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June 2015



DECLARATION OF ORIGINALITY
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ABSTRACT

A Horse Race among Models of Strategic Thinking across Similar Games

Human behavior generally deviates from equilibrium in one-shot games. For this

reason, a number of strategic thinking models which relax one or more assumptions

of equilibrium have emerged. A natural extension to the emergence of these models is

to compare their predictive and explanatory powers. In this study we have made a

full-fledged comparison of eight prominent models (QRE, Lk, CH, NI, SLk, SCH,

GCH and Lm) through a new game and its variations. We have analysed their

performances in two ways. First, we out-of-sample predicted experimental results by

these models and compared them by calculating the mean of squared distances

between predictions and the observed data. Secondly we estimated the models for all

games together and compared their log-likelihood values to determine their

performance in explaining subjects’ behaviors. We found that models with payoff

dependent noise had consistently better predictive performances than those without

noisy behavior. Our main contribution is to show that a little modification on game

structure might lead to drastically different results in the predictive performances and

statistical fits of the models. Even across very similar games, there were significant

changes on the performances of the models.
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ÖZET

Benzer Oyunlar Üzerinden Stratejik Düşünme Modellerinin Karşılaştırılması

Tek seferlik oyunlarda insan davranışları genellikle Nash dengesinden sapmaktadır.

Bu sebepten denge varsayımlarından bir ya da birkaçını gevşeten bazı stratejik

düşünme modelleri ortaya çıkmıştır. Bu modellerin doğuşunun doğal bir uzantısı,

onların tahmin ve açıklama güçlerini karşılaştırmaktır. Bu makalede tanınmış sekiz

modeli (QRE, Lk, CH, NI, SLk, SCH, GCH ve Lm) yeni bir oyun ve onun

varyasyonları üzerinden karşılaştırmaktayız. Bu modellerin performanslarını iki

şekilde analiz ettik. İlk olarak deney sonuçlarını bu modelleri kullanarak örneklem

dışı tahmin ettik ve onları, tahminler ile gözlenen veriler arasındaki mesafelerin

karelerinin ortalamasını hesaplayarak karşılaştırdık. İkinci olarak modelleri bütün

oyunlar için birlikte tahmin ettik ve onların denek davranışlarını açıklamadaki

performanslarını belirlemek için olabilirlik değerlerini karşılaştırdık. Gördük ki

ödemeye bağlı hata içeren modeller, içermeyenlere göre istikrarlı bir şekilde daha iyi

tahmin performanslarına sahipler. Bizim temel katkımız, oyun yapısındaki küçük

değişikliklerin, modellerin tahmin performansları ve istatistiksel uyumlarını ciddi

oranda değiştirebildiğini göstermektir. Çok benzer oyunlar arasında bile modellerin

performansları önemli ölçüde değişiklik göstermiştir.
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CHAPTER 1

INTRODUCTION

For repeated games there is no need to make much effort to explain human strategic

behavior. Because players can learn about others’ decisions and beliefs and

coordinate with them along with these repeated games. This eventually leads to the

convergence of players’ behaviors to the equilibrium. However, in one-shot games,

human behavior generally deviates from the equilibrium. It is for this reason that a

number of strategic thinking models which relax one or more assumptions of the

equilibrium have emerged. In one-shot interactions, these models are expected to

perform better in describing human behavior than the Nash equilibrium.

A natural extension to the emergence of behavioral models is to compare them

in terms of their predictive powers or statistical fit. Therefore we wanted to determine

which strategic thinking model was best suited to predicting or explaining human

behavior in one-shot games. When we conducted a literature survey to see to what

extent this question has been answered, we realized that there is no comprehensive

comparison of the models. Of the few existing studies, most deal with behavioral

models, comparing only one model with another one - generally the Nash equilibrium

- and focus on an explanation of a single model in detail. There are a few studies

comparing more than two models of strategic thinking. Inspired by this point, we

made a full-fledged comparison of the models through a new game and its variations.

We saw from previous works that the performance of the models varies from game to

game. This observation raises the question of whether there is a superiority of any one

model over other behavioral models, regardless of the structure of the game. We

designed our experiment to determine if the degree to which the model fits the

experimental data depends on the structure and content of the game.
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For this study, we compared the models in two ways. First we took

out-of-sample predicted human behavior by different models and compared them by

calculating the mean of squared distances between predictions and the observed data.

Secondly, we estimated the models for all games together and compared their

log-likelihood values to determine their performance to explain the subjects’

behaviors. As expected, these two comparison methods gave different results for the

models because the out-of-sample prediction was employed to choose the most

accurate model, while the in-sample fitting was used to determine the most flexible

one. Our paper is unique in that it makes both of these comparisons together.

There are two prominent concepts that underlie these models: payoff-dependent

noise and bounded iterated reasoning. For simplicity, we can classify models into

three groups: models with payoff-dependent noise, models with bounded iterated

reasoning, and hybrid models with both concepts. Six of our eight models possess a

bounded iterated reasoning concept. For these models, level-0 is the anchoring

element of the model and is of great importance. But there is no consensus among

behavioral economists on level-0 behavior. Another contribution of our work is

related to the specification of level-0 behavior. We have introduced a new parameter

to the models, combining two outstanding assumptions about level-0 behavior.

Thanks to this parameter, we have increased the predictive and explanatory powers of

the models with iterative thought processes.

When we began to examine studies comparing multiple models, we encountered

the following studies. Costa-Gomes, Crawford and Iriberri (2009) compare the

prominent models of strategic thinking in Van Huyck, Battalio and Beil’s (1990,1991)

coordination games. To our knowledge, theirs is the first study to compare four
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leading behavioral models, which are QRE, Lk, CH and NI. They compare in-sample

fits of these models and find that Lk and CH usually fit better than QRE and NI.

Goeree, Louis and Zhang (2013) apply the NI model developed by Goeree and

Holt to Arad and Rubinstein’s (2012) game and use estimated parameters to

out-of-sample predict behaviors and beliefs in other game variations. They compare

QRE, Lk, NI and NE in these games, and report that the Lk model underperforms

compared to the NI, which assumes the common knowledge of noise. Furthermore,

the NE predicts no worse than the Lk in these games.

Wright and Leyton-Brown (2013) analyse four strategic thinking models (QRE,

Lk, CH, and QLk) in unrepeated, simultaneous-move games. They perform

meta-analysis of these models, using nine different data sets, and evaluate the

predictive performance of the models. They conclude that the QLk model of Stahl

and Wilson (1995) consistently yields the best performance. However, the estimated

parameters of the QLk are not consistent with their economic intuitions. Therefore,

they create a new model family which is a variation of QLk and gives a better

performance with fewer parameters.

Choo and Kaplan (2014) replicate Arad and Rubinstein’s (2012) ”11-20” game,

which is well-designed for observing players’ cognitive levels for models based on an

iterated thinking process. For this reason, it is a popular choice for research that

compares models. They use this game and its two variants, and achieve different

predicted behavior by the Lk model. Then they allow subjects to best respond noisily

in their SK model (which is the same with SLk in our work), and then they compare

the SK model with QRE and SCH in terms of their statistical fits. Choo and Kaplan

deduce that SK and SCH have better performance than QRE. Allowing for stochastic

best response in Lk improves the explanatory power of the model.
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This paper is organized as follows. The next chapter reviews the basic games

related to the models. Chapter ?? explains the prominent models of strategic thinking.

Chapter ?? introduces the experimental design, and Chapter ?? presents the

experimental results. Chapter ?? explains the estimation process and comparison

criteria, and discusses the estimation results. Chapter ?? concludes, and the Appendix

presents the experimental instructions and the estimation codes.
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CHAPTER 2

BASIC GAMES RELATED TO MODELS

There are several games that are closely associated with strategic thinking models and

have an impact on the process of constructing these models. One of the most famous

games is Keynes’s beauty contest. Keynes (1936) introduces the following:

... professional investment may be likened to those newspaper competitions in
which the competitors have to pick out the six prettiest faces from a hundred
photographs, the prize being awarded to the competitor whose choice most
nearly corresponds to the average preferences of the competitors as a whole; so
that each competitor has to pick, not those faces which he himself finds prettiest,
but those which he thinks likeliest to catch the fancy of the other competitors,
all of whom are looking at the problem from the same point of view. It is not a
case of choosing those which, to the best of one’s judgement, are really the
prettiest, nor even those which average opinion genuinely thinks the prettiest.
We have reached the third degree where we devote our intelligences to
anticipating what average opinion expects the average opinion to be. And there
are some, I believe, who practice the fourth, fifth and higher degrees. (p. 156)

Nagel (1995) Ho, Camerer and Weigelt (1998), and Camerer, Ho and Chong (2004)

formed symmetric n-person guessing games with inspiration taken from Keynes’s

beauty contest. In this guessing game, players are asked to choose numbers between

lower and upper limits, and the player who guesses the closest to p-times the average

wins a prize. There were 15-18 subjects in Nagel (1995), 3-7 subjects in Ho et al.

(1998), and 24 subjects in Camerer et al. (2004). The lower and upper limits were

0-100 in Nagel (1995) and Camerer et al.(2004), 0-100 or 100-200 in Ho et al. (1998).

The p-value was 1/2, 2/3 or 4/3 in Nagel (1995); 0.7, 0.9, 1.1 or 1.3 in Ho et al. (1998)

and 2/3 in Camerer et al. (2004). Equilibrium theory predicts that all players guess

their lower limit when p < 1 and upper limit when p > 1. If limits are 0-100 and

p-value is 2/3 (the most well-known case), then the equilibrium will be 0. However,

subjects rarely made equilibrium guesses in the first round. The guess distributions

5



have peaks at some choices, which points out an iterated thinking process. Nagel

(1995) and Camerer et al. (2004) applied the Lk and CH models, respectively, to

these games to explain subjects behavior, and got a particularly high performance

because in beauty contest games, it is natural to use an iterative thought process.

Another suitable game for models with bounded iterated reasoning is Arad and

Rubinstein’s (2012) game involving two players simultaneously requesting an amount

of money between 11 and 20 shekels (integers), which they are certain to receive. A

player also receives an additional amount of 20 shekels if her choice is exactly one

shekel less than that of the other player. Arad and Rubinstein used this ”11-20” game

to explain subjects’ behaviors with the Lk model and found that players did not use

more than three steps of thinking. On the other hand, since levels are unambiguously

obvious in ”11-20” game, there are two other studies using this game to estimate four

different models. First, Goeree et al. (2013) employed ”11-20” game to out-of-sample

predict the experimental results via Lk, QRE and NI models. They introduced that NI

and QRE performed better to predict human behavior than Lk and NE. Choo and

Kaplan (2014) replicated the ”11-20” game to show that the Lk and CH models

outperform the QRE explaining behaviors when they allow players to best respond

stochastically (we refer to them as SLk and SCH).

QRE has advantages in some types of games due to its random component of

noise. In many varieties of two-person zero-sum games that have a unique NE (for

example, Lieberman, 1960; O’Neill, 1987; Rapoport & Boebel, 1992), QRE

predictions are found to have fit the data consistently better than both the random and

Nash predictions. Behaviors in the following games were well explained by the QRE

model: centipede game (McKelvey & Palfrey, 1992), all-pay auctions (Anderson,

Goeree & Holt, 1998), traveler’s dilemma (Capra, Goeree, Gomez & Holt, 1999),
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alternating-offer bargaining games (Goeree & Holt, 2000), private-value first price

auctions (Goeree, Holt & Palfrey, 2002) and matching pennies (Goeree, Holt &

Palfrey, 2003).

The CH model holds the whip hand in dominance solvable games as well as in

coordination games. Camerer et al. (2004) state that thinking steps establish a

connection with iterated deletion of dominated strategies. Thanks to the possibility of

incorrect beliefs, CH also makes a precise prediction in coordination games. Stag

hunt is a type of coordination game which characterizes a trade-off between safety

and social cooperation. CH can predict a significant effect of group size in stag hunt

games. Additionally, a magical coordination is performed by CH in market entry

games where players decide simultaneously whether to enter or stay out of a market

(Camerer et al., 2004). If the number of players who entered the market is less than or

equal to the market capacity, the entrants all gain a given positive profit; but if the

number of players who enter the market is more than the market capacity, all get a

given negative profit. Staying out gives zero profit, regardless of how many subjects

enter. Another game, the battle of the sexes, is a simplified version of a two-person

market entry game with a capacity of one. All the above games can be adequately

explained by level-k analysis. (Crawford, 2007). Lastly, Camerer et al. (2004) assert

that CH can account reasonably well for the pattern in speculation and zero-sum

betting, and money illusion games.
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There are numerous applications of the Lk model to analyse human strategic

behavior. These include hide and seek games with non-neutrally framed locations

(Crawford & Iriberri, 2007), overbidding in independent private-value and

common-value auctions (Crawford & Iriberri, 2007), coordination via Schelling-style

focal points (Crawford, Gneezy & Rottenstreich, 2008), and optimal auction games

(Crawford, Kugler, Neeman & Pauzner, 2009).
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CHAPTER 3

MODELS OF STRATEGIC THINKING

In this section, we review the prominent behavioral models of strategic thinking in

which we will compare these models to each other and to a model based on the Nash

equilibrium. We also discuss their assumptions and cognitive requirements.

3.1 Quantal Response Equilibrium

McKelvey and Palfrey (1995) put forward the notion of Quantal Response

Equilibrium (QRE) to capture the cost-sensitive deviations from equilibrium. Players’

decisions are noisy with a specified distribution, which is logit in almost all

applications, adjusted by a precision parameter. Players make their choice on the

basis of relative expected utility, taking the noisiness of others’ decisions into

consideration. Then a QRE is defined as a fixed point in the strategy set. Basically,

this model relaxes the assumption of perfectly maximizing behavior: Players best

respond noisily, rather than with certainty.

Consider a two-player (three-player for the second treatment) symmetric game

with finite set of actions, A. Let πei (ai, s−i) be player i’s expected payoff of choosing

ai ∈ A against strategy profile s−i. Adopting the familiar logit formulation, the

quantal best response by player i to s−i is a mixed strategy si : [0, 1]|A| −→ [0, 1]|A|

with components

si(ai) =
exp(λ.πei (ai, s−i))∑

a′∈A

exp(λ.πei (a
′
i, s−i))

∀ai ∈ A (1)

The precision parameter, λ ≥ 0, determines how sensitive the response function is

with respect to expected payoffs, with λ = 0 corresponding to uniform randomization

and λ→∞ corresponding to best response. In applications, this precision parameter
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is estimated statistically. For our case, it is calibrated from the analysis performing on

three baseline games. With estimated precision, we out-of-sample predict the choice

distributions in all game variations.

McKelvey and Palfrey (1995) prove that there exists a QRE with non-negative

precision for any normal form game. Unlike existence, the uniqueness is not

guaranteed. However, there is a unique QRE with the specified precision for all of our

games.

From the point of view of explaining strategic thinking, QRE assumes

homogeneity on players’ levels of strategic sophistication. In many experiments, the

behavior of the players, however, is observed to be quite heterogeneous. This leads to

the emergence of particular class of models to allow for different cognitive levels

among players.

3.2 Levek-k

The leading model allowing for heterogeneity is Level-k. In contrast to QRE, the

Level-k model relaxes the assumption of mutually consistent beliefs, while the

assumption of perfectly maximizing behavior remains valid.

The main idea behind the Level-k model is based on separating players into

levels according to their sophistication of strategic thinking and proposing a particular

structure on players’ beliefs about others’ decisions.

There are different versions of the Level-k model such as Nagel (1995), Stahl

and Wilson (1995), Costa-Gomes, Crawford and Broseta (2001), and Costa-Gomes

and Crawford (2006). They have different assumptions about types of players, the

number of parameters, the accuracy of best responses, the belief distribution, and the

specification of level-0 behavior.
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In this study we consider the Level-k model of Nagel (1995) with some

modifications. The model consists of an iterative decision mechanism for players

performing k steps of reasoning. The iterative process starts with a non-strategic

level-0 player who is assumed to choose according to some common knowledge

probability distribution. In general, it is taken as uniformly random over all strategies.

A level-k player, for k ≥ 1, assumes that all other players are level-(k-1) and best

responds to others’ strategies according to this belief. In other words, a level-1 player

best responds to a level-0 player, a level-2 player best responds to a level-1 player,

and so forth. If a level-k player has multiple best responses, he/she uniformly

randomizes over them.

The exogenous specification of the level-0 behavior is of great importance,

because level-0 player is the anchoring element of the recursive structure. There are

two main assumptions about this specification in the literature. The first assumption is

the uniform randomization of level-0 behavior. The second one is that level-0 player

picks a salient action, if it exists, over a strategy set. The salient action refers to the

most obvious choice in the feasible strategy space. By combining these two

assumptions, we have proposed more attentive specification of level-0 behavior in

order to increase the explanatory power of the model. Level-0 type plays uniformly

random across all strategies with probability r ∈ [0, 1] or chooses the most obvious

strategy (18 TL for our case) with probability 1− r.

To avoid entering into a vicious cycle, we assume that all players belong to

levels 0, 1, or 2. f(0), f(1), and f(2) are their relative frequencies respectively. This

frequency distribution and r parameter, 4 parameters in total, are estimated using

experimental data via maximum likelihood estimation.
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3.3 Cognitive Hierarchy

Camerer et al. (2004) proposed a new structural model which is a variant of the

Level-k. The only difference between Cognitive Hierarchy and Level-k is an

assumption of players’ belief distributions. Unlike in the Level-k model, in the CH

model, level-k players best respond to their opponents that are distributed from

level-0 to level-(k-1), instead of to level-(k-1) players only. The model assumes that a

level-k player’s belief about the relative frequencies of lower level players is equal to

normalized actual proportions.

Let the relative frequency of level-k player be f(k), and a level-k player’s belief

of proportion of level-h be gk(h). The CH model posits that

gk(h) =


f(h)∑k−1
l=0 f(l)

if h < k

0 if h ≥ k

(2)

We focus the CH model on two-player (three-player for the second treatment),

symmetric games with a finite set of actions, A. Let πi(s
j
i , s

j′

−i) be player i’s payoff of

choosing sji against his/her opponent’s strategy profile sj
′

−i. The expected payoff of

strategy sji for a level-k player, given his/her beliefs, is as follows:

Ek(πi(s
j
i )) =

|A|∑
j′=1

πi(s
j
i , s

j′

−i){
k−1∑
h=0

gk(h).Ph(s
j′

−i)} (3)
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where Pk(s
j
i ) denotes the probability that player i choosing strategy sji according to

decision mechanism of the level-k:

Pk(s
∗
i ) =


1

|S∗i |
if s∗i ∈ S∗i & S∗i ≡ argmaxsji

Ek(πi(s
j
i ))

0 otherwise

(4)

In applications, we assume that the frequency distribution of players follows a Poisson

distribution, which is described by a single parameter τ (both its mean and variance).

f(k) =
τ k.e−k.τ

k!
(5)

The specifications of the level-0 behavior are the same as those in the level-k model.

In the Poisson-CH model, only two parameters, τ and r, are estimated, which makes

it easier to work with this model statistically.

3.4 Noisy Introspection

Models using the equilibrium concept, such as NE and QRE, explain behavior

successfully in repeated games where players have the opportunity to learn about

others’ decisions and beliefs and adapt to them gradually. However, in one-shot

interactions as in our games, there are systematic deviations from equilibrium.

Goeree and Holt (2004) introduce a structural model of noisy introspection designed

to explain human strategic behavior in unrepeated games. To obtain more realistic

results, they relax the equilibrium requirement which is based on consistency of

beliefs and actions.

The critical part of the NI model is the notion of the common knowledge of

noise: Players’ behaviors are noisy, but they are aware of the noisiness of players’
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decisions and act accordingly. In the NI model there is an assumption of

heterogeneity in levels of strategic sophistication, as in the Level-k model. Unlike the

Level-k model, Goeree and Holt inject noise into the iterated thinking process about

others’ actions and beliefs. That is to say, level-1 player makes a noisy best response

to level-0, level-2 player makes a noisy best response to level-1, so on.

Consider a two-player (three-player for the second treatment), symmetric game

with finite set of actions, A. Denote the expected payoff from choosing a ∈ A when a

player’s belief about the other’s play is q by πe(a, q). q is a probability distribution

over A. Using the well-known logit choice function, we can define a player’s better

response mapping

φµ : [0, 1]|A| −→ [0, 1]|A| in this manner:

φaµ(q) =
exp(πe(a, q)/µ)∑

a′∈A exp(πe(a′, q)/µ)
(6)

The noise parameter associated with a player’s decision, µ, is a reciprocal of the

precision parameter in the QRE. As µ goes to zero, the NI model reduces to the

Level-k model, to which players make a best response. As µ goes to infinity, players

act uniformly random.

Players’ higher order beliefs are formed by using better response mapping

iteratively. The following composition of better response mappings converges to the

unique noisy introspection prediction as n goes to infinity:

φ = lim
x→∞

φµ0 ◦ φµ1 ◦ ... ◦ φµn(q) (7)
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The model assumes that noise parameters associated with higher levels of iterated

thinking construct a non-decreasing sequence (µ0 ≤ µ1 ≤ ... ≤ µ∞), since every

additional iteration makes the thought process more complex. This non-decreasing

sequence diverges to infinity as the number of iterations increases. Better response

mapping for µ∞ =∞ maps any initial point for the process of iterated reasoning to a

uniform probability distribution over a set of actions. Therefore, the initial belief

probability, q, can be chosen arbitrarily.

In applications, to allow for a broad range of thinking levels, noise parameters

are assumed to grow geometrically with each iteration:

µk = tkµ0 such that t > 1 (8)

t is referred to as the telescoping parameter which determines the geometric growth

rate of the noise parameter. Only these two parameters, µ0 and t, are estimated in the

NI model.

Goeree and Holt prove that there exists a unique noisy introspection prediction

with a sequence of increasing and non-negative noise parameters that diverge to

infinity. They guarantee that the limit sequence in the equation ?? converges to a

unique point independent of the initial belief probability, q, for the iterated reasoning

process.

3.5 Stochastic Level-k / Quantal Level-k

Stahl and Wilson (1995) describe the Level-k model with stochastic best response.

That is why we designate their Level-k model as a Stochastic Level-k or Quantal

Level-k model (henceforth known as SLk). They relax the perfectly maximizing

behavior assumption by injecting random noise into the model via logistic response

15



function as in QRE and NI. The SLk model maintains all but the strictly best response

assumption in the Lk model.

Consider a two-player (three-player for the second treatment) symmetric game

with a finite set of actions, A. πi(ai, a−i) denotes player i’s payoff of choosing

strategy ai against the other’s strategy a−i. The expected payoff for player i choosing

strategy ai is calculated as

πei (ai) =
∑
a−i∈A

πi(ai, a−i){
k−1∑
h=0

gk(h).Ph(a−i)} (9)

where gk(h) denotes a level-k player’s belief about the proportion of level-h players,

which is assumed in the SLk to be

gk(h) =


1 if h = k − 1

0 if h 6= k − 1

∀k > 0 (10)

and Pk(ai) denotes the probability of a level-k player i choosing strategy ai is

assumed as follows:

Pk(ai) =
exp(λ.πei (ai))∑
a′i∈A

exp(λ.πei (a′i))
∀ai ∈ A & ∀k > 0 (11)

The frequency distribution of levels, the precision parameter λ, and the parameter r

resulting from the specification of level-0 are estimated in the SLk model.

3.6 Stochastic Cognitive Hierarchy

Rogers, Palfrey and Camerer (2009) find an intuitive connection between two

different structural models, CH and QRE. They generalize QRE by including

heterogeneity in levels of reasoning (referred to as Heterogeneous Quantal Response
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Equilibrium, HQRE) so that CH becomes a special case of the truncated HQRE.

Motivated by these considerations, we introduce noise into the CH model to construct

a more comprehensive model including two important concepts, payoff magnitude

effect and limited strategic thinking.

The SLk and SCH approaches are similar, except for the assumption about

players’ belief distributions. The only difference from the above structure in the SLk

model is the function gk(h). Like the CH model, the SCH assumes that a level-k

player knows the actual relative proportion of lower level-h player:

gk(h) =


f(h)∑k−1
l=0 f(l)

if h < k

0 if h ≥ k

∀k > 0 (12)

In the SCH model, three parameters, τ , r, and λ, are estimated statistically. It can be

easily realized from the number of the estimated parameters that the SCH model is

less flexible than the SLk model.

3.7 Generalized Cognitive Hierarchy and Level-m

Chong, Ho and Camerer (2014) introduce a generalization of the CH model, and

demonstrate that the CH and a special version of the Lk are members of the same

family. They integrate a new parameter, α, to the CH model, which reflects a

stereotype bias that is a well-known phenomena in social psychology. In the GCH

model, a level-k player’s belief about the relative proportion of lower level players is

namely

gk(h) =


f(h)α∑k−1
l=0 f(l)

α
if h < k

0 if h ≥ k

∀k > 0 (13)
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where α ≥ 1 is the parameter of capturing stereotype bias. When α = 1, the GCH

reduces exactly to the CH model. When α > 1, a level-k player’s belief about players

who are using less than k-steps of reasoning is focused on levels that occur more

frequently. As α goes to∞, a level-k player believes that other players are only of the

modal lower rule. This special case of the GCH is called as the Level-m model. In the

Lm model, players best respond to the most frequently occurring level players, unlike

in the Lk. If this most frequently occurring level is level-(k-1), then these two models

become identical.

The GCH model makes two new assumptions about level-0, which are the

minimum-aversion tendency and the compromise effects. The model posits that

level-0 players have a tendency to choose dominant strategies more frequently than

dominated strategies. In our games, there is no strictly dominant or dominated

strategy. For this reason, the contribution of this generalization of the CH model

arises from the introduction of the parameter reflecting stereotype bias for our games.

In applications, the GCH has four parameters, namely, τ , r, α, and β, but for our case

we do not need β parameter.
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CHAPTER 4

EXPERIMENTAL DESIGN

The experiment was composed of two treatments. We used a between-subjects design

to avoid carry-over effects. Each subject participated in only one of these two

treatments. Both treatments consisted of ten normal-form games having similar

structures. In the first treatment, games involved two players, whereas in the second

one, there were three. The two-player games were explained to the subjects as

follows:

The experiment consists of ten rounds. In each round, you will be matched with
an anonymous partner to play the following game. For all ten rounds, there is
no player in the game other than you and your matched partner. On your screen
you will see a series of boxes containing various amounts of money. You are
expected to choose one of these boxes. The monetary payoff you receive in
each round is calculated as follows:

(The amount of money in the box you choose)
(The number of players choosing this box including yourself)

As for three-player games, they were depicted below:

The experiment consists of ten rounds. In each round, you will be matched with
two anonymous partners to play the following game. For all ten rounds, there is
no player in the game other than you and your matched partners. On your
screen you will see a series of boxes containing various amounts of money. You
are expected to choose one of these boxes. The monetary payoff you receive in
each round is calculated as follows:

(The amount of money in the box you choose)
(The number of players choosing this box including yourself)

Players did not learn their payoffs or the identity of their partners until the end of the

experiment. They were assigned to a new partner at the beginning of each round.
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We gave the following examples to ensure that they understood the games. For

two-player games, the example was as follows:

Example:

1.box: 9 TL
2.box: 6 TL
3.box: 3 TL

In the above example, suppose that both you and your partner choose the first
box. Then the first box will be chosen by two players including yourself, and
your monetary payoff will be 9 TL / 2 = 4.5 TL

Note that in each round you are matched with only one player. Therefore in
each game, the number of players choosing any box can be no more than two.

As regards three-player games, the example was as follows:

Example:

1.box: 9 TL
2.box: 6 TL
3.box: 3 TL

In the above example, suppose that you choose the first box. Also suppose that
one of your partners chooses the first box, and the other one picks the second
box. Then the first box will be chosen by two players including yourself, and
your monetary payoff will be 9 TL / 2 = 4.5 TL

Note that in each round you are matched with only two players. Therefore in
each game, the number of players choosing any box can be no more than three.

In some cases, the amounts of money in the boxes could be same. We did not give

players an opportunity to choose the one that they wanted from boxes containing the

same amount of money. Instead, the computer selected randomly one of the boxes for

the players. Using this method, we prevented the possible biased results among boxes

containing the same amounts. The below example is for such cases. A screenshot of
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the experiment is shown in Appendix A. The experiment instructions in English and

Turkish are shown in Appendix B and Appendix C, respectively.

Example:

1.box: 9 TL
2.box: 6 TL
3.box: 6 TL
4.box: 3 TL

Which box do you choose?:

• 1.box

• Randomly selected one of 2.box and 3.box

• 4.box

If you choose the option ”Randomly selected one of 2.box and 3.box”, one of
these two boxes will be selected by the computer for you in a completely
random way.

In each treatment, subjects played ten games, as shown in the figures below, in

random order. To avoid order effects, we shuffled games for each session. In other

words, the order of games was randomized uniformly for every new session.

Two-player games and three-player games are displayed in Figure 1 and Figure 2,

respectively. In these figures, the number of boxes in each game and the amounts of

money in the boxes are indicated under the name of the game.
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Fig. 1. Two-player games.

Fig. 2. Three-player games.

In Figure 1 and Figure 2, three blue-colored games are our baseline games. We

estimate the model parameters that maximize the likelihood of the observed choices

in three baseline games and then use these estimated parameters to out-of-sample

predict the choice distributions in all game variations. We first designed three

blue-colored games. After that we constructed seven variations on these three games
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by just replicating some of the boxes in them. These three games are not actually

special. We chose them as the baseline due to the fact that others originated from

them. Designating different games as the baseline will not affect our results

significantly, since the important thing is how many boxes there are with different

amounts of money.

After the subjects finished playing ten games, we sent them a questionnaire

consisting of a number of demographical questions. Then subjects were asked to

explain their decision-making processes. At the end of the experiment, one game out

of ten that subjects played was randomly chosen to determine the subject’s earnings.

Adding 10 TL as a participation payment to this earning, subjects’ total monetary

payoffs from the experiment were determined. The average monetary payoff that

subjects gained was 20.53 TL.

A total of 161 subjects participated in 12 experimental sessions. Six sessions

were conducted for both treatments. Two-player games and three-player games had

80 and 81 subjects, -respectively. We conducted the experiment in the Finance Lab of

Boğazici University using Z-Tree. Subjects were undergraduate students chosen from

various departments at Boğazici University.
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CHAPTER 5

EXPERIMENTAL RESULTS

Table 1 shows the distribution of choices made by 80 subjects in two-player games.

Table 2 demonstrates the choice distributions in three-player games, where 81

subjects played. There are ten games in both treatments. The choosing percentages

and frequencies of the boxes for each game are indicated in these tables. The

percentages and frequencies of the boxes containing the same amount of money are

given together due to our experimental design.

Not surprisingly, the frequency of choosing the box containing 18 TL

(henceforth, x TL represents the box containing x TL) generally decreases as the

number of alternative boxes in the game increases. The subjects in the two-player

games chose 18 TL more frequently than those in the three-player games. As far as

we can see from the players’ responses about their decision making processes, in

two-player games subjects’ responses are generally separated into two groups. The

first group follows the minimax strategy until incentives attract them. These subjects

usually chose 18 TL after they compared their potential minimum payoffs, choosing

18 TL with their potential maximum payoffs by choosing the alternative box. They

may deviate from 18 TL if the number of alternative boxes to 18 TL is larger than

two, and/or the alternative box is 14 TL. On the other hand, the second group follows

the level-k reasoning. They think about what others choose and select their strategies

accordingly. Twenty-six of 80 subjects clearly acted according to the level-k decision

rule. One’s response among them is as follows:

In general I try to choose a box other than 18 TL, since I think that most people
tend to pick 18 TL. So I prefer to get 10 TL rather than getting half of 18 TL.
Similarly if there are several alternative boxes to 18 TL, I choose 18 TL because
I suppose that they can deviate from 18 TL to alternative boxes.
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Another subject, whose response was in line with the iterated decision rule, can be

seen below:

I assume my opponent is a robot that chooses randomly. Then I act to maximize
my expected payoff accordingly, so I pick 18 TL. But if my opponent thinks
like me, we can meet at the same box, unfortunately. My calculations lead me
to the high amount.

As for three-player games, 33 of 81 subjects followed the level-k thought process. A

typical example of level-k reasoning is as follows:

In the games with more boxes containing 12 TL, I guess that everyone picks one
of 12 TL boxes, so I choose 18 TL. On the other hand, in the games with more
boxes containing 9 TL, I choose 12 TL with the assumption that everyone tends
to pick 18 TL. Similarly, in the games with three boxes containing 18 TL, 12
TL and 9 TL/6 TL, I again choose 18 TL using the same assumption as above.

For iterated reasoning, the complexity of the thought process increases with every

additional iteration. The response of a higher level subject is as follows:

Thanks to keyboard sounds that I am hearing right now, I realized that
everybody has thought a lot. First, I decided which box I would choose,
regardless of what I think others will do. Then I modified my decision,
considering the possibility that others have thought just like me. Finally, I
became paranoid, figuring that these guys are clever, and they have thought the
same thing as I have.

Original texts of these responses of players are demonstrated in Appendix D.
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Table 1. Observed Distributions of Choices in Two-Player Games

Game 1 Game 2

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 80.00 64 18 TL 70.00 56
12 TL 20.00 16 12 TL

30 24
12 TL

Game 3 Game 4

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 53.75 43 18 TL 60.00 48
12 TL

46.25 37
12 TL

40.00 32
12 TL 12 TL
12 TL 12 TL

12 TL

Game 1 Game 2

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 86.25 69 18 TL 77.50 62
10 TL 13.75 11 10 TL

22.50 18
10 TL

Game 7 Game 8

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 71.25 57 18 TL 68.75 55
10 TL

28.75 23

14 TL 31.25 25
10 TL
10 TL
10 TL

Game 9 Game 10

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 61.25 49 18 TL 37.50 30
14 TL

38.75 31
14 TL

62.50 50
14 TL 14 TL

14 TL
14 TL
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Table 2. Observed Distributions of Choices in Three-Player Games

Game 1 Game 2

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 76.54 62 18 TL 59.26 48
12 TL 20.99 17 12 TL 30.86 25
6 TL 2.47 2 9 TL 9.88 8

Game 3 Game 4

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 71.60 58 18 TL 51.85 42
12 TL

28.40 23
12 TL

48.15 3912 TL 12 TL
12 TL

Game 5 Game 6

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 43.21 35 18 TL 44.44 36
12 TL

56.79 46

12 TL

55.56 45
12 TL 12 TL
12 TL 12 TL
12 TL 12 TL

12 TL

Game 7 Game 8

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 55.56 45 18 TL 55.56 45
12 TL 32.10 26 12 TL 24.69 20
9 TL

12.34 10
9 TL

19.75 169 TL 9 TL
9 TL

Game 9 Game 10

Boxes Percentages Frequencies Boxes Percentages Frequencies
18 TL 60.49 49 18 TL 66.67 54
12 TL

17.28 14
12 TL

33.33 27
12 TL 12 TL
9 TL

22.22 18
9 TL 0 0

9 TL
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CHAPTER 6

ESTIMATIONS

To compare the models of strategic thinking, we have used two approaches that were

explained in detail in the following two subsections. These approaches were the

evaluation of out-of-sample prediction performance of models and the comparison of

sample fits of models. The former approach was used to answer to the question of

which strategic thinking model is best suited to predicting human behavior in

one-shot games, while the latter one was appropriate for determining which model we

should prefer to explain human strategic behavior.

In both approaches, we have estimated model parameters. These estimated

parameters were derived from maximum likelihood estimation. To construct a

log-likelihood function, we denoted fm(a) as the observed frequency of choosing box

a from the strategy set A in game m, (m ∈M ), and pa(x1, ..., xn) as the

corresponding predicted probability from the model consisting of parameters xj’s.

Then the log-likelihood function was

logL(x1, ..., xn) =
∑
m∈M

∑
a∈A

fm(a).log(pa(x1, ..., xn)) (14)

where M was equal to {1, 5, 8} for the first treatment, and {1, 2, 3} for the second one

as the baseline. Estimation codes for QRE and SLk are given in Appendix E as an

example.

To maximize the log-likelihood function, we made use of the optimization

toolbox of MATLAB. In this toolbox, there is a ”fminsearch” function that finds the

minimum of a scalar function of several variables. This function works only for

unconstrained nonlinear optimization. But we had constraints for some models, so we
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used a ”fminsearchbnd” function, which was its converted version, to a constrained

nonlinear optimization. The fminsearchbnd function uses the Nelder-Mead simplex

algorithm (Nelder & Mead, 1965) as described in Lagarias, Reeds, Wright and

Wright (1998). It is suitable for providing rapid results; however, we needed to

implement one more step to find the global minimum because this function converges

to a local minimum instead of the global one. For this reason, another useful function,

”rmsearch”, helped us to achieve the global minimum by using simple framework: It

automatically generates random samples for us, tests which result in the best initial

points, then starts our chosen optimizer at that set of points, and finally compiling the

results. Using the rmsearch function, we repeated the estimation process, considering

different starting points at least 100 times for each model. For some models, we tried

with 10000 different starting points for the model parameter to ensure that our

estimates were the global minimum. Lastly, these optimization functions were

designed to find the minimum of an objective function. However, our aim was to

maximize the log-likelihood function. As a result we looked for the minimum of the

negative log-likelihood, which gave us the maximum of the log-likelihood function.

While estimating models, we made the substantial assumption about

specification of level-0 behavior. As we described in the level-k part of Chapter ??,

we introduced a new parameter, r, about the level-0 specification, to the models

founded on an iterative thought process. Level-0 type played uniformly random

across all strategies with probability r, or chose the salient action, which was the box

including 18 TL for all games in this experiment, with probability 1-r. We have

discussed the comparison of models in two parts, in terms of parameter r. In the first

case we set the parameter r as zero, which means that level-0 players are sure to

choose the salient action 18 TL. In the other case, we considered the parameter r as an
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endogenous variable and estimated it along with other parameters. The results of both

parts can be seen in the following subsections.

The estimation of the models also required a prior arbitrary specification of the

highest level type, Lk, that exists in the data. In the Lk, SLk, and Lm models, we

estimated the log-likelihoods for successive Lk’s starting from Lk = 2 until there was

no statistically significant increase in the log-likelihood values for them with an

additional increase in Lk. Then we set this Lk value as the highest level type for the

related model. This highest level type was Lk = 2 in the Lk, and Lk = 3 in the Lm. In

the SLk model, Lk could be equal to 2, 3, 4 or 5 on a case by case basis. The CH,

SCH, and GCH were estimated with an arbitrary high Lk = 10. This arbitrary high

type Lk was set 20 in the NI model.

For both level-0 behavior and the model based on random behavior, the

randomization process was generated over all boxes in a game rather than options on

the screen. To illustrate, if there are three boxes with one 18 TL and two with 12 TL

in the game and we assume uniformly random distribution, then each box is chosen

with a probability of 1/3. When estimating the model based on the Nash equilibrium,

we have mixed uniformly over pure equilibrium strategies to determine predicted

probabilities.

In three-player games, when r was set as zero, there were choosing strategies

(boxes with 6 TL and 9 TL) that were predicted to have zero probability for the Lk,

Lm, CH, and GCH models, then the product of all the likelihoods was zero. To

overcome the zero-likelihood problem, we did not include terms coming from the

strategy for 9 TL and 6 TL in the estimation process. In other words, we have made

estimations among choices that were predicted by the models with other than zero

probability. But this was a problem for comparisons of the statistical fits of the
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models, since the log-likelihood values of these models became significantly higher

and were therefore unfair. To make a fair comparison, we chose the mean of squared

distances (MSD) as a measure of fitting for this case.

6.1 Out-of-sample predictions

All of the models mentioned in Chapter ?? have been proposed to explain human

behaviors in one-shot interactions. The next step will naturally be to try to predict

these behaviors. Although there are several studies in the literature about the

comparison of models in terms of their explanatory power, comparing the predictive

power of these models has not received much attention. But we may face the danger

of overfitting while explaining the data. As stated in Wright and Leyton-Brown

(2013), in such cases we may have chosen the most flexible model rather than the

most accurate one. In light of these issues, we have adopted an out-of-sample

prediction which follows the procedure of using the estimated parameters from three

baseline games to predict the choice distributions in all game variations. To measure

the predictive performance of these models, we computed the mean of the squared

distances (MSD) between the predictions and the observed data. We computed the

MSD using percentages instead of probabilities in three different ways.

6.1.1 MSD for all ten games

We computed the MSD for all ten games and achieved the results shown in Table 3.

We made estimations for both cases where r is equal to zero or estimated. In the case

of r = 0, QRE predicted human behavior very well for both two-player and

three-player games. However, when we considered r as a free parameter and

estimated it, the SLk model improved significantly and worked better than all other

models in tracking the observed data. Another noteworthy point is that in r = 0 case,

the performance of the CH was substantially changed in a negative direction when we
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moved on to three-player games from two-player ones. Although the Lk model

performed better than NE, it did not have a sufficiently good performance to surpass

the models with payoff dependent noise. We can say that the QRE, SLk, and NI

models were generally clustered in the upper rows of the ranking in terms of MSD for

ten games. The NE performed poorly compared to the behavioral models.

Table 3. Means of Squared Distances for Ten Games

r=0 r estimated
2-player games 3-player games 2-player games 3-player games

Model MSD-10 Model MSD-10 Model MSD-10 Model MSD-10
QRE 62.3 QRE 162.6 SLk 20.8 SLk 145.4
NI 78.2 SLk 168.6 QRE 62.3 QRE 162.6
CH 84.1 NI 192.7 NI 78.2 NI 192.7

GCH 84.1 SCH 275.5 SCH 84.8 Lk 244.5
SCH 96.6 Lk 411.8 CH 94.4 CH 244.5
SLk 240.1 Lm 411.8 GCH 94.4 GCH 244.5
Lk 423.0 CH 577.6 Lk 142.2 Lm 244.5
Lm 423.0 GCH 577.6 Lm 142.2 SCH 275.5
NE 795.9 NE 764.0 NE 795.9 NE 764.0

Random 1801.1 Random 1703.3 Random 1801.1 Random 1703.3

6.1.2 MSD for seven game variations

To observe the pure prediction performance of the models, we computed the MSD for

only seven game variations, as shown in Table 4. After excluding three baseline

games from the calculation of MSD, the MSD value of NE decreased for both

two-player and three-player games in both r = 0 and r estimated cases. At the same

time, behavioral models performed worse in terms of the MSD for ten games than for

seven game variations. One of two exceptions was the QRE model. In three-player

games, the predictive performance of QRE for these seven games was better than its

performance for all ten games. The other one was the CH performance in two-player

games of r = 0 case. In general, QRE had the best or nearly the best performance for
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seven games among all models in total. As for the Lk model, it was outperformed by

even NE in one case.

Table 4. Means of Squared Distances for Seven Games

r=0 r estimated
2-player games 3-player games 2-player games 3-player games

Model MSD-7 Model MSD-7 Model MSD-7 Model MSD-7
QRE 85.2 QRE 118.3 SLk 29.7 QRE 118.3
NI 111.1 SLk 204.5 QRE 85.2 SLk 186.4
CH 116.4 NI 229.7 NI 111.1 NI 229.7

GCH 116.4 SCH 355.9 SCH 120.9 Lk 315.0
SCH 136.8 CH 383.6 CH 133.8 CH 315.0
SLk 333.9 GCH 383.6 GCH 133.8 GCH 315.0
NE 404.0 Lk 538.9 Lk 197.5 Lm 315.0
Lk 559.4 Lm 538.9 Lm 197.5 SCH 355.9
Lm 559.4 NE 721.2 NE 404.0 NE 721.2

Random 1840.0 Random 1519.4 Random 1840.0 Random 1519.4

6.1.3 MSD for seven game variations among the percentages of the choice of 18TL

In this part, we looked for the MSD for seven game variations among the percentages

of subjects choosing the box with 18 TL, as shown in Table 5. In our games, there

were different numbers of boxes. To avoid giving different weights to the games in

the calculation process of the MSD, we took just the percentage of subjects choosing

boxes with 18 TL into account. The model which was most affected by this regulation

was the CH, which rose to second place just after the QRE in two-player games of

r = 0 case. There was no further change in the rankings of models from those of the

previous subsection.
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Table 5. Means of Squared Distances for Seven Game Variations among the Percent-
ages of the Choice of 18TL

r=0 r estimated
2-player games 3-player games 2-player games 3-player games

Model MSD-7-18 Model MSD-7-18 Model MSD-7-18 Model MSD-7-18
QRE 64.9 QRE 49.6 SLk 21.4 QRE 49.6
NI 85.3 CH 94.5 QRE 64.9 SLk 101.2
CH 90.2 GCH 94.5 NI 85.3 NI 143.7

GCH 90.1 SLk 125.6 SCH 93.3 Lk 226.9
SCH 104.8 NI 143.7 CH 103.2 CH 226.9
SLk 259.6 SCH 248.7 GCH 103.2 GCH 226.9
NE 286.4 Lk 388.8 Lk 152.4 Lm 226.9
Lk 431.4 Lm 388.8 Lm 152.4 SCH 248.7
Lm 431.4 NE 389.9 NE 286.4 NE 389.9

Random 1347.7 Random 1086.4 Random 1347.7 Random 1086.4

6.2 Comparing statistical fit

In the literature, the most common method of comparing the behavioral models is to

check their log-likelihood values. To measure the predictive power of the models, we

estimated the parameters of the models for three baseline games. In this part, we

estimated them for all ten games together, and compared their log-likelihood values to

determine their performances in explaining the observed data pattern. The

log-likelihood values of the models are shown in Table 6. As we explained in Chapter

??, to solve the zero-likelihood problem, the MSD was chosen as a measure of fitting

in three-player games when r was set as zero.

Three different models, NI, SLk, and GCH, fit the data most accurately in three

different cases. The most interesting result is that the GCH model had an excellent

performance on describing subjects’ behavior in three-player games when r was

estimated, in spite of its poor fit in the other three cases. Moreover, the three-player

games when r was estimated was the only case where the GCH estimates gave

different results from the CH estimates out of all estimations. The fitting performance
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of the QRE was relatively inconsistent. When r was estimated, the QRE estimates fit

the data well enough in two-player games. However, those in three-player games had

the worst fit to the observed data among all models. With regard to the Lk model, it

once again underperformed compared to the models considering payoff dependent

noise. Not only the Lk, but also the other models assuming perfectly maximizing

behavior performed much worse than those relaxing this assumption.

Table 6. Log-Likelihood Values

r=0 r estimated
2-player games 3-player games 2-player games 3-player games
Model LL Model MSD Model LL Model LL

NI -715.7 SLk 101.9 SLk -715.6 GCH -905.1
QRE -717.5 NI 113.1 NI -715.7 SLk -906.2
SCH -717.8 SCH 154.6 QRE -717.5 SCH -906.8
SLk -719.7 QRE 163.9 SCH -717.6 CH -907.8
CH -724.3 Lk 273.5 CH -722.1 NI -908.1

GCH -724.3 CH 273.5 GCH -722.1 Lk -909.4
Lk -746.3 GCH 273.5 Lk -724.0 Lm -911.5
Lm -746.3 Lm 273.5 Lm -724.0 QRE -915.0

6.3 Results and discussion

In this section, we discuss the main results of the estimations, and their rationales.

Finding 1: The Nash Equilibrium underperformed in explaining human play

compared to the models of strategic thinking.

Many experimental studies have already suggested that human behaviors in one-shot

games systematically deviate from equilibrium, as in this paper. The basic conditions

for equilibrium are correct beliefs and perfectly maximizing behavior. But these

conditions are rather demanding for one-shot games, since players have not any

opportunity to learn about others’ decisions and beliefs in one-shot interactions. For
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this reason it is not surprising that NE is outperformed by the models which relaxed

one or both of these assumptions.

Finding 2: The specification of level-0 behavior had a significant effect on the

predictive and explanatory power of the models that were based on an iterative

thought process.

The specification of level-0 behavior was crucial in higher level players’ actions. Two

different assumptions about level-0 behavior resulted in a considerably different

performance of the models in capturing the observed data. Instead of assuming that

level-0 player will certainly choose the salient choice, introducing the new parameter

to the models in order to give level-0 player the chance to choose randomly or in line

with the most obvious choice improved the performance of the models to explain

human behavior.

Finding 3: The models with payoff dependent noise had a consistently better

predictive performance than those without noisy behavior.

The models with probabilistic best response such as QRE, NI, SLk, and SCH

generally outperformed the models that assumed perfectly maximizing behavior such

as Lk, CH, GCH, and Lm. For one-shot games, the assumption that players strictly

best respond to others was not realistic in general. Injecting some noise into the

models led to improved predictions for the aggregate choice distribution. It can be

said that the Stochastic Level-k was roughly the most accomplished model to predict

human behavior in our games.

Finding 4: Predicting out-of-sample behavior yielded different results in

explaining in-sample behavior.

By explaining in-sample behavior, we found the most flexible model. Therefore, the

models with more free parameters had an advantage in capturing the observed data. It
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is for this reason that the NI performed better than the QRE in all cases, unlike their

performance in predicting out-of-sample behavior.

Finding 5: A little modification on game structure might lead to drastically

different results in the predictive performance and statistical fit of the models.

The most important contribution of our work was to determine how well the model fit

or predict the experimental data depends on the structure and concept of the game. No

model was superior to other behavioral models, regardless of game structure. Even

across very similar games, there could be significant changes in the predictive

performance of models. The most striking evidence for this finding came from the

statistical fits of the QRE and GCH when r was estimated. In two-player games, QRE

performed quite well while GCH performed poorly. However, when we estimated

these models in three-player games which had a structure very similar to that of the

two-player ones, GCH worked surprisingly better than all other models while QRE

became the worst among all models. The only difference between these games that

resulted in such a drastic change on statistical fits of models was simply the number

of players in the game.
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CHAPTER 7

CONCLUSION

In this study, we performed an exhaustive comparison of eight models of strategic

thinking. To our knowledge, this is the first study that includes eight behavioral

models. We designed a new game with variations, taking into account the

characteristics of the models to avoid favoring a particular family of models.

The main question that we aimed to answer was whether there was a consistent

superiority of any one model over other behavioral models. But having calculated

estimations, we realized that performances of the models were directly related to the

structure of a game. The more interesting result was that the performance of the

models can fluctuate just by adding an additional player to the game.

In fact, when comparing the models, all our assumptions had a significant effect

on estimation results. Introducing a new parameter, r, had a profound effect on the

performance of some models. The method we choose to compare these models also

had an impact on their performances. The model which predicted out-of-sample

behavior very well could be inadequate to explain in-sample behavior, or vice versa.

The structural models of strategic thinking considered in this study, models with

payoff dependent noise had better performance than those without noise parameter to

predict human behavior. The SLk model in particular, which combines payoff

dependent noise with iterated thinking process, gave the closest predictions to the

observed data. These results are in line with Wright and Leyton-Brown (2013) and

Choo and Kaplan (2014).
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APPENDIX A

SCREENSHOT OF THE EXPERIMENT

Fig. 3. Screenshot of the experiment.
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APPENDIX B

EXPERIMENT INSTRUCTIONS IN ENGLISH

Welcome!

Thank you for your participation. The aim of this study is to understand how

people decide in certain cases. From now on, the participants are forbidden to talk to

each other. Violation of this rule requires termination of the experiment. If you have

any question, please raise your hand and ask your question. We will come to you to

answer your question.

The experiment will be conducted via computer and all decisions that you make

will be transmitted via computer. You will receive the monetary payoff as a result of

the game in this experiment. Your payoff depends on your decisions and those of the

other players. In addition to this payoff, a participation fee for completing the

experiment will be paid you in cash at the end of the experiment. Now we explain the

game to be played during the experiment.

The game:

The experiment consists of ten rounds. In each round, you will be matched with

an anonymous partner to play the following game. For all ten rounds, there is no

player in the game other than you and your matched partner. On your screen you will

see a series of boxes containing various amounts of money. You are expected to

choose one of these boxes. The monetary payoff you receive in each round is

calculated as follows:

(The amount of money in the box you choose)
(The number of players choosing this box including yourself)
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Example 1:

1.box: 9 TL

2.box: 6 TL

3.box: 3 TL

In the above example, suppose that both you and your partner choose the first box.

Then the first box will be chosen by two players including yourself, and your

monetary payoff will be 9 TL / 2 = 4.5 TL

Note that in each round you are matched with only one player. Therefore in each

game, the number of players choosing any box can be no more than two.

In some cases, the amounts of money in the boxes could be the same. The

example below illustrates for such cases.

Example 2:

1.box: 9 TL

2.box: 6 TL

3.box: 6 TL

4.box: 3 TL

Which box do you choose?:

• 1.box

• Randomly selected one of 2.box and 3.box

• 4.box

If you choose the option ”Randomly selected one of 2.box and 3.box”, one of these

two boxes will be selected by the computer for you in a completely random way.
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At the end of the experiment, one game out of ten games that subjects played,

was randomly chosen to determine subject’s earnings. All rounds have the same

probability of being selected. Adding 10 TL as a participation payment to this

earning, subjects’ total monetary payoffs from the experiment were determined.
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APPENDIX C

EXPERIMENT INSTRUCTIONS IN TURKISH

Hoş geldiniz!

Katılımınız için teşekkür ederiz. Bu çalışmanın amacı, insanların belli

durumlarda nasıl kararlar aldıklarını anlamaktır. Şu andan itibaren katılımcıların

birbirleri ile konuşması yasaktır. Bu kuralın ihlali, deneyi sonlandırmamızı

gerektiriyor. Eğer sorunuz varsa lütfen elinizi kaldırıp sorunuz. Yanınıza gelerek

sorunuzu cevaplandıracağız.

Deney bilgisayar üzerinden gerçekleştirilecektir ve aldığınız bütün kararları

bilgisayar üzerinden ileteceksiniz. Deney esnasında oynanacak oyun sonucunda bir

para ödülü kazanacaksınız. Kazancınız, sizin ve diğer oyuncuların kararlarına

bağlıdır. Bu kazanç ve buna ek olarak deneye katılım ücreti size deneyin sonunda

nakit olarak ödenecektir. Şimdi deney esnasında oynayacağınız oyunu anlatmaya

başlıyoruz.

Oyun:

Deney 10 tur sürecek ve her turda sizin dışınızdaki bir katılımcı ile eşleşerek

aşağıda anlatacağımız oyunu oynayacaksınız. O turdaki oyunda, siz ve eşleştiğiniz

katılımcı dışında bir oyuncu bulunmamaktadır. Size, her tur için, bir dizi kutu ve

içlerindeki para miktarları gösterilecek. Sizden yapmanızı istediğimiz bu kutulardan

birini seçmeniz.

O turda kazanacağınız para ödülü ise şu şekildedir:

(Seçtiğiniz kutudaki para)
(Siz dahil o kutuyu seçen kişi sayısı)
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Örnek 1:

1.kutu: 9 TL

2.kutu: 6 TL

3.kutu: 3 TL

Yukarıdaki örnekte, sizin 1. kutuyu seçtiğinizi düşünelim. Diğer oyuncu da 1. kutuyu

seçmiş olsun. O halde 1. kutuyu siz dahil 2 kişi seçmiş olacak ve sizin kazancınız = 9

TL / 2 = 4.5 TL olacak.

Not: Her tur için yalnızca 1 diğer katılımcı ile eşleşmektesiniz. Dolayısıyla,

oynadığınız oyunda herhangi bir kutuyu seçen kişi sayısı en fazla iki olabilir.

Bazı durumlarda kutulardaki para miktarı aynı olabilir. Aşağıdaki örnek böyle

bir durumu gösteriyor.

Örnek 2:

1.kutu: 9 TL

2.kutu: 6 TL

3.kutu: 6 TL

4.kutu: 3 TL

Hangi kutuyu seçiyorsunuz:

• 1.kutu

• 2. veya 3. kutulardan rastgele biri

• 4.kutu

Yukarıda ”2. veya 3. kutulardan rastgele biri” seçeneğini işaretlerseniz, bilgisayar

tamamen rastgele şekilde, bu iki kutudan bir tanesini sizin için seçecektir.
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Oynayacağınız 10 turdan biri rastgele seçilecek ve o turdaki kazancınız

deneydeki gerçek kazancınız olacak. Bütün turların seçilme şansı aynıdır. Son olarak

bu kazanca 10 TL’lik katılım ücretini ekleyerek toplam kazancınızı hesaplayacağız.
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APPENDIX D

ORIGINAL TEXTS OF THE PLAYERS’ RESPONSES

Original texts of the players’ responses translated in Chapter ?? are as follows, in

order of their appearance in this study:

Genellikle miktarın az olduğu kutuyu seçmeye çalıştım. Bunun sebebi ise genel
ortalamanın yüksek meblaya yöneleceğini düşünmemdi. Yani 18 TL’nin ikiye
bölünmesinden ise 10 TL tek başına daha kazançlı geldi. Ayrıca aynı miktarın
birkaç kutuda olduğu kısımlarda ise yüksek meblayı seçtim. Çünkü o zaman da
aralarından birinin çıkma ihtimaline karşı onun işaretlenebileceğini düşündüm.

Karşımdaki kişinin rastgele seçim yapan bir robot olduğunu düşünerek şıkları
seçerken olasılık olarak kazanabileceğim miktarları karşılaştırdım. Yüksek
olanı seçtim. Fakat şu var ki karşımdaki kişi de bu şekilde düşündüyse ikimiz
de birbirimizin mantıklı düşüncesini bozmuş olabiliriz. Hesaplamalarım
genelde beni yüksek miktara yönlendirdi.

12 TL’nin fazla olduğu kutulu turlarda herkesin 12 TL alacağını düşünerek 18
TL’yi seçtim. 9 TL fazlayken de insanların 18 TL’ye yöneleceğini düşünerek 12
TL’yi seçtim. Eşit sayıda kutular varken de insanların 12 TL’yi seçmeye
meyilleri olacağınıdüşündüğüm için 18 TL’yi seçtim.

Şu an çatur çutur gelen klavye seslerinden anlıyorum ki herkes temiz
düşünmüş. Önce diğerlerinin ne düşündüğünü düşünmeden neyi seçeceğime
karar verdim. Sonra başkaları böyle düşünür diyerek kararımı modifiye ettim.
Sonra bu çocuklar zeki, onlar da bu kadarını düşünmüştür diyerek
paranoyaklaşmaya başladım.
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APPENDIX E

ESTIMATION CODES FOR QRE AND SLK

Out-of-sample prediction codes for QRE in two-player games are as follows.

QRE12 function:
function F = QRE12(input, lambda)
syms p18 p12 a
A = [18; 12];
B = [p18; p12];
p = [a; a];
x = 1;
TempPay2 = [a; a];
while (x<=length(A))

y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end
S = solve(p18==p(1,1), p12==p(2,1));
p18calc = S.p18;
p12calc = S.p12;
if input == A(1,1)
F = p18calc;
elseif input == A(2,1)
F = p12calc;
end
end
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QRE10 function:
function F = QRE10(input, lambda)
syms p18 p10 a
A = [18; 10];
B = [p18; p10];
p = [a; a];
x = 1;
TempPay2 = [a; a];
while (x<=length(A))

y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end
S = solve(p18==p(1,1), p10==p(2,1));
p18calc = S.p18;
p10calc = S.p10;
if input == A(1,1)
F = p18calc;
elseif input == A(2,1)
F = p10calc;
end
end

QRE14 function:
function F = QRE14(input, lambda)
syms p18 p14 a
A = [18; 14];
B = [p18; p14];
p = [a; a];

48



x = 1;
TempPay2 = [a; a];
while (x<=length(A))

y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end
S = solve(p18==p(1,1), p14==p(2,1));
p18calc = S.p18;
p14calc = S.p14;
if input == A(1,1)
F = p18calc;
elseif input == A(2,1)
F = p14calc;
end
end

MLEBASE function:
function loglike = MLEBASE(v)
lambda = v;
loglike = -( 64*log(QRE12(18, lambda)) + 16*log(QRE12(12, lambda)) +...
69*log(QRE10(18, lambda)) + 11*log(QRE10(10, lambda)) +...
55*log(QRE14(18, lambda)) + 25*log(QRE14(14, lambda)) ) / 80;
end

Payoff function:
function F = Payoff(x, y)
if x == y
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F = 1/2;
elseif x = y

F = 1;
end
end

RunMLE function:
% Run this file to do the MLE estiamtes
clear;
clc;
opts = optimset(’fminsearch’);
opts.Display = (’iter’);
opts.TolX = 1.e-4;
opts.MaxFunEvals = 10000;
opts.MaxIter = 10000;
LB = [0];
UB = [inf];
x0 = [1];
[x,fval,exitflag,output] = fminsearchbnd(@MLEBASE,x0,LB,UB,opts);

msd function:
lambda = x;

p12 obs = [64; 16] * (100/80);
p1212 obs = [56; 12; 12] * (100/80);
p121212 obs = [43; 37/3; 37/3; 37/3] * (100/80);
p12121212 obs = [48; 8; 8; 8; 8] * (100/80);
p10 obs = [69; 11] * (100/80);
p1010 obs = [62; 9; 9] * (100/80);
p10101010 obs = [57; 23/4; 23/4; 23/4; 23/4] * (100/80);
p14 obs = [55; 25] * (100/80);
p1414 obs = [49; 31/2; 31/2] * (100/80);
p14141414 obs = [30; 50/4; 50/4; 50/4; 50/4] * (100/80);

%———————————————-

syms p18 p12 a
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A = [18; 12];
B = [p18; p12];

p = [a; a];

x = 1;
TempPay2 = [a; a];
while (x<=length(A))

y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p12==p(2,1));

pcalc12 = [S.p18; S.p12] * 100;

%———————————————-

syms p18 p12 1 p12 2 a

A = [18; 12; 12];
B = [p18; p12 1; p12 2];

p = [a; a; a];

x = 1;
TempPay2 = [a; a; a];
while (x<=length(A))
y = 1;
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TempPay = [a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p12 1==p(2,1), p12 2==p(3,1));

pcalc1212 = [S.p18; S.p12 1; S.p12 2] * 100;

%———————————————-

syms p18 p12 1 p12 2 p12 3 a

A = [18; 12; 12; 12];
B = [p18; p12 1; p12 2; p12 3];

p = [a; a; a; a];

x = 1;
TempPay2 = [a; a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
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while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p12 1==p(2,1), p12 2==p(3,1), p12 3==p(4,1));

pcalc121212 = [S.p18; S.p12 1; S.p12 2; S.p12 3] * 100;

%———————————————-

syms p18 p12 1 p12 2 p12 3 p12 4 a

A = [18; 12; 12; 12; 12];
B = [p18; p12 1; p12 2; p12 3; p12 4];

p = [a; a; a; a; a];

x = 1;
TempPay2 = [a; a; a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p12 1==p(2,1), p12 2==p(3,1), p12 3==p(4,1),
p12 4==p(5,1));

pcalc12121212 = [S.p18; S.p12 1; S.p12 2; S.p12 3; S.p12 4] * 100;
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%———————————————-

syms p18 p10 a

A = [18; 10];
B = [p18; p10];

p = [a; a];

x = 1;
TempPay2 = [a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p10==p(2,1));

pcalc10 = [S.p18; S.p10] * 100;

%———————————————-

syms p18 p10 1 p10 2 a

A = [18; 10; 10];
B = [p18; p10 1; p10 2];

p = [a; a; a];
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x = 1;
TempPay2 = [a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p10 1==p(2,1), p10 2==p(3,1));

pcalc1010 = [S.p18; S.p10 1; S.p10 2] * 100;

%———————————————-

syms p18 p10 1 p10 2 p10 3 p10 4 a

A = [18; 10; 10; 10; 10];
B = [p18; p10 1; p10 2; p10 3; p10 4];

p = [a; a; a; a; a];

x = 1;
TempPay2 = [a; a; a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
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end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p10 1==p(2,1), p10 2==p(3,1), p10 3==p(4,1),
p10 4==p(5,1));

pcalc10101010 = [S.p18; S.p10 1; S.p10 2; S.p10 3; S.p10 4] * 100;

%———————————————-

syms p18 p14 a

A = [18; 14];
B = [p18; p14];

p = [a; a];

x = 1;
TempPay2 = [a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
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end

S = solve(p18==p(1,1), p14==p(2,1));

pcalc14 = [S.p18; S.p14] * 100;

%———————————————-

syms p18 p14 1 p14 2 a

A = [18; 14; 14];
B = [p18; p14 1; p14 2];

p = [a; a; a];

x = 1;
TempPay2 = [a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p14 1==p(2,1), p14 2==p(3,1));

pcalc1414 = [S.p18; S.p14 1; S.p14 2] * 100;

%———————————————-

syms p18 p14 1 p14 2 p14 3 p14 4 a
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A = [18; 14; 14; 14; 14];
B = [p18; p14 1; p14 2; p14 3; p14 4];

p = [a; a; a; a; a];

x = 1;
TempPay2 = [a; a; a; a; a];
while (x<=length(A))
y = 1;
TempPay = [a; a; a; a; a];
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*B(y,1);
y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
end
t = 1;
while (t<=length(A))
p(t,1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;
end

S = solve(p18==p(1,1), p14 1==p(2,1), p14 2==p(3,1), p14 3==p(4,1),
p14 4==p(5,1));

pcalc14141414 = [S.p18; S.p14 1; S.p14 2; S.p14 3; S.p14 4] * 100;

%———————————————-

MSD10 = ( ( (p12 obs(1)-pcalc12(1))ˆ2 + (p12 obs(2)-pcalc12(2))ˆ2 ) + ...
( (p1212 obs(1)-pcalc1212(1))ˆ2 + (p1212 obs(2)-pcalc1212(2))ˆ2 +

(p1212 obs(3)-pcalc1212(3))ˆ2 ) + ...
( (p121212 obs(1)-pcalc121212(1))ˆ2 + (p121212 obs(2)-pcalc121212(2))ˆ2 +

(p121212 obs(3)-pcalc121212(3))ˆ2 + (p121212 obs(4)-pcalc121212(4))ˆ2 ) + ...
( (p12121212 obs(1)-pcalc12121212(1))ˆ2 +

(p12121212 obs(2)-pcalc12121212(2))ˆ2 +
(p12121212 obs(3)-pcalc12121212(3))ˆ2 +
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(p12121212 obs(4)-pcalc12121212(4))ˆ2 +
(p12121212 obs(5)-pcalc12121212(5))ˆ2 ) + ...

( (p10 obs(1)-pcalc10(1))ˆ2 + (p10 obs(2)-pcalc10(2))ˆ2 ) + ...
( (p1010 obs(1)-pcalc1010(1))ˆ2 + (p1010 obs(2)-pcalc1010(2))ˆ2 +

(p1010 obs(3)-pcalc1010(3))ˆ2 ) + ...
( (p10101010 obs(1)-pcalc10101010(1))ˆ2 +

(p10101010 obs(2)-pcalc10101010(2))ˆ2 +
(p10101010 obs(3)-pcalc10101010(3))ˆ2 +
(p10101010 obs(4)-pcalc10101010(4))ˆ2 +
(p10101010 obs(5)-pcalc10101010(5))ˆ2 ) + ...

( (p14 obs(1)-pcalc14(1))ˆ2 + (p14 obs(2)-pcalc14(2))ˆ2 ) + ...
( (p1414 obs(1)-pcalc1414(1))ˆ2 + (p1414 obs(2)-pcalc1414(2))ˆ2 +

(p1414 obs(3)-pcalc1414(3))ˆ2 ) + ...
( (p14141414 obs(1)-pcalc14141414(1))ˆ2 +

(p14141414 obs(2)-pcalc14141414(2))ˆ2 +
(p14141414 obs(3)-pcalc14141414(3))ˆ2 +
(p14141414 obs(4)-pcalc14141414(4))ˆ2 +
(p14141414 obs(5)-pcalc14141414(5))ˆ2 ) ) / 10;

MSD7 = ( ( (p1212 obs(1)-pcalc1212(1))ˆ2 + (p1212 obs(2)-pcalc1212(2))ˆ2
+ (p1212 obs(3)-pcalc1212(3))ˆ2 ) + ...

( (p121212 obs(1)-pcalc121212(1))ˆ2 + (p121212 obs(2)-pcalc121212(2))ˆ2 +
(p121212 obs(3)-pcalc121212(3))ˆ2 + (p121212 obs(4)-pcalc121212(4))ˆ2 ) + ...

( (p12121212 obs(1)-pcalc12121212(1))ˆ2 +
(p12121212 obs(2)-pcalc12121212(2))ˆ2 +
(p12121212 obs(3)-pcalc12121212(3))ˆ2 +
(p12121212 obs(4)-pcalc12121212(4))ˆ2 +
(p12121212 obs(5)-pcalc12121212(5))ˆ2 ) + ...

( (p1010 obs(1)-pcalc1010(1))ˆ2 + (p1010 obs(2)-pcalc1010(2))ˆ2 +
(p1010 obs(3)-pcalc1010(3))ˆ2 ) + ...

( (p10101010 obs(1)-pcalc10101010(1))ˆ2 +
(p10101010 obs(2)-pcalc10101010(2))ˆ2 +
(p10101010 obs(3)-pcalc10101010(3))ˆ2 +
(p10101010 obs(4)-pcalc10101010(4))ˆ2 +
(p10101010 obs(5)-pcalc10101010(5))ˆ2 ) + ...

( (p1414 obs(1)-pcalc1414(1))ˆ2 + (p1414 obs(2)-pcalc1414(2))ˆ2 +
(p1414 obs(3)-pcalc1414(3))ˆ2 ) + ...

( (p14141414 obs(1)-pcalc14141414(1))ˆ2 +
(p14141414 obs(2)-pcalc14141414(2))ˆ2 +
(p14141414 obs(3)-pcalc14141414(3))ˆ2 +
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(p14141414 obs(4)-pcalc14141414(4))ˆ2 +
(p14141414 obs(5)-pcalc14141414(5))ˆ2 ) ) / 7;

MSD7 18 = ( (p1212 obs(1)-pcalc1212(1))ˆ2 + ...
(p121212 obs(1)-pcalc121212(1))ˆ2 + ...
(p12121212 obs(1)-pcalc12121212(1))ˆ2 + ...
(p1010 obs(1)-pcalc1010(1))ˆ2 + ...
(p10101010 obs(1)-pcalc10101010(1))ˆ2 + ...
(p1414 obs(1)-pcalc1414(1))ˆ2 + ...
(p14141414 obs(1)-pcalc14141414(1))ˆ2 ) / 7;

Out-of-sample prediction codes for SLk in two-player games are as follows.

SK10 function:
function F = SK10(input, a0, a1, a2, lambda,r, L)
A = [18; 10];
f = [a0; a1; a2];
p0 = zeros(length(A),1);
p0(1,1) = (1-r) + r/(length(A));
i = 2;
while (i<=length(A))

p0(i,1) = r / (length(A));
i = i + 1;

end
p = [p0 zeros(length(A),L)];
k = 1;
while (k<=L)

x = 1;
TempPay2 = zeros(length(A),1);
while (x<=length(A))

y = 1;
TempPay = zeros(length(A), 1);
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*p(y,k);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;
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end
t = 1;
while (t<=length(A))

p(t,k+1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;

end
k = k + 1;
end
ChoiceProb = p*f;
if input == A(1,1)
F = ChoiceProb(1,1);
elseif input == A(2,1)
F = ChoiceProb(2,1);
end
end

SK12 function:
function F = SK12(input, a0, a1, a2, lambda,r, L)
A = [18; 12];
f = [a0; a1; a2];
p0 = zeros(length(A),1);
p0(1,1) = (1-r) + r/(length(A));
i = 2;
while (i<=length(A))

p0(i,1) = r / (length(A));
i = i + 1;

end
p = [p0 zeros(length(A),L)];
k = 1;
while (k<=L)

x = 1;
TempPay2 = zeros(length(A),1);
while (x<=length(A))

y = 1;
TempPay = zeros(length(A), 1);
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*p(y,k);
y = y + 1;

end
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TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;

end
t = 1;
while (t<=length(A))

p(t,k+1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;

end
k = k + 1;
end
ChoiceProb = p*f;
if input == A(1,1)
F = ChoiceProb(1,1);
elseif input == A(2,1)
F = ChoiceProb(2,1);
end
end

SK14 function:
function F = SK14(input, a0, a1, a2, lambda,r, L)
A = [18; 14];
f = [a0; a1; a2];
p0 = zeros(length(A),1);
p0(1,1) = (1-r) + r/(length(A));
i = 2;
while (i<=length(A))

p0(i,1) = r / (length(A));
i = i + 1;

end
p = [p0 zeros(length(A),L)];
k = 1;
while (k<=L)

x = 1;
TempPay2 = zeros(length(A),1);
while (x<=length(A))

y = 1;
TempPay = zeros(length(A), 1);
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*p(y,k);
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y = y + 1;
end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;

end
t = 1;
while (t<=length(A))

p(t,k+1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;

end
k = k + 1;
end
ChoiceProb = p*f;
if input == A(1,1)
F = ChoiceProb(1,1);
elseif input == A(2,1)
F = ChoiceProb(2,1);
end
end

MLEBASE function:
function loglike = MLEBASE(v)
a0 = v(1);
a1 = v(2);
a2 = v(3);
l = v(4);
r = 0;
L = 2;
%%
loglike = -( 64*log(SK12(18, a0, a1, a2, l, r, L)) + 16*log(SK12(12, a0, a1, a2,

l, r, L)) +...
69*log(SK10(18, a0, a1, a2, l, r, L)) + 11*log(SK10(10, a0, a1, a2, l, r, L)) +...
55*log(SK14(18, a0, a1, a2, l, r, L)) + 25*log(SK14(14, a0, a1, a2, l, r, L)) ) /

80;
end

RunMLE function:
clear;
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clc;
opts = optimset(’fminsearch’);
opts.Display = (’iter’);
opts.TolX = 1.e-6;
opts.MaxFunEvals = 10000;
opts.MaxIter = 5000;
lb = [0 0 0 0];
ub = [1 1 1 inf];
A = [1 1 1 0];
b = [1.000];
x0 = [0.0521 0.8459 0.0639 0.14];
n = [];
[x,fval,exitflag,output] = fminsearchcon(@MLEBASE,x0,lb,ub,A,b,n,opts);

msd function:
L = 2;
r = 0;
a0 = x(1);
a1 = x(2);
a2 = x(3);
lambda = x(4);
f = [a0; a1; a2];
p12 = [64; 16] * (100/80);
p1212 = [56; 12; 12] * (100/80);
p121212 = [43; 37/3; 37/3; 37/3] * (100/80);
p12121212 = [48; 8; 8; 8; 8] * (100/80);
p10 = [69; 11] * (100/80);
p1010 = [62; 9; 9] * (100/80);
p10101010 = [57; 23/4; 23/4; 23/4; 23/4] * (100/80);
p14 = [55; 25] * (100/80);
p1414 = [49; 31/2; 31/2] * (100/80);
p14141414 = [30; 50/4; 50/4; 50/4; 50/4] * (100/80);
A cell = {[18; 12],...
[18; 12; 12],...
[18; 12; 12; 12],...
[18; 12; 12; 12; 12],...
[18; 10],...
[18; 10; 10],...
[18; 10; 10; 10; 10],...
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[18; 14],...
[18; 14; 14],...
[18; 14; 14; 14; 14] };
pcalc cell = cell(1,10);
%—————————————————————
for l = 1:length(A cell)

A = A cell{l};

p0 = zeros(length(A),1);
p0(1,1) = (1-r) + r/(length(A));
i = 2;
while (i<=length(A))

p0(i,1) = r / (length(A));
i = i + 1;

end
p = [p0 zeros(length(A),L)];

k = 1;
while (k<=L)

x = 1;
TempPay2 = zeros(length(A),1);
while (x<=length(A))

y = 1;
TempPay = zeros(length(A), 1);
while(y<=length(A))
TempPay(y,1) = Payoff(x,y)*A(x,1)*p(y,k);
y = y + 1;

end
TempPay2(x,1) = exp(lambda*(sum(TempPay(:))));
x = x + 1;

end
t = 1;
while (t<=length(A))

p(t,k+1) = TempPay2(t,1) / sum(TempPay2);
t = t + 1;

end
k = k + 1;

end
pcalc cell{l} = p*f * 100;
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end
%—————————————————————

pcalc12 = pcalc cell{1};
pcalc1212 = pcalc cell{2};
pcalc121212 = pcalc cell{3};
pcalc12121212 = pcalc cell{4};
pcalc10 = pcalc cell{5};
pcalc1010 = pcalc cell{6};
pcalc10101010 = pcalc cell{7};
pcalc14 = pcalc cell{8};
pcalc1414 = pcalc cell{9};
pcalc14141414 = pcalc cell{10};

%———————————————————–

MSD10 = ( ( (p12(1)-pcalc12(1))ˆ2 + (p12(2)-pcalc12(2))ˆ2 ) + ...
( (p1212(1)-pcalc1212(1))ˆ2 + (p1212(2)-pcalc1212(2))ˆ2 +

(p1212(3)-pcalc1212(3))ˆ2 ) + ...
( (p121212(1)-pcalc121212(1))ˆ2 + (p121212(2)-pcalc121212(2))ˆ2 +

(p121212(3)-pcalc121212(3))ˆ2 + (p121212(4)-pcalc121212(4))ˆ2 ) + ...
( (p12121212(1)-pcalc12121212(1))ˆ2 + (p12121212(2)-pcalc12121212(2))ˆ2

+ (p12121212(3)-pcalc12121212(3))ˆ2 + (p12121212(4)-pcalc12121212(4))ˆ2 +
(p12121212(5)-pcalc12121212(5))ˆ2 ) + ...

( (p10(1)-pcalc10(1))ˆ2 + (p10(2)-pcalc10(2))ˆ2 ) + ...
( (p1010(1)-pcalc1010(1))ˆ2 + (p1010(2)-pcalc1010(2))ˆ2 +

(p1010(3)-pcalc1010(3))ˆ2 ) + ...
( (p10101010(1)-pcalc10101010(1))ˆ2 + (p10101010(2)-pcalc10101010(2))ˆ2

+ (p10101010(3)-pcalc10101010(3))ˆ2 + (p10101010(4)-pcalc10101010(4))ˆ2 +
(p10101010(5)-pcalc10101010(5))ˆ2 ) + ...

( (p14(1)-pcalc14(1))ˆ2 + (p14(2)-pcalc14(2))ˆ2 ) + ...
( (p1414(1)-pcalc1414(1))ˆ2 + (p1414(2)-pcalc1414(2))ˆ2 +

(p1414(3)-pcalc1414(3))ˆ2 ) + ...
( (p14141414(1)-pcalc14141414(1))ˆ2 + (p14141414(2)-pcalc14141414(2))ˆ2

+ (p14141414(3)-pcalc14141414(3))ˆ2 + (p14141414(4)-pcalc14141414(4))ˆ2 +
(p14141414(5)-pcalc14141414(5))ˆ2 ) )/10;

MSD7 = ( ( (p1212(1)-pcalc1212(1))ˆ2 + (p1212(2)-pcalc1212(2))ˆ2 +
(p1212(3)-pcalc1212(3))ˆ2 ) + ...
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( (p121212(1)-pcalc121212(1))ˆ2 + (p121212(2)-pcalc121212(2))ˆ2 +
(p121212(3)-pcalc121212(3))ˆ2 + (p121212(4)-pcalc121212(4))ˆ2 ) + ...

( (p12121212(1)-pcalc12121212(1))ˆ2 + (p12121212(2)-pcalc12121212(2))ˆ2
+ (p12121212(3)-pcalc12121212(3))ˆ2 + (p12121212(4)-pcalc12121212(4))ˆ2 +
(p12121212(5)-pcalc12121212(5))ˆ2 ) + ...

( (p1010(1)-pcalc1010(1))ˆ2 + (p1010(2)-pcalc1010(2))ˆ2 +
(p1010(3)-pcalc1010(3))ˆ2 ) + ...

( (p10101010(1)-pcalc10101010(1))ˆ2 + (p10101010(2)-pcalc10101010(2))ˆ2
+ (p10101010(3)-pcalc10101010(3))ˆ2 + (p10101010(4)-pcalc10101010(4))ˆ2 +
(p10101010(5)-pcalc10101010(5))ˆ2 ) + ...

( (p1414(1)-pcalc1414(1))ˆ2 + (p1414(2)-pcalc1414(2))ˆ2 +
(p1414(3)-pcalc1414(3))ˆ2 ) + ...

( (p14141414(1)-pcalc14141414(1))ˆ2 + (p14141414(2)-pcalc14141414(2))ˆ2
+ (p14141414(3)-pcalc14141414(3))ˆ2 + (p14141414(4)-pcalc14141414(4))ˆ2 +
(p14141414(5)-pcalc14141414(5))ˆ2 ) )/7;

MSD7 18 = ( (p1212(1)-pcalc1212(1))ˆ2 + ...
(p121212(1)-pcalc121212(1))ˆ2 + ...
(p12121212(1)-pcalc12121212(1))ˆ2 + ...
(p1010(1)-pcalc1010(1))ˆ2 + ...
(p10101010(1)-pcalc10101010(1))ˆ2 + ...
(p1414(1)-pcalc1414(1))ˆ2 + ...
(p14141414(1)-pcalc14141414(1))ˆ2 ) / 7;
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