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Gökçen Cangüven
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ABSTRACT

Risk Sharing Rules and Investment in Groups

In this study, we consider a game among n investors, who individually choose to

borrow a certain amount to invest in a risky project. We assume that the success

probabilities for the risky projects are independent and that the individuals can agree

upon a fully enforceable sharing rule. We define four major rules, namely Full

Liability (FL), Loss Sharing (LS), Profit Sharing (PS) and Equal Sharing (ES), which

differ in terms of the sharing of profits and losses across all investors. We compute the

equilibrium investment levels and expected social welfare levels and investigate

coalition formation structure under these rules. Our theoretical findings show that the

game has a unique dominant strategy Nash equilibrium under each rule. Regarding

the total equilibrium investment levels, although the ordering of the rules depends on

the parameter values, we show a clear supremacy of ES and LS rules over FL and PS

rules. Furthermore, through employing numerical analyses, we demonstrate the

dominant structure of ES rule over other sharing rules in terms of individual,

utilitarian and egalitarian social welfare levels. Lastly, we find that, with certain

constraints on model parameters, two agents with identical risk aversion levels are

able to form stable coalitions under each rule.
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ÖZET

Risk Paylaşım Kuralları ve Grup Yatırımı

Bu çalışmada, n tane yatırımcının, riskli bir projeye, bireysel olarak borçlanarak

yaptıkları yatırımı yansıtan bir oyun inceledik. Riskli projelerin başarılı olma

olasılığının her oyuncu için birbirinden farklı olduğunu ve yatırımcıların

uygulanabilir paylaşım kuralları üzerinde anlaşabileceklerini varsaydık. Yatırımcılar

arasında yatırım sonundaki kar ve kayıpların paylaşımını belirleyen, Tam sorumluluk

kuralı, Eşit Paylaşım kuralı, Kayıp Paylaşım kuralı ve Kar Paylaşım kuralı olmak

üzere dört kural tanımladık. Bu kurallar altında, toplam borçlanma miktarını ve

beklenen refah düzeyini hesapladık. Yatırım oyununun, her bir kural altında tek bir

Nash dengesi olduğunu gösterdik. Toplam yatırım miktarının farklı parametre

değerleri için değişebileceği sonucuna vardık. Buna rağmen, toplam yatırım

miktarının, Eşit Paylaşım ve Kayıp Paylaşım kuralları altında, Tam sorumluluk ve

Kar Paylaşım kurallarına göre daha fazla olduğunu gözlemledik. Sayısal analiz

yöntemleri kullanarak, beklenen refah düzeyinin Eşit Paylaşım kuralı altında, diğer

kurallara göre daha fazla olduğu sonucuna vardık. Son olarak, belirli parametre

değerleri için, riskten kaçınma parametreleri aynı olan iki yatırımcının sabit

koalisyonlar kurduklarını gösterdik.
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CHAPTER 1

INTRODUCTION

Group liability notion is the main factor in microfinance. It is mainly responsible for

access of credit to the poor households without any collateral in many developing

countries. The principal group lending feature is to solve adverse selection,

information asymmetries and moral hazard problems in credit markets. Microfinance

institution (MFI) or non-profit, non-governmental organizations (NGO) offer group

loans to shift the responsibility to clients who have an incentive to screen and

pressurise each other to make sure proper investments levels and enough exerted

effort (Gine and Karlan, 2014). Moreover, it is widely accepted that lenders may

recover loans and improve repayment rates through group lending structure (Besley

and Coate, 1995), since microcredit contracts require group members to take charge

of loan repayment. That is, if some of the group members suffer a failure to repay the

individual loan amounts, the remaining group members are expected to reimburse

those members suffering negative shocks through informal transfers (Fischer, 2013).

Otherwise, in case of default, group members as a whole are not allowed for future

borrowing. In this sense, joint liability serves as a substitute for collateral. On the

other hand, an extensive debate exists about the disadvantages of group liability. First,

group lending structure will instigate some group members to free ride. Second,

social sanction and peer pressure may discourage borrowers from borrowing and

induce a cost in group formation which will in turn affect profitability of lender

institution. For instance, by conducting a field experiment, Gine and Karlan (2007)

find that lending at individual level rather than group does not affect the repayment

rates, but leads to higher lending amounts by attracting new clients. Therefore, due to
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the pitfalls of group liability lending, the discussion of the lending structure turns into

an argument of individual liability lending.

On the other hand, in the axiomatic literature, there exist a large variety of

solution concepts of the bankruptcy problem. These concepts describe a claims vector

of the liquidation value of a bankrupt rm among its creditors as solution under

bankruptcy rules such as Proportionality, Equal awards, Equal losses and some other

rules that belong to the TAL-family (Kıbrıs and Kıbrıs, 2013)1. For instance, Kıbrıs

and Kıbrıs (2013), analyse bankruptcy rules such as, Proportionality, Equal Awards,

Equal Losses, Constrained Equal Awards and Constrained Equal Losses rules, in

terms of total investment behaviour and social welfare levels, they induce in

equilibrium. They also identify why proportionality has been preferred over other

rules.

Additionally, Huddart and Liang (2003) consider how variation across

partners’ preferences, represented by constant absolute risk aversion utility function,

affects the partnership structure. They examine sharing rules that specify how the

members divide the output which is produced by the efforts of partners, under three

information structure.

Originated from group versus individual lending structure of microfinance

institutions and allocation questions in partnerships and bankruptcy literature, we

consider a game among n investor. Investors individually choose to borrow an amount

s to invest in a risky project under a formal ex ante agreement with full contractual

enforcement mechanism. Each contract establishes a unique rule, namely Full

1Following O’Neill (1982), many studies analyse bankruptcy and taxation problems. For an exten-
sive survey of the axiomatic literature, we refer the reader to Dagan et al.(1997), Schummer and Thom-
son (1997), Herrero and Villar (2002), Aumann and Maschler (1985), Moulin (1987), Young (1988),
Chun (1988), Chambers and Thomson (2002) and Ju et al.(2007).
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Liability rule (FL), Loss Sharing (LS), Profit Sharing (PS) and Equal Sharing (ES)

rules. Each rule induces a different game among the investors, with CARA

preferences, by regulating the division of profits and losses, after the realization of

risky investments. Similar to Kıbrıs and Kıbrıs’ (2013) analysis, we compare

individual borrowing behaviour (and hence investment behaviour) of the group

members and compare total equilibrium investment. Moreover, we explore

equilibrium social welfare levels and try to clarify coalition formation of the group

members who seek to maximize their own expected utility, induced by the specified

rules.

In a recent study, Fischer (2013) compared different contract types, namely

individual liability, joint liability and equity-like contracts that borrowers are required

to adhere to. While under individual liability contracts the transfers are not

mandatory, borrowers have to reimburse their partners through informal transfers

under joint liability contracts. In addition, under equity-like contracts, borrowers

share the resulting profits and losses equally with full commitment. In particular, by

conducting a field experiment, Fischer finds a rising tendency in borrowers risk taking

behaviour and therefore higher expected returns under equity-like contracts compared

to the other contract types. Therefore, the author emphasize that equity-like contracts

should be analysed further as competent contract structure in microfinance lending.

This thesis aims to shed a light on the variation of investor’s investment

decisions and expected welfare levels under certain formal contract structures.

Moreover, we question whether mandatory group formation structure can turn into a

self enforcing coalition under the formal contracts that regulate the allocation of the

investment returns. As representation of the individual lending structure, we define

Full Liability rule (FL) under which group members are individually responsible for
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the results of the risky project. In order to reflect group lending structure we define

Loss Sharing (LS), Profit Sharing (PS) and Equal Sharing (ES) rules. Under Loss

Sharing rule each group member is responsible for only the failure results of other

member as well as his loss. Besides, if his investment is successful, he hold his own

profit. Under Profit Sharing rule, they equally share only the total profit with each

other and bear the loss individually. Finally, under Equal Sharing rule, all agents

share the resulting profits and losses equally.

Much of the microfinance literature focuses on the significance of free-riding,

moral hazard and repayment issues in relevance to group size, social ties and so forth.

However, we abstract our model from these aspects of microfinance lending for

reasons of simplicity. Moreover, we assume that there is no group formation cost and

effort is costless. Besides, borrowers make an incentive compatiable, implementable

contract under full commitment. So that, we merely try to capture the influence of

binding formal contracts on investment behaviour, expected welfare levels and

coalition formation structure.

Our theoretical findings show that each specific rule induces a unique

dominant strategy Nash equilibrium. Despite the fact that the ordering of the rules

varies in model parameter space, we demonstrate the supremacy of ES rule and LS

rule over PS rule and FL rule, regarding the total investment level. We perform

numerical analysis to investigate the expected individual, egalitarian and utilitarian

welfares, generated by each sharing rule in equilibrium. The results of the numerical

analysis show that ES rule significantly dominates other rules through attaining higher

welfare levels for a larger set of parameter combinations. Furthermore, for two-agent

coalitions, we infer that identical agents form stable coalitions for certain set of

parameters. So that, both agents achieve higher welfare levels in such coalitions than
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any other coalition structure, including single groups. Lastly, we discuss agents with

different risk aversion levels can form coalitions in a sense both of them are better off

compared to the individual case, through regulating investment amounts of agents.
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CHAPTER 2

MODEL

The modelling framework is based on Kıbrıs and Kıbrıs (2013). Let N={1,....,n} be

the set of agents and index i represent the i’th agent where i ∈ N . Each agent’s

preferences represented by the following Constant Absolute Risk Aversion (CARA)

utility function Ui : R→ R on money, where Ui(x) = −e−aix. We assume each agent

i ∈ N is risk averse; i.e, ai > 0 and a1 ≤ a2 ≤ .. ≤ an and they are identical in other

dimensions.

For each member of our rule family R , we consider the investment game as

follows: Each agent i ∈ N initially decides to borrow si ∈ R>0 units of wealth by

following a strategy si from a strategy set Si = R>0, to invest on a risky project at an

interest rate normalized to 0. After consummation of investments, subject to

idiosyncratic shocks, each agent will get a positive return with a success probability

p ∈ (0, 1) and this value brings a return r ∈ (0, 1] with a yield (1 + r)si. In case of

success, he is left with a net return (1 + r)si-si=rsi after the repayment of initially

borrowed amount of si. If the investment fails, on the other hand, with failure

probability (1-p), agents receives a payoff 0 and in this case he left with −si. We

assume there is enough collateral for repayment of the initially borrowed amount. We

also assume that failure and success probabilities are independent for each agent in

the group, but same in magnitude for each them. After, they sign a formal agreement

with a specific rule among our family of rules R that initially determine the amount of

share for every contingency, before the resolution of uncertainty.

We define Loss Sharing Rule (LS), Equal Sharing Rule (ES), Profit Sharing

Rule (PS), and Full Liability Rule (FL) to regulate the division of the profits and

losses after the realization of each investment. We additionally compare total
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equilibrium investment and equilibrium social welfare levels and explore coalition

formation which depends on individual welfare levels of the group members, induced

by the specified rules.

When agents form groups, their binding contract specifies how each realization

of the net return will be shared between them. Let G be the set of group members

with positive net return rsi and i ∈ N\G be the remaining group members who incur

losses. Under Loss Sharing Rule each agent is responsible only for the total failure

results; that is, merely total negative net return will be distributed equally among the

group members. More formally, for each i ∈ N , Loss Sharing Rule is defined as;

LSi(s) =


rsi −

∑
j∈N\G sj

n
, if i ∈ G,

−
∑
j∈N\G sj

n
, if i ∈ N\G,

Under Equal Sharing Rule, each agent will share the resulting gains and losses

equally. More formally, for each i ∈ N , Equal Sharing Rule is defined as;

ESi(s) =

∑
j∈G rsj −

∑
k∈N\G sk

n

Under Profit Sharing Rule, the total positive net return will be allocated equally

among group members and the loss is incurred individually. More formally, for each

i ∈ N , Profit Sharing Rule is defined as;

PSi(s) =


∑
j∈G rsj

n
, if i ∈ G,

−si +
∑
j∈G rsj

n
, if i ∈ N\G,

Under the Full Liability Rule, every agent makes the investment decision and

responsible for the results of the risky project individually. That is; every agent left
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with his own Profit or loss. More formally, for each i ∈ N , Full Liability Rule is

defined as;

FLi(s) =


rsi, if i ∈ G,

−si, if i ∈ N\G,

Note that, every agent is an expected utility maximizer under the initially

agreed fully enforceable contract. The following expected utilities illustrate two-agent

cases, where agent i’s expected payoff from strategy profile s=(si,s−i) is;

1) Under equal sharing rule;

Ui
ES(s) =− pp · e−ai

(
rsi+rs−i

2

)
− p(1− p) · e−ai

(
rsi−s−i

2

)

− (1− p)p · e−ai
(
rs−i−si

2

)
− (1− p)2 · e−ai

(−si−s−i
2

)

2) Under full liability;

Ui
FL(s) = −p · e−airsi − (1− p) · eaisi

3) Under loss sharing rule;

Ui
LS(s) =− p2 · e−airsi − (1− p)p · eai

si
2

− p(1− p) · e−ai(rsi−
s−i
2 ) − (1− p)2 · e−ai

(−si−s−i
2

)

4) Under Profit Sharing rule;

Ui
PS(s) =− pp · e−ai

(
rsi+rs−i

2

)
− p(1− p) · e−ai(

rsi
2 )

− (1− p)p · e−ai(
rs−i

2
−si) − (1− p)2 · eaisi

8



CHAPTER 3

EQUILIBRIUM INVESTMENT LEVEL

In this section, we analyse the Nash Equilibria of each simultaneous game under Loss

Sharing rule, Equal Sharing rule, Profit Sharing rule and Full Liability rule. We will

employ the culminating Nash Equilibria induced under each regulation, to compare

the total investment level, the equilibrium social welfare levels and to analyse the

coalition formation structure.

Proposition 3.1. (Equilibrium under Full Liability Rule) The investment game under

the Full Liability rule (FL) has the dominant strategy equilibrium s∗ = (s1
∗...sn

∗),

where ∀i ∈ N :

si
∗ =


ln
(

rp
(1−p)

)
· 1
ai(1+r)

, if rp > (1− p),

0, otherwise,

Proof : See Appendix.

The preceding proposition shows that there exist a unique dominant Nash

Equilibrium under the Full Liability rule. By the resulting unique strictly dominant

strategy equilibrium, each agent in the group will choose a positive amount level to

invest if and only if rp > (1− p). That is; taking an investment decision is optimal if

expected positive return suppresses expected loss. Moreover, si∗ is strictly increasing

in the net return rate r and strictly decreasing in agent’s own risk aversion level ai.

Note that, also, the positive investment level si∗, each member choose at the unique

Nash Equilibrium, is independent from the group size and the other’s risk aversion

levels, which is inherent and consistent with the full liability notion.
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The following proposition shows that under Equal Sharing rule, the game has a

unique Nash equilibrium.

Proposition 3.2. (Equilibrium under Equal Sharing rule) The investment game under

Equal Sharing Rule (EL) has the dominant strategy equilibrium s∗ = (s1
∗...sn

∗),

where ∀i ∈ N :

si
∗ =


ln
(

rp
(1−p)

)
· n
ai(1+r)

, if rp > (1− p),

0, otherwise,

Proof : See Appendix.

The above proposition shows that under Equal Sharing rule, the game has a

unique Nash equilibrium.Under inequality rp > (1− p), each group member choose

a positive investment level. Similar to the Nash Equilibrium induced by the Full

Liability rule, this condition is a comparison of the expected positive return with

expected loss. si∗ is strictly increasing in net return rate r, strictly decreasing in

agent’s own risk aversion level ai. In addition, under Equal Sharing rule,individual

investment level depend on the size of the borrowing group. As groups getting larger,

the positive individual investment level growing at a constant rate ln
(

rp
(1−p)

)
· 1
ai(1+r)

.

Proposition 3.3. (Equilibrium under Loss Sharing rule) The investment game under

the Loss Sharing rule (LS) has the dominant strategy equilibrium s∗ = (s1
∗...sn

∗),

where ∀i ∈ N :

si
∗ =


ln
(

nrp
(1−p)

)
· 1
ai(

1
n

+r)
, if nrp > (1− p),

0, otherwise,

Proof : See Appendix.
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By the above proposition, the investment game has a unique Nash equilibrium

under Loss Sharing rule. Note that, if nrp > (1− p); i.e, total expected positive

return outweigh the expected loss, the dominant strategy for all group members to

choose a positive investment level s∗i at the Nash equilibrium. Also, si∗ is strictly

decreasing in agent’s individual risk aversion level ai and is strictly increasing as

group size getting larger.

Finally, the following proposition shows that under Profit Sharing rule, the

investment game has a unique Nash equilibrium.

Proposition 3.4. (Equilibrium under Profit Sharing rule) The investment game under

the Profit Sharing rule (PS) has the dominant strategy equilibrium s∗ = (s1
∗...sn

∗),

where ∀i ∈ N :

si
∗ =


ln
(

rp
n(1−p)

)
· 1
ai(

r
n

+1)
, if rp > n(1− p),

0, otherwise,

Proof : See Appendix.

Note that, if rp > n(1− p) the dominant strategy for all group members is to

choose a positive investment level s∗i at the Nash equilibrium. In other words, if

expected positive return offset the total expected loss, group members invest in

positive amounts. Also, si∗ is strictly decreasing in agent’s individual risk aversion

level ai and the group size. Moreover, the individual level of investment s∗i is strictly

increasing in rate of return r at the equilibrium.

11



CHAPTER 4

COMPARISON OF EQUILIBRIUM TOTAL INVESTMENT

In this section, we’ll compare Loss Sharing rule, Equal Sharing rule, Profit Sharing

rule and Full Liability rule in terms of the total investment level they induce in

equilibrium. The total investment levels under Full Liability, Equal Sharing, Loss

Sharing and Profit Sharing rules are;
∑n

i=1
1
ai

ln
(

rp
(1−p)

)
· 1

(1+r)
,∑n

i=1
1
ai

ln
(

rp
(1−p)

)
· n

(1+r)
,
∑n

i=1
1
ai

ln
(

nrp
(1−p)

)
· 1

( 1
n

+r)
and

∑n
i=1

1
ai

ln
(

rp
n(1−p)

)
· 1

( r
n

+1)
,

respectively. Obviously,
∑n

i=1
1
ai

is the common multiplier of each total investment

level, induced in equilibrium. Moreover, equilibrium individual investment level does

not depend on other group member’s investment levels and risk aversion levels.

Therefore, we focus on comparison of total investment level for appropriate

parameter values of p, r and n. Moreover, we mainly investigate the ordering of the

four rules where each group member choose to borrow in positive amounts and we

only exemplify other cases.

4.1 Two-Agent case analysis

Firstly, note that, for a given return rate, we observe positive investment levels only

for sufficiently high values of success probability for each rule. So that, we solely

focus on (p,r) values that satisfy the condition pr > 2(1− p). However, for high

values of success probabilities, looking at the individual investment levels, a regular

ordering is not observed among the specified rules. Indeed, the ordering differs

according to the net return rate r and Proposition 4.1. establishes the relationship

between the interest rate r and the sorting of the rules with reference to the total

investment levels for two agent case.

Proposition 4.1. (n=2) For a given sufficiently high value of p, ∃r′ and r′′ such that;

∀r < r′, the total investment levels for sharing rule is ordered as follows;

12



TILS > TIES > TIFL > TIPS

and ∀r′ < r < r′′, the total investment levels ordered as;

TIES > TILS > TIFL > TIPS

and ∀r′′ < r, the total investment levels ordered as;

TIES > TILS > TIPS > TIFL

Proof : See Appendix.

Observe that, LS and ES rules induce higher total investment level than FL and

PS rules in each case. Overall, the superiority of ES rule to other rules is apparent, if,

for a given p, net return rate r takes sufficiently high values. Otherwise, LS rule

generates higher aggregate investment level. On the other hand, when the likelihood

of success of the investment project is substantially improved and net return rate r

increase, PS rule takes precedence over FL rule. Otherwise, FL rule guarantees higher

total investment. As a numerical example, Table 1 depicts total investment levels

induced by each sharing rule for different combination parameter values of r and p for

two investor case, where a1, a2 ∈ {0.05, 0.1, .., 0.9, 0.95}. Note that, multiplying each

one of the risk aversion coefficient by the same constant wouldn’t change the relative

ranking of the rules. Accordingly, Table 1 illustrates the arrangement of the sharing

rules with respect to the indicated parameter values.
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Table 1. Coalition Structures and Investment Levels

a1, a2 p, r ES LS FL PS

a1 = 0.1, a2 = 0.9 p=0.9, r=1.5 23.13 18.31 11.56 12.12
a1 = 0.3, a2 = 0.7 p=0.9, r=1 10.46 9.17 5.23 4.77
a1 = 0.4, a2 = 0.6 p=0.9, r=0.5 8.35 9.15 4.17 2.70
a1 = 0.1, a2 = 0.9 p=0.8, r=1.5 15.92 13.80 7.96 6.97
a1 = 0.3, a2 = 0.7 p=0.8, r=1 6.60 6.60 3.30 2.20
a1 = 0.4, a2 = 0.6 p=0.8, r=0.5 3.85 5.77 1.92 0
a1 = 0.1, a2 = 0.9 p=0.6, r=1.5 7.20 8.35 3.60 0.74
a1 = 0.3, a2 = 0.7 p=0.6, r=1 1.93 3.48 0.96 0
a1 = 0.4, a2 = 0.6 p=0.6, r=0.5 0 1.68 0 0
a1 = 0.1, a2 = 0.9 p=0.4, r=1.5 0 3.85 0 0
a1 = 0.3, a2 = 0.7 p=0.4, r=1 0 0.91 0 0
a1 = 0.4, a2 = 0.6 p=0.4, r=0.5 0 0 0 0

Notice that, when p = 0.9, r = 1.5, PS rule induces higher levels of aggregate

investment compared to the FL rule, for indicated risk aversion levels. In other cases,

we observe a reverse relation. When p = 0.9, r = 0.5 and for low values of success

probability, LS rule come to the fore in comparison with ES rule. Moreover, in

general for low values of p, agents’ investment choices are 0, even for the high net

return rates. In brief, upon comparing sharing rules for sufficiently high values of p,

one can directly make an inference concerning the overall dominance of ES rule over

other set of rules.

4.2 N-Agent case analysis

Note that, we only consider (p,r) values that satisfy the condition pr > n(1− p), for a

given n. In fact, sufficiently high values of success probability is still required for

group members to choose positive investment levels as the size of the group getting

larger. Under PS rule, the domain of the combination of p and r values, inducing

positive investment levels, becomes smaller with an increase in group size. In
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contrast, under LS rule, this domain is expanding as the size of the group getting

larger. Even for the smaller success probabilities and lower net return rate, they tend

to invest in positive amounts. For ES and FL rules, this domain of p and r values isn’t

affected by a change in group size. The following proposition states that, one can not

observe a clear ordering of the four rules regarding total investment level they induce

at equilibrium. We compare total investment levels in terms of net return rate r and

group size n, by choosing sufficiently high values of p.

Proposition 4.2. (n agent case) Let p takes sufficiently high values. Then for a given

r ∈ (0, 1) and for all n > 1, ES and LS rules induces higher investment levels than PS

and FL rules. Moreover, for a given r ∈ (0, 1),

i) ∃n∗ ∈ R>0 such that ∀n ≥ n∗, TIFL ≥ TIPS , and for all 1 ≤ n ≤ n∗

TIPS ≥ TIFL, where n ∈ Z>0.

ii) ∃n∗∗ ∈ R>0 such that ∀n ≥ n∗∗, TIES ≥ TILS , and for all 1 ≤ n ≤ n∗∗

TILS ≥ TIES , where n ∈ Z>0.

Proof : See appendix.

Proposition 6 states that the parameter values the return rate r and group size n

place bounds on the arrangement of our family of rules relating to total investment

levels, for given sufficiently high values of p. Analogical to the two agent case, the

cumulative investment levels under ES rule and LS rule exceed that of under PS and

FL rules. Moreover, for the relevant return rates, group size mainly determines the

ordering between PS rule and FL rule and that of ES rule and LS rule as stated in case

i) and ii), respectively. Table 2 is a numerical illustration of the proposition 6 for

different combination parameter values of n, r and p where

a1, a2 ∈ {0.05, 0.1, .., 0.9, 0.95}. Again notice that, rescaling risk aversion

coefficients by the same constant wouldn’t affect the relative ordering of the rules.
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Table 2. Coalition Structures and Investment Levels

a1, a2 n, p, r ES LS FL PS

a1 = 0.3, a2 = 0.8 n=1, p=0.9, r=0.5 4.59 4.59 4.59 4.59
a1 = 0.2, a2 = 0.4 n=2, p=0.9, r=1.5 15.61 12.35 7.80 8.18
a1 = 0.2, a2 = 0.4 n=4, p=0.9, r=1.5 31.23 17.09 7.80 6.63
a1 = 0.2, a2 = 0.4 n=2, p=0.9, r=0.5 15.04 16.47 7.52 4.86
a1 = 0.2, a2 = 0.4 n=4, p=0.9, r=0.5 30.08 28.90 7.52 0.78
a1 = 0.3, a2 = 0.8 n=3, p=0.85, r=1.5 11.77 8.09 3.92 3.18
a1 = 0.3, a2 = 0.8 n=7, p=0.85, r=1.5 27.46 11.39 3.92 0.73
a1 = 0.3, a2 = 0.8 n=3, p=0.85, r=0.5 9.54 11.77 3.18 0
a1 = 0.3, a2 = 0.8 n=7, p=0.85, r=0.5 22.27 21.29 3.18 0
a1 = 0.4, a2 = 0.8 n=2, p=0.7, r=1.5 3.75 3.64 1.87 1.19
a1 = 0.4, a2 = 0.8 n=4, p=0.7, r=1.5 7.51 5.65 1.87 0
a1 = 0.4, a2 = 0.8 n=2, p=0.7, r=0.5 0.77 3.17 0.38 0
a1 = 0.4, a2 = 0.8 n=4, p=0.7, r=0.5 1.54 7.70 0.38 0

In our example, when n = 1, obviously all rules agree with the FL Rule.

Consequently, aggregate investment level depends on merely to the parameter values

of p and r. Moreover, when p = 0.9, r = 1.5, for the two investor case PS rule

generates higher level of total investment than FL rule. While, as the group size rise

up to four, FL surpasses PS rule for the same parameter values of r and p. On the

other hand, for p = 0.9, r = 0.5, n = 2 and p = 0.85, r = 0.5, n = 3, agents choose

to invest in greater amounts under LS rule in contrast to ES rule. However, as group

size increases to n = 4 and n = 7, respectively, ES rule outweighs LS rule in

accordance with aggregate investment level for the relevant p and r values. Besides,

it’s apparent that ES rule possesses preeminence among other rules.
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CHAPTER 5

EQUILIBRIUM WELFARE

In this section we compare LS, ES, PS and FL rules by focusing on equilibrium

individual, egalitarian and utilitarian social welfare levels. Particularly, we elaborate

two-agent case for each sharing rule and perform numerical analyses to provide a

pairwise comparison of each rule for different parameter values under different

welfare levels. Note that, we particularly focus on appropriate values of success

probability where in overall, investors choose to borrow in positive amounts for each

rule. So that, to make the comparison more interesting we exclude low values of p,

where the unique dominant Nash equilibrium strategies are (s1, s2) = (0, 0).

Here we use numerical analysis to examine the pairwise relationship of the

rules at equilibrium for two agent case with respect to four parameters of interest. We

take two rules and compare them according to the individual welfare levels they

induce at equilibrium. Then, we report overall percentage of the parameter

combinations where the corresponding rules generates strictly higher individual

welfare levels compared to the other rule. Particularly, we restrict our attention to a

set of variables, where p ∈ {0.4, 0.41, .., 0.98, 0.99}, r ∈ {0.01, 0.03, .., 1.47, 1.49}

and a1, a2 ∈ {0.05, 0.1, .., 0.9, 0.95} and we obtain 1624500 parameter combinations.

Note that, the set of risk aversion levels can be scaled up. Indeed, the ordering of the

four rules is invariant under such rescaling of risk aversion parameters due to the

analytical structure of the objective utility function.

Observation 1. In Table 3, we employ a pairwise comparison of individual welfare

levels for the specified rules where group size n = 2. In each row, we show the

percentage of the size of the parameter combinations where the corresponding rules

induces higher welfare levels for both agents.
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Table 3. Pairwise Individual Welfare Comparison

Rules of Interest ES LS PS FL

ES-LS 0.46 0.09
ES-PS 0.55 0.01
ES-FL 0.55 0
LS-PS 0.18 0.09
LS-FL 0.22 0.25
PS-FL 0.09 0.34

Note that, under the observation 1, we solely focus on size of the parameter space

where both agent’s individual welfare levels are higher for the related sharing rules.

So that, we ignore other cases where at most one investor is better off and the other is

worse off. Table 3 is a clear demonstration of the dominance of the ES rule over other

rules in terms of individual welfare levels. Namely, both agent’s expected individual

welfares are strictly higher under ES rule compared to LS, PS and FL rules for a

significantly larger set of parameters. Clearly, ES generates higher welfare levels than

PS and FL rules, for more than half of combination of the values (55%). While this

percentage is 46% compared to the LS rule. Indeed, FL rule isn’t preferable, since it

induces strictly higher welfare level for none of the parameter values. In fact, we state

and prove the supremacy of ES rule over FL rule, for a given parameter combination

in Lemma 5.0.1. On the other hand, we can explicitly observe the precedence of LS

rule over PS rule. Although, for 18 percent of parameter space, LS rule generates

higher welfare levels, this portion is considerably small for PS rule which is 0.09

percent. Additionally, the percentage share of the set of the parameter combination

slightly higher under FL rule (25%), compared to the LS rule (22%). Evidently, FL
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rule generates higher individual welfare levels compared to PS rule for larger set of

parameters (34%).

Lemma 5.0.1. For a given combination of (p, r) where pr > (1− p), ES rule generates

higher individual welfare levels for both agents in any coalition compared to FL rule.

Proof : See Appendix.

We now discuss the relevance of individual welfare levels with respect to risk

aversion levels. Actually, we’ll use these inferences of relations as bases, when we

investigate the egalitarian and utilitarian welfare levels for identical agents. The

following lemma states a general comparison of the individual utility levels for the

specified risk aversion levels.

Lemma 5.0.2. (Individual Welfare Comparison where n=2) Assume a1 ≥ a2 and

(s1
∗, s2

∗) > (0, 0) be the Nash equilibrium investment levels. Then,

(i) U1
FL(s1

∗, s2
∗) = U2

FL(s1
∗, s2

∗).

(ii) U1
ES(s1

∗, s2
∗) ≤ U2

ES(s1
∗, s2

∗), where equality satisfied only when a1 = a2.

(iii) U1
LS(s1

∗, s2
∗) ≤ U2

LS(s1
∗, s2

∗), where equality satisfied only when a1 = a2.

(iv) U1
PS(s1

∗, s2
∗) ≥ U2

PS(s1
∗, s2

∗), where equality satisfied only when a1 = a2.

Proof : See Appendix.

5.1 Egalitarian Social Welfare Levels

There are various theoretical measures of a society’s collective utility i.e. its social

welfare. Various social welfare functions have been suggested, that are functions of a

society’s individual level utilities, one of which is egalitarian measure of society’s

welfare. The egalitarian social welfare level, induced by a specific rule R at the Nash

equilibrium, equals the utility of the individual who is worst off. More formally;
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UEGL
R(p, r, a1, a2) = min{UR

1 (s1
∗, s2

∗), UR
2 (s1

∗, s2
∗)}

Similar to the individual welfare case, the ordering of the specified rules regarding

the egalitarian social welfare levels contingent upon the parameter values of success

probability, net return rate and risk aversion levels. So that, we investigated the

relation of the ordering of the rules via carrying out a numerical analyses subject to

predefined parameter values of p, r, a1 and a2, for the two investor case.

Observation 2. In Table 4, we employ a pairwise comparison of egalitarian welfare

levels for the specified rules where group size n = 2. In each row, we show the

percentage of the size of the parameter combinations where the corresponding rules

induces higher welfare levels.

Table 4. Pairwise Egalitarian Welfare Comparison

Rules of Interest ES LS PS FL

ES-LS 0.83 0.17
ES-PS 0.77 0.23
ES-FL 0.55 0.45
LS-PS 0.49 0.51
LS-FL 0.22 0.78
PS-FL 0.09 0.91

In a similar manner as previous numerical and theoretical comparisons, we see a clear

supremacy of ES over other sharing rules concerning egalitarian social welfare levels.

Explicitly, the size of the parameter space is nearly four times larger under ES rule

(83%) than LS rule (17%). Additionally, while the corresponding percentage of the
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range of parameters that ES rule generates higher welfare levels is 54% more than

that of generated under PS rule; this difference is only 10% for the FL rule. Moreover,

the percentage share is nearly the same for PS rule (51%) and LS rule (49%).

Obviously, FL rule clearly induces higher egalitarian welfare levels for a larger set of

values (78%) compared LS rule (22%). Besides these, the parameter space, where FL

rule induces higher egalitarian social welfare level, is substantially larger (91%) than

that of induced under PS rule (9%).

We next provide an analysis for the two investor case where agents are

identical in terms of risk aversion. Obviously, at the symmetric case, both agents

achieve the same individual welfare levels under each rule. Since agent’s individual

welfare under FL rule is independent of ai; egalitarian welfare level inherently does

not depend on risk aversion levels, which is only depend on success probability p and

net return rate r. For ES, LS and PS rules, when agents are identical in terms of risk

aversion level, they attain the same and maximum egalitarian welfare levels (see

Figure 1). This fact is generalized in the following proposition.

Proposition 5.1.1. (Egalitarian Welfare Comparison where n=2) Assume

(s1
∗, s2

∗) > (0, 0) be the Nash equilibrium investment levels. Then, egalitarian

welfare level, induced by specific rule R, where agents choose to follow positive

dominant Nash equilibrium strategy, is maximized when a1 = a2.

Proof : By definition of UEGLR(p, r, a1, a2) = min{UR
1 (s1

∗, s2
∗), UR

2 (s1
∗, s2

∗)}, it’s

clear that the proof is a direct implication of Lemma 5.0.2.
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Fig. 1: Egalitarian welfare levels under FL (blue), PS (green), LS (brown) and ES (red)
for the parameter values are p=0.9, r=0.9 and a1 = 2.

5.2 Utilitarian Social Welfare Levels

In this part, we consider utilitarian welfare levels which sums the utility of each

individual in order to obtain group’s overall welfare. More formally, the total utility

of a group, formed by two agents, choose to follow the equilibrium investment level

strategy is defined as follows;

UUTL
R(p, r, a1, a2) = UR

1 (s1
∗, s2

∗) + UR
2 (s1

∗, s2
∗)

Similar to the previous cases, we identify the ordering of the specified rules by

using a numerical method, for the determinated 1624500 combination of parameter

space of success probability p, net return rate r and risk aversion levels of the agents.

We simply focus on two agent case to examine the comparison of our family of rules.

Observation 3. In Table 5, we employ a pairwise comparison of utilitarian welfare

levels for the specified rules where group size n = 2. In each row, we show the
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percentage of the size of the parameter values from the set of all possible

combinations of values where the corresponding rules induces higher welfare levels.

Table 5. Pairwise Utilitarian Welfare Comparison

Rules of Interest ES LS PS FL

ES-LS 0.80 0.20
ES-PS 0.77 0.23
ES-FL 0.61 0.39
LS-PS 0.49 0.51
LS-FL 0.34 0.66
PS-FL 0.35 0.65

Table 5 clearly depicts that ES still retains the priority among other set of rules,

associated with the utilitarian welfare level it induces at equilibrium. ES rule

explicitly dominates LS rule through achieving a larger set of parameter space where

utilitarian welfare level is higher (80%) than LS rule(20%). Moreover, the parameter

set in which ES rule induces higher welfare levels, account for 77% of our parameter

space; while this ration is only 23% for PS rule. Although, we can see a contraction

of the range of the parameter values as to LS rule and PS rule case. Namely, ES rule

still generates higher welfare levels (61%) than FL rule (39%). Besides these, PS rule

and FL rule surpasses LS rule, through constituting a larger share of our set of

variables which are 51% and 66%, respectively. Also, FL rule outweighs PS rule, by

inducing higher welfare levels for a wider set of parameter values.

We end up this section with presenting a discussion similar to the previous

cases where agents have identical risk aversion levels. It’s apparent that utilitarian

welfare level does not depend on risk aversion levels, which is constant under Full

Liability Rule. As can be seen from Figure 2, the relation between ES, LS, FL shows
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Fig. 2: Utilitarian welfare levels under ES (blue), LS (green), FL (brown) and PS (red)
for the parameter values are p=0.9, r=0.9 and a1 = 2

similar patterns like egalitarian case with the exception of PS rule. Indeed, utilitarian

welfare levels reach the maximum amount at the symmetric case, i.e, when

a1 = a2 = 2. As opposed to this fact, the welfare level under Profit Sharing rule is

minimized when agents are identical in terms of risk aversion. This fact is stated in

Proposition 5.2.1..

Proposition 5.2.1. (Utilitarian Welfare Comparison where n=2) Assume

(s1
∗, s2

∗) > (0, 0) be the Nash equilibrium investment levels. Then, utilitarian welfare

level, induced by Equal Sharing, Loss Sharing and Full Liability rules is maximized

and induced by Profit Sharing rule is minimized when a1 = a2.

Proof : By definition of UUTLR(p, r, a1, a2) = UR
1 (s1

∗, s2
∗) + UR

2 (s1
∗, s2

∗), it’s clear

that the proof is direct implication of Lemma 5.0.2.
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CHAPTER 6

COALITION FORMATION

In this section, we investigate a group formation model, in which agents belonging in

same population with independent outcomes, drawn from some joint distribution.

Agents form groups to maximize their ex ante utility under a prespecified rule. Within

this population, agents are ranked by their risk aversion level in the Arrow-Pratt

sense. That is, for any two agent, one is more risk averse than the other according to

their risk aversion. We also allow group members be homogeneous with the same risk

preferences and be heterogeneous with distinct risk preferences. Moreover, we

assume there is equal mass of borrowers of every type. We identify equilibrium

allocations of agents to specify the composition and size of these groups by

comparing each agent’s utility level. More specifically, we shall focus attention on

core partition P (i.e., group assignments of individuals with possibly some single

groups). These partitions are stable in a sense that there is no any other group

formation possibility for matched or unmatched rational individuals such that any

individual can improve his payoff by getting involve in another risk-sharing group or

by becoming unmatched. More formally;

Definition: A coalition structure Π = {P1, P2, .., PS} (S ≤ |N |is a positive integer) is

a partition of N. That is, Ps 6= ∅ for any s ∈ {1, .., S},
⋃S
s=1 Ps = Nand Pi ∩ Pj = ∅

for any i, j ∈ {1, .., S} with i 6= j. For some coalition structure Π and any player s let

Π(s) = {P ∈ Π : s ∈ P} be the set of her partners. Denote the collection of all

coalition structures in N by ψ(N). Similarly define ψ(T ) for any T ⊂ N with T 6= ∅.

Note that, each player’s expected payoff depends only on the members

investment decision of his coalition. That is there is no spillover affect or payoff

externalities that influence the coalition members’ payoffs. Moreover, we also assume
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there is no cost of forming groups and no incentive for players to free-ride which is

mediated through fully enforceable contracts.

6.1 Characterization

For analytical tractability, we focus on the two agent case. Note that individuals who

remain single receive their random income −si or rsi. Since everyone is an expected

utility maximizer, income x yields Ui(x).

Moreover, recall that if agents {i, j} choose to match and share risk, they can

sign a binding agreement, ex-ante, prior to the realization of their outcomes under

Equal Sharing, Loss Sharing and Profit Sharing Rules that specify how the resulting

returns will be shared. By focusing on individual rationality behaviour, we compare

each group members ex-ante payoffs under the agreed contract upon a specified

sharing rule to their respective ex-ante payoffs when single.

Example 1. (Equal Sharing Rule) Let a1 = 0.1, a2 = 0.2, a3 = 0.3 and a4 = 0.5 be

the risk aversion levels of agents. Table 6 illustrates some coalition structures and

related expected payoffs, by denoting agents with their risk aversion levels where

p = 0.8 and r = 0.3.

As can be seen from Table 6, in general when two agent form coalition, the

utility of the risk loving agent is higher; although, the more risk averse agent strictly

worse off compared to the single case. But in some cases, like the group formation

structure of {a2 = 0.2, a3 = 0.3}, both agents are strictly better off, for p = 0.8 and

r = 0.3 values. Although the group structure is changing for the different parameter

values and the risk aversion levels, under ES rule expected utility levels increases, as

the difference between risk aversion levels of the agents in the same group getting

smaller. Moreover, it’s a general fact that the utility levels of the agents with identical

risk aversion are maximized under Equal Sharing rule. Indeed, agents prefer not to
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form groups with those who is different in terms of risk aversion and prefer not to

stay single due to an decrease in expected welfare levels. We state this fact in

Proposition 6.1..

Table 6. Coalition Structures and Related Expected Payoffs under ES
PPPPPPPPPΠES

ai a1 = 0.1 a2 = 0.2 a3 = 0.3 a4 = 0.5

{{a1},{a2}} -0.9971 -0.9971
{{a1,a2}} -0.9950 -0.9973
{{a1,a1}} -0.9943
{{a2},{a4}} -0.9971 -0.9971
{{a2,a4}} -0.9953 -1.001
{{a2,a2}} -0.9943
{{a1},{a3}} -0.9971 -0.9971
{{a1,a3}} -0.9955 -1.0068
{{a3,a3}} -0.9943
{{a2},{a3}} -0.9971 -0.9971
{{a2,a3}} -0.9946 -0.9950
{{a4,a4}} -0.9943

Proposition 6.1. (n=2) For p and r values which satisfy the condition pr > 1− p,

∀(p, r), agents form stable coalitions under Equal Sharing rule whenever a1 = a2.

Proof : See Appendix.

We also explore the consequences of external regulation of limiting or

augmenting investment amounts for the two agent group formation case.

Accordingly, we put upper bound for the risk loving agent’s allowed investment level

on (s1
∗, s2

∗). In this case, his utility is strictly decreasing if this bound approaches the

risk averse agents individual investment level s2
∗; in contrast, the risk averse agent

gains from this limitation. On the other hand, if we force the risk averse agent to
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borrow in large amounts on (s1
∗, s2

∗) through putting lower bounds, his utility

decreases as this bound getting larger. Although, this regulation causes risk loving

agent’s utility to increase on the defined interval. This fact is stated in Lemma 6.1.1..

Lemma 6.1.1. For a1 < a2;

i) If s2
∗ < s1 < s1

∗, then U1
ES(s1, s2

∗) decreases strictly and U2
ES(s1, s2

∗) increases

strictly as s1 decreases on (s2
∗, s1

∗).

ii) If s2
∗ < s2 < s1

∗, then U1
ES(s1

∗, s2) increases strictly and U2
ES(s1

∗, s2) decreases

strictly as s2 increases on (s2
∗, s1

∗).

Proof : See Appendix.

In fact, we show that, whenever a1 < a2 and (s1
∗, s2

∗) > (0, 0),

U1
ES(s1

∗, s2
∗) > U2

ES(s1
∗, s2

∗) (see Lemma 5.0.1.). Then, by putting an upper

bound for relatively risk loving agent (s1 < s1
∗), while the other agent chooses to

borrow the Nash equilibrium investment level, external enforcement mechanisms can

turn into self enforcing informal arrangements under Equal Sharing rule. Since both

agents are better off in such coalition structure compared to the individual case. For

instance, for p = 0.8 and r = 0.3 values when a1 = 0.2, a2 = 0.5, individual

investment levels are (s1
∗, s2

∗) = (1.40, 0.56) and their respective welfare levels are

(U1
ES(s1

∗, s2
∗), U2

ES(s1
∗, s2

∗) = (−0.9953,−1.001). When we limit the relatively

risk loving agents borrowing amount and make them invest (s1, s2
∗) = (1, 0.56), in

this case their welfare levels are (U1
ES(s1, s2

∗), U2
ES(s1, s2

∗) = (−0.9955,−0.9961).

Notice that, although first agent is a bit worse off compared to the initial case, both

agent’s utility levels are strictly higher than individual utility level which is

Ui
FL(si

∗) = −0.9971, for i = 1, 2.

Example 2. (Loss Sharing Rule) Let a1 = 0.1, a2 = 0.2, a3 = 0.3 and a4 = 0.5 be the

risk aversion levels of agents. Table 7 illustrates some coalition structures and related
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expected payoffs, by denoting agents with their risk aversion levels where p = 0.9

and r = 0.9.

Table 7. Coalition Structures and Related Expected Payoffs under LS

HHH
HHHΠLS

ai a1 = 0.1 a2 = 0.2 a3 = 0.3 a4 = 0.5

{{a1},{a2}} -0.6348 -0.6348
{{a1,a2}} -0.4476 -0.6859
{{a1,a1}} -0.4922
{{a2},{a4}} -0.6348 -0.6348
{{a2,a4}} -0.4411 -0.8840
{{a2,a2}} -0.4922
{{a1},{a3}} -0.6348 -0.6348
{{a1,a3}} -0.4371 -1.2098
{{a3,a3}} -0.4922
{{a2},{a3}} -0.6348 -0.6348
{{a2,a3}} -0.4601 -0.5655
{{a4,a4}} -0.4922

Table 7 depicts, when two agent with different risk aversion levels form coalitions,

generally, the expected utility of the relatively risk loving agent is higher. While, the

more risk averse agent is strictly worse off compared to the single case. Yet, like the

group formation structure under Equal Sharing Rule, under the two agent coalition

{a2 = 0.2, a3 = 0.3}, payoffs of both agent are higher for p = 0.9 and r = 0.9 values,

compared to individual payoffs. Similar to the Equal Sharing case, the expected

utility levels of agent depends on the group structure and parameter values. For the

two agent case, under Loss Sharing rule, an increase in the other agent’s risk aversion

level has opposite effects on the utility levels of two agents. For instance, as the

second agent’s risk aversion level increase, relatively risk loving first agent’s
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willingness to match with a safer investor increase. On the other hand, the same

variation in the agent 2’s risk aversion level refrain him to match with a potential risk

seeking partner because of an decrease in his welfare level. Proposition 6.2. states a

general fact for the described values of p and r.

Proposition 6.2. (n=2) For p and r values which satisfy the condition pr > 1− p,

∀(p, r), agents form stable coalitions under Loss Sharing rule whenever a1 = a2.

Proof : See Appendix.

Moreover, we investigate the implications of external regulation of investment

levels for Loss Sharing rule. Similar to the equal sharing case, we put upper bound on

the investment level for relatively risk loving agent on (s1
∗, s2

∗). A decrease of this

upper bound results in a decrease in the individual welfare of the less risk averse

agent. While, this regulation lead to an increase in the more risk averse agent

individual utility level. Furthermore, putting an upper bound on borrowing amounts

for the more risk averse agent causes a loss in both agent’s individual utility levels.

We state and prove this fact in Lemma 6.1.2..

Lemma 6.1.2. For a1 < a2;

i) If s2
∗ < s1 < s1

∗, then U1
LS(s1, s2

∗) decreases strictly and U2
LS(s1, s2

∗) increases

strictly as s1 decreases on (s2
∗, s1

∗).

ii) If s2
∗ < s2 < s1

∗, then U1
LS(s1

∗, s2) and U2
LS(s1

∗, s2) both decreases strictly as

s2 increases on (s2
∗, s1

∗).

Proof : See Appendix.

By Lemma 5.0.1, when agents choose to follow interior Nash Equilibrium

strategies, if a1 < a2, then U1
LS(s1

∗, s2
∗) > U2

LS(s1
∗, s2

∗). Then, through putting

upper bound on the relatively risk seeking agent’s borrowing amounts, two agent

form coalitions such that both of them better off with respect to the individual case.
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As an illustration of this fact, for p = r = 0.9 and a1 = 0.1, a2 = 0.2 parameter

values, individual investment levels are (s1
∗, s2

∗) = (19.89, 9.94) and the

corresponding utility levels are (U1
LS(s1

∗, s2
∗), U2

LS(s1
∗, s2

∗))

= (−0.4476,−0.6859). If, the less risk averse agent is forced to borrow s1 = 15,

although other agent still choose to follow Nash equilibrium strategy; then individual

utilities are (U1
LS(s1, s2

∗), U2
LS(s1, s2

∗) = (−0.4736,−0.5670). Clearly, in such

coalition both agent’s are better off compared to the individual utility level which is

Ui
FL(si

∗) = −0.6348, for i = 1, 2.

Example 3. (Profit Sharing Rule) Let a1 = 0.1, a2 = 0.2, a3 = 0.3 and a4 = 0.5 be

the risk aversion levels of agents. Table 8 illustrates some coalition structures and

related expected payoffs, by denoting agents with their risk aversion levels where

p = 0.9 and r = 0.9.

Unlike previous cases, when two agent with different risk aversion levels form

coalitions which is illustrated in Example 3, the expected utility of the relatively risk

loving agent is lower. Despite, the more risk averse agent strictly better off compared

to the individual case. When they come together to form groups with agents who have

identical risk aversion levels, we observe a rising tendency in individual expected

utility levels. Moreover, under Profit Sharing rule, as relatively more risk averse

agent’s risk aversion level increases, more risk averse agent’s expected utility level

increase. However, such an increase cause a decline in his partner’s expected utility

level. Proposition 6.3. generalizes this fact for two agent group formations under PS

rule.
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Table 8. Coalition Structures and Related Expected Payoffs under PS

PPPPPPPPPΠPS

ai a1 = 0.1 a2 = 0.2 a3 = 0.3 a4 = 0.5

{{a1},{a2}} -0.6348 -0.6348
{{a1,a2}} -0.6969 -0.4039
{{a1,a1}} -0.5775
{{a2},{a4}} -0.6348 -0.6348
{{a2,a4}} -0.7241 -0.3416
{{a2,a2}} -0.5775
{{a1},{a3}} -0.6348 -0.6348
{{a1,a3}} -0.7429 -0.2914
{{a3,a3}} -0.5775
{{a2},{a3}} -0.6348 -0.6348
{{a2,a3}} -0.6542 -0.4813
{{a4,a4}} -0.5775

Proposition 6.3. (n=2) For p and r values which satisfy the condition pr > 2(1− p),

∀(p, r), agents form stable coalitions under Profit Sharing rule whenever a1 = a2.

Proof : See Appendix.

We explore the consequences of putting an upper bound and lower bound on

relatively less risk averse and more risk averse agent’s borrowing amounts. For the

Profit Sharing rule, limiting the borrowing amount of less risk averse agent result in

an reduction in both agent’s utility level. On the contrary, impelling more risk averse

agent to borrow in higher amounts than the Nash equilibrium amount lead to a loss in

his utility levels. Nevertheless, this enforcement mechanism result in an increase in

utility of the relatively risk loving agent. Lemma 6.1.3. states this fact;

Lemma 6.1.3. For a1 < a2;

i) If s2
∗ < s1 < s1

∗, then U1
PS(s1, s2

∗) and U2
PS(s1, s2

∗) decreases strictly, as s1

decreases on (s2
∗, s1

∗).
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ii) If s2
∗ < s2 < s1

∗, then U1
PS(s1

∗, s2) increases strictly and U2
PS(s1

∗, s2) decreases

strictly, as s2 increases on (s2
∗, s1

∗).

Proof : See Appendix.

We end up this section by an implication of the preceding proposition. In

Lemma 5, we show that at the Nash Equilibrium, if a1 < a2, then

U1
PS(s1

∗, s2
∗) < U2

PS(s1
∗, s2

∗). Then as an application of Proposition 6.6, if more

risk averse agent borrow in higher amounts than the interior Nash equilibrium

amount, agents in the same coalition with distinct risk aversion levels will be better

off in relevance to individual case. For example, at equilibrium, individual investment

levels are (s1
∗, s2

∗) = (9.46, 3.21) and the corresponding utility levels are

(U1
PS(s1

∗, s2
∗), U2

PS(s1
∗, s2

∗) = (−0.7429,−0.2914), where p = r = 0.9 and

a1 = 0.1, a2 = 0.3. When, more risk averse agent borrow an amount s2 = 7.5, while

the other agent invest the optimum amount; individual utilities become

(U1
PS(s1

∗, s2), U2
PS(s1

∗, s2) = (−0.6274,−0.4397). Then, since

Ui
FL(si

∗) = −0.6348, for i = 1, 2, it’ obvious that both agents are better off in such

coalition structure compared to the individual case.
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CHAPTER 7

CONCLUSION

In this study, we consider an investment game among n investors with CARA

preferences. Accordingly, we define four major sharing rules, namely Full Liability

(FL), Loss Sharing (LS), Profit Sharing (PS) and Equal Sharing (ES), which regulates

the allocation of the resulting profits and losses. We mainly attempt to explore how

these rules affect the individual and aggregate investment behaviour and expected

social welfare levels, as well as coalition formation structure.

Our theoretical findings show that, each rule induces a unique dominant Nash

equilibrium in terms of individual investment levels. Specifically, individual

investment amounts mainly depend on success probability, net return rate, group size

and investors own risk aversion level.

Secondly, when each investor chooses to borrow in positive amounts,

regarding aggregate investment amount, the ranking of the rules related to parameter

values. Nonetheless, in any group formation under ES rule and LS rule, investors risk

taking behaviour increases compared to the PS and FL rules. On the other hand, for

sufficiently high values of r,in any group formation ES rule explicitly dominates other

rules; while for low values of r, the sorting depends on the the group size. It’s worth

emphasizing that our theoretical findings are consistent with Fischer’s (2013)

empirical results.

Furthermore, we employ numerical analysis to study the pairwise comparison

of sharing rules for the two investor case. The superiority of the ES rule over other

rules is the most remarkable point of our numerical comparison. In terms of

individual welfare levels, while the set of parameter combinations account for almost

half of our parameter space, the percentage of parameter combinations is considerably
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small for PS rule. Besides, ES rule dominates other rules regarding egalitarian and

utilitarian social welfare levels. Additionally, we demonstrate for the identical

two-agent coalitions, egalitarian welfare levels are maximized under each rule. On the

other hand, for the same coalition structures, utilitarian welfare levels, induced by ES

and LS rules are maximized and minimized under PS rule.

Lastly, we show that two-agent coalition formation of investors with identical

risk taking behaviour is stable for certain success probability and net return rates.

That is, there is no other coalition structure possibility such that both investor are

better off in the new formation. Besides, we address the question of whether investors

with distinct risk aversion levels unilaterally and voluntarily agree on an arrangement,

so that both of them are better off. Accordingly, we illustrate via numerical examples

that such formations are possible under each rule.
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APPENDIX

Proof (Proposition 3.1): Agent i’s utility under Full Liability Rule is;

Ui
FL(si) = −pe−airsi − (1− p)eaisi

The unconstrained maximizer of this expression is;

si
∗ = ln

(
rp

1− p

)
· 1

ai(1 + r)

Then, the best response function(the strictly dominant strategy) defined as follows;

bi(s−i) =


si
∗, if ln

(
rp

1−p

)
> 0

0, otherwise

Notice that, bi(s−i) is independent of other agents investment levels and risk aversion

levels.

Assumption: Fix p for agent i. Let Aj = {pj, (1− pj)}, ∀j ∈ N. and the Cartesian

product A = A1 × ...Ai−1 × Ai+1 × ...An be the set of ordered (n-1)-tuples

(ρ1, ..ρi−1, ρi+1, .., ρn), where ρk ∈ Ak for each k ∈ N/{i}.

Proof : (Proposition 3.2) By Assumption 1, for all ρk ∈ Ak for each k ∈ N/{i} define;

ΩES : {ρt =
∏
N/{i}

ρk|,∀ ρk ∈ Ak and k ∈ N/{i}} → ES−i(s
t
−i)
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where st−i is the net return that corresponds to ρt and

ES−i(s
t
−i) =

∑
j∈G/{i} rsj−

∑
k∈N\G/{i} sk

n
. Observe that, ΩES is a well defined bijection.

Then, agent i’s utility under Equal Sharing Rule is;

Ui
ES(s∗) =p · −e−airsi/n

[
2n−1∑
t=1

(
ρtui(ES−i(s

t
−i))

)]

+ (1− p) · −eaisi/n
[

2n−1∑
t=1

(
ρtui(ES−i(s

t
−i))

)]

where ui(x) = −e−aix for any i ∈ N . The unconstrained maximizer of this

expression is;

si
∗ = ln

(
rp

(1− p)

)
· n

ai(1 + r)

Then, the best response function(the strictly dominant strategy) defined as follows;

bi(s−i) =


si
∗, if ln

(
rp

1−p

)
> 0

0, otherwise

Again notice that, bi(s−i) is independent of other agents investment levels and risk

aversion levels.

Proof : (Proposition 3.3) By Assumption 1, for all ρk ∈ Ak for each k ∈ N/{i} define;

ΩLS : {ρt =
∏
N/{i}

ρk|,∀ ρk ∈ Ak and k ∈ N/{i}} → LS−i(s
t
−i)
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where st−i is the net return that corresponds to ρt and LS−i(st−i) =
∑
j∈N\G/{i}−sj

n
.

Observe that, ΩLS is a well-defined bijection. Then, agent i’s utility under Loss

Sharing Rule is;

Ui
LS(s∗) =p · −e−airsi

[
2n−1∑
t=1

(
ρtui(LS−i(s

t
−i))

)]

+ (1− p)− eaisi
n

[
2n−1∑
t=1

(
ρtui(LS−i(s

t
−i))

)]

where ui(x) = −e−aix for any i ∈ N . The unconstrained maximizer of this

expression is;

si
∗ = ln

(
nrp

(1− p)

)
· 1

ai(
1
n

+ r)

Then, the best response function defined as follows;

bi(s−i) =


si
∗, if ln

(
nrp

(1−p)

)
> 0

0, otherwise

Proof : (Proposition 3.4) By Assumption 1, for all ρk ∈ Ak for each k ∈ N/{i} define;

ΩPS : {ρt =
∏
N/{i}

ρk|,∀ ρk ∈ Ak and k ∈ N/{i}} → PS−i(s
t
−i)

where st−i is the net return that corresponds to ρt and PS−i(st−i) =
∑
j∈G\{i} rsj

n
.

Observe that, ΩPS is a well-defined bijection. Then, agent i’s utility under Profit

Sharing Rule is;

38



Ui
PS(s∗) =p · −e−airsi/n

[
2n−1∑
t=1

(
ρtui(PS−i(s

t
−i))

)]

+ (1− p) · −eaisi
[

2n−1∑
t=1

(
ρtui(PS−i(s

t
−i))

)]

where ui(x) = −e−aix for any i ∈ N . The unconstrained maximizer of this

expression is;

si
∗ = ln

(
rp

n(1− p)

)
· 1

ai(
r
n

+ 1)

Then, the best response function defined as follows;

bi(s−i) =


si
∗, if ln

(
rp

n(1−p)

)
> 0

0, otherwise

Proof : (Proposition 4.1) Proof is by pairwise comparison of each rule, where n=2.

Note that, we focus on sufficiently high values of p which is necessary for positive

investment levels. W.L.O.G let
∑n

i=1
1
ai

= 1 and fix p∗. Then,

(1)∀r > 0, TIES > TIFL. Since;

n∑
i=1

1

ai
ln

(
rp∗

1− p∗

)
· 2

(1 + r)
>

n∑
i=1

1

ai
ln

(
rp∗

1− p∗

)
· 1

(1 + r)
⇔ 2 > 1

(2) ∀r > 0, in order to show TIES > TIPS , consider the graph of ΥES and ΥPS

defined by;

39



(p, r)
ΥES−−→

(
p, r, ln

(
rp

1− p

)
· 2

(1 + r)

)
and

(p, r)
ΥPS−−→

(
p, r, ln

(
rp

2(1− p)

)
· 1

( r
2

+ 1)

)
in the domain (p, r) ∈ (0, 1)× (0, 1). Observe that Υ(.) functions are continuous on

R3. Then, it’s suffice to show that
∑n

i=1
1
ai
d(ΥES(p∗, r)−ΥPS(p∗, r)) > 0 where

d : (0, 1)× (0, 1) 7→ R is a metric in the three-dimensional Euclidean space. Then,

n∑
i=1

1

ai
d(ΥES(p∗, r)−ΥPS(p∗, r)) > 0

⇔ ln

(
rp∗

1− p∗

)
· 2

(1 + r)
− ln

(
rp∗

2(1− p∗)

)
· 1

( r
2

+ 1)
> 0

⇔ ln

(
rp∗

1− p∗

)
︸ ︷︷ ︸

>0

[
2

(1 + r)
− 2

(2 + r)

]
︸ ︷︷ ︸

σ(r)

+ ln 2
1

( r
2

+ 1)︸ ︷︷ ︸
>0

> 0

Since σ(r) > 0 on r ∈ (0, 1), above inequality holds. Therefore,

∀r > 0, T IES > TIPS .

(3) ∀r > 0, we can show TILS > TIFL by a similar discussion to the above case,

where;

n∑
i=1

1

ai
d(ΥLS(p∗, r)−ΥFL(p∗, r)) > 0

⇔ ln

(
2rp∗

1− p∗

)
· 1

((1/2) + r)
− ln

(
rp∗

1− p∗

)
· 1

(1 + r)
> 0

⇔ ln

(
rp∗

1− p∗

)
︸ ︷︷ ︸

>0

(
1

((1/2) + r)
− 1

(r + 1)

)
︸ ︷︷ ︸

σ(r)

+ ln 2
1

(1
2

+ r)︸ ︷︷ ︸
>0

> 0
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Again, since σ(r) > 0 on r ∈ (0, 1), above inequality holds. ∀r > 0, T ILS > TIFL.

(4) ∀r > 0, TILS > TIPS . Observe that;

n∑
i=1

1

ai
d(ΥLS(p∗, r)−ΥPS(p∗, r)) > 0

⇔ ln

(
2rp∗

1− p∗

)
· 1

((1/2) + r)
− ln

(
rp∗

2(1− p∗)

)
· 1

((r/2) + 1)
> 0

⇔ ln

(
rp∗

1− p∗

)
︸ ︷︷ ︸

>0

(
1

((1/2) + r)
− 1

((r/2) + 1)

)
︸ ︷︷ ︸

σ(r)

+ ln 2

(
1

((1/2) + r)
+

1

((r/2) + 1)

)
︸ ︷︷ ︸

>0

> 0

The above inequality holds, since σ(r) > 0 on r ∈ (0, 1).

(5) To prove the existence r′ ∈ (0, 1) where TIES > TILS for 1 > r > r′ and

TILS > TIES for r′ > r, we need to show that there exist a partition of set (0,1)

which is a division of two connected, non-overlapping and non-empty cells such that∑n
i=1

1
ai
d(ΥES(p∗, r)−ΥLS(p∗, r)) take either positive values for any value in one

cell or take negative values for any value in other cell, for some sufficiently high value

of p∗ where,

n∑
i=1

1

ai
d(ΥES(p∗, r)−ΥLS(p∗, r))

= ln

(
rp∗

1− p∗

)
· 2

(1 + r)
− ln

(
2rp∗

(1− p∗)

)
· 1

((1/2) + r)

= ln

(
rp∗

1− p∗

)(
2

(1 + r)
− 1

((1/2) + r)

)
− ln 2

1

((1/2) + r)
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Observe that, d(ΥES(p∗, r)−ΥLS(p∗, r)) is a continuous mapping on domain

(0, 1)× (0, 1). Moreover, ∂d(ΥES(p∗,r)−ΥLS(p∗,r))
∂r

=

(1+r)((1/2)+r)
(1+r)2((1/2)+r)2

− ln
(

rp∗

1−p∗

)
· (r2−(1/2))

(1+r)2((1/2)+r)2
+ ln2 (r+1)2

(1+r)2((1/2)+r)2
> 0 and the values

d(ΥES(p∗, r)−ΥLS(p∗, r)) lies within an interval

(−2 ∗ ln(2), ln(−p∗/(p∗ − 1))/3− (2 ∗ ln(2))/3) where limit points take negative

and positive values for r ∈ (0, 1) and for a given sufficiently high p∗ ∈ (0, 1). Then,

since d(ΥES(p∗, r)−ΥLS(p∗, r)) is continuous for relevant parameter values; by

intermediate value theorem d(ΥES(p∗, r′)−ΥLS(p∗, r′)) = 0, for some r′ ∈ (0, 1)

and for some sufficiently high p∗ ∈ (0, 1), which proves the existence of partition set

of (0,1).

(6) Finally, we claim that, there exists r′′ ∈ (0, 1) s.t. TIPS > TIFL for 1 > r > r′′

and TIFL > TIPS for r′′ > r (6). Similar to the previous discussion, we have to

show the existence of a partition set of (0,1) s.t.
∑n

i=1
1
ai
d(ΥFL(p∗, r)−ΥPS(p∗, r))

take either positive values in one cell or take negative values in other cell, for some p∗

where,
n∑
i=1

1

ai
d(ΥFL(p∗, r)−ΥPS(p∗, r))

= ln

(
rp∗

1− p∗

)
· 1

1 + r
− ln

(
rp∗

2(1− p∗)

)
· 1

(r/2) + 1

= ln

(
rp∗

1− p∗

)(
1

1 + r
− 1

(r/2) + 1

)
+ ln 2

1

(1 + (r/2))

Again, the distance function d(ΥFL(p∗, r)−ΥPS(p∗, r)) is a continuous on domain

(0, 1)× (0, 1) and ∂d(ΥFL(p∗,r)−ΥPS(p∗,r))
∂r

= − 1
2(1+r)((r/2)+1)

− ln2
2((r/2)+1)2

−ln
(

rp∗

1−p∗

)(
1

(1+r)2
− 1

2((r/2)+1)2

)
< 0. The values d(ΥFL(p∗, r)−ΥPS(p∗, r)) lies

within an interval ((2ln(2))/3− ln(p/(1− p))/6, ln(2)) where limit points take

negative and positive values for r ∈ (0, 1) values and for a given sufficiently high
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p∗ ∈ (0, 1). Then, since d(ΥFL(p∗, r)−ΥPS(p∗, r)) is continuous relevant parameter

values, by intermediate value theorem d(ΥFL(p∗, r′′)−ΥPS(p∗, r′′)) = 0 for some

r′′ ∈ (0, 1) and for some sufficiently high p∗ ∈ (0, 1), which proves the existence of

partition set of (0,1).

∴ (1),(2),(3),(4),(5) and (6) together proves proposition 4.1.

Proof : (Proposition 4.2) W.L.O.G assume
∑n

i=1
1
ai

= 1. Let p takes sufficiently high

values. Fix (p∗, r∗), where p∗ is sufficiently high. If n = 1, then it’s clear that

TIES = TILS = TIFL = TIPS . For n > 1, the proof is by pairwise comparison of

each rule.

(1)∀n > 1, TIES > TIFL. Since;

TIES =
n∑
i=1

1

ai
ln

(
r∗p∗

1− p∗

)
n

(1 + r∗)
>

n∑
i=1

1

ai
ln

(
r∗p∗

1− p∗

)
1

(1 + r∗)
= TIFL

⇔ n > 1

which holds by assumption.

(2)∀n > 1, TIES > TIPS . Since;

TIES =
n∑
i=1

1

ai
ln

(
r∗p∗

1− p∗

)
n

(1 + r∗)
>

n∑
i=1

1

ai
ln

(
r∗p∗

n(1− p∗)

)
n

(n+ r∗)
= TIPS

⇔ ln

(
r∗p∗

1− p∗

)
1

(1 + r∗)
> ln

(
r∗p∗

1− p∗

)
1

(n+ r∗)
− ln2

1

(n+ r∗)

which clearly holds for n > 1, for a given (p∗, r∗).

(3) For TIES − TILS case, for a given r ∈ (0, 1) we claim that ∃n∗∗ ∈ R>0 such that

∀n ≥ n∗∗, TIES ≥ TILS and for 1 ≤ n ≤ n∗∗, TILS ≥ TIES where n ∈ Z. Firstly,

for arbitrary (p∗, r∗), ∂TIES(p∗,r∗,n)
∂n

= ln
(

pr
(1−p)

)
1

1+r
is constant. Observe that,
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∂TILS(p∗,r∗,n)
∂n

= 1
n(r+ 1

n
)

+
ln( npr

(1−p))
n2(r+ 1

n
)2
> 0 and

∂2TILS(p∗,r∗,n)
∂n2 = 2

σ2
− 1

n2(r+ 1
n

)
− σ1

σ2
+ σ1

n4(r+ 1
n

)3
= 2−(nr+1)

(nr+1)3
+

(−nr)2 ln( nrp
(1−p))

(nr+1)4
< 0 where

σ1 = 2ln
(

npr
(1−p)

)
and σ2 = n3(r + 1

n
)2 which implies TILS is strictly increasing

concave function on n ∈ (0,∞). Now let ζ = {n|TIES(p∗, r∗, n) = TILS(p∗, r∗, n)}

for a given (p∗, r∗). Then there are three cases: i) If ζ = {1}, then take n∗∗ = 1.

Notice that, ∀n ≥ n∗∗, TIES ≥ TILS . ii) If ζ = {1, n} where n < 1, then take

n∗∗ = 1. Notice that, ∀n ≥ n∗∗, TIES ≥ TILS . iii) If ζ = {1, n} where n > 1, then

take n∗∗ = n. Then, ∀n ≥ n∗∗, TIES ≥ TILS and for ∀n ∈ Z>0 on 1 ≤ n ≤ n∗∗,

TILS ≥ TIES .

(4) ∀n > 1, TILS > TIFL. Since;

TILS = ln

(
nr∗p∗

1− p∗

)
n

(1 + nr∗)
> ln

(
r∗p∗

1− p∗

)
1

(1 + r∗)
= TIFL

⇔ ln(n)
n

1 + nr∗
> ln

(
r∗p∗

1− p∗

)[
1

(1 + r∗)
− n

(1 + nr∗)

]
⇔ ln(n)n > ln

(
r∗p∗

1− p∗

)
(1− n)

(1 + r∗)

Notice that above inequality clearly holds for n > 1.

(5) ∀n > 1, TILS > TIPS . Since;

TILS = ln

(
nr∗p∗

1− p∗

)
n

(1 + nr∗)
> ln

(
r∗p∗

n(1− p∗)

)
n

(n+ r∗)
= TIPS

⇔ ln(n)

[
1

(1 + nr∗)
+

1

(r∗ + n)

]
> ln

(
r∗p∗

1− p∗

)[
1

(r∗ + n)
− 1

(1 + nr∗)

]
⇔ ln(n)(1 + r∗)(1 + n) > ln

(
r∗p∗

1− p∗

)
(1− n)(1− r∗)

which obviously holds for n > 1.
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(6) For TIPS − TIFL case, for a given r ∈ (0, 1), we claim that ∃n∗ ∈ R>0 such that

∀n ≥ n∗, TIFL ≥ TIPS and for 1 ≤ n ≤ n∗, TIPS ≥ TIFL where n ∈ Z>0. Firstly,

note that for a given (p∗, r∗), TIFL is constant. Observe that

∂TIPS(p∗,r∗,n)
∂n

=

[
r∗ ln

(
p∗r∗

n(1−p∗)

)
−n((r∗/n)+1)

]
n2((r∗/n)+1)2

=
r∗
[
ln
(

p∗
(1−p∗)

)
+ln( n

r∗ )−1− n
r∗

]
n2((r∗/n)+1)2

takes positive

and negative values for some finite n′ ∈ (0,∞). Since,

limn→0+
∂TIPS(p∗,r∗,n)

∂n
= −

(
−∞−ln

(
p∗r∗

(1−p∗)

))
r∗

=∞,

limn→n′
∂TIPS(p∗,r∗,n)

∂n
= −

(
−r∗−r∗ ln

(
p∗r∗

n′(1−p∗)

)
+n′

)
(r∗+n′)2

< 0 for some finite n′ ∈ (0,∞) and

limn→+∞
∂TIPS(p∗,r∗,n)

∂n
= 0. Moreover, ∂

2TIPS(p∗,r∗,n)
∂n2 =

n2−r∗2−2r∗n ln
(

p∗r∗
n′(1−p∗)

)
(r∗+n)4

also

takes negative and positive values for some finite n′ ∈ (0,∞). Because,

limn→0+
∂2TIPS(p∗,r∗,n)

∂n2 = − 1
r∗2

and

limn→n′
∂2TIPS(p∗,r∗,n)

∂n2 = −
2n′r∗ ln

(
p∗r∗

n′(1−p∗)

)
+r∗2−(n′)2

(r∗+n′)4
> 0 for appropriate values of n’,

for a given sufficiently high (p∗, r∗). Hence, there exist a maximum nmax where

∂2TIPS(p∗,r∗,nmax)
∂n2 < 0. Then, since for n = 1 TIPS = TIFL, there are three cases: i)If

nmax = 1, then take n∗ = nmax = 1. Notice that for n > 1, TIFL ≥ TIPS . ii) If

nmax < 1, then take n∗ = 1. Again for n > 1, TIFL ≥ TIPS . iii) If nmax > 1, then

there exist n∗ > 1 such that for 1 ≤ n < n∗, TIPS ≥ TIFL and for n > n∗,

TIFL ≥ TIPS .

∴ (1), (2), (3), (4), (5) and (6) together proves proposition 4.2.

Proof : (Lemma 5.0.1.) For a given (p, r) such that pr 6= (1− p), to show agents are

better off in any two agent coalition compared to the full liability case, we must show

that;
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|UiFL(si
∗)| − |U2

i
ES

(si
∗, s−i

∗)| = −p2e
−air

2

(
ln( rp

(1−p))
(

2
ai(1+r)

)
+ln( rp

(1−p))
(

2
a−i(1+r)

))

− (1− p)pe
−ai
2

(
r ln( rp

(1−p))
(

2
ai(1+r)

)
−ln( rp

(1−p))
(

2
a−i(1+r)

))

− (1− p)pe
−ai
2

(
− ln( rp

(1−p))
(

2
ai(1+r)

)
+r ln( rp

(1−p))
(

2
a−i(1+r)

))

− (1− p)2e
ai
2

(
ln( rp

(1−p))
(

2
ai(1+r)

)
+ln( rp

(1−p))
(

2
a−i(1+r)

))

+ (1− p)eai
ln( rp

(1−p))
ai(1+r) + pe

−air
ln( rp

(1−p))
ai(1+r) > 0

where UiFL(si
∗) is i-th agent’s individual utility level and U2

i
ES

(si
∗, s−i

∗) is i-th

agent’s utility level in 2-agent coalition under ES rule. Then, since 1 + x− y ≤ ex−y,

∀ x,y ∈ R, it’s enough to show that

(1− p)
(

1 +
ln (rp)

(r + 1)
− ln (1− p)

(r + 1)

)
+ p

(
1 +

r ln (1− p)
(r + 1)

− r ln (pr)

(r + 1)

)
− p(1− p)

(
1−

(
r − ai

a−i

)
ln (rp)

(1 + r)
+

(
r − ai

a−i

)
ln (1− p)
(1 + r)

)
− p(1− p)

(
1 +

(
1− air

a−i

)
ln (rp)

(1 + r)
−
(

1− air

a−i

)
ln (1− p)
(1 + r)

)
− p2

(
1−

(
r +

air

a−i

)
ln (rp)

(1 + r)
+

(
r +

air

a−i

)
ln (1− p)
(1 + r)

)
− (1− p)2

(
1 +

(
1 +

ai
a−i

)
ln (rp)

(1 + r)
−
(

1 +
ai
a−i

)
ln (1− p)
(1 + r)

)
> 0

Then this inequality reduces to the following inequality, which is strictly bigger than

0, for any ai, a−i;
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ai
a−i

(pr + p− 1)︸ ︷︷ ︸
Ω(p,r)

ln

(
rp

(1− p)

)
︸ ︷︷ ︸

ϕ(p,r)

1

(1 + r)
> 0

Observe that, the signs of the terms Ω(p, r) and ϕ(p, r) agree.

Proof : (Lemma 5.0.2.) Assume a2 ≤ a1.

(i)

U1
FL(s1

∗) =− pe−air
(

ln( rp
(1−p))

1
ai(1+r)

)
− (1− p)eai

(
ln( rp

(1−p))
1

ai(1+r)

)

− pe−r(ln( rp
(1−p))

1
(1+r)) − (1− p)e(ln( rp

(1−p))
1

(1+r))

Note that, above expression obviously doesn’t depend on risk aversion levels. Then

U1
FL(s1

∗) = U2
FL(s1

∗).

(ii) We want to show U1
ES(s1

∗, s2
∗) ≤ U2

ES(s1
∗, s2

∗), where si∗ = ln
(

rp
(1−p)

)
2

ai(1+r)

for i = 1, 2. Then, this is equivalent to show that;

U2
ES(s1

∗, s2
∗)− U1

ES(s1
∗, s2

∗) = p2e
−a1

(
rs1
∗+rs2

∗
2

)
+ p(1− p)e−a1

(
rs1
∗−s2

∗
2

)

+ p(1− p)e−a1
(
rs2
∗−s1

∗
2

)
+ (1− p)2e

−a1
(
−s1
∗−s2

∗
2

)

− p2e
−a2

(
rs1
∗+rs2

∗
2

)
− p(1− p)e−a2

(
rs2
∗−s1

∗
2

)

− p(1− p)e−a2
(
rs1
∗−s2

∗
2

)
− (1− p)2e

−a2
(
−s1
∗−s2

∗
2

)
≥ 0

Then expanding and rearranging the terms of preceding expression results in:
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U2
ES(s1

∗, s2
∗)− U1

ES(s1
∗, s2

∗) =(
−pe

−a2rs1
∗

2 + (p− 1)e
a2s1

∗
2

)
·
(
pe
−a2rs2

∗
2 + (1− p)e

a2s2
∗

2

)
+
(
pe
−a1rs2

∗
2 + (1− p)e

a1s2
∗

2

)
·
(
pe
−a1rs1

∗
2 + (1− p)e

a1s1
∗

2

)
≥ 0

⇔ σ
(
−pe

−a2rs1
∗

2 + (p− 1)e
a2s1

∗
2 + pe

−a1rs2
∗

2 + (1− p)e
a1s2

∗
2

)
︸ ︷︷ ︸

ϕ

≥ 0

where σ =
(
pe
−a2rs2

∗
2 + (1− p)e

a2s2
∗

2

)
=
(
pe
−a1rs1

∗
2 + (1− p)e

a1s1
∗

2

)
. Then

observe that, ϕ ≥ 0 since by assumption a2 ≤ a1. Hence

U2
ES(s1

∗, s2
∗)− U1

ES(s1
∗, s2

∗) ≥ 0. Moreover, clearly above equality holds when

a1 = a2.

(iii) We want to show U1
LS(s1

∗, s2
∗) ≤ U2

LS(s1
∗, s2

∗), where si∗ = ln
(

2rp
(1−p)

)
1

ai(
1
2

+r)

for i = 1, 2. Then, this is equivalent to show that;

U2
LS(s1

∗, s2
∗)− U1

LS(s1
∗, s2

∗) = p2e−a1rs1
∗

+ p(1− p)e−a1
(
rs1∗− s2

∗
2

)

+ p(1− p)e−a1
(
−s1
∗

2

)
+ (1− p)2e

−a1
(
−s1
∗−s2

∗
2

)

− p2e−a2rs2
∗ − p(1− p)e−a2

(
rs2∗− s1

∗
2

)

− p(1− p)e−a2
(
−s2
∗

2

)
− (1− p)2e

−a2
(
−s1
∗−s2

∗
2

)
≥ 0

Then expanding and rearranging the terms of preceding expression results in:
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pp
(
e−a1rs1

∗ − e−a2rs2∗
)︸ ︷︷ ︸

=0

+p(1− p)
(
e
−a1

(
rs1∗− s2

∗
2

)
− e−a2

(
rs2∗− s1

∗
2

))
︸ ︷︷ ︸

≥0

+ p(1− p)
(
ea1

s1
∗

2 − ea2
s2
∗

2

)
︸ ︷︷ ︸

=0

+(1− p)2

(
e
a1
(
s1
∗+s2

∗
2

)
− ea2

(
s1
∗+s2

∗
2

))
︸ ︷︷ ︸

≥0

≥ 0

Clearly above inequality holds, since a2 ≤ a1. Additionally, it’s obvious that, equality

holds when a1 = a2.

(iv) We want to show U1
PS(s1

∗, s2
∗) ≥ U2

PS(s1
∗, s2

∗), where

si
∗ = ln

(
rp

2(1−p)

)
1

ai(
r
2

+1)
for i = 1, 2. Then, this is equivalent to show that;

U1
PS(s1

∗, s2
∗)− U1

PS(s1
∗, s2

∗) = p2e
−a2

(
rs1
∗+rs2

∗
2

)
+ p(1− p)e−a2

rs2
∗

2

+ p(1− p)e−a2
(
rs1
∗

2
−s2∗

)
+ (1− p)2e−a2(−s2∗)

− p2e
−a1

(
rs1
∗+rs2

∗
2

)
− p(1− p)e−a1

rs1
∗

2

− p(1− p)e−a1
(
rs2
∗

2
−s1∗

)
− (1− p)2e−a1(−s1∗) ≥ 0

Then expanding and rearranging the terms of preceding expression results in:

pp

(
e
−a2

(
rs1
∗+rs2

∗
2

)
− e−a1

(
rs1
∗+rs2

∗
2

))
︸ ︷︷ ︸

≥0

+(1− p)p
(
e−a2

rs2
∗

2 − e−a1
rs1
∗

2

)
︸ ︷︷ ︸

=0

+ p(1− p)
(
e
−a2

(
rs1
∗

2
−s2∗

)
− e−a1

(
rs2
∗

2
−s1∗

))
︸ ︷︷ ︸

≥0

+(1− p)2
(
e−a2(−s2∗) − e−a1(−s1∗)

)︸ ︷︷ ︸
=0
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Observe that above inequality holds by assumption a2 ≤ a1 and equality holds when

a1 = a2.

Proof : (Proposition 6.1) Assume N={1,2} and a1, a2 be the risk aversion levels. Let

(p,r) values satisfy the condition pr > (1− p). When both agent invest the positive

Nash Equilibrium investment amount s∗ = (s1
∗, s2

∗) where p take sufficiently high

values, the utility of agent-1 equal to:

U1
ES(s1

∗, s2
∗) =− pp · e

(
−a1·r·ln( rp

(1−p))·
1

(1+r)
·
(

1
a1

+ 1
a2

))

− p(1− p) · e
(
−a1·ln( rp

(1−p))·
1

(1+r)
·
(
r
a1
− 1
a2

))

− (1− p)p · e
(
−a1·ln( rp

(1−p))·
1

(1+r)
·
(
− 1
a1

+ r
a2

))

− (1− p)(1− p)e
(
a1·ln( rp

(1−p))·
1

(1+r)
·
(

1
a1

+ 1
a2

))

where si∗ = ln
(

rp
(1−p)

)
· 2
ai(1+r)

for i=1,2.

Taking the first derivative of U1
ES(s1

∗, s2
∗) w.r.t. a1 yields;

∂U1
ES(s1

∗, s2
∗)

∂a1

= ppe−a1r(σ3+σ2) (r(σ3 + σ2)− σ1)− (1− p)2σ4e
a1(σ3+σ2)

a2(r + 1)

− (1− p)pσ4e
a1(σ2−σ1)

a2(r + 1)
+

(1− p)pσ4re
a1
(
σ3−

(
rσ4

a2(r+1)

))
a2(r + 1)

where σ1 = rσ4
a1(r+1)

, σ2 = σ4
a2(r+1)

, σ3 = σ4
a1(r+1)

and σ4 = ln
(

rp
1−p

)
. Then,

∂U1
ES(s1∗,s2∗)
∂a1

= 0 (and by symmetry ∂U2
ES(s1∗,s2∗)
∂a2

= 0) where a1 = a2.

50



Moreover, the second derivative of U1
ES(s1

∗, s2
∗) w.r.t. a1 yields;

∂2U1
ES(s1

∗, s2
∗)

∂a1
2

=
−pea1(σ3−σ2)σ5

2(1− p)
σ1

− ea1(σ4+σ3)σ5
2(1− p)2

σ1

− p2e−a1r(σ4+σ3)(r (σ4 + σ3)− σ2)2 − pr2ea1(σ4−rσ3)σ5
2(1− p)

σ1

where σ1 = a2
2(1 + r)2, σ2 = rσ5

a1(r+1)
, σ3 = σ5

a2(r+1)
, σ4 = σ5

a1(r+1)
, σ5 = ln

(
rp

1−p

)
.

Observe that, ∂
2U1

ES(s1∗,s2∗)
∂a12

< 0 (and by symmetry ∂2U2
ES(s1∗,s2∗)
∂a22

< 0). Then

U1
ES(s1

∗, s2
∗) has a unique maximum at a1 = a2.

Finally, to prove, agents with identical risk aversion levels a1 = a2 = ai are better off

in the 2-agent coalition compared to the individual case, we must show that;

|UiFL(si
∗)| − |U2

i
ES

(s1
∗, s2

∗)| = (1− p)eai
ln( rp

(1−p))
ai(1+r) + pe

−air
ln( rp

(1−p))
ai(1+r)

− p2e
−air

2

(
ln( rp

(1−p))
(

2
ai(1+r)

)
+ln( rp

(1−p))
(

2
ai(1+r)

))

− (1− p)pe
−ai
2

(
r ln( rp

(1−p))
(

2
ai(1+r)

)
−ln( rp

(1−p))
(

2
ai(1+r)

))

− (1− p)pe
−ai
2

(
− ln( rp

(1−p))
(

2
ai(1+r)

)
+r ln( rp

(1−p))
(

2
ai(1+r)

))

− (1− p)2e
ai
2

(
ln( rp

(1−p))
(

2
ai(1+r)

)
+ln( rp

(1−p))
(

2
ai(1+r)

))
> 0

where UiFL(si
∗) is i-th agent’s individual utility level and U2

i
ES

(s1
∗, s2

∗) is i-th

agent’s utility level in 2-agent coalition under Equal Sharing rule. Then, since
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1 + x− y ≤ ex−y, ∀ x,y ∈ R, it’s enough to show that,

(1− p)
(

1 +
ln (rp)

(r + 1)
− ln (1− p)

(r + 1)

)
+ p

(
1 +

r ln (1− p)
(r + 1)

− r ln (pr)

(r + 1)

)
− p(1− p)

(
1 +

(1− r) ln (rp)

(1 + r)
− (1− r) ln (1− p)

(1 + r)

)
− p(1− p)

(
1 +

(1− r) ln (rp)

(1 + r)
− (1− r) ln (1− p)

(1 + r)

)
− p2

(
1− 2r ln (rp)

(1 + r)
+

2r ln (1− p)
(1 + r)

)
− (1− p)2

(
1 +

2 ln (rp)

(1 + r)
− 2 ln (1− p)

(1 + r)

)
> 0

Then this inequality reduces to the following inequality which is strictly bigger than

0:

(pr + p− 1) ln

(
rp

(1− p)

)
1

(1 + r)
> 0

Proof : (Lemma 6.1.1.)Assume a1 < a2. then,

Claim 1: ∂UES1 (s1,s2∗)

∂s1
= a1p2re−a1r((s1/2)+σ1)

2
− a1(1−p)2ea1((s1/2)+σ1)

2
+

a1p(p−1)e
a1((s1/2)−

rσ2
a2(r+1)

)

2
− a1pr(p−1)e

−a1((rs1/2)−
σ2

a2(r+1)
)

2
is strictly bigger than 0 for

sufficiently high values of p, for any r ∈ (0, 1) and for s2
∗ < s1 < s1

∗ values where

σ1 = σ2
a2(r+1)

and σ2 = ln
(

pr
1−p

)
.

Pf: By assumption, s1
∗ = ln

(
rp

(1−p)

)
· 2
a1(1+r)

> s1. Then,
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ln

(
rp

(1− p)

)
>
a1s1

2
+
a1rs1

2

⇔ ln(pr) + ln
(
e
−a1rs1

2

)
+ ln

(
pe−a1rσ1 + (1− p)ea1σ1

)
> ln(1− p) + ln

(
e
a1s1

2

)
+ ln

(
pe−a1rσ1 + (1− p)ea1σ1

)
⇔ ln

(
p2re−a1r(

s1
2

+σ1) + (1− p)pre−a1(
rs1
2
−σ1)

)
> ln

(
(1− p)pea1r(

s1
2
−rσ1) + (1− p)2ea1(

s1
2

+σ1)
)

⇔ ∂UES
1 (s1, s2

∗)

∂s1

> 0

Claim 2: ∂UES2 (s1,s2∗)

∂s1
= a2p2re−a2r((s1/2)+σ1)

2
− a2(1−p)2ea2((s1/2)+σ1)

2
+

a2p(p−1)e
a2((s1/2)−

rσ2
a2(r+1)

)

2
− a2pr(p−1)e

−a2((rs1/2)−
σ2

a2(r+1)
)

2
is strictly smaller than 0 for

sufficiently high values of p, for any r ∈ (0, 1) and for s2
∗ < s1 < s1

∗ values where

σ1 = σ2
a2(r+1)

and σ2 = ln pr
1−p .

Pf: By assumption, s2
∗ = ln

(
rp

(1−p)

)
· 2
a2(1+r)

< s1. Then,

ln

(
rp

(1− p)

)
<
a2s1

2
+
a2rs1

2

⇔ ln(pr) + ln
(
e
−a2rs1

2

)
+ ln

(
pe−a2rσ1 + (1− p)ea2σ1

)
< ln(1− p) + ln

(
e
a2s1

2

)
+ ln

(
pe−a2rσ1 + (1− p)ea2σ1

)
⇔ ln

(
p2re−a2r(

s1
2

+σ1) + (1− p)pre−a2(
rs1
2
−σ1)

)
< ln

(
(1− p)pea2r(

s1
2
−rσ1) + (1− p)2ea2(

s1
2

+σ1)
)

⇔ ∂UES
2 (s1, s2

∗)

∂s1

< 0

Claim 3: ∂UES1 (s1∗,s2)

∂s2
= a1p2re

−a1r((s2/2)+σ1)

2
− a1(1−p)2ea1((s2/2)+σ1)

2
+

a1p(p−1)e
a1((s2/2)−

rσ2
a1(r+1)

)

2
− a1pr(p−1)e

−a1((rs2/2)−
σ2

a1(r+1)
)

2
is strictly higher than 0 for
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sufficiently high values of p, for any r ∈ (0, 1) and for s2
∗ < s1 < s1

∗ values where

σ1 = σ2
a1(r+1)

and σ2 = ln pr
1−p .

Pf: By assumption, s1
∗ = ln

(
rp

(1−p)

)
· 2
a1(1+r)

> s2.Then,

ln

(
rp

(1− p)

)
>
a1rs2

2
+
a1s2

2

⇔ ln(pr) + ln
(
e
−a1rs2

2

)
+ ln

(
pe−a1rσ1 + (1− p)ea1σ1

)
> ln(1− p) + ln

(
e
a1s2

2

)
+ ln

(
pe−a1rσ1 + (1− p)ea1σ1

)
⇔ ln

(
p2re−a1r(

s2
2

+σ1) + (1− p)pre−a1(
rs2
2
−σ1)

)
> ln

(
(1− p)pea1(

s2
2
−rσ1) + (1− p)2ea1(

s2
2

+σ1)
)

⇔
∂UES

1 (s1
∗), s2

∂s2

> 0

Claim 4: ∂U2(s1∗,s2)

∂s2
= a2p2re

−a2r((s2/2)+σ1)

2
− a2(1−p)2ea2((s2/2)+σ1)

2
+

a2p(p−1)e
a2((s2/2)−

rσ2
a1(r+1)

)

2
− a2pr(p−1)e

−a2((rs2/2)−
σ2

a2(r+1)
)

2
is strictly smaller than 0 for

sufficiently high values of p, for any r ∈ (0, 1) and for s2
∗ < s2 < s1

∗ values where

σ1 = σ2
a1(r+1)

and σ2 = ln pr
1−p .

Pf: By assumption, s2
∗ = ln

(
rp

(1−p)

)
· 2
a2(1+r)

< s2. Then,

ln

(
rp

(1− p)

)
<
a2rs2

2
+
a2s2

2

⇔ ln(pr) + ln
(
e
−a2rs2

2

)
+ ln

(
pe−a2rσ1 + (1− p)ea2σ1

)
< ln(1− p) + ln

(
e
a2s2

2

)
+ ln

(
pe−a2rσ1 + (1− p)ea2σ1

)
⇔ ln

(
p2re−a2r(

s2
2

+σ1) + (1− p)pre−a2(
rs2
2
−σ1)

)
< ln

(
(1− p)pea2(

s2
2
−rσ1) + (1− p)2ea2(

s2
2

+σ1)
)

⇔
∂UES

2 (s1
∗), s2

∂s2

< 0
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Proof : (Proposition 6.2) Let p and r parameter values satisfy the condition

pr + p > 1, N={1,2} and a1 = a2 = ai be the risk aversion levels. To prove, agents

with identical risk aversion levels are better off in the 2-agent coalition, for i ∈ N we

must show that;

|UiFL(si
∗)| − |UiLS(s1

∗, s2
∗)| = (1− p)eai

ln( rp
(1−p))

ai(1+r) + pe
−rai

ln( rp
(1−p))

ai(1+r)

− p(1− p)e
ai

ln( 2rp
(1−p))

2ai( 1
2+r) − p(1− p)e

ai

(
ln( 2rp

(1−p))
2ai( 1

2+r)
−
r ln( 2rp

(1−p))
ai( 1

2+r)

)

− p2e
−rai

ln( 2rp
(1−p))

ai( 1
2+r) − (1− p)2e

ai
ln( 2rp

(1−p))
ai( 1

2+r) > 0

where UiFL(si
∗) is i-th agent’s individual utility level and UiLS(s1

∗, s2
∗) is i-th

agent’s utility level in 2-agent coalition under Loss Sharing rule. Then, since

1 + x− y ≤ ex−y, ∀ x,y ∈ R, whenever a1 = a2, it’s enough to show that,

(1− p)
(

1 +
ln (rp)

r + 1
− ln (1− p)

r + 1

)
+ p

(
1 +

r ln (1− p)
r + 1

− r ln (pr)

r + 1

)
− p(1− p)

(
1 +

ln (2rp)

2
(

1
2

+ r
) − ln (1− p)

2
(

1
2

+ r
))

− p(1− p)

(
1 +

(1− 2r) ln (2rp)

2
(

1
2

+ r
) − (1− 2r) ln (1− p)

2
(

1
2

+ r
) )

− p2

(
1 +

r ln (1− p)(
1
2

+ r
) − r ln (2pr)(

1
2

+ r
) )− (1− p)2

(
1 +

ln (2pr)(
1
2

+ r
) − ln (1− p)(

1
2

+ r
) )

> 0
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This inequality reduces to the following inequality which is strictly bigger than 0:

(1− pr − p) ln (rp)

r + 1︸ ︷︷ ︸
>0

+ (pr + p− 1)︸ ︷︷ ︸
>0

(
ln (1− p)
r + 1

− ln (1− p)(
1
2

+ r
) )︸ ︷︷ ︸

>0

+ (pr + p− 1)
ln (2rp)(

1
2

+ r
)︸ ︷︷ ︸

>0

> 0

Then, |UiFL(s1
∗)| − |UiLS(s1

∗, s2
∗)| > 0, when a1 = a2. Moreover, we must show

that there is no other stable group formation structure, in which agents with different

risk aversion levels are better off. Assume there exist a group formation {{a1,a2}}

where a1 < a2 such that 1st and 2nd agent are better of compared to the group

formations {{a1,a1}} and {{a2,a2}}, respectively. First, since,

∂U1
LS(s1,s2)
∂a2

= a1e
a1

(
σ3

2a1(r+(1/2))
+σ2

)
σ3(1−p)2

σ1
+ a1p(1−p)e

a1

(
− rσ3
a1(r+(1/2))

+σ2

)
σ3

σ1
> 0 where

σ1 = 2a2
2(r + (1/2)), σ2 = σ3

2a2(r+(1/2))
and σ3 = ln

(
2pr
1−p

)
, relatively risk loving 1st

agent will be strictly better of whenever his partner’s risk aversion level increase.

However, relatively risk averse agent will be worse off in such group formation; since

∂U2
LS(s1,s2)
∂a2

= −p(1−p)e
a2

(
σ1
σ2
− rσ1
a2(r+(1/2))

)
σ1

σ2
− (1−p)2e

a2

(
σ1
σ2

+
σ1

2a2(r+(1/2))

)
σ1

σ2
< 0,

σ2 = 2a1(r + (1/2)), where σ1 = ln
(

2pr
1−p

)
. Then this lead to unstable group

formation structure. Secondly, since,

∂U2
LS(s1,s2)
∂a1

= a2e
a2

(
σ3

2a2(r+(1/2))
+σ2

)
σ3(1−p)2

σ1
+ a2p(1−p)e

a2

(
− rσ3
a2(r+(1/2))

+σ2

)
σ3

σ1
> 0, where

σ1 = 2a1
2(r + (1/2)), σ2 = σ3

2a1(r+(1/2))
and σ3 = ln

(
2pr
1−p

)
, 2nd agent’s utility will

increase if his partner’s risk aversion level increase. But in this case, 1st agent’s utility

will decrease since;
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∂U1
LS(s1,s2)
∂a1

= −p(1−p)e
a1

(
σ1
σ2
− rσ1
a1(r+(1/2))

)
σ1

σ2
− (1−p)2e

a1

(
σ1
σ2

+
σ1

2a1(r+(1/2))

)
σ1

σ2
< 0, where

σ2 = 2a2(r + (1/2)), σ1 = ln
(

2pr
1−p

)
. Then, we have contradiction.

Proof : (Proposition 6.1.2.)Assume a1 < a2. then, Claim 1: ∂ULS1 (s1,s2∗)

∂s1
=

a1p
2re−a1rs1 − −a1(1−p)2ea1((s1/2)+σ1)

2
− a1p(1−p)ea1((s1/2)

2
+ a1pr(1− p)e−a1(rs1−σ1) is

strictly bigger than 0 for sufficiently high values of p, for any r ∈ (0, 1) and for

s2
∗ < s1 < s1

∗ values where and σ1 = ln
(

2pr
1−p

)
1

2a2(r+(1/2))
.

Pf: By assumption, s1
∗ = ln

(
2rp

(1−p)

)
1

a1(r+(1/2))
> s1. Then,

ln

(
2a1rp

a1(1− p)

)
>
a1s1

2
+ a1rs1

⇔ ln(a1pr) + ln
(
e−a1rs1

)
+ ln (p+ (1− p)ea1σ1)

> ln

(
a1(1− p)

2

)
+ ln

(
e
a1s1

2

)
+ ln (p+ (1− p)ea1σ1)

⇔ ln
(
a1p

2re−a1rs1 + a1(1− p)pre−a1(rs1−σ1)
)

> ln

(
a1(1− p)pe

a1s1
2

2
+
a1(1− p)2ea1(

s1
2

+σ1)

2

)

⇔ ∂ULS
1 (s1, s2

∗)

∂s1

> 0

Claim 2: ∂ULS2 (s1,s2∗)

∂s1
< 0. Since, it’s obvious that

∂ULS2 (s1,s2∗)

∂s1
= −a2(1−p)pea2(

s1
2 −rσ1)

2
− a2(1−p)2ea2(

s1
2 +

σ1
2 )

2
< 0, where

σ1 = ln
(

2pr
1−p

)
1

a2(r+(1/2))
.

Claim 3: ∂ULS2 (s1∗,s2)

∂s2
=

a2p
2re−a2rs2 − a2(1−p)2ea2(s2/2)+σ1)

2
− a2p(1−p)e

a2s2
2

2
+ a2pr(1− p)e−a2(rs2−σ1) is

strictly smaller than 0 for sufficiently high values of p, for any r ∈ (0, 1) and for

s2
∗ < s2 < s1

∗ values where and σ1 = ln
(

2pr
1−p

)
1

2a1(r+(1/2))
.

Pf: By assumption, s2
∗ = ln

(
2rp

(1−p)

)
1

a2(r+(1/2))
< s2. Then,
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ln

(
2a2rp

a2(1− p)

)
<
a2s2

2
+ a2rs2

⇔ ln(a2pr) + ln
(
e−a2rs2

)
+ ln (p+ (1− p)ea2σ1)

< ln

(
a2(1− p)

2

)
+ ln

(
e
a2s2

2

)
+ ln (p+ (1− p)ea2σ1)

⇔ ln
(
a2p

2re−a2rs2 + a2(1− p)pre−a2(rs2−σ1)
)

< ln

(
a2(1− p)pe

a2s2
2

2
+
a2(1− p)2ea2(

s2
2

+σ1)

2

)

⇔
∂ULS

2 (s1
∗, s2)

∂s2

< 0

Claim 4: ∂ULS1 (s1∗,s2)

∂s2
< 0. Since, it’s obvious that

∂ULS1 (s1∗,s2)

∂s2
= −a1(1−p)pea1(

s2
2 −rσ1)

2
− a1(1−p)2ea1(

s2
2 +

σ1
2 )

2
< 0, where

σ1 = ln
(

2pr
1−p

)
1

a1(r+(1/2))
.

Proof : (Proposition 6.3) Let p and r parameter values satisfy the condition

pr > 2(1− p), N={1,2} and a1 = a2 = ai be the risk aversion levels. To prove,

agents with identical risk aversion levels are strictly better off in the 2-agent coalition,

for i ∈ N we must show that;

|UiFL(si
∗)| − |UiPS(s1

∗, s2
∗)| = (1− p)e

ai

(
ln( rp

(1−p))
ai(1+r)

)
+ pe

−rai

(
ln( rp

(1−p))
ai(1+r)

)

− p(1− p)e
ai

(
−rln( rp

2(1−p))
2ai(

r
2+1)

)
− p(1− p)e

ai

(
ln( rp

2(1−p))
ai(

r
2+1)

−
r ln( rp

2(1−p))
2ai(

r
2+1)

)

− p2e
ai

(
−r

ln( rp
2(1−p))

ai(
r
2+1)

)
− (1− p)2e

ai

(
ln( rp

2(1−p))
ai(

r
2+1)

)
> 0
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where UiFL(si
∗) is i-th agent’s individual utility level and UiPS(s1

∗, s2
∗) is i-th

agent’s utility level in 2-agent coalition under Profit Sharing rule. Since

1 + x− y ≤ ex−y, ∀ x,y ∈ R, it’s enough to show that;

(1− p)
(

1 +
ln (rp)

r + 1
− ln (1− p)

r + 1

)
+ p

(
1 +

r ln (1− p)
r + 1

− r ln (pr)

r + 1

)
− p(1− p)

(
1 +

r ln (2(1− p))
2
(
r
2

+ 1
) − r ln (pr)

2
(
r
2

+ 1
))

− p(1− p)
(

1 +
(

1− r

2

) ln pr

( r
2

+ 1)
−
(

1− r

2

) ln (2(1− p))
( r

2
+ 1)

)
− p2

(
1 +

r ln (2(1− p))(
r
2

+ 1
) − r ln (pr)(

r
2

+ 1
))

− (1− p)2

(
1 +

ln (pr)(
r
2

+ 1
) − ln (2(1− p))(

r
2

+ 1
) )

> 0

This inequality reduces to the following expression which is strictly bigger than 0:

2 (pr + p− 1)︸ ︷︷ ︸
>0

(
ln(pr)− ln 2− ln(1− p)

(r + 2)

)
︸ ︷︷ ︸

>0

+ (pr + p− 1)︸ ︷︷ ︸
>0

(
ln(pr)− ln(1− p)

(r + 1)

)
︸ ︷︷ ︸

>0

Then, |UiFL(s1
∗, s2

∗)| − |UiPS(s1
∗, s2

∗)| > 0, when a1 = a2. Moreover, we must

show that there is no other stable group formation structure, in which agents with

different risk aversion levels are better off. Assume there exist a group formation

{{a1,a2}}, where a1 < a2 such that 1st and 2nd agent are better of compared to the

group formations {{a1,a1}} and {{a2,a2}}, respectively. Firstly, more risk averse

agent’s utility strictly increases as he form a group with relatively risk seeking partner.
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Since, ∂U2
PS(s1,s2)
∂a1

= −a2p(1−p)rσ1e
a2

(
σ1

a2((r/2)+1)
− rσ1

2a1((r/2)+1)

)
σ2

−a2p2rσ1e
−ra2

(
σ1

2a1((r/2)+1)
+

σ1
2a2((r/2)+1)

)
σ2

< 0, where σ1 = ln
(

pr
2(1−p)

)
and

σ2 = 2a1
2((r/2) + 1). However, as difference between risk aversion level increases

for the sake of more risk averse agent, this increase will harm relatively risk loving

agent; since,

∂U1
PS(s1,s2)
∂a1

= p2e−a1rσ1
(
rσ1 − rσ2

2a1((r/2)+1)

)
+ p(1−p)rσ2e

a1

(
σ2

a1((r/2)+1)
− rσ2

2a2((r/2)+1)

)
2a2((r/2)+1)

> 0,

where σ1 = σ2
a1((r/2)+1)

+ σ2
2a2((r/2)+1)

and σ2 = ln
(

pr
2(1−p)

)
. Secondly, relatively risk

loving agent’s utility increases as he form a group with less risk averse agent. Since:

∂U1
PS(s1,s2)
∂a2

=

−a1p(1−p)rσ1e
a1

(
σ1

a1((r/2)+1)
− rσ1

2a2((r/2)+1)

)
σ2

− a1p2rσ1e
−ra1

(
σ1

2a1((r/2)+1)
+

σ1
2a2((r/2)+1)

)
σ2

< 0, where

σ1 = ln
(

pr
2(1−p)

)
and σ2 = 2a2

2((r/2) + 1). But, such group formation will strictly

harm relatively risk averse agent. Since;

∂U2
PS(s1,s2)
∂a2

= p2e−a2rσ1
(
rσ1 − rσ2

2a2((r/2)+1)

)
+ p(1−p)rσ2e

a2

(
σ2

a2((r/2)+1)
− rσ2

2a1((r/2)+1)

)
2a1((r/2)+1)

> 0,

where σ1 = σ2
a1((r/2)+1)

+ σ2
2a2((r/2)+1)

and σ2 = ln
(

pr
2(1−p)

)
. Then, we have

contradiction.

Proof : (Lemma 6.1.3)Assume a1 < a2. then, Claim 1. ∂UPS1 (s1,s2∗)

∂s1
=

−a1p(1− p)ea1(s1−rσ) − a1(1− p)2ea1s1 + a1p2re
−a1r( s12 +σ)

2
+ −a1p(1−p)re(

−a1rs12 )
2

is

strictly bigger than 0 for sufficiently high values of p, for any r ∈ (0, 1) and for

s2
∗ < s1 < s1

∗ values where and σ = ln
(

pr
2(1−p)

)
1

2a2(1+(r/2))
.

Pf: By assumption, s1
∗ = ln

(
rp

2(1−p)

)
1

a1(1+(r/2))
> s1. Then,
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ln

(
a1rp

2a1(1− p)

)
>
a1rs1

2
+ a1s1

⇔ ln
(a1pr

2

)
+ ln

(
e
−a1rs1

2

)
+ ln

(
(1− p) + pe−a1rσ

)
> ln(a1(1− p)) + ln

(
ea1s1

)
+ ln

(
(1− p) + pe−a1rσ

)
⇔ ln

(
a1p

2re−a1r(
s1
2

+σ)

2
+
a1p(1− p)re(

−a1rs1
2 )

2

)

> ln
(
a1p(1− p)ea1(s1−rσ) + (1− p)2a1e

a1s1
)

⇔ ∂UPS
1 (s1, s2

∗)

∂s1

> 0

Claim 2. ∂UPS2 (s1,s2∗)

∂s1
> 0. Since, it’s obvious that

∂UPS2 (s1,s2∗)

∂s1
= a2p2re

−a2r( s12 +σ2 )
2

+ a2pr(1−p)e
a2( rs12 −σ)

2
> 0, where

σ = ln
(

pr
2(1−p)

)
1

a2(1+(r/2))
.

Claim 3. ∂UPS2 (s1∗,s2)

∂s2
=

−a2p(1− p)ea2(s2−rσ) − a2(1− p)2ea2s2 + a2p2re
−a2r(

s2
2 +σ)

2
+ a2p(1−p)re

(−a2rs2
2

)
2

is

strictly smaller than 0 for sufficiently high values of p, for any r ∈ (0, 1) and for

s2
∗ < s2 < s1

∗ values where and σ = ln
(

pr
2(1−p)

)
1

2a1(1+(r/2))
.

Pf: By assumption, s2
∗ = ln

(
rp

2(1−p)

)
1

a2(1+(r/2))
< s2. Then,
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ln

(
a2rp

2a2(1− p)

)
<
a2rs2

2
+ a2s2

⇔ ln
(a2pr

2

)
+ ln

(
e
−a2rs2

2

)
+ ln

(
(1− p) + pe−a2rσ

)
< ln(a2(1− p)) + ln (ea2s2) + ln

(
(1− p) + pe−a2rσ

)
⇔ ln

a2p
2re−a2r(

s2
2

+σ)

2
+
a2p(1− p)re

(−a2rs2
2

)
2


< ln

(
a2p(1− p)ea2(s2−rσ) + (1− p)2a2e

a2s1
)

⇔
∂UPS

2 (s1
∗, s2)

∂s2

< 0

Claim 4. ∂UPS1 (s1∗,s2)

∂s2
> 0. Since, it’s obvious that

∂UPS1 (s1∗,s2)

∂s2
= a1p2re

−a1r(
s2
2 +σ2 )

2
+ a1p(1−p)re

−a1(
rs2
2 −σ)

2
> 0, where

σ = ln
(

pr
2(1−p)

)
1

a1(1+(r/2))
.
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