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ABSTRACT 

The Interaction Between Ensemble and Item Representations  

in a Temporally Extended Context 

 

To date, research demonstrated that visual perceptual judgments are susceptible to 

information which is accumulated in the recent past. However, it is not well known how 

localization of a particular item of a set is affected by the information coming from 

previous trials within an experimental session. The present research investigated how 

accumulated information during an experimental session impacted spatial item 

representations. In the present study, participants reported the location of an item in one 

of two types of perceptual sets. While one group of trials was of randomly generated 

sets, the other trials consisted of spatial configurations that belonged to perceptual 

families. We specifically tested whether localization in the latter group of trials would be 

more accurate. Also, previous research had demonstrated that individuals high in 

working memory were more likely to utilize spatial configuration information in visual 

change detection tasks. Thus, in the current set of experiments, we explored whether 

there were individual differences in working memory capacity impacted how efficiently 

viewers utilized perceptual set information in spatial localization. Results demonstrated 

that people were more able to accurately localize items in perceptual set trials compared 

to random configuration trials; however, this effect was observed only for some 

perceptual sets and not all suggesting that perceptual characteristics of sets may be 

critical. We also found that visual working memory capacity did not selectively predict 

localization errors in perceptual set and random configuration conditions.
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ÖZET 

Özet ve Nesne Temsillerinin Genişletilmiş Zaman Bağlamındaki İlişkisi 

 

Araştırmalar göstermektedir ki algısal yargılar kendilerinden önce gelen denemelerdeki 

özet bilgilerden etkilenmektedir. Öte yandan, setlere ait nesnelerin yer bilgisi 

temsillerinin (görsel-uzamsal bilgi) kendinden önce gelen sahnelerden nasıl etkilendiği 

henüz detaylıca araştırılmamıştır. Bu çalışmanın amacı görsel uzamsal bilginin 

temsilinin kendinden önce gelen sahneler boyunca biriken özet bilgiden nasıl 

etkilendiğini araştırmaktır. Deneylerde katılımcılar bir görsel uyaran seti ile 

karşılaşmıştır ve kendilerinden bu uyaran setindeki bir nesnenin yeri sorulmuştur. 

Deneydeki setlerden bazıları aynı algısal aileye ait uzamsal konfigürasyonlardan 

oluşurken (prototip aileleri), diğerleri ise rastgele konumlandırılmış nesnelerden 

oluşmaktadır. Beklentimiz rastgele konumlandırılmış setlerde, nesne yerinin tespitinin 

daha hatalı olacağı yönündedir. Ayrıca, görsel uzamsal çalışma belleği kapasitesindeki 

farklılıkların uzamsal konfigürasyon bilgisini görsel fark deneylerinde kararları 

etkilediği gösterildiğinden, bu çalışmada da çalışma belleği kapasitesinin aynı aileye ait 

uzamsal bilginin nesne yeri tespiti için kolaylaştırıcı olabileceği düşünülmüştür. 

Sonuçlar göstermektedir ki nesneler prototip ailelerinin üyeleri olduklarında daha güçlü 

temsil edilebilmektedirler; ancak, bu etki prototip ailelerinin çeşitli algısal özelliklerine 

bağlıdır.  Görsel uzamsal bellek kapasitesi geniş olan bireylerin hem prototip ailelerinin 

üyelerinin yerlerini hem de rastgele konumlandırılmış nesnelerin yerlerini daha iyi 

temsil ettiği gözlemlenmiştir. 
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CHAPTER 1 
 

INTRODUCTION 

 

How we perceive and represent a stimulus depends on various variables, with context 

being one of the most important determinants (see Albright & Stoner, 2002 for a 

review). Although it is difficult to provide a comprehensive definition of what 

constitutes context, it could be described as what co-occurs with a target stimulus either 

simultaneously or within a temporally extended period. There are many illustrations of 

contextual effects on perceptual processes. For instance, the famous Ebbinghaus illusion 

reveals how the size of the central circle is perceived as different based on the size of the 

other circles surrounding it. The same central circle is perceived as larger when it is 

surrounded by smaller than larger circles. This illusion demonstrates how the 

relationship between simultaneously presented items in a visual display affect the 

response towards the item belonging to a set. On the other hand, there could be a 

relationship between members of the set that is formed within a temporally extended 

period. For instance, while listening a melody in a particular key, even non-musician 

adults heard the change in the melody which had an out of key note since they were able 

to represent the musical context (Trainor & Trehub, 1992). Similarly, during speech 

perception the phonemes were perceived faster when they were embedded in words than 

non-words (Rubin, Turvey & Gelder, 1976). Thus, the context as (either being) a 

meaningful word or a non-sense word affected the perception of the auditory 

information. A similar phenomenon is likely to exist for visual as well as auditory inputs 

(see Diehl, Lotto & Holt, 2004 for a review). The aim of the present thesis is to 
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investigate how visuospatial judgments are affected by the temporal context which is 

formed within an experimental session.  

There is considerable empirical evidence to indicate that the visual system is 

efficient in representing both immediately available and also temporally extended 

contexts. For instance, it is known that viewers can effectively extract the configural 

relationship between items (Boduroglu & Shah, 2009; Jiang, Olson & Chun, 2000). In a 

similar vein, viewers can use spatial configuration information to increase the resolution 

of target location representations (Mutlutürk & Boduroglu, 2014). This ability to process 

immediately available context facilitates perception.  

The visual system can also effectively extract relationships that are not 

immediately present. For instance, observers could utilize the configural background 

information in visual search tasks resulting in decrease in reaction time for identifying 

targets when the background configuration was the same across trials (Chun & Jiang, 

1998). Similarly, viewers can represent the spatial configuration formed by sequentially 

presented locations (Boduroglu & Shah, 2014) and can learn the statistical regularities of 

sequential patterns presented (Fiser & Aslin, 2002; Turk-Browne, Jungé & Scholl, 

2005). Also, viewers can accurately extract the summary representation of sequentially 

presented (Corbett & Oriet, 2011; Hubert-Wallander & Boynton, 2015) and dynamic 

items (Albrecht & Scholl, 2010) and of sets presented across time (Oriet & Hozempa, 

2016; Whiting & Oriet, 2011). Whiting and Oriet (2011) asserted that observers’ mean 

judgments of sets were biased towards the cumulative mean information from previous 

sets even when the previously shown stimulus is masked and not perceived accurately. 

Similarly, Oriet and Hozempa (2016) demonstrated that central tendency characteristics 

of sets, such as the cumulative mean of all sets in an experimental session, could be 
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extracted in an incidental manner. Both studies indicate that observers represent the 

temporally extended context by summarizing all the studied sets in an experimental 

session. However, it is not known whether the available temporally extended context 

summary impacts the perceptual averaging process/outcome in a particular trial. The 

major aim of the present study is to explore how summary representations and the 

dynamic representation of their temporally extended context interact in an experimental 

session.  

The summary information of a set of items could be extracted effortlessly even 

when item information is not represented in high precision (Ariely, 2001; Chong & 

Treisman, 2003). Viewers can summarize size (Ariely, 2001), orientation (Attarha & 

Moore, 2015), brightness (Bauer, 2009), color (Maule & Franklin, 2015) of lines and 

circles and also average the facial emotion and identity of groups of faces (Haberman & 

Whitney, 2007; 2009). It is believed that these summary representations are represented 

along with some, if- not-all, item information. For instance, Brady, Konkle and Alvarez 

(2011) argued that item level information is encoded along with the summary 

information and they are represented interactively in a hierarchy. For instance, at 

retrieval, the mean size of an item could be biased towards the mean size of same color 

sub-group (Brady & Alvarez, 2011). Similarly, spatial working memory studies have 

shown that ensemble and item information are not represented in an independent 

fashion; memory for visual and spatial features of items are impacted by the configural 

information that these items belonged to (Jiang et al., 2000; Mutlutürk & Boduroglu, 

2014). A similar interaction between the ensemble and its temporally extended context 

may also exist. This possibility is likely given recent evidence showing that the 

accumulating average is represented in long term memory (Oriet & Hozempa, 2016; 
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Whiting & Oriet, 2011). This may lead to a dynamic interaction between the 

continuously updated average and the ensemble representation. The goal of this thesis is 

to investigate this dynamic interaction between the accumulating information over past 

trials and items belonged to the ensembles.  
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CHAPTER 2 
 

LITERATURE REVIEW 

 

To date, there are only a few studies that have directly investigated how summary 

information is represented across time. Some of these studies have directly questioned 

this effect when the items were presented sequentially (Corbett & Oriet, 2011; 

Haberman, Harp & Whitney, 2009; Hubert-Wallender & Boynton, 2012) and few have 

explored this issue when items were presented in dynamic motion (Albrecht & Scholl, 

2010). It has also been demonstrated that observers are also able to extract a summary 

representation of all presented sets within an experimental session (Oriet & Hozempa, 

2016; Whiting & Oriet, 2011).   

Hubert-Wallender and Boynton (2012) presented participants with perceptual 

sets consisting of ten sequentially presented circles, each for 150 ms. Then, they asked 

viewers to indicate the mean size of the whole sequence of items. In this task, the most 

recent items contributed more heavily to the mean judgments, indicating a recency 

effect. A similar recency effect was observed in a study in which observers indicated the 

spatial frequency of studied Gabor patches (Huang & Sekuler, 2010). Two Gabor 

patches were presented consecutively to the observers in a single trial. They were asked 

to reproduce the spatial frequency of the target Gabor patch indicated with a post-cue. 

The results demonstrated that after stimulus onset, the reproduced target Gabor was 

biased towards the non-target item regardless of being presented before or after the 

target Gabor suggesting that the reproduced spatial frequency of items was also biased 

towards the cumulative summary of all Gabor patches in previously shown trials. Thus, 
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the influence of both short and long-term memory on perception could be observed in 

lower level visual processes.  

When the temporal context is extended to the whole experimental session, some 

general characteristics of the sets like their mean and the variability information could 

gain greater importance. Whiting and Oriet (2011) asked participants to choose the mean 

size of the previously shown set which was presented for different durations (0, 50, 100, 

1000 ms) in a two forced-choice paradigm. When the stimulus was shown for less than 

200ms, participants were more likely to choose the test item which was the size of the 

cumulative mean of all previous trials. Poor visibility of the stimulus led participants’ 

judgments to be biased more towards the cumulative mean.  

Huttenlocher and colleagues also demonstrated that the perceptual judgments 

about items were affected by the characteristics of the distribution an item belonged to 

(Duffy, Huttenlocher, Hedges & Crawford, 2010; Huttenlocher et al., 2000). Participants 

were asked to reproduce the size of a previously shown item while distribution 

characteristics of the stimuli were manipulated. The reproduced size was biased towards 

the running mean of all items in the session, especially when it was difficult to judge 

whether the presented item belonged to the distribution or not. When the sizes of all 

presented items had the same presentation frequency, it was difficult to use the 

cumulative mean as a predictor of the upcoming stimuli. On the other hand, when the 

items were selected from a normal distribution, the size of the reproduced items was 

biased towards cumulative mean of the highly frequent items. Therefore, viewers were 

representing both the cumulative mean of the previously shown items and also the 

characteristics of the distributions that these items belonged to. In some cases, this 

information could create a bias in the immediate perceptual judgments.  In some other 
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cases, the temporally extended spatial context was shown to enhance performance in 

visual search tasks. For instance, observers became much better in a given task when 

background item configurations were the same across the trials (Chun & Jiang, 1998). In 

this experiment, the experimental session was divided into different epochs in order to 

understand the perceptual learning process. As experimental session was investigated 

epoch by epoch, it was shown that participants got better in visual search task as 

experimental session proceeded.  Similarly, Corbett and Melcher (2014) demonstrated 

that when mean size of Gabor patches in the background was constant over trials, the 

observers spent less time to find the target Gabor in a visual search paradigm.  

The visual system is also efficient in implicitly learning the summary 

information of all sets presented in an experimental session. Oriet and Hozempa (2016) 

asked observers to indicate how many circles were in the presented set or whether there 

were same-color circles in a given trial. Critically, at the end of the experiment, 

participants also specified the mean size of all previously studied circles. They were very 

accurate in estimating the mean size of the circles even when this estimation was task 

irrelevant suggesting that viewers were continuously summarizing the displays as they 

engaged in other critical tasks. It is possible that also in a spatial task, the visual system 

may continuously update the spatial summary (i.e. the centroid) of all previously shown 

displays. 

The current study investigates how information coming from the recent past 

effects perceptual judgments in the spatial domain. More specifically, to what extent are 

spatial representations effected by the information accumulated during an experimental 

session. Mutlutürk and Boduroglu (2014) demonstrated that the spatial resolution of 

individual item representations was facilitated by the presence of the studied configural 
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context during retrieval. They argued that the preserved configural context between 

encoding and retrieval allowed people to utilize the centroid information while 

estimating individual item locations, further reducing error (also see Boduroglu & Shah, 

2014 for sequential displays). We also know that spatial configuration information may 

be efficiently summarized as centroid (Alvarez & Oliva, 2008; Mutlutürk & Boduroglu, 

under review). However, we still do not know how multiple spatial configurations 

presented across time are represented and how the item and ensemble representations are 

affected by this temporally extended context. To date, the effect of the cumulative mean 

information from past trials on perceptual judgments has been investigated in terms of 

mean size of items (Whiting & Oriet, 2011), mean spatial frequency of Gabor patches 

(Huang & Sekuler, 2010) and memory of faces (Poirier, Heussen, Aldrovandi, Daniel, 

Tasnim & Hampton, 2017). The present study is an attempt to extend these effects into 

the spatial domain. Specifically, the current set of experiments investigated whether 

people could learn and utilize perceptual category information in item localization.  

Participants were asked to report the locations of particular items from sets that are 

either members of particular perceptual families or systematically unrelated to all other 

sets (called “random” here onwards). Posner & Keele (1968) demonstrated that people 

implicitly learn the prototype of displays after viewing slight spatial distortions of it. 

Furthermore, they demonstrated that people confidently report that they have studied the 

prototype even though the actual prototype was never presented to them. In the present 

study, we predicted that the spatial configurations belonging to a perceptual family 

(referred to as “prototype” here onwards) could be learned across trials and that 

information could facilitate item representation. As in item localization tasks where we 

have shown the benefit of preserved spatial configurations on item localization 
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(Mutlutürk & Boduroglu, 2014), we expected that for prototype families, the shared 

properties between members of the family may be implicitly learned and this may help 

narrow the possibilities during target location retrieval, reducing localization error. We 

also expected that this learning process could take place in the form of gradual decrease 

in localization error, as the experimental session proceeds.  

A secondary goal of the present study was to understand whether there are 

individual differences in how well prototype configurations are learned across trials and 

how effectively this information is utilized to increase item precision. While previous 

research on summary representations have not looked into this issue, work on spatial 

configuration representations had shown that there are individual differences in how 

efficiently people utilize spatial configuration information. Boduroglu & Shah (2009) 

demonstrated that high ability participants whose false alarm rate in visual change 

detection task was lower than median false alarm rate of the sample were able to utilize 

configural congruency between study and test displays while low ability participants 

who had more false alarms than average median false alarm score were not able to 

utilize configural congruency to foster visual change detection performance. Therefore, 

in Experiment 2, we predicted that there may be individual differences in how well the 

prototype information is learned and utilized during item localization. To determine 

ability differences, we chose to use both a visual working memory task and measures of 

processing speed. We chose to use a visual change detection task as in Boduroglu & 

Shah (2009), since performance on this task is one of the most reliable measures 

estimating the visual working memory capacity (Fukuda, Vogel, Mayr & Awh; Luck & 

Vogel, 1997) and executive functions (Miyake, Friedman, Rettinger, Shah & Hegarty, 

2001).  To rule out the possibility finding a correlation between two measures are driven 
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solely due to motivational factors, we also included verbal and visuospatial speed of 

processing measures. Speed of processing measures, such as pattern matching and 

number matching, are good indicators of short term memory capacity but not working 

memory (Conway, Cowan, Bunting, Therriault & Minkoff, 2002). Since ability 

differences are typically driven by differences in working memory as opposed to 

differences in short-term memory capacity, we expected the spatial localization task 

performance to be correlated with working memory but not speed of processing 

measures.   
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CHAPTER 3 
 

EXPERIMENT 1A 

 

3.1  Participants 
 
Twenty-nine students (18 female; mean age = 20.45 ± 1.34) from Boğaziçi University 

participated the study in exchange for course credit. All had normal or corrected to 

normal vision.  

3.2  Materials  
 
Each trial began with the presentation of a fixation cross for 500 ms. Participants were 

required to look at the fixation cross as long as it was visible. After the fixation, the 

display, that consisted of 7 same size and different colored squares was presented on the 

screen for 500 ms. Each square had sides of 0.8 cm subtending 0.8°. The squares were 

blue, cyan, red, yellow, pink, green and purple and they were presented on a grey 

background. After stimulus offset, participants heard the name of the color of the target 

via headphones. The speech sound was simultaneous with the onset of the blank, grey 

screen. The participants responded by clicking the location of the target item on the 

blank screen which was visible up until the response (see Figure 1).  

In each trial, locations of the squares were generated within a 12° x 12° square 

region (see Figure 1). The boundary of this region was identified by taking the center of 

the screen as the center of the grid. The items were never located on the peripheral 

region of the screen because of the lower representational resolution of the item 

locations in the peripheral region.  
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Figure 1.  The trial sequence 

There were two types of trials: prototype and random. In the prototype trials, we 

presented participants the vertices of members of Attneave shape families (Attneave & 

Arnolt, 1956)1. We generated 7 sided Attneave figures by running a Matlab program 

designed for this purpose (Collin & McMullen, 2002). For each family set, there was a 

prototype member and its variations. For each prototype family, the locations of the 

vertices of the variations consisted the location of to-be-displayed colors. In the displays, 

we only showed the vertices not the sides. There were 60 variations of each family. The 

prototype was never showed to the participant. We generated 3 separate prototype 

families (see Figure 2). The members of each shape family had .80 family resemblance 

rating which was the recommended value as it was indicated in the Matlab program in 

order for the shapes to have some degree of subjective similarity (Collin & McMullen, 

2002). In order to create prototype variations, the program shifts the vertices of the 

prototype shapes while creating each member of the family. The number of vertices to 

be shifted was set for three families to the value of ‘6’ which was the default value. 

                                                
1 Attneave shapes are hard-to-name polygons.  
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There were three different methods to implement for choosing which vertices to shift. 

Each method was implemented for each family to generate shape families. The random 

method which was choosing arbitrarily a new set of points to shift each time was 

implemented for Family A. The sequential method which was incrementally moving 

through all the points in the shape by shifting one vertex at a time was implemented for 

Family B. The constant method which was shifting the same points each time was 

implemented for Family C. The other parameters such as length limit of sides and angle 

limit of the vertices were set as they had been suggested by the program. They were 

same for all three family types.  

 

Figure 2.  Attneave figures generated as prototype of different perceptual families 

For the random trials, we used the same coordinates that were used in the spatial 

localization task in Mutlutürk & Boduroglu (2014). Mutlutürk & Boduroglu pseudo-

randomly generated locations of 7 items, for each display with the constraints that the 

items were never located in the central foveal region (3°x 3°).  

After we generated a set of locations for both conditions, we calculated the inter-

item distance between items in each display and excluded any set where any one of the 

inter-item distances were at least 30 pixels (1.5°) to ensure that items were spatially 

distinguishable.  

Overall, participants completed a total 360 trials, distributed evenly across the 

two conditions in three blocks. The prototype trials and random trials in a block were 
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presented in a mixed order since learning of a category could take place even in the 

presence of intervening non-category members during the learning phase (Turk-Brown 

et al., 2005). In each block, for the prototype trials, we presented participants with 

members of separate prototype families (Family A, B, C) and the order of these families 

were kept the same. There were 13 training trials in the beginning of the task in order to 

familiarize the participants with the task requirements.  

3.3  Apparatus 
 
A computer with an Intel Core 2 Duo processor, an ATI Radeon X300/X550/X1050 

Series graphics card, and a 17-in. CRT Philips 107S6 monitor was used to present 

stimuli. The screen resolution was set to 640 x 480, with refresh rate of 75 Hz (Refresh 

duration = 13.33 ms ). The experiment was programmed in E-Prime (Psychology Tools, 

Inc.). Participants viewed the computer screen from 57 cm, where 1 cm corresponds to 

1°.  

3.4  Procedure 
 
The study took place in a well-lit room. Participants completed a spatial localization task 

in which they first studied a display and afterwards, subsequent to an auditory cue, 

retrieved a target location. After completing the computer-based task, the participants 

were asked to fill the demographic form. At the end of the experiment, they were 

thanked and debriefed. The whole procedure took approximately 45 minutes.  

3.5  Results and discussion  
 
The Euclidian distance between the target and response coordinates was determined as 

the dependent variable indicating the spatial resolution, in other words localization error.  

The trials in which the error was higher than the outlier threshold (determined as any 

value two standard deviations of the sample mean) were eliminated from the data. We 
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excluded the data of three participants whose responses fell outside the outlier boundary 

on more than 25% of the trials.  

 Kolmogorov-Smirnov test of normality demonstrated that the normality 

assumption was violated in both conditions (ps < .05). Therefore, to normalize the data, 

we log transformed the data as recommended by Osborne (2008a)2. In order to assess 

whether learning of different prototypes had an impact on localization errors, we 

conducted a 2(Condition: Prototype vs. Random) x3 (Block/Family Type: Family A, 

Family B, Family C) within subject ANOVA. The results demonstrated that there was a 

main effect of condition, F(1, 25) = 4.50 , MSE = .002 , p < .05,  hp2 = .15. Participants 

made less localization error in the prototype (M = 48.13, SD = 13.11) than in the random 

condition (M = 49.65, SD = 12.23).  There was also main effect of Block Type, F(2, 50) 

= 6.69 , MSE = .003 , p < .001,  hp2 = .21. Participants made more localization error in 

3rd Block (Family C) (M = 51.38, SD = 12.91) than the 1st Block (Family A) (M = 

46.76, SD = 11.83) and 2nd Block (M = 48.54, SD = 13.28), p< .05. The increased error 

in the 3rd Block may have suggested a fatigue effect.  There was no interaction between 

Condition and Block Type, F(2, 50) = 1.58, MSE = .002, p= .21, hp2 = .06 (see Figure 3; 

error bars in the figures correspond to ± 1 SEM from that point) . Even though the 

interaction was not significant, inspection of the data in Figure 3 suggested that the 

prototype- random difference may not be equally strong in all family types.  Therefore, 

we carried out some post-hoc comparisons for each block and these analyses revealed 

that the strongest difference between prototype and random conditions was in the 

second, Family B block (prototype (M = 46.78, SD = 13.60) and random conditions 

                                                
2 Descriptive statistics such as mean and standard deviation values were presented with their non-
transformed values in text and graphs. 
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(M = 50.31, SD = 12.96) in t(25)= -2.66, p= .01. The error difference was not significant 

for Family A block (prototype (M = 46.59, SD = 12.36) and random conditions (M = 

46.92, SD = 11.29) in t(25)= -. 232, p= .82) and Family C block (prototype (M = 

51.02, SD = 13.37) and random conditions (M = 51.75, SD = 12.45) in t(25)= - .543, 

p= .59). 

 

 

Figure 3.  Mean errors as a function of block/family type in Experiment 1A 

 The distance between the items presented in different conditions and blocks may 

have had an impact on learning of configural congruencies and family members, since 

proximity is an important Gestalt principle for perceiving the items to be grouped 

together (Quinlan & Wilton, 1998).  In order to understand this, we calculated the inter 

item distance of the seven locations for each trial. A comparison of the average inter-

item distances via a 2(Condition: Prototype vs. Random) x 3(Block/Family Type: Family 

A, Family B, Family C) ANOVA revealed that there was neither a main effect of 
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Condition (F(1, 118) = .02, MSE = 363.02, p> .10, hp2 < .001) nor a main effect of 

Family/Block Type (F(2, 236) = .13, MSE = 127.40, p > .10, h2 < .001). The Condition 

and Family/Block Type interaction was not significant, either (F(2, 236) = 1.24, MSE = 

127.396, p > .10, h2 < .001). Thus, the differences between prototype and random 

conditions across different blocks/family types may not be simply due to differences in 

inter-item distances across different conditions.  

 Experiment 1A demonstrated that the observers could use prototype information 

to increase the precision of item resolution. Also, we found that the error rate was lowest 

in the second block for both the prototype and random trials. Since we had not 

counterbalanced the different prototype members across different blocks, these findings 

may have unfortunately been tainted by training and fatigue effects. The post-hoc 

analyses comparing prototype-random differences for different families also revealed 

that there seemed to be family-specific perceptual properties that may facilitate the 

implicit learning of family memberships and the utilization of such information in item 

localization.  
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CHAPTER 4 
 

EXPERIMENT 1B 

 

We carried out Experiment 1B with two particular goals in mind. First, we wanted to 

determine whether increased exposure to family members could lead to an increase in 

the utilization of prototype information resulting in better resolution for item locations. 

To ensure this, we doubled the number of trials with the same 60 members of Family B 

and C, hoping it would facilitate, possibly implicitly, the learning of  family members 

(for effects of increased exposure on perceptual learning see Chun & Jiang, 1998). 

Secondly,  we also manipulated prototype family as a between-subject manner such that 

participants were exposed to members of a single prototype family. We specifically 

exposed participants to either Family B trials (where we observed the largest prototype-

random difference) or to Family C sets. Even though the localization error was largest 

for Family C trials in Experiment 1A and there was no reliable difference between the 

two conditions, the confound in our earlier design did not allow us to rule out whether a 

potential difference may have been washed out by an even stronger fatigue effect. 

4.1  Participants 
 
Fifty-two students (30 female; mean age = 22.02 ± 1.92) from Boğaziçi University 

participated the study in exchange for course credit (26 for each family type). All of 

them had normal or corrected to normal vision.  

4.2  Materials and procedure  
 
In Experiment 2, everything was the same as Experiment 1 except that we doubled the 

trials by presenting each prototype trial twice and used only Family B & C displays for 

prototype trials. The prototype and random trials were presented in a mixed order, 
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different for each participant. The experimental session was divided into three epochs; 

each epoch consisted of eighty trials, evenly distributed across random and prototype.   

4.3  Results and discussion  
 
Unlike in Experiment 1A, the normality assumption was not violated (Kolmogorov 

Smirnov test of normality, ps > .05). We separately analyzed errors for the group that 

received the Family B and Family C sets. For the Family B group, 2(Condition: 

Prototype vs. Random) x3 (Epoch: 1st, 2nd and 3rd Epoch) within subject ANOVA 

revealed a marginal main effect of condition F(1, 25) = 3.88 , MSE = 30.11 , p = .06,   

hp2 = .13. Participants made less localization error in prototype condition (M = 

41.05, SD = 8.76) than the random condition (M = 42.09, SD = 7.68). There was no main 

effect of Epoch, (F(2, 50) = .25, MSE = 30.79, p > .10, hp2 < .05) and the Condition by 

Epoch interaction did not reach significance (F(2, 50) = 1.37, MSE = 20.06, p= .56, hp2 

< .05). For the Family C group, the same analyses revealed a slightly different pattern. 

There was no main effect of condition, F(1, 25) = .86, MSE = 27.42, p= .36, hp2 < .05. 

However, there was a main effect of Epoch, F(2, 50) = 3.88 , MSE = 34.86 , p < .05,  hp2 

= .12, driven by the greater errors in the last epoch (M3rd = 46.82, SD3rd = 11.76) 

compared to the earlier two epochs (M1st = 43.80, SD1st = 10.42; M2nd = 45.65, SD2nd = 

10.38). There was no interaction between two conditions, F(2, 50) = .77, MSE = 29.23, p 

> .10, h2 < .05). 

 Since the data for the two families did not yield consistent results, we further 

explored whether there were any particular individual differences that were overlooked 

in the group level analyses. For each group, we identified the top 25% and bottom 25% 

participants based on the error in the prototype condition. Specifically, we were curious 
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whether both the top and bottom performers in the Family B group showed the 

prototype-random difference similarly. A comparison of prototype-random difference 

across the two groups, with 2(Group: Top vs. Bottom)x 2(Condition: Prototype vs. 

Random) ANOVA revealed an expected main effect of condition (F(1, 12) = 5.64 , MSE 

= .001 , p < .05,  hp2 = .32) and main effect of group (F(1, 12) = 73.86 , MSE = .187 , p 

< .001,  h2 = .86.). There was a significant interaction between Group and Condition, 

F(1, 12) = 9.59 , MSE = .009 , p < .05,  hp2 = .44. As can be seen in Figure 4, this 

interaction was driven by the fact that there was a prototype (M = 31.88, SD = 1.43) and 

random (M = 37.29, SD = 5.49) difference for the top performers, t(6)= - 3.085, p < .05.  

However, prototype (M = 50.67, SD = 5.15) and random (M = 49.56, SD = 3.04) 

difference was not significant for the bottom performers, t(6)= .756, p > .10.  A similar 

comparison of the top and bottom 25% of performers in the Family C group also 

revealed the significant Group and Condition interaction (F(1, 12) = 11.39 , MSE 

= .004 , p < .05,  h2 = .49 ). This interaction was driven by marginal error difference 

between prototype (M = 34.75, SD = 4.27) and random (M = 36.71, SD = 5.30) 

difference for top performers, t(6)= -2.197, p= .07. Surprisingly, bottom performers 

made more error in prototype (M = 59.33, SD = 4.67) than random (M = 56.02, SD = 

7.03) condition which could be seen as another determinant of this interaction, t(6)= 

2.411, p= .05.  
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Figure 4.  The performance of top and bottom performers on spatial localization task 

(Experiment 1B) for Family B and Family C  

 Experiment 1B demonstrated that the prototype information, most likely 

implicitly learned throughout the session, increased spatial representation resolution. 

However, this effect was pronounced for Family B trials, and increasing exposure to 

Family C members did not lead to increased utilization of prototype information in 

spatial localization in all viewers. Interestingly, post-hoc analyses revealed that in both 

Family B and Family C groups, the top performers’ data actually yielded a prototype 

advantage. This finding of an individual difference in learning and utilizing spatial 

configuration information is not unique to this study. Earlier work from our lab had 

shown that top performers were able to utilize spatial configuration information to assist 

in visual change detection tasks. The prototype trials in the currently used spatial 

localization task, require participants to learn (implicitly) spatial configuration 

information unique to families, from information presented in a temporally extended 
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context. Thus, it seems as if individual differences as well as prototype family qualities 

contribute to the learning and utilization of temporally extended spatial context.  

Surprisingly, bottom performers in Family C group made more errors in prototype than 

the random condition contrary to the findings in Family B group. The characteristics of 

the bottom performers’ behavior remain unclear to which degree they could utilize the 

prototype information whereas it is important to highlight that they did not perform in a 

total random fashion3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                
3 To determine whether the bottom 25% of the participants were randomly localizing target objects, we 
simulated the data of a random observer who independently picked a location within the region where 
objects appeared. Comparison of the random observer data (M= 133.34) with the participant data revealed 
that even the poor performers (M= 56.85, SD=5.97) were not responding in a totally randomly manner, 
t(51)= 76.09, p < .001. 
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CHAPTER 6 
 

EXPERIMENT 2A 

 

In Experiment 2A, we wanted to further understand the prototype advantage partly 

observed in the earlier experiments, replicate those findings and determine the basis for 

the individual differences observed using independent measurements of visual working 

memory capacity. We also wanted to determine whether the particular qualities of the 

random trials utilized in Experiments 1A and 1B might have confounded some of the 

results because the constraints used to generate the random displays (e.g. ensuring the 

centroids of the random display were not within a central region) might have 

unknowingly decreased similarity across random displays since each random trial used 

different part of the visual display (see Figure 5). If that was the case, then the random 

trials may have created a visual pop-out effect, reducing the prototype-random 

difference. Therefore, in Experiment 2A, we generated a new set of random locations.   

6.1  Participants  
 
Sixty Boğaziçi University students (44 female; mean age = 20.58 ± 1.43) participated 

the study in exchange for the course credit. All of them had normal or corrected to 

normal vision. 

6.2  Materials 
 
In Experiment 2A, everything was the same as Experiment 1B except that we only used 

Family B members and a new set of random locations. In each random trial, locations of 

the squares were generated within the same 12 x 12 ° square region without any 

constraints by using the total area within the grid. Seven random locations were 

generated for each trial by using ‘rand’ function in Matlab. We also included a visual 
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change detection task and processing speed measures described in detail under the 

individual differences heading.    

 

Figure 5.  Old and new random sets 

6.3  Individual differences measures 
 
We used the color change detection task used by Buschkuehl and colleagues (2017)4. In 

the color change detection paradigm, participants are presented with a study set and after 

a brief delay, they are presented with a probe item. Participants have to decide whether 

this probe item is the same color as the one studied in the same location earlier. In this 

version of the task we used, a trial began with a fixation cross presented for 1000 ms. 

Following fixation, a set consisting of 2, 4, 6, 8 or 10 items were presented for 250 ms. 

Then, a mask consisting of striped squares located in the same positions were presented 

for 700 ms. After 100 ms blank screen, the probe item was presented. Participants were 

asked to press “A” key or “L” key, if the color was the same or different colors, 

respectively. There were equal number of trials for each set size. Participants completed 

150 trials and trials were presented in a mixed order. For each participant, we 

determined the capacity index, Cowan’s k. 

                                                
4 We would like to thank Buschkuehl and colleagues for providing us the program of the change detection 
task that was used in Experiment 2.  
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 Participants also completed two separate, one verbal and the other visuospatial, 

speed of processing tasks. Both of these tasks were paper-pencil measures, and 

everything was presented visually to participants. In the Number Matching task (verbal), 

the participants had to decide whether two numbers were the same or not in a given trial. 

The numbers consisted of 3, 6 or 9 digits. There were three different parts, on three 

differences pages. Each part had 64 trials. The difficulty level increased in each part as 

the number of digits per number increased. Participants had 45 seconds to complete each 

part. They were asked complete each level as quickly as possible with the highest 

accuracy. The Pattern Matching task was very similar to the Number Matching Task. In 

this task, participants are presented with 2-D patterns and asked to match the target 

shape with the identical one from among four alternatives. There were two parts in this 

task at the same difficulty level. For each part, there were 30 trials. Each participant had 

30 seconds per section. The score for each task was calculated by subtracting the wrong 

answers from the total number of correct answers.  

6.4  Procedure 
 
Participants first completed the experimental spatial localization task. Then, they 

completed the visual change detection task, Number Matching and Pattern Matching 

tasks in fixed order. After filling the demographic form, the participants were thanked 

and debriefed.  

6.5 Results and discussion 
 
For the spatial localization task, the error was calculated as in the previous experiments.  

Unlike in Experiment 1A, the normality assumption was not violated (Kolmogorov 

Smirnov test of normality, ps > .05).  
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Our comparison of the error in the prototype and random condition revealed that 

participants made less localization error in the prototype (M = 39.90, SD = 6.88) than in 

the random condition (M = 41.98, SD = 6.78), t(58)= -4.074, p < .001, replicating earlier 

findings with a new set of random display locations. 

To determine whether there is a relationship between one’s ability to utilize 

prototype information in spatial localization and visual working memory capacity, we 

carried out a correlation analysis between each participant’s prototype-random 

localization error difference and change detection task scores (Cowan’s k). The Cowan’s 

k scores ranged from 2 to 10 (M = 4.15, SD = 2.04)5. We identified three visual working 

memory (VWM) capacity groups which were high, medium and low capacity groups 

based on the Cowan’s k scores. The groups were formed in accordance with the 

condition that each group had a similar sample size. High capacity participants’ scores 

ranged from 6 to10 (N= 16); medium capacity participants had the score of 4 (N= 27) 

and low capacity participants had the score of 2 (N= 17). 3(VWM Capacity: High, 

Medium, Low) x 2(Condition: Prototype vs. Random) mixed design ANOVA was 

carried out in order to understand whether there were any differences between these 

groups in terms of learning of prototype configurations. There was a main effect of 

condition (F(1, 57) = 14.70 , MSE = 7.26 , p < .001,  h2 = .21) as indicated earlier.  

There was also main effect of VWM capacity (F(2, 57) = 5.54 , MSE = 74.69, p 

< .05,  hp2 = .16) with least error for high capacity participants (M = 36.65, SD = 6.84) 

compared to medium capacity (M = 42.93, SD = 5.67) and low capacity participants 

(M = 41.80, SD = 7.14). There was no interaction between Condition and VWM 

                                                
5 Kolmogorov Smirnov test of normality indicated that the distribution was not normal (p< .00). There 
was no outlier in the sample detected by the SPSS.  
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capacity, F(2, 57) = .898, MSE = 7.26, p > .10, hp2 < .05. We carried out some post-hoc 

comparisons for each working memory capacity condition and these analyses revealed 

that the difference between prototype and random conditions was not significant in the 

high capacity participants (prototype (M = 36.12, SD = 6.18) and random conditions 

(M = 37.18, SD = 7.49) in t(15)= - .912, p = .38). The error difference was significant for 

medium capacity (prototype (M = 41.61, SD = 6.21) and random conditions (M = 

44.27, SD = 5.13) in t(26)= - 4.579, p < .01) and low capacity participants (prototype 

(M = 40.75, SD = 7.49) and random (M = 42.85, SD = 6.45) in t(16)= - 2.108, p= .05). 

High capacity participants performed equally well in prototype and random conditions. 

On the other hand, medium and low capacity participants were the ones who could 

utilize the prototype information. It could be speculated that the high capacity 

participants may have utilized the prototype information, whereas they were also 

performed equally well in the random condition resulting in the decrease in the error 

difference between prototype and random conditions.  

There was a significant negative correlation between the visual working memory 

scores and the localization error in both prototype condition, r(58) = -.30, p < .05 and 

random condition, r(58) = -.38, p < .001 (see Figure 6). This suggests that as observers’ 

visual working memory capacity increased, they made less errors in the spatial 

localization task.  Two correlations were compared in order to understand whether the 

latter is stronger than the former since stronger correlation between random errors and 

visual working capacity may have resulted in a different explanation (Hittner, May & 

Silver, 2003). In that case, the high capacity participants may have performed better in 

random condition because it is more difficult to perform than prototype condition.  Their 

visual working memory capacity may have facilitated their performance more in random 
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sets than the prototype sets. However, the correlation between visual working memory 

capacity (VWM) and the amount of error in random condition was not stronger than the 

correlation between VWM and prototype scores (Z= 1.22, p= .22), eliminating prior 

suggestions regarding the relationship between task difficulty and visual working 

memory capacity.  

 
 
Figure 6.  The correlation between visual working memory capacity and 

prototype/random errors in Experiment 2A 

6.5.1  Pattern matching task 
 

Another correlation analysis was conducted to determine whether processing 

speed had any relationship to localization error. There was a significant negative 

correlation between pattern matching task and the localization errors in the prototype 

condition, r(58) = -.28, p < .05 (see Figure 5). The participants who had higher 

processing capacity of visual patterns were also the ones who made less error in the 

prototype condition. The correlation between localization errors in random condition and 
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pattern matching performance was marginally significant, r(58) = -.23, p =.07. 

 

Figure 7.  The relationship between localization errors in prototype condition and 

capacity for processing visual patterns in Experiment 2A 

6.5.2  Number matching task 

Localization error in prototype trials was not related to number matching 

performance, r(58) = -.14, p > .10. Similarly, errors in the random condition were not 

correlated with number matching scores, r(58) = -.07, p > .10.  

In Experiment 2A, we replicated the prototype and random error difference for 

Family B, with a new set of random displays. We also found that visual working 

memory capacity was linked to spatial localization performance; spatial localization 

error both for prototype and random conditions was also significantly correlated with 

perceptual speed performance in the visuospatial domain. 

 In Experiment 2A, we also changed the locations of objects in the random trials. 

Eliminating the random confound resulted in stronger error difference between prototype 
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and random trials in Experiment 2A than Experiment 1. Sharing the same visual field for 

both conditions may have contributed to the increase in the amount of error difference 

between prototype and random trials by increasing the amount of error in random 

conditions. 

Individual differences in visual working memory and short-term memory 

capacity may play a crucial role in the performance for spatial localization task. 

However, this relationship between visual working memory capacity and the facilitation 

of the prototype information may not be solely attributed to the individual differences in 

utilizing configural congruency.  

Individual differences in processing speed of visual patterns could determine the 

facilitation of the prototype information. In contrast, number matching task scores did 

not have a relationship with spatial localization task. This overall pattern may be linked 

to the visuospatial nature of the spatial localization task and the role of domain-specific 

abilities in perceptual learning and utilization of spatial configural patterns.  
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CHAPTER 7 
 

EXPERIMENT 2B 

 

In Experiment 2B, we wanted to test whether a prototype facilitation effect would be 

detected once the new set of random locations are used in comparison to Family A and 

Family C sets.  

6.1  Participants 
 
Fifty undergraduate students (27 for Family A and 23 for Family C) were recruited for 

the experiment in exchange for the course credit (29 female; mean age = 21.32 ± 1.76).  

All of them had normal or corrected to normal vision. One of the participants was 

excluded from the data since more than thirty five percent of his/her errors was 

determined as outlier (above mean plus two standard deviations of the sample errors).  

6.2  Materials 
 
Everything was identical to Experiment 2A except for the following changes. Two 

different prototype families (Family A & C) that were created for Experiment 1 by using 

the identical Matlab program designed for generating Attneave shapes (Collin & 

McMullen, 2002) were used in Experiment 2A.  The members of the shape families 

had .80 similarity rating as in the Experiment 1& 2A. The trials were presented in a 

mixed order.  

6.2  Results and discussion  
 
The analysis of the data was similar to Experiment 1 & 2A. Kolmogorov Smirnov test of 

normality demonstrated that one of the Prototype families (Family A) violated the 

normality assumption (for all conditions, ps < .01). In order to normalize the data for 

Family A, the scores were log transformed. Taking the spatial resolution scores as the 
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dependent variable, we compared prototype and random scores of the participants for 

each family. The results revealed that there was not a significant difference between 

prototype (M = 45.09, SD = 10.15) and random conditions (M = 44.41, SD = 10.42) for 

Family A, t(26)= 1.006, p= .32.  Similarly, prototype (M = 45.46, SD = 8.24) and 

random (M = 44.94, SD = 8.67) difference was not significant for Family C, t(21)= .553, 

p= .58. Thus, the configural information did not facilitate the spatial item resolution both 

for Family B and Family C. 

 In the Experiment 2B data, we identified the top 25% and bottom 25% 

participants based on the error in the prototype condition as in Experiment 1B. We 

conducted 2(Condition: Prototype vs Random) x 2(Performer Type: Top Performer vs 

Bottom Performer) mixed design ANOVA in order to understand whether top or bottom 

participant groups performed differently in spatial localization task for Family A trials. 

There was no main effect of condition (F(1, 12) = .08, MSE = 6.425, p= .78, hp2 = .01), 

whereas  there was a main effect of performer type, F(1, 12) = 3.68, MSE = 147.51, p 

< .001,  hp2 = .66.  The interaction between condition and performer type was not 

significant, (F(1, 12) = .28, MSE = 6.425, p= .61, hp2 = .02. 

 We carried out  2(Performer Type: Top Performer vs Bottom Performer) x 

2(Condition: Prototype vs Random)  mixed design ANOVA in order to understand 

whether top or bottom participant groups performed differently also for Family C trials. 

There was no main effect of condition, (F(1,12) = .42, MSE = 5.942, p= .53, hp2 

= .03).There was a main effect of performer type, F(1, 12) = 23.57, MSE = 70.84, p 

< .001,  hp2 = .66. The interaction between condition and performer type was marginally 

significant, F(1, 12) = 4.16, MSE = 5.942, p = .06, hp2 = .26 (see Figure 7).  We also 
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carried out some post-hoc comparisons for each performer type and these analyses 

showed that the difference between prototype and random conditions was not significant 

in the top performers (prototype (M = 37.42, SD = 6.50) and random conditions (M = 

39.89, SD = 8.20) in t(6)= - 1.946, p= .10). The error difference was not significant for 

bottom performers (prototype (M = 54.74, SD = 3.75) and random conditions (M = 

53.42, SD = 5.46)) in t(6)= . 96, p= .37).  

 

Figure 8.  The performance of top and bottom performance on the spatial localization 

task in Experiment 2B 

 The results of Experiment 2B revealed that the participants did not utilize 

prototype information in order to increase the item resolution for both Family A and 

Family C. These findings may indicate that learning and utilizing the prototype 

information may not be easily generalized to the other perceptual families since there 
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could be prototype characteristics that impact the likelihood of the prototype facilitation 

observed during the spatial localization task.  

 In Experiment 2B, the performance difference between prototype and random 

trials across different participants types was not replicated for Family A. Marginal 

significance of interaction effect between condition and performer type may indicate that 

there could be individual differences regarding utilization of the prototype information 

for Family C.  
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CHAPTER 8 
 

GENERAL DISCUSSION 

 

Findings of the reported experiments demonstrated that shared properties of 

configurations belonging to perceptual families could be learned and utilized when they 

are presented throughout experimental session whereas this may be subject to prototype 

characteristics. The findings which are presented in this study are consistent with the 

literature indicating that the observers could learn background item configurations 

(Chun & Jiang, 1998) and regularities of visual patterns (Turk-Browne et al., 2005). The 

effects of the regularities on item representations were studied in terms of processing of 

verbal stimuli through chunking (Cowan, 2010). The observers were more inclined to 

chunk semantically related stimuli than unrelated stimuli. This is one of the examples 

indicating the effects of redundancy resulting from the interaction between items and the 

whole that the items belonged to on verbal representations. Another line of the study 

indicated that regularities in terms of probabilistic co-occurrence of color pairs resulted 

in the higher visual capacity for items (Brady, Konkle & Alvarez, 2009). The current 

study elaborated the findings of the literature by investigating the effect of the 

regularities of configurations which are learned throughout an experimental session on 

the spatial resolution of items belonging to these configurations. This is an important 

finding in the understanding of to what extent the immediate perceptual judgments are 

affected by the regularities within the spatial configurations formed across time.  

 One of the possible explanations regarding the effect of learned configurations 

on item precision may be that participants decreased the target location possibilities by 

narrowing down the target field throughout experimental session due to the learning of 
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the configural information. Another possibility could be that the centroid information of 

configurations belonging to the perceptual family may facilitate the spatial 

representation of the items since they fall into approximately same location on the screen 

across trials. Previous research showed that availability of the configural cues facilitates 

the spatial resolution of the items when the partial configuration is presented during 

retrieval since the partial configuration information facilitates the centroid representation 

(Mutlutürk & Boduroglu, 2014). Similarly, the centroid representation formed across 

trials may facilitate the item precision. One limitation of this interpretation could be that 

the centroid information has never been asked the participants in this experimental 

design.  

 Experiment 1 and 2 showed that particular configural properties could contribute 

to learning and utilizing the prototype information. In the present study, the metrical 

proximity of the items in the sets did not contribute to the distinctive qualities of the 

configurations belonged to different prototype families. Another important determinant 

which contribute to different characteristics of the prototype families could be seen as 

different methods that implemented by generating Attneave shapes. However, it is 

difficult to explain how these methods led one prototype family to be more useful or 

available during retrieval. Future work could focus on the investigation of the nature of 

these characteristics and how they impact learning and utilizing configural information 

across time.  

 In Experiment 1B, it was demonstrated that participants who made fewer errors 

in the prototype trials were the ones who could utilize the congruencies between 

prototype trials. However, the current experiments did not directly address the question 

of whether visual working memory capacity predicted the learning of the shared 
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characteristics of the configurations, since the performance in visual change detection 

task predicted both the performance in localization of the random items and items 

belonging to the perceptual families. On the other hand, it could be concluded that visual 

working memory is a good predictor of the performance in the localization of the target 

items.  

 One of the interesting findings in this study regarding the individual differences 

is that individuals’ processing speed capacity for visual patterns predicted the 

performance in utilization of the learned configurations. This finding may indicate that 

there could be some domain specific characteristics of the processing speed tasks since 

this effect was not evident for the other processing speed measure which is the number 

matching task. Research demonstrated that number processing requires a distinct 

mechanism highly dependent upon semantic representations (Dehaene, Piazza, Pinel & 

Cohen, 2003). On the other hand, pattern matching task does not require any semantic 

processing capacity since the patterns that were used in the task are novel and difficult to 

name kind of shapes requiring visual processing capacity. These qualitative differences 

related to different cognitive mechanisms may explain the different contributions of 

processing speed capacity in learning and utilizing the configural information. Future 

research could also identify the nature of these different tasks and their contribution to 

the other cognitive capacities.  
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