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ABSTRACT 

Substitution Elasticities in an Energy-Augmented CES Production Function: 

An Empirical Analysis for Turkey 

 

Energy is an undebatable key element in today’s modern world. Whether it is the 

residential sector, services sector or the industry, the role of energy in our lives is 

highly important. This importance gets only magnified if energy is not produced 

domestically in the required amounts and therefore needs to be imported at highly set 

prices, as it is the case for Turkey. All these factors together bring about the question 

on how dependent on energy the production process for the Turkish economy is. A 

key parameter for the assessment of this dependency, moreover for the interpretation 

of the role of energy in the production process, is the elasticity of substitution. 

 The aim of this thesis is to estimate a production function for Turkey, which 

takes capital, labor and energy as input factors. This production function with its 

parameters will give insights about the elasticity of substitution of capital, labor and 

energy. The estimations are carried out on a dataset for the entire Turkish economy 

covering a time period of 27 years. Due to the differences in technological 

efficiencies and production structures between countries, there is a need for the 

adaptation of global estimations on country levels, and the results provide strong 

evidence supporting the need for country-specific estimations of production 

functions. Estimated values present relatively higher elasticity of substitution values 

for Turkey, when compared with values from studies performed on a group of 

countries. 
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ÖZET 

Enerji Eklemeli Sabit Esneklik Üretim Fonksiyonunun İkame Esneklikleri: 

Türkiye Üzerine Deneysel Çalışma 

 

Günümüz dünyasında enerji tartışılmaz temel bir öğedir. Konut sektörü, hizmet 

sektörü ve sanayi fark etmeksizin, enerjinin hayatlarımızdaki rolü çok önemlidir. 

Yurt içi enerji üretiminin oluşan talebi karşılayamaması ve enerjini yüksek fiyatlarda 

ithal edilmesi durumunda, Türkiye için söz konusu olduğu gibi, bu önem daha da 

artmaktadır. Tüm bu etkenler, Türkiye ekonomisinin üretimde enerjiye ne derecede 

bağlı olduğu sorusunu gündeme getirmektedir. Bu bağlılığın ölçülmesi, daha doğrusu 

üretim sürecinde enerjinin rolünün anlaşılması için, anahtar gösterge ikame 

esnekliğidir. 

 Bu tezin amacı Türkiye için sermaye, işgücü ve enerjiyi girdi olarak alan bir 

üretim fonksiyonunun hesaplanmasıdır. Bu üretim fonksiyonu içinde barındırdığı 

parametreler ile beraber sermaye, işgücü ve enerjinin elastikiyetlerine ilişkin bilgi 

verecektir. Hesaplamalar Türkiye ekonomisi üzerine 27 yılı kapsayan bir veri seti ile 

gerçekleştirilmiştir. Ülkeler arasında teknolojik verim ve üretim süreleri anlamında 

farklılıklar olabileceğinden ötürü, global düzeyde yapılan geniş çaplı hesaplamaların 

ve araştırmaların ülke seviyelerine uyarlanmaları gerekmektedir. Bu tez kapsamında 

elde edilen sonuçlar bu görüşü destekleyici deliller ortaya koymaktadır. Türkiye için 

elde edilen ikame elastikiyeti değerleri, birkaç ülkeden oluşturulmuş gruplar üzerinde 

yapılan araştırmalarda elde edilen değerlere kıyasla daha yüksek çıkmaktadır. 
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CHAPTER 1 

INTRODUCTION 

 

The role of energy in the production process is highly important for countries which 

have high budget deficits arising among others from energy imports (IEA, 2016). 

Unfortunately, Turkey is one of these countries. The latest International Energy 

Agency (IEA) country review on Turkey states that Turkey is highly dependent on 

oil and gas imports as only 24.8% of energy supply is met by domestic production. 

Total supply of energy that is consumed domestically (TPES) is the lowest for 

Turkey among all IEA members with 1.7 tons of oil-equivalent per capita in 2015, in 

comparison to the IEA average of 4.5 tons of oil-equivalent per capita (IEA, 2016). 

With a highly import dependent situation in terms of energy trade dynamics, the 

assessment of the role of energy in the production process becomes essential for 

potential thorough policy analyses and projections. 

While neo-classical capital–labor aggregate production functions do not take 

energy as an input factor, due to the view of energy as an intermediate product, 

energy crises throughout history have emphasized the role of energy in economic 

growth. This led to the inclusion of energy into the production function by some 

researchers (Brockway, Heun, Santos, Barrett, 2017). Indeed, Brockway et al. (2017) 

point out that the view of energy as output of capital and labor can be weakened 

through the claim that capital cannot be made without labor either, but still it is not 

regarded as an intermediate product. Therefore, nowadays, besides labor and capital, 

energy constitutes an important input factor in the production process. 
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With the increased amount of research in the field of energy and trade, many 

countries have developed their own energy trade modelling programs. The Energy 

Modelling Forum, for instance, under the body of the Stanford University has been 

among the institutions contributing to the development of the grounds for energy-

economy research since its establishment in 1976. Alan S. Manne has developed in 

1977 the model summarized in the paper “ETA-MACRO: A model of energy-

economy interactions” where energy and economy interactions are linked (Manne, 

1978). Since then, various models have been developed and are still being developed 

to analyze the energy trade in terms of raw material to end-product (Reuter, Kuehner, 

& Wohlgemuth, 1996). In general, Process Engineering (PE) Models, Computable 

General Equilibrium (CGE) Models, Macroeconomic Growth (MG) Models and 

Aggregate Optimization (AO) Models are at the heart of the methodology of 

analyses focusing on energy trade. CGE models are commonly used in studies trying 

to asses impacts of various policies, particularly focusing on the energy-economy 

linkage (Bergman, 2005). While on the trade side, these models are tools providing 

information about the implications of trade dynamics, the measure in the production 

process revealing information about the relationship between energy and non-energy 

inputs is the elasticity of substitution, which is a key parameter for economic and 

policy analysis. Specifically, elasticity of substitution shows to what degree two 

inputs can be substitutes for one another (Brockway et al., 2017). The calculation of 

this parameter is done from the production function under focus. As it is identified by 

Koesler and Schymura (2015), any policy-oriented numerical model must pay 

attention to the elasticities, because they are the key parameters determining 

comparative static behavior. 
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While inputs and outputs are similar for some countries, technological 

development levels, capital value shares and energy efficiencies can cause wide 

variations between some others. For example, while the adjusted labor share for 

selected G20 countries is at approximately 0.55, as it will be further elaborated on in 

this study, this value is different for Turkey (ILO, & OECD, 2015). This fact 

together with other country-specific differences create a need for the estimation of 

customized substitution elasticities obtained based on country specific data. 

In the literature, there are very few studies concentrating on Turkey. The most 

recent and relevant study is by Andic (2016), where a normalized constant elasticity 

of substitution (CES) form production function is estimated for Turkey. Andic takes 

solely capital and labor as inputs and does not include energy. This makes the results 

obtained in that study inapplicable to energy oriented policy analyses and studies. 

Besides this recent research on Turkey, there is no literature on the estimation of a 

production function with capital, labor and energy as input factors. 

At this junction, this thesis estimates the customized substitution elasticities 

for Turkey using a production function in the CES form with Hicks-neutral 

technology and constant returns to scale using data from 1988 to 2014. The choice of 

production function being of the CES form has been made because CES functions 

are a more generalized type of production function and do not come with 

assumptions unlike the Cobb-Douglas and Leontief functions (Besanko and 

Braeutigam, 2005). Of course, the inclusion of energy into the production function 

can be done in different ways. For example, while Bosetti, Carraro, Galeotti, 

Massetti, and Tavoni prefer a (KL)E nesting structure (Bosetti, Carraro, Galeotti, 

Massetti, & Tavoni, 2006), where capital (K) and labor (L) are combined first and 

the composite is thereon combined with energy (E), Burniaux, Martin, Nicoletti, and 
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Oliveira-Martins use a (KE)L nesting structure (Burniaux, Martin, Nicoletti, and 

Oliveira-Martins, 1992). On the other hand, Shen and Whalley decide to adopt a 

(EL)K nesting structure in their study on China (Shen & Whalley, 2013). This thesis 

includes energy into the production function through widely used (KL)E nesting 

structure. 

 Moreover, there are numerous studies with a sectoral focus which aim to 

reveal elasticity parameters for those specific sectors as well as a general overview 

for the economy. While van der Werf (2008) uses the OECD International Sectoral 

Database, which has a detailed industry breakdown based on the ISIC Review 

categorization, for his study on elasticities, some other papers in the literature have a 

broader approach with fewer sectors, as in Blitzer, Cetin, and Manne (1970), with the 

title “A Dynamic Five-sector Model for Turkey, 1967-82”. The study by Kemfert 

and Welsch (2000) on Germany on the other hand uses both approaches, where two 

different data sets are considered: Aggregate time series data for the entire German 

industry and disaggregated time series data for seven different sectors. This study, 

however, avoids a sectoral approach and uses aggregated data for the entire Turkish 

economy. 

 To conclude, this study contributes to the literature by presenting a 

production function for the entire Turkish economy with capital, labor and energy as 

input. The thesis is structured as follows. After this introduction, Chapter 2 presents 

the existing literature on this field to better situate the importance of the analysis 

conducted for Turkey. Chapter 3 then explains the methodology adopted throughout 

this study and Chapter 4 introduces the data used for the case of Turkey. The 

empirical results are presented in Chapter 5, followed by a discussion and conclusion 

in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The study of production functions with three inputs dates back to the 1950s with 

Robert Merton Solow (Solow, 1956). The first applications of inserting energy as 

input factor into the production function follows within the following decade. A 

comprehensive study on the incorporation of energy into the production function was 

undertaken by Berndt and Wood (1975) who were the first to undertake an empirical 

study on estimating the elasticities of substitution between energy and non-energy 

inputs. The motivation in their study was to put together a research, which would 

give an understanding of consequences of higher priced energy inputs. 

 The establishment of the Energy Modelling Forum (EMF) in 1976 at the 

Stanford University was aimed at concentrating completely on the topic of “Energy 

and the Economy”, which was the name of their first study, and has been carrying 

out research on this field ever since (EMF, 1977). Manne, Mendelsohn and Richels 

(1995) contribute to the literature through their study, where they take capital (K), 

labor (L) and energy as input, yet additionally also separate electric (E) from non-

electric (N) energy. They apply a (KL)(EN) nesting structure, where the elasticity of 

substitution between the two input factor bundles is taken to be constant (Manne, 

Mendelsohn, & Richels, 1995). In their study, the elasticity of substitution between 

the (KL) and (EN) composites is taken as 0.4 on the basis of a “back casting” 

experiment for the USA, and this reference value is then maintained throughout their 

study for the USA and OECD countries. Gerlagh and Van der Zwan (2003), on the 

other hand, takes the same nesting structure but chooses to separate energy based on 
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its type into fossil (F) and non-fossil (N) fuels and uses a production function of the 

(KL)(FN) nesting structure. 

 An important model on energy and the economy is, among others, the 

Emissions Prediction and Policy Analysis (EPPA) Model by the Massachusetts 

Institute of Technology (MIT). The EPPA model has at its heart a production 

functions of the CES form, where two functions presented, one for the agricultural 

sector and one for the services, industrial transportation, energy intensive and other 

industries. What is common though in both functions is that capital and labor are 

nested first, and other inputs are then nested with this composite (Paltsev et al., 

2005). In this study, as in its prior versions, the estimations and calculations are done 

for the entire world economy with data from the Global Trade Analysis Project 

(GTAP) dataset developed by the Purdue University. 

 A country-specific study for the elasticity of substitution parameters in the 

production function is undertaken by Kemfert and Welsch (2000) for Germany. To 

estimate the substitution elasticities in the German industry, they develop two 

approaches, one with aggregate time series data for the entire German industry and 

one with disaggregated time series data for the chemical, stone and earth, non-ferrous 

metal, vehicles, food, and paper industries. They start with three different nesting 

structures (KE)L, (KL)E and (EL)K, and conclude that while for some sectors the 

(KL)E nest is more appropriate, for the entire German industry the (KE)L nest is the 

most useful nesting structure in contrast to the widely spread view (Kemfert & 

Welsch, 2000). 

 The approach regarding the estimation method has evolved over the time as 

well. Kmenta (1967) uses the Taylor expansion formula for the estimation of the 

production function. He obtains his approximation formula through taking the 
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logarithm of the CES function and accordingly applying a first-order Taylor series 

expansion to the logarithmized CES function. This approach has a generalized 

solution method for the CES function under different circumstances. It transforms 

the non-linear functional form of the CES function to a linear form and makes the 

use of simple least squares estimation possible. Following Kmenta (1967), Van der 

Werf (2008) tries to discover through a thorough study the optimal nesting structure 

given the three input factors capital, labor and energy. Unlike Kmenta (1967), his 

study uses a cost function based approach. Van der Werf finds out that based on 

industry level data on 12 OECD countries, the nesting structure where capital and 

labor are combined first, fits the data best, but at the same time, the nest where all 

three inputs are combined simultaneously cannot be rejected for most countries and 

industries. 

 The research mentioned so far on the estimation of production functions with 

more than two inputs have one thing in common: They use comprehensive price 

data, which is in some cases difficult to obtain. While obtaining data on sector prices 

can be a problem in the case of sector specific analysis, in the case of macro 

analyses, the aggregation of factors creates a need for a price index to be calculated, 

bringing with it the problem of choosing the most appropriate method out of a wide 

sea of indexation ways. Henningsen and Henningsen (2011) as well as Koesler and 

Schymura (2000) try to get around this problem by developing a non-linear least 

squares estimation method. Neither one of these two studies require extensive price 

data to be at hand. The method developed by Henningsen and Henningsen makes the 

estimation through the R package called micEconCES which they developed 

themselves. This R package contains various estimation methods including Kmenta’s 

Taylor series expansion for an appropriate type of function and others methods such 
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as the Levenberg-Marquardt for non-linear estimation cases (Henningsen and 

Henningsen, 2011). An important feature to this research is that it re-estimates the 

Kemfert and Welsch study using the Kmenta (1967) and various other 

approximations with the exact same data provided in the annex of Kemfert and 

Welsch (2000). The re-estimation results are in large deviations from the original 

results no matter which estimation and optimization method is used and no 

reasonable explanation could be found for this divergence. In this context, 

Henningsen and Henningsen (2011) conclude that linear approaches using the 

Kmenta approximation are not proper approaches for CES function estimation.  

Following Henningsen and Henningsen (2011), Koesler and Schymura 

contribute to the literature by applying the methods developed by Henningsen and 

Henningsen to the data retrieved from the World Input-Output Database (WIOD) 

with the goal of obtaining elasticities for the (((KL)E)M) nesting structure. Here, E 

stands for energy and M represents intermediate inputs, which can be used by 

researchers during their studies of various topics (Koesler & Schymura, 2015). Their 

data set covers 40 countries and 35 industries with detailed information on primary, 

secondary as well as tertiary sectors. Their analysis reveals that Cobb-Douglas and 

Leontief production functions should be rejected for the majority of sectors, just as 

Van der Werf (2008) found out, and provides a detailed set of substitution elasticities 

covering a wide sectoral breakdown. 

 All in all, even though there are some, such as Koesler and Schymura (2015) 

who claim that there are no substantial variations in substitution elasticities between 

regions, country specific research on various countries reveal that significant results 

for production functions based on country specific data can in some cases only be 

obtained through certain nesting ways. Su, Zhou, Nakagami, Ren, and Mu (2012) 
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start by estimating all three nesting forms of a capital, labor and energy composed 

CES function with the extension to the existing literature in the form of a relatively 

larger dataset. Since they focus on China, they approach their estimation with two 

subdivided periods, before and after China’s reform, more specifically, from 1953 to 

1978 and then from 1979 to 2006. Su et al. (2012) use the estimation method applied 

by Mishra (2006), which shows that for the loss function minimization the 

Differential Evolution (DE) and Repulsive Particle Swarm (RPS) methods 

outperform the other methods. As a result, Su et al. (2012) indicate that while all 

nesting structures are insignificant the only economically meaningful result can be 

obtained for the (KE)L nesting structure, where E represents energy. Shen and 

Whalley (2013) contribute to the literature through their working paper at the 

National Bureau of Economic Research (NBER) by taking the research by Su et al. 

(2012) and extending it to the extent that they use normalized CES production 

functions and perform grid search based optimization methods. Their results 

therefore turn out to have lower standard errors with statistically significant results 

for the (EL)K nesting structure. 

 A study on Turkey has been undertaken by Andic (2016) where the 

estimation of a normalized CES production function for Turkey is set as goal. Andic 

takes just capital and labor as inputs and does not include energy, at which point it 

diverges from the so far mentioned references as well as the research goal of this 

study. She employs a system approach and determines the elasticity of substitution 

and the total factor productivity. Besides this recent research on Turkey, there is no 

literature on the estimation of a production function with capital, labor and energy as 

input factors based on Turkish data. This study tries to fill this gap. 
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CHAPTER 3 

METHODOLOGY 

 

Production functions in general are categorized according to three criteria: 

technology, elasticity of substitution and returns to scale (Besanko and Braeutigam, 

2005). Technology can be incorporated into a production function in three different 

way: The Hicks-neutral technology, Harrod-neutral technology and Solow-neutral 

technology, which can also be referred to as factor augmenting, labor augmenting 

and capital augmenting respectively. Functions can have either constant or variable 

elasticity of substitution. And returns to scale can be decreasing, constant or 

increasing. The CES function can be regarded as a generalization for a production 

and does not make certain assumptions regarding the nature of the function, such as 

Cobb-Douglass and Leontief functions, which turn out to be not very appropriate 

production functions for many sectors as the study by Koesler and Schymura 

demonstrates (Koesler & Schymura, 2015). 

The production function estimated in this study is of the CES form with 

Hicks-neutral technology and constant returns to scale and is denoted as follows, 

𝑌 = 𝐴 [𝛼(𝐾𝐾𝑃𝑉𝑆𝐿1−𝐾𝑃𝑉𝑆)
𝜎−1

𝜎 + (1 − 𝛼)𝐸
𝜎−1

𝜎 ]

𝜎
𝜎−1

 

The dependent variable Y denotes output, whereas the independent variables K, L 

and E represent respectively capital, labor and energy. The parameters A, KPVS and 

σ stand for total factor productivity, capital value share and elasticity of (technical) 

substitution between the capital-labor bundle and energy inputs respectively. 

KPVS is calculated following the paper by Atiyas and Bakis (2013). While 

Atiyas and Bakis concentrate on the labor share (LS) and apply their notation 
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accordingly, our focus is on the capital value share. Hence, we apply the notation 

𝐿𝑆 = 1 − 𝐾𝑃𝑉𝑆 to their approach. The numerical value for KPVS is obtained using 

the below formula, 

1 − 𝐾𝑃𝑉𝑆 =
𝑊

(𝑌 − 𝑇)

1

(1 − 𝑧)
 

W denotes the compensation of employees, Y denotes GDP, T stands for net indirect 

taxes and z is an adjustment factor representing the share of self-employment in the 

labor. The adjustment created by multiplying with  
1

1−𝑧
  brings the assumption that 

the wage earned by self-employed people is equal to the wage earned by employees. 

 The method to solve the problem of estimating the production function at 

focus is the nonlinear least squares (NLS) regression. The non-linear solution to the 

estimation problem of the parameters, will come through the minimization of the 

following sum of squares, 𝑆(𝐴, 𝛼, ơ). 

𝑆(𝐴, 𝛼, ơ) =
1

2
∑ 𝑒𝑡

2

2014

𝑡=1988

  

𝑆(𝐴, 𝛼, ơ) =
1

2
∑ [𝑌𝑡 − 𝐴 [𝛼(𝐾𝑡

𝐾𝑃𝑉𝑆𝐿𝑡
1−𝐾𝑃𝑉𝑆)

𝜎−1
𝜎 + (1 − 𝛼)𝐸𝑡

𝜎−1
𝜎 ]

𝜎
𝜎−1

]

2014

𝑡=1988

 

Minimizing 𝑆(𝐴, 𝛼, ơ) means choosing the parameters A, α and ơ in such a 

way that the sum of squares of the error terms,𝑒𝑡, i.e. difference between the 𝑌𝑡 and 

the value for 𝐴 ∗ [𝛼(𝐾𝑡
𝐾𝑃𝑉𝑆𝐿𝑡

1−𝐾𝑃𝑉𝑆)
𝜎−1

𝜎 + (1 − 𝛼)𝐸𝑡

𝜎−1

𝜎 ]

𝜎

𝜎−1

 calculated with the 

iterated values for the parameters plugged in, will be minimized. For the case of this 

study, this maximization will be through the derivatives of 𝑆(𝐴, 𝛼, ơ) with respect to 

the parameters to be estimated, which are as mentioned before A, α and ơ. 
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𝑑𝑆(𝐴, 𝛼, ơ)

𝑑𝐴
= 0 

𝑑𝑆(𝐴, 𝛼, ơ)

𝑑𝛼
= 0 

𝑑𝑆(𝐴, 𝛼, ơ)

𝑑ơ
= 0 

The equations obtained from these derivatives do not have explicit solutions. 

Following the book “Econometric Analysis – 7th Edition” by William H. Greene, we 

get to the definition of a nonlinear regression model which is as follows: “A 

nonlinear regression model is one for which the first-order conditions for least 

squares estimation of the parameters are nonlinear functions of the parameters.” 

(Greene, 2011, p. 186). 

At this point, it is important to point out that the solution to the above 

equations can only be found, if at all, given that the number of observations, t, is 

greater than the number of parameters, n, to be estimated. In the case of this study, 

we have 𝑡 = 27 > 𝑛 = 3 and can conclude that this condition is satisfied. For 

situations where the solution to the first order derivatives cannot be calculated 

analytically, numerical methods must be applied. These numerical methods consist 

of iterative algorithms which require starting values for the parameters to be 

estimated. The iterative process takes the starting values and tries to reach an 

optimum through certain rules for repeatedly making the same calculations with the 

next available values for the parameters. These rules are defined as optimization 

methods (Kuan, 2004).  

Chung-Min Kuan (2004) describes in his book that for the minimization of 

𝑆(𝐴, 𝛼, ơ), we start by summarizing the parameter vector as 𝛽 = (𝐴, 𝛼, ơ). An 

algorithm for the parameter vector 𝛽 can be expressed as presented below where the 

superscript i denotes the result from the ith iteration. 
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𝛽𝑖+1 = 𝛽𝑖 + 𝑠𝑖𝑑𝑖 

We can see that an algorithm used the ith iteration result for calculating the i+1th 

outcome by adjusting for an amount of 𝑠𝑖𝑑𝑖, where 𝑑 is the direction of change and 𝑠 

controls for its amount. The optimum result will be obtained for a point where the 

gradient vector 𝑔(𝛽) for the first order Taylor expansion of 𝑆(𝐴, 𝛼, ơ) will be equal 

to zero. 

Taylor expansion of 𝑆(𝐴, 𝛼, ơ) = 𝑆(𝛽) around 𝛽∗: 

𝑆(𝛽) ≈ 𝑆(𝛽∗) + 𝑔(𝛽∗)′(𝛽 − 𝛽∗) 

Replacing 𝛽 with 𝛽𝑖+1 and 𝛽∗with 𝛽𝑖: 

𝑆(𝛽𝑖+1) ≈ 𝑆(𝛽𝑖) + 𝑔(𝛽𝑖)′(𝑠𝑖𝑑𝑖) 

If 𝑑𝑖 = −𝑔(𝛽𝑖) then we have the following: 

𝑆(𝛽𝑖+1) ≈ 𝑆(𝛽𝑖) − 𝑠𝑖𝑔(𝛽𝑖)′𝑔(𝛽𝑖) 

Since 𝑔(𝛽𝑖)
′
𝑔(𝛽𝑖) ≥ 0, this means that a value small enough for 𝑠 can be found 

making 𝑆(𝛽𝑖+1) decreasing, whereas for a minimum 𝛽 the gradient vector will be 

already equal to zero making a further adjustment impossible. This explains the basic 

method of an optimization algorithm. 

 Numerous optimization algorithms exist in the theory. Henningsen and 

Henningsen (2011) use several optimization algorithms for their nonlinear least 

squares estimation, besides also applying the Kmenta approximation. They make use 

of the Levenberg-Marquart algorithm, which is the most commonly used 

optimization algorithm and is also set as default algorithm in numerous statistical 

softwares (Henningsen and Henningsen, 2011). Additionally, they also use the 

Conjugate Gradients method (Nocedal & Wright, 2006), Newton method (Schnabel, 

Koontz, & Weiss, 1985), Broyden-Fletcher-Goldfarb-Shanno algorithm (Broyden, 

1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970), Nelder-Mead algorithm 



14 

 

(Nelder & Mead 1965), Simulated Annealing algorithm (Belisle, 1992), Differential 

Evolution algorithm (Mullen, Ardia, Gil, Windover, & Cline, 2011) and numerous 

other algorithms, which additionally impose a parameter constraint (Henningsen and 

Henningsen, 2011). Koesler and Schymura (2015) on the other hand go with the 

make their estimations based on the commonly used Levenberg-Marquart algorithm. 

 In this study, the default NLS method of the statistical software EViews was 

used, which is the Gauss-Newton optimization method with the Marquart step 

method. The Gauss-Newton method is based on a linear Taylor series approximation 

to the nonlinear regression function, which is in our case the production function 

under focus. The iterative estimator is calculated through the transformation of the 

optimization to a series of linear least squares regressions (Greene, 2011). If we 

rewrite our production function as below, 

𝑌 = 𝐴 [𝛼(𝐾𝐾𝑃𝑉𝑆𝐿1−𝐾𝑃𝑉𝑆)
𝜎−1

𝜎 + (1 − 𝛼)𝐸
𝜎−1

𝜎 ]

𝜎
𝜎−1

 

𝑦 = ℎ(𝑥, 𝛽) + 𝑒 

then the Gauss-Newton method will make a linear estimation to ℎ(𝑥, 𝛽) at a 

particular value for the parameter vector 𝛽0. As it is described by Greene (2011), the 

estimation will look as mentioned below. 

ℎ(𝑥, 𝛽) ≈ ℎ(𝑥, 𝛽0) + ∑
𝑑ℎ(𝑥, 𝛽0)

𝑑𝛽𝑡
0 (𝛽𝑡

2014

𝑡=1988

− 𝛽𝑡
0) 

ℎ(𝑥, 𝛽) ≈ [ℎ(𝑥, 𝛽0) − ∑ 𝛽𝑡
0

𝑑ℎ(𝑥, 𝛽0)

𝑑𝛽𝑡
0

2014

𝑡=1988

] + ∑ 𝛽𝑡

𝑑ℎ(𝑥, 𝛽0)

𝑑𝛽𝑡
0

2014

𝑡=1988

 

Setting the notation to be so that 𝑥𝑡
0 =

𝑑ℎ(𝑥,𝛽0)

𝑑𝛽𝑡
0  we will have for a given value of 𝛽0, 

𝑥𝑡
0 to be a function of data only. Then the above estimation equation can be rewritten 

as follows. 
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ℎ(𝑥, 𝛽) ≈ [ℎ(𝑥, 𝛽0) − ∑ 𝑥𝑡
0𝛽𝑡

0

2014

𝑡=1988

] + ∑ 𝑥𝑡
0𝛽𝑡

2014

𝑡=1988

 

ℎ(𝑥, 𝛽) ≈ ℎ(𝑥, 𝛽0) − 𝑥0′
𝛽0 + 𝑥0′

𝛽  

This implies, 

𝑦 ≈ ℎ0 − 𝑥0′
𝛽0 + 𝑥0′

𝛽 + 𝑒 

By rearranging this equation, we can obtain a linear equation. 

𝑦0 = 𝑦 − ℎ0 − 𝑥0′
𝛽0 = 𝑥0′

𝛽 + 𝑒0 

where 

𝑒0 = 𝑒 + [ℎ(𝑥, 𝛽) − {ℎ0 − ∑ 𝑥𝑡
0𝛽𝑡

0

2014

𝑡=1988

+ ∑ 𝑥𝑡
0𝛽𝑡

2014

𝑡=1988

}] 

Since in the equation of 𝑦0 all errors are included and accounted for, this equation 

can be written as an equality instead of an estimation. This estimation is then 

estimated through linear least squares. The step method has also been taken as the 

default step method which is the Marquardt method. As it has been described on the 

EViews webpage, the Marquardt algorithm serves as a modifier to the Gauss-Newton 

method, by adding a correction matrix to the Hessian of the production function. 

Thereby, the obtained parameter estimations are brought closer towards the gradient 

vector improving the result. To conclude, the estimations in this study are achieved 

without any complications and divergence through the most commonly used 

nonlinear estimation methods. 
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CHAPTER 4 

DATA 

 

This section will introduce the data used in this thesis together with the calculation of 

some intermediary parameters. Section 1 of Chapter 4 presents the approach applied 

and data used for the capital value share calculation. Section 2 of Chapter 4 

concentrates solely on the data used for the main nonlinear regression estimation for 

the production function. All data used were either directly in terms of real values or 

were converted to their real equivalents with reference base year 2011. Both sections 

include detailed definitions of the data used together with its sources. 

 

4. 1 Data for KPVS calculation 

The data, which is used for the calculation of the KPVS, is obtained from the Turkish 

Statistical Institute (TUIK), the Turkish Ministry of Finance (MUHASEBAT) 

database and the OECD Stats. As recommended by Atiyas and Baris (2013), real 

GDP values obtained from the income approach are used. The value for the 

adjustment factor, z, is obtained from OECD Stats. The data obtained from TUIK 

and MUHASEBAT was in nominal terms. Therefore, the output, compensation of 

employees and net indirect taxes were turned into their real values with base year 

2011 through the necessary adjustments with the consumer price index for Turkey 

retrieved from OECD Stats. While the data used for the calculation of KPVS is 

provided in Appendix A - Data for KPVS Calculation, key measures and sources are 

summarized in Table 1. 
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Table 1.  Data Definitions and Sources for KPVS Calculation 

Abbreviation Variable Definition Data Source 

Y Gross domestic 

product 

Real gross domestic product at 

constant prices (base year 2011) 

TUIK, OECD 

Stats 

W Compensation of 

employees 

Real total compensation of employees 

at constant prices (base year 2011) 

TUIK, OECD 

Stats 

T Net indirect taxes Real taxes - subsidies on production 

and imports (base year 2011) 

TUIK, 

MUHASEBAT, 

OECD Stats 

Z Share of self-

employment 

Employment of employers, workers 

who work for themselves, members 

of producers' co-operatives, and 

unpaid family workers 

OECD Stats 

 

 This calculation was undertaken for data on the years 2009 to 2015 and yearly 

values for KPVS for this period were obtained as a result. Since the base year of this 

study is 2012 the value of KPVS for that particular year, which equals 1 − 𝐾𝑃𝑉𝑆 =

0.50, is used throughout this study. 

 

4.2 Data and descriptive statistics for production function 

The estimation of the production function requires data on the variables output (Y), 

capital stock (K), labor (L) and energy (E). For output, real GDP data taken from the 

Penn World Tables is used. While for the KPVS calculation GDP calculated through 

income method is taken, for the production function GPD calculated through 

expenditure method is used. This is partially due to the fact that investment series, 

which are used for the capital stock calculation, are obtained from the GDP 

calculated through expenditure method. Data on employment for the labor (L) input 

factor was taken from TUIK and covers all working women and men above the age 

of fifteen. Data on energy has been retrieved from OECD Stats as primary energy 

supply in tonnes of oil equivalent. This data is prepared and published by the IEA on 

a yearly basis. The Turkish Ministry of Energy and Natural Resources also regularly 

publishes this data, but for the sole purpose of consistency of data sources, the data 
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from OECD Stats is used. While there are numerous studies which incorporate 

energy with data in terms of energy units, there are also just as many studies which 

use energy data in terms of energy cost. The EMF (1977) outlines clearly in the 

report “Energy and the economy” how energy can be taken as energy cost and 

present various aggregation and indexation methods for prices. Among these 

methods some studies, including studies with limited access to energy price data, use 

the method of taking energy supply in terms of tonnes of oil equivalent and 

multiplying with the real crude oil import prices. One such study is the paper by 

Edwin Van der Werf. With reference to Edwin Van der Werf’s research, the same 

approach was adopted and energy data has been taken as energy cost incurred to the 

Turkish economy (Van der Werf, 2008). Therefore, primary energy supply in tonnes 

of oil equivalent is multiplied with Turkey’s real crude oil import prices in USD per 

barrel of oil, obtained from OECD Stats, with base year 2011 just as capital stock 

and real GDP data used in the production function estimation. The barrel prices are 

converted to tonnes prices using the OPEC conversion table taken from the annual 

statistical bulletin (OPEC, 2017). At this point it is worth mentioning that a weighted 

approach for the calculation of energy cost according to energy source was evaluated 

and acknowledged as well. A weighted cost could be calculated based on the source 

breakdown of energy supply. Yet this would require data on prices for Turkey for 

each one of these sources which were not obtainable for the earlier periods analyzed 

in this thesis. Moreover, detailed price data for each particular energy source for 

Turkey is only available for the more recent years and some particular years for the 

earlier periods. Therefore, the adaptation of this method would have restricted the 

number of observation years for the data. 
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The Turkish government does not publish data on capital stock. Therefore, 

this data series had to be obtained from other sources. There are already existing 

studies on capital stock in Turkey by Bulutay et al. (1974) and more recently by 

Saygili et al. (2005). These studies cover respectively the periods 1923 - 1948 and 

1972 - 2005. These data series were not used, as they do not cover the most recent 

period and their extrapolations through mathematical methods would not be robust 

given data availability problems. While there are several methods for the calculation 

of capital stock, one of these methods is the perpetual inventory methods. Starting 

from 1988 onwards, the capital stock was calculated through the perpetual inventory 

method, following the equations below. According to this method capital depreciates 

over one period at the depreciation rate of 𝛿. 

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 

This creates the need for the definition of the initial capital stock value for the time 

period considered, i.e. for the year 1988. To identify K0 the following method is 

applied where it is assumed that the economy is close to a steady state (Atiyas and 

Bakis, 2013). 

𝐾𝑡+1

𝐾𝑡
− 1 = 𝑔𝑡 = −𝛿 +

𝐼𝑡

𝐾𝑡
 

 If we assume that we are at a steady state at time 𝑡 = 0, i.e. in the year 1988, 

then we can find K0 from  𝐾0 =
𝐼0

ḡ+𝛿
 where ḡ can be taken as the average GDP growth 

rate for ten years starting from t0 onwards. Based on educated opinions and some 

other models such as the MARKAL model, the depreciation rate has been taken as 

5% (Manne and Wene, 1992). Yet, the assumption of the economy being at a steady 

state in 1988 is a controversial topic, where no certain objective decision can be 

made for the case of Turkey as a developing economy. Therefore, throughout this 
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study the data for capital stock is taken from the Penn World Tables, which is 

calculated through the economic definition of capital accumulation through the 

following formula, where 𝐼𝑡 denotes the amount of investment in that particular year. 

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝐼𝑡 

Given this formula, capital stock series can be constructed without the 

assumption of a certain economic growth rate. For example, for a depreciation rate 

assumption of 𝛿 = 5%, a lifetime of capital means 20 years. Hence for calculating 

𝐾𝑡+20 there will only be need for the investment data of the past 20 years and no 

need for 𝐾𝑡. The capital stock data published by the Penn World Table database 

applies exactly this method and therefore can be appropriately used for this study on 

Turkey. 

Table 2.  Data Definitions and Sources for the Production Function 

Abbreviation Variable Definition Data Source 

Y Gross 

domestic 

product 

Real GDP at constant national prices 

(in million 2011 USD) 

Penn World Table 

K Capital stock Capital stock at constant national prices 

(in million 2011 USD) 

Penn World Table 

L Labor Employed women and men above the 

age of fifteen 

TUIK 

E Energy Primary energy supply (toe) 

Crude oil import prices (USD with base 

year 2011 per barrel of oil) 

OECD Stats 

 

An overview of the data for the production function together with the 

definitions and sources is presented in Table 2. The dataset used for the production 

function estimation is provided in Appendix B. 
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Table 3. Descriptive Statistics for Variables used in Production Function 

 
GDP Capital Stock Labor Energy 

Mean 905,780,784,722 2,101,556,937,500 21,129,407 33,876,671,837 

Median 828,538,250,000 1,946,603,500,000 21,194,000 16,035,357,373 

Maximum 1,442,669,875,000 3,707,828,500,000 25,932,000 94,831,506,872 

Minimum 527,702,937,500 967,656,937,500 17,754,000 8,701,621,343 

Std. Dev. 278,244,583,207 803,749,412,438 2,054,661 29,236,221,969 

Skewness 0.433674 0.428693 0.686242 0.990473 

Kurtosis 1.940591 2.058360 3.110704 2.429338 

 

A fundamental step in economics analysis is the analysis of the data itself. In 

this regard, a summary on the descriptive statistics is presented. Table 3 presents the 

key factors of descriptive statistics for the variables used in the production function. 

Note that while the GDP, capital stock and energy variables are in real USD with 

base year 2011, labor is given as a plain number. 

 

Figure 1.  Graph of raw data used in the production function 

The relationship between the independent and dependent variables becomes 

more evident once the data series are plotted. In Figure 1 the relationships are 

visualized. Note that the axis labels are presented in millions. All three independent 

variables show an increasing trend during the time period considered. Among the 

independent variables, while capital stock and labor series show a steady increasing 

trend energy costs displays higher fluctuations. When energy cost is compared to 
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energy unit data we see that energy itself does not show this kind of fluctuations and 

instead shows a steadily increasing trend. This points towards the importance in the 

utilization of energy cost given the objective of an economic analysis. Energy itself 

would fail to capture and present these dynamics which have their reflections on the 

dependent variable output. 

 

Figure 2.  Graph of scaled data used in the production function 

The value for labor is low compared to the values of the other variables, 

therefore it is not visible in the graph when the data it plotted with its real values. 

With this regard, in order to completely visualize the dynamics in the variables 

during the time period considered it is worth plotting the scaled data, with the scaling 

method being the division by the minimum value observed throughout the period 

considered, which is done in Figure 2. Just as it is visible in Figure 1, the changes in 

the dynamics of the energy cost are too extreme to be neglected. 

Table 4.  Augmented Dickey-Fuller Test Statistic Values 

 Raw Data Logarithmized Data Scaled Data 

Variable Level Difference Level Difference Level Difference 

GDP 0.941713 -4.901975 -0.237377 -5.875371 0.944847 -4.891251 

Capital Stock 1.691296 -1.817959 -0.991070 -2.667983 1.696743 -1.833093 

Labor 0.082672 -4.026030 -0.343214 -4.324500 0.086345 -4.018494 

Energy -0.188680 -5.243892 -0.351973 -4.791576 -0.188775 -5.244297 
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The visualization of the data series reveals clearly that there are trends in the 

data. In order to test this hypothesis unit root tests have been conducted on each data 

series and their correlograms have been analyzed. These analyses have been 

performed on the raw data, the logarithmized data and the scaled data. As a result, 

these tests revealed that for each type of data the data series has a unit root. The t-

statistic values from the Augmented Dickey-Fuller tests are summarized below in 

Table 4. For the raw data, the logarithmized data and the scaled data all variables had 

a unit root in their level data, no matter which confidence interval, 1%, 5% or 10%, 

was looked at. These unit roots did not persist if the test were performed on the first 

level differences of these variables with the sole exception to capital stock. For the 

capital stock series only the second level difference did not have a unit root.  

The stationarity of the data series could have been obtained through taking 

the respective number of differences or detrending the data. But both of these options 

were tried and had their drawbacks. Taking the first level or second level differences 

as well as detrending the data creates a data series with negative values. Leaving the 

meaning of the estimation results aside, solely from a technical perspective this was 

not possible since in this case negative values were tried to be raised to non-integer 

powers, which is not possible in the real mathematical environment. From the 

interpretation side, even if taking the differences or detrending the data would have 

given a logical value for the parameter estimates, from the economical perspective 

the obtained estimates would not have represented the definitions which were tried to 

be obtained. This idea is supported by the existing literature on elasticity of 

substitution estimations. To present some evidence, it can be mentioned that neither 

of the estimations conducted by Su et al. (2012), Kemfert and Welsch (2000) or Van 

der Werf (2008) mention any detrending or differentiating performed on the data, 
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even though they present extensively the data they have used. Therefore, the same 

approach was followed and the raw data was used throughout the estimations. 

The estimations are performed on two datasets: scaled and not-scaled data. 

While several normalization methods for data exists, the method adopted in this 

study, after a long period of search for the optimal scaling method, is the division by 

the minimum method. In this method each data series, capital, labor, and energy, is 

divided respectively by its minimum value for time period considered. This method 

is used in order to avoid divergences caused by taking the power of values less than 

1. Several other scaling methods are tried out as well, such as using the logarithmical 

values, yet neither method has given significant estimation results or has given as 

significant results as the division by minimum method. Therefore, the estimations 

have been performed for the data, as it is, and for the data scaled according to the 

division by its minimum values. Not surprisingly, these two estimations result in the 

same estimation outputs as it will be presented in Chapter 5. 
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CHAPTER 5 

EMPIRICAL FINDINGS 

 

The estimations in this study are made with the use of the statistical software 

EViews, using its built in nonlinear least square estimation tool. Due to the nature of 

nonlinear least squares estimation, certain input values for the parameters are 

required. The starting value for the parameter ơ is chosen according to existing 

literature on a similar estimation and hence has not been changed, while the starting 

values for A is chosen according to the scaling method. Results are presented for a 

certain starting value of α but grid search has been performed on this parameter, 

which are not presented in order to avoid redundancies. The results together with the 

starting values will be presented in two sections: for the data, as it is, and for the 

scaled data. 

 

5.1 Not scaled data estimation results 

The estimations presented in this section are carried out without any scaling 

performed on the data. The units are changed appropriately in order to establish 

equal orders of magnitude. The regression output “regr” is presented in Table 3 with 

the coefficients M(1), M(2) and M(3), where M(1), M(2) and M(3) are respectively 

the estimates for the parameters A, α and ơ. The starting values for the parameters 

were set as M(1)=25, M(2)=0.4 and M(3)=0.3. The starting value for ơ was chosen to 

be 0.3 based on the study by Kumbaroglu, Karali and Arikan (Kumbaroglu et al., 

2008), while the other values are set as they are based on expert guess. Even though 

a grid search for numerous other starting parameter values is performed, and the 

results lead to the same output. It is important to point out that even though no 
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restrictions are manually imposed on the parameters, the estimated values are within 

the meaningful intervals supporting the significance of the estimation results. 

Table 5.  Estimation Output with Not Scaled Data 

  

The results show that convergence was achieved after 27 iterations and each 

one of the estimated values for the parameters is statistically significant. No matter 

whether 10%, 5% or even 1% confidence interval selection, the coefficient estimates 

are significant as it is observable from their probabilities. The predictive power of the 

model is strong with a 98% adjusted R2 value. The Durbin-Watson statistics indicates 

that there might be serial correlation in the residuals. Since the data is not scaled and 

the data series consists of high number entries the value obtained for the sum squared 

residuals is high. Yet, this does not mean that the model is not valid, since the other 

indicators point towards significance of the model. Still, the high value of the sum 

squared residuals is among the motivators to undertake the estimation on scaled data. 

Even though the scaled data output is taken as final estimation output of this study, 

for the sake of presenting the consistency and similarity between the scaled and not 

scaled data estimation output, the output of the not scaled data is presented as well. 

Dependent Variable: GDP

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 12/01/17   Time: 18:24

Sample: 1988 2014

Included observations: 27

Convergence achieved after 27 iterations

Coefficient covariance computed using outer product of gradients

GDP=M(1)*(M(2)*KLCOMPOSITE^((M(3)-1)/M(3))+(1-M(2))

        *ENERGY^((M(3)-1)/M(3)))^(M(3)/(M(3)-1))

Coefficient Std. Error t-Statistic Prob.  

M(1) 110.1588 7.800216 14.12253 0.0000

M(2) 0.779849 0.131559 5.927748 0.0000

M(3) 0.644032 0.225783 2.852443 0.0088

R-squared 0.983722     Mean dependent var 9.06E+08

Adjusted R-squared 0.982366     S.D. dependent var 2.84E+08

S.E. of regression 37652860     Akaike info criterion 37.83016

Sum squared resid 3.40E+16     Schwarz criterion 37.97414

Log likelihood -507.7071     Hannan-Quinn criter. 37.87297

Durbin-Watson stat 0.860725
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Table 6.  Confidence Intervals for Estimation Output with Not Scaled Data 

  

The confidence intervals for the coefficients are presented in Table 6. With 

the obtained standard deviation for each coefficient estimation, the confidence 

intervals are given for each significance level. It is clearly concludable that the 

estimated values remain within the borders of the confidence intervals no matter 

which significance level is chosen. 

  

Figure 3.  Actual, fitted, residuals graph for estimation output with not scaled data 

When the actual and predicted values for output are plotted, presented in 

Figure 3, a close proximity is clearly observable as it is presented in the below figure. 

Particularly, over the more recent years of the considered period the fitted results are 

closer to the actual results than in previous periods. This may be due to the fact that 

the study took for several parameters and data real value 2011 as the base year. 

Coefficient Confidence Intervals

Date: 12/01/17   Time: 18:27

Sample: 1988 2014

Included observations: 27

90% CI 95% CI 99% CI

Variable Coefficient Low High Low High Low High

M(1)  110.1588  96.81356  123.5041  94.05995  126.2577  88.34208  131.9755

M(2)  0.779849  0.554767  1.004931  0.508324  1.051373  0.411886  1.147811

M(3)  0.644032  0.257745  1.030320  0.178040  1.110025  0.012532  1.275532
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5.2 Scaled data estimation results 

Scaling applied to the raw data in this section is to achieve a normalization of the 

data. For this purpose, each data entry of each of the three independent variables—

capital, labor and energy—is divided by the minimum value of that particular series 

over the time period considered (1988-2014). Not surprisingly, the minimum values 

are the values for the starting year 1988. The regression output is named “regr” and 

the coefficients are M(1), M(2) and M(3), where M(1), M(2) and M(3) are 

respectively the estimated values for the parameters A, α and ơ, as it is the case in 

section 5.1. The starting values for the parameters are similarly to the ones in 

previous section, with the sole difference on the starting value for A, which is set to 

be equal to 1 due to the scaling applied. Overall, the starting values for the presented 

output are M(1)=1, M(2)=0.4 and M(3)=0.3. When compared to the estimation 

output using the raw data, the significance of the coefficient estimations is higher in 

the scaled case. The estimation results are presented in Table 7. 

Table 7.  Estimation Output with Scaled Data 

  

 

Dependent Variable: GDP

Method: Least Squares (Gauss-Newton / Marquardt steps)

Date: 12/01/17   Time: 18:30

Sample: 1988 2014

Included observations: 27

Convergence achieved after 18 iterations

Coefficient covariance computed using outer product of gradients

GDP=M(1)*(M(2)*KLCOMPOSITE^((M(3)-1)/M(3))+(1-M(2))

        *ENERGY^((M(3)-1)/M(3)))^(M(3)/(M(3)-1))

Coefficient Std. Error t-Statistic Prob.  

M(1) 0.992745 0.013665 72.64781 0.0000

M(2) 0.842243 0.049231 17.10794 0.0000

M(3) 0.645513 0.225444 2.863299 0.0086

R-squared 0.983872     Mean dependent var 1.716667

Adjusted R-squared 0.982528     S.D. dependent var 0.537265

S.E. of regression 0.071017     Akaike info criterion -2.347351

Sum squared resid 0.121042     Schwarz criterion -2.203369

Log likelihood 34.68924     Hannan-Quinn criter. -2.304538

Durbin-Watson stat 0.863832
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Table 8.  Confidence Intervals for Estimation Output with Scaled Data 

  

The regression output shows that the model has a high adjusted R2 value, 

which means that we can predict the 98% of the dependent variable output, i.e. GDP, 

with our production function as we have defined it. Comparing the Akaike Schwarz 

criteria of the two models, the results indicate that the scaled output results are more 

favorable and should be preferred to the not-scaled case.  Indifferent of the choice of 

a 10%, 5% or 1% confidence interval, the parameter estimates remain certainly 

within the confidence intervals. The confidence intervals are presented in Table 8. 

 

Figure 4.  Actual, fitted, residuals graph for estimation output with scaled data 

The actual, fitted and residuals graph shows that the fitted values are in line 

with the actual values throughout the entire time period considered and no significant 

deviation from the actual values is observable for any particular year. The residuals 

Coefficient Confidence Intervals

Date: 12/01/17   Time: 18:33

Sample: 1988 2014

Included observations: 27

90% CI 95% CI 99% CI

Variable Coefficient Low High Low High Low High

M(1)  0.992745  0.969365  1.016124  0.964541  1.020948  0.954524  1.030965

M(2)  0.842243  0.758015  0.926472  0.740635  0.943852  0.704547  0.979940

M(3)  0.645513  0.259805  1.031221  0.180220  1.110806  0.014960  1.276066
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oscillate around the zero line. While the table for the actual and fitted values together 

with the residuals is presented in Appendix C, the graph is presented in Figure 4. 

  

Figure 5.  Normalization test for residuals of estimation output with scaled data 

Figure 5 presents the normalization test results for the residuals. The mean 

and median of the residuals is in close proximity to zero, providing supporting 

evidence for the robustness of this model. In Figure 5, it is observable that even 

though the residuals are slightly skewed to the right, when plotted they still appear 

normally distributed. The Jarque-Bera statistic supports this argument, when we 

compare its value to the chi-square critical value for our degrees of freedom. For 

each of significance levels 10%, 5% and 1%, the test statistic indicates that the null 

hypothesis cannot be rejected, and hence our residuals are normally distributed. 

To conclude, the findings obtained from the estimations suggest that we can 

indeed formulate a production function for Turkey which is of the CES form and has 

capital, labor and energy as inputs entering the function in (KL)E nesting structure. 

The parameter estimates give for the production function the values 𝐴 = 0.992, 𝛼 =

0.842 and ơ = 0.645. Therefore, the function can be rewritten as follows. 

𝑌 = 𝐴 ∗ [𝛼 ∗ (𝐾𝐾𝑃𝑉𝑆 ∗ 𝐿1−𝐾𝑃𝑉𝑆)
𝜎−1

𝜎 + (1 − 𝛼) ∗ 𝐸
𝜎−1

𝜎 ]

𝜎
𝜎−1
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Skewness   0.892960

Kurtosis   2.447070

Jarque-Bera  3.932144

Probability  0.140006 
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𝑌 = 0.992 ∗ [0.842 ∗ (𝐾0.5 ∗ 𝐿0.5)
0.645−1

0.645 + (1 − 0.842) ∗ 𝐸
0.645−1

0.645 ]

0.645
0.645−1

 

𝑌 = 0.992 ∗ [0.842 ∗ (𝐾0.5 ∗ 𝐿0.5)−0.550 + (0.158) ∗ 𝐸−0.550]−1.818 

Among the parameter estimates, the economic interpretation for ơ = 0.645 

can be made in the way that the elasticity of technical substitution for the capital-

labor bundle and energy input to be equal to 0.645. Moreover, taken into 

consideration the Turkish economy, the capital-labor bundle and energy inputs can 

be technically substituted for each other a rate of 0.645. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

 

The result of this study provides supporting evidence for the necessity of country 

specific estimations. The initial motivation for undertaking this study consisted of the 

aim to derive parameter values for a nested CES function with capital, labor and 

energy as input factors for Turkey. Existing literature already provides some 

estimations for elasticity of substitutions. While Bosetti et al. (2006) had found the 

substitution elasticity between the capital-labor bundle and energy to be ơ = 0.5, 

Gerlagh and Van der Zwaan (2003) and Manne et al. (1995) find this value to be ơ =

0.4. While Paltsev et al. (2005) finds the same outcome as Bosetti et al. (2006), there 

are numerous research with close but slightly different results. This study reveals that 

with an estimation performed on the entire Turkish economy, the elasticity of 

substitution between the capital-labor bundle and energy is ơ = 0.645. The 

interpretation of this value should not be made in the direction that the estimated 

value is completely different from what existing literature has obtained so far. The 

estimated elasticity of substitution value is the estimate for a particular point in time. 

But according to its confidence intervals with respect to the 1%, 5% and 10% 

confidence level, the values obtained from previous studies are in close proximity to 

the estimated value in this thesis. Even though the result is not drastically different 

from the existing estimates, given the importance of this value, especially when its 

application will be on a macro level, digit level differences become important. 

 No doubt, there are many modifications, which can be performed on any 

research trying to estimate these parameters. Estimations can be done for data on a 

particular country as well as on aggregated data for a number of countries. Similarly, 
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while the elasticity can be estimated for a particular industry or a group of several 

industries, it can also be estimated for an entire economy, as it has been done in this 

study. Even if two different studies have the same nesting and functional structure, 

they can diverge from each other based on the data used. While labor data comes as 

numbers and capital stock mostly in monetary terms, energy data can enter the 

function estimation in many forms. While some studies use energy consumption, 

other research uses primary energy supply. Similarly, energy can be taken in terms of 

joule or other power units, or energy can be taken in the form of energy cost. Both 

types of data for energy in the production function are equally common, and this 

thesis follows amongst other the energy data approach applied by Van der Werf 

(2008) and takes energy cost. All these modifications can cause variations in the 

estimated parameter values and therefore create a need for aim-specific estimations. 

 In this study, even if not presented in detail, several data series have been 

tested. Data on capital stock and labor are not changed throughout the different 

estimations, yet energy data has undergone some changes. Estimations with energy 

in terms of peta joule and tonnes of oil equivalent have under neither scaling method 

led to significant conclusions for the substitution elasticity. Energy, in terms of 

energy cost, however led directly to significant results for data on Turkey satisfying 

all convergence criteria of nonlinear least squares estimation. This brings with itself 

the implication that even though energy consumption does increase over the time in 

relation with output, it does not have a nonlinear relation as it is indicated in the 

production function. On the other hand, total energy cost, together with capital and 

labor, does indeed have a nonlinear link to the economic output as it is also 

supported with economic theory. This draws attention to the fact that while energy 

consumption increases, the increase in energy consumption due to increase in output, 
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is more closely linked to the increase in energy prices, which are omitted when solely 

energy in power units is taken as an input. But it is also worth pointing out that there 

are studies which take energy data as energy itself in terms of joule and conclude 

with significant results for other countries and industries, such as in Koesler and 

Schymura (2015). 

This study imposed the (KL)E nesting structure to the production function, 

but there are also studies, such as the paper by Sue et al. (2012), which investigate 

numerous different nesting forms and try to observe the most significant structure for 

an economy as well as for some particular sectors. It is worth mentioning that, while 

this study has estimated the production function for the entire Turkish economy, the 

nesting structure might be different from the estimated function for some particular 

industries, with a more industry specific input factor structure. Particularly some 

industries, such as the cement industry for example, are more energy intensive than 

others and do require more energy and capital inputs than compared to labor input. 

For sector specific analyses, it is therefore of use to estimate beforehand sector 

specific production functions and its parameters before making conclusions. 

The production function structure is not derived based on trials on different 

versions, but is imposed according to the research aim of this study. The derived 

parameter estimates are obtained through estimations performed on data for the 

entire Turkish economy. The main goal was to find the elasticity of substitution for 

the capital-labor bundle and energy. The thesis presents results for substitution 

elasticities which are above the values applied and discovered in prior research 

(Bosetti et al.,2006, Manne et al., 1995 and Paltsev et al., 2005), which can be 

interpreted as the elasticity of capital-labor and energy is higher in Turkey than the 

average value. Hence, this means that if the price of the capital-labor bundle 
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increases, it can be relatively easily substituted for with energy. Another way of 

interpreting these results is that the high share of capital and labor in the production 

can be the result of energy prices in Turkey being relatively high due to the high 

share of imported energy used to meet the domestic energy demand. Hence, a 

reduction in energy prices can lead to a less capital-labor intensive economy for the 

case of Turkey. 

A further point of investigation can be the application of this approach to the 

various sectors of the Turkish economy. Moreover, a production function estimation 

can be performed for the driving industries of the Turkish economy where the results 

can shed light on policy making fostering these industries. In this case, industry 

specific price can be obtained for the input factors, which could bring along besides 

the elasticity of technical substitution also the elasticity of substitution based on 

changes in prices. 

Another potential topic for further research could be estimation of different 

types of production functions for Turkey. For instance, instead of assuming directly a 

Cobb Douglas form, capital and labor can be taken to be of a CES form. At the same 

time, based on the research question under focus, the energy input factor can be 

disaggregated based on electric and non-electric energy. These possible topics and 

numerous other ones remain potential questions for further research.  
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APPENDIX A 

DATA FOR KPVS CALCULATION 

Table A1. Data for KPVS Calculation 

Sign Y W T z 1-z 1-KPVS KPVS 

Year GDP 

(mil. TL) 

Compensation 

of Employees 

(mil. TL) 

Net Indirect 

Taxes 

(mil. TL) 

Self-

Employment 

Share 

Adjustment 

Factor 

Adjusted 

Labor 

Share 

Capital 

Value 

Share 

2009 
                  

1,154,993  

                                           

310,939  

                                           

116,634  
0.40 0.60 0.50 0.50 

2010 
                  

1,235,088  

                                           

334,568  

                                           

142,775  
0.39 0.61 0.50 0.50 

2011 
                  

1,394,477  

                                           

371,489  

                                           

160,329  
0.38 0.62 0.49 0.51 

2012 
                  

1,441,500  

                                           

402,766  

                                           

160,240  
0.37 0.63 0.50 0.50 

2013 
                  

1,546,090  

                                           

432,597  

                                           

181,262  
0.36 0.64 0.49 0.51 

2014 
                  

1,604,569  

                                           

463,491  

                                           

168,777  
0.34 0.66 0.49 0.51 

2015 
                  

1,703,874  

                                           

498,384  

                                           

184,873  
0.33 0.67 0.49 0.51 
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APPENDIX B 

DATA FOR PRODUCTION FUNCTION 

Table B1. Data for Production Function 

Sign Y K L E 

Year GDP Capital Stock Labour Energy 

Unit 

Real GDP at 

constant 

national prices 

(mil. USD) 

Real capital 

stock at constant 

national prices 

(mil. USD) 

All men and 

women above 

age 15 

employed 

(thousand) 

Tonne of oil 

equivalent 

(thousand toe) 

Real crude 

oil import 

prices 

(USD/barrel) 

Real cost of 

primary 

energy supply 

(mil. USD) 

1988 527,703 967,657 17,754 47,290 28.80 9,982 

1989 529,031 1,022,162 18,222 49,100 32.30 11,624 

1990 577,994 1,091,569 18,539 52,720 39.79 15,375 

1991 583,350 1,157,767 19,288 51,980 31.56 12,026 

1992 618,259 1,228,304 19,459 53,630 29.85 11,734 

1993 667,979 1,327,095 18,499 56,890 24.99 10,422 

1994 631,537 1,395,754 20,006 56,210 23.55 9,704 

1995 676,952 1,471,528 20,586 61,570 24.77 11,179 

1996 724,374 1,566,721 21,194 66,920 29.04 14,245 

1997 778,911 1,680,505 21,204 70,410 26.33 13,590 

1998 802,994 1,778,473 21,778 71,750 16.55 8,702 

1999 775,970 1,838,701 22,048 70,450 21.70 11,206 

2000 828,538 1,925,322 21,581 75,960 34.76 19,354 

2001 781,332 1,946,604 21,524 70,240 29.19 15,030 

2002 829,493 1,992,272 21,354 74,220 29.47 16,035 

2003 873,168 2,062,372 21,147 77,880 33.08 18,882 

2004 954,921 2,182,020 19,632 80,730 41.56 24,594 

2005 1,035,149 2,332,883 20,066 84,210 58.34 36,010 

2006 1,106,507 2,505,195 20,423 93,150 68.60 46,840 

2007 1,158,165 2,673,324 20,738 100,000 74.41 54,543 

2008 1,165,796 2,810,613 21,194 98,710 102.46 74,134 

2009 1,109,536 2,888,749 21,277 97,790 64.24 46,048 

2010 1,211,136 3,033,170 22,594 106,660 80.73 63,117 

2011 1,317,386 3,220,938 24,110 113,510 109.81 91,365 

2012 1,345,412 3,382,558 24,821 118,220 109.44 94,832 

2013 1,401,819 3,551,956 25,524 116,940 104.64 89,694 

2014 1,442,670 3,707,829 25,932 121,540 94.74 84,404 
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APPENDIX C 

ACTUAL, FITTED, RESIDUALS 

Table C1. Actual, Fitted, Residuals Table 

  

  

obs Actual Fitted Residual Residual Plot

1988 1 1.01416... -0.0141...

1989 1 1.07213... -0.0721...

1990 1.1 1.15871... -0.0587...

1991 1.11 1.16484... -0.0548...

1992 1.17 1.19580... -0.0258...

1993 1.27 1.19129... 0.07870...

1994 1.2 1.24340... -0.0434...

1995 1.28 1.31232... -0.0323...

1996 1.37 1.41500... -0.0450...

1997 1.48 1.44738... 0.03261...

1998 1.52 1.38806... 0.13193...

1999 1.47 1.48495... -0.0149...

2000 1.57 1.63022... -0.0602...

2001 1.48 1.57355... -0.0935...

2002 1.57 1.59668... -0.0266...

2003 1.65 1.65222... -0.0022...

2004 1.81 1.69991... 0.11008...

2005 1.96 1.84254... 0.11745...

2006 2.1 1.97223... 0.12776...

2007 2.19 2.07280... 0.11719...

2008 2.21 2.18967... 0.02032...

2009 2.1 2.13347... -0.0334...

2010 2.3 2.31096... -0.0109...

2011 2.5 2.52113... -0.0211...

2012 2.55 2.61592... -0.0659...

2013 2.66 2.70323... -0.0432...

2014 2.73 2.76588... -0.0358...
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