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Thesis Abstract 

Deniz Nemli, "Simultaneous Auctions with Private and Common Values" 

We analyze two simultaneous sealed-bid auctions in which n bidders have private values 

for the good in one auction but a common value for the other, and must choose to 

participate in at most one auction. The seller in each auction is free to choose whether 

his good is sold via a first-price or second-price auction. After auction types are 

announced, bidders simultaneously decide in which auction to participate and their bid 

in their selected auction. hence bidders bid without knowing the number of other 

bidders participating in the same auction. Bidders choose auctions according to a cut-off 

strategy: only those with a sufficiently high private value choose the private auction. For 

any auction type profile, there is a unique symmetric equilibrium (which is the same for 

all auction type pro.les) and multiple asymmetric equilibria which vary with auction 

types. At the unique symmetric equilibrium, revenue equivalence fails to hold in both 

auctions: the private auction revenue is always strictly higher when it is first-price. 
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Tez Özeti 

Deniz Nemli, "Eş Zamanlı Açık Arttırmalarda Özel ve Genel Değerler" 

Değerlendirmesi özel olan bir mal ile genel olan bir diğer malı satmak için yapılan iki eş 

zamanlı açık arttırmada n sayıda alıcının bir tanesini seçmek zorunda olduğu bir 

mekanizmayı inceliyoruz. Satıcılar birinci-fiyat ve ikinci-fiyat açık arttırma tiplerinden 

birini seçtikten sonra, alıcılar hangi açık arttırmaya katılacaklarına ve katıldıkları açık 

arttırmadaki tekliflerine karar veriyorlar. Açık arttırma seçme dengeleri eşik noktası 

formunda; özel değerleri belirli bir noktadan yüksek ise özel değerli malı, değilse diğer 

malı almaya çalışıyorlar. Bütün açık arttırma tip profilleri için aynı olan bir tane simetrik 

denge var. Bu dengede, gelir denkliği prensibinin tutmadığını ve özel değerli malın 

birinci-fiyat açık arttırma tipinde olması gerekiyor. 
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CHAPTER 1

INTRODUCTION

This paper considers a market in which two distinct goods are sold through

simultaneous sealed-bid auctions. Bidders have private valuations for one of the

goods, for which each bidder�s valuation is private information. All bidders have

a common (publicly known) valuation for the other good. Bidders are capacity

constrained, meaning they can participate in at most one auction. Each seller

announces whether his good will be sold through a �rst-price auction or a

second-price auction. Bidders then simultaneously decide in which auction to

participate and their bid in their selected auction, meaning that bidders act

without knowing the number of other bidders participating in either auction.

Our assumptions based on buyer being capacity constrained and sellers

sell their goods simultaneously are motivated by several real world markets.

Consider for example the market for houses. A selling homeowner may be

better o¤ under certain conditions if all potential buyers were able to pursue her

house before some decided to move on to the next one. In reality, there are

many other homes being sold at exactly the same time, and coordination

frictions inevitably arise. These frictions result in multiple buyers attempting to

purchase one house while another house is left uncontested. The academic job

market is another example in which many sellers (workers who wish to sell their

labor) are forced to sell simultaneously to capacity constrained buyers

(universities). Such a mechanism generally leads to ine¢ cient allocation due to

the same type of coordination frictions.

We �nd that bidders choose auctions according to a cut-o¤ strategy:

only those with a su¢ ciently high private valuation choose the private auction.

This result has a simple intuition: the payo¤ to bidders from the private value

auction increases with their valuations whereas the payo¤ from the common

value auction is constant. The cut-o¤ strategies also imply a one-dimensional

strategy space which considerably simpli�es our analysis.
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We solve the model by �rst �xing auction choice cut-o¤ strategies and

�nding the equilibrium bidding functions given those strategies. Given

equilibrium bidding behavior, we then endogenize auction choices and calculate

the equilibrium cut-o¤ strategies. An equilibrium cut-o¤ strategy corresponds

to the private valuation which makes a bidder�s expected payo¤ from

participating in the private auction equal to that of participating in the

common auction. Hence, the cut-o¤ values can be calculated by calculating

these expected payo¤s and solving an indi¤erence condition.

In equilibrium, bidders bid their valuations in a second-price auction

regardless of auction choice behavior. In �rst-price auctions, however,

equilibrium bidding strategies depend on auction choice cut-o¤ strategies as well

as valuations. In the �rst-price private value auction, equilibrium bids are equal

to the expectation of the second highest valuation conditional on winning;

however, the interval from which the private valuations are drawn di¤ers from

the standard (single auction) model since bidders�participation in this auction

implies that their valuations have to be greater than their cut-o¤ values. In the

�rst-price common value auction, there exists no pure strategy bidding

equilibrium since all bidders�(common) valuation for the good is publicly

known. We �nd that the unique equilibrium is in mixed bidding strategies in

which bidders choose their bids from continuous distributions with the same

connected support. These distributions are constructed to make all (other)

bidders indi¤erent among all bids in this support.

For any auction type pro�le, there is a unique symmetric auction choice

equilibrium, which is the same for all auction type pro�les, and multiple

asymmetric equilibria which vary with auction types. Revenue equivalence fails

to hold in both auctions: the private auction revenue is always strictly higher

when it is �rst-price, while the revenue in the common auction is strictly higher

when it is second-price. The intuition for the private value auction is as follows:

when second-price, revenue is equal to the expectation of the second highest
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value if there are at least two bidders and zero otherwise; when �rst price,

revenue is equal to the second-price revenue plus a positive term which

corresponds to the case in which only one bidder participates. In the common

value auction, the second-price revenue is the (common) value times the

probability that at least two bidders participate, while �rst-price revenue is

derived from the mixed equilibrium bidding strategies.

The remainder of this paper is organized as follows. We review the

related literature in chapter 2. We introduce the model in chapter 3 and show

that auction choices are made using cut-o¤ strategies in chapter 4. Finally,

Chapter 7 concludes and states possible extensions to our model. Proofs can be

found in the Appendix.
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CHAPTER 2

LITERATURE REVIEW

We consider two simultaneous auctions (one private-value, one common-value)

with incomplete information. Bidders choose auctions and bids simultaneously

without observing the number of competitors. Hence, in our model, buyers and

not sellers determine the equilibrium prices, is in contrast to a vast majority of

the directed search literature. This literature�Burdett, Shi, and Wright (2001)

is one of many examples�has focused primarily on cases in which one side of the

market posts locations and prices, while the other side observes these prices and

decides where to apply. In goods market applications, it is typically the sellers

who post prices and consumers who search. In directed labor search, �rms post

wages and workers search. This paper focuses on cases in which the same side of

the market, the buyer side, is in e¤ect responsible for both searching and

determining the equilibrium price for a �xed auction pro�le. To our knowledge,

there are four papers closest to considering such a mechanism; Julien, Kennes,

and King (2000), Gerding et al 2008, Gavious (2006), Selman (2010). However,

in Julien, Kennes, and King (2000)�s (labor market) model, �rms decide in a

preliminary stage which workers to �bid�on, and then observe how many other

�rms are bidding on the same worker before choosing their bids. Gerding et al

2008 analyzes a number of simultaneous identical Vickrey auctions each selling

complete substitutes to a number of local and global bidders. In our model, we

have homogeneous bidders and they all are capacity constrained to bid in only

one auction. The most similar paper in the literature to ours is Gavious (2006).

In this paper, there are two private-value second price auctions where the one of

the goods has higher value than the other. He assumes a private value for the

low good is chosen from a distribution and the value for the high good is some

constant times the value chosen from the distribution. Here, we do not assume

a certain form of relation between the two valuations for the two goods and also

each one of the auctions can be either �rst price or second price. So, our model
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is a generalization of the model in Gavious�paper. Finally, in Selman (2010),

two heterogeneous buyers with commonly known preferences must choose which

one of two di¤erent goods, a high value good and a low value good, to bid on

when the goods are sold through simultaneously held �rst price auctions. The

di¤erence with our model is that we do not assume the auctions are �rst price,

they can also be second price auctions and also in his model both auctions are

common value which is not the case with ours.

There are many papers in which the seller competition is examined such

as Burguet and Sakovics (1999), Coles and Eeckhout (2000) and Damianov

(2012), however our paper is approaching the problem from buyers�side which

is not very common. Burguet and Sakovics (1999) analyzes the competition

between two owners of identical goods who wish to sell them to a pool of

potential buyers. The sellers compete simultaneously setting reserve prices for

their second price sealed bid auctions in their model, whereas in ours sellers

compete by choosing auction types. Coles and Eeckhout (2000) has a model in

which sellers post prices and then buyers choose between the goods, and after

seeing who is their rival, they can walk away. We force bidders decide

simultaneously in which auction to participate and how much to bid in that

auction.

Our assumption that buyers must choose their bids without learning if

they have competition makes this model di¤er greatly from theirs. Instead,

equilibrium bidding behavior in this framework features buyers choosing their

bids from continuous distributions with identical and connected support for the

�rst price auction type. Technically, this result is similar to that of Burdett and

Judd (1983), in which �rms post prices without knowing how many �rms they

are trying to �outbid�with lower prices, since consumers may or may not search

another �rm�s price. For the second price auction case, as always, the bids are

equal to bidder�s valuations.
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CHAPTER 3

MODEL

There are n buyers and two sellers (P and C) each selling one of two distinct

goods. For simplicity we will also call the goods P and C. Buyer i 2 f1; : : : ; ng

has private value vi 2 [v; v] for good P; where v > v > 0; while all buyers have a

common value x > 0 for good C: Private values vi are independently and

identically distributed according to a continuously di¤erentiable distribution

function F: For now we will assume that the reservation price for both auctions

is set to zero.

Sellers P and C each hold one auction to sell their respective goods.

Each seller announces whether his good will be sold via a �rst-price auction

(FPA) or a second-price auction (SPA). We assume that the two auctions are

held simultaneously, and that each buyer can participate in at most one

auction.1 After auction types are announced, buyers simultaneously decide in

which auction to participate and their bid in their selected auction. Therefore,

bidders in both auctions make their bids without knowing the number of other

bidders participating in the same auction. A pure strategy for a buyer i with

private value vi (for good P ) is given by her auction choice (either P or C ) and

her bid in that auction�both as functions of vi and the announced auction types.

Once buyers have chosen their actions, each good is rewarded to the

highest bidder; if no bidders participate in one of the auctions, that good is not

sold. In the event of a tie in either auction, each buyer is rewarded the good

with probability one half. All agents are risk neutral. So, the payo¤ for a buyer

who wins a good is simply equal to her value for the good minus the selling

price, while the payo¤ for a seller is simply equal to the selling price. Any buyer

who does not get a good and any seller who receives no bids get zero.

1A motivating example for this assumption is a labor market in which capacity constrained
�rms (buyers) with one job opening cannot feasibly o¤er a job to two workers (sellers) who
could potentially both accept. A possible interpretation is that the disutility for a �rm from
having to back out of a commitment it cannot meet is su¢ ciently for it to simply never take
the risk of �winning�two workers (goods) by placing multiple bids.
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CHAPTER 4

BIDDER EQUILIBRIUM

In this section, we take sellers�auction type announcements as given and solve

for the bidder equilibrium. A pure strategy for a bidder i is an auction choice

ai (vi) 2 fP;Cg and a bid baii (vi) ; both of which are functions of the bidder�s

private valuation vi:

De�nition 1. Given auction type announcements for both auctions, a

bidder equilibrium is a strategy pro�le fai; baii g
n
i=1 such that every bidder i

maximizes his expected payo¤ given the auction types and other bidders�

strategies.

In the next session we show that bidders always choose their auction

ai (vi) using a cut-o¤ strategy.

Auction Choice Cut-o¤ Strategies

The payo¤ from the private value auction to a bidder increases as his valuation

for the good increases, but the payo¤ from the common value auction does not

change with the private valuation of the bidder. Hence, there is a private

value(for non-extreme values for v; v and x) which makes the bidders�payo¤s

from both auctions the same. This value is the bidders�cut-o¤ value. Above

that value, the bidders choose the private value auction because it gives more

payo¤ than the common value auction.

Lemma 1. In all equilibria, each bidder i chooses in which auction to

compete according to a reservation strategy ri 2 [v; v] : Bidder i chooses

ai (vi) =

8>>>><>>>>:
P if vi > ri

C if vi < ri:
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This result implies that, when solving for equilibrium, the auction choice

strategy space can be rede�ned as the one dimensional private valuation interval

[v; v], which signi�cantly eases our analysis.

Next, we will solve for the general equilibria when there are two bidders.

Equilibrium Bidding Strategies

In this section, we �x buyers�auction choices (r1; : : : ; rn) and �nd the

equilibrium bidding strategies for both auctions under both auction types. In

the �rst subsection, we analyze second-price auction bidding in both the private

value auction and the common value auction. Next, we solve for the equilibrium

bidding strategies when the private value auction is �rst-price in section.

Finally, we solve the common value �rst-price case in the last subsection.

For all auction types, all bidder equilibria are ex ante ine¢ cient. This

ine¢ ciency arises for one or both of the following reasons: (1) Bidders may fail

to coordinate and both bid on the same good, in which case only one good is

sold. This occurs with positive probability in most bidding equilibria and, as we

will show, all market equilibria of the game. (2) In asymmetric equilibria only,

even when bidders bid on di¤erent goods, the bidder who has a higher value for

the private good may not obtain the private good if he has a higher reservation

strategy than the other bidder.

Throughout the section, we use general distribution function F for the

private valuations of bidders when describing the model, but to calculate the

terms analytically, we use the uniform distribution. We �nd the equilibria of the

bidder game by �rst calculating the bidding functions for a given cut-o¤ choice

pro�le, then solving for the equilibrium cut-o¤ choice according to the payo¤s

calculated by using those bidding functions. The symmetric equilibrium cut-o¤

value does not change when the type of the private value auction changes

because as we will show, the bidding functions hence the expected payo¤s are

the same for both types of the private value auction.
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We �nd all equilibria for the case in which both auctions are second-price

and show that there are always three equilibria in this case: one symmetric and

two asymmetric. In a sense, our model is similar to those of auctions with an

uncertain number of bidders. Here, the distribution of number of bidders can be

derived directly from the auction choice strategy pro�le (r1; : : : ; rn) and the

distribution of private valuations F .

Equilibrium SPA Bidding

It is well known that the only symmetric equilibrium of a second-price auction,

including ones in which the number of bidders is uncertain, is the one in which

all bidders bid their valuation. Therefore, all bidders who participate in auction

P when second-price will bid according to the strategy bP ;SPAi (vi) = vi; and all

bidders who participate in auction C when second-price will bid according to

the strategy bC;SPAi (vi) = x (for all vi):

Equilibrium FPA Bidding in the Private Vaule Auction

Fixing auction choice reservation strategies r � (r1; :::; rn) and letting�
r1; : : : ; rD

	
= fr1; :::; rng be the set of D distinct reservation values chosen

(1 � D � n) ; the equilibrium bidding functions in the private value �rst-price

are derived piecewise, with the bidding function for each vi 2
�
rd; rd+1

�
being

calculated using standard techniques. This is both possible and necessary

because the anticipated number of competitors participating in the auction

depends on the interval
�
rd; rd+1

�
in which a bidder�s private valuation vi falls.

Proposition 1. Fix auction choice reservation strategies such that

r1 � r2: Then, the equilibrium bidding functions are

�r (v) =

8>>>><>>>>:
0 if v < r2

1
F (v)

R v
r2
zf (z) dz if v > r2:

(1)
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Proposition states that the optimal bid in our private value FPA is 0

when the bidder has a value less than the maximum cut-o¤ choice, since in this

case the bidder wins if he is the only one in that auction. If he has a value

greater than the maximum cut-o¤ choice, then he bids expectation of the other

bidder�s value conditional on winning.

Equilibrium FPA Bidding in the Common Vaule Auction

When the common value auction is FPA, the bidders will not bid their valuation

x to avoid getting 0 payo¤. Also they will not bid 0 with probability 1 because

in that case the other bidder can easily outbid him by bidding a small amount

" > 0 and win the object. Hence, in equilibrium, they will play mixed strategy

drawn from a distribution function which is determined from the payo¤s and

has a continuous support depending on the minimum of the two cut-o¤ choices.

Proposition 2. The equilibrium bidding function in the common value

auction when it is FPA will be mixed strategies drawn from distribution

functions �1;�2 satisfying

�1 (b; r) =

8>>>><>>>>:
�

b
x�b
� 1�F (r1)

F (r1)
if b 2 [0; xF (r1)]

1 if b > xF (r1)

(2)

and

�2 (b; r) =

8>>>>>>>>>><>>>>>>>>>>:

F (r2)�F (r1)
F (r2)

if b = 0

�
b
x�b
� 1�F (r2)

F (r2)
+
�
x
x�b
� F (r2)�F (r1)

F (r2)
if b 2 [0; xF (r1)]

1 if b > xF (r1) ;

(3)
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Equilibrium Auction Choice

Bidders decide their equilibrium auction choices according to the indi¤erence

points between payo¤s of two auctions. Let r1; r2 be the cut-o¤ strategies of

bidders, and assume wlog r1 � r2. To calculate the payo¤s, we use the bidding

functions found in the previous sections: the pure bidding strategy (1) for the

private value FPA, and the mixed bidding strategies (2) and (3) for the common

value FPA.

The payo¤ functions associated with these and the trivial SPA bidding

strategies are

UP;FPAr (v) =

8>>>><>>>>:
(v � �r (v))F (r) if v < r2

(v � �r (v))F (v) if v > r2

=

8>>>><>>>>:
vF (r2) if v < r2

vF (v)�
R v
r2
zf (z) dz if v > r2

UP;SPAr (v) =

8>>>><>>>>:
vF (r2) if v < r2

�
v � 1

F (v)

R v
r2
zf (z) dz

�
F (v) if v > r2:

We see that the expected payo¤ from the private value auction to bidders is the

same regardless of the auction types. So, let

UPr (v) � UP;FPAr (v) = UP;SPAr (v) :

The expected utility from the common value auction when FPA is

UC;FPAr = x (1� F (r1)) ;
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and when SPA is

UC;SPAi;r = x (1� F (rj)) ;

where i 6= j: We see that bidder 2(say bidder 2 choose r2) gets the same payo¤

in both the FPA and the SPA, but bidder 1 (i.e. the one with the lower value of

the two cut-o¤ choices); meaning he is less likely to participate in the common

calue auction) gets a strictly higher expected payo¤ if the auction is a FPA.

Because a positive payo¤ is achieved in the SPA i¤ the other bidder does not

participate, bidder 1 is at a relative disadvantage since bidder 2�s likelihood of

participating is higher. On the other hand, in the FPA they receive identical

expected payo¤s since the asymmetry in participation likelihood is precisely

compensated for by the asymmetric mixed bidding strategies �1 and �2:

Symmetric Equilibrium

At the symmetric equilibrium, we see that the expected payo¤ from each

auction does not change when the auction type changes. Hence, for each

auction type pro�le, the symmetric equilibrium cut-o¤ choice should be the

same. The following proposition states that.

Proposition 3. The value of r�; the symmetric equilibrium cut-o¤ choice,

is the same for all auction pro�les

(SPA; SPA) ; (FPA; SPA) ; (SPA;FPA) ; (FPA; FPA) : And the indi¤erence

condition r satisfy is

UPr� (r
�) = UCr�

, r�F (r�) = x (1� F (r�))

, F (r�) =
x

x+ r�
:

For F uniform on [v; v] ; this gives us the symmetric equilibrium cut-o¤ choice:

r� =
1

2

�
v � x+

q
(v � x)2 + 4vx

�
:
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Asymmetric Equilibrium

When both auctions are second-price, we calculated all equilibria when the

distribution function is uniform. The unique symmetric equilibrium is the same

as stated in the previous proposition. In the following proposition, we show that

there are always two asymmetric equilibria which changes according to values of

v; v and x: We see that (v; v) can also be an equilibrium if x is high enough, so

that one of the bidders agree on getting the common value good all the time. It

is the worst case for the sellers because in each auction there will be only one

bidder and the sellers get 0 from selling their good. So, sellers will want

coordination friction between bidders when both auctions are second-price.

Proposition 4.There always exist exactly three Nash Equilibria, given by

the set

NE = f(r�; r�) ; (r0; r00) ; (r00; r0)g ;

where r0 > r00 and

r� =
1

2

�
v � x+

q
(v � x)2 + 4vx

�
;

(r0; r00) =

8>>>>>>>>>><>>>>>>>>>>:

(v; v) if x � v�v
2

�
rBR (v) ; v

�
if x < v�v

2
and rBR (v) � rmax

(r2; r11) if x < v�v
2
and rBR (v) < rmax;

13



where

rBR (v) = v +
p
2x (v � v);

rmax =
vx+ v2

v + x
;

r2 =
1

2

�
v � x+

q
(v � x)2 + 4vx

�
+ (v + x) ;

r1 =
1

2

�
v � x+

q
(v � x)2 + 4vx

�
� (v + x) :

14



CHAPTER 5

MARKET EQUILIBRIUM

As we know the symmetric equilibrium and the bidding functions, we can

calculate the expected revenues from both auctions.

Revenue Comparison

The revenue equivalence principle states that under certain assumptions, FPA

and SPA yields the same revenue when valuations are private, which is equal to

the expectation of the second highest value. This principle does not apply to

our model because in our model there is an uncertainty in the number of

bidders. With that uncertainty, the probability of the seller who has the private

value good getting a positive revenue changes according to the auction types.

When the private value auction is SPA, the seller gets the second highest value

with the probability that there are at least two bidders, whereas when it is

FPA, the seller gets the same thing plus the expected bid when there is one

bidder. Hence, the revenue principle fails due to the fact that the revenue from

the private value auction is higher when it is FPA rather than SPA. In this

section, we will show that analytically.

Revenue from the Private Value Auction

When the private value auction is second-price, the expected revenue is

E
�
RSPAP

�
= Pr fthere are two biddersgE [second highest valuation]

= (1� F (r1)) (1� F (r2))E [min fv1; v2 j v1 > r1; v2 > r2g] :

When F is uniform, at the symmetric equilibrium r�; this becomes

E
�
RSPAP

�
=

�
v � r�
v � v

�2
2 (v � v)2

(v � r�)2
Z v

r�

z (v � v)� z (z � v)
(v � v)2

dz

=

�
v � r�
v � v

�2�
v + 2r�

3

�
:
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Note that this is equal to the probability that both bidders�values are higher

than r�, meaning both bidders choose the private value auction, times expected

value of the second highest valuation. It is basically the second highest

valuation times the probability of getting it.

When the private value auction is �rst-price, the expected revenue is

given by the following

E
�
RFPAP

�
= Pr fthere is one bidder with value greater than r2gE [bid]

+Pr fthere are two bidders with values bigger than r2gE [max of bids]

= Pr fv1 > r2; v2 < r2gE [� (v1) j v1 > r2]

+Pr fv1 < r2; v2 > r2gE [� (v2) j v2 > r2]

+Pr fv1; v2 > r2gE [� (vmax) j vmax � max fv1; v2g where v1; v2 > r2] :

When F is uniform, at the symmetric equilibrium r�, this becomes

E
�
RFPAP

�
= 2

�
r� � v
v � v

��
v � r�
v � v

��
v � v
v � r�

�Z v

r�

z2 � (r�)2

2 (z � v)

�
1

v � v

�
dz

+

Z v

r�

z2 � (r�)2

2 (z � v) 2
�
z � v
v � v

��
1

v � v

�
dz

=

�
r� � v
v � v

��
1

v � v

�0B@ �
v2 � (r�)2

�
ln (v � v) + vv

+1
2
v2 �

�
v2 � (r�)2

�
ln (r� � v)� vr� � 1

2
(r�)2

1CA
| {z }

>0

+E
�
RSPAP

�
> E

�
RSPAP

�
:

This proves the following proposition.

Proposition 5. Revenue from the private value auction is greater when it

is FPA rather than SPA.
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Revenue from the Common Value Auction

When the common value auction is second-price, the expected revenue is

E
�
RSPAC

�
= F (r1)F (r2)x:

When F is uniform, at the symmetric equilibrium, this becomes

E
�
RSPAC

�
=

�
r� � v
v � v

�2
x:

Here again the expected revenue is equal to the probability of both bidders

come to the common value auction times the second highest bid which is equal

to the value of the good in that auction, x.

When it is �rst-price, the expected revenue is

E
�
RFPAC

�
= Pr fthere is exactly one biddergE [bid of that bidder]

+Pr fthere are two biddersgE [maximum of the bids]

= (F (r1) (1� F (r2)) + (1� F (r1))F (r2))
Z F (r1)x

0

b�0 (b) db

+F (r1)F (r2)

Z F (r1)x

0

2b�0 (b) � (b) db:

When F is uniform, at the symmetric equilibrium, this becomes

E
�
RFPAC

�
= 2

�
v � r�
v � v

�2
x

�
r� � v
v � r� + ln

�
v � r�
v � v

��
+

�
r� � v
v � v

�
x

 
3

�
(r� � v) (r� � 2v + v)

(v � v)2
�2
� 2

�
v � r�
v � v

�2
ln

�
v � r�
v � v

�!
:

Conjecture 1. The revenue from the common value auction is higher if it

is SPA rather than FPA.
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Seller Equilibrium

We see from the previous section that the seller who has the private value

auction will choose the �rst-price auction, and we believe that the other seller

should choose the second-price auction. Those two imply that we cannot have a

market equilibrium in which the private value auction is second-price and the

common value auction is �rst-price. Hence, any market equilibrium should

include sellers choosing �rst-price for the private value auction and second-price

for the common value auction and bidders choose auctions and bidding

functions accordingly.
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CHAPTER 6

EFFICIENCY

We can de�ne a general welfare measure as follows:

E [W ] =
X
i6=j

Pr fP sold to i, C sold to jg (E [vi j i wins P ] + x)

+
X
i

Pr fP sold to i, C not soldg (E [vi j i wins P ])

+
X
i

Pr fP not sold, C sold to igx:

In equillibrium with n = 2 and r1 � r2 this becomes:

E [W ] = F (r1) (1� F (r2))
�

1

1� F (r2)

Z v

r2

zf (z) dz + x

�
+(1� F (r1))F (r2)

�
1

1� F (r1)

Z v

r1

zf (z) dz + x

�
+(F (r2)� F (r1)) (1� F (r2))

1

1� F (r2)

Z v

r2

zf (z) dz

+(1� F (r2)) (1� F (r2))
�

1

1� F (r2)

�2 Z v

r2

zg(2) (z) dz

+F (r1)F (r2)x

which can be rewritten as

E [W ] = [F (r1) + F (r2)� F (r1)F (r2)]x| {z }
welfare from C

+F (r2)

Z v

r2

zf (z) dz + F (r2)

Z v

r1

zf (z) dz +

Z v

r2

zg(2) (z) dz| {z }
welfare from P

:

For r1 = r2 = r� this becomes

E [W ] =
�
2F (r�)� F 2 (r�)

�
x+ 2F (r�)

Z v

r�
zf (z) dz +

Z v

r�
zg(2) (z) dz

=
�
1� (1� F (r�))2

�
x+ 2F (r�)

Z v

r�
zf (z) dz +

Z v

r�
zg(2) (z) dz
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When F is uniform, this becomes

E [W ] =

"
1�

�
v � r�
v � v

�2#
x+2

�
r� � v
v � v

��
v � r�
v � v

��
v + r�

2

�
+

�
v � r�
v � v

�2�
2v + r�

3

�
:
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CHAPTER 7

CONCLUSION

In our model, we show that coordination frictions between bidders cause

ine¢ ciency, but sellers bene�t from them since having both bidders at their

auction increases their payo¤. Equilibrium bidder behavior di¤ers from the

standard case in the �rst-price auction whereas it stays the same in a

second-price auction.

Our model can be extended in several ways. The common value auction

can be generalized to a private value auction, so that the common value case

becomes a special case. The number of sellers can be increased to decrease

ine¢ ciency, or sellers may be allowed to change the reservation price to increase

their expected revenue in the second price case. We have a conjecture from our

calculations on revenues that the revenue from the common value auction is

higher when it is SPA rather than FPA, but we didn�t prove it. By comparing

those revenues, since we have comparison in the private value auction, we can

�nd the optimal mechanism for the sellers.
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APPENDICES

APPENDIX A: PROOFS OF THE PROPOSITIONS AND THEOREMS

Proof of Lemma 1. Assume for a contradiction that there is no such ri 2 [v; v].

Then, for all r in [v; v]; there exist v0 < r and v00 > r such that, for a �xed rj;

uHi (v
0; rj) > u

L
i (v

0; rj) ;

uHi (v
00; rj) > u

L
i (v

00; rj) :

Since uHi (vi; rj) is strictly increasing in vi, we have

uHi (v
00; rj) > u

H
i (r; rj) > u

H
i (v

0; rj) ;

which gives us a contradiction since

uLi (r; rj) = u
L
i (v

0; rj) < u
H
i (v

0; rj) < u
H
i (r; rj) = u

L
i (r; rj) :

Proof of Proposition 1. Bidders will choose the bid which maximizes

their expected payo¤ which is given by

UP;FPAr (v) =

8>>>><>>>>:
(v � � (v))F (r) if v < r2

(v � � (v))F (v) if v > r2:

We easily see that when a bidder�s value is less than r2, her bid does not

a¤ect her probability of win, F (r). So, he will bid 0 to maximize his payo¤.

However, when his value is greater than r2; he will maximize his payo¤ function

(v � � (v))F (v) : We will take the derivative of the payo¤ function with respect

to b = � (v) and then �nd b which makes the derivative equal to zero since this
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is a concave function and �nally introduce the boundary condition � (r2) = 0:

�F
�
��1 (b)

�
+
f
�
��1 (b)

�
(v � b)

�0
�
��1 (b)

� = 0

, �0 (v)F (v) = f (v) (v � b)

, �0 (v)F (v) + f (v) b = f (v) v

, (� (v)F (v))0 = f (v) v

, � (v) =
1

F (v)

Z v

r2

f (z) zdz:

Proof of Proposition 2. Suppose r1 6= r2: The probability that bidder i

will participate in this auction is F (ri) : Let �i (b) be the mixed strategy

bidding distribution chosen by bidder i conditional on participating. (Assume

for now these are continuous.) Then, for bidder 1, the payo¤ from bidding b1 is

�B1 (b1) = (x� b1) Pr fwin j b1g

= (x� b1) (1� F (r2) + F (r2) �2 (b1)) :

Similarly,

�B2 (b2) = (x� b2) (1� F (r1) + F (r1) �1 (b2)) :

By the same argument as in Burdett-Judd, we know that a necessary condition

is that the max support of both bidding distributions must be the same:

b1 = b2 � b: Then, by de�nition, �1
�
b
�
= �2

�
b
�
= 1, so

�Bi
�
b
�
=

�
x� b

� �
1� F (rj) + F (rj) �j

�
b
��

= x� b:

Again, by the same argument as in Burdett-Judd, we know that a necessary

condition is that the min support of both bidding distributions must be the
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same and equal to zero: b1 = b2 = 0: But then we have

�Bi (0) = (x� 0) (1� F (rj) + F (rj) �j (0))

= x (1� F (rj) + F (rj) �j (0)) :

Because it must hold that �Bi
�
b
�
= �Bi (0) ; we now have

x� b = x (1� F (ri) + F (ri) �i (0))

for both i = 1; 2: Because either �1 (0) = 0 or �2 (0) = 0 must hold (otherwise

there will be a positive probability of a tie and hence a pro�table deviation), let

us set, without loss of generality, �1 (0) = 0 and solve our two equations for our

two unknowns b and �2 (0) :

x� b = x (1� F (r1)) ;

x� b = x (1� F (r2) + F (r2) �2 (0)) :

Solving yields

b = xF (r1)

and

x� xF (r1) = x (1� F (r2) + F (r2) �2 (0))

, �2 (0) =
F (r2)� F (r1)

F (r2)
:

So in the (unique) equilibrium, bidder 2 (i.e. the bidder who bids zero with

positive probability) must also be the bidder with the higher value (i.e. r2 > r1):

We can now solve for �1 (�) and �2 (�) : For all b 2
�
0; b
�
; it must hold that

�Bi (b) = x (1� F (r1)) ;
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so we can write

(x� b) (1� F (rj) + F (rj) �i (b)) = x (1� F (r1))

, �i (b) =

x(1�F (r1))
x�b � (1� F (rj))

F (rj)

This yields

�1 (b) =

x(1�F (r1))
x�b � (1� F (r1))

F (r1)

=

�
b

x� b

�
1� F (r1)
F (r1)

:

and

�2 (b) =

x(1�F (r1))
x�b � (1� F (r2))

F (r2)

=

�
b

x� b

�
1� F (r2)
F (r2)

+

�
x

x� b

�
F (r2)� F (r1)

F (r2)
:

Proof of Proposition 3. Since the payo¤s are the same when the

equilibrium auction choice is symmetric, it is obvious that the symmetric cut-o¤

choice will be the same for each of the auction type pro�les. When F is uniform,

the cut-o¤ choice should satisfy

r� � v
v � v =

x

x+ r�

, (r� � v) (x+ r�) = vx� vx

, (r�)2 + r� (x� v)� vx = vx� vx

,
�
r� +

x� v
2

�2
�
�
x� v
2

�2
= vx

, r� =
v � x+

q
4vx+ (v � x)2

2
:

25



Proof of Proposition 4. given r2; player 1�s payo¤s become

uH1 (v1; r2) = Pr fwing (v1 � E [price j win])

= Pr fa2 (v2) = Lg (v1 � E [price j a2 (v2) = L])

+Pr fa2 (v2) = H and 1 winsg (v1 � E [price j a2 (v2) = H and 1 wins])

= Pr fv2 < r2g| {z }
=
r2�v
v�v

0@v1 � E [price j a2 (v2) = L]| {z }
=0

1A

+Pr fr2 < v2 < v1g| {z }
=maxf v1�r2v�v ;0g

0BB@v1 � E [price j r2 < v2 < v1]| {z }
=
v1+r2
2

1CCA

=

8>>>><>>>>:

�
r2�v
v�v

�
v1 if v1 < r2

r2�v
v�v (v1) +

v1�r2
v�v

�
v1 � v1+r2

2

�
if v1 > r2

=

8>>>><>>>>:

�
r2�v
v�v

�
v1 if v1 < r2

r2�v
v�v (v1) +

(v1�r2)2
2(v�v) if v1 > r2

and

uL1 (v1; r2) = Pr fa2 = Lg � 0 + Pr fa2 = Hgx

=

�
v � r2
v � v

�
x:

Player 1 will therefore choose auction H i¤

uH1 (v1; r2) � uL1 (v1; r2) : (4)

To �nd the equilibrium, �rst we will �nd best response functions.

Let rmin denote the value of r2 for which player 1 is indi¤erent between

the two auctions precisely when v1 = v: We can �nd it by solving the following
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equation:

uH1
�
v; rmin

�
= uL1

�
v; rmin

�
, rmin � v

v � v (v) +

�
v � rmin

�2
2 (v � v) =

�
v � rmin
v � v

�
x

,
�
rmin � v

�
v +

�
v � rmin

�2
2

=
�
v � rmin

�
x

The roots of the equation are

rmin = �x�
p
�v2 + 2vx+ 2vv + x2:

So, the only possible solution is

rmin =
p
x2 � v2 + 2vx+ 2vv � x:

This is in [v; v] if and only if v�v
2
� x:

Let rmax denote the value of r2 for which player 1 is indi¤erent between

the two auctions precisely when v1 = v: That is, de�ne rmax such that

uH1 (v; r
max) = uL1 (v; r

max) :

We can �nd it by solving the following equation for r2 :

�
r2 � v
v � v

�
v =

�
v � r2
v � v

�
x

So, we get

rmax =
vx+ v2

v + x
;

which is always in the interval [v; v]:
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When v1 < r2; this inequality becomes

�
r2 � v
v � v

�
v1 �

�
v � r2
v � v

�
x

, v1 �
�
v � r2
r2 � v

�
x;

so

rBR1 (r2) =

�
v � r2
r2 � v

�
x

for the interval r2 2 [v1; rmax); so precisely when r2 < rmax and

rBR1 (r2) � r2

,
�
v � r2
r2 � v

�
x � r2

, r2 �
1

2

�
v � x+

q
(v � x)2 + 4vx

�
: (5)

Hence, we can see already that

(r�; r�) =

�
1

2

�
v � x+

q
(v � x)2 + 4vx

�
;
1

2

�
v � x+

q
(v � x)2 + 4vx

��

is the symmetric Nash equilbrium.

When v1 > r2 then the inequality (4) becomes

r2 � v
v � v (v1) +

(v1 � r2)2

2 (v � v) �
�
v � r2
v � v

�
x

, (r2 � v) v1 +
(v1 � r2)2

2
� (v � r2)x

, v1 � v +
q
2vx+ v2 � r22 � 2xr2;

so

rBR1 (r2) = v +
q
2vx+ v2 � r22 � 2xr2
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for the interval r2 2 (rmin; v1]; so precisely when r2 > rmin and

rBR1 (r2) � r2

, v +
q
2vx+ v2 � r22 � 2xr2 � r2

, r2 �
1

2

�
v � x+

q
(v � x)2 + 4vx

�
;

which is the negation of the condition in (5) ; as expected.

So player 1�s best response correspondence when x � v�v
2
is

rBR1 (r2) =

8>>>>>>>>>>><>>>>>>>>>>>:

v +
p
2vx+ v2 � r22 � 2xr2 if r2 � r�

�
v�r2
r2�v

�
x if r� � r2 � rmax

v if r2 > rmax

while when x � v�v
2
it is

rBR1 (r2) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

v if r2 � rmin

v +
p
2vx+ v2 � r22 � 2xr2 if rmin � r2 � r�

�
v�r2
r2�v

�
x if r� � r2 � rmax

v if r2 > rmax:

To understand the shape of the best response functions, we take the �rst

and second derivative of both parts, and get
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We have

@rBR1 (r2)

@r2
=

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0 if r2 � rmin

�
�

r2+xp
2vx+v2�r22�2xr2

�
if rmin � r2 � r�

�
�
(v�v)x
(r2�v)2

�
if r� � r2 � rmax

0 if r2 > rmax;

and

@2rBR1 (r2)

@r22
=

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0 if r2 � rmin

�
�

2vx+v2+r22+2rx+2x
2

(2vx+v2�r22�2xr2)
p
2vx+v2�r22�2xr2

�
if rmin � r2 � r�

2
r2�v if r� � r2 � rmax

0 if r2 > rmax:

Hence, we deduce that the best response function is decreasing in the other

bidder�s cut-o¤ choice, concave when the other bidder�s cut-o¤ choice is less

than r�, convex in the remaining interval.
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The slope of the best response function at r�is

@rBR2 (r�)

@r1
= �

�
(v � v)x
(r� � v)2

�

= �

0BBB@ (v � v)x

1
4

�
�v � x+

q
4vx+ (v � x)2

�2
1CCCA

= �

0BBB@ 4 (v � v)x�
�v � x+

q
4vx+ (v � x)2

�2
1CCCA

= �

0@ 2 (v � v)x

v2 + x2 + 2vx� (v + x)
q
4vx+ (v � x)2

1A :
An illustrative graph is below to show the best response functions:

Also, we see that the slope of the best response functions at r� is always

greater than 1.
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����@rBR2 (r�)

@r1

���� > 1

,

������ 2 (v � v)x

v2 + x2 + 2vx� (v + x)
q
4vx+ (v � x)2

������ > 1
, 2 (v � v)x >

����v2 + x2 + 2vx� (v + x)q4vx+ (v � x)2����
, 2vx� 2vx > (v + x)

q
4vx+ (v � x)2 � v2 � x2 � 2vx

, (v � x)2 + 4vx > (v + x)
q
4vx+ (v � x)2

,
q
4vx+ (v � x)2 > v + x

, 4vx+ (v � x)2 > (v + x)2

, 4vx > 4vx

, v > v:

Now, we will �nd the equilibria by intersecting best response functions in

each of the following cases:

1. x � v�v
2
:

(a) When r2 < rmin, player 1�s best response is v: To r1 = v; player 2�s

best response is v < rmin: Hence we get a Nash equilibrium: (v; v):

(b) When rmin < r2 < r�, player 1�s best response is

rBR1 (r2) = v +
p
2vx+ v2 � r22 � 2xr2: To that, player 2�s best

response is rBR2 (r1) =
�
v�r1
r1�v

�
x: We can look for equilibria by setting:

rBR2
�
rBR1 (r2)

�
= r2

,
�
v � rBR1 (r2)

rBR1 (r2)� v

�
x = r2

,
 
v � v �

p
2vx+ v2 � r22 � 2xr2p

2vx+ v2 � r22 � 2xr2

!
x = r2

, r2 2 fr�; r� � (v + x)g :
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The �rst solution yields the symmetric equilibirum which we had

found earlier. For the second solution�call it r��2 = r
� � (v + x)�we

�rst check that r��2 2
�
max

�
v; rmin

	
; r�
�
: It is immediate from

observation that that r��2 < r
�: Now we need to check that

r��2 > max
�
v; rmin

	
:

Here, max(rmin; v) = rmin, and so we need

1

2

�
v � x+

q
(v � x)2 + 4vx

�
� (v + x) >

p
x2 � v2 + 2vx+ 2vv � x

() x >
1

2
v � v;

this cannot happen since

x >
1

2
v � v

since we have
1

2

�
v � x+

q
(v � x)2 + 4vx

�
� (v + x) > v

=) x >
9

2
v � v > v:

Hence, if rmin > v, we do not have a well-de�ned best response, and

cannot have an equilibrium.

(c) When r2 = r�, player 1�s best response is rBR1 (r2) =
�
v�r2
r2�v

�
x: To

that, player 2�s best response is rBR2 (r1) =
�
v�r1
r1�v

�
x: From this case

we get the symmetric Nash equilibrium:

(r�; r�) =

�
1

2

�
v � x+

q
(v � x)2 + 4vx

�
;
1

2

�
v � x+

q
(v � x)2 + 4vx

��
:

(d) When r� < r2 < rmax, the same as case (b). No equilibrium.

(e) When rmax < r2, we get a Nash equilibrium (v; v):

2. x � v�v
2
:::
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(a) (This case does not exist by de�nition.)

(b) When r2 < r�, player 1�s best response is

rBR1 (r2) = v +
p
2vx+ v2 � r22 � 2xr2: To that, player 2�s best

response is rBR2 (r1) =
�
v�r1
r1�v

�
x: As in case 1(b) above, we set

rBR2
�
rBR1 (r2)

�
= r2 to yield

r2 2 fr�; r� � (v + x)g ;

The �rst solution again yields the symmetric equilibirum which we

had found earlier. Again, call the second solution

r��2 = r
� � (v + x)�we again must check that

r��2 2
�
max

�
v; rmin

	
; r�
�
: In this case (x � v�v

2
), max

�
v; rmin

	
= v.

Again, it is immediate from observation that that r��2 < r
�; so we are

left to check that;

v < r��2

, v <
1

2

�
v � x+

q
(v � x)2 + 4vx

�
� (v + x)

, 3

2
v +

3

2
x <

1

2

q
(v � x)2 + 4vx

, 9v2 + 18vx+ 9x2 < v2 � 2vx+ x2 + 4vx

, 2v2 + 5vx+ 2x2 < vx

, v >
2v2

x
+ 2x+ 5v:

When this condition holds, the implied equilibrium is

(r�1; r
��
2 ) ;

where

r��2 =
1

2

�
v � x+

q
(v � x)2 + 4vx

�
� (v + x)
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and

r�1 = rBR1 (r��2 )

= v +

q
2vx+ v2 � (r��2 )

2 � 2xr��2

=
1

2

�
v � x+

q
(v � x)2 + 4vx

�
+ (v + x) :

Now, we should con�rm that r�1 2 (r�; rmax) : It is obvious that

r�1 > r
�:

r�1 < rmax

, 1

2

�
v � x+

q
(v � x)2 + 4vx

�
+ (v + x) <

vx+ v2

v + x

() v >
2v2

x
+ 2x+ 5v;

which is the same condition with the one we found in checking the

interval of r2:

Hence, we found an equilibrium

(r�1 = r
� + (v + x) ; r��2 = r

� � (v + x))

when v > 2v2

x
+ 2x+ 5v:

(c) When r2 = r�, we again get the symmetric equilibrium

(r�; r�) =

�
1

2

�
v � x+

q
(v � x)2 + 4vx

�
;
1

2

�
v � x+

q
(v � x)2 + 4vx

��
:

(d) When r� < r2 < rmax, same as case (b).

(e) When rmax < r2, player 1�s best response is v: To that, player 2�s best

response is

rBR2 (v) = v +
q
2vx+ v2 � r21 � 2xr1

= v +
p
2vx� 2xv:
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Hence,

(v; v +
p
2vx� 2xv)

is a Nash equilibrium i¤

v +
p
2vx� 2xv >

vx+ v2

v + x
:

, x <
1

4
v � 5

4
v � 1

4

p
(v � v) (v � 9v):
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