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Thesis Abstract 

Sedat Çankaya, “An Unsupervised Semantic Similarity Based Method 

for Word Sense Disambiguation”  

 

In this thesis, a semantic similarity based unsupervised method for word sense 

disambiguation is presented. The method tries to disambiguate a target word by 

calculating a similarity score between the words surrounding the target word and the 

words existing in the sense definition of the target word.  The built-in semantic 

hierarchy and synset relations of WordNet, a machine readable thesauri, are used in 

similarity score calculations. The method is evaluated using SemCor data and the 

results are compared against other methods based on semantic similarity and 

unsupervised methods. Results show us that increasing the number of inputs by 

including the words in a word’s sense into disambiguation process, improves precision 

rate of disambiguation process. 
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Tez Özeti 

Sedat Çankaya, “Kelime Anlamı Berraklaştırma İçin Anlam Benzerliği Tabanlı 

Denetimsiz Bir Yöntem” 

 

Bu tezde kelime anlamı berraklaştırma için anlam benzerliği tabanlı denetimsiz bir 

yöntem sunulmaktadır. Bu yöntem bir kelimenin doğru anlamını tespit edebilmek için, 

metin içerisinde o kelimenin yakınında bulunan diğer kelimeler ile  hedef kelimenin 

sözlük anlamında geçen kelimeler arasındaki anlam benzerliği derecesini hesaplamaya 

çalışır. Bu hesaplama, makine tarafından okunabilir bir sözlük olan WordNet in 

içerisinde halihazırda mevcut bulunan anlam sıradüzeni ile eşanlam kümeleri arasındaki 

ilişkiler kullanılarak yapılmaktadır. Burada sunulan yöntem SemCor dan alınan girdiler 

ile denendikten sonra, elde edilen sonuçlar diğer anlam tabanlı ve denetimsiz 

yöntemlere ait sonuçlarla karşılaştırılmıştır. Deneyler sonucunda elde edilen sonuçlar, 

bir kelimenin sözlük anlamında geçen kelimeleri kelime anlamı berraklaştırma sürecine 

dahil ederek mevcut girdi sayısını arttırmanın sürecin başarı yüzdesini arttırdığını 

göstermiştir. 
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CHAPTER I 
 

INTRODUCTION 

 

Problem Definition and the Motivation Behind 

 

Words can have different senses although they are pronounced and written as same, and 

those senses may be similar or completely irrelevant which leads severe 

misunderstandings. More than 73% of the words in English are polysemous, in other 

words 73% of the words in English have at least 2 senses. Indeed the average number of 

different senses of a word is much more than 2, it is 6.55 (Mihalcea et al. 2001). 

Following example examines the word “crane” which is having two completely 

different senses: 

 

• Sense 1: a lifting machine that can be used both to lift and lower materials and 
to move them horizontally. 

 
• Sense 2: large long-necked wading bird of marshes and plains in many parts of 

the world. 

 

in the two sentences below: 

 

• Sentence 1: It's a large crane barge that was once used to offload ships in Aqaba.  
 
• Sentence 2: This illustrated volume is devoted to the Japanese crane, one of the 

world's rarest and most strikingly beautiful birds. 
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We as human beings, can easily assign first sense to the first sentence and the second 

sense to the second sentence by looking at the context of the sentences. But it is not the 

case for computers, a computational model is needed for a computer to make a 

reasonable choice between those senses. Word Sense Disambiguation (WSD) is the 

ability to identify the correct meaning of words in context in a computational manner.  

According to the fact that a word has an average of 6.55 senses, a random sense 

assignment to a word  will give a success rate of 15%. This low value is the motivation 

behind the development of WSD methods.  

 

Application Areas of WSD 

 

WSD is not a main task itself, it is an intermediary task that can be used to improve the 

performance and reliability of a language processing application. The areas that WSD 

can be used are:  

 

Machine Translation 

 

Sense disambiguation can be used for proper machine translation of a text, especially 

for the words having completely irrelevant senses. The sentence below can be taken as 

an example: 

 

“Our village lies on the southern bank of the Patna river.” 
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In this sentence, the two different senses of the word “bank” and their corresponding 

Turkish equivalents can be considered as: 

 

• Sense 1: a financial institution that accepts deposits and channels the money into 
lending activities: banka 

 
• Sense 2: sloping land (especially the slope beside a body of water): kıyı,  yaka 

 

Realizing the word “river” in the sentence, a human being can easily grab the context 

and decide that the second sense of the word “bank” is appropriate in this sentence. And 

translates the sentence as: 

 

Köyümüz Patna nehrinin güney kıyısı boyunca uzanır. 

 

However, a machine translator without having a WSD procedure translates the sentence 

using the most common usage of the word “bank”; banka and breaks the meaining unity 

of the sentence: 

 

Köyümüz Patna nehrinin güney bankası boyunca uzanır. 

 

Information Retrieval 

 

When searching for specific keywords, it is desirable to eliminate occurrences in 

documents where the word or words are used in an inappropriate sense (Ide et al., 
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1998). For example when searching for the word “bass” for a musical research, the 

search results including the other meaning of bass (a kind of fish) should be eliminated. 

Hence documents should not be ranked based on words alone. To get relevant results 

while doing a search on web, documents should be ranked based on word senses, or 

based on a combination of word senses and words. 

 

Speech Processing 

 

WSD can be used in speech recognition and speech to text applications, while 

processing homophone words (i.e pronounced same but spelled different). For example,  

cell-sell, bear-bare, fair-fare, dear-deer etc. It is difficult for a speech to text application 

to differentiate those homophone words, as they are pronounced likely. WSD methods 

can  help those speech to text applications, by selecting the correct word according to 

the context. 

 

Text Processing 

 

In text to speech applications, to differentiate the words that are spelled same but 

pronounced different WSD methods can be applied. For example, for two different 

senses of the word “lead”, the word is pronounced differently: 

 

• Sense 1: a position of leadership 
 
• Sense 2: a soft heavy toxic malleable metallic element 
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WSD can be added to the text processing applications as a submodule to identify the 

correct sense and thus correct spelling of those type of words. 
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CHAPTER II 

WSD METHODS 

 

Basic Framework 

 

As WSD is the task of matching a word with its correct sense, there exists two main 

tasks in disambiguation process. The first task is gathering all different senses of a word 

and the second task is deciding the correct sense among them and associating that sense 

with the word (Ide et al., 1998). 

 

Determination of Senses  

 

As it is stated above, first step of WSD is determination of all the different senses for 

each word relevant to the text or discourse under consideration. Much recent work on 

WSD relies on pre-defined senses for this step. The sources used are:  

 

• a list of senses such as those found in everyday dictionaries. 
 
• a group of features, categories, or associated words (e.g., synonyms, as in a 

thesaurus). 
 

• an entry in a transfer dictionary which includes translations in another language. 

 

WordNet, which is a useful tool for computational linguistic and natural language 

processing, is a lexicon database that is used widely by WSD methods as a word sense 
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source. WordNet is a combination of a thesaurus and a dictionary which provides 

different sense definitions of a word, groups words into sets of synonyms called synsets 

and records various semantic relations between those synsets (Fellbaum, 1998). Those 

relations can be listed as: 

 

• synonymy: two expressions are synonymous in a linguistic context C if the 
substitution of one for the other in C does not alter the truth value. X is synonym 
of Y, if X has an equivalent meaning with Y. 

 
• antonymy: X is an antonym of Y, if X expresses an oppposite meaning of Y. 

 
• hypernymy: Y is a hypernym of X if every X is a (kind of) Y (canine is a 

hypernym of dog) 
 

• hyponymy: Y is a hyponym of X if every Y is a (kind of) X (dog is a hyponym 
of canine) 

 
• coordinate terms: Y is a coordinate term of X if X and Y share a hypernym 

(wolf is a coordinate term of dog, and dog is a coordinate term of wolf) 
 

• holonymy: Y is a holonym of X if X is a part of Y (building is a holonym of 
window) 

 
• meronymy: Y is a meronym of X if Y is a part of X (window is a meronym of 

building) 

 

WordNet presently contains about 155,000 different words organized into 117,000 

synsets. The detailed statistics about WordNet can be found in Table 1. 
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Table 1. Statistical Data of WordNet 
 

POS Unique Strings Synsets Total Word-Sense Pairs 

Noun 117,798 82,115 146,312 

Verb 11,529 13,767 25,047 

Adjective 21,479 18,156 30,002 

Adverb 4,481 3,621 5,580 

Totals 155,287 117,659 206,941 

 

Assigning Senses to Words 

 

The second step of WSD involves means to assign each occurrence of a word to an 

appropriate sense. The assignment of words to senses is accomplished by reliance on 

two major sources of information: 

 

• The context of the word to be disambiguated. In the broad sense, this includes 
information contained within the text or discourse in which the word appears, 
together with extra-linguistic information about the text such as situation, etc. 

 
• External knowledge sources, including lexical, encyclopedic, etc. resources, as 

well as hand-devised knowledge sources, which provide data useful to associate 
words with senses. 

 

Basically all WSD methods’ aim is to find the best match between the context in which 

the word is used and the information sources that are listed above. In the following 

sections those methods are presented in a categorized manner according to the 

approaches they are based on. 
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Knowledge Based Methods 

 

Knowledge Based Methods exploit the information in a lexical knowledge base (LKB) 

such as a dictionary and thesauri, without using any corpus evidence. These methods 

are based on the hypothesis that context knowledge can be extracted from definitions of 

words. The performance of knowledge based methods are usually lower than corpus 

based methods, but they have the advantage of a wider coverage. As opposed to corpus 

based methods, knowledge based methods do not need an annotated text and are 

applicable to any text. 

 

Lesk Algorithm 

 

Lesk (1986) hypothesize that the words in a dictionary definition of a target word are 

related with that word  and the words surrounding the target are relevant to those words 

in the definition. The algorithm tries to disambiguate a word by counting overlaps 

between the surrounding words and the words in the dictionary definitions of the 

various senses of the target word. The sense having the highest number of word 

overlaps is selected as the correct sense. Although Lesk algorithm is very simple in 

theory and easy to implement, it forms a sound basis for upcoming Knowledge Based 

Methods. 

As an example, while performing disambiguation for the "pine cone" phrasal, 

according to the Oxford Advanced Learner’s Dictionary, the word "pine" has two 

senses: 
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• Sense 1: kind of evergreen tree with needle–shaped leaves. 
 
• Sense 2: waste away through sorrow or illness. 

 

The word "cone" has three senses: 

 

• Sense 1: solid body which narrows to a point. 
 
• Sense 2: something of this shape whether solid or hollow. 

 
• Sense 3: fruit of a certain evergreen tree. 

 

By comparing each of the two gloss senses of the word "pine" with each of the three 

senses of the word "cone", it is found that the words "evergreen tree" occurs in one 

sense in each of the two words. So, these two senses are then declared to be the most 

appropriate senses when the words "pine" and "cone" are used together. A general 

graphical representation of Lesk algorithm can be seen in Fig. 1 (Torres et al., 2009). 

 

  
Fig. 1 Graphical representation of the Lesk algorithm 
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Semantic Similarity 

 

Semantic similarity is based on the assumption that for a discourse to be coherent, the 

words in that discource must be related in meaning. Words in the same context are 

closely related in meaning, and the correct sense is the one having the minimum 

semantic distance or in other words the one having the maximum semantic relatedness.  

There are several methods devised to quantify the semantic relatedness of two 

words. Several of these methods that work well with WordNet relations are described 

below. All of these methods accept two concepts as input and return a value indicating 

the semantic relatedness of these two concepts. 

 

Leacock–Chodorow 

 

Calculates the relatedness score according to the length of the shortest path between 

two synsets (Leacock et al., 1998). The resulting value is normalized by the depth of the 

taxonomy. 

 

Similarity(C1,C2) = -log(Path(C1,C2) / 2D) 

                                        

 

where Path(C1,C2) represents the length of the path, i.e. the number of arcs in the 

semantic network, between the concepts C1 and C2 and D is the overall depth of the 

taxonomy. 
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Hirst and Onge 

 

In addition to the length of the path between two concepts, this method introduces the 

direction of the links connecting the path between those two concepts (Hirst et al., 

1998). An upward direction link corresponds to generalization (hypernymy), a 

downward link indicates a specialization (hyponymy) and a horizontal link indicates a 

synonymy, antonymy or coordinate term. As it can be observed from the below 

formula, the relatedness score decreases as the direction changes: 

 

Similarity(C1,C2) =C – (path length) – k*d, 

 

where d is the number of changes of direction in the path, and C and k are constants. 

The number of direction changes affects relatedness negatively, because change 

of direction in a semantic network constitute large semantic steps. Fig. 2 (Miller et al., 

1993) illustrates the concept hierarchy in WordNet and directed links between those 

concepts indicating the relation type between two concepts. 
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Fig. 2. Network representation of three semantic relations 

 

Resnik 

 

Resnik (1995) introduced a new concept, Information Concept (IC), which is a measure 

of the specifity of a concept and is based on its probability of occurence in a corpus. 

The method is based on the idea that the more specific the concept that subsumes two 

words is, the more semantically related are those two words. Thus the aim of this 

method is finding the lowest common concept of two words in the semantic hierarchy. 

The formulation of the method is: 

 

Similarity(C1,C2) = IC( LCS(C1,C2) ), IC(C) = -log( P(C) ) 

 

In this formula, LCS is the least common subsumer of the two concepts C1 and C2, that 

is the first common node of the two concepts in the semantic hierarchy starting from the 

bottom of the hierarchy. And P(C) is the probability of finding the concept C in a 



 14  

textual corpus. Therefore, it is obvious that P(C) value reaches its maximum as the 

concept is selected from the higher nodes of the semantic hierarchy. 

 

Jiang and Conrath 

 

As an alternative to Resnik, this method makes use of the difference in the Information 

Concept values of the two concepts, C1 and C2 (Jiang et al., 1997). 

 

Similarity(C1,C2) = 2*IC( LCS(C1,C2) ) – ( IC(C1) + IC(C2) ) 

 

Lin 

 

Similar to Jiang and Conrath, Lin (1998) proposes another change in the original 

version of Resnik’s formula: 

 

Similarity(C1,C2) = ( 2*IC( LCS(C1,C2))) / ( IC(C1) + IC(C2)) 

                                   

 

The semantic similarity measures presented above are tested against a Senseval-2 

English lexical sample data. Window length is taken as one, i.e only one word from the 

left and one word from the right of the target word are included in the computations. 

The sense having the highest cumulative score is selected as the correct sense. And 

finally as a result of the experiments, it is found that among those measures Jiang and 

Conrath performed the best (Banerjee et al., 2003). 
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Selectional Preference 

 

Selectional preferences or restrictions are constraints on the semantic type that a word 

sense imposes on the words with which it combines in sentences (usually through 

grammatical relationships) (Navigli, 2009). For example, knowing that one typically 

cooks food, one can disambiguate the word bass in "I am cooking bass" (i.e., it's not a 

musical instrument).  

Although selectional preference is a simple method in theory, it is hard to put it 

in practice. The performance of WSD improves with the size of the selectional 

preferences that are defined and that is the main reason that makes it difficult to 

implement as it requires knowledge of the word senses involved in a candidate relation. 

There are methods devised to overcome this difficulty which are based on reducing the 

number of relations by classifying words and defining the selectional preferences 

among those classes instead of word-to-word relations. 

The first method that Resnik (1993) suggests is defining selectional preferences 

between a word and a semantic class. The contribution of a semantic class is measured 

according to the number of concepts subsumed by that class. As the number of concepts 

subsumed by the semantic classes defined increases, the number of the selectional 

preferences to be identified decreases. 

Second method, by Agirre et al. (2001), proposes a method to determine class-

to-class selectional preferences which is a more generalized method than the first 

method suggesting word-to-class selectional preferences. 
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The performances of word-to-word, word-to-class and class-to-class models that 

are described above are evaluated by Agirre et al. (2001). According to their 

observations, class-to-class models performed significantly better than the other two 

models, word-to-word and word-to-class. The word-to-word selectional preferences 

give 95.9% precision and 26% coverage, word-to-class preferences decrease the 

precision to 66.9% and increase the coverage to 86.7%, and finally the class- to-class 

preferences have a precision of 66.6% and a coverage of 97.3%. 

 

Supervised Methods 

 

Supervised methods are based on the assumption that the context can provide enough 

evidence on its own to disambiguate words (Chen et al., 2009). These methods mainly 

adopt context to disambiguate words. A supervised method includes a training phase 

and a testing phase. In the training phase, a sense-annotated training corpus is required, 

from which syntactic and semantic features are extracted to create a classifier using 

machine learning techniques. In the following testing phase, a word is classified into 

senses. Currently supervised methods achieve the best disambiguation quality. 

However, these supervised methods are subject to a new knowledge acquisition 

bottleneck since they rely on substantial amounts of manually sense-tagged corpora for 

training, which are laborious and expensive to create. 
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Probabilistic Methods 

 

Statistical methods usually estimate a set of probabilistic parameters that express the 

conditional or joint probability distributions of categories and contexts (described by 

features). These parameters can then be used to assign to each new example the 

particular category that maximizes the conditional probability of a category given the 

observed context features. 

          The Naive Bayes algorithm (Pedersen, 2000) is the simplest algorithm of this 

type, which uses the Bayes inversion rule and assumes the conditional independence of 

features given the class label. The algorithm is based on the calculation of the 

conditional probability of each senses of a word and the sense having the highest 

probability value is selected as the correct sense. An example Bayesian network can be 

found in Fig. 3 (Navigli, 2009). 

 

  
Fig. 3 An example Bayesian Network 
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Similarity Based Methods 

 

The methods in this family perform disambiguation by taking into account a similarity 

metric. This can be done by comparing new examples to a set of learned vector 

prototypes (one for each word sense) and assigning the sense of the most similar 

prototype, or by searching in a stored base of annotated examples for the most similar 

examples and assigning the most frequent sense among them. The most widely used 

representative of this family of algorithms is the k-Nearest Neighbor (kNN) algorithm 

(Ng et al., 1996). In this algorithm the classification of a new example is performed by 

searching the set of the k most similar examples (or nearest neighbors) among a pre-

stored set of labeled examples, and performing an average of their senses in order to 

make the prediction. In the simplest case, the training step reduces to storing all of the 

examples in memory and the generalization is postponed until each new example is 

classified. An example kNN classification is presented in Fig. 4 (Navigli, 2009). 

 

  
Fig. 4 An example kNN classification 
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Rule Based Methods 

 

Decision lists and decision trees use selective rules associated with each word sense. 

The system selects one or more rules that are satisfied by the example features and 

assign a sense based on their predictions. 

           A decision list (DL), is an ordered list of rules of the form (condition, class, 

weight). An example decision list can be found in Table 2 (Navigli, 2009). According to 

Rivest (1987), decision lists can be considered as weighted if-then-else rules where the 

exceptional conditions appear at the beginning of the list (high weights), the general 

conditions appear at the bottom (low weights), and the last condition of the list is a 

“default” accepting all remaining cases. Weights are calculated with a scoring function 

describing the association between the condition and the particular class, and they are 

estimated from the training corpus. When classifying a new example, each rule in the 

list is tested sequentially and the class of the first rule whose condition matches the 

example is assigned as the result.  

 

Table 2 An Example Decision List Table 
 

 

 

Yarowsky (1994) applied decision lists to WSD. In this work, each condition 

corresponds to a feature, the values are the word senses and the weights are calculated 
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by a log-likelihood measure indicating the plausibility of the sense given the feature 

value. 

 

Combined Methods 

 

In order to beat the weaknesses of supervised methods, a number of learning algorithms 

having significantly different characteristics are combined to form a single and much 

powerful learning algorithm. 

AdaBoost (Schapire et al., 1999) is one of the most successful representatives of 

combined methods. AdaBoost is a general method for obtaining a highly accurate 

classification rule by combining many weak classifiers. A specified number of 

iterations are performed for each classifier. At the end of each iteration, according to the 

success of the classifier a weight is calculated and assigned for that classifier. For each 

sense of a word si, the weight values of each classifier whose prediction equals to si are 

summed and the si having the highest score is selected as the correct sense. 

According to the results of the tests executed, which are listed in Table 3, 

AdaBoost has the best performance among the supervised methods mentioned above. 

On the other hand, the Naive Bayesian method performed significantly worse than the 

other 3 methods.  

 
 
Table 3 Experiment Results of the Supervised Methods Mentioned Above  
 

POS Naive Bayesian (%) kNN (%) Decision List (%) Ada Boost (%) 

Noun 46.59 62.29 61.79 66.00 

Verb 46.49 60.18 60.52 66.91 

All 46.55 61.55 61.34 66.32 
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Semisupervised Methods 

 

Semisupervised methods’ aim is to learn sense classifiers from annotated data with 

minimal human supervision.  

 

Bootstrapping 

 

Bootstrapping methods make use of a small annotated corpus as seed data in a 

bootstrapping process, to overcome the knowledge acquisition bottleneck problem 

suffered by supervised methods. The bootstrapping approach starts from a small amount 

of seed data for each word: either manually-tagged training examples or a small number 

of decision rules. The seeds are used to train an initial classifier, using any supervised 

method. This classifier is then used on the untagged portion of the corpus to extract a 

larger training set, in which only the most confident classifications are included. The 

process repeats, each new classifier being trained on a successively larger training 

corpus, until the whole corpus is consumed, or until a given maximum number of 

iterations is reached. Fig. 5 (Navigli, 2009) illustrates how a small seed data evolves 

into a large training set.  
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Fig. 5 Phases of Bootstrapping algorithm 

 

The Yarowsky algorithm (Yarowsky, 1995) is one of most successful and popular 

applications of the bootstrapping approach. The algorithm is a simple iterative and 

incremental algorithm. It assumes a small seed set of labeled examples, which are 

representatives of each of the senses, a large set of examples to classify, and a 

supervised learning algorithm (decision lists). Initially, the learning algorithm is trained 

on the seed set and used to classify the entire set of unannotated examples. Only those 

examples that are classified with a confidence above a certain threshold are kept as 

additional training examples for the next iteration. The algorithm repeats this retraining 

and re-labeling procedure until convergence (i.e., when no changes are observed from 

the previous iteration). Yarowsky algorithm relies on two heuristics: 

 

• one sense per collocation: nearby words strongly and consistently contribute to 
determine the sense of a word, based on their relative distance, order, and 
syntactic relationship. 

 
• one sense per discourse: a word is consistently referred with the same sense 

within any given discourse or document. 
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The performance of Yarowsky algorithm is illustrated in Fig. 6. As it can be observed 

from the figure, the precision of the algorithm decreases as the recall value increases. In 

other words, if the number of to be disambiguated words increases, then the 

performance of the algorithm decreases. 

 

 

Fig. 6 Performance of the Yarowsky algorithm 

 

Monosemous Relatives 

 

Leacock et al. (1998) used the monosemous lexical relatives of a word sense as a key 

for finding training sentences in a corpus. For instance, looking for business suit as a 

monosemous hyponym of suit can give us training sentences for the appropriate sense 

of suit. Mihalcea et al. (1999) extend this idea and apply it to the Web as the target 
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corpus. The method works as follow: First, for a word w, all unique expressions for 

each sense definitions of w are determined. Then, for each expression, a search on web 

(through any search engine, e.g. Google) is performed and text fragments surrounding 

those expressions are retrieved from Web. Finally, a sense annotated corpus is created 

by tagging each text fragment with sense S. 

An example regarding the three senses of church and a partial list of their 

corresponding monosemous relatives can be found below: 

 

• church-1: church, Christian church, Christianity (a group of Christians; any 
group professing Christian doctrine or belief ) 

 
• church-2: church, church building (a place for public (especially Christian) 

worship) 
 

• church-3: church service, church (a service conducted in a church) 
 
The monosemous relatives of the corresponding senses listed above are: 
 
• Synonyms: church building (sense 2), church service (sense 3), ... 
 
• Direct hyponyms: Protestant Church (sense 1), Coptic Church (sense 1), ... 

 
• Direct hypernyms: house of prayer (sense 2), religious service (sense 3), ... 

 
• Distant hyponyms: Greek Church (sense 1), Western Church (sense 1), ... 

 
• Siblings: Hebraism (sense 2), synagogue (sense 2), ... 

 

Agirre et al. (2004) built a Web corpus, focusing on only the monosemous-relatives 

technique and applying additional filters. Monosemous relatives included in this work 

are synonyms, hyponyms, hypernyms, and siblings. In this work, it is shown that the 

monosemous relatives technique can be used to extract examples for all nouns in 
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WordNet. Overall, training a supervised WSD system with Web data provides better 

results than any unsupervised system participating in Senseval-2. Web data is shown to 

be very useful for WSD, but still does not match the results obtained with hand-tagged 

data.  

 

Unsupervised Methods 

 

Up to this point, knowledge based methods, supervised and semisupervised methods are 

reviewed. One of the main common properties among these methods is a need of 

manually created information source. Knowledge based methods need a machine 

readable dictionary, thesauri or a semantic taxonomy, while supervised and 

semisupervised methods employ a sense annotated text for learning phase. All these 

resources required to be built by human manually which is an expensive task. This 

situation leads to a knowledge acquisition bottleneck when dealing with a new 

language, new concepts/domains and large amounts of text. 

Unsupervised methods have the potential to overcome this knowledge 

acquisition bottleneck as these methods do not rely on external knowldge sources. 

These methods acquire contextual information directly from unannotated raw text, and 

senses can be induced from text using some similarity measure. The assumption that 

unsupervised methods based on is that similar senses occur in similar contexts, and thus 

senses can be induced from text by clustering word occurrences using some measure of 

similarity of context. Then, new occurrences of the word can be classified into the 

closest induced clusters/senses. However, automatically acquired information is often 
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noisy or even erroneous and thus performance is lower than the other methods 

discussed in the above sections.  

 

Context Clustering 

 

Context Clustering method clusters together the contexts in which a given word occurs. 

The different senses of a word are represented by building a series of three vector 

spaces (Schutze, 1998). The first vector space is Word Space, which is a co-occurence 

matrix where each word is represented by a vector of co-occurence data. The words that 

make up the dimensions of this co-occurence matrix are determined either considering 

the local context that the target word occurs or the whole corpus. After the dimensions 

of the matrix is determined, the similarity between words could be calculated by 

measuring the cosine value between the word vectors. Then a context vector is created 

for each context that the target word occurs. The context vector is found by taking the 

average (centroid) of the vectors in the word space. An example word vector and a 

context vector is drawn in Fig. 7 (Schutze, 1998). 

After all context vectors for a word are created, sense vectors are found by 

grouping the context vectors of a target word using a cluster algorithm (e.g. Buckshot 

clustering algorithm). These sense vectors represent the different senses of the target 

word. 
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Fig. 7 The derivation of word vectors and context vectors 

 

Word Clustering 

 

Word Clustering methods create a representation of the different words in a corpus that 

attempts to capture their contextual similarity. These representations are usually based 

on counts of word co-occurrences or measures of association between words. Given 

such information about a word, it is possible to identify other words that have a similar 

profile and assumed to share related contexts and have similar meanings.  

Lin (1998), proposed a method for the identification of words W = (w1, . . . , wk) 

similar to a target word w0. The similarity between w0 and wi is determined based on 

the information content of their single features, given by the syntactic dependencies 

which occur in a corpus.  The more dependencies the two words share, the higher the 

information content is. However, as for context vectors, the words in W will cover all 

senses of w0. To discriminate between the senses, a word clustering algorithm is 
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applied. Let W be the list of similar words ordered by degree of similarity to w0. A 

similarity tree T is initially created which consists of a single node w0. Next, for each i 

∈ {1, . . . , k}, wi ∈ W is added as a child of wj in the tree T such that wj is the most 

similar word to wi among {w0, . . . , wi−1}. After a pruning step, each subtree rooted at 

w0 is considered as a distinct sense of w0. 

 

Co-occurence Graphs 

 

These approaches are based on the notion of a co-occurrence graph, that is, a graph G = 

(V, E) whose vertices V correspond to words in a text and  edges E connect pairs of 

words which co-occur in a syntactic relation, in the same paragraph, or in a larger 

context. 

Veronis (2004) proposed an ad hoc approach called HyperLex. First, a co-

occurrence graph is built such that nodes are words occurring in the paragraphs of a text 

corpus in which a target word occurs, and an edge between a pair of words is added to 

the graph if they co-occur in the same paragraph. Each edge is assigned a weight 

according to the relative co-occurrence frequency of the two words connected by the 

edge. As a result, words with high frequency of co-occurrence are assigned a weight 

close to zero, whereas words which rarely occur together receive weights close to 1.  

In the second step, the graph is converted into a tree through an iterative 

algorithm. This conversion is illustrated in Fig. 8 (Veronis, 2004). The different senses 

of the target word lies in the first level of the tree. Finally Minimum Spanning Tree 
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(MST) algorithm is used to identify the correct sense (the one having the highest weight 

score is selected). 

 

  
Fig. 8 Co-occurrence graph and its expansion to MST 
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CHAPTER III 

METHODOLOGY 

 

In this thesis, a new unsupervised word sense disambiguation method based on 

semantic similarity is introduced. This method is mainly based on the hypothesis that at 

least one synset of a target word and the synsets of the words surrounding the target 

word should be the same if the text is semantically coherent. A similarity score is 

calculated for each sense of a target word, between the words in the gloss of the target 

word and the words surrounding the target word. The sense having the maximum 

similarity score is accepted as the most relevant sense with the context and thus selected 

as the appropriate sense. A step by step sample execution trace of the method is 

presented in Appendix B. 

 

Similarity Score Calculation 

 

Following the hypothesis stated above, 3 measures are used to find a similarity score 

between two synsets: the number of semantic relation matches, the path length between 

the source concept and the target concept, and the distance of the surrounding word to 

the target word. Those 3 measures are explained in detail below. 
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Number of Matches 

 

Lesk (1986) introduced the gloss overlap concept to perform word sense 

disambiguation. The Lesk algorithm tries to match the words in different senses of a 

target word with the words surrounding the target word. The sense having the 

maximum overlapped words is chosen as the correct sense.  

           Considering only the words in the sense definitions of a target word is a 

limitation of Lesk algorithm. Most of the sense definitions in a dictionary are short and 

lack of substantial amount of words required securing a reliable result. Banerjee et al. 

(2003) extend the classical Lesk algorithm and try to overcome the limitation by 

involving the concepts related with the target word and the words surrounding the target 

word. The concepts that can be used are the built-in semantic relations existing in 

WordNet which are mentioned in section 3.1. To find the appropriate sense, a score will 

be calculated for each sense of a target word by adding the Lesk score calculated by 

using sense definitions of the target word and the surrounding words to the Lesk score 

calculated by using the semantic relations between the target word and the surrounding 

words. Assuming we have two synsets A and B, the relatedness score calculation 

formula will be: 

 

relatedness(A, B) = score(gloss(A), gloss(B)) + score(hypernym(A), hypernym(B))  
                             + score (hyponym(A), hyponym(B)) + score(gloss(A), hypernym(B)) 
                             + score(hypernym(A), gloss(B)) 
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Like Banerjee et al., this method extends Lesk algorithm by including the concepts of 

the target and surrounding words in to the process. Unlike Banarjeeet et al., only the 

concept itself is taken into account, not the gloss of the concept. Each match between 

the concepts of the surrounding words and the concepts of the words in the gloss of the 

target word is summed up to calculate a similarity score. 

 

similarity(A, B) = score(hypernym(gloss(A)), hypernym(B)) 
                        + score(hyponym(gloss(A)), hyponym(B)) 

 

Currently, WordNet groups nouns under 80.000 different concepts through 9 noun 

hierarchies and verbs under 13.500 concepts through 554 verb hierarchies. A sample 

concept hierarchy is illustrated in Fig. 9. This built-in hierarchical organization of 

concepts is useful for similarity based methods and will be used in the context of this 

thesis. 

 

Path Length 

 

As it is mentioned in Semantic Similarity section, similarity measures of Leacock et al. 

(1998) and Wu et al. (1994) are based on path lengths between concepts. Here what is 

meant by the path length is the number of concepts between the source and the target 

concepts. Leacock et al. find the shortest path between two concepts and scales that 

value by the maximum path length of those concepts. Wu et al. first find the most 

specific concept that both concepts share as parent concept and then finds the length of 

the path from this parent node to the root node.  
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           Similar to the methods mentioned above, this method makes use of the path 

length between concepts to measure similarity between them. Like Wu et al., the closest 

parent concept that both source and target concepts share in common are found in the 

concept hierarchy. The level value that is going to be used in the calculation is the 

minimum path length from the source and the target concept to the parent concept. The 

relatedness between the concepts decreases as the path length increases, so the inverse 

of the path length is used. The formula is updated as: 

 

similarity(A, B) =  
              (1/path(hypernym(gloss(A)), hypernym (B)))*score(hypernym(gloss(A)), 
hypernym(B)) 
           + (1/path(hyponym(gloss(A)), hyponym(B)))*score(hyponym(gloss(A)), 
hyponym(B)) 

 

  
Fig. 9 Hierarchy of concepts in WordNet. 

 

As it can be seen in Fig. 9, the length of the path between “hatch-back” and “compact” 

is 1 since they share the same parent concept, “motorcar”. The path length value 
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between “hatch-back” and “truck” is 2 as there is one sub level between “hatch-back” 

and “motor-vehicle”, “motorcar”.  

 

Distance 

 

In this method, the hypothesis which says similar words tend to occur in similar 

contexts is followed. The fact that, words surrounding a target word are much related 

with the target word than the words that are far from the target word, can be implied 

from this hypothesis. As a result it can be said that the distance of a word to the target 

word is inversely proportional to its relatedness with the target word. Regarding this, 

the above formula is updated as below: 

 

similarity(A, B) = (1/distance(A,B)) *                      
        ((1/path(hypernym(gloss(A)), hypernym (B))) * score(hypernym(gloss(A)), hypernym(B)) 
      + (1/path(hyponym(gloss(A)), hyponym(B))) * score(hyponym(gloss(A)), hyponym(B)) ) 

 

As the relatedness of the words decrease with distance, the words having a distance 

above a certain value are assumed to be irrelevant with the target word and are not 

considered in the similarity score calculations. In other words, a window having a 

specified length is defined and only the words existing in that window are used in the 

calculations. The target word is always located at the center of the window as long as 

the target word is not at the beginning and at the end of the text. The window slides by 

one word to the right, as the iteration is moved to the next target word. 
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           In the example shown in Fig. 10a, the text consists of 8 words. The target word is 

“administrator” and the window size is set to 4, so 2 words left to the target word and 2 

words right to the target word are included in the similarity score calculation.  

 

  
Fig. 10a Sliding window and target word 

 

As the target word is set to the next word, “fee”, the window slides by one word to the 

right. Now, the target word is “fee” and the words in the window are “guardian”, 

“administrator”, “awarding”, “compensation”. Fig. 10b illustrates this final state. 

 

  
Fig. 10b Window and target word is slided one word right 

 

Following the example shown in Fig. 10a and Fig. 10b, a distance tree can be 

constructed as shown in Fig. 11. 
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Fig. 11 Distance Tree 

 

As all the 3 measures used in similarity score calculation are described above, a general 

formulation for this calculation can be presented: 

 

Let W be our target word, t is the text and wi  denotes the other words in t, mj is 
for the jth sense of W in WordNet, sjk stands for the kth word in mj, di is the unit 
distance of wi to W and l denotes the synset level at which the matching is found 
(path length). 
 
For each mj, a matching score Sj is calculated as: 
 

Sj += (1/di)*(1/li)*(1/ljk), if a synset relation match is found between sjk 
and wi 

Sj += 0, if there is no synset relation match between sjk and wi 

 
After the iteration is over, the mj having the highest score Sj is selected as the 
appropriate sense. 
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A corresponding pseudocode for the formulation above is: 

 

For each sense definition do 
       For each word wi in sense definition do 
              For each word wj in window size do 
                         Calculate and sum the relation score between wi and wj 
              End For 
       End For 
End For 

 

Test Environment Settings 

 

A test environment is set up to get the results of the method and evaluate the 

performance. The items required to perform the tests are: a test data to work on and a 

program which implements the method. As a test data, a ready to use tagged text is 

used. A brief explanation for this test data can be found under Semcor section. And a 

program is developed in Java which implements the method presented here that gets the 

test data as input, processes it according to the method and outputs the results for each 

part of speech (POS). 

 

Test Data 

 

For experiments, there are two kinds of test corpora that can be used as input: 

 

• Lexical sample: the occurrences of a small sample of target words need to be 
disambiguated. 

 
• All-words: all the words in a piece of running text need to be disambiguated.  
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All-words is a more realistic form of evaluation, but the corpus is more expensive to 

produce because human annotators have to read the definitions for each word in the 

sequence every time they need to make a tagging judgment, rather than once for a block 

of instances for the same target word (lexical sample). In order to define common 

evaluation datasets and procedures, public evaluation campaigns have been organized. 

Semantic Concordance (Semcor) is one of those campaigns. 

 

Semcor 

 

A semantic concordance is a textual corpus and a lexicon so combined that every 

substantive word in the text is linked to its appropriate sense in the lexicon. Thus it can 

be viewed either as a corpus in which words have been tagged syntactically and 

semantically, or as a lexicon in which example sentences can be found for many 

definitions. Texts that were used to create the semantic concordances were extracted 

from the Brown Corpus and then linked to senses in the WordNet lexicon. The semantic 

tagging was done by hand, using various tools to annotate the text with WordNet 

senses. 

           The "raw" data is segmented into paragraphs and sentences, and then 

sequentially numbered within the file. Each sentence is separated into word forms and 

punctuation. A semantic tag associated with a word form indicates one or more senses 

in the WordNet database that are appropriate for that word form in the textual context. 

An extract from a Semcor text file can be found in Appendix A. 
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           Only nouns, verbs, adjectives, and adverbs (open class words) can be 

semantically tagged, as these are the only classes of words represented in WordNet. 

Strings of several words that form a collocation or phrase found in WordNet are joined 

into one word form in a semantically tagged file and tagged as a single unit. 

 

Performance Criteria 

 

For the evaluation of WSD methods, two main performance criteria are being used: 

 

• Precision: the fraction of assignments made that are correct  
 
• Recall: the fraction of total word instances correctly assigned 

 

As the method presented here assigns a sense to each to-be-disambiguated word in the 

text, both precision and recall values will be equal.  
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CHAPTER IV 

RESULTS AND EVALUATION 

 

In this chapter, the results of the experiments performed using different versions of the 

method that will be explained in the Subjects of the Experiments section are presented. 

After the results are given, the found values are evaluated and compared against other 

methods. 

           In the experiments, Semcor 1.6, texts semantically annotated with WordNet 1.6 

senses, dataset is used. Experiments are made on a text extracted from Brown Corpus, 

including 1024 to be disambiguated words in total. The domain of the sample text is 

politics and law. The to-be-disambiguated words in the text are quite polysemous and 

difficult to disambiguate, with an average polysemy count of 6.4, ranging from 1 to 14 

senses. 

           Different versions of the method are implemented in Java, using Java WordNet 

Library (JWNL). JWNL is a Java API for accessing WordNet’s relational dictionary 

and the relationships stored in WordNet. 

           The results are compiled separately for each POS, namely noun, verb, adjective 

and adverb. For each POS, the percentage of correct sense assignments are calculated 

and presented in the results section. Also, the average success rate of the method is 

found by taking the weighted average of each POS’ success rate. 
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Subjects of the Experiments 

 

In the methodology chapter, the formula of similarity score calculation which forms the 

basis of this method is presented. As it can be seen in that formula, similarity score 

calculation involves two main parameters, namely the size of the sliding window and 

the distance. To observe the effects of these parameters, different versions of the 

method are released and tested with varying parameter values.  

           In the first version of the method, distance is measured based on words. The 

distance of each word in the window is used in the similarity calculation. The window 

size is taken as 10 in this version. This is the original version of the method and 

released to exploit the relatedness of the target word with the words surrounding it. 

         Second version of the method does not make use of window and window size. 

Actually window still exists but not like the original method, the window is the 

sentence itself. In other words, all words in a sentence are used in the similarity score 

calculation of a target word residing in that sentence. The distance measure is not 

applied in this version; instead all the words in a sentence are assumed to have equal 

distance value. The hypothesis is that, for a sentence to be coherent, the senses of the 

words in that sentence should be coherent within each other. The aim of this version is 

to prove this hypothesis by measuring the effect of sentence coherence on the method. 

           The third version of the method introduces a slight modification over the second 

version. The distance and window size parameters that are cancelled in the second 

version are included in the similarity score calculations like the first version. Unlike the 

first version, those parameters are not word based but sentence based. The window size 
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is set as 2, which means that the sentences before and after the sentence including the 

target word are counted. This version is released to increase the size of input and to 

measure the degree of relatedness of the sentences in the neighborhood of the target 

word. 

           The final version, fourth version of the method is an unsophisticated version 

which does not make use of any distance parameter. This version is used to show the 

effect of the distance parameter on the original (basic) method. 

 

Results of the Experiments 

 

Each version presented in the Subjects of the Experiments section are tested against the 

same text taken from the SemCor data. Among all the versions, experiments show that 

the second version of the method has the best performance while the fourth version has 

the worst performance. Detailed results of the experiments can be found in Table 4. 

 

Table 4 Test Results 
 

  Success Rate (%) 

Version Noun Verb Adjective Adverb Total 

Word Based Distance and 
Window Size (First) 53.32 25.10 55.88 63.33 44.53 

Sentence Based Window, 
Distance Ommitted (Second) 53.94 29.80 55.15 60.00 46.78 

Sentence Based Window Size 
and Distance (Third) 54.56 29.80 54.41 56.67 45.80 

Word Based Window Size, 
Distance Ommitted (Fourth) 40.50 23.96 39.65 41.25 38.87 
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As it can be observed in Table 4, the results of the first three versions are very close. 

This shows that setting the window size based on words or sentence does not affect the 

success rate much. On the other hand, as the fourth version performed the worst clearly, 

it can be said that adding distance factor to the similarity score calculation affect the 

results in a positive manner.  

 

Comparison of the Results Obtained 

 

This method performed slightly worse than the other first three methods, when the 

results of this method are compared with the results of the other methods listed in Table 

5. However, the performance difference between the last method (Tree Match) and this 

method is much bigger. The main reason for this difference is that the Tree Match 

method is using a manually created dependency data. This dependency data helps the 

method to deal with the words directly, not over the concepts that the words belong to. 

Thus, Tree Match method makes use of a specialized data, while the method presented 

here is using a generalized data which increases the error rate. 

           The success rate of the verbs appears to constitute the main difference between 

the other methods. The root cause of this difference is the lack of concept hierarchy in 

WordNet for verbs. As it is stated in the methodology, concept hierarchy is the main 

knowledge source in similarity score calculation. Since it is not possible to exploit 

concept hierarchy for verbs, the success rate of this method decreases dramatically 

affecting also the overall performance of the method. 

 



 44  

Table 5 Performance Comparison 
 

  Success Rate (%) 

Method Noun Verb Adjective Adverb Overall 

Unsupervised Large-Vocabulary 
Word Sense Disambiguation with 
Graph-based Algorithms for 
Sequence Data Labeling 58.8 37.9 57.6 71.9 55.3 

Unsupervised All-words Word Sense 
Disambiguation with Grammatical 
Dependencies 63.3 32.7 56.8 59.1 52.7 

Unsupervised Graph-based Word 
Sense Disambiguation Using 
Measures of Word Semantic 
Similarity 61.1 43.3 53 100 53.4 

A Fully Unsupervised Word Sense 
Disambiguation Method Using 
Dependency Knowledge (Tree Match 
Method) NA NA NA NA 73.6 

This Method 53.9 29.8 55.1 60 46.8 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

      

Conclusion 

 

This thesis shows that the sense of a word and the words surrounding that target word 

has to share a common context if the text is semantically coherent. According to this 

hypothesis a similarity score formulation is derived and each sense of a target word is 

ranked according to that score.  

           It is assumed that there are two main parameters exist in this formulation. The 

first parameter is the path length, which measures the concept hierarchy level where a 

concept match is found. The level and thus the path length are inversely proportional to 

the relatedness. In other words the relatedness between the concepts decreases as the 

path length increases. The second parameter is the distance of the target word to the 

word residing in the window size. Like path length, distance is inversely proportional to 

the relatedness of the words. As the distance between the words increase, it is assumed 

that the relation between the words decreases. 

           Different versions of the base method are released and tested against same 

Semcor text, to see the effects of these parameters. Results show us that, without 

removing those parameters from the formula but changing the way they contribute to 

the overall value did not change the result dramatically. On the other hand, omitting 

distance factor decreases the performance of the method clearly. This fact proves the 

positive effect of taking distance into account. According to the results, the second 
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version performed best which shows that the sliding window used in the calculations 

should be set to the sentence itself. The words in a sentence proved to be much related 

than the words outside the sentence. 

 

Future Work 

 

There are several possible improvements to be made on this work. First of all, the 

JWNL API that is used to retrieve the concept hierarchy of WordNet, does not support 

coordinate term retrieval. Coordinate terms are an important element of concept 

hierarchy as they offer a first order relationship between the words. Finding a 

coordinate term match between words, changes the value of the similarity score 

obviously. Currently there is no API developed to exploit coordinate term search. 

However as JWNL is an open source project, an extension over this API can be 

developed for coordinate term retrieval. 

           The sense assignment in this method is an iterative process. Each word is 

processed one by one and a corresponding sense is found and assigned during the 

iteration. When processing a target word, the sense assignments made before are not 

used. This information could be useful in determining the context of the text. The 

common concepts shared by the previous sense assignments may help the method to 

increase the accuracy of the sense assignments to be made for the following words. 

           Last but not least, the sense assignment process could be made considering all 

senses of the words residing in the window together. Currently, as it is stated above, the 

method processes the words one by one iteratively. Instead, a weighted graph could be 
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formed in which different senses of a word constitutes the vertices of the graph. A 

similarity score between each sense is calculated and assigned as the weight of the edge 

between them. Finally a graph search algorithm can be applied over this graph to 

calculate the maximum value between each vertex. The sense assignment giving the 

maximum edge weight value is selected as the correct one. This improvement is the 

most complex one among the others but offers a significant improvement on the results. 
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APPENDIX A 

AN EXTRACT FROM SEMCOR DATA 
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APPENDIX B 

SAMPLE EXECUTION TRACE STEPS 1-3 
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APPENDIX C 

SAMPLE EXECUTION TRACE STEPS 4-5 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 51  

APPENDIX D 

SAMPLE EXECUTION TRACE STEP 6 
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APPENDIX E 

SAMPLE EXECUTION TRACE STEP 7-8 

 

 
 
 
 

 



 53  

REFERENCES 

 
Mihalcea, R. & Moldovan, D. I. (2001). Ez.wordnet: Principles for automatic  
           generation of a coarse grained WordNet.  
 
Ide, N. & Veronis, J. (1998). Word Sense Disambiguation: The State of the Art. 
 
Fellbaum, C. (1998). WordNet an Electronic Database, Cambridge: MIT Press. 
 
WordNet Statistics (2010), Retrieved March 20, 2010, from   
           http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html 
 
Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries:                                    
           How to tell a pine cone from an ice cream cone. 
 
Leacock, C., Chodorow, M. & Miller, G. A. (1998). Using corpus statistics and  
           WordNet relations for sense identification. 
 
Hirst, G. & St-Onge, D. (1998). Lexical chains as representations of context in the  
           detection and correction of malaproprisms. 
 
Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. & Miller, K. (1993). Introduction  
           to WordNet: An On-line Lexical Database. 
 
Resnik, P. (1995). Using information content to evaluate semantic similarity. 
Jiang, Jian & Conrath, D. (1997). Semantic similarity based on corpus statistics and  
           lexical taxonomy. 
 
Lin, Dekang. (1998). An information theoretic definition of similarity. 
 
Banerjee, S., Patwardhan, S. & Pedersen, T. (2003). Using measures of semantic  
           relatedeness for word sense disambiguation. 
 
Navigli, R. (2009). Word sense disambiguation: A survey. 
 
Resnik, P. (1993). Selection and information: A class-based approach to lexical  
           relationships. 
 
Agirre, E. & Martínez, D. (2001). Learning class-to-class selectional preferences. 
 
Chen, P., Ding, W., Bowes, C. & Brown, D. (2009). A fully unsupervised word sense  
           disambiguation method using dependency knowledge. 
 
Pedersen, T. (2000). A simple approach to building ensembles of Naive Bayesian  
           classifiers for word sense disambiguation. 



 54  

Ng, H. T. & Lee, H. B. (1996). Integrating multiple knowledge sources to disambiguate 
           word senses: An exemplar-based approach. 
 
Rivest, R. (1987). Learning decision lists. 
 
Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution 
 
Schapire, R. E. & Singer, Y. (1999). Improved boosting algorithms using confidence- 
           rated predictions. 
 
Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised  
           methods. 
 
Leacock, C., Chodorow, M & Miller, G. (1998). Using corpus statistics and WordNet  
           relations for sense identification. 
 
Mihalcea, R. & Moldovan, D. (1999). An automatic method for generating sense tagged  
           corpora. 
 
Agirre, E. & Martínez, D. (2004). Unsupervised WSD based on automatically retrieved  
           examples. 
 
Schutze, H. (1998). Automatic word sense discrimination. 
 
Lin, D. (1998). Automatic retrieval and clustering of similar words. 
 
Veronis, J. (2004). Hyperlex: Lexical cartography for information retrieval. 
 
Torres, S. & Gelbukh, A. (2009). Comparing Similarity Measures for Original WSD     
           Lesk Algorithm. 
 
Wu, Z. & Palmer, M. (1994). Verb semantics and lexical selection. 


