 Ordinal 
Birth weight in 3 groups (1: Weight =<1500, 2: 1500< Weight 
=<2500, 3: 2500< Weight) 

WeightGroup5 Ordinal 

Birth weight in 5 groups (1: Weight =<1000, 2: 1000< Weight 
=<1500, 3: 1500< Weight =< 2000, 4: 2000< Weight =<2500, 5: 
Weight >2500) 

WrappedCord 
Nominal 
(Binary) Indicator of wrapped cord 
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Variables that indicate either a treatment type or a device used during the treatment 

were structured in both nominal (binary) and ratio, such as phototherapy treatment 

(applied or not) and phototherapy treatment duration, or peripheral catheter usage 

(used or not) and peripheral catheter usage duration. Some ratio-scaled variables 

such as birth week and weight were used to create derived variables in ordinal scale, 

such as BirthWeekGroup2 (binary) and BirthWeekGroup4, or WeightGroup2 

(binary), WeightGroup3, WeightGroup4. 

 

Data Preprocessing 

 

Before applying the classification algorithms, data were cleaned, important features 

were identified and data were transformed into appropriate forms. Dataset was 

checked for duplicate variables with correlation and chi-square analysis. No 

duplicates were detected. 

 

Data Cleaning 

 

According to descriptive data analysis; inconsistencies and incomplete variables 

were identified. Inconsistencies in the dataset that arose from manual coding 

mistakes were eliminated through data provider’s support and related assumptions. 

The most important assumption was to check the binary indicators with their 

associated duration variables: If the duration variable is greater than zero, then binary 

indicator is one, else zero. All binary variables having the same condition were 

checked with the rule and for 5 variables including intubation, peripheral catheter, 
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urinary catheter, phototherapy and intensive care unit stay, necessary corrections 

were done. Similar check for group variables such as HospDurLong2, 

WeightGroup2, WeightGroup3, WeightGroup5, BirthWGroup2, BirthWGroup4, 

which were derived from other continuous variables, was also done and errors in 

these variables were corrected. Apart from these assumptions, BirthPlace variable, 

which indicates the birth inside/outside a health center, was inconsistent with 

DetailBirthPlace variable. Therefore, this variable was excluded and a new variable 

was defined as BirthHealthCenter that fulfills the definition of the existing variable. 

Table 2 represents an example for identified inconsistencies where the binary 

indicator of phototherapy treatment of five observations were assigned as “yes”, 

whose phototherapy treatment duration were zero and phototherapy treatment of 

three observations were assigned as “no”, whose phototherapy treatment duration 

were 3 and 14 days. 

Table 2. Example for Inconsistency: Phototherapy Treatment vs. Duration 
  PhototerDur 
Phototherapy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19

0 190 . . 2 . . . . . . . . . . 1 . . . . 
1 5 19 72 87 61 37 18 12 11 8 6 3 2 1 5 1 1 2 1

Before Data Cleaning 

  PhototerDur 
Phototherapy 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19

0 195 . . . . . . . . . . . . . . . . . . 
1 . 19 72 89 61 37 18 12 11 8 6 3 2 1 6 1 1 2 1

After Data Cleaning 

 

After eliminating inconsistencies, in order to enrich the data, new variables were 

created such as weight-birth week ratio, in order to create a growth index for 

newborn infants. Other variables were created as ratios for ICU, Aspiration, Urinary 

Catheter, Peripheral Catheter, Enteral Nutrition, TPN, and Intubation durations, in 
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order to identify the percentage of treatment duration to overall hospital stay. 

Variable that represents detail birth place was also used to derive binary variables for 

each category. Table 3 introduces the type and formula of each new derived variable. 

Table 3. Derived Variables 
New Variable Type Formula 
WeightBWeekRat Ratio Weight / BirthWeek 
ICUDurRat  Ratio ICUDur / HospDur 
AspirDurRat  Ratio AspirDur / HospDur 
UriCatDurRat  Ratio UriCatDur / HospDur 
PerCatDurRat  Ratio PerCatDur / HospDur 
ENDurRat  Ratio ENDur / HospDur 
TPNDurRat  Ratio TPNDur / HospDur 
IntubDurRat  Ratio IntubDur / HospDur 

BirthPlaceOGU 
Nominal 
(Binary) if DetailBirthPlace = 'OGU' then 1 else 0 

BirthPlaceHosp 
Nominal 
(Binary) if DetailBirthPlace = 'Hospital' then 1 else 0 

BirthPlaceBCent 
Nominal 
(Binary) if DetailBirthPlace = 'Birth Center' then 1 else 0 

BirthPlaceHome 
Nominal 
(Binary) if DetailBirthPlace = 'Home' then 1 else 0 

BirthPlaceOth 
Nominal 
(Binary) if DetailBirthPlace = 'Other' then 1 else 0 

BirthHealthCenter 
Nominal 
(Binary) 

if DetailBirthPlace in ('OGU','Birth Center','Hospital') 
then 1 else 0 

 

If any value of existing variables was missing, the value of new derived variable was 

also remained missing.  

In order to identify the basic characteristics of the data set descriptive data 

analysis was conducted. Following tables Table 4 and Table 5 represent the 

descriptive statistics for continuous and discrete variables respectively. 
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Table 4. Descriptive Statistics for Continuous Variables 

Variable Mean 
Standard 
Deviation 

Non 
Missing Missing Minimum Median Maximum

AgeDay 2.54 4.889 545 0 0 1 46
AspirDur 1.16 6.714 544 1 0 0 102
AspirDurRat 0.04 0.133 544 1 0 0 1
BirthWeek 36.66 3.007 545 0 25 38 42
CentCatDur 0.01 0.3 545 0 0 0 7
ENDur 3.44 6.118 505 40 0 0 45
ENDurRat 0.34 0.429 505 40 0 0 1
HospDur 11.49 12.395 545 0 2 7 102
ICUDur 2.17 8.511 545 0 0 0 102
ICUDurRat 0.08 0.215 545 0 0 0 1
InfectionDur 0 0 321 224 0 0 0
IntubDur 1.59 6.995 545 0 0 0 102
IntubDurRat 0.07 0.194 545 0 0 0 1
NcpapDur 1.24 3.011 545 0 0 0 22
NgUseDur 1.21 6.456 545 0 0 0 72
NurseNum 2.00 0.066 227 318 2 2 3
OgUseDur 1.16 4.411 545 0 0 0 37
PatientNum 13.84 0.975 306 239 10 14 16
PerCatDur 9.1 12.274 545 0 0 5 102
PerCatDurRat 0.71 0.379 545 0 0 0.89 1
PhototherDur 2.77 3.178 545 0 0 2 19
PPVDur 0.12 0.455 545 0 0 0 5
TPNDur 4.72 11.307 545 0 0 0 102
TPNDurRat 0.19 0.313 545 0 0 0 1
UmbCatDur 0.12 0.564 545 0 0 0 7
UriCatDur 0.13 1.508 545 0 0 0 30
UriCatDurRat 0.01 0.06 545 0 0 0 1
VenDur 1.28 6.784 545 0 0 0 102
Weight 2734.99 800.807 545 0 400 2850 4700
WeightBWeekRat 73.54 17.836 545 0 13.333 75.14 120.51
 

For discrete variables, cross tabulations were prepared which can be found in 

Appendix B. Following Table 5 represents chi-square and p-value for each discrete 

variable. 
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Table 5. Descriptive Statistics for Discrete Variables 
Input Chi-Square P-Value

AntibioticUsage 26.911185 <0.0001

APGAR 13.346331 0.2049

ARF 0.0365955 0.8483

Aspiration 20.524689 <0.0001

BirthHealthCenter 0.6340545 0.4259

BirthOption 0.021441 0.8836

BirthPlace 13.873498 0.0002

BirthPlaceBCent 4.0763363 0.0435

BirthPlaceHome 2.0021867 0.1571

BirthPlaceHosp 2.4926842 0.1144

BirthPlaceOGU 6.6093551 0.0101

BirthWGroup2 12.538471 0.0004

BirthWGroup4 16.732231 0.0008

ChestTube 0.3779645 0.5387

CongAno 1.85E-04 0.9891

DetailBirthPlace 11.542171 0.0211

EMR 0.4051757 0.5244

EnteralNut 17.308259 <0.0001

Gender 0.8463565 0.3576

h2blockPPI 10.243074 0.0014

HBM 1.844177 0.1745

HospDurLong2 24.515363 <0.0001

ICU 9.295349 0.0023

Intubation 20.969687 <0.0001

Invasive 0.8261434 0.3634

IUGR 0.0314932 0.8591

LBW 0.3672531 0.8322

LowAPGAR 0.1159999 0.7334

MecAspSyn 1.16E-04 0.9914

MechVent 20.315967 <0.0001

NasogTube 16.983699 <0.0001

Ncpap 8.3718351 0.0038

Oligohyd 0.3779645 0.5387

OrogTube 16.37782 <0.0001

PAsphyxia 5.311544 0.0212

PeripCatheter 18.811749 <0.0001
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Table 5. Continued 
Input Chi-Square P-Value

Phototherapy 0.4008332 0.5267

Polycythemia 1.8011659 0.1796

PPV 2.0425357 0.153

Premature 5.2256219 0.0223

Preterm 3.2915096 0.0696

RDS 8.3421977 0.0039

SteroidUsage 14.477049 0.0001

SurgInterv 16.568147 <0.0001

TPN 10.92501 0.0009

TPNLipid 10.567862 0.0012

TTN 0.5295585 0.4668

Twin 0.1599636 0.6892

UmbCatheter 0.0092188 0.9235

UrinCatheter 41.164504 <0.0001

VenRelPneum 14.238025 0.0002

WeightGroup22 3.1516744 0.0758

WeightGroup3 7.0671625 0.0292

WeightGroup5 7.466892 0.1132

WrappedCord 0.9502869 0.3296
 

Missing values were handled differently for different classification techniques. 

Though, variables with a high percentage of missing values were excluded from the 

study at the beginning, such as variables PatientNum and NurseNum, indicating the 

number of patients and nurses in NICU as of observation’s admission, while each 

had a 43.9% of missing. 

For logistic regression and neural networks, missing values of all types of 

variables were handled with decision tree induction, where replacement values were 

estimated by analyzing each incomplete variable as a dependent variable, and the 

remaining variables were used as independent variables. Table 6 represents the 

variables, their new names used in the model and the number of missing values that 

were replaced with the estimates of decision tree induction.  
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Table 6. Handling Missing Values with Decision Tree Induction 
Variable 
Name 

Impute 
Method Imputed Variable 

Variable 
Type 

Number of 
Missing 

Percentage 
of missing

APGAR Tree IMP_APGAR Ordinal 106 19.45
AspirDur Tree IMP_AspirDur Interval 1 0.18
AspirDurRat Tree IMP_AspirDurRat Interval 1 0.18
ENDur Tree IMP_ENDur Interval 40 7.34
ENDurRat Tree IMP_ENDurRat Interval 40 7.34
LowAPGAR Tree IMP_LowAPGAR Binary 106 19.45
VenRelPneum Tree IMP_VenRelPneum Binary 1 0.18

 

For different decision tree classification algorithms, missing values were either used 

in search for a split or they were assigned to the largest branch.  

When using missing values in search for a split on an input, all observations 

with missing values were assigned to the same branch. The branch might or might 

not contain other observations. Missing values were treated as having the same 

unknown non-missing value for continuous variables and as a separate category for 

categorical variables. Thus the worth of split was computed with the same number of 

observations for each dependent variable and an association of the missing values 

with the values of independent variable could contribute to the predictive ability of 

the split (SAS Help and Documentation, n.d.).  

 

Data Reduction  

 

Constant variables (variables with a single value) were checked and tracheostomy 

indicator (Trakeos) was eliminated, as this method was not applied on any newborn. 

Central catheter duration variable (CentCatDur) whose distribution was too narrow 

was also eliminated from all models. In order to reduce the number of variables that 

were used in different models, heuristic feature subset selection methods were used. 
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Before decision trees no data reduction technique was used, while decision 

tree induction can already be used for data reduction (variable selection). For logistic 

regression, from variables that represent the same feature, the one with more distinct 

values were selected except the variables UriCatDur and UrinCatheter. Instead of 

UriCatDur whose distribution was too narrow, nominal (binary) variable 

UrinCatheter was selected. Thus following variables were eliminated from logistic 

regression model: Aspiration, BirthWGroup2, BirthWGroup4, CentCatheter, 

EnteralNut, HospDurLong2, ICU, Intubation, NasogTube, Ncpap, OrogTube, PPV, 

PeripCatheter, Phototherapy, TPN, TPNLipid, UmbCatheter, UriCatDur, 

WeightGroup2, WeightGroup3, WeightGroup5.  

Neural networks are affected by the number of input variables in two 

different manners. First, as the number of input variables increases, the size of the 

network becomes large. This increases the overfitting risk and needs more training 

data. Second, complex networks take a long time to converge weights. Because of 

these two aspects, the variables that were selected by logistic regression model were 

used as the input variables in neural networks model. 

 

Data Transformation 

 

Variables were transformed with different methods before applying different 

classification techniques. Although it is not necessary to transform the data before 

logistic regression and decision trees, both techniques benefit from the 

transformation. Transformation methods used in the study are standardization, equi-

width binning, and equalize spread by target variable. “Standardization” is the z-
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score normalization and it was tested before logistic regression and neural networks; 

however the resulting generalization error of the models were higher than the models 

with other transformations. 

Before all decision trees except CART, equi-width binning method was used 

in order to eliminate the effect of outliers and noise and to prevent overfitting. By 

“Equi-width binning” the data values are grouped into N equally spaced interval 

based on the difference between the maximum and the minimum values. The size of 

bins d is determined by the following formula: 

N
XX

d minmax −=  

where maxX and minX are the maximum and minimum values of variable X, N is the 

user defined number of bins. The continuous input variables of CHAID and entropy 

models were transformed into 4 bins. 

Before neural networks, “equalize spread by target variable” method, which 

is a subset of Box-Cox transformations (Box & Cox, 1964), was used. As in Box-

Cox transformations, there are two steps for transformation. Variables are first scaled 

to [0,1] with the following formula: 

minmax

min )0),max(('
xx
xxx

−
−

=  

where x is the variable to be transformed and 'x is the scaled variable. Then one of 

the following transformations, which has the smallest variance of the variances 

between target levels (HospInfec = 1 and HospInfec = 0) is selected. 

x', ln(x'), sqrt(x'), e(x'), (x')1/4, (x')2, (x')4 

Thus the variance in the interval variables between different levels of target is 

stabilized. Following Table 7 shows the transformations done with equalize spread 
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by target variable and transformation statistics. In order to prevent undefined results, 

“1” is added to the scaled variable before logarithmic transformation. 

Table 7. Equalize Spread Transformation for Neural Networks 

Method Variable Name Formula Min Max Mean 
Std. 
Deviation Skewness Kurtosis 

Original IMP_ENDur   0 45 3.768999 6.423006 2.807749 9.457189

Original PerCatDur   0 102 9.104587 12.27406 3.494914 16.93789

Original UriCatDurRat   0 1 0.00679 0.060223 12.631394 179.4945

Computed LOG_IMP_ENDur log(_VAR_  + 1) 0 0.69 0.073272 0.114516 2.297406 5.970689

Computed LOG_PerCatDur log(_VAR_  + 1) 0 0.69 0.080487 0.095765 2.727292 10.09333

Computed SQRT_UriCatDurRat Sqrt(_VAR_) 0 1 0.012347 0.081546 8.158494 75.85001

 

Variables enteral nutrition duration and peripheral catheter duration were 

transformed using logarithm, variable urinary catheter duration ratio was transformed 

with squared root method. Transformation methods helped to decrease the 

generalization error and to increase the accuracy. 
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CHAPTER 5 

 

EVALUATION OF MODEL RESULTS 

 

The surveillance of hospital infections in newborn ICUs can be supported through 

detecting the risky patient profiles. For this purpose, decision trees, neural networks 

and logistic regression classification techniques explained in Chapter 3 were applied 

on hospital infections data set obtained from Department of Clinical Microbiology 

and Infectious Diseases of Eskişehir Osmangazi University Medical School. In this 

chapter, the results and the comparison of the models are discussed. 

 

Approach for Building Models 

 

In the study, five different models were built with three different classification 

techniques. These are CHAID, CART, and entropy decision tree models, neural 

networks model and logistic regression model. Models try to predict the probability 

of a newborn being infected by hospital infections.  

For different models, different accuracy estimation and increasing methods 

were applied. First accuracy estimation method was selected to be holdout stratified 

sampling with 70% of training and 30% of test samples. This method was applied on 

decision trees and neural networks. Logistic regression model was built on the whole 

data set. The parameters of classification algorithms decided with this method were 

used in other accuracy estimation and increasing methods. This approach facilitated 

parameter selection and detailed analyses of model results. Following Table 8 
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illustrates the frequency distribution of dependent variable in the whole sample and 

training and test samples. 

Table 8. Whole Sample, Training and Test Samples 
Dataset Variable Value Frequency Count Percentage 

Whole 
HospInfec 0 425 77.98% 
HospInfec 1 120 22.02% 

Training 
HospInfec 0 127 77.44% 
HospInfec 1 37 22.56% 

Test 
HospInfec 0 298 78.22% 
HospInfec 1 83 21.78% 

 

Second accuracy estimation method was 10-fold cross validation. The data set was 

randomly partitioned into 10 folds and generalization error of the applied algorithm 

was estimated. The method was applied on each model and the comparison of the 

models was done according to the test sample results of this method. 

Moreover, bagging and boosting accuracy increasing methods were 

conducted on each decision tree and neural network. For bagging models 10 random 

samples were created with replacement. Boosting models were created with different 

number of iterations for each model. 

In order to assess the goodness of fit, average squared error, area under ROC 

curve, gini coefficient, error rate, accuracy, sensitivity and specificity measures were 

calculated. In addition, ROC curves were drawn for each model. 

In the following sections the results of all models with applied accuracy 

estimation and accuracy increasing methods and the model comparison are given. 
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Decision Trees 

 

In the study, three types of decision tree algorithms were conducted: CHAID, CART 

and customized decision trees using entropy splitting criterion. From accuracy 

estimation techniques, holdout and cross validation, from accuracy increasing 

techniques bagging and boosting were applied. There are 89 input variables for 

decision trees. These are listed in Table 9. 

Table 9. Input Variables of Decision Trees 
Input Variables 

APGAR HospDur Phlebotomy 
ARF HospDurLong2 PhototherDur 
AgeDay HydropsFetalis Phototherapy 
AntibioticUsage ICU Polycythemia 
AspirDur ICUDur Premature 
AspirDurRat ICUDurRat Preterm 
Aspiration IUGR RDS 
BirthHealthCenter ImmunoSupp SteroidUsage 
BirthOption IntubDur SurgInterv 
BirthPlaceBCent IntubDurRat TPN 
BirthPlaceHome Intubation TPNDur 
BirthPlaceHosp Invasive TPNDurRat 
BirthPlaceOGU LBW TPNLipid 
BirthPlaceOth LowAPGAR TTN 
BirthWGroup2 LowGISBleed Twin 
BirthWGroup4 MecAspSyn UmbCatDur 
BirthWeek MechVent UmbCatheter 
CatRelBloodFlow NasogTube UriCatDur 
CentCatheter Ncpap UriCatDurRat 
ChestTube NcpapDur UriCatRelUrinary 
Chorioamnio NgUseDur UrinCatheter 
CongAno OgUseDur VenDur 
CutDown Oligohyd VenRelPneum 
EMR OrogTube Weight 
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Table 9. Continued 
Input Variables 

ENDur PAsphyxia WeightBWeekRat 
ENDurRat PPV WeightGroup22 
EnteralNut PPVDur WeightGroup3 
Gender PerCatDur WeightGroup5 
h2blockPPI PerCatDurRat WrappedCord 
HBM PeripCatheter   

 

Before CHAID and entropy decision tree models, all continuous variables were 

transformed with equi-width binning where the variables were binned into 4 groups. 

 

CHAID Decision Tree Model 

 

In the study, following parameters illustrated in Table 10 were set in order to build 

the CHAID decision tree model. Maximum tree depth, minimum leaf size and 

minimum categorical size parameters were used as stopping rules for the decision 

tree growth. Minimum categorical size parameter indicates the number of 

observations that a categorical value must have before the category can be used in a 

split search. 

Table 10. CHAID Decision Tree Parameters 
Parameter Value
Significance Level for Split 0.05
Significance Level for Merge 0.05
Maximum Tree Depth 6
Minimum Leaf Size 5
Minimum Categorical Size 5

 

CHAID Decision Tree Model with Holdout Sampling 

CHAID decision tree model selected AntibioticUsage, ENDur, PerCatDur, and 
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UrinCatheter variables with holdout sampling. The figure of tree structure can be 

found in Appendix C, Figure 34 and rules derived from the tree are illustrated in 

following Figure 10.  

 
Figure 10. Rules of CHAID decision tree model 

 

All variables of the model are related to medical treatments. Analyzing the effects of 

the variables, it is seen that as enteral nutrition (ENDur) and peripheral catheter 

durations (PerCatDur) increase, the probability of hospital infections increases. In 

addition, the usage of antibiotics and urinary catheters increases the risk of hospital 
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infections. The effects of these variables on hospital infections are consistent with the 

medical literature mentioned in Chapter 2. Figure 10 shows the rules represented by 

CHAID decision tree model. In the figure, N is the number of observations in a given 

node. The percentage of “1” represents the probability of infected and “0” represents 

the probability of noninfected newborns. 

The goodness of fit statistics and ROC curves for training and test samples 

are given in Table 11 and Figure 11 respectively.  

Table 11. CHAID Holdout Model Goodness of Fit Statistics 
Statistics Training Test
Average Squared Error 0.13 0.15
Area under ROC 0.73 0.68
Gini Coefficient 0.47 0.36
Error Rate 0.16 0.18
Accuracy 0.84 0.82
Sensitivity 0.31 0.30
Specificity 0.99 0.98

 

According to the differences in the statistics and ROC curves between training and 

test samples, it can be claimed that CHAID decision tree model successfully handled 

the risk of overfitting. 
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Figure 11. CHAID holdout model ROC curves 

 

However, sensitivity and specificity measures indicate that the model poorly 

performs on infected newborns, whereas it performs considerably well on 

noninfected ones. 

 

CHAID Decision Tree Model with Cross Validation 

 

Variables AntibioticUsage, ENDurRat, EnteralNut, HospDurLong2, LowAPGAR, 

PerCatDur, TPNDur, and UrinCatheter were selected by CHAID models built with 

cross validation method. In addition to the variables related to medical treatments, 

patient characteristic low APGAR score indicator was also selected by one or more 

models.  

The model results represented in Table 12 shows that area under ROC curve, 

gini coefficient and sensitivity were decreased in test sample. Still, the error rate is 

stable in training and test samples and also close to the error rate of holdout 

sampling.  
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Table 12. CHAID Cross Validation Model Goodness of Fit Statistics 
Statistics Training Test 
Average Squared Error 0.14  0.14 
Area under ROC 0.73  0.68 
Gini Coefficient 0.45  0.36 
Error Rate 0.17 0.17 
Accuracy 0.83 0.83 
Sensitivity 0.33 0.30 
Specificity 0.97 0.98 

 

As it was in holdout sampling, sensitivity measure of cross validation models 

indicates that the model has a poor performance on infected, but substantial 

performance on noninfected newborns. Figure 12 illustrates the ROC curve provided 

by the training folds in cross validation. 

 
Figure 12. CHAID cross validation model ROC curve 

 

CHAID Decision Tree Model with Bagging 

 

In bagging method, 10 random samples were created with replacement. CHAID 

models were built on each of these samples. The goodness of fit statistics provided 
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by training data set is demonstrated in Table 13. 

Table 13. CHAID Bagging Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.14
Area under ROC 0.76
Gini Coefficient 0.52
Error Rate 0.18
Accuracy 0.82
Sensitivity 0.38
Specificity 0.95

 

Compared to the results of cross validation, bagging increased area under ROC 

curve, gini coefficient and sensitivity measures while a slight decrease was observed 

in accuracy and specificity. ROC curve provided by the training samples is illustrated 

in following Figure 13. 

 
Figure 13. CHAID bagging model ROC curve 

 

Bagging model ROC curve shows an improvement in upper left direction caused by 

the increase in sensitivity measure when compared to cross validation and holdout 

models. 
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CHAID Decision Tree Model with Boosting 

 

Boosting method was conducted on CHAID decision trees with 20 iterations. In each 

iteration the training sample was formed by sampling with replacement regarding the 

weights assigned to each observation.  

Table 14. CHAID Boosting Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.22
Area under ROC 0.74
Gini Coefficient 0.49
Error Rate 0.18
Accuracy 0.82
Sensitivity 0.24
Specificity 0.98

 

In comparison to cross validation training sample results 8% increase in average 

squared error and ca.10% decrease in sensitivity were observed, though the error rate 

and the accuracy did not change.  

 
Figure 14. CHAID boosting model ROC curve 
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ROC curve of the model demonstrated in Figure 14 is more flat because of the 

decrease in sensitivity measure in comparison to cross validation method. Contrary 

to expectations, these results showed that boosting did not improve the model 

accuracy. 

 

CART Decision Tree Model 

 

CART Decision Tree model uses gini splitting criterion and creates binary decision 

trees. For CART algorithm applied in the study, the input variables are either 

nominal or ratio. Ordinal inputs are treated as interval. Therefore, no binning 

transformation was performed before applying CART models. 

Missing values were handled by surrogate splits in the applied CART 

decision tree algorithm. Surrogate splits were created and used to assign observations 

to branches when the primary splitting variable was missing. If missing values could 

not be handled by surrogate rules, then the observation was assigned to the largest 

branch. 

Moreover, the applied CART algorithm needed validation data set in order to 

realize cost-complexity pruning by comparing the average squared error between 

training and validation samples. As the data set was too small to separate into three 

partitions, for each subtree 10-fold cross validation method was conducted. 

In addition to pruning methods, the tree growth was restricted with the 

stopping rules shown in Table 15.  
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Table 15. CART Decision Tree Parameters 
Parameter Value
Maximum Tree Depth 6
Minimum Leaf Size 5
Minimum Categorical Size 5

 

CART Decision Tree Model with Holdout Sampling 

 

Variables TPNDur and PerCatDur were selected by CART decision tree model with 

holdout sampling. The figure of tree structure can be found in Appendix C, Figure 35 

and rules derived from the tree are illustrated in following Figure 15. In figure, N is 

the number of observations in the node, and the percentages of “1” and “0” represent 

the probability of infected and noninfected newborns respectively. 

 
Figure 15. Rules of CART decision tree model 

 

According to the classification rules represented by model, the probability of hospital 

infections increases, as total parenteral nutrition duration (TPNDur) and peripheral 

catheter duration (PerCatDur) variables increase. Both variables are related with 

medical treatments.  
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The goodness of fit statistics and ROC curves for training and test samples 

are given in Table 16 and Figure 16 respectively. The differences between training 

and test sample statistics are relatively high and affirm that the model is not 

successful on test as it is on training sample. 

Table 16. CART Holdout Model Goodness of Fit Statistics 
Statistics Training Test
Average Squared Error 0.13 0.19
Area under ROC 0.75 0.56
Gini Coefficient 0.50 0.12
Error Rate 0.18 0.23
Accuracy 0.82 0.77
Sensitivity 0.22 0.11
Specificity 0.99 0.97

 

 
Figure 16. CART holdout model ROC curve 

 

Sensitivity measure of the model is substantially low, where specificity measure 

indicates that the model performs well on noninfected newborns.  
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CART Decision Tree Model with Cross Validation 

 

In CART decision tree model with cross validation 7 variables were selected by 

models. These are AspirDurRat, ENDurRat, PerCatDur, PerCatDurRat, TPNDur,  

UriCatDur, and Weight. However, because of surrogate rules, 23 additional variables 

were selected in order to handle missing values: APGAR, AgeDay, AntibioticUsage, 

AspirDur,  Aspiration, BirthWeek, ENDur, EnteralNut, HospDur, ICUDur, 

IntubDur, IntubDurRat, LBW, NcpapDur, NgUseDur, OgUseDur, PeripCatheter, 

TPNDurRat, UmbCatDur, UriCatDurRat, UrinCatheter, and WeightBWeekRat. 

Most of the variables are related to medical treatments. In addition, patient 

characteristics APGAR, AgeDay, BirthWeek, LBW, Weight and WeightBWeekRat 

were also selected.  

Goodness of fit statistics provided by averaging the training and test folds are 

represented in Table 17. In comparison to holdout model, cross validation results in 

training and test samples are more consistent.  

Table 17. CART Cross Validation Model Goodness of Fit Statistics 
Statistics Training Test
Average Squared Error 0.14 0.15
Area under ROC 0.66 0.65
Gini Coefficient 0.32 0.31
Error Rate 0.17 0.19
Accuracy 0.83 0.81
Sensitivity 0.28 0.26
Specificity 0.99 0.97

 

The ROC curve of overall training folds in cross validation method is illustrated in 

Figure 17. Figure shows an improvement in sensitivity measure at lower values of 

“1-Specificity” in comparison to holdout model.  
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Figure 17. CART cross validation model ROC curve 

 

CART Decision Tree Model with Bagging 

 
As the base classifier, CART decision tree algorithm was applied on 10 training 

samples which were created with replacement from the whole data set. The results of 

bagged CART decision tree are demonstrated in Table 18. 

 
Table 18. CART Bagging Model Goodness of Fit Statistics 

Statistics Training
Average Squared Error 0.14
Area under ROC 0.65
Gini Coefficient 0.29
Error Rate 0.17
Accuracy 0.83
Sensitivity 0.32
Specificity 0.97

 

When compared to cross validation method, the error rate of bagged CART decision 

tree was not changed. Though, the sensitivity and specificity measures were affected.  
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Figure 18. CART bagging model ROC curve 

 

As seen in Figure 18, the increase in sensitivity and the decrease in specificity 

measures led to a slight improvement in the ROC curve. 

 

CART Decision Tree Model with Boosting 

 

Boosting was applied on CART decision trees with 10 iterations. However, the 

method failed because the error of CART model never fell below 0.5 through the 

iterations. As a result, the specificity reached to 1 and sensitivity to 0. 

 
Figure 19. CART boosting iteration error 
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Entropy Decision Tree Model 

 

Entropy decision tree models use entropy reduction (information gain) as splitting 

criterion. Missing values were used in search as described in Data Preprocessing 

section. The entropy decision trees were not pruned however, stopping rules were 

defined. Table 19 represents the parameters of entropy decision tree model. 

Table 19. Entropy Decision Tree Parameters 
Parameter Value 
Maximum Branch 5
Maximum Tree Depth 4
Minimum Leaf Size 10
Minimum Categorical Size 5

 

Entropy Decision Tree Model with Holdout Sampling 

Entropy decision tree model with holdout sampling selected AntibioticUsage, 

APGAR, ENDur, ENDurRat, Gender, HospDurLong2, Ncpap, PerCatDur and 

WeightBWeekRat variables. Six variables including AntibioticUsage, ENDur, 

ENDurRat, HospDurLong2, Ncpap, PerCatDur were related to medical treatments, 

whereas other variables APGAR, Gender and WeightBWeekRat were related to 

patient characteristics. 

The figure of entropy decision tree structure can be found in Appendix C, 

Figure 36 and the classification rules presented by the tree are illustrated in following 

Figure 21.  
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Figure 20. Rules of entropy decision tree model 
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Figure 20. Continued 

 

According to the classification rules, it is seen that the increase in variables 

PerCatDur, ENDur, ENDurRat and WeightBWeekRat increases the risk of hospital 

infections.  Moreover, antibiotics usage, long hospital stay, APGAR score between 5 

and 9, newborn female indicate high risk of hospital infections. Variable Ncpap 
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indicating the usage of nasal continuous positive airway pressure (nCPAP) was not 

found as a risk factor of hospital infections instead, usage of the method slightly 

contributes to find healthy newborns. 

 Table 20 represents the goodness of fit statistics and Figure 21 illustrates the 

ROC curves of entropy decision trees by training and test samples.  

Table 20. Entropy Holdout Model Goodness of Fit Statistics 
Statistics Training Test 
Average Squared Error 0.12 0.18 
Area under ROC 0.83 0.67 
Gini Coefficient 0.66 0.34 
Error Rate 0.18 0.26 
Accuracy 0.82 0.74 
Sensitivity 0.33 0.16 
Specificity 0.96 0.91 

 

 
Figure 21. Entropy holdout model ROC curve 

 

According to the results represented in goodness of fit statistics and ROC curves, it 

can be referred to the presence of overfitting problem.  

Entropy Decision Tree Model with Cross Validation 

Entropy decision tree models within cross validation folds selected following 
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variables: AntibioticUsage, APGAR, AspirDurRat, BirthOption, BirthPlaceOGU, 

BirthWeek, ENDur, ENDurRat, Gender, HBM, HospDurLong2, ICUDurRat, 

IntubDurRat, LBW, LowAPGAR, Ncpap, NcpapDur, NgUseDur, PerCatDur, 

PerCatDurRat, TPNDur, TPNDurRat, UrinCatheter, Weight, and WeightBWeekRat. 

In addition to the variables selected in holdout sampling, new variables related to 

treatment, patient and medical problem (HBM, indicator of hyperbilirubinemia) were 

selected by the models in cross validation. 

Table 21 demonstrates the goodness of fit statistics provided by averaging the 

training and test folds. In comparison to holdout model, the difference between 

training and test sample results is lower. This indicates that the model handled the 

overfitting problem better than the first model built with holdout sampling. 

Table 21. Entropy Cross Validation Model Goodness of Fit Statistics 
Statistics Training Test 
Average Squared Error 0.13 0.15 
Area under ROC 0.79 0.70 
Gini Coefficient 0.57 0.39 
Error Rate 0.17 0.18 
Accuracy 0.83 0.82 
Sensitivity 0.28 0.27 
Specificity 0.99 0.97 

 

The ROC curve of training sample represented in Figure 22 is lower than training 

sample ROC curve of holdout sample, indicating an adjustment in the model against 

overfitting.  



 

 
76

 
Figure 22. Entropy cross validation model ROC curve 

 

Entropy Decision Tree Model with Bagging 

 

As the base classifier, entropy decision tree with predefined parameters was applied 

on 10 training samples which were created with replacement. The results of bagged 

entropy decision tree are demonstrated in Table 22. 

Table 22. Entropy Bagging Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.15
Area under ROC 0.72
Gini Coefficient 0.44
Error Rate 0.19
Accuracy 0.81
Sensitivity 0.23
Specificity 0.97

 

According to the results, bagged entropy tree shows considerable improvement in 

comparison to holdout model test sample. However, sensitivity measure is lower than 
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the sensitivity of cross validation. Therefore, the bagging ROC curve is closer to the 

baseline, as illustrated in following Figure 23. 

 
Figure 23. Entropy bagging model ROC curve 

 

Entropy Decision Tree Model with Boosting 

 

Boosting was applied on entropy decision tree with 10 iterations. The results of the 

method are represented in Table 23 and Figure 23 respectively. The boosted entropy 

tree has substantial improvement in sensitivity and deterioration in specificity. On 

the other hand, the error rate is relatively high.  

Table 23. Entropy Boosting Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.21
Area under ROC 0.77
Gini Coefficient 0.53
Error Rate 0.34
Accuracy 0.66
Sensitivity 0.69
Specificity 0.64
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Figure 24. Entropy boosting model ROC curve 

 

Because of the deviations in sensitivity and specificity measures, the ROC curve 

demonstrated in Figure 24 is fluctuating for boosted entropy decision trees. 

 

Neural Networks 

 

In the study, multilayer feed-forward perceptron with one hidden layer was built 

using backpropagation algorithm. The combination function was linear for both 

hidden and output layers. However, the activation functions were different at hidden 

and output layers. Hyperbolic tangent activation (transfer) function was used for 

hidden layers, where logistic activation function was used for output layer. As the 

dependent variable is binary, the error function was Bernoulli and the objective 

function was likelihood. The parameters of the model are given in following Table 

24. 
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Table 24. Neural Networks Parameters 
Parameter Value
Number of Hidden Units 4
Maximum Iterations 100

 

As discussed in Chapter 4, variables that were selected by logistic regression model 

were used as input variables in order to prevent complex networks which poorly 

perform when trying to represent all the information in input variables. The input 

variables of neural networks are listed in Table 25. 

Table 25. Input Variables of Neural Networks 
Input Variables 

ENDur 
PerCatDur 
UriCatDurRat 
UrinCatheter 

 

Continuous input variables ENDur, PerCatDur and UriCatDurRat were transformed 

as explained in Chapter 4. On the other hand, categorical variable UrinCatheter was 

recoded from {0,1} to {-1,1} in order to find a good local optimum. 

The results of a neural network may depend on the initial values of the 

weights. Current backpropagation algorithm uses random initial weights. However, 

this may cause to find local minima. Therefore, a preliminary training was conducted 

using the selected input variables and parameters. The network was trained 5 times 

for 100 iterations in order to select the best estimates for the initial values of the 

weights. Consequently, these weights were used by the algorithm as the initial values 

of the weights for subsequent training. 
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Neural Networks Model with Holdout Sampling 

 

Using predefined parameters and determined input variables, neural network model 

with holdout sampling was built. The generated weights for the selected iteration of 

the selected run are illustrated in a two dimensional diagram in Figure 25 below.  

 
Figure 25. Final weights 

 

The vertical axis is the source unit of the weight, where horizontal axis is the 

destination unit. The final weights are represented in Table 26 regarding Figure 24. 

Table 26. Final Weights 
EFFECT FROM TO WEIGHT 

LOG_IMP_ENDur -> H11 LOG_IMP_ENDur H11 -19.357.594 

LOG_PerCatDur -> H11 LOG_PerCatDur H11 1.830.437 

SQRT_UriCatDurRat -> H11 SQRT_UriCatDurRat H11 -0.7137061 

LOG_IMP_ENDur -> H12 LOG_IMP_ENDur H12 16.456.205 

LOG_PerCatDur -> H12 LOG_PerCatDur H12 24.057.456 

SQRT_UriCatDurRat -> H12 SQRT_UriCatDurRat H12 -15.258.996 

LOG_IMP_ENDur -> H13 LOG_IMP_ENDur H13 13.178.359 

LOG_PerCatDur -> H13 LOG_PerCatDur H13 83.587.155 

SQRT_UriCatDurRat -> H13 SQRT_UriCatDurRat H13 10.005.458 
 



 

 
81

Table 26. Continued 
EFFECT FROM TO WEIGHT 

LOG_IMP_ENDur -> H14 LOG_IMP_ENDur H14 12.848.623 

LOG_PerCatDur -> H14 LOG_PerCatDur H14 -1.046.493 

SQRT_UriCatDurRat -> H14 SQRT_UriCatDurRat H14 12.565.884 

UrinCatheter0 -> H11 UrinCatheter0 H11 -11.231.683 

UrinCatheter0 -> H12 UrinCatheter0 H12 -12.219.073 

UrinCatheter0 -> H13 UrinCatheter0 H13 21.106.986 

UrinCatheter0 -> H14 UrinCatheter0 H14 49.130.959 

BIAS -> H11 BIAS H11 -21.900.367 

BIAS -> H12 BIAS H12 0.3168653 

BIAS -> H13 BIAS H13 24.217.234 

BIAS -> H14 BIAS H14 60.117.869 

H11 -> HospInfec1 H11 HospInfec1 -2.267.713 

H12 -> HospInfec1 H12 HospInfec1 5.795.558 

H13 -> HospInfec1 H13 HospInfec1 1.402.327 

H14 -> HospInfec1 H14 HospInfec1 -12.014.169 

BIAS -> HospInfec1 BIAS HospInfec1 22.577.994 
 

The goodness of fit statistics represented in Table 27 indicates 4% of decrease in the 

accuracy of the model when applied on the test sample. In addition, sensitivity, 

specificity, area under ROC and gini coefficient decreased considerably in the test 

sample. 

Table 27. Neural Networks Holdout Model Goodness of Fit Statistics 
Statistics Training Test 
Average Squared Error 0.12 0.16 
Area under ROC 0.81 0.67 
Gini Coefficient 0.61 0.35 
Error Rate 0.15 0.19 
Accuracy 0.85 0.81 
Sensitivity 0.35 0.27 
Specificity 0.99 0.97 
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Figure 26. Neural networks holdout model ROC curve 

 

The decrease in sensitivity and specificity measures of test sample drew down the 

ROC curve as illustrated in Figure 26. 

 

Neural Networks Model with Cross Validation 

 

The network was trained with 10-fold cross validation using the predefined 

parameters and input variables. The results showed that the model with cross 

validation is more consistent in terms of training and test sample statistics when 

compared to holdout model. The goodness of fit statistics and ROC curve are given 

in Table 28 and Figure 27 respectively. 
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Table 28. Neural Networks Cross Validation Model Goodness of Fit Statistics 
Statistics Training Test 
Average Squared Error 0.13 0.14 
Area under ROC 0.79 0.74 
Gini Coefficient 0.59 0.48 
Error Rate 0.17 0.17 
Accuracy 0.83 0.83 
Sensitivity 0.32 0.30 
Specificity 0.98 0.97 

 

 
Figure 27. Neural networks cross validation model ROC curve 

 

The ROC curve provided by averaging the training samples showed a slight 

improvement towards the upper left corner of the graph regarding the training and 

test samples’ sensitivity and specificity measures. 

 

Neural Networks Model with Bagging 

 

A neural network with predefined parameters was applied on 10 training samples 

that were created with replacement. The results of bagged neural network are 
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illustrated in Table 29. 

Table 29. Neural Networks Bagging Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.13
Area under ROC 0.76
Gini Coefficient 0.51
Error Rate 0.17
Accuracy 0.83
Sensitivity 0.33
Specificity 0.98

 

The accuracy measure results of bagged networks are similar to those found by cross 

validation. However, according to area under ROC curve and gini coefficient it is 

seen that probabilities assigned to each observation are considerably different from 

cross validation. The ROC curve of bagged network is demonstrated in Figure 28. 

 

 
Figure 28. Neural networks bagging model ROC curve 
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Neural Networks Model with Boosting 

 

Boosting was applied on neural networks with 20 iterations. The results of boosted 

networks are represented in Table 30 and Figure 29 respectively. A substantial 

improvement in sensitivity and a slight deterioration in specificity are observed. 

Although the area under ROC curve and gini coefficient decrease, the accuracy is 

quite high. 

Table 30. Neural Networks Boosting Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.21
Area under ROC 0.70
Gini Coefficient 0.41
Error Rate 0.17
Accuracy 0.83
Sensitivity 0.44
Specificity 0.94

 

 
Figure 29. Neural networks boosting model ROC curve 

 

Considering the classification measure sensitivity and specificity, the decrease in 
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ROC curve can be explained by the change in the distribution of assigned 

probabilities in comparison to holdout and cross validation method. 

 
 

Logistic Regression 

 

Logistic regression models are widely used for classification in medical data mining. 

In the study, stepwise model selection method was adopted in order to handle 

collinearity which indicates the relationship between two or more continuous 

independent variables. Collinearity may cause the coefficient estimates to change 

erratically in response to small changes in the model or the data. Correlation 

coefficients between the variables also help to identify the collinearity. Appendix D 

represents the Correlation Table among continuous variables.  

Logistic regression was conducted with logit transformation function. No 

polynomial terms were used, only the main variables entered the stepwise selection 

method. There were 70 input variables for the logistic regression model which are 

listed in the following Table 31. 

Table 31. Input Variables of Logistic Regression 
Input Variables 

APGAR Gender PerCatDurRat 
ARF HBM Phlebotomy 
AgeDay HospDur PhototherDur 
AntibioticUsage HydropsFetalis Polycythemia 
AspirDur ICUDur Premature 
AspirDurRat ICUDurRat Preterm 
BirthHealthCenter IUGR RDS 
BirthOption ImmunoSupp SteroidUsage 
BirthPlaceBCent IntubDur SurgInterv 
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Table 31. Continued 
Input Variables 

BirthPlaceHome IntubDurRat TPNDur 
BirthPlaceHosp Invasive TPNDurRat 
BirthPlaceOGU LBW TTN 
BirthPlaceOth LowAPGAR Twin 
BirthWeek LowGISBleed UmbCatDur 
CatRelBloodFlow MecAspSyn UriCatDurRat 
CentCatDur MechVent UriCatRelUrinary 
ChestTube NcpapDur UrinCatheter 
Chorioamnio NgUseDur VenDur 
CongAno OgUseDur VenRelPneum 
CutDown Oligohyd Weight 
DetailBirthPlace PAsphyxia WeightBWeekRat 
EMR PPVDur WrappedCord 
ENDur PerCatDur h2blockPPI 
ENDurRat     

 

In the study two logistic regression models were built. First model was built on the 

whole data set; second model was built with cross validation method. Bagging and 

boosting were not performed on logistic regression while both methods require 

unstable base classifiers such as decision trees and neural networks. 

 

Logistic Regression Model 

 

First logistic regression model was built on the whole data set after handling missing 

variables with decision tree induction as mentioned in Chapter 4. All the variables 

listed in Table 31 entered the model. A summary of stepwise selection is given in the 

following Table 32. 
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Table 32. Summary of Stepwise Selection 
Summary of Stepwise Selection 

Step 

Effect 
Variables 
in model

Score 
Chi-

Square 

Wald 
Chi-

Square 
Pr > 

ChiSq Entered Removed 
1 PerCatDur   1 69.7127   <.0001
2 UrinCatheter   2 33.8498   <.0001
3 UriCatDurRat   3 10.0355   0.0015
4 IMP_ENDur   4 10.4483   0.0012
5 HydropsFetalis   5 7.0712   0.0078
6   HydropsFetalis 4   0.0113 0.9154

 

According to Table 32, model building terminated because the last effect entered was 

removed by the Wald test criterion where significance level 0.05 exceeded. The 

selected model was the model trained in Step 6 and it consists of the following 

variables: ENDur, PerCatDur, UriCatDurRat, and UrinCatheter. 

Likewise, Figure 30 illustrates the average squared error in training set for 

each step in variable selection. The vertical blue line shows the step where the 

variable selection stopped. 

 
Figure 30. Average squared error in stepwise selection 
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The final coefficients and wald chi-square values of the selected variables are given 

in Table 33. According to the coefficients, it is seen that enteral nutrition duration 

(ENDur) and peripheral catheher duration (PerCatDur) are positively correlated with 

hospital infections. In addition, urinary catheter duration ratio (UriCatDurRat) and 

not to use urinary catheters (UrinCatheter = 0) are negatively correlated with the 

independent variable. 

Table 33. Coefficients of the Variables 

Variable Coefficient 
Wald Chi-
Square Pr > ChiSq 

Intercept 0.6646 0.71 0.4003 
IMP_ENDur 0.0694 10.21 0.0014 
PerCatDur 0.0396 8.96 0.0028 
UriCatDurRat -7.047 6.69 0.0097 
UrinCatheter (0)    -2.8067 12.63 0.0004 

 

Following Table 34 provides -2LL values of the model with only intercept and with 

all selected variables to compare the models and the result of likelihood ratio chi-

square test.  

Table 34. Likelihood Ratio Test 
-2 Log Likelihood Likelihood 

Ratio Chi-
Square DF 

Pr > 
ChiSq 

Intercept 
Only 

Intercept & 
Covariates 

574.583 467.19 107.3927 4 <.0001 
 

Using -2LL values the pseudo R-Square was calculated as 0.19, which was 

considered significant. Likewise, the likelihood ratio chi-square showed that the 

model is significant for 0.05 significance value. The goodness of fit statistics for 

logistic regression model is given in the following Table 35. 
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Table 35. Logistic Regression Model Goodness of Fit Statistics 
Statistics Training
Average Squared Error 0.13
Area under ROC 0.76
Gini Coefficient 0.52
Error Rate 0.17
Accuracy 0.83
Sensitivity 0.31
Specificity 0.97

 

According to the goodness of fit statistics, the model has a sufficient accuracy. 

However, the sensitivity is low which indicates that the model poorly predicts the 

infected newborns. The following Figure 31 illustrates ROC curve of the model. It is 

seen that the curve has an increase at the beginning, however stayed parallel to 

baseline after it reaches 0.31 sensitivity. 

 
Figure 31. Logistic regression model ROC curve 

 

Logistic Regression Model with Cross Validation 

 

Logistic regression model with cross validation selected 10 variables related to 
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treatment, patient and medical problem: AntibioticUsage, BirthPlaceOGU, EMR, 

ENDurRat, PerCatDur, Polycythemia, TPNDurRat, UriCatDurRat, UrinCatheter, 

and WeightBWeekRat. Table 36 demonstrates the goodness of fit statistics provided 

by averaging the training and test folds.  

Table 36. Logistic Regression Cross Validation Model Goodness of Fit Statistics 
Statistics Training Test
Average Squared Error 0.13 0.14
Area under ROC 0.77 0.75
Gini Coefficient 0.53 0.49
Error Rate 0.17 0.18
Accuracy 0.83 0.82
Sensitivity 0.30 0.32
Specificity 0.98 0.96

 

The ROC curve of the logistic regression with cross validation is given in Figure 32 

below. In comparison to the first model, the curve shows an improvement in upper 

left direction. 

 
Figure 32. Logistic regression cross validation model ROC curve 
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Model Comparison 

 

In random sampling, the error rate of training sample does not represent the true error 

rate of model’s universe when modeling small data sets. Because of this, the 

generalization error is tried to be estimated with resampling methods. As the hospital 

infections data set was small, 10-fold cross validation method was selected to 

compare the performance of models in the study. 

Variables selected by each cross validation model are listed in Table 37. As 

mentioned before in Chapter 4, neural network used variables that were selected by 

logistic regression model applied on whole data set. 

The table shows that 39 different variables were selected from the whole 

variable list given in Table 1. Among these variables AntibioticUsage, ENDur, 

ENDurRat, PerCatDur, TPNDur, TPNDurRat, UriCatDurRat, UrinCatheter and 

WeightBWeekRat were chosen by more than two models. It is seen that CART and 

entropy models selected more than 20 variables. However, CART model selected 7 

main variables to which an asterisk (*) is assigned in Table 37. The rest 22 variables 

are used as surrogate rules in case of missing values. 
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Table 37. Variables selected by Models 

Variable 

Model 
Number of 

Models Chaid Cart Entropy
Neural 

Network 
Logistic 

Regression 
AgeDay � 9 � � � 1 
AntibioticUsage 9 9 9 � 9 4 
APGAR � 9 9 � � 2 
Aspiration � 9 � � � 1 
AspirDur � 9 � � � 1 
AspirDurRat � 9* 9 � � 2 
BirthOption � � 9 � � 1 
BirthPlaceOGU � � 9 � 9 2 
BirthWeek � 9 9 � � 2 
EMR � � � � 9 1 
ENDur � 9 9 9 � 3 
ENDurRat 9 9* 9 � 9 4 
EnteralNut 9 9 � � � 2 
Gender � � 9 � � 1 
HBM � � 9 � � 1 
HospDur � 9 � � � 1 
HospDurLong2 9 � 9 � � 2 
ICUDur � 9 � � � 1 
ICUDurRat � � 9 � � 1 
IntubDur � 9 � � � 1 
IntubDurRat � 9 9 � � 2 
LBW � 9 9 � � 2 
LowAPGAR 9 � 9 � � 2 
Ncpap � � 9 � � 1 
NcpapDur � 9 9 � � 2 
NgUseDur � 9 9 � � 2 
OgUseDur � 9 � � � 1 
PerCatDur 9 9* 9 9 9 5 
PerCatDurRat � 9* 9 � � 2 
PeripCatheter � 9 � � � 1 
Polycythemia � � � � 9 1 
TPNDur 9 9* 9 � � 3 
TPNDurRat � 9 9 � 9 3 
UmbCatDur � 9 � � � 1 
UriCatDur � 9* � � � 1 
UriCatDurRat � 9 � 9 9 3 
UrinCatheter 9 9 9 9 9 5 
Weight � 9* 9 � � 2 
WeightBWeekRat � 9 9 � 9 3 
Number of 
Variables  8 29 25 4 10   
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There are several criteria that can be used to compare the performance of 

classification models. As mentioned before in Chapter 3 while assessing the 

performance of medical data mining models, the error rate, accuracy and sensitivity 

measures have higher importance compared to others. In the study, specificity, area 

under ROC curve, gini coefficient and average squared error measures were also 

taken into consideration and the best model decision was given based on the test 

sample performance.  

A good model is expected to have both low training and low test error. 

Moreover, overfitting can be determined via the difference between training and test 

error of two compared models. According to training sample, the model with lowest 

error rate, highest accuracy and sensitivity is CHAID decision tree. The second 

model is neural network and the third model is logistic regression. The training 

sample goodness of fit statistics and the ROC curve provided by training folds are 

given in Table 38 and Figure 33 respectively. 

Table 38. Training Sample Goodness of Fit Statistics by Model 

Statistics CHAID CART Entropy
Neural 

Network 
Logistic 

Regression
Average Squared Error 0.14 0.14 0.13 0.13 0.13
Area under ROC 0.73 0.66 0.79 0.79 0.77
Gini Coefficient 0.45 0.32 0.57 0.59 0.53
Error Rate 0.17 0.17 0.17 0.17 0.17
Accuracy 0.83 0.83 0.83 0.83 0.83
Sensitivity 0.33 0.28 0.28 0.32 0.30
Specificity 0.97 0.99 0.99 0.98 0.98
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Figure 33. Model comparison cross validation ROC curves 

 

Beyond test samples, there are two successful models according to determined 

criteria. These are CHAID and neural network models. CHAID model is superior to 

neural network in terms of specificity by only 1%. However, neural network model is 

superior to CHAID model in terms of area under ROC curve and gini coefficient. 

Test sample results are illustrated in following Figure 39. 

Table 39. Test Sample Goodness of Fit Statistics by Model 

Statistics CHAID CART Entropy 
Neural 

Network 
Logistic 

Regression
Average Squared Error  0.14 0.15 0.15 0.14 0.14
Area under ROC  0.68 0.65 0.7 0.74 0.75
Gini Coefficient  0.36 0.31 0.39 0.48 0.49
Error Rate 0.17 0.19 0.18 0.17 0.18
Accuracy 0.83 0.81 0.82 0.83 0.82
Sensitivity 0.30 0.26 0.27 0.30 0.32
Specificity 0.98 0.97 0.97 0.97 0.96
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According to these criteria, neural network model is found to be the most accurate 

model. Furthermore, probability distribution of models demonstrated in Figure 37 in 

Appendix E shows that neural network model distinguishes infected and noninfected 

newborns better due to the distance between cumulative percentage curves. 

Although, it is not to be omitted that for medical data mining, accessible 

interpretation that explains input-output relations is of extreme importance. 

Therefore, CHAID is a good candidate model to be applied in terms of explicit rules, 

short construction and running time, robustness to missing data, and ability to 

incorporate pre-existing knowledge. 
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CHAPTER 6 

 

CONCLUSION 

 

The hospital infections are important health care problems. They cause high 

morbidity, mortality and economic burden. Newborns are more exposed to these 

infections as their floras which protect them from disease-producing bacteria are not 

formed as they are born. The aim of this study is to discover a pattern of hospital 

infections in newborn ICUs with the data collected by Department of Clinical 

Microbiology and Infectious Diseases, Eskişehir Osmangazi University, Faculty of 

Medicine. 

 The methodology followed in this study is KDD process. In data cleaning and 

preprocessing step, inconsistencies caused by manual data entry and missing values 

are handled. In data reduction and transformation step, for different classification 

techniques, different input variables are selected and different data transformation 

techniques are applied.  

 In modeling step, the aim is to find the most accurate model that classifies 

newborns successfully. CHAID, CART and entropy decision trees, neural network 

and logistic regression techniques are applied. Because of the small sample size, in 

addition to holdout sampling, models are built and compared with cross validation. 

The best model is determined by the lowest error rate, highest accuracy and 

sensitivity in test set. Besides, area under ROC curve, gini coefficient, average 

squared error, and specificity measures are taken into consideration. 
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Neural network and CHAID decision tree models present considerable classification 

performance. Both models have the same accuracy and sensitivity on the test set. 

However, neural network model is superior to CHAID in terms of area under ROC 

curve and gini coefficient. Still, CHAID model is a good candidate as accessible 

interpretation that explains input-output relations is very important in medical 

applications. Moreover, CHAID model provides short construction and running time, 

robustness to missing data and ability to incorporate pre-existing knowledge. 

In addition to holdout sampling and cross validation, accuracy increasing 

methods bagging and boosting are applied to decision trees and neural networks. 

Bagged CHAID and boosted neural network models reached the highest sensitivity 

rates with considerable accuracy. 

Variables AntibioticUsage, ENDurRat, EnteralNut, HospDurLong2, 

LowAPGAR, PerCatDur, TPNDur, and UrinCatheter are selected by CHAID 

models. Among these variables AntibioticUsage, ENDurRat, PerCatDur, TPNDur 

and UrinCatheter are selected by more than two models in the study. Variables 

indicate that during the treatment of the main disease, applied methods such as 

catheters may increase the risk of hospital infections. Moreover, patient 

characteristics such as low APGAR score and lengthened hospital stay may trigger 

the hospital infections. 

In summary, the surveillance of hospital infections in newborn ICUs has an 

extreme importance to prevent the outbreaks. In addition to infection control 

programs which prevent hospital infections, systems that can also expose infection 

signals are very important. Detecting risky or infected newborns accurately will help 

to reduce morbidity and mortality with on time and right treatments and likewise, 
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determining less risky - noninfected newborns will reduce the economic burden of 

hospital infections. 

In further studies, more observations regarding hospital infections in newborn 

ICUs should be analyzed with classification algorithms. Moreover, the sample 

should be collected from several hospitals to be able to eliminate the local effects. 

Thus for different hospital infection types, different models can be built. In addition, 

patient-care related risk factors such as disinfection and antisepsis usage frequency 

and if possible, external factors such as season, air-conditioning etc. should be taken 

into consideration for hospital infection detection in newborn ICUs.  
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APPENDICES 

 

A. MEDICAL DEFINITIONS 

 

Nosocomial: Originating or taking place in a hospital, especially in reference 

to an infection (Medicalterms.com, 2008). 

Incubation period: In medicine, the time from the moment of exposure to an 

infectious agent until signs and symptoms of the disease appear (Medterms.com, 

2008). 

CDC National Nosocomial Infection Surveillance (NNIS): System in the 

United States has provided standardized methods for collecting and comparing health 

care-associated infection rates and the national benchmark infection rate data for 

inter- and intrahospital comparisons since the 1970s. (Pittet, 2005) 

Surveillance: Surveillance is defined as ‘‘the ongoing, systematic collection, 

analysis, and interpretation of data essential to the planning, implementation, and 

evaluation of public health practice, closely integrated with the timely dissemination 

of these data to those who need to know.’’(Pittet, 2005) 

Colonization: Microorganism is present in host and increases its population. 

Colonization is different from infection in terms of not causing illness 

(tipterimleri.com, 2008). 

Neonate: Newborn baby, the first 28 days of a baby. 

Flora: Microorganisms that live on or within a body to compete with disease-

producing microorganisms and provide a natural immunity against certain infections 
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(medical-dictionary.thefreedictionary.com, 2010). 

Apgar Score: Results of a method to assess the health of a newborn according 

to five main criteria (Appearance, Pulse, Grimace, Activity, and Respiration) 

immediately after birth. Each criteria is scored between 0 and 2 and sum of these 

scores are evaluated as Apgar score. A normal child gets a score between 7-10. 

Apgar score is observed twice: one minute after birth and five minutes after birth. 

Celebral Palsy: A non-progressive abnormality of motor function that can 

cause seizures, subnormality, blindness, deafness, nutrition or swallow disorders 

(tipterimleri.com, 2008). 

Acidosis: Blood PH is abnormally low because of acid accumulation or 

alkaline reserves’ deplation in blood or tissues. 

Gestational Age: Age of embryo in weeks. 

Spa typing: DNA sequence analysis of the protein A gene variable repeat 

region (spa typing) provides a rapid and accurate method to discriminate 

Staphylococcus aureus outbreak (medical-dictionary.thefreedictionary.com, 2010). 

Invasive procedure: A medical procedure which penetrates or breaks the skin 

or a body cavity, i.e., it requires a perforation, an incision, a catheterization, etc. into 

the body (medterms.com, 2008).  

Sepsis, Septicemia: The presence of bacteria or other infectious organisms or 

their toxins in the blood (septicemia) or in other tissue of the body. It is commonly 

called “blood stream infection”. Babies with sepsis may be listless, overly sleepy, 

floppy, weak, and very pale. 

Early membrane rupture (EMR): Early detachment of the placenta from the 

uterus (medical-dictionary.thefreedictionary.com, 2010). 
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Perinatal Asphyxia: Respiratory failure in the newborn, a condition caused by 

the inadequate intake of oxygen before, during, or just after birth (medical-

dictionary.thefreedictionary.com, 2010). 

Hydrops Fetalis: A condition in which a fetus or newborn baby accumulates 

fluids, causing swollen arms and legs and impaired breathing (medical-

dictionary.thefreedictionary.com, 2010). 

Polycythemia: An increase in red cell mass caused by increased 

erythropoiesis, over 65% (medical-dictionary.thefreedictionary.com, 2010). 

Acute Renal Failure: An abrupt decline in renal function (medical-

dictionary.thefreedictionary.com, 2010). 

Meconium Aspiration Syndrome: The respiratory complications resulting 

from the passage and aspiration of meconium prior to or during delivery (medical-

dictionary.thefreedictionary.com, 2010). 

Chorioamnionitis: Inflammation of the amniotic membranes caused by 

infection (medical-dictionary.thefreedictionary.com, 2010). 

Oligohydramnios: An abnormally small amount or absence of amniotic fluid 

(medical-dictionary.thefreedictionary.com, 2010). 

Congenital Anomaly: A developmental anomaly present at birth (medical-

dictionary.thefreedictionary.com, 2010). 

Immunosuppression: Suppression of the immune response, as by drugs or 

radiation, in order to prevent the rejection of grafts or transplants or control 

autoimmune diseases (medical-dictionary.thefreedictionary.com, 2010). 

Urinary Catheter: The insertion of a catheter into a patient's bladder (medical-

dictionary.thefreedictionary.com, 2010). 
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Peripheral Catheter: An intravenous line placed in a vein (oncolink.org, 

2010). 

Umbilical Catheter: A procedure in which a radiopaque catheter is passed 

through an umbilical artery to provide a newborn with parenteral fluid, to obtain 

blood samples, or both, or through the umbilical vein for an exchange transfusion or 

the emergency administration of drugs, fluids, or volume expanders (medical-

dictionary.thefreedictionary.com, 2010). 

Total Parenteral Feeding: A way of supplying all the nutritional needs of the 

body by bypassing the digestive system and dripping nutrient solution directly into a 

vein (medical-dictionary.thefreedictionary.com, 2010). 

Enteral Nutrition: the delivery of nutrients in liquid form directly into the 

stomach, duodenum, or jejunum (medical-dictionary.thefreedictionary.com, 2010). 

Nasogastric Intubation: The placement of a nasogastric tube through the nose 

into the stomach (medical-dictionary.thefreedictionary.com, 2010). 

Orogastric Intubation: passing a stomach tube via the mouth (medical-

dictionary.thefreedictionary.com, 2010). 

H2 Blockers or Proton-Pump Inhibitors (PPIs): Act by stopping the pathway 

that leads to the secretion of stomach acid / drugs reduce the secretion of gastric 

(stomach) acid (medical-dictionary.thefreedictionary.com, 2010). 

Steroid Usage: A natural body substance that often is given to women before 

delivering a very premature infant to stimulate the fetal lungs to produce surfactant, 

hopefully preventing RDS (medical-dictionary.thefreedictionary.com, 2010). 

Aspiration: Removal by suction (medical-dictionary.thefreedictionary.com, 

2010). 
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Intubation: The insertion of a tube into a body canal or hollow organ 

(medical-dictionary.thefreedictionary.com, 2010). 

Mechanical Ventilation: Breathing that accomplished by extrinsic means 

(medical-dictionary.thefreedictionary.com, 2010). 

Nasal Continuous Positive Airway Pressure (nCPAP): A ventilation device 

that blows a gentle stream of air into the nose to keep the airway open (medical-

dictionary.thefreedictionary.com, 2010). 

Tracheostomy: Surgical construction of a respiratory opening in the trachea 

(medical-dictionary.thefreedictionary.com, 2010). 

Cut down: Creation of a small incised opening, especially over a vein 

(medical-dictionary.thefreedictionary.com, 2010). 

Chest tube: A catheter inserted through the rib space of the thorax into the 

pleural space (medical-dictionary.thefreedictionary.com, 2010). 

Positive pressure ventilation: Mechanical ventilation in which air is delivered 

into the airways and lungs under positive pressure (medical-

dictionary.thefreedictionary.com, 2010). 

Respiratory distress syndrome: An acute lung disease present at birth 

(medical-dictionary.thefreedictionary.com, 2010). 

Exchange transfusion (blood exchange): Repetitive withdrawal of small 

amounts of blood and replacement with donor blood (medical-

dictionary.thefreedictionary.com, 2010). 

Phlebotomy: The act of drawing or removing blood from the circulatory 

system through a cut (medical-dictionary.thefreedictionary.com, 2010). 

Phototherapy: A treatment for hyperbilirubinemia and jaundice in the 
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newborn that involves the exposure of an infant's bare skin to intense fluorescent 

light (medical-dictionary.thefreedictionary.com, 2010). 
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B. CROSS TABULATIONS OF CATEGORICAL VARIABLES 

 

In order to examine the relationship between independent categorical variables and 

dependent variable (HospInfec), cross tabulations with cell percentages were drawn.  

Table 40. Cross Tabulations 
Variables Value Type HospInfec Total 

0 1 

ARF 0 N 413 117 530 

PctN 75.78 21.47 97.25 

1 N 12 3 15 

PctN 2.2 0.55 2.75 

Total N 425 120 545 

PctN 77.98 22.02 100 

Aspiration 0 N 383 89 472 

PctN 70.27 16.33 86.61 

1 N 42 31 73 

PctN 7.71 5.69 13.39 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthHealthCenter 0 N 8 1 9 

PctN 1.47 0.18 1.65 

1 N 417 119 536 

PctN 76.51 21.83 98.34 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthOption 0 N 198 55 253 
PctN 36.33 10.09 46.42 

1 N 227 65 292 
PctN 41.65 11.93 53.58 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

BirthPlaceBCent 0 N 404 119 523 

PctN 74.13 21.83 95.96 

1 N 21 1 22 

PctN 3.85 0.18 4.03 

Total N 425 120 545 

PctN 77.98 22.01 100 

BirthPlaceHome 0 N 418 120 538 

PctN 76.7 22.02 98.72 

1 N 7 . 7 

PctN 1.28 . 1.28 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthPlaceHosp 0 N 224 73 297 

PctN 41.1 13.39 54.49 

1 N 201 47 248 

PctN 36.88 8.62 45.5 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthPlaceOGU 0 N 230 49 279 

PctN 42.2 8.99 51.19 

1 N 195 71 266 

PctN 35.78 13.03 48.81 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthPlaceOth 0 N 424 119 543 

PctN 77.8 21.83 99.63 

1 N 1 1 2 

PctN 0.18 0.18 0.36 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

BirthWGroup2 0 N 41 26 67 

PctN 7.52 4.77 12.29 

1 N 384 94 478 

PctN 70.46 17.25 87.71 

Total N 425 120 545 

PctN 77.98 22.02 100 

BirthWGroup4 1 N 4 6 10 
PctN 0.73 1.1 1.83 

2 N 37 20 57 

PctN 6.79 3.67 10.46 

3 N 97 29 126 
PctN 17.8 5.32 23.12 

4 N 287 65 352 

PctN 52.66 11.93 64.59 

Total N 425 120 545 

PctN 77.98 22.02 100 

CatRelBloodFlow 0 N 425 119 544 

PctN 77.98 21.83 99.81 

1 N . 1 1 

PctN . 0.18 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

CentCatheter 0 N 424 120 544 

PctN 77.8 22.02 99.82 

1 N 1 . 1 

PctN 0.18 . 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

ChestTube 0 N 418 117 535 

PctN 76.7 21.47 98.17 

1 N 7 3 10 

PctN 1.28 0.55 1.83 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

Chorioamnio 0 N 423 118 541 

PctN 77.61 21.65 99.26 

1 N 2 2 4 

PctN 0.37 0.37 0.74 

Total N 425 120 545 

PctN 77.98 22.02 100 

CongAno 0 N 365 103 468 

PctN 66.97 18.9 85.87 

1 N 60 17 77 

PctN 11.01 3.12 14.13 

Total N 425 120 545 

PctN 77.98 22.02 100 

CutDown 0 N 424 120 544 

PctN 77.8 22.02 99.82 

1 N 1 . 1 

PctN 0.18 . 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

DetailBirthPlace 1 N 195 71 266 

PctN 35.78 13.03 48.81 

2 N 201 47 248 

PctN 36.88 8.62 45.5 

3 N 21 1 22 

PctN 3.85 0.18 4.04 

4 N 7 . 7 

PctN 1.28 . 1.28 

5 N 1 1 2 

PctN 0.18 0.18 0.36 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

EMR 0 N 393 113 506 

PctN 72.11 20.73 92.84 

1 N 32 7 39 

PctN 5.87 1.28 7.16 

Total N 425 120 545 

PctN 77.98 22.01 100 

EnteralNut . N 27 13 40 

PctN 4.95 2.39 7.34 

0 N 242 41 283 

PctN 44.4 7.52 51.93 

1 N 156 66 222 

PctN 28.62 12.11 40.73 

Total N 425 120 545 

PctN 77.98 22.02 100 

Gender 0 N 215 55 270 

PctN 39.45 10.09 49.54 

1 N 210 65 275 

PctN 38.53 11.93 50.46 

Total N 425 120 545 

PctN 77.98 22.02 100 

h2blockPPI 0 N 410 107 517 

PctN 75.23 19.63 94.86 

1 N 15 13 28 

PctN 2.75 2.39 5.14 

Total N 425 120 545 

PctN 77.98 22.02 100 

HBM 0 N 156 36 192 

PctN 28.62 6.61 35.23 

1 N 269 84 353 

PctN 49.36 15.41 64.77 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

HospDurLong2 0 N 257 42 299 

PctN 47.16 7.71 54.86 

1 N 168 78 246 

PctN 30.83 14.31 45.14 

Total N 425 120 545 

PctN 77.98 22.02 100 

HydropsFetalis 0 N 425 119 544 

PctN 77.98 21.83 99.81 

1 N . 1 1 

PctN . 0.18 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

ICU 0 N 381 95 476 

PctN 69.91 17.43 87.34 

1 N 44 25 69 

PctN 8.07 4.59 12.66 

Total N 425 120 545 

PctN 77.98 22.02 100 

ImmunoSupp 0 N 424 120 544 

PctN 77.8 22.02 99.82 

1 N 1 . 1 

PctN 0.18 . 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

Intubation 0 N 357 78 435 

PctN 65.5 14.31 79.81 

1 N 68 42 110 

PctN 12.48 7.71 20.18 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

Invasive 0 N 384 105 489 

PctN 70.46 19.27 89.73 

1 N 41 15 56 

PctN 7.52 2.75 10.28 

Total N 425 120 545 

PctN 77.98 22.02 100 

IUGR 0 N 402 114 516 

PctN 73.76 20.92 94.68 

1 N 23 6 29 

PctN 4.22 1.1 5.32 

Total N 425 120 545 

PctN 77.98 22.02 100 

LBW 1 N 66 16 82 

PctN 12.11 2.94 15.05 

2 N 336 97 433 

PctN 61.65 17.8 79.45 

3 N 23 7 30 

PctN 4.22 1.28 5.5 

Total N 425 120 545 

PctN 77.98 22.02 100 

LowAPGAR . N 75 31 106 

PctN 13.76 5.69 19.45 

0 N 337 85 422 

PctN 61.83 15.6 77.43 

1 N 13 4 17 

PctN 2.39 0.73 3.12 

Total N 425 120 545 

PctN 77.98 22.02 100 

LowGISBleed 0 N 424 119 543 

PctN 77.8 21.83 99.63 

1 N 1 1 2 

PctN 0.18 0.18 0.36 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

MecAspSyn 0 N 393 111 504 

PctN 72.11 20.37 92.48 

1 N 32 9 41 

PctN 5.87 1.65 7.52 

Total N 425 120 545 

PctN 77.98 22.02 100 

MechVent 0 N 356 78 434 

PctN 65.32 14.31 79.63 

1 N 69 42 111 

PctN 12.66 7.71 20.37 

Total N 425 120 545 

PctN 77.98 22.02 100 

NasogTube 0 N 390 94 484 

PctN 71.56 17.25 88.81 

1 N 35 26 61 

PctN 6.42 4.77 11.19 

Total N 425 120 545 

PctN 77.98 22.02 100 

Ncpap 0 N 316 73 389 

PctN 57.98 13.39 71.37 

1 N 109 47 156 

PctN 20 8.62 28.62 

Total N 425 120 545 

PctN 77.98 22.02 100 

Oligohyd 0 N 418 117 535 

PctN 76.7 21.47 98.17 

1 N 7 3 10 

PctN 1.28 0.55 1.83 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

Ncpap 0 N 316 73 389 

PctN 57.98 13.39 71.37 

1 N 109 47 156 

PctN 20 8.62 28.62 

Total N 425 120 545 

PctN 77.98 22.02 100 

Oligohyd 0 N 418 117 535 

PctN 76.7 21.47 98.17 

1 N 7 3 10 

PctN 1.28 0.55 1.83 

Total N 425 120 545 

PctN 77.98 22.02 100 

OrogTube 0 N 387 93 480 

PctN 71.01 17.06 88.07 

1 N 38 27 65 

PctN 6.97 4.95 11.93 

Total N 425 120 545 

PctN 77.98 22.02 100 

Pasphyxia 0 N 383 99 482 

PctN 70.28 18.17 88.45 

1 N 42 21 63 

PctN 7.71 3.85 11.56 

Total N 425 120 545 

PctN 77.98 22.02 100 

PeripCatheter 0 N 90 5 95 

PctN 16.51 0.92 17.43 

1 N 335 115 450 

PctN 61.47 21.1 82.57 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

OrogTube 0 N 387 93 480 

PctN 71.01 17.06 88.07 

1 N 38 27 65 

PctN 6.97 4.95 11.93 

Total N 425 120 545 

PctN 77.98 22.02 100 

Pasphyxia 0 N 383 99 482 

PctN 70.28 18.17 88.45 

1 N 42 21 63 

PctN 7.71 3.85 11.56 

Total N 425 120 545 

PctN 77.98 22.02 100 

PeripCatheter 0 N 90 5 95 

PctN 16.51 0.92 17.43 

1 N 335 115 450 

PctN 61.47 21.1 82.57 

Total N 425 120 545 

PctN 77.98 22.02 100 

Phlebotomy 0 N 424 120 544 

PctN 77.8 22.02 99.82 

1 N 1 . 1 

PctN 0.18 . 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

Phototherapy 0 N 155 40 195 

PctN 28.44 7.34 35.78 

1 N 270 80 350 

PctN 49.54 14.68 64.22 

Total N 425 120 545 

PctN 77.98 22.02 100 

 
 
 
 
 
 
 

 



 

 
116

Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

Polycythemia 0 N 414 114 528 

PctN 75.96 20.92 96.88 

1 N 11 6 17 

PctN 2.02 1.1 3.12 

Total N 425 120 545 

PctN 77.98 22.02 100 

PPV 0 N 390 105 495 

PctN 71.56 19.27 90.83 

1 N 35 15 50 

PctN 6.42 2.75 9.17 

Total N 425 120 545 

PctN 77.98 22.02 100 

Premature 0 N 282 66 348 

PctN 51.74 12.11 63.85 

1 N 143 54 197 

PctN 26.24 9.91 36.15 

Total N 425 120 545 

PctN 77.98 22.02 100 

Preterm 0 N 380 100 480 

PctN 69.72 18.35 88.07 

1 N 45 20 65 

PctN 8.26 3.67 11.93 

Total N 425 120 545 

PctN 77.98 22.02 100 

RDS 0 N 399 103 502 

PctN 73.21 18.9 92.11 

1 N 26 17 43 

PctN 4.77 3.12 7.89 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

SteroidUsage 0 N 410 105 515 

PctN 75.23 19.27 94.5 

1 N 15 15 30 

PctN 2.75 2.75 5.5 

Total N 425 120 545 

PctN 77.98 22.02 100 

SurgInterv 0 N 418 109 527 

PctN 76.7 20 96.7 

1 N 7 11 18 

PctN 1.28 2.02 3.3 

Total N 425 120 545 

PctN 77.98 22.02 100 

TPN 0 N 308 68 376 

PctN 56.51 12.48 68.99 

1 N 117 52 169 

PctN 21.47 9.54 31.01 

Total N 425 120 545 

PctN 77.98 22.02 100 

TPNLipid 0 N 307 68 375 

PctN 56.33 12.48 68.81 

1 N 118 52 170 

PctN 21.65 9.54 31.19 

Total N 425 120 545 

PctN 77.98 22.02 100 

Trakeos 0 N 425 120 545 

PctN 77.98 22.02 100 

Total N 425 120 545 

PctN 77.98 22.02 100 

TTN 0 N 400 115 515 

PctN 73.39 21.1 94.49 

1 N 25 5 30 

PctN 4.59 0.92 5.51 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

Twin 0 N 377 108 485 

PctN 69.17 19.82 88.99 

1 N 48 12 60 

PctN 8.81 2.2 11.01 

Total N 425 120 545 

PctN 77.98 22.02 100 

UmbCatheter 0 N 392 111 503 

PctN 71.93 20.37 92.3 

1 N 33 9 42 

PctN 6.06 1.65 7.71 

Total N 425 120 545 

PctN 77.98 22.02 100 

UriCatRelUrinary 0 N 425 119 544 

PctN 77.98 21.83 99.81 

1 N . 1 1 

PctN . 0.18 0.18 

Total N 425 120 545 

PctN 77.98 22.02 100 

UrinCatheter 0 N 423 106 529 

PctN 77.61 19.45 97.06 

1 N 2 14 16 

PctN 0.37 2.57 2.94 

Total N 425 120 545 

PctN 77.98 22.02 100 

VenRelPneum . N 1 . 1 

PctN 0.18 . 0.18 

0 N 424 116 540 

PctN 77.8 21.28 99.08 

1 N . 4 4 

PctN . 0.73 0.73 

Total N 425 120 545 

PctN 77.98 22.02 100 
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Table 40. continued. 
Variables Value Type HospInfec Total 

0 1 

WeightGroup22 0 N 275 67 342 

PctN 50.46 12.29 62.75 

1 N 150 53 203 

PctN 27.52 9.72 37.24 

Total N 425 120 545 

PctN 77.98 22.02 100 

WeightGroup3 0 N 27 16 43 

PctN 4.95 2.94 7.89 

1 N 123 37 160 

PctN 22.57 6.79 29.36 

2 N 275 67 342 

PctN 50.46 12.29 62.75 

Total N 425 120 545 

PctN 77.98 22.02 100 

WeightGroup5 1 N 5 2 7 

PctN 0.92 0.37 1.29 

2 N 22 14 36 

PctN 4.04 2.57 6.61 

3 N 62 18 80 

PctN 11.38 3.3 14.68 

4 N 61 19 80 

PctN 11.19 3.49 14.68 

5 N 275 67 342 

PctN 50.46 12.29 62.75 

Total N 425 120 545 

PctN 77.98 22.02 100 

WrappedCord 0 N 422 118 540 

PctN 77.43 21.65 99.08 

1 N 3 2 5 

PctN 0.55 0.37 0.92 

Total N 425 120 545 

PctN 77.98 22.02 100 
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C. DECISION TREE STRUCTURES 

Classification trees of holdout decision tree models are represented in following figures. Low (white) to high (dark blue) probabilities of 

correct classification are displayed using a graduated color ramp. 

 
Figure 34. CHAID decision tree with holdout sampling 
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Figure 35. CART decision tree with holdout sampling 

 

  



 

 
122

 
Figure 36. Entropy decision tree with holdout sampling 
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D. CORRELATION MATRIX 

The relationships between independent continuous variables were examined with correlation matrix. For each variable, the first row is the 

pearson correlation coefficient, the second row is p-value and the third row is the number of observations for which the correlation 

coefficients were calculated. 

Table 41. Correlation Matrix 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  AgeD
ay 

Intu
bDu
rRat

EN
Dur

Wei
ght 

Birth
Wee

k 

Hos
pDu

r 

Ven
Dur 

PerC
atDu

r 

Umb
CatD

ur 

Cent
CatD

ur 

UriC
atDu

r 

Photot
herDu

r 

Intu
bDu

r 

Ncpa
pDur

PPVD
ur 

Asp
irD
ur 

TP
ND
ur 

ICU
Dur

NgUs
eDur 

Og
Use
Dur

Weight
BWeek

Rat 

ICU
DurR

at 

Aspir
DurRa

t 

UriCat
DurRa

t 

PerCat
DurRa

t 

END
urRa

t 

TPN
DurR

at 

A
ge

D
ay

 

1 -
0.06
614

-
0.1
453

1

0.1
358

1

0.141
69 

-
0.07
895 

-
0.06
086 

-
0.07
312

0.005
83

-
0.013

53

0.00
576

-
0.0821

-
0.07
789

-
0.06
187

-
0.034

9

-
0.06
953 

-
0.06
917 

-
0.07
925

-
0.081

14

-
0.07
648

0.1303
9

-
0.079

06

-
0.080

71

0.0068
2

-
0.0225

-
0.09
764

-
0.004

74 

  0.12
3

0.0
011

0.0
015

0.000
9 

0.06
55 

0.15
59 

0.08
81

0.892 0.752
7

0.89
32

0.0554 0.06
92

0.14
92

0.416
1

0.10
52 

0.10
67 

0.06
45

0.058
4

0.07
44

0.0023 0.065
1

0.06 0.8738 0.6002 0.02
82

0.912
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

In
tu

bD
ur

R
at

 -
0.066

14 

1 0.1
498

4

-
0.2
269

-
0.308

22 

0.34
003 

0.59
272 

0.37
505

-
0.007

47

-
0.014

85

0.23
471

0.0833
5

0.64
677

0.15
774

0.142
72

0.50
134 

0.41
354 

0.36
748

0.439
14

0.17
814

-
0.2116

4

0.408
46

0.636
79

0.2050
2

0.1944
6

-
0.10

34

0.375
62 

0.123   0.0
007

<.0
001 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

0.861
8

0.729
3

<.00
01 

0.0518 <.00
01 

0.00
02

0.000
8

<.0
001 

<.0
001 

<.0
001 

<.000
1 

<.0
001 

<.0001 <.000
1 

<.000
1 

<.0001 <.0001 0.02
01

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurRa

t 

EN
Dur

Wei
ght 

Birth
Wee

k 

Hos
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r 

Ven
Dur 

PerC
atDu

r 
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ur 
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-
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62 
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0.36
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0.598
33

-
0.014

2

-
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08
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8

0.47
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0.41
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0.36
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0.586
22

0.678
06

-
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0.226
79

0.397
4

0.1212
4

0.3018
3

0.592
02 

0.300
37 

0.00
11 

0.000
7

  <.00
01 

<.000
1 

<.00
01 

<.00
01 

<.00
01 

0.750
3

0.573
9

0.000
8

<.0001 <.00
01 
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01 

0.12
12
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01 
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01 
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01 
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01 
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1 
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1 
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01 
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1 

505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 504 505 505 505 505 505 505 504 505 505 505 505 

W
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6
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88 
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02
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18
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8
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0.46
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0.37
104

-
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51

-
0.280

38

0.98719 -
0.385

14

-
0.218

29

0.0911
6

-
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0.015
69 

-
0.453

35 

0.00
15 

<.000
1 

<.0
001 

  <.000
1 

<.00
01 

<.00
01 

<.00
01 

0.037
8

0.122
8

0.059
4

<.0001 <.00
01 

<.00
01 

0.01
86

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.000
1 

<.0001 <.000
1 

<.000
1 

0.0334 <.0001 0.725 <.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

B
irt
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k 

0.14
169 

-
0.308

22

-
0.2
956

2

0.81
888

1 -
0.55
162 

-
0.29
062 

-
0.540

91

-
0.067
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-
0.066

52

0.058
28

-
0.4261

4

-
0.33
196

-
0.47
272

-
0.19
639

-
0.31
307 

-
0.56
806 

-
0.46

44

-
0.306

9

-
0.333

2

0.72717 -
0.448

57

-
0.281

89

0.0697
6

-
0.1958

5

0.005
63 

-
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02 

0.00
09 

<.000
1 

<.0
001 

<.00
01 

  <.00
01 

<.00
01 

<.00
01 

0.115
3

0.120
9

0.174
2

<.0001 <.00
01 
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01 
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01 
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01 
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01 
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01 
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01 
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1 

<.0001 <.000
1 
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1 
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6 
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1 
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0.07
895 

0.340
03

0.5
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1

-
0.46
792

-
0.551

62 

1 0.56
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0.956
01

0.213
41

0.064
07

0.095
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0.4322
5
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0.60
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0.92
022 
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05
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33
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8
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4
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2
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53 

0.648
72 
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55 
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1 
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2
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1 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 
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0.500
67

-0.43073 0.502
15

0.487
55
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01 
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1 
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7
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2
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-
0.0210

3

0.0496
1

-
0.111

01 

0.085
64 

0.89
2 

0.861
8

0.75
03

0.03
78

0.115
3 

<.00
01 

0.61
77 

<.00
01 

  0.827
4

0.701
6

<.0001 0.75
56

<.00
01 

0.64
47

0.58
67 

<.00
01 

<.0
001 

0.510
8

0.162
2

0.0251 0.001
2

0.738
5

0.6242 0.2476 0.012
6 

0.045
7 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

C
en

tC
at

D
ur

 

-
0.01
353 

-
0.014

85

-
0.02
508

-
0.06
618

-
0.066

52 

0.06
407 

-
0.00
807 

-
0.031

83

-
0.009

36

1 -
0.003

66

-
0.0239

4

-
0.00
974

0.11
057

-
0.01
159

-
0.00
744 

0.07
316 

0.0
848

5

-
0.008

05

-
0.001

59

-0.06416 0.111
35

-
0.012

15

-
0.0048

4

-
0.0809

8

-
0.035

77 

0.083
28 

0.75
27 

0.729
3

0.57
39

0.12
28

0.120
9 

0.13
52 

0.85
1 

0.458
3

0.827
4

  0.932
2

0.5771 0.82
06

0.00
98

0.78
72

0.86
25 

0.08
79 

0.0
477

0.851
3

0.970
5

0.1347 0.009
3

0.777
5

0.9103 0.0589 0.422
5 

0.052 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurRa

t 

EN
Dur

Wei
ght 

Birth
Week 

Hos
pDu

r 

Ven
Dur 

PerC
atDur

Umb
CatDu

r 

CentC
atDur 

UriC
atDur

Photot
herDur

Intu
bDu

r 

Ncpa
pDur

PPV
Dur 

Aspi
rDur 

TP
ND
ur 

ICU
Dur 

NgU
seDu

r 

OgU
seDu

r 

WeightB
WeekRat

ICUD
urRat 

Aspir
DurRa

t 

UriCat
DurRat

PerCat
DurRat

END
urRat 

TPN
DurR

at 

U
riC

at
D

ur
 

0.00
576 

0.234
71

0.1
484

2

0.08
082

0.058
28 

0.09
534 

0.1
616

7 

0.105
74

-
0.016

45

-
0.003

66

1 -
0.0602

5

0.19
83

0.00
326

-
0.00
965

0.16
529 

0.12
683 

0.1
078

4

0.155
63

0.127
3

0.07815 0.142
06

0.2959 0.9242 0.0533 0.038
1 

0.165
65 

0.89
32 

<.000
1 

0.0
008

0.05
94

0.174
2 

0.02
6 

0.0
002 

0.013
5

0.701
6

0.932
2

  0.1601 <.00
01 

0.93
95

0.82
21

0.00
01 

0.00
3 

0.0
118

0.000
3

0.002
9

0.0683 0.000
9

<.000
1 

<.0001 0.2141 0.392
9 

0.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

Ph
ot

ot
he

rD
ur

 

-
0.08

21 

0.083
35

0.1
946

8

-
0.32
698

-
0.426

14 

0.43
225 

0.2
015

7 

0.446
3

0.176
8

-
0.023

94

-
0.060

25

1 0.21
035

0.35
483

0.14
007

0.20
398 

0.43
902 

0.3
717

3

0.182
7

0.261
94

-0.28833 0.334
87

0.1247
4

-
0.0673

9

0.1631 -
0.017

94 

0.410
82 

0.05
54 

0.051
8

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

<.000
1 

0.577
1

0.160
1

  <.00
01 

<.00
01 

0.00
1

<.00
01 

<.00
01 

<.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

0.0036 0.1161 0.0001 0.687
6 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

In
tu

bD
ur

 

-
0.07
789 

0.646
77

0.4
727

4

-
0.23
927

-
0.331

96 

0.63
626 

0.9
607

5 

0.660
3

0.013
36

-
0.009

74

0.198
3

0.2103
5

1 0.20
095

0.32
88

0.94
968 

0.71
322 

0.6
872

2

0.856
81

0.231
45

-0.22393 0.420
62

0.7223
7

0.1577
8

0.1394
1

0.016
22 

0.419
28 

0.06
92 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

0.755
6

0.820
6

<.00
01 

<.0001   <.00
01 

<.00
01 

<.00
01 

<.00
01 

<.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

0.0002 0.0011 0.716
1 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

N
cp

ap
D

ur
 

-
0.06
187 

0.157
74

0.4
127

3

-
0.40
462

-
0.472

72 

0.59
927 

0.1
495

3 

0.581
86

0.218
59

0.110
57

0.003
26

0.3548
3

0.20
095

1 0.05
87

0.19
765 

0.60
459 

0.4
903

0.214
95

0.544
74

-0.37141 0.465
44

0.2329
8

0.0037
2

0.1599
5

-
0.023

28 

0.575
88 

0.14
92 

0.000
2

<.0
001 

<.00
01 

<.000
1 

<.00
01 

0.0
005 

<.00
01 

<.000
1 

0.009
8

0.939
5

<.0001 <.00
01 

  0.17
12

<.00
01 

<.00
01 

<.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

0.9309 0.0002 0.601
7 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurRa

t 

EN
Dur 

Wei
ght 

Birth
Wee

k 

Hos
pDu

r 

Ven
Dur 

PerC
atDu

r 

Umb
CatDu

r 

CentC
atDur 

UriC
atDu

r 

Photot
herDur

Intu
bDu

r 

Ncpa
pDur

PP
VD
ur 

Aspi
rDur 

TP
ND
ur 

ICU
Dur 

NgU
seDu

r 

OgU
seDu

r 

WeightB
WeekRat

ICUD
urRat 

Aspir
DurRa

t 

UriCat
DurRat

PerCat
DurRat

END
urRat 

TPN
DurR

at 

PP
V

D
ur

 

-
0.03

49 

0.142
72

-
0.06
905

-
0.10
079

-
0.196

39 

0.21
953 

0.3
306

3 

0.211
51

0.019
8

-
0.011

59

-
0.009

65

0.1400
7

0.32
88

0.05
87

1 0.35
216 

0.24
73 

0.2
525

9

0.278
83

-
0.027

41

-0.0721 0.116
38

0.2338
2

-
0.0052

8

0.0249
2

-
0.134

03 

0.149
64 

0.41
61 

0.000
8

0.12
12

0.01
86

<.000
1 

<.00
01 

<.0
001 

<.00
01 

0.644
7

0.787
2

0.822
1

0.001 <.00
01 

0.17
12

  <.00
01 

<.00
01 

<.0
001 

<.00
01 

0.523
1

0.0926 0.006
5

<.000
1 

0.9021 0.5615 0.002
5 

0.000
5 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

A
sp

irD
ur

 

-
0.06
953 

0.501
34

0.59
699

-
0.23
395

-
0.313

07 

0.60
571 

0.9
350

9 

0.634
76

0.023
36

-
0.007

44

0.165
29

0.2039
8

0.94
968

0.19
765

0.35
216

1 0.69
14 

0.6
902

5

0.894
11

0.193
34

-0.22065 0.394
62

0.7727
6

0.1389
5

0.1200
2

0.113
38 

0.363
7 

0.10
52 

<.000
1 

<.00
01 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

0.586
7

0.862
5

0.000
1

<.0001 <.00
01 

<.00
01 

<.0
001 

  <.00
01 

<.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

0.0012 0.0051 0.010
9 

<.000
1 

544 544 504 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 504 544 

TP
N

D
ur

 

-
0.06
917 

0.413
54

0.49
023

-
0.46
003

-
0.568

06 

0.92
022 

0.6
420

5 

0.916
99

0.216
81

0.073
16

0.126
83

0.4390
2

0.71
322

0.60
459

0.24
73

0.69
14 

1 0.8
130

4

0.714
21

0.454
03

-0.42792 0.568
28

0.5399
4

0.1040
3

0.2019
1

-
0.047

96 

0.759
69 

0.10
67 

<.000
1 

<.00
01 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

<.000
1 

0.087
9

0.003 <.0001 <.00
01 

<.00
01 

<.0
001 

<.00
01 

  <.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

0.0151 <.0001 0.282
1 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

IC
U

D
ur

 

-
0.07
925 

0.367
48

0.36
076

-
0.37
104

-
0.464

4 

0.73
983 

0.6
813

8 

0.751
3

0.258
87

0.084
85

0.107
84

0.3717
3

0.68
722

0.49
03

0.25
259

0.69
025 

0.81
304 

1 0.658
78

0.306
58

-0.34876 0.743
8

0.5093
6

0.0799
6

0.1420
4

-
0.017

81 

0.495
11 

0.06
45 

<.000
1 

<.00
01 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

<.000
1 

0.047
7

0.011
8

<.0001 <.00
01 

<.00
01 

<.0
001 

<.00
01 

<.00
01 

  <.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

0.0621 0.0009 0.689
7 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurRa

t 

EN
Dur

Wei
ght 

Birth
Wee

k 

Hos
pDu

r 

Ven
Dur 

PerC
atDu

r 

Umb
CatDu

r 

CentC
atDur 

UriC
atDu

r 

Photot
herDur

Intu
bDu

r 

Ncpa
pDur

PPV
Dur 

Aspi
rDur 

TPN
Dur 

ICU
Dur 

NgU
seDu

r 

OgU
seDu

r 

WeightB
WeekRat

ICUD
urRat 

Aspir
DurRa

t 

UriCat
DurRat

PerCat
DurRat

END
urRat 

TPN
DurR

at 

N
gU

se
D

ur
 

-
0.08
114 

0.439
14

0.5
862

2

-
0.23
451

-
0.306

9 

0.63
505 

0.83
565 

0.669
76

0.028
22

-
0.008

05

0.155
63

0.1827 0.85
681

0.21
495

0.27
883

0.89
411 

0.71
421 

0.65
878

1 0.135
13

-0.22264 0.362
78

0.654
27

0.1277
4

0.1323
4

0.110
17 

0.373
22 

0.05
84 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.00
01 

<.00
01 

0.510
8

0.851
3

0.000
3

<.0001 <.00
01 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

  0.001
6

<.0001 <.000
1 

<.000
1 

0.0028 0.002 0.013
2 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

O
gU

se
D

ur
 

-
0.07
648 

0.178
14

0.6
780

6

-
0.28
038

-
0.333

2 

0.49
433 

0.12
191 

0.500
67

0.059
95

-
0.001

59

0.127
3

0.2619
4

0.23
145

0.54
474

-
0.02
741

0.19
334 

0.45
403 

0.30
658

0.135
13

1 -0.25832 0.276
15

0.227
33

0.1065
5

0.1543
1

0.157
39 

0.390
6 

0.07
44 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

0.00
44 

<.00
01 

0.162
2

0.970
5

0.002
9

<.0001 <.00
01 

<.00
01 

0.52
31

<.00
01 

<.00
01 

<.00
01 

0.001
6

  <.0001 <.000
1 

<.000
1 

0.0128 0.0003 0.000
4 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

W
ei

gh
tB

W
ee

kR
at

 0.13
039 

-
0.211

64

-
0.2
328

2

0.98
719

0.727
17 

-
0.43
965 

-
0.20
297 

-
0.430

73

-
0.095

96

-
0.064

16

0.078
15

-
0.2883

3

-
0.22
393

-
0.37
141

-
0.07

21

-
0.22
065 

-
0.42
792 

-
0.34
876

-
0.222

64

-
0.258

32

1 -
0.356

6

-
0.203

75

0.0875
9

-
0.1794

7

0.022
64 

-
0.416

55 

0.00
23 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.00
01 

<.00
01 

0.025
1

0.134
7

0.068
3

<.0001 <.00
01 

<.00
01 

0.09
26

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

  <.000
1 

<.000
1 

0.0409 <.0001 0.611
8 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

IC
U

D
ur

R
at

 

-
0.07
906 

0.408
46

0.2
267

9

-
0.38
514

-
0.448

57 

0.49
135 

0.40
454 

0.502
15

0.138
2

0.111
35

0.142
06

0.3348
7

0.42
062

0.46
544

0.11
638

0.39
462 

0.56
828 

0.74
38

0.362
78

0.276
15

-0.3566 1 0.508
55

0.1055
5

0.1809
5

-
0.059

95 

0.568
49 

0.06
51 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.00
01 

<.00
01 

0.001
2

0.009
3

0.000
9

<.0001 <.00
01 

<.00
01 

0.00
65

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.0001   <.000
1 

0.0137 <.0001 0.178
6 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurR

at 

EN
Dur

Wei
ght 

Birth
Wee

k 

Hos
pDu

r 

Ven
Dur 

PerC
atDu

r 

Umb
CatD

ur 

Cent
CatD

ur 

UriC
atDu

r 

Photot
herDu

r 

Intu
bDu

r 

Ncpa
pDur

PPV
Dur 

Aspi
rDur

TP
ND
ur 

IC
UD
ur 

NgU
seDu

r 

OgU
seDu

r 

WeightB
WeekRat

ICU
DurR

at 

Aspir
DurRa

t 

UriCat
DurRa

t 

PerCat
DurRa

t 

END
urRa

t 

TPN
DurR

at 

A
sp

irD
ur

R
at

 

-
0.08
071 

0.636
79

0.3
974

-
0.21
829

-
0.281

89 

0.44
68 

0.6
810

3 

0.48
755

0.014
35

-
0.012

15

0.29
59

0.1247
4

0.72
237

0.23
298

0.23
382

0.77
276

0.53
994 

0.5
093

6

0.65
427

0.22
733

-0.20375 0.508
55

1 0.2771
7

0.1698
3

0.05
203

0.430
76 

0.06 <.000
1 

<.0
001 

<.00
01 

<.00
01 

<.00
01 

<.0
001 

<.00
01 

0.738
5

0.777
5

<.00
01 

0.0036 <.00
01 

<.00
01 

<.00
01 

<.00
01 

<.0
001 

<.0
001 

<.00
01 

<.00
01 

<.0001 <.000
1 

  <.0001 <.0001 0.24
36

<.000
1 

544 544 504 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 544 504 544 

U
riC

at
D

ur
R

at
 0.00

682 
0.205

02
0.1
212

4

0.09
116

0.069
76 

0.06
764 

0.1
362

6 

0.08
17

-
0.021

03

-
0.004

84

0.92
42

-
0.0673

9

0.15
778

0.00
372

-
0.00
528

0.13
895

0.10
403 

0.0
799

6

0.12
774

0.10
655

0.08759 0.105
55

0.277
17

1 0.0642
1

0.01
043

0.168
42 

0.87
38 

<.000
1 

0.0
064

0.03
34

0.103
8 

0.11
47 

0.0
014 

0.05
66

0.624
2

0.910
3

<.00
01 

0.1161 0.00
02

0.93
09

0.90
21

0.00
12

0.01
51 

0.0
621

0.00
28

0.01
28

0.0409 0.013
7

<.000
1 

  0.1344 0.81
51

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 

Pe
rC

at
D

ur
R

at
 -

0.02
25 

0.194
46

0.3
018

3

-
0.19

24

-
0.195

85 

0.19
122 

0.1
192

5 

0.39
137

0.049
61

-
0.080

98

0.05
33

0.1631 0.13
941

0.15
995

0.02
492

0.12
002

0.20
191 

0.1
420

4

0.13
234

0.15
431

-0.17947 0.180
95

0.169
83

0.0642
1

1 0.36
868

0.259
05 

0.60
02 

<.000
1 

<.0
001 

<.00
01 

<.00
01 

<.00
01 

0.0
053 

<.00
01 

0.247
6

0.058
9

0.21
41

0.0001 0.00
11

0.00
02

0.56
15

0.00
51

<.0
001 

0.0
009

0.00
2

0.00
03

<.0001 <.000
1 

<.000
1 

0.1344   <.00
01 

<.000
1 

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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Table 41. continued. 
Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  Age
Day 

Intub
DurRa

t 

EN
Dur

Wei
ght 

Birth
Wee

k 

Hos
pDu

r 

Ven
Dur 

PerC
atDu

r 

Umb
CatDu

r 

CentC
atDur 

UriC
atDu

r 

Photot
herDur

Intu
bDu

r 

Ncpa
pDur

PPV
Dur 

Aspi
rDur 

TPN
Dur 

ICU
Dur 

NgU
seDu

r 

OgU
seDu

r 

WeightB
WeekRat

ICUD
urRat 

Aspir
DurRa

t 

UriCat
DurRat

PerCat
DurRat

END
urRat 

TPN
DurR

at 

EN
D

ur
R

at
 

-
0.09
764 

-
0.103

4

0.5
920

2

0.01
569

0.005
63 

-
0.05
153 

0.0
003

9 

0.069
17

-
0.111

01

-
0.035

77

0.038
1

-
0.0179

4

0.01
622

-
0.02
328

-
0.13
403

0.11
338 

-
0.04
796 

-
0.01
781

0.110
17

0.157
39

0.02264 -
0.059

95

0.052
03

0.0104
3

0.3686
8

1 -
0.131

36 
0.02

82 
0.020

1
<.0
001 

0.72
5

0.899
6 

0.24
78 

0.9
93 

0.120
6

0.012
6

0.422
5

0.392
9

0.6876 0.71
61

0.60
17

0.00
25

0.01
09 

0.28
21 

0.68
97

0.013
2

0.000
4

0.6118 0.178
6

0.243
6

0.8151 <.0001   0.003
1 

505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 504 505 505 505 505 505 505 504 505 505 505 505 

TP
N

D
ur

R
at

 

-
0.00
474 

0.375
62

0.3
003

7

-
0.45
335

-
0.519

02 

0.64
872 

0.3
552 

0.647
83

0.085
64

0.083
28

0.165
65

0.4108
2

0.41
928

0.57
588

0.14
964

0.36
37 

0.75
969 

0.49
511

0.373
22

0.390
6

-0.41655 0.568
49

0.430
76

0.1684
2

0.2590
5

-
0.131

36 

1 

0.91
21 

<.000
1 

<.0
001 

<.00
01 

<.000
1 

<.00
01 

<.0
001 

<.00
01 

0.045
7

0.052 0.000
1

<.0001 <.00
01 

<.00
01 

0.00
05

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.00
01 

<.0001 <.000
1 

<.000
1 

<.0001 <.0001 0.003
1 

  

545 545 505 545 545 545 545 545 545 545 545 545 545 545 545 544 545 545 545 545 545 545 544 545 545 505 545 
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E. PROBABILITY DISTRIBUTION 

The distance between cumulative percentage curves indicates the model’s classification power. For an accurate model, cumulative percentage 

of nonevents curve is close to bottom left, cumulative percentage of events curve is close to upper right in the graphic.

 

Figure 37. Probability distribution of models 
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