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Thesis Abstract 

Osman Onur Uyar, ―Do Bubbles Spill Over? ― 

 

 

We document the existence of rational bubbles in emerging markets by employing a 

structural state space model. The high correlation of stock price indices among a 

relatively large number of emerging markets indicates rational bubbles might spill 

over. We employ a newly developed Unscented Kalman Filtering technique to 

estimate the rational bubbles in stock markets. The bubbles mentioned here are 

assumed to be stochastic and feature time-variable parameters. Most of the variations 

of the stock prices which include rational bubbles in various sizes are captured by the 

model.  

 

 

 

 

 

 

 



iv 

 

Tez Özeti 

Osman Onur Uyar, ―Bubblelar pazarlar arası geçiş yapar mı?― 

 

Rasyonel bubbleların gelişmekte olan ülke pazarlarındaki varlığını model 

uygulayarak dokumante edilmiştir. Birçok gelişmekte olan ülke pazarlarının hisse 

senedi endekslerinin kendi içindeki yüksek korelasyonu bubble'ların geçiş 

yapabileceği ihtimalini doğurdu. Rasyonel Bubbleların tahmin edilebilmesi için yeni 

geliştirilen Unscented Kalman Filtresi kullanılmıştır. Modelin zaman içinde oluşan 

bir çok değişkenliği yakalayabildiği görülmüştür. 
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CHAPTER 1 

INTRODUCTION 

Financial markets are becoming more integrated which cause frequent comovements 

of stock price indices in both emerging and developed countries (Shiller, 1989; 

Thomas W.Epps, 1979; Bekaert G., Hodrick J. R. and Zhang X., 2009; Morana C., 

2008) We also observe high correlation of stock price indices among emerging 

markets (Martin Scheicher, 2001). Since fundamentals differ substantially between 

emerging markets and developed nations the frequent comovements and high 

correlation of asset prices might be due to factors that cannot be explained by the 

fundamentals and it is important to identify the source of this correlation. 

In an efficient market, it is expected that the present value of the expected 

future dividends determines the fundamental value of the share only if the stock 

prices are realized with respect to the response to new information about change in 

fundamentals. If the investors purchase stocks only because of the future dividend 

expectations, this means that, the fundamentals are the driver factors for the stock 

prices. If the market dynamics are changing due to the non-fundamental speculative 

factors, the stock price does not represent its fundamental value. This divergence 

from the fundamental value of a stock price is called rational bubble. 

The disastrous experiences of the 1996-2000 Internet Bubbles Burst or the 

1987 US Stock Market Crash are cases in point. The origins and formations of 

rational bubbles have been extensively analyzed by both academic and finance 

professionals regarding their implications for monetary and regulatory policies. 

Although there have been many literature studies which addresses this issue, the 
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exploration and tests of rational speculative bubbles are, however, still challenging 

for several reasons. First, the correct detection of market bubble is a difficult task 

mainly because of the uncertainty related to the determination of the fundamental 

value of a security. Second, the test of rational speculative bubbles can become very 

complicated since they might exist even with rational investors and take all kinds of 

shapes (Blanchard, 1979). Thirdly, the possible stochastic feature of market 

fundamentals makes harder the detection of rational bubbles. 

Although the integration of markets with each other results in a bigger 

consumption basket for all of the individuals, it also enables transferring of the 

positive and negative effects of market sentiments to each other via the closed chains 

of asset positions. 

The bubble spill-overs are in fact a product of the shifts in the chains of asset 

positions in between the agents of the markets. Because of that the bubbles spill over 

to the other markets i.e. via the shifts of asset positions in between the markets. This 

causes the bubbles to float on more than one market agents‘ preferences and the 

spillover of the bubbles to other markets. 
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CHAPTER 2 

LITERATURE REVIEW 

A number of authors (Campbell and Shiller, 1988; Diba and Grossman, 1988; 

Timmermann, 1995; Nasseh and Strauss, 2003; Koustas and Serletis, 2005; Cunado 

et al 2005) have investigated the rational bubbles in a number of developed markets 

by investigating the relation of stock prices and dividends. However, Blanchard and 

Watson (1982) define rational bubbles slightly differently as self-fulfilling 

expectations that push stock prices towards expected price level, which is unrelated 

to changes in the fundamentals of the stock price. In addition, some economists 

attribute rational bubbles to the presence of a large number of investors reacting 

simultaneously to new information so that an overreaction in aggregate is created.  

The existence of speculative bubbles in the stock markets has always been an 

obstacle to the validity about the consistency of bubbles with the rationality 

assumption on theoretical grounds. Empirically, partly because of the lack of power 

of testing procedures, a general specification test for stock market bubbles does not 

give exact results. For example, Rappoport and White [1993; 1994] and West [1987] 

reject the null hypothesis of no bubbles, while Dezhbakhsh and Demirguc- Kunt 

[1990] and Diba and Grossman [1988b] report the opposite results. Flood and Garber 

[ 1980 ], Hamilton and Whiteman [ 1985 ] and Hamilton [ 1986 ] criticize these 

bubble tests such that bubbles are observationally in accordance with the regime 

changes in market fundamentals which cannot be observed by the econometrician. 

Furthermore, Evans [1991] showed by Monte-Carlo simulations that an important 

class of rational bubbles cannot be determined by these tests even though the 

variability of bubbles is explosively high. 
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There are two versions of the rational markets theory. The fundamental value 

analysis version allows current stock prices to be temporarily above or below their 

equilibrium (Intrinsic value) levels. According to the efficient markets hypothesis, 

stock prices are always at their intrinsic value levels because the market captures all 

the information. 

Intrinsic values are discounted values of expected future profits and 

competitive market forces automatically move stock prices to equilibrium. 

Speculative markets theories of Keynes and Galbraith reject the notion that market 

forces move stock prices toward intrinsic values rather complex psychological and 

institutional factors moves. 

In the aftermath of the 1987 crash, it is started to be argued that there can be 

―rational‖ bubbles. A ―rational‖ bubble can occur if ‗rational‘ agents believe there is 

a probability of p of a positive deviation from ‗intrinsic‘ value in the next period‘s 

price (Glickman, 1994, p. 339).  

In The General Theory, Keynes explains that the stock prices are an important 

factor in the theory of aggregate demand through their influence on the levels of 

consumption and investment. The wealth effect of rising stock prices increases the 

marginal propensity to consume (Keynes, 1936, p. 319). Rising stock prices affects 

the investment in the same manner as a decrease in the interest rate or an increase in 

the marginal efficiency of capital. 

Keynes‘ explanation of speculative markets stock prices includes three major 

factors: human nature, the problem of intractable uncertainty about the economic 

future and the institutional features of modern stock exchanges which are reasonably 

well-organized and orderly spot markets with low transactions costs. 
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Davidson has explained that the neoclassical efficient markets theory depends 

on the ergodic axiom, which implies that the future must be statistically reliably 

calculated from past and present market data (2002, p. 43). Keynes rejected the 

ergodic axiom and recognized that the economic processes are nonergodic in 

defining uncertainty as meaning that ―we simply do not know‖ about the future 

(Davidson, 2002, p. 52; Keynes, 1937, p. 214). 

In line with Davidson‘s explanation, Greenspan–Bernanke doctrine on stock 

market bubbles says that: 

―Stock market bubbles do occur but cannot be detected until after they burst, and 

perhaps not even then.‖  

Regarding the past studies, it can be concluded that, divergent findings have 

been produced about the rational bubbles. Some of the studies that found evidence of 

rational bubbles comprise, among others, McQueen and Thorley (1994), Cunado et 

al. (2005), and Engsted (2006), whereas the hypothesis of rational bubbles is rejected 

in Wu (1995), Chan et al. (1998), and Koustas and Serletis (2005).  
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CHAPTER 3 

RATIONAL BUBBLES MODELS 

According to the literature, existing rational bubbles models can be classified into 

two main classes: models of exogenous bubbles and endogenous bubbles. While the 

first class of models treats bubbles independently from changes in asset‘s 

fundamental value fluctuations, the second class does take into account the impact of 

changes in fundamentals on the process of bubble formation. 

Exogenous bubbles can be divided into deterministic, stochastic and 

periodically collapsing bubbles. First analyzed in Blanchard and Watson (1982), the 

deterministic bubble is simply modeled using an exponential function of time, as 

shown in Equation (1): 

i

tit rBB )1(      (1) 

Where Bt is referred to as a rational bubble and r is the rate of return on a 

risk-free asset.  

Under this structure, a rational bubble is greatly amplified through time, 

leading to an explosive divergence between stock price and its fundamental value. 

But, the model is unrealistic because it implicitly assumes a perpetual growth of 

stock prices. This result, leads Blanchard and Watson (1982) to introduce stochastic 

bubbles with a probability of bursting. 

According to their specification, once the bubbles exist, they have an 

exponential growth, but they are likely to burst over the period. If they burst at a 

given time, their reformulation is not possible. Moreover, these rational bubbles can 
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only exist, if they do, at the time of stock issuance. They grow, then collapse, and 

finally disappear (Diba and Grossman, 1988). In a related study, Evans (1991) 

defined a new class of bubbles, called periodically collapsing bubbles, which can 

deflate without bursting and grow again thereafter. The periodically collapsing 

bubbles can have multiple regimes due to its construction. 

Second type of bubbles is endogenous bubbles which essentially include 

intrinsic and state bubbles. Major studies on testing for endogenous bubbles in asset 

returns and prices mainly point out that market fundamentals have significant effects 

on both the stock‘s fundamental value and bubble formation.  

When market fundamentals change, stock price can overreact because the 

bubble term effects the price movement. In addition, important divergences can be 

created by the intrinsic bubbles as well as they can remain stable over certain periods 

depending on the firm‘s dividend policy. Obviously, the intrinsic bubbles model, 

with a certain possibility, explains why stock prices are highly volatile compared 

with the dividends, as pointed out by Shiller (1981). 

Second, a state bubbles model has been developed in discrete time which 

differs from that of Froot and Obstfeld (1991), in the sense that rational bubbles 

depend both on time and dividends paid.  

 

Empirical Methods 

According to the literature, to test the existence of the bubbles two sets of tests—both 

direct and indirect tests of rational bubbles— can be applied. 
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Indirect Tests of Stock Market Bubbles 

As far as the indirect tests are concerned, the stationarity test developed by Dickey 

and Fuller (1981) and by Phillips and Perron (1988), and the cointegration test in the 

sense of Engle and Granger (1987) can be used to detect asset bubbles. The same 

procedure was employed by Diba and Grossman (1987 and 1988), and Hamilton and 

Whiteman (1985), among others. 

Diba and Grossman (1988) show that in the absence of rational bubbles, 

dividend and stock price series are cointegrated. It then follows that the cointegration 

technique can be used to prove the existence of bubbles if they do exist. 

 

Direct Tests of Stock Market Bubbles 

Unlike the indirect tests, the use of direct tests in detecting asset bubbles requires a 

complete specification and estimation of economic parameters. Using direct tests, 

past studies have showed that market bubbles do exist when asset prices have not 

deviated from the real economic conditions (see, e.g., Flood and Garber, 1980; 

Shiller, 1981; and West, 1987). Therefore, models of stock market bubbles related to 

this research stream compare the observed stock prices with the prices that should be 

based on the fundamentals. An observation of significant difference in between these 

shows that the hypothesis of asset bubbles cannot be rejected. 

 

Related Assumptions 

Despite these historical findings, this thesis specifies and estimates one type of 

rational bubble using Unscented Kalman Filtering Technique. A brief description of 
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Kalman Filter and detailed information about the Unscented Kalman Filter is already 

given in the Appendix. 

The bubbles mentioned here are assumed to be stochastic and feature time-

variable parameters. The state space model defined by Yangru Wu (1997) is used as 

the basis for the development of new model. But the difference from his model 

assumptions is that we decided to indicate some of the parameters to be time-

variable. As a result of this our model becomes the nonlinear version of the state 

space model defined by Yangru Wu (1997). 

The bubbles are assumed to be stochastic and features time variable 

parameters. Bubbles are set as they can either be positive or negative. While in some 

bull markets, where the participants are eager to buy, the stocks may be overvalued, 

there may be times that in some bear markets the stocks may be undervalued. As a 

result of this the non-negativity constraint is not imposed to the model estimation. So 

the bubbles are left free of having only positive values. A general ARIMA (p, 1, q) 

process is assumed for the log values of the dividends. The stock prices, bubble 

parameter, dividend ARIMA process and the bubble formations result the structural 

state-space models for the Kalman Filtering Model.  

The remainder of the paper is organized as follows: In the next section the 

data used in the Kalman filter iterations is introduced. In the following three sections, 

the model is described, the results are explained and the conclusions are discussed 

respectively. In the appendix, the Unscented Kalman Filter concept is explained in 

more detail. 
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CHAPTER 4 

DATA 

The data employed for USA in this paper have been taken from the Shiller‘s online 

web page. Real stock prices are the nominal Standard and Poor's (S&P) 500 indexes, 

deflated by the Consumer Price Index (CPI). Real dividends are the nominal 

dividends for the S&P deflated by the CPI. The data employed for Turkey and for the 

World has been taken from DataStream database. All data is consolidated on 

monthly basis.  
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CHAPTER 5 

MODEL 

The model of Yangru Wu has been taken as the basis in order to forecast the bubble 

amounts. The bubble considered by Yangru Wu is treated as an unobserved state 

vector in the state-space model. This model is extended by specifying some 

parameters as time–variables. So the new model is nonlinear and represents rational 

bubbles more accurately as suggested by Santos & Woodford (1997) and Battalio 

and Schultz (2006). 

This thesis specifies and estimates one type of rational bubble using 

Unscented Kalman Filtering Technique. The bubbles mentioned here are assumed to 

be stochastic and feature time-variable parameters. The state space model defined by 

Yangru Wu (1997) is used as the basis for the development of new model 

specifications. Some of the parameters of this model are set to be time-variable and 

so the model has become nonlinear which is more acceptable in the real world. The 

basic model structure of Yangru Wu (1997), who expressed the stock price equation, 

the parametric bubble process and the dividend process in a state-space form, is as 

follows: 

t t t tp d M Y b    (2) 

1t t tY U AY v     (3) 

1(1/ )t t tb b     (4) 
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Where, 

M becomes a time variable in the new model because ω variable is assumed to 

follow random walk distribution. 

Pt= the real stock price at time t; pt=ln(Pt);  

Dt= the real dividend paid at time t; dt= ln(Dt);  

ω: the average ratio of the stock price to the sum of the stock price and the dividend, 

0< ω <1; 

1 2 1( , , ,..., ) ,

( ,0,0,...,0)

( ,0,0,...,0)

t t t t t h

t t

Y d d d d

U

v

   

 

These are all h-vectors and  

1 2 3 1

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1 0

h h

A







     

 is an hxh matrix, 

(1,0,0,...,0)g is an h-row vector; and  1 1. .( ) .[ (1 ).( . ) ]M g A I A I I A is 

an h-row vector and I is an h × h identity matrix.  

Where the innovation η is assumed to be serially uncorrelated and have zero 

mean and finite variance σ
2
 η. It is also assumed that η is uncorrelated with the 

dividend innovation, δ. 
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From this state space form, Yangru Wu has transformed the equation system 

to the below format by subtracting bt - 1 and Yt - 1 from the parametric bubble process 

equation and the dividend process equation respectively in order to set the state space 

equation system as below: 

1

1

.

( ).

(1/ 1).

t t t t

t t t

t t t

p d M Y b

Y U A I Y v

b b

    

This format completes the equation system so that it is applicable with the 

Kalman Filtering Model. But as already mentioned this system is a linear equation 

system. In line with the assumption of time varying parameters, this model has been 

modified to the nonlinear form via setting the ω parameter as a random walk and M 

parameter as a time variable by the equation including the random walk distributed 

outcomes of ω. The modified functions of these parameters can be seen as below: 

1 1

1

. .( ) .[ (1 ).( . ) ]

(0,0.01)

t t t

t t

M g A I A I I A

where

N

    

The logic behind these assumed modifications can be explained as; because 

the relation between the changes of preceding dividends and the preceding market 

prices should be time variable which integrates also one of the real world conditions 

to the model, the assumption that in the model the ω term is set as a time variable has 

been applied. As a result, the M parameter which represents the relation between the 

(5) 

(6) 

(7) 

 

(5) 

 

(8) 

(9) 
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changes of preceding dividends and the changes of preceding market prices, as M is 

defined in Equation (8), becomes a time variable also. 

It is assumed that the log dividends follow an ARIMA (h, 1, 0) process. To 

determine the autoregressive order h, the log dividend process is estimated by the 

maximum likelihood method for various choices of h, and compute both the Akaike 

information criterion (AIC) and the Schwartz information criterion for each h. The 

finding is that both criteria are at the minimum when h = 2 for all the series.  The 

Kalman Filter Model therefore has three constant unknown parameters. Table 1.  

shows the point estimates of these unknowns.  

USA Turkey World

µ  0,001 -0,005 0,002

0,828 0,104 0,05

-0,102 -0,063 -0,036

Table 1. ARIMA(2,1,0) Parameters
USA Turkey

0.001 -0.005

0.828 0.104

-0.102 -0.063

Null Hypothesis:

BTR does not Granger Cause BUSA
BUSA does not Granger Cause BTR

BWORLD does not Granger Cause BUSA

BUSA does not Granger Cause BWORLD

BWORLD does not Granger Cause BTR

BTR does not Granger Cause BWORLD

Table 3. Linear Granger Causality Tests: p

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

CHAPTER 6 

ESTIMATION RESULTS 

By implementing the state space equation system composed of the equation(5), 

equation(6) and equation(7) and the related data of the parameters, the Unscented 

Kalman Filter is applied within the MATLAB program.  

In order to observe the performance of the unscented Kalman Filter with the 

non-linear model with respect to the other results stated in Yangru Wu‘s paper, the 

RMSE of the results have been calculated. The RMSE values can be seen in Table 2. 

This Paper Yangru Wu
Intrinsic 

Bubbles

Simple 

Present 

Value

RMSE(%) 3,42 4,33 21,83 39,97

Table 2. Root Mean Square Error: Comparison with Alternative Models

This Paper

Yang-Ru 

(1997)

Intrinsic 

Bubbles

Simple Present 

Value

RMSE (%) 3,42 4,33 21,83 39,97

Table 2. Root Mean Square  Error: Comparison with Alternative Models

USA Turkey

0.001 -0.005

0.828 0.104

-0.102 -0.063

Table 1. ARIMA(2,1,0) Parameters

Null Hypothesis:

BTR does not Granger Cause BUSA
BUSA does not Granger Cause BTR

BWORLD does not Granger Cause BUSA

BUSA does not Granger Cause BWORLD

BWORLD does not Granger Cause BTR

BTR does not Granger Cause BWORLD

Table 3. Linear Granger Causality Tests: p

 

These RMSE values showed us that the new non-linear model performance is 

much better compared to the other alternative models. 

Figure 1, Figure 2 and Figure 3, display the outcomes for United States, 

Turkey and World price indices respectively, in these figures the price estimates of 

the filter and the actual prices are shown at the same time.   

Figure 2, Figure 4 and Figure 6 display the outcomes for United States, 

Turkey and World price indices respectively, in these figures the price estimates of 
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the filter and the actual prices are shown at the same time with the relevant crisis that 

the Unscented Kalman Filter model has captured. 

In Figure 2, it is observed that the 1973–1974 stock market crash, the Black 

Monday (1987) and the financial crisis of 2007–2010 has been captured by the 

model. In Figure 4, it is observed that the 2001 Economic Crisis and the financial 

crisis of 2007–2010 has been captured by the model. In Figure 6, it is observed that 

the 1973–1974 stock market crash, the Black Monday (1987) and the financial crisis 

of 2007–2010 has been captured by the model.  

Figure 7 shows some of the financial episodes in more detail for United States 

with the bubble estimations of the model covering the crisis described as below: 

 Wall Street Crash of 1929, followed by the Great Depression – the largest 

and most important economic depression in the twentieth century  

 1973 – 1973 oil crisis – oil prices soared, causing the 1973–1974 stock 

market crash and Secondary banking crisis of 1973–1975 – United Kingdom  

 1987 – Black Monday (1987) – the largest one-day percentage decline in 

stock market history and 1989–91 – United States Savings & Loan crisis  

 2007–10 – Financial crisis of 2007–2010, followed by the late 2000s 

recession 

It can be concluded from Figure 7 that the filter has captured the crisis 

described above by the amounts of bubble estimates and the price estimates at 

relevant points.  

http://en.wikipedia.org/wiki/Late_2000s_recession
http://en.wikipedia.org/wiki/Late_2000s_recession
http://en.wikipedia.org/wiki/Late_2000s_recession
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Figure 8 shows the financial episodes time intervals in more detail only for 

Turkey with the bubble estimations of the model covering the crisis described as 

below: 

 Late 2000s recession and the 2001 economic crisis of Turkey. 

 Financial crisis of 2007–2010 

It can be concluded from Figure 8 that the filter has captured these specific 

crisis by amounts of bubble estimates and the price estimates at the relevant points. 

The results showed that, most of the time as the prices reaches to minimum 

level; a significant increase is observed in the bubble part of the prices which implies 

that the expectations rise from some point determined by the market agents‘ 

preferences so that the crisis has been captured and monitored by the filter with 

respect to each shift of the market agents‘ preferences.

http://en.wikipedia.org/wiki/Financial_crisis_of_2007%E2%80%932010
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Figure 7. Actual prices vs. bubble/actual price percentages for US 
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Figure 8. Actual prices vs. bubble/actual price percentages for Turkey
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Granger Causality Tests 

To determine if bubbles in one stock market have some explanatory power in 

predicting bubbles in another stock market Granger Causality tests are run using the 

estimated bubble data in the previous section.  

First run ADF tests are run on bubble data. No unit roots are found in none of 

the estimated series. Table 3. reports the findings of the linear causality tests.  The 

bubbles originating in US help explain bubbles in Turkey with a lag of 10 but fail to 

cause any changes in bubbles with a lag less than 7.  Similarly, a  bubble originating 

in the world causes bubbles in USA and in Turkey but not vice versa. 

As compared to the Yangru Wu results, the granger causality relations 

between bubbles are calculated as shown in Table 3. 

 Null Hypothesis:                                          Lags                       10                            5                            1    

 BTR does not Granger Cause BUSA                 0,791                    0,574                    0,451    

 BUSA does not Granger Cause BTR                 0,002                    0,026                    0,028    

 BWORLD does not Granger Cause BUSA                 0,020                    0,024                    0,009    

 BUSA does not Granger Cause BWORLD                 0,372                    0,112                    0,056    

 BWORLD does not Granger Cause BTR                 0,010                    0,021                    0,068    

 BTR does not Granger Cause BWORLD                 0,916                    0,991                    0,984    

Table 3. Linear Granger Causality Tests: p-values.
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CHAPTER 7 

CONCLUSION 

To summarize the results, the estimated bubble components are obtained for a 

portion of different stock market prices, especially during several major bull and bear 

markets. In particular, significantly high estimates of positive bubbles are generally 

observed during the bull markets and significantly low estimates of negative bubbles 

are generally observed before the crisis in the bear markets, which is expected. 

Overall, the nonlinear rational stochastic bubble model does a credible job in 

characterizing the stock markets data.  

As a result of the study, regarding the Granger causality test results, 

significant relations of the bubbles in between different stock market indices are 

found. And also the RMSE values show that Unscented Kalman Filter was giving 

better results for the estimations of the bubbles compared to other alternatives. And 

also the figures of the results displayed, show that, the crisis can be guessed before 

they happen by observing the bubble estimations such that bubble estimates seems to 

fluctuate earlier than the real values. This may be due to that asset positions are more 

sensitive to the economic indicators at that time.  

As mentioned at the introduction the bubble spill-overs are in fact a product 

of the shifts in the chains of asset positions in between the agents of the markets. By 

these results, apart from the Granger Causality tests results, we conclude that the 

bubbles have the tendency to spill over to the other markets during the twentieth 

century and the beginning of twenty first century. Because a single bubbles can float 
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on more than one market agents‘ preferences and the spillover of the bubbles will be 

on more than one market. Next topic may be how can we distinguish these bubbles? 
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A.  UNSCENTED KALMAN FILTER: 

The Kalman filter is a mathematical method named after Rudolf E. Kalman. Its 

purpose is to use observed measurements over time that contain noise (random 

variations) and other inaccuracies, and produce values that tend to be closer to the 

true values of the measurements and their associated calculated values. The Kalman 

filter has many applications in technology, and is an important part of the 

development of space and military technology. Some of the Kalman Filter 

application areas are listed as below: 

 Attitude and Heading Reference Systems  

 Autopilot  

 Battery state of charge (SoC) estimation  

 Brain–computer interface  

 Chaotic signals  

 Dynamic positioning  

 Economics, in particular macroeconomics, time series, and econometrics  

 Inertial guidance system  

 Radar tracker  

 Satellite navigation systems  

 Simultaneous localization and mapping  

 Speech enhancement  

 Weather forecasting  

 Navigation Systems  

 3D-Modelling  

http://en.wikipedia.org/wiki/Rudolf_E._Kalman
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Kalman_filter#Applications
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The Unscented Kalman Filter belongs to a bigger class of filters called 

Sigma-Point Kalman Filters or Linear Regression Kalman Filters. This family of 

filters is using the statistical linearization technique which estimates a nonlinear 

function of a random variable through a linear regression between n points drawn 

from the prior distribution of the random variable.  

Extended Kalman Filter propagates the state distribution through the first 

order linearization of the nonlinear system. As a result of that the posterior mean and 

covariance could be corrupted. UKF uses a deterministic sampling approach so this 

problem is eliminated naturally. In addition, the Unscented Kalman filter is a 

derivative free alternative to EKF. 

Sigma points are a set of selected sample points via the state distribution in 

order to represent the state distribution. UKF also consists of the two classical 

Kalman filter steps: prediction and measurement steps. But exceptionally they now 

start with the selection of sigma points. 

The UKF is founded on the intuition of Julier & Uhlmann,(2004) that it is 

easier to approximate a probability distribution that it is to approximate an arbitrary 

nonlinear function or transformation.  Because the selected sigma points have to 

represent the state distribution the sigma points are derived from the distribution 

having the mean and covariance exactly to be x
a
k−1 and Pk−1. Each selected sigma 

point is then entered to the nonlinear function in order to approximate the nonlinear 

function via the selected sample distribution. As a result a new sample of points is 

used to represent the estimated distribution. This process is called the unscented 
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transformation. The unscented transformation is used to calculate the statistics of a 

random variable that is to be transformed via any nonlinear function.  

Fredrik Orderud compares the relative estimation accuracy of UKF compared 

to EKF for linear state space models with nonlinear measurements. The relative 

advantage of using UKF does therefore seem to increase with the degree of 

nonlinearity in the measurement model. The estimation error distribution plots show 

that the two estimators yield quite similar results for both models, with the most 

significant exception being the amount of estimates having severely large errors. 

This leads us to the conclusion of UKF being a more robust estimator than EKF. 

S. Konatowski & A. T. Pieniężny in their study summarized that; the Kalman filter 

(KF) is an optimal linear estimator when the process noise and the measurement 

noise can be modeled by white Gaussian noise. The KF only utilizes the first two 

moments of the state (mean and covariance) in its update rule. In situations when the 

problems are nonlinear or the noise that distorts the signals is non-Gaussian, the 

Kalman filters provide a solution that may be far from optimal. Nonlinear problems 

can be solved with the extended Kalman filter (EKF). This filter is based upon the 

principle of linearization of the state transition matrix and the observation matrix 

with Taylor series expansions. Exploiting the assumption that all transformations are 

quasi-linear, the EKF simply makes linear all nonlinear transformations and 

substitutes Jacobian matrices for the linear transformations in the KF equations. The 

linearization can lead to poor performance and divergence of the filter for highly 

non-linear problems. An improvement to the extended Kalman filter is the unscented 

Kalman filter (UKF). The UKF approximates the probability density resulting from 

the nonlinear transformation of a random variable. It is done by evaluating the 
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nonlinear function with a minimal set of carefully chosen sample points. The 

posterior mean and covariance estimated from the sample points are accurate to the 

second order for any nonlinearity.  

Most of the comparison studies of EKF vs. UKF have proved that UKF 

performs much better estimates.  

The representation of the steps of the Unscented Kalman Filter with the 

general form of the unscented transformation is as below: 
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B. THE UNSCENTED KALMAN FILTER FLOW  

The process is set up with respect to the following steps: 
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3-Sigma Point Estimator and Measure Phase 
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C.  MATLAB PROGRAM CODE 

 

%VECTORS 

% X = state vector estimate. In the input struct, this is the 

%       "a priori" state estimate (prior to the addition of the 

%       information from the new observation). In the output struct, 

%       this is the "a posteriori" state estimate (after the new 

%       measurement information is included). 

% Z = observation vector 

% U = input control vector, optional (defaults to zero). 

% 

% MATRIX VARIABLES: 

% 

% alfa = state transition matrix (defaults to identity). 

% P = covariance of the state vector estimate. In the input struct, 

%       this is "a priori," and in the output it is "a posteriori." 

%       (required unless autoinitializing as described below). 

% beta = input matrix, optional (defaults to zero). 

% QQ = process noise covariance (defaults to zero). 

% RR = measurement noise covariance (required). 

% H  = observation coefficient matrix (defaults to identity). 

%  

% Algorithm: 

% (1) define all state definition fields: alfa,beta,HH,QQ,RR 

% (2) define intial state estimate: X,P 

% (3) obtain observation and control vectors: Z 

% (4) call the filter to obtain updated state estimate: X,P 

% (5) return to step (3) and repeat 

  

%% 

clear all;  

%-------------------------------------------------------------------------- 

%Variable identifications 

Y=[];p=[];d=[]; 

X=[]; 

Z=[]; 

A=[]; 

g=[]; 

I=[]; 

zero=[]; 

M=[];WW=[]; 

alfa=[]; 

beta=[]; 

xtilda=[]; 

xsigma=[]; 

XPred=[]; 
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ZPredsigma=[]; 

H=[]; 

SUMZpredsigma=[]; 

ZPred=[]; 

Z=[]; 

PZPred=[]; 

RR=[];%Measurement cov. 

QQ=[];%Process cov. 

XPredsigma=[]; 

Kal=[];%Kalman Coeff. 

Xcor=[]; 

Pcor=[]; 

PPred=[]; 

PXZPred=[]; 

PPred=[]; 

U=[]; 

SUMDIF=[]; 

%-------------------------------------------------------------------------- 

%USA data formation 

%load bubble33.txt; 

%p=bubble33(:,1)'; 

%d=bubble33(:,2)'; 

%delta_d1=bubble33(:,3)'; 

%delta_d2=bubble33(:,4)'; 

%bubblemeasures=bubble33(:,5)';%Bubble tan?mlamas? buna göre=b=pt-pt-1 

  

%WORLD data formation 

%load bubble33WW.txt; 

%p=bubble33WW(:,1)'; 

%d=bubble33WW(:,2)'; 

%delta_d1=bubble33WW(:,3)'; 

%delta_d2=bubble33WW(:,4)'; 

%bubblemeasures=bubble33WW(:,5)';%Bubble tan?mlamas? buna göre=b=pt-pt-1 

  

%TURKEY data formation 

%load bubble33TU.txt; 

%p=bubble33TU(:,1)'; 

%d=bubble33TU(:,2)'; 

%delta_d1=bubble33TU(:,3)'; 

%delta_d2=bubble33TU(:,4)'; 

%bubblemeasures=bubble33TU(:,5)';%Bubble tan?mlamas? buna göre=b=pt-pt-1 

  

%delta_p=bubblemeasures; 

%-------------------------------------------------------------------------- 

%Variables initiation 

%-------------------------------------------------------------------------- 

Y=[delta_d1;delta_d2]; 
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n=4;%#of first dimensions of X matrix when this is changed all the program 

dimensions change. 

W=0.954;u=0.011;h1=0.048;h2=-0.129; 

A=[h1 h2;1 0]; 

g=[1 0];I=eye(size(A)); 

zero=zeros(size(A,1),1); 

M=g*A*inv(I-A)*(I-(1-W)*inv(I-W*A) );   

alf =[(1/W)      0          zero'       ; 

      (1/W-1)    1         (M*(A-I))    ; 

       0         0          A(1,:)      ; 

       0         0          A(2,:)]     ; 

alfa=cat(1, cat(2,alf,zeros(4,n-4)),zeros(n-4,n)); 

  

beta=eye(n); 

  

%time=size(p,2); 

time=138; 

c=1; %Display variable number in X matrix 

  

%Z matrix formation 

Z(:,1)=[0;p(:,1);Y(:,1);zeros(n-4,1)]; 

for m=1:time%-1 

    Z(:,m)=[bubblemeasures(:,m);p(:,m);Y(:,m);zeros(n-4,1)]; 

end 

  

  

for t=1:time 

    if t==1, 

%-------------------------------------------------------------------------- 

       %TIME UPDATE EQUATIONS 

%-------------------------------------------------------------------------- 

       %Initialization 

       Xcor(:,:,t)=ones(n,1);%Only used to choose the sigma points 

       PPred(:,:,t)=100*eye(n);%Only used to choose the sigma points 

        

       %Obtain the measurement variance  

       RR(:,:,t)=[cov([bubblemeasures' p' delta_d1' delta_d2' zeros(size(p,2),n-

4)])];%measurement noise 

       WW(:,t)=0.954; 

       W=WW(:,t);u=0.11; 

       h1=0.048;h2=-0.129; 

       A=[h1 h2;1 0]; 

       g=[1 0];I=eye(size(A)); 

       zero=zeros(size(A,1),1); 

       M=g*A*inv(I-A)*(I-(1-W)*inv(I-W*A) ); 

       alf =[(1/W)      0          zero'       ; 

             (1/W-1)    1         (M*(A-I))    ; 
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              0         0          A(1,:)      ;      

              0         0          A(2,:)]     ; 

       alfa=cat(1, cat(2,alf,zeros(4,n-4)),zeros(n-4,n)); 

       U(:,t)=cat(1,[0;(delta_d1(:,t)+M*[u;0]);u;0],zeros(n-4,1)); 

%--------------------------------------------------------------------------      

       %MEASUREMENT UPDATE EQUATIONS 

%-------------------------------------------------------------------------- 

       %Choose Sigma Points 

       np=chol(n*PPred(:,:,t)); 

       for i=1:n   

            xtilda(:,i)=np(i,:)'; 

            xtilda(:,i+n)=-(np(i,:))'; 

            xsigma(:,i)=Xcor(:,t)+xtilda(:,i);            

            xsigma(:,i+n)=Xcor(:,t)+xtilda(:,i+n);            

       end 

       %Use nonlinear system to transform Sigma points into Xk(i) vectors 

       SUMXpredsigma=zeros(n,1); 

       for i=1:(2*n) 

            XPredsigma(:,i)=alfa*xsigma(:,i)+beta*U(:,t); 

            SUMXpredsigma=SUMXpredsigma+XPredsigma(:,i); 

       end 

       %Obtain a priori estimate at time t 

            XPred(:,t)=(1/(2*n))*SUMXpredsigma; 

        

       %Obtain the process variance 

       QQ(:,:,t)=0.01*eye(size(XPred,1)); 

  

       %Use Measurement Equation to transform Sigma points into Zk(i) vectors 

       H=alfa; 

       %H(1,:)=0; 

       SUMZpredsigma=zeros(n,1); 

       for i=1:(2*n) 

           ZPredsigma(:,i)=H*xsigma(:,i); 

           SUMZpredsigma=SUMZpredsigma+ZPredsigma(:,i); 

       end 

       %Obtain Predicted Measurement 

       ZPred(:,t)=(1/(2*n))*SUMZpredsigma+beta*U(:,t); 

  

       %Estimate the cov of the Predicted Measurement(ZPred) 

       SUMDIF=zeros(n,n); 

       for i=1:(2*n) 

           SUMDIF=SUMDIF+(ZPredsigma(:,i)-ZPred(:,t))*(ZPredsigma(:,i)-

ZPred(:,t))'; 

       end 

       SUMDIF=diag(diag(SUMDIF)); 

       PZPred(:,:,t)=(1/(2*n))*SUMDIF+RR(:,:,t); 
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       %Estimate the cross cov between XPred and ZPred 

       SUMDIF=zeros(n,n); 

       for i=1:(2*n) 

           XPredsigma(:,i)=alfa*xsigma(:,i)+beta*U(:,t); 

           SUMDIF=SUMDIF+(XPredsigma(:,i)-XPred(:,t))*(ZPredsigma(:,i)-

ZPred(:,t))'; 

       end 

       SUMDIF=diag(diag(SUMDIF)); 

       PXZPred(:,:,t)=(1/(2*n))*SUMDIF; 

       %The Measurement update of the state estimate 

       Kal(:,:,t)=PXZPred(:,:,t)*inv(PZPred(:,:,t)); 

  

       Z(:,t)=[1;p(:,t);Y(:,t);zeros(n-4,1)]; 

  

       Xcor(:,t)=XPred(:,t)+Kal(:,:,t)*(Z(:,t)-ZPred(:,t)); 

       Pcor(:,:,t)=PPred(:,:,t)-Kal(:,:,t)*PZPred(:,:,t)*Kal(:,:,t)'; 

       Pcor(:,:,t)=abs(Pcor(:,:,t)); 

%-------------------------------------------------------------------------- 

    else 

%-------------------------------------------------------------------------- 

       %Initialization 

       RR(:,:,t)=[cov([bubblemeasures' p' delta_d1' delta_d2' zeros(size(p,2),n-

4)])];%measurement noise 

       QQ(:,:,t)=cov([bubblemeasures'])*eye(n);%process noise 

  

       WW(:,t)=WW(:,t-1)+normrnd(0,0.01,1);%Random Shock given to W; 

       W=WW(:,t); 

       u=0.011;h1=0.048;h2=-0.129 

  

       A=[h1 h2;1 0]; 

       g=[1 0];I=eye(size(A)); 

       zero=zeros(size(A,1),1); 

       M=g*A*inv(I-A)*(I-(1-WW(:,t))*inv(I-WW(:,t)*A) ); 

       alf =[(1/WW(:,t))      0          zero'       ; 

             ((1/WW(:,t))-1)    1         (M*(A-I))    ; 

              0         0          A(1,:)      ;      

              0         0          A(2,:)]     ; 

       alfa=cat(1, cat(2,alf,zeros(4,n-4)),zeros(n-4,n));            

        

       U(:,t)=cat(1,[0;(delta_d1(:,t)+M*[u;0]);u;0],zeros(n-4,1)); 

%-------------------------------------------------------------------------- 

       %TIME UPDATE EQUATIONS 

%-------------------------------------------------------------------------- 

       %choose sigma points 

       Pcor 

       np=chol(n*Pcor(:,:,t-1)); 

       xsigma=[]; 
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       xtilda=[]; 

       for i=1:n   

            xtilda(:,i)=np(i,:)'; 

            xtilda(:,i+n)=-np(i,:)'; 

            xsigma(:,i)=Xcor(:,t-1)+xtilda(:,i); 

            xsigma(:,i+n)=Xcor(:,t-1)+xtilda(:,i+n); 

       end 

       %Use nonlinear system to transform Sigma points into Xk(i) vectors 

       SUMXpredsigma=zeros(n,1); 

       for i=1:(2*n) 

           XPredsigma(:,i)=alfa*xsigma(:,i)+beta*U(:,t); 

           SUMXpredsigma=SUMXpredsigma+XPredsigma(:,i); 

       end 

       %Obtain a priori estimate at time t 

          XPred(:,t)=(1/(2*n))*SUMXpredsigma; 

  

       %Estimate the a priori cov matrix 

       SUMDIF=zeros(n,n); 

       for i=1:(2*n) 

           SUMDIF=SUMDIF+(XPredsigma(:,i)-XPred(:,t))*(XPredsigma(:,i)-

XPred(:,t))'; 

       end 

       SUMDIF=diag(diag(SUMDIF));  

       PPred(:,:,t)=(1/(2*n))*SUMDIF+QQ(:,:,t-1); 

  

%--------------------------------------------------------------------------      

       %MEASUREMENT UPDATE EQUATIONS 

%-------------------------------------------------------------------------- 

       %Choose Sigma Points 

       np=chol(n*PPred(:,:,t)); 

       xsigma=[]; 

       xtilda=[]; 

       for i=1:n   

            xtilda(:,i)=np(i,:)'; 

            xtilda(:,i+n)=-np(i,:)'; 

            xsigma(:,i)=XPred(:,t)+xtilda(:,i);            

            xsigma(:,i+n)=XPred(:,t)+xtilda(:,i+n);            

       end 

  

       %Use Measurement Equation to transform Sigma points into Zk(i) vectors 

       H=eye(size(n)); 

       SUMZpredsigma=zeros(n,1); 

       for i=1:(2*n) 

           ZPredsigma(:,i)=H*xsigma(:,i); 

           SUMZpredsigma=SUMZpredsigma+ZPredsigma(:,i); 

       end 

       %Obtain Predicted Measurement 
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       ZPred(:,t)=(1/(2*n))*SUMZpredsigma; 

  

       %Estimate the cov of the Predicted Measurement(ZPred) 

       SUMDIF=zeros(n,n); 

       for i=1:(2*n) 

           SUMDIF=SUMDIF+(ZPredsigma(:,i)-ZPred(:,t))*(ZPredsigma(:,i)-

ZPred(:,t))'; 

       end 

       SUMDIF=diag(diag(SUMDIF)); 

       PZPred(:,:,t)=(1/(2*n))*SUMDIF+RR(:,:,t); 

  

       %Estimate the cross cov between XPred and ZPred 

       SUMDIF=zeros(n,n); 

       for i=1:(2*n) 

           SUMDIF=SUMDIF+(XPredsigma(:,i)-XPred(:,t))*(ZPredsigma(:,i)-

ZPred(:,t))'; 

       end 

       SUMDIF=diag(diag(SUMDIF)); 

       PXZPred(:,:,t)=(1/(2*n))*SUMDIF; 

               

       %The Measurement update of the state estimate 

       Kal(:,:,t)=PXZPred(:,:,t)*inv(PZPred(:,:,t)); 

       Xcor(:,t)=XPred(:,t)+Kal(:,:,t)*(Z(:,t)-ZPred(:,t)); 

       Pcor(:,:,t)=PPred(:,:,t)-Kal(:,:,t)*PZPred(:,:,t)*Kal(:,:,t)'; 

%--------------------------------------------------------------------------                 

    end 

  

end 

%% 

%------------%-------------------------------------------------------------- 

%Plot the diagram 

%-------------------------------------------------------------------------- 

t=[];k=[]; 

%ZZ=zeros(4,time); 

for m=1:time  

    k=[k;m]; 

%   ZZ(:,m)=Z(:,m); 

end 

%ZZ 

  

 

a=1; 

b=time;%time-1; 

c=1; 

t=k(a:b,1) 

XPredPlot=[]; 

XcorPlot=[]; 
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XPredPlot=XPred(:,a:b); 

XcorPlot=Xcor(:,a:b); 

ZPlot=Z(:,a:b); 

ZPlot 

XcorPlot' 

XPredPlot' 

  

plot(t,ZPlot(2,:)','r--',t,XPredPlot(c,:)','b',t,XcorPlot(c,:)','g');%red=measures-

blue=Predictions-Green=correccted values) 

%plot(t,ZPlot(c,:)','r--'); 

%plot(t,XPredPlot(c,:)','b'); 

%plot(t,XcorPlot(c,:)','g'); 

%plot(t,XPred(1,:),'b',t,Xcor(1,:),'g');%red=measures-blue=Predictions-

Green=correccted values) 

%plot(t,Xcor(1,:),'g',t,XPred(1,:),'b'); 

  

XPred=XPred'; 

Xcor=Xcor'; 

Z=Z'; 

  

xlabel('No. of samples');  

ylabel('Output');  

title('Response with time-varying Unscented Kalman filter') ; 

%% 
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