

AN UNSUPERVISED SEMANTIC SIMILARITY BASED METHOD

FOR WORD SENSE DISAMBIGUATION

SEDAT ÇANKAYA

BOĞAZİÇİ UNIVERSITY

2010

 2

AN UNSUPERVISED SEMANTIC SIMILARITY BASED METHOD

FOR WORD SENSE DISAMBIGUATION

Thesis submitted to the

Institute for Graduate Studies in the Social Sciences

in partial fulfillment of the requirements for the degree of

Master of Arts

in

Management Information Systems

by

Sedat Çankaya

Boğaziçi University

2010

 3

An Unsupervised Semantic Similarity Based Method

for Word Sense Disambiguation

The thesis of Sedat Çankaya

has been approved by:

Assoc. Prof. Birgül Kutlu _______________________________
(Thesis Advisor)

Assoc. Prof. Osman Darcan _______________________________

Assoc. Prof. Tunga Güngör _______________________________

May 2010

 iii

Thesis Abstract

Sedat Çankaya, “An Unsupervised Semantic Similarity Based Method

for Word Sense Disambiguation”

In this thesis, a semantic similarity based unsupervised method for word sense

disambiguation is presented. The method tries to disambiguate a target word by

calculating a similarity score between the words surrounding the target word and the

words existing in the sense definition of the target word. The built-in semantic

hierarchy and synset relations of WordNet, a machine readable thesauri, are used in

similarity score calculations. The method is evaluated using SemCor data and the

results are compared against other methods based on semantic similarity and

unsupervised methods. Results show us that increasing the number of inputs by

including the words in a word’s sense into disambiguation process, improves precision

rate of disambiguation process.

 iv

Tez Özeti

Sedat Çankaya, “Kelime Anlamı Berraklaştırma İçin Anlam Benzerliği Tabanlı

Denetimsiz Bir Yöntem”

Bu tezde kelime anlamı berraklaştırma için anlam benzerliği tabanlı denetimsiz bir

yöntem sunulmaktadır. Bu yöntem bir kelimenin doğru anlamını tespit edebilmek için,

metin içerisinde o kelimenin yakınında bulunan diğer kelimeler ile hedef kelimenin

sözlük anlamında geçen kelimeler arasındaki anlam benzerliği derecesini hesaplamaya

çalışır. Bu hesaplama, makine tarafından okunabilir bir sözlük olan WordNet in

içerisinde halihazırda mevcut bulunan anlam sıradüzeni ile eşanlam kümeleri arasındaki

ilişkiler kullanılarak yapılmaktadır. Burada sunulan yöntem SemCor dan alınan girdiler

ile denendikten sonra, elde edilen sonuçlar diğer anlam tabanlı ve denetimsiz

yöntemlere ait sonuçlarla karşılaştırılmıştır. Deneyler sonucunda elde edilen sonuçlar,

bir kelimenin sözlük anlamında geçen kelimeleri kelime anlamı berraklaştırma sürecine

dahil ederek mevcut girdi sayısını arttırmanın sürecin başarı yüzdesini arttırdığını

göstermiştir.

 v

CONTENTS

CHAPTER I: INTRODUCTION …………………………………………….. 1
 Problem Definition and the Motivation Behind ………………………. 1
 Application Areas of WSD ……………………………………………. 2

CHAPTER II: WSD METHODS …………………………………………….. 6
 Basic Framework ……………………………………………………… 6
 Knowledge Based Methods …………………………………………… 9
 Supervised Methods ………………………………………………….... 16
 Semisupervised Methods …………………………………………….... 21
 Unsupervised Methods ...…………………………………………….... 25

CHAPTER III: METHODOLOGY 30
 Similarity Score Calculation …………………………………………… 30
 Test Environment Settings …………………………………………….. 37

CHAPTER IV: RESULTS AND EVALUATION 40
 Subjects of the Experiments .. 41
 Results of the Experiments .. 42
 Comparison of the Results Obtained .. 43

CHAPTER V: CONCLUSIONS AND FUTURE WORK 45
 Conclusion ... 45
 Future Work ... 46

APPENDICES .. 48
 A. An Extract from Semcor Data ……………………………………… 48
 B. Sample Execution Trace Steps 1-3………………………….………. 49
 C. Sample Execution Trace Steps 4-5………………………….………. 50
 D. Sample Execution Trace Step 6 ………………………….…………. 51
 E. Sample Execution Trace Steps 7-8 ………………………….………. 52

REFERENCES …………………………………………………….………….. 53

 1

CHAPTER I

INTRODUCTION

Problem Definition and the Motivation Behind

Words can have different senses although they are pronounced and written as same, and

those senses may be similar or completely irrelevant which leads severe

misunderstandings. More than 73% of the words in English are polysemous, in other

words 73% of the words in English have at least 2 senses. Indeed the average number of

different senses of a word is much more than 2, it is 6.55 (Mihalcea et al. 2001).

Following example examines the word “crane” which is having two completely

different senses:

• Sense 1: a lifting machine that can be used both to lift and lower materials and
to move them horizontally.

• Sense 2: large long-necked wading bird of marshes and plains in many parts of

the world.

in the two sentences below:

• Sentence 1: It's a large crane barge that was once used to offload ships in Aqaba.

• Sentence 2: This illustrated volume is devoted to the Japanese crane, one of the

world's rarest and most strikingly beautiful birds.

 2

We as human beings, can easily assign first sense to the first sentence and the second

sense to the second sentence by looking at the context of the sentences. But it is not the

case for computers, a computational model is needed for a computer to make a

reasonable choice between those senses. Word Sense Disambiguation (WSD) is the

ability to identify the correct meaning of words in context in a computational manner.

According to the fact that a word has an average of 6.55 senses, a random sense

assignment to a word will give a success rate of 15%. This low value is the motivation

behind the development of WSD methods.

Application Areas of WSD

WSD is not a main task itself, it is an intermediary task that can be used to improve the

performance and reliability of a language processing application. The areas that WSD

can be used are:

Machine Translation

Sense disambiguation can be used for proper machine translation of a text, especially

for the words having completely irrelevant senses. The sentence below can be taken as

an example:

“Our village lies on the southern bank of the Patna river.”

 3

In this sentence, the two different senses of the word “bank” and their corresponding

Turkish equivalents can be considered as:

• Sense 1: a financial institution that accepts deposits and channels the money into
lending activities: banka

• Sense 2: sloping land (especially the slope beside a body of water): kıyı, yaka

Realizing the word “river” in the sentence, a human being can easily grab the context

and decide that the second sense of the word “bank” is appropriate in this sentence. And

translates the sentence as:

Köyümüz Patna nehrinin güney kıyısı boyunca uzanır.

However, a machine translator without having a WSD procedure translates the sentence

using the most common usage of the word “bank”; banka and breaks the meaining unity

of the sentence:

Köyümüz Patna nehrinin güney bankası boyunca uzanır.

Information Retrieval

When searching for specific keywords, it is desirable to eliminate occurrences in

documents where the word or words are used in an inappropriate sense (Ide et al.,

 4

1998). For example when searching for the word “bass” for a musical research, the

search results including the other meaning of bass (a kind of fish) should be eliminated.

Hence documents should not be ranked based on words alone. To get relevant results

while doing a search on web, documents should be ranked based on word senses, or

based on a combination of word senses and words.

Speech Processing

WSD can be used in speech recognition and speech to text applications, while

processing homophone words (i.e pronounced same but spelled different). For example,

cell-sell, bear-bare, fair-fare, dear-deer etc. It is difficult for a speech to text application

to differentiate those homophone words, as they are pronounced likely. WSD methods

can help those speech to text applications, by selecting the correct word according to

the context.

Text Processing

In text to speech applications, to differentiate the words that are spelled same but

pronounced different WSD methods can be applied. For example, for two different

senses of the word “lead”, the word is pronounced differently:

• Sense 1: a position of leadership

• Sense 2: a soft heavy toxic malleable metallic element

 5

WSD can be added to the text processing applications as a submodule to identify the

correct sense and thus correct spelling of those type of words.

 6

CHAPTER II

WSD METHODS

Basic Framework

As WSD is the task of matching a word with its correct sense, there exists two main

tasks in disambiguation process. The first task is gathering all different senses of a word

and the second task is deciding the correct sense among them and associating that sense

with the word (Ide et al., 1998).

Determination of Senses

As it is stated above, first step of WSD is determination of all the different senses for

each word relevant to the text or discourse under consideration. Much recent work on

WSD relies on pre-defined senses for this step. The sources used are:

• a list of senses such as those found in everyday dictionaries.

• a group of features, categories, or associated words (e.g., synonyms, as in a

thesaurus).

• an entry in a transfer dictionary which includes translations in another language.

WordNet, which is a useful tool for computational linguistic and natural language

processing, is a lexicon database that is used widely by WSD methods as a word sense

 7

source. WordNet is a combination of a thesaurus and a dictionary which provides

different sense definitions of a word, groups words into sets of synonyms called synsets

and records various semantic relations between those synsets (Fellbaum, 1998). Those

relations can be listed as:

• synonymy: two expressions are synonymous in a linguistic context C if the
substitution of one for the other in C does not alter the truth value. X is synonym
of Y, if X has an equivalent meaning with Y.

• antonymy: X is an antonym of Y, if X expresses an oppposite meaning of Y.

• hypernymy: Y is a hypernym of X if every X is a (kind of) Y (canine is a

hypernym of dog)

• hyponymy: Y is a hyponym of X if every Y is a (kind of) X (dog is a hyponym
of canine)

• coordinate terms: Y is a coordinate term of X if X and Y share a hypernym

(wolf is a coordinate term of dog, and dog is a coordinate term of wolf)

• holonymy: Y is a holonym of X if X is a part of Y (building is a holonym of
window)

• meronymy: Y is a meronym of X if Y is a part of X (window is a meronym of

building)

WordNet presently contains about 155,000 different words organized into 117,000

synsets. The detailed statistics about WordNet can be found in Table 1.

 8

Table 1. Statistical Data of WordNet

POS Unique Strings Synsets Total Word-Sense Pairs

Noun 117,798 82,115 146,312

Verb 11,529 13,767 25,047

Adjective 21,479 18,156 30,002

Adverb 4,481 3,621 5,580

Totals 155,287 117,659 206,941

Assigning Senses to Words

The second step of WSD involves means to assign each occurrence of a word to an

appropriate sense. The assignment of words to senses is accomplished by reliance on

two major sources of information:

• The context of the word to be disambiguated. In the broad sense, this includes
information contained within the text or discourse in which the word appears,
together with extra-linguistic information about the text such as situation, etc.

• External knowledge sources, including lexical, encyclopedic, etc. resources, as

well as hand-devised knowledge sources, which provide data useful to associate
words with senses.

Basically all WSD methods’ aim is to find the best match between the context in which

the word is used and the information sources that are listed above. In the following

sections those methods are presented in a categorized manner according to the

approaches they are based on.

 9

Knowledge Based Methods

Knowledge Based Methods exploit the information in a lexical knowledge base (LKB)

such as a dictionary and thesauri, without using any corpus evidence. These methods

are based on the hypothesis that context knowledge can be extracted from definitions of

words. The performance of knowledge based methods are usually lower than corpus

based methods, but they have the advantage of a wider coverage. As opposed to corpus

based methods, knowledge based methods do not need an annotated text and are

applicable to any text.

Lesk Algorithm

Lesk (1986) hypothesize that the words in a dictionary definition of a target word are

related with that word and the words surrounding the target are relevant to those words

in the definition. The algorithm tries to disambiguate a word by counting overlaps

between the surrounding words and the words in the dictionary definitions of the

various senses of the target word. The sense having the highest number of word

overlaps is selected as the correct sense. Although Lesk algorithm is very simple in

theory and easy to implement, it forms a sound basis for upcoming Knowledge Based

Methods.

As an example, while performing disambiguation for the "pine cone" phrasal,

according to the Oxford Advanced Learner’s Dictionary, the word "pine" has two

senses:

 10

• Sense 1: kind of evergreen tree with needle–shaped leaves.

• Sense 2: waste away through sorrow or illness.

The word "cone" has three senses:

• Sense 1: solid body which narrows to a point.

• Sense 2: something of this shape whether solid or hollow.

• Sense 3: fruit of a certain evergreen tree.

By comparing each of the two gloss senses of the word "pine" with each of the three

senses of the word "cone", it is found that the words "evergreen tree" occurs in one

sense in each of the two words. So, these two senses are then declared to be the most

appropriate senses when the words "pine" and "cone" are used together. A general

graphical representation of Lesk algorithm can be seen in Fig. 1 (Torres et al., 2009).

Fig. 1 Graphical representation of the Lesk algorithm

 11

Semantic Similarity

Semantic similarity is based on the assumption that for a discourse to be coherent, the

words in that discource must be related in meaning. Words in the same context are

closely related in meaning, and the correct sense is the one having the minimum

semantic distance or in other words the one having the maximum semantic relatedness.

There are several methods devised to quantify the semantic relatedness of two

words. Several of these methods that work well with WordNet relations are described

below. All of these methods accept two concepts as input and return a value indicating

the semantic relatedness of these two concepts.

Leacock–Chodorow

Calculates the relatedness score according to the length of the shortest path between

two synsets (Leacock et al., 1998). The resulting value is normalized by the depth of the

taxonomy.

Similarity(C1,C2) = -log(Path(C1,C2) / 2D)

where Path(C1,C2) represents the length of the path, i.e. the number of arcs in the

semantic network, between the concepts C1 and C2 and D is the overall depth of the

taxonomy.

 12

Hirst and Onge

In addition to the length of the path between two concepts, this method introduces the

direction of the links connecting the path between those two concepts (Hirst et al.,

1998). An upward direction link corresponds to generalization (hypernymy), a

downward link indicates a specialization (hyponymy) and a horizontal link indicates a

synonymy, antonymy or coordinate term. As it can be observed from the below

formula, the relatedness score decreases as the direction changes:

Similarity(C1,C2) =C – (path length) – k*d,

where d is the number of changes of direction in the path, and C and k are constants.

The number of direction changes affects relatedness negatively, because change

of direction in a semantic network constitute large semantic steps. Fig. 2 (Miller et al.,

1993) illustrates the concept hierarchy in WordNet and directed links between those

concepts indicating the relation type between two concepts.

 13

Fig. 2. Network representation of three semantic relations

Resnik

Resnik (1995) introduced a new concept, Information Concept (IC), which is a measure

of the specifity of a concept and is based on its probability of occurence in a corpus.

The method is based on the idea that the more specific the concept that subsumes two

words is, the more semantically related are those two words. Thus the aim of this

method is finding the lowest common concept of two words in the semantic hierarchy.

The formulation of the method is:

Similarity(C1,C2) = IC(LCS(C1,C2)), IC(C) = -log(P(C))

In this formula, LCS is the least common subsumer of the two concepts C1 and C2, that

is the first common node of the two concepts in the semantic hierarchy starting from the

bottom of the hierarchy. And P(C) is the probability of finding the concept C in a

 14

textual corpus. Therefore, it is obvious that P(C) value reaches its maximum as the

concept is selected from the higher nodes of the semantic hierarchy.

Jiang and Conrath

As an alternative to Resnik, this method makes use of the difference in the Information

Concept values of the two concepts, C1 and C2 (Jiang et al., 1997).

Similarity(C1,C2) = 2*IC(LCS(C1,C2)) – (IC(C1) + IC(C2))

Lin

Similar to Jiang and Conrath, Lin (1998) proposes another change in the original

version of Resnik’s formula:

Similarity(C1,C2) = (2*IC(LCS(C1,C2))) / (IC(C1) + IC(C2))

The semantic similarity measures presented above are tested against a Senseval-2

English lexical sample data. Window length is taken as one, i.e only one word from the

left and one word from the right of the target word are included in the computations.

The sense having the highest cumulative score is selected as the correct sense. And

finally as a result of the experiments, it is found that among those measures Jiang and

Conrath performed the best (Banerjee et al., 2003).

 15

Selectional Preference

Selectional preferences or restrictions are constraints on the semantic type that a word

sense imposes on the words with which it combines in sentences (usually through

grammatical relationships) (Navigli, 2009). For example, knowing that one typically

cooks food, one can disambiguate the word bass in "I am cooking bass" (i.e., it's not a

musical instrument).

Although selectional preference is a simple method in theory, it is hard to put it

in practice. The performance of WSD improves with the size of the selectional

preferences that are defined and that is the main reason that makes it difficult to

implement as it requires knowledge of the word senses involved in a candidate relation.

There are methods devised to overcome this difficulty which are based on reducing the

number of relations by classifying words and defining the selectional preferences

among those classes instead of word-to-word relations.

The first method that Resnik (1993) suggests is defining selectional preferences

between a word and a semantic class. The contribution of a semantic class is measured

according to the number of concepts subsumed by that class. As the number of concepts

subsumed by the semantic classes defined increases, the number of the selectional

preferences to be identified decreases.

Second method, by Agirre et al. (2001), proposes a method to determine class-

to-class selectional preferences which is a more generalized method than the first

method suggesting word-to-class selectional preferences.

 16

The performances of word-to-word, word-to-class and class-to-class models that

are described above are evaluated by Agirre et al. (2001). According to their

observations, class-to-class models performed significantly better than the other two

models, word-to-word and word-to-class. The word-to-word selectional preferences

give 95.9% precision and 26% coverage, word-to-class preferences decrease the

precision to 66.9% and increase the coverage to 86.7%, and finally the class- to-class

preferences have a precision of 66.6% and a coverage of 97.3%.

Supervised Methods

Supervised methods are based on the assumption that the context can provide enough

evidence on its own to disambiguate words (Chen et al., 2009). These methods mainly

adopt context to disambiguate words. A supervised method includes a training phase

and a testing phase. In the training phase, a sense-annotated training corpus is required,

from which syntactic and semantic features are extracted to create a classifier using

machine learning techniques. In the following testing phase, a word is classified into

senses. Currently supervised methods achieve the best disambiguation quality.

However, these supervised methods are subject to a new knowledge acquisition

bottleneck since they rely on substantial amounts of manually sense-tagged corpora for

training, which are laborious and expensive to create.

 17

Probabilistic Methods

Statistical methods usually estimate a set of probabilistic parameters that express the

conditional or joint probability distributions of categories and contexts (described by

features). These parameters can then be used to assign to each new example the

particular category that maximizes the conditional probability of a category given the

observed context features.

 The Naive Bayes algorithm (Pedersen, 2000) is the simplest algorithm of this

type, which uses the Bayes inversion rule and assumes the conditional independence of

features given the class label. The algorithm is based on the calculation of the

conditional probability of each senses of a word and the sense having the highest

probability value is selected as the correct sense. An example Bayesian network can be

found in Fig. 3 (Navigli, 2009).

Fig. 3 An example Bayesian Network

 18

Similarity Based Methods

The methods in this family perform disambiguation by taking into account a similarity

metric. This can be done by comparing new examples to a set of learned vector

prototypes (one for each word sense) and assigning the sense of the most similar

prototype, or by searching in a stored base of annotated examples for the most similar

examples and assigning the most frequent sense among them. The most widely used

representative of this family of algorithms is the k-Nearest Neighbor (kNN) algorithm

(Ng et al., 1996). In this algorithm the classification of a new example is performed by

searching the set of the k most similar examples (or nearest neighbors) among a pre-

stored set of labeled examples, and performing an average of their senses in order to

make the prediction. In the simplest case, the training step reduces to storing all of the

examples in memory and the generalization is postponed until each new example is

classified. An example kNN classification is presented in Fig. 4 (Navigli, 2009).

Fig. 4 An example kNN classification

 19

Rule Based Methods

Decision lists and decision trees use selective rules associated with each word sense.

The system selects one or more rules that are satisfied by the example features and

assign a sense based on their predictions.

 A decision list (DL), is an ordered list of rules of the form (condition, class,

weight). An example decision list can be found in Table 2 (Navigli, 2009). According to

Rivest (1987), decision lists can be considered as weighted if-then-else rules where the

exceptional conditions appear at the beginning of the list (high weights), the general

conditions appear at the bottom (low weights), and the last condition of the list is a

“default” accepting all remaining cases. Weights are calculated with a scoring function

describing the association between the condition and the particular class, and they are

estimated from the training corpus. When classifying a new example, each rule in the

list is tested sequentially and the class of the first rule whose condition matches the

example is assigned as the result.

Table 2 An Example Decision List Table

Yarowsky (1994) applied decision lists to WSD. In this work, each condition

corresponds to a feature, the values are the word senses and the weights are calculated

 20

by a log-likelihood measure indicating the plausibility of the sense given the feature

value.

Combined Methods

In order to beat the weaknesses of supervised methods, a number of learning algorithms

having significantly different characteristics are combined to form a single and much

powerful learning algorithm.

AdaBoost (Schapire et al., 1999) is one of the most successful representatives of

combined methods. AdaBoost is a general method for obtaining a highly accurate

classification rule by combining many weak classifiers. A specified number of

iterations are performed for each classifier. At the end of each iteration, according to the

success of the classifier a weight is calculated and assigned for that classifier. For each

sense of a word si, the weight values of each classifier whose prediction equals to si are

summed and the si having the highest score is selected as the correct sense.

According to the results of the tests executed, which are listed in Table 3,

AdaBoost has the best performance among the supervised methods mentioned above.

On the other hand, the Naive Bayesian method performed significantly worse than the

other 3 methods.

Table 3 Experiment Results of the Supervised Methods Mentioned Above

POS Naive Bayesian (%) kNN (%) Decision List (%) Ada Boost (%)

Noun 46.59 62.29 61.79 66.00

Verb 46.49 60.18 60.52 66.91

All 46.55 61.55 61.34 66.32

 21

Semisupervised Methods

Semisupervised methods’ aim is to learn sense classifiers from annotated data with

minimal human supervision.

Bootstrapping

Bootstrapping methods make use of a small annotated corpus as seed data in a

bootstrapping process, to overcome the knowledge acquisition bottleneck problem

suffered by supervised methods. The bootstrapping approach starts from a small amount

of seed data for each word: either manually-tagged training examples or a small number

of decision rules. The seeds are used to train an initial classifier, using any supervised

method. This classifier is then used on the untagged portion of the corpus to extract a

larger training set, in which only the most confident classifications are included. The

process repeats, each new classifier being trained on a successively larger training

corpus, until the whole corpus is consumed, or until a given maximum number of

iterations is reached. Fig. 5 (Navigli, 2009) illustrates how a small seed data evolves

into a large training set.

 22

Fig. 5 Phases of Bootstrapping algorithm

The Yarowsky algorithm (Yarowsky, 1995) is one of most successful and popular

applications of the bootstrapping approach. The algorithm is a simple iterative and

incremental algorithm. It assumes a small seed set of labeled examples, which are

representatives of each of the senses, a large set of examples to classify, and a

supervised learning algorithm (decision lists). Initially, the learning algorithm is trained

on the seed set and used to classify the entire set of unannotated examples. Only those

examples that are classified with a confidence above a certain threshold are kept as

additional training examples for the next iteration. The algorithm repeats this retraining

and re-labeling procedure until convergence (i.e., when no changes are observed from

the previous iteration). Yarowsky algorithm relies on two heuristics:

• one sense per collocation: nearby words strongly and consistently contribute to
determine the sense of a word, based on their relative distance, order, and
syntactic relationship.

• one sense per discourse: a word is consistently referred with the same sense

within any given discourse or document.

 23

The performance of Yarowsky algorithm is illustrated in Fig. 6. As it can be observed

from the figure, the precision of the algorithm decreases as the recall value increases. In

other words, if the number of to be disambiguated words increases, then the

performance of the algorithm decreases.

Fig. 6 Performance of the Yarowsky algorithm

Monosemous Relatives

Leacock et al. (1998) used the monosemous lexical relatives of a word sense as a key

for finding training sentences in a corpus. For instance, looking for business suit as a

monosemous hyponym of suit can give us training sentences for the appropriate sense

of suit. Mihalcea et al. (1999) extend this idea and apply it to the Web as the target

 24

corpus. The method works as follow: First, for a word w, all unique expressions for

each sense definitions of w are determined. Then, for each expression, a search on web

(through any search engine, e.g. Google) is performed and text fragments surrounding

those expressions are retrieved from Web. Finally, a sense annotated corpus is created

by tagging each text fragment with sense S.

An example regarding the three senses of church and a partial list of their

corresponding monosemous relatives can be found below:

• church-1: church, Christian church, Christianity (a group of Christians; any
group professing Christian doctrine or belief)

• church-2: church, church building (a place for public (especially Christian)

worship)

• church-3: church service, church (a service conducted in a church)

The monosemous relatives of the corresponding senses listed above are:

• Synonyms: church building (sense 2), church service (sense 3), ...

• Direct hyponyms: Protestant Church (sense 1), Coptic Church (sense 1), ...

• Direct hypernyms: house of prayer (sense 2), religious service (sense 3), ...

• Distant hyponyms: Greek Church (sense 1), Western Church (sense 1), ...

• Siblings: Hebraism (sense 2), synagogue (sense 2), ...

Agirre et al. (2004) built a Web corpus, focusing on only the monosemous-relatives

technique and applying additional filters. Monosemous relatives included in this work

are synonyms, hyponyms, hypernyms, and siblings. In this work, it is shown that the

monosemous relatives technique can be used to extract examples for all nouns in

 25

WordNet. Overall, training a supervised WSD system with Web data provides better

results than any unsupervised system participating in Senseval-2. Web data is shown to

be very useful for WSD, but still does not match the results obtained with hand-tagged

data.

Unsupervised Methods

Up to this point, knowledge based methods, supervised and semisupervised methods are

reviewed. One of the main common properties among these methods is a need of

manually created information source. Knowledge based methods need a machine

readable dictionary, thesauri or a semantic taxonomy, while supervised and

semisupervised methods employ a sense annotated text for learning phase. All these

resources required to be built by human manually which is an expensive task. This

situation leads to a knowledge acquisition bottleneck when dealing with a new

language, new concepts/domains and large amounts of text.

Unsupervised methods have the potential to overcome this knowledge

acquisition bottleneck as these methods do not rely on external knowldge sources.

These methods acquire contextual information directly from unannotated raw text, and

senses can be induced from text using some similarity measure. The assumption that

unsupervised methods based on is that similar senses occur in similar contexts, and thus

senses can be induced from text by clustering word occurrences using some measure of

similarity of context. Then, new occurrences of the word can be classified into the

closest induced clusters/senses. However, automatically acquired information is often

 26

noisy or even erroneous and thus performance is lower than the other methods

discussed in the above sections.

Context Clustering

Context Clustering method clusters together the contexts in which a given word occurs.

The different senses of a word are represented by building a series of three vector

spaces (Schutze, 1998). The first vector space is Word Space, which is a co-occurence

matrix where each word is represented by a vector of co-occurence data. The words that

make up the dimensions of this co-occurence matrix are determined either considering

the local context that the target word occurs or the whole corpus. After the dimensions

of the matrix is determined, the similarity between words could be calculated by

measuring the cosine value between the word vectors. Then a context vector is created

for each context that the target word occurs. The context vector is found by taking the

average (centroid) of the vectors in the word space. An example word vector and a

context vector is drawn in Fig. 7 (Schutze, 1998).

After all context vectors for a word are created, sense vectors are found by

grouping the context vectors of a target word using a cluster algorithm (e.g. Buckshot

clustering algorithm). These sense vectors represent the different senses of the target

word.

 27

Fig. 7 The derivation of word vectors and context vectors

Word Clustering

Word Clustering methods create a representation of the different words in a corpus that

attempts to capture their contextual similarity. These representations are usually based

on counts of word co-occurrences or measures of association between words. Given

such information about a word, it is possible to identify other words that have a similar

profile and assumed to share related contexts and have similar meanings.

Lin (1998), proposed a method for the identification of words W = (w1, . . . , wk)

similar to a target word w0. The similarity between w0 and wi is determined based on

the information content of their single features, given by the syntactic dependencies

which occur in a corpus. The more dependencies the two words share, the higher the

information content is. However, as for context vectors, the words in W will cover all

senses of w0. To discriminate between the senses, a word clustering algorithm is

 28

applied. Let W be the list of similar words ordered by degree of similarity to w0. A

similarity tree T is initially created which consists of a single node w0. Next, for each i

∈ {1, . . . , k}, wi ∈ W is added as a child of wj in the tree T such that wj is the most

similar word to wi among {w0, . . . , wi−1}. After a pruning step, each subtree rooted at

w0 is considered as a distinct sense of w0.

Co-occurence Graphs

These approaches are based on the notion of a co-occurrence graph, that is, a graph G =

(V, E) whose vertices V correspond to words in a text and edges E connect pairs of

words which co-occur in a syntactic relation, in the same paragraph, or in a larger

context.

Veronis (2004) proposed an ad hoc approach called HyperLex. First, a co-

occurrence graph is built such that nodes are words occurring in the paragraphs of a text

corpus in which a target word occurs, and an edge between a pair of words is added to

the graph if they co-occur in the same paragraph. Each edge is assigned a weight

according to the relative co-occurrence frequency of the two words connected by the

edge. As a result, words with high frequency of co-occurrence are assigned a weight

close to zero, whereas words which rarely occur together receive weights close to 1.

In the second step, the graph is converted into a tree through an iterative

algorithm. This conversion is illustrated in Fig. 8 (Veronis, 2004). The different senses

of the target word lies in the first level of the tree. Finally Minimum Spanning Tree

 29

(MST) algorithm is used to identify the correct sense (the one having the highest weight

score is selected).

Fig. 8 Co-occurrence graph and its expansion to MST

 30

CHAPTER III

METHODOLOGY

In this thesis, a new unsupervised word sense disambiguation method based on

semantic similarity is introduced. This method is mainly based on the hypothesis that at

least one synset of a target word and the synsets of the words surrounding the target

word should be the same if the text is semantically coherent. A similarity score is

calculated for each sense of a target word, between the words in the gloss of the target

word and the words surrounding the target word. The sense having the maximum

similarity score is accepted as the most relevant sense with the context and thus selected

as the appropriate sense. A step by step sample execution trace of the method is

presented in Appendix B.

Similarity Score Calculation

Following the hypothesis stated above, 3 measures are used to find a similarity score

between two synsets: the number of semantic relation matches, the path length between

the source concept and the target concept, and the distance of the surrounding word to

the target word. Those 3 measures are explained in detail below.

 31

Number of Matches

Lesk (1986) introduced the gloss overlap concept to perform word sense

disambiguation. The Lesk algorithm tries to match the words in different senses of a

target word with the words surrounding the target word. The sense having the

maximum overlapped words is chosen as the correct sense.

 Considering only the words in the sense definitions of a target word is a

limitation of Lesk algorithm. Most of the sense definitions in a dictionary are short and

lack of substantial amount of words required securing a reliable result. Banerjee et al.

(2003) extend the classical Lesk algorithm and try to overcome the limitation by

involving the concepts related with the target word and the words surrounding the target

word. The concepts that can be used are the built-in semantic relations existing in

WordNet which are mentioned in section 3.1. To find the appropriate sense, a score will

be calculated for each sense of a target word by adding the Lesk score calculated by

using sense definitions of the target word and the surrounding words to the Lesk score

calculated by using the semantic relations between the target word and the surrounding

words. Assuming we have two synsets A and B, the relatedness score calculation

formula will be:

relatedness(A, B) = score(gloss(A), gloss(B)) + score(hypernym(A), hypernym(B))
 + score (hyponym(A), hyponym(B)) + score(gloss(A), hypernym(B))
 + score(hypernym(A), gloss(B))

 32

Like Banerjee et al., this method extends Lesk algorithm by including the concepts of

the target and surrounding words in to the process. Unlike Banarjeeet et al., only the

concept itself is taken into account, not the gloss of the concept. Each match between

the concepts of the surrounding words and the concepts of the words in the gloss of the

target word is summed up to calculate a similarity score.

similarity(A, B) = score(hypernym(gloss(A)), hypernym(B))
 + score(hyponym(gloss(A)), hyponym(B))

Currently, WordNet groups nouns under 80.000 different concepts through 9 noun

hierarchies and verbs under 13.500 concepts through 554 verb hierarchies. A sample

concept hierarchy is illustrated in Fig. 9. This built-in hierarchical organization of

concepts is useful for similarity based methods and will be used in the context of this

thesis.

Path Length

As it is mentioned in Semantic Similarity section, similarity measures of Leacock et al.

(1998) and Wu et al. (1994) are based on path lengths between concepts. Here what is

meant by the path length is the number of concepts between the source and the target

concepts. Leacock et al. find the shortest path between two concepts and scales that

value by the maximum path length of those concepts. Wu et al. first find the most

specific concept that both concepts share as parent concept and then finds the length of

the path from this parent node to the root node.

 33

 Similar to the methods mentioned above, this method makes use of the path

length between concepts to measure similarity between them. Like Wu et al., the closest

parent concept that both source and target concepts share in common are found in the

concept hierarchy. The level value that is going to be used in the calculation is the

minimum path length from the source and the target concept to the parent concept. The

relatedness between the concepts decreases as the path length increases, so the inverse

of the path length is used. The formula is updated as:

similarity(A, B) =
 (1/path(hypernym(gloss(A)), hypernym (B)))*score(hypernym(gloss(A)),
hypernym(B))
 + (1/path(hyponym(gloss(A)), hyponym(B)))*score(hyponym(gloss(A)),
hyponym(B))

Fig. 9 Hierarchy of concepts in WordNet.

As it can be seen in Fig. 9, the length of the path between “hatch-back” and “compact”

is 1 since they share the same parent concept, “motorcar”. The path length value

 34

between “hatch-back” and “truck” is 2 as there is one sub level between “hatch-back”

and “motor-vehicle”, “motorcar”.

Distance

In this method, the hypothesis which says similar words tend to occur in similar

contexts is followed. The fact that, words surrounding a target word are much related

with the target word than the words that are far from the target word, can be implied

from this hypothesis. As a result it can be said that the distance of a word to the target

word is inversely proportional to its relatedness with the target word. Regarding this,

the above formula is updated as below:

similarity(A, B) = (1/distance(A,B)) *
 ((1/path(hypernym(gloss(A)), hypernym (B))) * score(hypernym(gloss(A)), hypernym(B))
 + (1/path(hyponym(gloss(A)), hyponym(B))) * score(hyponym(gloss(A)), hyponym(B)))

As the relatedness of the words decrease with distance, the words having a distance

above a certain value are assumed to be irrelevant with the target word and are not

considered in the similarity score calculations. In other words, a window having a

specified length is defined and only the words existing in that window are used in the

calculations. The target word is always located at the center of the window as long as

the target word is not at the beginning and at the end of the text. The window slides by

one word to the right, as the iteration is moved to the next target word.

 35

 In the example shown in Fig. 10a, the text consists of 8 words. The target word is

“administrator” and the window size is set to 4, so 2 words left to the target word and 2

words right to the target word are included in the similarity score calculation.

Fig. 10a Sliding window and target word

As the target word is set to the next word, “fee”, the window slides by one word to the

right. Now, the target word is “fee” and the words in the window are “guardian”,

“administrator”, “awarding”, “compensation”. Fig. 10b illustrates this final state.

Fig. 10b Window and target word is slided one word right

Following the example shown in Fig. 10a and Fig. 10b, a distance tree can be

constructed as shown in Fig. 11.

 36

Fig. 11 Distance Tree

As all the 3 measures used in similarity score calculation are described above, a general

formulation for this calculation can be presented:

Let W be our target word, t is the text and wi denotes the other words in t, mj is
for the jth sense of W in WordNet, sjk stands for the kth word in mj, di is the unit
distance of wi to W and l denotes the synset level at which the matching is found
(path length).

For each mj, a matching score Sj is calculated as:

Sj += (1/di)*(1/li)*(1/ljk), if a synset relation match is found between sjk
and wi

Sj += 0, if there is no synset relation match between sjk and wi

After the iteration is over, the mj having the highest score Sj is selected as the
appropriate sense.

 37

A corresponding pseudocode for the formulation above is:

For each sense definition do
 For each word wi in sense definition do
 For each word wj in window size do
 Calculate and sum the relation score between wi and wj
 End For
 End For
End For

Test Environment Settings

A test environment is set up to get the results of the method and evaluate the

performance. The items required to perform the tests are: a test data to work on and a

program which implements the method. As a test data, a ready to use tagged text is

used. A brief explanation for this test data can be found under Semcor section. And a

program is developed in Java which implements the method presented here that gets the

test data as input, processes it according to the method and outputs the results for each

part of speech (POS).

Test Data

For experiments, there are two kinds of test corpora that can be used as input:

• Lexical sample: the occurrences of a small sample of target words need to be
disambiguated.

• All-words: all the words in a piece of running text need to be disambiguated.

 38

All-words is a more realistic form of evaluation, but the corpus is more expensive to

produce because human annotators have to read the definitions for each word in the

sequence every time they need to make a tagging judgment, rather than once for a block

of instances for the same target word (lexical sample). In order to define common

evaluation datasets and procedures, public evaluation campaigns have been organized.

Semantic Concordance (Semcor) is one of those campaigns.

Semcor

A semantic concordance is a textual corpus and a lexicon so combined that every

substantive word in the text is linked to its appropriate sense in the lexicon. Thus it can

be viewed either as a corpus in which words have been tagged syntactically and

semantically, or as a lexicon in which example sentences can be found for many

definitions. Texts that were used to create the semantic concordances were extracted

from the Brown Corpus and then linked to senses in the WordNet lexicon. The semantic

tagging was done by hand, using various tools to annotate the text with WordNet

senses.

 The "raw" data is segmented into paragraphs and sentences, and then

sequentially numbered within the file. Each sentence is separated into word forms and

punctuation. A semantic tag associated with a word form indicates one or more senses

in the WordNet database that are appropriate for that word form in the textual context.

An extract from a Semcor text file can be found in Appendix A.

 39

 Only nouns, verbs, adjectives, and adverbs (open class words) can be

semantically tagged, as these are the only classes of words represented in WordNet.

Strings of several words that form a collocation or phrase found in WordNet are joined

into one word form in a semantically tagged file and tagged as a single unit.

Performance Criteria

For the evaluation of WSD methods, two main performance criteria are being used:

• Precision: the fraction of assignments made that are correct

• Recall: the fraction of total word instances correctly assigned

As the method presented here assigns a sense to each to-be-disambiguated word in the

text, both precision and recall values will be equal.

 40

CHAPTER IV

RESULTS AND EVALUATION

In this chapter, the results of the experiments performed using different versions of the

method that will be explained in the Subjects of the Experiments section are presented.

After the results are given, the found values are evaluated and compared against other

methods.

 In the experiments, Semcor 1.6, texts semantically annotated with WordNet 1.6

senses, dataset is used. Experiments are made on a text extracted from Brown Corpus,

including 1024 to be disambiguated words in total. The domain of the sample text is

politics and law. The to-be-disambiguated words in the text are quite polysemous and

difficult to disambiguate, with an average polysemy count of 6.4, ranging from 1 to 14

senses.

 Different versions of the method are implemented in Java, using Java WordNet

Library (JWNL). JWNL is a Java API for accessing WordNet’s relational dictionary

and the relationships stored in WordNet.

 The results are compiled separately for each POS, namely noun, verb, adjective

and adverb. For each POS, the percentage of correct sense assignments are calculated

and presented in the results section. Also, the average success rate of the method is

found by taking the weighted average of each POS’ success rate.

 41

Subjects of the Experiments

In the methodology chapter, the formula of similarity score calculation which forms the

basis of this method is presented. As it can be seen in that formula, similarity score

calculation involves two main parameters, namely the size of the sliding window and

the distance. To observe the effects of these parameters, different versions of the

method are released and tested with varying parameter values.

 In the first version of the method, distance is measured based on words. The

distance of each word in the window is used in the similarity calculation. The window

size is taken as 10 in this version. This is the original version of the method and

released to exploit the relatedness of the target word with the words surrounding it.

 Second version of the method does not make use of window and window size.

Actually window still exists but not like the original method, the window is the

sentence itself. In other words, all words in a sentence are used in the similarity score

calculation of a target word residing in that sentence. The distance measure is not

applied in this version; instead all the words in a sentence are assumed to have equal

distance value. The hypothesis is that, for a sentence to be coherent, the senses of the

words in that sentence should be coherent within each other. The aim of this version is

to prove this hypothesis by measuring the effect of sentence coherence on the method.

 The third version of the method introduces a slight modification over the second

version. The distance and window size parameters that are cancelled in the second

version are included in the similarity score calculations like the first version. Unlike the

first version, those parameters are not word based but sentence based. The window size

 42

is set as 2, which means that the sentences before and after the sentence including the

target word are counted. This version is released to increase the size of input and to

measure the degree of relatedness of the sentences in the neighborhood of the target

word.

 The final version, fourth version of the method is an unsophisticated version

which does not make use of any distance parameter. This version is used to show the

effect of the distance parameter on the original (basic) method.

Results of the Experiments

Each version presented in the Subjects of the Experiments section are tested against the

same text taken from the SemCor data. Among all the versions, experiments show that

the second version of the method has the best performance while the fourth version has

the worst performance. Detailed results of the experiments can be found in Table 4.

Table 4 Test Results

 Success Rate (%)

Version Noun Verb Adjective Adverb Total

Word Based Distance and
Window Size (First) 53.32 25.10 55.88 63.33 44.53

Sentence Based Window,
Distance Ommitted (Second) 53.94 29.80 55.15 60.00 46.78

Sentence Based Window Size
and Distance (Third) 54.56 29.80 54.41 56.67 45.80

Word Based Window Size,
Distance Ommitted (Fourth) 40.50 23.96 39.65 41.25 38.87

 43

As it can be observed in Table 4, the results of the first three versions are very close.

This shows that setting the window size based on words or sentence does not affect the

success rate much. On the other hand, as the fourth version performed the worst clearly,

it can be said that adding distance factor to the similarity score calculation affect the

results in a positive manner.

Comparison of the Results Obtained

This method performed slightly worse than the other first three methods, when the

results of this method are compared with the results of the other methods listed in Table

5. However, the performance difference between the last method (Tree Match) and this

method is much bigger. The main reason for this difference is that the Tree Match

method is using a manually created dependency data. This dependency data helps the

method to deal with the words directly, not over the concepts that the words belong to.

Thus, Tree Match method makes use of a specialized data, while the method presented

here is using a generalized data which increases the error rate.

 The success rate of the verbs appears to constitute the main difference between

the other methods. The root cause of this difference is the lack of concept hierarchy in

WordNet for verbs. As it is stated in the methodology, concept hierarchy is the main

knowledge source in similarity score calculation. Since it is not possible to exploit

concept hierarchy for verbs, the success rate of this method decreases dramatically

affecting also the overall performance of the method.

 44

Table 5 Performance Comparison

 Success Rate (%)

Method Noun Verb Adjective Adverb Overall

Unsupervised Large-Vocabulary
Word Sense Disambiguation with
Graph-based Algorithms for
Sequence Data Labeling 58.8 37.9 57.6 71.9 55.3

Unsupervised All-words Word Sense
Disambiguation with Grammatical
Dependencies 63.3 32.7 56.8 59.1 52.7

Unsupervised Graph-based Word
Sense Disambiguation Using
Measures of Word Semantic
Similarity 61.1 43.3 53 100 53.4

A Fully Unsupervised Word Sense
Disambiguation Method Using
Dependency Knowledge (Tree Match
Method) NA NA NA NA 73.6

This Method 53.9 29.8 55.1 60 46.8

 45

CHAPTER V

CONCLUSIONS AND FUTURE WORK

Conclusion

This thesis shows that the sense of a word and the words surrounding that target word

has to share a common context if the text is semantically coherent. According to this

hypothesis a similarity score formulation is derived and each sense of a target word is

ranked according to that score.

 It is assumed that there are two main parameters exist in this formulation. The

first parameter is the path length, which measures the concept hierarchy level where a

concept match is found. The level and thus the path length are inversely proportional to

the relatedness. In other words the relatedness between the concepts decreases as the

path length increases. The second parameter is the distance of the target word to the

word residing in the window size. Like path length, distance is inversely proportional to

the relatedness of the words. As the distance between the words increase, it is assumed

that the relation between the words decreases.

 Different versions of the base method are released and tested against same

Semcor text, to see the effects of these parameters. Results show us that, without

removing those parameters from the formula but changing the way they contribute to

the overall value did not change the result dramatically. On the other hand, omitting

distance factor decreases the performance of the method clearly. This fact proves the

positive effect of taking distance into account. According to the results, the second

 46

version performed best which shows that the sliding window used in the calculations

should be set to the sentence itself. The words in a sentence proved to be much related

than the words outside the sentence.

Future Work

There are several possible improvements to be made on this work. First of all, the

JWNL API that is used to retrieve the concept hierarchy of WordNet, does not support

coordinate term retrieval. Coordinate terms are an important element of concept

hierarchy as they offer a first order relationship between the words. Finding a

coordinate term match between words, changes the value of the similarity score

obviously. Currently there is no API developed to exploit coordinate term search.

However as JWNL is an open source project, an extension over this API can be

developed for coordinate term retrieval.

 The sense assignment in this method is an iterative process. Each word is

processed one by one and a corresponding sense is found and assigned during the

iteration. When processing a target word, the sense assignments made before are not

used. This information could be useful in determining the context of the text. The

common concepts shared by the previous sense assignments may help the method to

increase the accuracy of the sense assignments to be made for the following words.

 Last but not least, the sense assignment process could be made considering all

senses of the words residing in the window together. Currently, as it is stated above, the

method processes the words one by one iteratively. Instead, a weighted graph could be

 47

formed in which different senses of a word constitutes the vertices of the graph. A

similarity score between each sense is calculated and assigned as the weight of the edge

between them. Finally a graph search algorithm can be applied over this graph to

calculate the maximum value between each vertex. The sense assignment giving the

maximum edge weight value is selected as the correct one. This improvement is the

most complex one among the others but offers a significant improvement on the results.

 48

APPENDIX A

AN EXTRACT FROM SEMCOR DATA

 49

APPENDIX B

SAMPLE EXECUTION TRACE STEPS 1-3

 50

APPENDIX C

SAMPLE EXECUTION TRACE STEPS 4-5

 51

APPENDIX D

SAMPLE EXECUTION TRACE STEP 6

 52

APPENDIX E

SAMPLE EXECUTION TRACE STEP 7-8

 53

REFERENCES

Mihalcea, R. & Moldovan, D. I. (2001). Ez.wordnet: Principles for automatic
 generation of a coarse grained WordNet.

Ide, N. & Veronis, J. (1998). Word Sense Disambiguation: The State of the Art.

Fellbaum, C. (1998). WordNet an Electronic Database, Cambridge: MIT Press.

WordNet Statistics (2010), Retrieved March 20, 2010, from
 http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries:
 How to tell a pine cone from an ice cream cone.

Leacock, C., Chodorow, M. & Miller, G. A. (1998). Using corpus statistics and
 WordNet relations for sense identification.

Hirst, G. & St-Onge, D. (1998). Lexical chains as representations of context in the
 detection and correction of malaproprisms.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. & Miller, K. (1993). Introduction
 to WordNet: An On-line Lexical Database.

Resnik, P. (1995). Using information content to evaluate semantic similarity.
Jiang, Jian & Conrath, D. (1997). Semantic similarity based on corpus statistics and
 lexical taxonomy.

Lin, Dekang. (1998). An information theoretic definition of similarity.

Banerjee, S., Patwardhan, S. & Pedersen, T. (2003). Using measures of semantic
 relatedeness for word sense disambiguation.

Navigli, R. (2009). Word sense disambiguation: A survey.

Resnik, P. (1993). Selection and information: A class-based approach to lexical
 relationships.

Agirre, E. & Martínez, D. (2001). Learning class-to-class selectional preferences.

Chen, P., Ding, W., Bowes, C. & Brown, D. (2009). A fully unsupervised word sense
 disambiguation method using dependency knowledge.

Pedersen, T. (2000). A simple approach to building ensembles of Naive Bayesian
 classifiers for word sense disambiguation.

 54

Ng, H. T. & Lee, H. B. (1996). Integrating multiple knowledge sources to disambiguate
 word senses: An exemplar-based approach.

Rivest, R. (1987). Learning decision lists.

Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution

Schapire, R. E. & Singer, Y. (1999). Improved boosting algorithms using confidence-
 rated predictions.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised
 methods.

Leacock, C., Chodorow, M & Miller, G. (1998). Using corpus statistics and WordNet
 relations for sense identification.

Mihalcea, R. & Moldovan, D. (1999). An automatic method for generating sense tagged
 corpora.

Agirre, E. & Martínez, D. (2004). Unsupervised WSD based on automatically retrieved
 examples.

Schutze, H. (1998). Automatic word sense discrimination.

Lin, D. (1998). Automatic retrieval and clustering of similar words.

Veronis, J. (2004). Hyperlex: Lexical cartography for information retrieval.

Torres, S. & Gelbukh, A. (2009). Comparing Similarity Measures for Original WSD
 Lesk Algorithm.

Wu, Z. & Palmer, M. (1994). Verb semantics and lexical selection.

