
 

 

 

 

 

THE EFFECTS OF SERIOUS GAMES ON STUDENTS’ 

CONCEPTUAL KNOWLEDGE OF OBJECT-ORIENTED PROGRAMMING 

AND COMPUTATIONAL THINKING SKILLS 

 

 

 

 

 

 

 

ALİ AKKAYA 

 

 

 

 

 

 

 

BOĞAZİÇİ UNIVERSITY 

2018 



 

 

 

 

 

THE EFFECTS OF SERIOUS GAMES ON STUDENTS’ 

CONCEPTUAL KNOWLEDGE OF OBJECT-ORIENTED PROGRAMMING 

AND COMPUTATIONAL THINKING SKILLS 

 

 

Thesis submitted to the 

Institute for Graduate Studies in Social Sciences 

in partial fulfillment of the requirements for the degree of 

 

 

Master of Arts 

in 

Educational Technology 

 

 

by 

Ali Akkaya 

 

 

 

Boğaziçi University 

2018 



 

 

  



 

 

  



iv 

 

 

ABSTRACT 

The Effects of Serious Games on Students’ Conceptual Knowledge  

of Object-Oriented Programming and Computational Thinking Skills 

 

The aim of this study is to investigate the effects of a serious game, Curious Robots: 

Operation Asgard (Meraklı Robotlar: Operasyon Asgard), on undergraduate 

students’ learning performance on conceptual knowledge of object-oriented 

programming (OOP) of and computational thinking (CT) skills in Turkish. The study 

was conducted with a pre-test and post-test quasi-experimental design model. Data 

were collected from 30 freshman students without programming experience and 31 

sophomore students with procedural programming experience. Each student took a 

creative problem-solving test and a pre-test before playing the game. After playing 

the developed game, students took a post-test and an attitude scale for serious game 

assisted programming learning. Analyses showed that the game helped students to 

develop conceptual knowledge of OOP and improve their CT skills. Analysis also 

showed that there were no significant two-way or direct interactions among students’ 

creative problem-solving skills, attitudes towards digital game-based learning of 

programming on the achievement scores of students. This study makes a significant 

contribution to the literature by providing empirical data about the effects of serious 

games on novice programmers’ conceptual knowledge of OOP and CT skills. It is 

thought that in the lights of the findings of the study, serious game designers and 

instructors would have the opportunity to design effective games that help novice 

programmers to overcome their learning difficulties and improve their learning.  



v 

 

ÖZET 

Eğitsel Oyunların Öğrencilerin Nesne Tabanlı Programlamanın  

Temel Kavramsal Bilgisi ve Bilgi İşlemsel Düşünme Becerilerine Etkisi 

 

Bu çalışmanın amacı Türkçe dilinde geliştirilmiş olan Meraklı Robotlar: Operasyon 

Asgard isimli eğitsel oyunun üniversite öğrencilerinin nesne tabanlı programlamanın 

temel kavramsal bilgisi ve bilgi işlemsel becerileri üzerine olan etkisini incelemektir. 

Çalışma yarı-deneysel öntest – sontest araştırma deseninde tasarlanmıştır. Veriler 

Boğaziçi Üniversitesi Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümündeki 

daha önce hiç programlama tecrübesi olmayan 30 birinci sınıf öğrencisi ve temel 

programlama eğitimini C dilinde almış olan 31 ikinci sınıf öğrencisinden 

toplanmıştır. İlk olarak, öğrencilere yaratıcı problem çözme testi ve nesne tabanlı 

programlama ve bilgi işlemsel düşünme becerilerini ölçen ön test uygulanmıştır. 

Öğrenciler ön testleri tamamladıktan sonra geliştirilen oyunu oynamışlardır. 

Sonrasında öğrencilere ilk testteki sırası değiştirilmiş sorulardan oluşan nesne tabanlı 

programlama ve bilgi işlemsel düşünme son testi ve eğitsel bilgisayar oyunları 

destekli kodlama öğrenimine yönelik tutum ölçeği uygulanmıştır. Yapılan 

istatistiksel veri analizleri, geliştirilen oyunun her iki öğrenci grubundaki 

öğrencilerin nesne tabanlı programlamanın temel kavramlarını öğrenmeye ve bilgi 

işlemsel düşünme becerilerini geliştirmeye yardımcı olduğunu göstermiştir. Ayrıca 

öğrencilerin yaratıcı problem çözme becerileri ve bilgisayar oyunu destekli 

programlama öğrenimine karşı tutumlarının nesne tabanlı programlamanın kavramsal 

bilgisi ve bilgi işlemsel becerileri üzerine birlikte ve ayrı ayrı etkisinin olmadığını 

göstermiştir. Bu çalışma sunduğu deneysel verilerle bilgisayar oyunu destekli 

programlama öğrenimi alanyazınına önemli bir katkıda bulunmuştur. Çalışmanın 



vi 

 

bulguları vasıtasıyla eğitsel oyun geliştiricileri ve öğretim elemanlarının acemi 

programcıların problemlerini ortadan kaldırabilmelerine yardımcı olacak daha etkili 

eğitsel oyunlar geliştirebilmesine olanak sağlanması beklenmektedir. 

  



vii 

 

ACKNOWLEDGEMENTS 

 

I am pleased to acknowledge the substantial contributions of those who helped me 

with my thesis. First and foremost, I would like to express my sincere gratitude to my 

thesis advisor, Prof. Yavuz Akpınar, for his commitment, motivation and meticulous 

guidance during my research study. Despite his heavy workload and limited time, it 

is his invaluable experience, ideas, and his continuous encouragement and belief in 

me that made this thesis possible. 

 I would like to express my greatest appreciation to each of the members of 

my thesis committee, Prof. Birgül Kutlu Bayraktar and Assist. Prof. Yavuz Samur, 

for their insightful comments, feedback, suggestions and their possitive attitudes that 

broadened my perspective and increased my motivation. 

 Moreover, I want to thank my friends and colleagues who made contributions 

to my research and made this thesis possible. First, I would like to offer my special 

thanks to my friend and colleague, Ekrem Kutbay, for his valuable feedbacks, 

suggestions and also for his support during the data collection phase of my research. 

I also want to thank my friends Yakup Adaklı, Hüseyin Demir and Barış Demirer for 

their valuable suggestions that improved the design of the game. Lastly, I am grateful 

to Oğuz Ak for his permission and support to conduct the experiments in his lecture. 

 Last but not least, I owe very special debt of gratitude to my beloved family: 

to my mother and father, Sırmalı and Mahmut Akkaya, to my older brother and 

sisters Adem, Elmas and Rükiye Akkaya all of whom were very supportive all the 

time. I, especially, owe a very important debt of gratitude to my nearest and dearest 

love, Gülhizar Bollu, who has always been there for me throughout this tough and 

tiring process, and had faith in me even when I had doubts about myself.   



viii 

 

TABLE OF CONTENTS 

 

CHAPTER 1: INTRODUCTION ................................................................................ 1 

1.1  Statement of the problem .................................................................................. 3 

1.2  Purpose of the study .......................................................................................... 5 

1.3  Research questions ............................................................................................ 5 

1.4  Significance of the study ................................................................................... 6 

1.5  Organization of the study .................................................................................. 7 

CHAPTER 2: REVIEW OF THE LITERATURE ...................................................... 8 

2.1  Problems of teaching and learning programming ............................................. 8 

2.2  Object-oriented programming concepts and computational thinking skills .... 11 

2.3  Digital game-based learning in introductory programming ............................ 21 

2.4  Summary of the literature ................................................................................ 46 

CHAPTER 3: METHODOLOGY ............................................................................. 49 

3.1  Research design ............................................................................................... 49 

3.2  Participants and sampling procedure ............................................................... 49 

3.3  Treatments ....................................................................................................... 51 

3.4  Instruments ...................................................................................................... 70 

3.5  Data collection procedures .............................................................................. 73 

3.6  Data analysis .................................................................................................... 74 

CHAPTER 4: RESULTS ........................................................................................... 77 

4.1  Learning gain of freshman and sophomore students ....................................... 77 

4.2  Comparison of the achievement scores of freshman and sophomore students 87 

4.3  Covariate effects on the achievement scores ................................................... 89 

CHAPTER 5: DISCUSSION AND CONCLUSION ................................................ 93 

5.1  Effects of a serious game on students’ conceptual knowledge of OOP and CT 

skills................................................................................................................. 93 



ix 

 

5.2  Comparison of achievement scores of students without programming 

experience and students with procedural programming experience ............... 99 

5.3  The relationship among students’ creative problem-solving skills, attitudes 

towards digital game-based learning of programming and learning ............. 100 

5.4  Implication for practice and recommendations for further research ............. 102 

5.5  Limitations of the study ................................................................................. 105 

APPENDIX A: CREATIVE PROBLEM-SOLVING SKILL TEST....................... 106 

APPENDIX B: CREATIVE PROBLEM-SOLVING SKILL TEST (TURKISH) .. 111 

APPENDIX C: ATTITUDE SCALE FOR SERIOUS GAME ASSISTED 

PROGRAMMING LEARNING ....................................................................... 116 

APPENDIX D: ATTITUDE SCALE FOR SERIOUS GAME ASSISTED 

PROGRAMMING LEARNING (TURKISH) .................................................. 117 

APPENDIX E: PRE/POST TEST ............................................................................ 118 

APPENDIX F: ETHICAL APPROVAL ................................................................. 121 

APPENDIX G: PARTICIPANT INFORMATION AND CONSENT FORM ....... 122 

REFERENCES ......................................................................................................... 124 

  



x 

 

LIST OF TABLES 

 

Table 1.  CT Skillsets Defined in the Literature ........................................................ 17 

Table 2.  A Review of the Serious Games to Teach Programming ........................... 30 

Table 3.  Variables of the Study ................................................................................. 50 

Table 4.  Participants of the Study ............................................................................. 50 

Table 5.  Distribution of the Adapted Test Items ....................................................... 72 

Table 6.  Learning Objectives and Corresponding Measurement Item Numbers ...... 73 

Table 7.  Shapiro-Wilk Result of Pre-test and Post-test Scores ................................. 77 

Table 8.  Descriptive Statistics of the Pre-test and Post-test Scores of Freshman 

Students .......................................................................................................... 78 

Table 9.  Wilcoxon Signed Rank Test for Pre-test and Post-test ............................... 78 

Table 10.  Descriptive Statistics of Freshman Students' Pre-test and Post-test Results 

of Conceptual Knowledge of OOP ................................................................. 79 

Table 11.  Shapiro-Wilk Result of the Pre-test and Post-test Scores on Conceptual 

Knowledge of OOP ........................................................................................ 79 

Table 12.  Wilcoxon Signed Rank Test for Pre-test and Post-test Scores on 

Conceptual Knowledge of OOP ..................................................................... 79 

Table 13.  Frequency Distribution of Freshman Students’ Number of Correct 

Answers for OOP Concepts ........................................................................... 80 

Table 14.  Descriptive Statistics of Freshman Students' Pre-test and Post-test Scores 

on CT Skills .................................................................................................... 81 

Table 15.  Shapiro-Wilk Result of Pre-test and Post-test Scores on CT Skills .......... 81 

Table 16.  Wilcoxon Signed Rank Test for Freshman Students’ Pre-test and Post-test 

Scores on CT skills ......................................................................................... 82 



xi 

 

Table 17.  Frequency Distribution of Freshman Students’ Number of Correct 

Answers for CT Skills .................................................................................... 82 

Table 18.  Descriptive Statistics of Pre-test and Post-test Scores of Sophomore 

Students .......................................................................................................... 83 

Table 19.  Shapiro-Wilk Result of Pre-test and Post-test Scores of Sophomore 

Students .......................................................................................................... 83 

Table 20.  Paired Sample Test for Post-test and Pre-test of Sophomore Students..... 83 

Table 21.  Descriptive Statistics for Sophomore Students' Pre-test and Post-test 

Scores of Conceptual Knowledge of OOP ..................................................... 84 

Table 22.  Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test on 

Conceptual Knowledge of OOP ..................................................................... 84 

Table 23.  Paired-Samples t-Test for Sophomore Students' Post-test and Pre-test 

Scores on Conceptual Knowledge of OOP .................................................... 84 

Table 24.  Frequency Distribution of Sophomore Students’ Number of Correct 

Answers for OOP Concepts ........................................................................... 85 

Table 25.  Descriptive Statistics for Sophomore Students' Pre-test and Post-test 

Scores of CT Skills ......................................................................................... 86 

Table 26.  Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test Scores 

on CT Skills .................................................................................................... 86 

Table 27.  Wilcoxon Signed Rank Test Result for Sophomore Students' CT Skills . 87 

Table 28.  Frequency Distribution of Sophomore Students’ Number of Correct 

Answers for CT Skills .................................................................................... 87 

Table 29.  Shapiro-Wilk Result of Achievement Scores of Freshman and Sophomore 

Students .......................................................................................................... 88 

Table 30.  Descriptive Statistics for Students' Achievement Scores .......................... 88 



xii 

 

Table 31.  Independent-Samples t-Test for Students' Achievement Scores .............. 88 

Table 32.  Shapiro-Wilk Result of Residuals for Achievement Scores ..................... 89 

Table 33.  Two-way ANOVA Test for Freshman and Sophomore Students' 

Achievement Scores ....................................................................................... 90 

Table 34.  Shapiro-Wilk Result of CPSS, Attitude and Achievement Scores ........... 92 

Table 35.  The Correlations Between Students' CPSS, Attitudes and Achievement 

Scores ............................................................................................................. 92 

 

  



xiii 

 

LIST OF FIGURES 

 

Figure 1.  Layers of abstraction with onion metaphor ............................................... 20 

Figure 2.  Experiential gaming model ........................................................................ 53 

Figure 3.  Model of the flow state .............................................................................. 54 

Figure 4.  Mission information panel ......................................................................... 58 

Figure 5.  The help menu ........................................................................................... 59 

Figure 6.  Class definition activity ............................................................................. 60 

Figure 7.  Creating a robot instance activity .............................................................. 61 

Figure 8.  Defining method activity ........................................................................... 63 

Figure 9.  Programming the robot to go to the spaceship .......................................... 63 

Figure 10.  The feedback message ............................................................................. 64 

Figure 11.  Encapsulation activity panel .................................................................... 65 

Figure 12.  Going to Asgard mission ......................................................................... 66 

Figure 13.  First exploration mission ......................................................................... 66 

Figure 14.  Inherited class define activity .................................................................. 68 

Figure 15.  Defining polymorphic methods ............................................................... 69 

Figure 16.  Final explorations in Asgard .................................................................... 70 

 

  



1 

 

CHAPTER 1 

INTRODUCTION 

 

Motivation is the sine qua non of effective learning: nothing can stop a motivated 

learner (Prensky, 2003). For this reason, researchers put emphasis on developing 

learning environments that engage students and provide effective learning. Games, 

thanks to their motivating and engaging nature, started to be considered as learning 

environments by researchers (Prensky, 2003). The use of video games as a learning 

environment is one of the approaches that researchers have adopted. In the literature 

serious games are identified as video games which have educational goals and 

provide intriguing contexts (Gunter, Kenny, & Vick, 2008). Computer programming, 

on the other hand, is one of most important skills of today’s world thanks to the 

industry 4.0 revolution. However, students who start to learn computer programming 

lose their motivation because of the monotonous lessons and the difficulties they 

encounter while learning to program. Hence, researchers developed tools that 

encouraged the digital game-based learning of computer programming.  

 Object-Oriented Programming (OOP) is the most popular programming 

approach, which has a broad range of use in many domains and is currently being 

taught in educational institutions (Kölling, 1999a). Students starting to learn 

computer programming are excited to develop applications and games or work on 

operating systems and web browsers. Unfortunately, programming courses include 

complex activities that can cause learning difficulties for novice programmers 

(Pellas, 2014), which results in demotivation. Some of the difficulties students face 

stem from the abstract nature of OOP, the distribution of control flows in OOP, the 

complexity of the syntax of programming languages and the programming 



2 

 

environments. Additionally, Computational Thinking (CT) skills are the fundamental 

skills that the lie at the bottom of students’ problems. CT is a problem-solving 

approach in which solutions to problems are generated in a way that computers are 

able to perform (Wing, 2006). Students have problems in understanding and 

analyzing a problem, building step-by-step algorithmic solution designs for problems 

(Xinogalos, 2016) and visualizing the programming concepts from a problem 

situation (McCracken, et al., 2001). 

Recently, researchers adopted a digital game-based learning approach to help 

novice programmers overcome their learning problems and increase their motivation 

for teaching computer programming. The current literature in digital game-based 

learning of programming has two focuses: using visual programming environments 

to teach programming and using serious games as learning environment to introduce 

programming learning through game-play experience. 

Visual programming environments such as Scratch (Resnick, et al., 2009), 

Alice (Cooper, Dann, & Pausch, 2000), and Greenfoot (Kölling, 2010) were used by 

researchers to teach the basics of OOP and CT, and the findings of the research 

conducted on these programming environments were promising. Even though the 

visual programming environments had positive effects on students’ learning 

performance, they still need to be used with well-designed teaching methods and 

learning materials (Meerbaum-Salant, Armoni, & Ben-Ari, 2013; Repenning, Webb, 

& Ioannidou, 2010). Moreover, these programming environments do not have a 

proper feedback mechanism to help novice programmers understand the errors in 

their algorithms (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). 

Using games as learning environment is the other main approach in the 

literature of digital game-based learning of programming. Jones (2000) states that 



3 

 

games are excellent examples of object-oriented environments if the aim is to teach 

object-orientation and programming. Similarly, Weintrop and Wilensky (2016) 

asserted that, with the integration of coding activities into game-play, students would 

become more familiar with fundamentals of programming. Consequently, many 

researchers studied the effects of serious games on learning computer programming 

in recent years. The majority of the findings in the literature agree on the positive 

effects of serious games on novice programmers’ motivation (Barnes, et al., 2007; 

Liu, Cheng, & Huang, 2011; Mathrani, Christian, & Ponder-Sutton, 2016; Muratet, 

Torguet, Viallet, & Jessel, 2011; Ramírez-Rosales, Vázquez-Reyes, Villa-Cisneros, 

& De León-Sigg, 2016; Wong, Hayati, & Tan, 2016). 

For this reason, instructors, educational technologists and serious game 

developers should develop appealing, meaningful and effective learning materials, 

contents and serious games to improve novice programmers’ learning and help them 

overcome their difficulties. 

 

1.1  Statement of the problem 

Much of the research up to now has studied the effects of serious games on novice 

programmers’ learning performance and motivation. However, there are still some 

crucial criticism of weaknesses in those studies. 

 Firstly, there is a need for research on the conceptual knowledge of OOP and 

CT skills because it is important for novice programmers to understand how 

problems are solved before learning specific programming languages (Liu, Cheng, & 

Huang, 2011). Hadjerrouit (1999) states that the fundamental concepts of OOP have 

a crucial role in understanding and analyzing problems and generating solutions to 

problems. CT, on the other hand, is a fundamental problem-solving skill in which the 



4 

 

solutions of problems are designed in a way that computers can perform effectively 

(Aho, 2012; Lu & Fletcher, 2009; Wing, 2006; Wing, 2008). According to 

McFarlane, Sparrowhawk, and Heald (2002), games can be helpful for students to 

enhance their critical thinking and problem-solving skills. Yet there has been little 

discussion about the effects of serious games on novice programmers’ conceptual 

knowledge of OOP and CT skills. 

Second, only a few studies provide a well-conceived experimental design and 

demonstrated inferential statistical analysis (Livovský & Porubän, 2014; Mathrani, 

Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017), even though there 

has been much research conducted on the topic. The majority of the findings in the 

literature are based either on anecdotal evidence or on initial evaluation results that 

do not provide substantial data on the learning performance of novice programmers. 

Furthermore, the majority of the studies conducted on the current issue are conducted 

with a limited number of participants, and the focal point of the studies was the 

motivation of students, not their learning performance (Barnes, Chaffin, Godwin, 

Powell, & Richter, 2007; Barnes, Richter, et al., 2007; Kazimoglu, Kiernan, Bacon, 

& Mackinnon, 2012a; Livovský & Porubän, 2014; Ramírez-Rosales, et al., 2016).  

Nevertheless, most of the research conducted on the current issue has been 

developed in English. Although there are a few studies examining the effects of 

serious games on novice programmers’ performance and motivation using languages 

such as Spanish (Ramírez-Rosales, et al., 2016), there is not enough substantial data 

about the effects of serious games on students’ programming skills in Turkish. 

To conclude, by considering the findings of the studies in the current 

literature, it can be said that there has been little discussion about the effects of 



5 

 

serious games on novice programmers’ learning performance on the conceptual 

knowledge of OOP and CT skills in Turkish. 

 

1.2  Purpose of the study 

The main purpose of this quasi-experimental study is to examine the effects of the 

use of a serious game which is in Turkish on undergraduate students’ learning 

performance on conceptual knowledge of OOP of and CT skills. 

 

1.3  Research questions 

The current study is designed to answer the following research questions: 

1. Is there any significant difference between post-test and pre-test scores on the 

conceptual knowledge of OOP and CT skills of undergraduate students with 

no programming experience? 

a. Is there any significant difference between post-test and pre-test scores 

on conceptual knowledge of OOP of undergraduate students with no 

programming experience? 

b. Is there any significant difference between post-test and pre-test scores 

on CT skills of undergraduate students with no programming experience? 

2. Is there any significant difference between post-test and pre-test scores on the 

conceptual knowledge of OOP and CT skills of undergraduate students with 

procedural programming experience? 

a. Is there any significant difference between post-test and pre-test scores 

on conceptual knowledge of OOP of undergraduate students with 

procedural programming experience? 



6 

 

b. Is there any significant difference between post-test and pre-test scores 

on CT skills of undergraduate students with procedural programming 

experience? 

3. Is there any significant difference between the achievement scores on the 

conceptual knowledge of OOP and CT skills of undergraduate students with 

no programming experience, and of undergraduate students with procedural 

programming experience? 

4. To what extent do the students’ creative problem-solving skills and attitudes 

towards digital game-based learning of programming influence achievement 

score on the conceptual knowledge of OOP and CT skills? 

 

1.4  Significance of the study 

A review of the literature shows that the majority of the research in this area is 

centered on the motivational effects of serious games on the learning of 

programming by novice programmers. There are a few studies that focus on the 

effects of serious games on improvement in students’ learning from the proposed 

games. Moreover, there is not enough substantial data about the effects of serious 

games on novice programmers’ programming skills in Turkish. The current study 

aims to contribute to the research area of the use of serious games to teach 

programming by providing empirical data on students’ achievement scores on 

conceptual knowledge of OOP and computational thinking. The goal is to provide 

practical direction and knowledge for instructors, serious game designers, and 

educational technologists. With such knowledge, serious games for programming can 

be designed in a way that novice programmers have better and effective learning 

experience with high motivation. 



7 

 

 

1.5  Organization of the study 

Chapter 2 introduces a literature review of digital game-based learning of 

programming, along with the problems of teaching and learning OOP, and the 

relationship between CT and OOP. Chapter 3 includes the research methodology: the 

design, participants, sampling procedures, developed serious game with the 

underlying theories, instruments, the data collection procedures and the data analysis 

procedures in detail. Chapter 4 contains the results of the data analyses. Finally, 

Chapter 5 focuses on the outcomes of the findings, the limitations of the study and 

recommendations for future research on the topic. 

  



8 

 

CHAPTER 2 

REVIEW OF THE LITERATURE 

 

2.1  Problems of teaching and learning programming 

OOP is the most popular programming method that has a broad range of use, from 

education to different domains of industry, and almost every university in the 

computer science (CS) field covers OOP within its curriculum (Kölling, 1999a). 

Students engaging in the programming field for the first time are excited about the 

possibility of being the person to develop the next great action video game, or even 

work on an operating system or a Web browser. Although students are excited about 

learning to program, most of them soon realize that programming courses are 

monotonous and boring, and they start to lose their motivation and desire to learn to 

program (Prensky, 2003; Sarkar, 2006). Students’ losing interest in learning OOP 

results in a decline in the number of the enrollments in CS courses in spite of the 

attempts to increase students’ interest in CS (Ali & Shubra, 2010). There are several 

other reasons behind students’ problems in learning OOP, and these reasons can be 

categorized based on the source of the problems. The problems emerge from the 

nature of the OOP, from fundamental problem-solving skills in computer 

programming, and from the programming environment. 

 The abstract nature of OOP itself causes problems for novice programmers 

(Kölling, 1999a; Xinogalos, 2016). For example, students have difficulties in 

understanding the nature and necessity of abstract concepts of OOP such as 

inheritance, polymorphism, overriding, abstract classes, and interfaces; hence, they 

cannot make use of these concepts properly (Xinogalos, 2016). Hadjerrouit (1999) 

emphasized the role of OOP concepts in understanding and analyzing problems, 



9 

 

generating solutions to problems, and in the implementation of the designed 

solutions of problems. Therefore, students’ difficulties in understanding the 

fundamental concepts of OOP could give rise to much bigger problems. 

The transition from procedural programming to OOP also causes problems 

for novice programmers in understanding OOP (Hadjerrouit, 1999). Students have 

difficulties in changing their mindset from focusing on defining special functions as 

a main way of forming a solution to a problem to trying to find a solution to a 

problem by creating functions that utilize classes and objects  (Xinogalos, 2016). In 

other words, OOP requires one to generate functions making use of classes and 

objects for finding a solution to a problem, while procedural programming requires 

one to form a function that is special for that problem, and that is what poses a 

problem for students. Additionally, the distributed nature of control flows and 

functions of OOP is also what makes this transition a reason for the problems 

students come across. This difference in the nature of control flows and functions 

between OOP and procedural programming makes it harder for novice programmers 

to form mental representations of functions and control flows in OOP terms than in 

procedural programming (Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 

1999). 

 Another important problem that students encounter while learning OOP is 

the programming languages that they use while learning (Kölling, 1999a). Starting to 

learn OOP with a real programming language like C# or Java makes it harder for 

students to learn OOP than learning it via a pseudo language (Guzdial, 2008; 

Xinogalos, 2016). It is believed that using pseudo languages in teaching OOP helps 

students to focus on important aspects of OOP such as the algorithmic design of the 



10 

 

solution, OOP concepts and constructs instead of worrying about the syntax of a 

specific programming language (Xinogalos, 2016).  

However, getting students not to worry about the syntax of a programming 

language and to focus on developing an algorithm for the solution does not solve all 

the problems. One of the reasons behind this situation is that students also have 

problems in developing algorithms and implementing these algorithms with a 

programming language (Xinogalos, 2016). In addition, novice programmers have 

difficulties figuring out what constructs to use and where to use them in their 

algorithms while they are programming (Kazimoglu, et al., 2012a; Soloway, 1986). 

Another reason behind students’ difficulties in programming is that many students 

have problems in visualizing the execution of their programs. This problem of 

visualization prevents students from understanding what is wrong or what is missing 

in their program when their code is not executed as it is supposed to be (Cooper, 

Dann, & Pausch, 2000). 

According to Kölling (1999b), another reason for the major problems of 

teaching OOP is the environments used. One of the main problems with these 

environments is the ease of use of the environment. Programming environments 

should not be very complicated so that novice learners will not have to worry about 

learning how to use the environment (Kölling, 1999b). Moreover, Watson, Li, and 

Lau (2011) claim that unspecific compiler messages cause difficulties for novice 

programmers because they need proper feedback from the compiler that guides them. 

Another problem about OOP is the lack of visual representation of classes. Kölling 

(1999b) suggests that programming environments should provide visual 

representation of classes and objects because it is difficult for students to think about 

problems in object-oriented terms when they first start learning OOP. The cost of 



11 

 

existing programming environments is another problem of teaching programming. 

According to Kölling (1999b), programming environments should be available at a 

lower cost, and they must also be compatible with computers with low-quality 

hardware. 

 

2.2  Object-oriented programming concepts and computational thinking skills 

Object-oriented programming is an approach where objects and interactions of 

objects in a real-world problem domain are modeled, and the production of a system 

via OOP is based on these objects and their interactions with the environment (Poo, 

Kiong, & Ashok, 2007). Abstract concepts such as class, objects, inheritance, 

encapsulation, polymorphism in OOP make it difficult for novice programmers to 

understand the nature of OOP. According to Hadjerrouit (1999), OOP concepts play 

an important role in understanding the problems, designing solutions to these 

problems and in the implementation of the proposed solution suggestions. In 

addition, students’ CT skills such as conditional logic, algorithmic thinking, 

debugging and simulation are important factors in learning to program. 

 

2.1.1  Object-oriented programming concepts 

 

2.1.1.1  Objects and classes 

Objects consist of methods that share a state and determine the calls to which the 

object can respond. The shared state of an object is hidden from the outside world 

and is accessible only to the object’s operations (Wegner, 1990). Object attribute 

definitions enable objects to have different attribute values in each object instance 

(Poo, Kiong, & Ashok, 2007). 



12 

 

A class, on the other hand, is a definition which provides a structural template 

of an object and enables programmers to create instances of objects with the same 

attributes and methods (Poo, Kiong, & Ashok, 2007). One of the major differences 

between a class and an object is that classes are definitions of objects, and they do 

not have values in their attributes and methods. However, objects contain values in 

their attributes and methods because they are created as instances of a class (Poo, 

Kiong, & Ashok, 2007). 

 

2.1.1.2  Methods 

Methods are functions that include the behaviors and procedures that belong to a 

particular class. Communication between objects is done through a method call or a 

message with additional information called arguments from a message-sending 

object to a receiver object. Objects responds to messages only if they have a valid 

method which corresponds to the incoming method call, and the appropriate 

arguments of that call (Poo, Kiong, & Ashok, 2007). 

 

2.1.1.3  Inheritance 

Inheritance enables newly created classes to inherit the properties and the methods of 

previously defined classes. In other words, the properties of a superclass can be made 

available as part of the definition of its subclasses (Poo, Kiong, & Ashok, 2007). 

Thus, it enables programmers to make use of a behavior of a superclass in the newly 

created subclasses of it. Additionally, new attributes and methods can be added to 

these inherited classes (Wegner, 1990). 

In OOP, classes can be in hierarchical relationships with other classes. 

Classes with more general attributes are called generalized classes, and they are 



13 

 

placed toward the top of the hierarchical relationship. Classes that have more 

specialized attributes are called specialized classes, and these are placed toward the 

bottom of the hierarchy. Specialized classes are a subclass of generalized classes, and 

generalized classes are superclass of subclasses (Poo, Kiong, & Ashok, 2007). The 

relationship between human beings and mammals is a good example of the 

inheritance concept. In this example, the mammals class is defined as having more 

general attributes, while human beings class have more special attributes along with 

inherited attributes and behavior of the mammals class. 

 

2.1.1.4  Polymorphism 

In procedural programming, it is not possible to have two methods with the same 

name, but this is possible in OOP. Polymorphism is the ability of different objects to 

perform a response to the same message (Poo, Kiong, & Ashok, 2007). For example 

if a programmer wants to define a function that calculates areas of different shapes, 

the programmer has to define different functions for each shape in procedural 

programming. In OOP, programmers can simply define multiple functions that have 

the same name (for example, calculateArea), but that performs different actions 

according to the inputs of methods such as triangle, square, rectangle, and so on. 

 

2.1.1.5  Encapsulation 

Defining attributes and methods of objects and hiding the implementation of these 

attributes and methods of an object from the users of objects — instances of other 

classes — is called encapsulation in OOP terms. In other words, the structure of an 

object and the implementation of its methods are not visible to other objects that 

interact with it. Other objects cannot directly access the attributes of an object, and 



14 

 

the data of an object can be manipulated through its public methods (Poo, Kiong, & 

Ashok, 2007). 

 

2.1.2  Computational thinking 

Computational thinking (CT) term has a long history in computer science, dating 

back to the 1950s and 1960s (Denning, 2009; Guzdial, 2008). However, CT became 

popular after Wing (2006) claimed that it is a fundamental skill which can be used by 

anyone in a variety of professions. Barr and Stephenson (2011) make a similar 

argument and claim that almost all of today’s children will have a life that is 

influenced by computation, and some of these children will even have a profession 

related to computing. After the popularization of the term that resulted from Wing’s 

claims in her seminal paper, researchers conducted studies to integrate CT into 

curricula (Perkovic, et al., 2010; Qualls & Sherrel, 2010). According to Guzdial 

(2008), teaching CT to people with different levels of background knowledge and 

different professions requires different approaches to learning. Therefore, 

understanding the nature of CT and skills that compose CT is important before 

integrating it into a curriculum and developing CT learning environments. 

Although researchers aimed to integrate CT into a curriculum, there is not an 

agreed and clear definition of CT in the current literature (Guzdial, 2008; Berland & 

Lee, 2011). Various studies have aimed to construct a clear definition and the skill 

set that composes computational thinking (Perković, Settle, Hwang, & Jones, 2010). 

According to Wing (2006) CT is a problem-solving approach in which expressions 

of solutions of problems are presented in a way that a computer can perform them 

effectively. Wing (2006) claims that there are five main components of CT: 

conditional logic, distribution of a process, error debugging, simulation and building 



15 

 

algorithms. Dierbach et al. (2011) also proposed a model in which fundamental skills 

of CT are listed. These skills are decomposition of the problem, evaluating the 

problem, building algorithms, and developing computational solution methods for a 

problem. Similarly Berland and Lee (2011) asserted that CT involves five main 

concepts: conditional statements, building algorithms, debugging, simulation and 

distribution of a computation. According to Lee et al. (2011), defining, understanding 

and solving problems, abstraction, automation and analyzing the suitability of the 

abstractions define computational thinking. They also emphasize that the terms of 

abstraction, automation and analysis can be useful for understanding how young 

students make use of CT while solving problems.  

Brennan and Resnick (2012) present a definition of CT that is specific to the 

Scratch visual programming environment; in this context, CT consists of three 

dimensions, namely, computational concepts, computational practices, and 

computational perspectives. Computational concepts are sequences, loops, 

parallelism, events, conditionals, operators and data. They claim that there are four 

main sets of computational thinking practices: being incremental and iterative, 

testing and debugging, reusing and remixing, and abstracting and modularizing. The 

last dimension of computational thinking is the computational thinking perspective, 

which involves expressing oneself, connecting with others and questioning. Selby 

and Woollard’s (2013) review of the literature on the definition of CT showed that 

there are three common terms in the definition of CT. These three terms are 

abstraction, decomposition and the concept of a thought process. Apart from these, 

there are other terms in the literature which are not supported by all researchers. 

Selby and Woollard listed these terms under four main categories: thinking terms, 

problem-solving terms, computer science terms and imitation terms. In the light of 



16 

 

their literature review, they claimed that CT involves problem-solving, abstraction, 

decomposition of a problem, algorithmic design, evaluation and generalization of the 

solution of a problem. A summary of CT skills are listed in Table 1. 

Voogt, Fisser, Good, Mishra, and Yadav (2015) state that instead of 

propounding an exact definition of CT, researchers should try to find similarities and 

relationships among the definitions of CT that are made by different parties. 

Therefore, by considering all aforementioned studies, it can be said that the main 

skills which form CT are conditional logic, algorithmic thinking, debugging and 

simulation. Conditional logic is a problem-solving method in which logical thinking 

and different computational models are involved. Conditional logic includes the 

decomposition of the problem and evaluation of the problem to generate alternative 

representations (Berland & Lee, 2011). Algorithm building is the process of dividing 

the solution to a problem into step-by-step procedures. Selecting the most 

appropriate solution for a problem is important for the abstraction of the solution, 

because, in this way, the solution can be re-used in other problems (Barr, Harrison, & 

Conery, 2011). Debugging is the analysis of a solution to the problem and the 

process of correcting errors. The debugging process involves both critical and 

procedural thinking which makes it crucial for programming and computational 

thinking (Berland & Lee, 2011; Brennan & Resnick, 2012). Simulation is the 

demonstration of the solution to the problem, and the simulation skill includes the 

design and implementation of the solution based on the built algorithm (Basu, 

Dickes, Kinnebrew, Sengupta, & Biswas, 2013).



17 

 

 

Table 1.  CT Skillsets Defined in the Literature 

Wing (2006) Dierbach et al. 

(2011) 

Berland & Lee 

(2011) 

Lee et al. (2011) Brennan & Resnick 

(2012) 

Selby & Woollard 

(2013) 

 Building 

algorithms 

 Conditional 

logic 

 Debugging 

 Distributed 

processing 

 Simulation 

 

 Building 

algorithms 

 Decomposition of 

a problem 

 Developing 

computational 

solution methods 

 Evaluating a 

problem 

 Building 

algorithms 

 Conditional 

logic 

 Debugging 

 Distributed 

computation 

 Simulation 

 

 Abstraction 

 Analyzing the abstraction 

 Automation 

 Defining a problem 

 Understanding/Solving a 

problem 

 

 Abstraction 

 Creative thinking 

 Debugging 

 Modularization 

 Reusing/Mixing 

 Testing 

 

 Abstraction 

 Algorithmic 

design 

 Evaluation of a 

solution 

 Decomposition of 

a problem 

 Generalization 

 Problem-solving 

 



18 

 

2.1.3  The relationship between computational thinking and object-oriented 

programming 

Contrary to the belief that CT and programming are the same, researchers have 

pointed out that these two terms are similar in nature but are not the same (Lu & 

Fletcher, 2009; Voogt, et al., 2015). Student problems in solving methods and skills 

in computer programming are identified as CT in the current literature (Aho, 2012; 

Lu & Fletcher, 2009; Wing, 2006). Hence, researchers put an emphasis on the early 

introduction and development of CT skills before students start to learn computer 

programming (Liu, Cheng, & Huang, 2011). In other words, it is important for 

novice programmers to understand how problems in a domain are solved 

conventionally before moving to understand how problems are solved in 

programming. Students’ difficulties in learning computer programming are also 

connected to their problem-solving skills and to the computational learning 

environment where they learn programming (Gomes & Mendes, 2007). Therefore, it 

is critical to understand the relationship between CT and programming, especially 

OOP. 

Problem-solving is one of the fundamental ways of having effective and 

meaningful learning (Jonassen, 2004). It is a way of thinking which has four main 

phases: understanding the problem, preparing a plan for the solution of the problem, 

implementing the proposed solution and reviewing the solution (Polya, 1957). It can 

be seen that Polya’s definition of problem-solving is very similar to the CT skills that 

are defined in the literature. Lu and Fletcher (2009) have embraced Wing’s idea 

about the importance of the CT, and they claim that CT should be taught to students 

before they start learning computer programming. They also claim that it is more 

crucial to understand the nature of CT rather than CT’s manifestation in actual 



19 

 

programming languages because the integration of CT into a curriculum requires 

problem-solving skills. Therefore, activities involving CT should be introduced to 

students as early as possible (Qualls & Sherrel, 2010). 

The idea of CT being a problem-solving approach is commonly held in the 

current literature, but CT is not limited to only a problem-solving method (Selby & 

Woollard, 2013). Along with being an approach to problem-solving, CT also 

involves skills such as abstract and logical thinking, decomposition, algorithm 

building, evaluating, and debugging. Computer science (CS), especially computer 

programming, is the field where the definition and the practice of CT emerged, yet it 

does not necessarily mean that CT requires the use of programming (Voogt, et al., 

2015). Researchers point out that CT and computer programming do not mean the 

same thing (Lu & Fletcher, 2009; Voogt, et al., 2015), but computer programming 

and CT are intertwined concepts. In order to show the relationship between 

programming and CT, Kazimoglu (2013) used an onion metaphor which is a popular 

metaphor in the cognitive science community to represent the relationship between 

CT and computer programming (see Figure 1). 

In the onion metaphor, there are three layers corresponding to the layers of 

abstractions. Machine coding is the core of the onion, which is referred as the 

physical layer. The layer on top of the core layer is the procedural layer where 

computer programming is located. The outmost layer of the onion metaphor is the 

conceptual or so-called operational layer in which CT is located. According to this 

model, novice programmers analyze a problem and design their solutions to the 

given problem at the CT layer. The implementation of novice programmers’ 

solutions to a problem with a programming language occurs in the computer 

programming layer. 



20 

 

 

 

Figure 1.  Layers of abstraction with onion metaphor 

Source: Kazimoglu, 2013, p. 19 

In the current literature of CT, researchers considered abstraction as the core 

concept of CT (Grover & Pea, 2013). Abstraction is the process of eliminating 

unnecessary details and selecting common and critical features and patterns of a 

problem to make a general representation of problems (Wing, 2008). Defining 

multiple layers of abstraction of problems and understanding the relationships among 

the different layers of abstractions are the basic practical facts of CT. Apart from 

being a key concept of CT, abstraction is also one of the fundamental features of 

OOP (Glasser, 2009; Poo, Kiong, & Ashok, 2007; Wegner, 1990). It plays a crucial 

role in the identification of the common features of objects and the categorization of 

similar objects into classes in object-oriented modeling. With the right abstraction 

method, objects can be grouped into classes, and programmers can form a 

hierarchical structure of superclasses and subclasses. Abstraction is not the only 

common ground between CT and OOP. According to Hadjerrouit (1999), it is 



21 

 

essential for novice programmers to have higher level of problem-solving skills in 

order to build object-oriented schemata rather than having technical coding skills. 

The researcher emphasized four main problem-solving skills for building well-

structured object-oriented schemata; the analysis of the problem, the design of the 

solution, analogical thinking, and critical thinking skills. 

 Taking all of the aforementioned studies into consideration, it can be said that 

CT is a fundamental problem-solving skill approach in CS (Barr & Stephenson, 

2011; Wing J. M., 2006; Wing J. M., 2008). Additionally, research in the current 

literature put emphasis on the importance of introducing CT as early as possible to 

novice programmers before letting them practice in actual programming languages. 

Similarly, OOP requires programmers to have high levels of problem-solving skills 

even before having met the technical competence requirements of programming with 

an actual programming language (Hadjerrouit, 1999). With such problem-solving 

skills, novice programmers would be able to build object oriented schemata and 

generic solutions to problems in the CS domain. 

 

2.3  Digital game-based learning in introductory programming 

The current literature in digital game-based learning for teaching programming to 

novice programmers focuses on two main approaches. These approaches are making 

use of visual programming environments to teach programming and learning 

programming through game-play experience. 

 

2.3.1  Visual programming environments to teach programming 

Kölling (1999b) claims that problems with the environment in which students learn 

object orientation are the most important problems, and therefore, researchers have 



22 

 

focused on developing different kinds of programming environments for teaching 

OOP (Carlisle, 2009; Cooper, Dann, & Pausch, 2003; Kölling, 2010; Kölling, Quig, 

Patterson, & Rosenberg, 2003). 

BlueJ (Kölling, et al., 2003) is one of the first and the most popular 

educational programming environments. BlueJ has a window which presents a 

simple Unified Modelling Language (UML) class diagram to its users, and in this 

window, students can create objects from the classes of the UML diagram and 

interact with these objects via their methods. The BlueJ programming environment 

puts an emphasis on the visualization of OOP concepts, and it allows students to 

have dynamic interactions with classes to test those classes and methods (Kölling, et 

al., 2003). Van Haaster and Hagan (2004) conducted a survey to investigate the 

effects of the BlueJ programming environment on novice programmers. The 

respondents were 115 students who were taking the second compulsory 

programming course answered the survey. According to the responses, students 

made use of BlueJ features which helped them to facilitate higher order skill 

development in the cognitive, affective and psychomotor domains. Apart from that, 

participants had already been taught OOP with the Java programming language. 

Therefore, it is not clear whether or not students learnt OOP by using BlueJ, and the 

result of Van Haaster and Hagan’s (2004) study depend on the perceptions of 

students, not on empirically collected achievement data. 

Furthermore, Cooper et al. (2000) designed a 3-D interactive programming 

environment, Alice, which aims to help novice programmers to overcome their 

problems in learning OOP. In Alice, students can create their own 3D objects and 

manipulate these objects with drag-and-drop code blocks in the editor. Like the  

BlueJ programming environment, Alice enables programmers to see the immediate 



23 

 

results of their code blocks in their animation, which helps students easily understand 

the relationship between the code that they created and its results. Nowadays, the 3.2 

version of Alice is available for Microsoft Windows, Mac and Linux. Wang et al. 

(2009) conducted a quasi-experimental study to investigate whether or not Alice 

could be used as a tool to teach fundamental programming concepts to high school 

students in Taiwan. Participants were 166 tenth-grade students from four different 

classes, 81 of whom were taught programming by using the Alice programming 

environment (experimental group), and 85 were taught programming with C++ 

(control group). The experiment lasted 8 weeks. Before the experiment, all 

participants took a motivation test which evaluated their motivation to learn 

programming, their self-efficacy of programming and their perception of computer 

programming. During the experiment, the same instructor taught both groups for 

about 50 minutes of lecture and 50 minutes of hands-on practice of programming 

each week. At the end of the eighth week, participants took the same motivation 

questionnaire, an experience questionnaire which assessed their experience of 

learning programming, and an achievement test on the programming concepts taught 

during the experiment. The results showed no statistically significant difference 

between the motivation and the learning experience of the experimental and control 

group students. The analysis of the achievement test showed that students who were 

taught programming with Alice performed significantly superior to the students in 

control group. Therefore, researchers claimed that visual programming tools can be a 

more effective way to teach basics of programming to novice learners. Florea et al. 

(2016) conducted another experiment with 60 undergraduate students. In this 

experiment, Alice was used as both a game and a game development tool for students 

while they are learning programming. Participants answered a survey which 



24 

 

evaluated their level of satisfaction with the proposed teaching method. The results 

showed that students had a positive perception of learning by playing and developing 

games. Therefore, researchers claimed that developing games with a visual 

programming environment, e.g. Alice, can be a good alternative to the current 

teaching methods for programming (Florea, Gellert, Florea, & Florea, 2016).  

The Rapid Algorithmic Prototyping Tool for Ordered Reasoning 

(RAPTOR) (Carlisle, Wilson, Humphries, & Hadfield, 2005) is another visual 

programming environment that aims to help students improve their problem-solving 

skills and to reduce the problems of syntax of programming languages. In the 

RAPTOR programming environment, students create visual representations of 

algorithms to solve problems with the use of basic graphical symbols that the 

environment provides. RAPTOR provides an opportunity to run created algorithms 

either in a step-by-step mode or in a play mode to students. Researchers integrated 

RAPTOR programming tool into the spring 2003, fall 2003, and spring 2004 

offerings of an introduction to computing course. In order to assess the effects of 

RAPTOR programming environment on students’ problem-solving skills, three 

algorithmic design questions were asked to students at the final exam of the courses.  

The analysis of the results of the tests showed that there was a statistically significant 

increase in the performance of students on two of the questions. However, there was 

a statistically significant decrease in the performance of students on the array 

question. The results of this study indicated that students develop better problem-

solving skills with the help of visual programming tools than with traditional non-

visual methods. In 2009, RAPTOR was upgraded with the aim of teaching OOP to 

novice programmers (Carlisle M. C., 2009). The new RAPTOR opens with a UML 

diagram window. In this UML diagram, users can create classes just like the ones in 



25 

 

the BlueJ programming environment, but in RAPTOR there is another window, class 

editor window, for users to add methods and attributes to classes. One of the most 

important aspects of RAPTOR is that it supports OOP features such as 

polymorphism and inheritance, which were not supported in the previous 

programming environments. However, in the current literature, there is not enough 

substantial data on the effectiveness of the new version of the tool on students’ OOP 

learning. 

Another visual programming environment is Scratch, developed by the 

Lifelong Kindergarten Group at the MIT Media Laboratory. With Scratch, people are 

able to create different types of projects such as animated stories, mini games, music 

videos, simulations, etc. (Maloney, Resnick, Rusk, & Silverman, 2010). Scratch is 

designed to introduce the basics of programming to learners with little or no 

experience in programming. There were three main considerations in the 

development of Scratch: making it more tinkerable, more meaningful and able to 

create a bigger community of sharing than other programming environments 

(Resnick, et al., 2009). Developers of Scratch wanted users of Scratch to have the 

sense of playing and building as if they were playing with LEGO bricks. Therefore, 

Scratch has code blocks that are similar to LEGO bricks, and like LEGO bricks, 

these code blocks are designed in a way that they can be used only if they fit 

together. In Scratch, programming is done by snapping these code blocks together to 

control and manipulate 2D objects, sprites, in the stage. The developers of Scratch 

believed that these LEGO-like code blocks added more tinkerability, and students 

learn best when they work personally on meaningful projects (Resnick, et al., 2009). 

Maloney et al. (2008) introduced young learners aged 8 to 18 to a computer 

clubhouse with Scratch. The young learners worked with Scratch in extracurricular 



26 

 

activities without getting help from any instructors. The researchers collected 

students’ Scratch projects to analyze how the young learners had worked with 

programming concepts such as interactions, loops, conditionals, booleans, variables, 

synchronization and random numbers. Their analysis showed that the majority of the 

students built Scratch projects by making use of these programming concepts without 

any formal help from instructors. Likewise, Meerbaum-Salant et al. (2013) 

conducted a mixed-method study to examine the effects of Scratch on the learning of 

CS concepts, namely, variables, loops, booleans, control structures, concurrency and 

message passing. Participants were 204 eighth and ninth grade students from a 

middle school, and Scratch was taught two hours per week for 20 weeks. Students 

took three different tests: a pretest, an interim test, and a posttest. The aim of the 

pretest was to measure students’ abstract algorithmic skills. The interim and the 

posttest were aimed to measure the learning of these CS concepts. The results 

showed that students’ learning of CS concepts was improved with Scratch. Yet the 

students had difficulty understanding concepts such as variables, concurrency and 

repeated executions. The researchers suggested that these difficulties could be 

overcome by explaining the relationship among between these concepts in detail. 

Even though Scratch visual programming environment has positive effects on the 

learning of CS concepts, this programming environment does not necessarily support 

object orientation. 

An improved version of the BlueJ programming environment is Greenfoot 

(Kölling, 2010), and in this version, visualization of the current behavior and the 

state of the objects is instantaneous. In Greenfoot, users interact with classes in a 

specified world where students define behaviors of actors by calling methods in 

those actors through the editor and compiler windows. Begosso et al. (2012) 



27 

 

conducted a research to investigate the effects of the Greenfoot programming 

environment on students’ conceptual knowledge of OOP. Participants in the study 

consisted of 30 first-year computer science undergraduate students. The study 

comprised four main phases. In the first phase, researchers conducted a survey to 

identify participants’ level of OOP knowledge. The questionnaire consisted of 25 

five-point Likert questions; 21 of the questions were about the knowledge of OOP, 

and the remaining 4 assessed knowledge of algorithms. According to the analysis of 

answers to the questionnaire, most of the participants did not have any knowledge of 

OOP and algorithms. After the first phase of the experiment, an instructor taught 

students the basics of OOP. After being taught about OOP, in the third phase of the 

experiment, students had hands-on practice with the Greenfoot environment and 

students had tasks about the process of developing of a game. While working with 

Greenfoot, students were first provided with examples to understand application of 

OOP concepts. Researchers asked students to solve problems about developing a 

game by using the concepts they had learnt after finishing each example. In the 

fourth and the last phase of the experiment, the researchers conducted an assessment 

test to find out how much students had learnt about OOP and algorithms. The results 

of the assessment test showed that students had an achievement rate of more than 

60%. The researchers, based on their observations during the experiment, also 

claimed that students were motivated while they were learning OOP with Greenfoot. 

In the current literature, visual programming environments used mostly as a 

platform for developing games. The researchers integrated visual programming 

environments into CS education in order to help novice programmers overcome their 

learning difficulties. Although the programming environments cited above have 

positive effects on teaching programming, research in the current literature reveals 



28 

 

that visual programming environments need to be used with a well-designed teaching 

methods, and learning materials should be provided to support their use (Meerbaum-

Salant, Armoni, & Ben-Ari, 2013; Repenning, Webb, & Ioannidou, 2010). 

Otherwise, these programming environments will only bring a short burst of 

enthusiasm for novice programmers (Repenning, Webb, & Ioannidou, 2010). 

Furthermore, these programming environments lack the mechanism that provides 

feedback to students about their errors or the appropriate use of programming blocks 

(Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Another concern about visual 

programming environments is that, even though these programming environments 

remove the extraneous cognitive load of syntax during programming process, there is 

still a need to write algorithms, which increases intrinsic cognitive load (Lister, 

2011). Overall, developing programming environments is not the sole solution to the 

problems in teaching OOP. Teaching methods and the context such as games are also 

considered to be effective tools to teach programming to students. According to 

Jones (2000), games are wonderful examples of object-oriented environments if 

teaching object-oriented design and programming is the objective. 

 

2.3.2  Serious games for learning programming 

Serious games are defined as computer games which have educational goals and 

provide intriguing contexts with interactive, engaging and immersive activities 

(Gunter, Kenny, & Vick, 2008). Soflano (2011) argues that using games as learning 

environment is an efficient way to increase student engagement in courses because 

students of both genders and different ages can play games hour after hour, and they 

still can be in a teaching and learning environment while playing. Weintrop and 

Wilensky (2016) claim that the integration of coding into gameplay mechanics of the 



29 

 

game will enable students to become familiar with basic concepts of programming 

and allow them to develop programs in a more motivating and meaningful 

environment. Therefore, many researchers have showed interest in using games as 

learning environments for teaching programming to novice learners because of their 

engaging and motivational nature (Barnes, Chaffin, et al., 2007; Barnes, Richter, et 

al., 2007;  Kazımoğlu, et al., 2012a; Mathrani, Christian, & Ponder-Sutton, 2016; 

Muratet, Torguet, Viallet, & Jessel, 2011; O’Kelly & Gibson, 2006). A review of the 

serious games and the corresponding CS concepts that games cover are presented in 

Table 2. 

 Phelps, Egert, and Bierre (2005) used a web-based 3D collaborative virtual 

environment, Multi User Programming Pedagogy for Enhancing Traditional Study 

(MUPPETS), which aims to teach encapsulation, inheritance, and polymorphism 

concepts of OOP using the Java programming language. In this environment, 

students create their own robots that will fight with other players’ robots in a virtual 

arena. In MUPPETS world, the difference between the concepts of class and object is 

visually represented so that students can define a class and create an instance of the 

class with specific attributes in the game world. Phelps et al. (2005)  conducted a 

study in which MUPPETS is integrated as a tool for students to develop their final 

projects in one of the courses of first-year programming sequence at the Rochester 

Institute of Technology. In their study, students were asked to develop a final project, 

which was more complex than a weekly assignment and required a teamwork, in 

MUPPETS world. Before starting to develop their final projects, students developed 

chat applications, basic multiplayer games, voting machine simulations and so on via 

Robocode. 



30 

 

Students who developed final projects with MUPPETS world found the 

graphical system to be the key their enjoyment of programming. One of the students  

Table 2.  A Review of the Serious Games to Teach Programming 

Serious Game Computer science concepts Programming language 

MUPPETS (Phelps, Egert, & 

Bierre, 2005) 

Fundamental OOP concepts Java 

RoboCode (O'Kelly & Gibson, 

2006) 

Fundamental OOP concepts Java 

Saving princess Sera – Catacombs 

(Barnes, Chaffin, et al., 2007) 

Variables, conditionals, and loops Micro-language 

Second Life (Esteves, Fonseca, 

Morgado, & Martins, 2011) 

Basics of computer programming C-style micro-language 

Prog&Play (Muratet, Torguet, 

Viallet, & Jessel, 2011) 

Functions, recursion, data 

structures management 

C, Java, Scratch, C++ 

TrainB&P (Liu, Cheng, & Huang, 

2011) 

Basic concepts of OOP, 

conditional logic, and loops 

C like programming language 

Program your robot (Kazimoglu, 

Kiernan, Bacon, & Mackinnon, 

2012a) 

Computational thinking skills Programming blocks 

Alien Breed (Livovský & 

Porubän, 2014) 

Fundamental OOP concepts Java 

ZTECH (Wong, Hayati, & Tan, 

2016) 

Fundamental OOP concepts Micro-language 

LightBot (Mathrani, Christian, & 

Ponder-Sutton, 2016) 

Functions, conditional flows and 

recursion 

Programming blocks 

Software KIDS (Ramírez-Rosales, 

Vázquez-Reyes, Villa-Cisneros, & 

De León-Sigg, 2016) 

Fundament OOP concepts and 

basics of software engineering 

Micro-language 

RoboBUG (Miljanovic & 

Bradbury, 2017) 

Tracing codes, print functions, 

divide-and-conquer strategy, 

breakpoints 

C++ 

 

that participated in the study felt uncomfortable about the sample materials used in 

the study by pointing out its being too male looking. Based on the anecdotal data, the 

researchers claimed that MUPPETS helped students to reach the cognitive learning 

objectives that had been specified in their course syllabi. Although the findings seem 



31 

 

promising, there is a need to provide empirical data on the issue by controlling all 

variables that influence the learning outcome. 

RoboCode is another game and a game development environment 

developed by IBM that aims to teach students the basic concepts of structured 

programming and the fundamental concepts of OOP. In this game, students create 

robots by writing programs in the Java programming language, and players’ robots 

fight each other in a small rectangular online environment. One of the most 

important features of this environment is that it enables a player to see instantly how 

the robots are affected by the player’s codes. O’Kelly and Gibson (2006) held a 

competition using the RoboCode game development platform for students in their 

first year of programming. Students were introduced to the competition after the first 

half of the semester, which means that students were already familiar with basic 

programming concepts such as variables, iterations, control flows, and functions. The 

competition required students to work as a team. Additionally, since RoboCode was 

used in the competition, it offered students the opportunity to have a problem-based 

learning experience. Students submitted their robot-tanks, code and documentation of 

their robot-tanks to enter the competition. The competition consisted of a league in 

which the teams were divided into groups and matched with each other. Each team 

which became the leader in the groups proceeded to the next level in the competition 

and they were able to alter the code that defined their robot-tanks. Even though 

RoboCode gathers up different aspects such as fun, programming, games, artificial 

intelligence and competition, it does not free students from worrying about problems 

with syntax of a programming language because it uses a real OOP language, Java, 

not pseudo codes. The researchers also emphasized that in order to be successful in 

their game, students had to have prior experience in working as a team. Otherwise, if 



32 

 

students formed a team that was not balanced well, it was likely that there would be a 

decrease in their learning and success. Another important point that the researchers 

emphasized is that, with problem-based learning, the focus is shifted from teaching 

to learning, thus resulting in freedom for students to think for themselves, to use their 

existing knowledge on the topic and to gain new knowledge through explorations. 

However, the claims of the researchers were based mostly on their observations. 

Therefore, there is a need to do research on the effects of the problem-based learning 

of programming to provide empirical data on the issue. 

Moreover, Saving Princess Sera (Barnes, Richter, et al., 2007) is a 2D role 

playing game (RPG) which aims to teach students variable declaration along with the 

simple usage of conditions, structures, and loops. In the game, a monster named 

Gargamel captures a princess named Sera, and the player’s role is to help a man from 

the village, Arshes, to save the princess. Each of the tasks in the game involves 

programming concepts such as reordering while loop statements, correcting nested 

loops and solving picture puzzle of algorithms. The Catacombs is another game 

developed by Barnes, Richter, et al. (2007), but it is a 3D multiplayer game that 

shares the same objectives as Saving Princess Sera. In this game, users play the role 

of an apprentice wizard who is trying to help a mother to find her two children that 

are lost. The game has a linear structure in which students have only one option to 

perform in each task. The Catacombs game has two different versions. One of the 

versions has multiple-choice questions and dialogues with a spell book named 

Grimore. In the second version, Konijn, players are expected to select the correct 

scroll among the incorrect ones, and players receive game stones, which are code 

snippets that help players fill in the blanks in the codes. In order to examine the 

interface options of the games and overall feedback on the concept, Barnes, Richter, 



33 

 

et al. (2007) conducted a study with 13 students with prior knowledge in 

programming. The participants took a demographic questionnaire and a pre-test that 

assessed their existing knowledge in programming concepts. After completing the 

pre-test, the students were asked to play Saving Princess Sera for 20 minutes and The 

Catacombs for 20 minutes. When students finished playing the games, they took a 

post-test, after which they were interviewed for their opinions about the games. 

There was no meaningful difference between pre-test scores and post-test scores. 

Although there was no difference in achievement scores, the research showed that 

students liked the idea of games being used as a reinforcement tool for a 

programming class. In the light of the student comments, the researchers realized that 

these two games did not provide clear feedback to players, and therefore, they 

emphasized that such games should be providing clear and proper feedback (Barnes, 

Richter, et al., 2007). 

According to the initial results, Barnes, Chaffin, et al. (2007) added a 

ranking system into Saving Princess Sera game. In this ranking system, players start 

as a rank 7 player, and by performing well on tasks, they ascend to rank 1. They also 

made modifications in Grimore version of The Catacombs game, but not in the 

Konijn version. A cut scene was added to the game that tells players they are a 

wizard who has a final task to complete in order to graduate from wizardry school. 

Players were also penalized for each of their mistakes in the game by a 20% decrease 

in their experience points. The final addition to the second game was another cut 

scene at the end of the game in which students were told how they performed in the 

game. With these modifications in their game prototypes, the researchers’ had the 

goal was to investigate whether or not this explicit feedback would make a difference 

in game behavior and in the opinions of players. Barnes, Chaffin, et al., (2007) 



34 

 

conducted a second study with the same format and materials, except for the 

improvements in two games, with 8 participants. They compared the average time 

spent on each activity and the number of incorrect answers in both studies. Although 

there was no statistical difference between the average time spent on activities for the 

games, in the second study, the students completed the quests faster than the students 

in the first study. Five out of eight students in the second study reported that they 

were motivated by the feedback, the gold rewards and the ranking in the games. The 

researchers therefore claimed that the feedback in the two games may have affected 

the way students thought about using games to learn how to program. They 

suggested that the form of feedback in serious games should be examined in further 

studies to determine which one/s would be more effective with a broad range of 

students. 

Esteves, Fonseca, Morgado and Martins (2011) analyzed how the teaching 

and learning of computer programming can be developed in the Second Life (SL) 

virtual world. SL is a 3D virtual world which enables students to program the 

behavior of objects by writing basic script codes. SL also provides immediate 

visualized feedback of written codes. Another important aspect of SL is the 

opportunity for collaboration in the 3D world. In the SL virtual world, more than one 

student can edit the same avatar by writing their own script and changing ideas via 

messaging through the system. The researchers conducted an action research which 

was a cyclical research that involved interventions or changes while it was being 

conducted. It consisted of four cycles, which started in March 2007 and ended in July 

2008. Three different undergraduate student groups participated in the study: 

beginner students, students with a little previous knowledge of programming, and 

students with experience in semester-long programming projects. The participants 



35 

 

were asked to develop a semester-long project with their peers using a C-style 

scripting language called Linden Scripting Language (LSL). Once students were 

given an identical project description, they formed pair groups and started to develop 

their project in SL. The teachers met with students once a week in SL for 2 hours to 

monitor their progress and to help them with their problems in developing the 

project. Communication among students and between students and teachers was 

mostly text-based, although SL enables both voice-based and text-based 

communication. Data was collected through observations and a questionnaire that 

aimed to gather students’ ideas about the difficulty level and the nature of the tasks in 

the project description. The findings of the study pointed to three important issues 

related to the subject: communication issues, students’ process of learning, and the 

process of teaching programming. There were problems with communication among 

between students, and between students and teachers because text-based 

communication was preferred, and all of the messages appeared on the screen. Thus, 

students had difficulty following the conversations and instructions. Apart from that, 

students had the chance to talk with an instructor in a private conversation. Although 

students were grateful for the opportunity to talk with instructors, it was hard for the 

instructors to provide immediate feedback. Another problem that the researchers 

emphasized was the students’ learning process. Student tasks were of two types: 

visual and nonvisual. In the visual tasks, students had immediate visual feedback of 

their program as the behaviors of the object that they defined in the project. On the 

other hand, in nonvisual tasks, students did not understand why they were doing the 

task; therefore, they had problems creating the right algorithm and finding the 

execution errors in their programs. The last issue that researchers emphasized is 

related to the process of teaching programming. The researchers claimed that the 



36 

 

teachers’ physical presence at the beginning of the study was a crucial part of the 

learning process in case students have difficulty understanding the SL world. They 

also found that there was a feature that informed the teacher about the students’ 

progress by email in the SL platform. With the use of such a feature, teachers could 

be guided through their teaching process by learning students’ difficulties and 

attempts to solve these problems. 

A multiplayer real time strategy game, Prog&Play, was developed by Muratet 

et al. (2011) to teach programming to novice programmers. The game motivates 

players by making them heroes in the story. Another important aspect of the game is 

that it gradually introduces programming concepts in its story, therefore enabling 

students to be masters at the end of the game. The game enables students to pause 

their program execution, to modify their codes and to execute the program again to 

see the effects of their changes in the codes. In order to study the possibility of a 

serious game being used to teach programming to draw computer science students’ 

attention, Muratet et al. (2011) conducted three experiments. First, they selected 15 

students, novice programmers, via a questionnaire that assessed motivation to 

playing video games and learning programming. Students who were interested in 

playing games but not interested in programming were selected for the first 

experiment, which consisted of two parts. In the first part, students played the game 

in a multiplayer session without focusing on programming tasks; they focused only 

on the game environment and the mechanics. In the second phase, Prop&Play was 

introduced and students were asked to play it. In the second experiment, the effects 

of the game on students’ achievement scores and teachers’ assessment were 

evaluated. The Prog&Play game was used in the first semester of the computer 

programming curriculum. There were 300 students taking the first-year programming 



37 

 

course, and half of these students continued to learn programming within traditional 

settings while the other half learned by playing the proposed game.  

The third experiment tested the usability of the game by third parties, other 

instructors who wanted to adapt this serious game into their own pedagogy. Three 

teachers used the game to adapt their own pedagogy and conducted experiments with 

their students to analyze the effects of the game. The researchers defined four 

evaluation criteria to evaluate the results of the three experiments: (i) improvement in 

students’ programming skills, (ii) usability of the game system, (iii) entertainment 

factor of the game and (iv) teachers’ assessments. In order to evaluate the 

enhancement of programming skills, the researchers counted the number of missions 

completed by the students and the number of compiling instances was also recorded 

for each task in the game. With this data, the researchers defined the level of 

difficulty of the tasks in the game, and they saw that the fourth task was much harder 

than the first three. Although students had problems with the difficulty level of the 

tasks, the serious game reduced the failure rate of the students who were in the 

experimental group compared to students who were in the reference group. The 

usability and the entertainment aspect of the game was evaluated by a questionnaire 

administered in the first two experiments. The results of the questionnaire showed 

that students liked the way in which programming was taught with a game. Apart 

from that, students considered the game functional because there were no critical 

bugs that prevented them from playing the game. Overall, the results of the 

entertainment effect of the proposed game were also positive, which indicated that 

students found the game entertaining, and they appreciated being able to use their 

programming knowledge in such a context. The final criterion for the evaluation of 

the game was teacher assessment. Course sessions were filmed to observe teachers’ 



38 

 

activities during the experiments. Apart from filming the lectures, a questionnaire 

was filled by the teachers about their perception of serious games before the 

experiments. After the experiments, the teachers were asked to submit a file to report 

their opinions about the experiments. Teachers’ assessment of the game was positive, 

and they said the effect of the game on students’ work was also positive. 

Liu, Cheng, and Huang (2011) developed a 3D simulation game, Train: Build 

and Program It (TrainB&P), and conducted an empirical study on the effects of 

simulation games on the computational problem-solving skills and learning 

experiences of novice programmers. The learning activities of the game were based 

on Papert’s constructionism (1972). In the game, students were expected to design, 

develop and program the transportations in a railway network. One hundred 

seventeen freshman students participated in the study. Students had studied 

programming for one and a half months via traditional lessons before the experiment. 

The researchers proffered a learning experience survey to students in order to have a 

better understanding of the students’ opinions of the learning experiences in the 

traditional lessons. After the traditional lectures, students worked with the game for 

two weeks. Students were asked to build and program a train that goes three rounds 

and stops at the starting point. The researchers stated that, in order for students to 

complete the mission, they needed to learn the basic concepts of OOP, conditional 

logic, and loops. Along with learning basic programming concepts, students also 

needed to consider physical laws because the game had a physics engine. Therefore, 

they needed to program their trains to complete the mission as quickly and as 

securely as possible. The researchers recorded students’ railway network programs 

and the details of the design and development process of the railway systems. At the 

end of the game-based learning activity, they asked students to complete the same 



39 

 

learning experience survey to understand the students’ perception of the learning 

experience in the game. The researchers also administered a survey to have a better 

understanding of students’ motivation towards the game-based learning activity. 

Students responded to the motivation survey before and after the game activity phase 

of the study. The analysis of the learning experience survey suggested that students 

are more likely to be in a flow state when they practice computational problem-

solving skills in a game rather than in traditional lectures. The same result was 

obtained from the analysis of the motivation survey. Thus, researchers suggested that 

integrating examples into games might help reduce student anxiety. Finally, a 

detailed analysis of the activity logs showed that a simulation game, which draws 

from constructionism, might enhance students’ computational problem-solving skills. 

Additionally, the results suggested a help in the form of instructional support could 

help foster learning. Although the findings of the study are promising, it does not 

provide empirical data on the effects of the game on students’ learning performance 

of OOP concepts. Furthermore, the researchers focused on the learning experiences, 

not the learning performance of novice programmers. 

Kazımoğlu et al. (2012) developed a prototype game called Program Your 

Robot to study the effects of serious games on students’ CT skills. They claim that 

developed serious game focus on abstract and conceptual knowledge of 

programming rather than on the functions of developing CT skills, which underlie 

the basics of programming. In order to have students acquire basic CT skills, 

researchers proposed a game which enables students to create algorithms of solutions 

of problems, to apply computational thinking methods to the given problems, to 

debug errors in their algorithms, and to observe visual representation of their 

algorithmic solution. They conducted an experiment with 25 undergraduate students 



40 

 

at different levels of classes within computer science discipline. In the experiment, 

students were asked to write feedback about the game they had played. The results 

revealed that the majority of students thought game was helpful in improving their 

problem-solving skills and understanding basic programming constructs. 

Livovský and Porubän (2014) developed the Alien Breed game, a remake of 

a 1991 action-adventure game called Amiga, to teach the basic concepts of OOP to 

novice programmers without making students write programs in a real OOP 

language. The game is a top-view two-dimensional game in which players are 

expected to shoot their way through enemies and to find the exit in order to proceed 

to the next level. In the proposed game, researchers made use of an object-first 

approach, which aims to introduce fundamental concepts and principles of OOP to 

students before writing programs in OOP. The game focused on several concepts of 

OOP, namely, object, class, attribute, operation, encapsulation, and inheritance. The 

proposed game has three different levels which aim several learning objectives. 

These objectives are: 

 Explaining the concept of object 

 Understanding the relationship between objects and classes 

 Knowing the roles of attributes and operation in terms of OOP 

 Explaining why encapsulation is needed 

 Explaining the inheritance concept by identifying relationships between 

subclasses and superclasses 

 Understanding the inheritance concept’s importance in OOP 

Livovský and Porubän (2014) developed an educational tool called Object 

Access Tool (OAT) to support the interaction with concepts of OOP while students 

are playing the game, Alien Breed. The OAT has three components for 



41 

 

representations of object models in the UML class diagram: displaying instances of 

selected class, and displaying members of an object, or a static class. In order to 

measure the effects of Alien Breed on students’ conceptual knowledge and 

understanding of OOP, a questionnaire was administered to students after they 

played the game for about an hour. Fourteen undergraduate students studying in the 

informatics program answered the questionnaire, which consisted of two types of 

questions: multiple-choice questions, which measured the basic conceptual 

knowledge of students; and open-ended questions, which asked students to write 

concepts of OOP in their own words, measured deeper information about students’ 

conceptual knowledge of OOP. All of the respondents except two had no prior 

experience with OOP, but they did have experience with procedural programming. 

The results of the study showed that 5 students had scored 90% or higher on the 

multiple-choice questions and also had partially correct answers in the open-ended 

questions. Apart from the questionnaire, researchers also collected data by observing 

students. According to the observations, there were some problems with the 

presentation of tutorials, task instructions and conceptual knowledge of OOP in text 

format. The researchers stated that students were reluctant to read help texts, 

instructions for tasks, and to learn content. They believe that the length of those texts 

was the reason, and they recommend replacing these text tutorials with animations or 

video tutorials. 

ZTECH (Wong, Hayati, & Tan, 2016) is a role-playing game (RPG) which 

aims to teach basic OOP concepts such as encapsulation, polymorphism, and 

inheritance in a fun, easy, and interactive environment. The game consists of ten 

mini-puzzle games with 8 main quests that cover some basic programming concepts. 

Sixty first-year students who study game development were asked to play the game 



42 

 

to evaluate the effects of the game. After completing game play, students were 

required to complete a 15-item questionnaire. The first three asked for personal 

details and existing programming knowledge; the other five questions were about the 

usability of the game. The remaining seven asked students’ perceptions about the 

game-based approach used in learning object-oriented programming. The results 

showed that 65% of the students found ZTECH an effective tool to teach object-

oriented paradigms. The researchers also stated that 15 of the participants had passed 

an OOP course at the university with grade of A. They claimed that pseudo codes 

should be used in introductory programming courses in order to overcome 

difficulties that are caused by the syntax of a real programming language. 

Mathrani et al. (2016) used the LightBot game in their research on game-

based learning issue. The LightBot game has a fictional story in which players 

program a robot to light all blue tiles in a specific path. Players accomplish tasks by 

using prefabricated commands that represent fundamental programming concepts 

such as functions, conditional flows, recursion. The researchers conducted a study 

with two different student groups. The first group consisted of 20 students with no 

prior programming experience but with a little computing experience. The second 

group had 24 students with basic programming knowledge. Students in both groups 

were asked to play the game, but the two groups had different orders in the game and 

they also had different time sets. The task and the time span were different because 

the groups differed in prior knowledge of programming. The researchers made the 

first group play the basic level first to learn the basic mechanics of the game and to 

learn functions, procedures and the sequential flow of execution of the program. 

After completing the basic level, students in the first group played the first level that 

covers recursions and conditional. On the other hand, students in group two played 



43 

 

the game as it was designed by the developers. Immediately after playing the game, 

students in both groups were asked to complete an online survey to collect qualitative 

and quantitative data. The qualitative data used open-ended questions about the 

students’ opinion about the game. Qualitative data was collected with a 5-point 

Likert scale questionnaire. This questionnaire aimed to gather the understanding of 

students’ perceptions of the game, conceptual knowledge on loops, conditionals and 

recursion, and also about the difficulty of the game. Students in the first group rated 

the basic level of the game as easy, recursions as difficult, and conditionals as very 

difficult. Thirteen of 20 students in the first group correctly answered the questions 

about their learning through game. Students in the second group thought that the 

game was an effective tool to learn programming concepts, and the game also 

clarified earlier conceptual difficulties in programming. Overall, the findings of the 

study indicated that students loved the game, and the researchers stated that games 

can be useful in learning basic programming concepts such as functions, procedures, 

conditionals, loops, and recursions. They concluded that LightBot was designed for 

basic-level programming and they suggested that another more complicated and 

intensive game should be used to study advanced programming. 

Ramírez-Rosales, Vázquez-Reyes, Villa-Cisneros, and De León-Sigg (2016) 

developed a serious game, Software KIDS, to teach basic conceptual knowledge of 

OOP and the basics of software engineering (SE) to children older than eight years 

old. The game has ten levels that focus on fundamentals of OOP such as class, 

object, attributes, methods, inheritance, polymorphism, abstraction, encapsulation 

etc., and the basic concepts of SE, such as algorithms, conditional and iterative 

structures, and arrangements. Although the proposed game is aimed at children older 

than 8 years old, researchers conducted an experiment with 12 children aged between 



44 

 

6 and 12. The experiment consisted of two sessions: In the first session, the children 

were given a short lesson about technology creation for an hour. In the second part of 

the experiment, students played the Software KIDS game for about 50 minutes and 

then had 10 minutes to answer a questionnaire. Both sessions were held under the 

supervision of mentors, who supported the children while they were playing the 

game. Data collected through mentors’ observations and a questionnaire that asked 

students’ opinions about levels of difficulty, easiness, fun, and satisfaction with the 

game. The average score for the Software KIDS game was 9 out of 10. The 

researchers found that the Software KIDS game motivated children to play and learn 

programming even if they had difficulty in playing the game. The findings of the 

study showed that after playing the game, students’ perceptions about software 

development had changed. Although the children enjoyed the game, they needed the 

help of a mentor to solve problems they encountered in the gameplay. Therefore, the 

researchers emphasised that the difficulty levels of the game needed to be suitable for 

age group. The researchers also stated that it was hard for novice programmers to 

understand, because the proposed game was highly based on OOP and specialized in 

the software engineering area. 

RoboBUG (Miljanovic & Bradbury, 2017) is a puzzle-type serious game 

designed for first-year computer science students who are learning C++. The 

standard version of the game implements debugging in C++, but it also allows 

instructors to create new levels with different programming languages. In the 

proposed game, players have a role of a scientist who tries to save the world from 

invader alien bugs by purging bugs from the scientist’s robotic suit of armor, Mech 

Suit. The player as a scientist purges the alien bugs from the armor by correcting 

errors in the infected source code of the different parts of the Mech Suit. The 



45 

 

RoboBUG game has four different levels that focus on code tracing, print statements, 

divide-and-conquer methods, and breakpoints in the C++ programming language. 

Each level in the game starts with a tutorial in which new debugging tools are 

introduced to the players, 2 or 3 sub problems involving small debugging tasks, and a 

final challenge in which students are expected to use newly introduced debugging 

tools along with the knowledge they gained while doing the small tasks. The 

researchers conducted a study to examine the effects of the game on students’ 

understanding of debugging and the players’ experience. The participants were 14 

first-year computer science students at the University of Ontario Institute of 

Technology between 18 and 25 years old. They first completed a test, the Positive 

and Negative Affect Scale (PANAS), that assessed their feelings. After the 

completion of the PANAS test, the students took a pre-test of 10 multiple-choice 

questions to measure their existing knowledge on debugging techniques. After 

completing the pre-test, they had 30 minutes to play the game. At the end of the 

experiment, they completed a post-test on debugging and they completed the 

PANAS questionnaire one more time. The researchers conducted a paired t-test to 

analyze the scores of pre-test, post-test and PANAS tests. The results of the analysis 

showed that the proposed game helped students to acquire debugging skills. In 

addition to this, the RoboBUG game yielded more improvement in test scores of 

students with low prior knowledge on the topic than of students with a higher level of 

prior knowledge on debugging. An analysis of the PANAS test showed no significant 

difference in the positive and negative effects. The researchers claim that the game 

should include a hint system to relieve the frustration of players. 

 



46 

 

2.4  Summary of the literature 

In order to overcome the problems of novice programmers in learning OOP and CT 

skills and to motivate them, researchers have adopted digital game-based learning 

approaches. There are two main approaches in the literature on the digital game-

based learning of programming: learning by developing games and learning through 

gameplay experience. 

 In the learning-programming-by-developing game approach, researchers have 

made use of visual programming environments to teach programming to novice 

programmers. Although there is much supporting empirical data for the use of 

programming environments, there is still significant criticism of them. First, the 

research in the current literature points out that these visual programming 

environments will only bring a short burst of enthusiasm unless they are used with 

well-designed teaching methods and learning materials (Repenning, Webb, & 

Ioannidou, 2010). These programming environments lack the mechanism to provide 

feedback to students about their error or about the appropriate use of programming 

blocks (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Another important concern 

about these environments is that there is still a need to write algorithms for solutions 

to problems, which increases the intrinsic cognitive load (Lister, 2011). In other 

words, the visual programming environments do not provide guidance or assistance 

for developing algorithms even though they enable novice programmers to 

implement their algorithms in a more user-friendly way. 

The other main approach in the digital game-based learning of programming 

uses serious games to teach programming to novice programmers by providing a 

gameplay experience for students. In recent years, many researchers investigated the 

effects of serious games on learning computer science skills and programming. 



47 

 

Although a considerable amount of experimental research has been conducted on this 

topic, few of the studies provided a well-prepared experimental design and 

demonstrated inferential statistical analysis (Livovský & Porubän, 2014; Mathrani, 

Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017). The findings of 

the majority of the studies on the current problem are based either on anecdotal 

evidence or on initial evaluation results that do not provide empirical data about what 

students learn from these proposed games. Additionally, there is not enough 

substantial data about the effects of serious games on Turkish students’ programming 

skills. Finally, the majority of the studies in the current literature focus on what is 

being taught rather than how the developed games support novice programmers’ 

learning by providing details about the instructional design of the game (Laporte & 

Zaman, 2018). 

Nonetheless, there are some common findings in those studies. The most 

prominent one of those findings is that, thanks to the games developed, abstract 

programming concepts can be concretized and students are provided with chances to 

see the instant results of the programming activities in the games; both help students 

during the debugging phase. Additionally, as revealed by another finding in a 

number of studies, games particularly enhance motivation to learn programming, and 

some studies found out that games might even encourage students to study in the 

field of programming.  

This thesis, by drawing from the findings of current literature on the problem, 

aims to examine the effects of a serious game, Curious Robots: Operation Asgard 

(Meraklı Robotlar: Operasyon Asgard), on students’ conceptual knowledge of OOP 

and CT skills. By considering all aforementioned issues, this study was designed to 

answer the following research questions: 



48 

 

1. Is there any significant difference between the post-test and pre-test scores on 

the conceptual knowledge of OOP and CT skills of undergraduate students 

with no programming experience? 

a. Is there any significant difference between the post-test and pre-test 

scores on the conceptual knowledge of OOP of undergraduate students 

with no programming experience? 

b. Is there any significant difference between the post-test and pre-test 

scores on CT skills of undergraduate students with no programming 

experience? 

2. Is there any significant difference between the post-test and pre-test scores on 

the conceptual knowledge of OOP and CT skills of undergraduate students 

with procedural programming experience? 

a. Is there any significant difference between the post-test and pre-test 

scores on the conceptual knowledge of OOP of undergraduate students 

with procedural programming experience? 

b. Is there any significant difference between the post-test and pre-test 

scores on CT skills of undergraduate students with procedural 

programming experience? 

3. Is there any significant difference between the achievement scores on the 

conceptual knowledge of OOP and CT skills of undergraduate students with 

no programming experience and of undergraduate students with procedural 

programming experience? 

4. To what extent do students’ creative problem-solving skills and attitudes 

towards digital game-based learning of programming influence their  

achievement score on the conceptual knowledge of OOP and CT skills?  



49 

 

CHAPTER 3 

METHODOLOGY 

 

This chapter presents the details of the methods and procedures followed in the 

current study. The chapter consists of the following sections: (1) research design, (2) 

participants and sampling procedures, (3) treatments, (4) instruments, (5) data 

collection procedures. 

 

3.1  Research design 

This study employs a quasi-experimental design approach in order to minimize the 

effects of extraneous variables on the outcome. A pre–test and post-test quasi-

experimental design (Creswell, 2011) is used to study the effects of serious games on 

undergraduate students’ conceptual knowledge of OOP and CT skills. Another 

reason for using a quasi-experimental design is that the researcher was unable to 

create groups with a random assignment method. 

The independent variables of the study were the level of the students’ creative 

problem-solving skill, students’ attitude towards digital game based learning of 

programming and OOP and CT pre-test scores of the students. The dependent 

variable of the study is students’ achievement scores in conceptual knowledge of 

OOP and CT skills test. The independent and dependent variables of the study are 

displayed in Table 3. 

 

3.2  Participants and sampling procedure 

The target population of the study was undergraduate students studying computer 

programming in non-engineering disciplines in Turkey. Identifying all the 



50 

 

individuals in the population would not be possible because the population of the 

study is extremely large. Sample undergraduate students who were accessible to the 

researcher were selected from the Computer Education and Educational Technology 

Department of Bogazici University. Convenience sampling (Creswell, 2011) was 

followed as the sampling method because there was no chance to access participants 

randomly. For selection of the participants, the main criterion was that students 

should not have had experience in OOP before the experiment. 

 

Table 3.  Variables of the Study 

Independent variables Dependent variables 

The level of creative problem-solving skill Achievement in conceptual knowledge of OOP 

Attitude towards digital game-based learning of 

programming 
Achievement in CT skills 

Prior knowledge of OOP and CT skills  

 

The researcher selected two different student groups in the 2017-2018 

academic year. The first group of the sample consisted of freshman students without 

prior experience in programming, while the students in the second group were 

sophomores with experience in procedural programming but not in object-oriented 

programming. Data were collected from the all 61 students in these two groups (see 

Table 4). A pre-test on the basic conceptual knowledge of OOP and CT skills is 

given to the students, and according to the results of this test, a student with higher 

level of conceptual knowledge on OOP and CT skills is excluded from the study. 

 

Table 4.  Participants of the Study 

Freshman students Sophomore students 

Female Male Female Male 

20 10 12 19 



51 

 

3.3  Treatments 

In this study, a 2D science-fiction themed hybrid (puzzle-solving and simulation) 

serious game, Curious Robots: Operation Asgard (Meraklı Robotlar: Operasyon 

Asgard), was developed by the researcher with Unity 3D game engine using C# 

programming language. The game was specifically designed to be a simulation game 

because simulation games allow players to explore virtual game world and interact 

with the other game objects to test their hypotheses (Kiili, 2005). The main objective 

of the developed game is to introduce fundamental concepts of OOP namely class, 

object, attribute, data, method, inheritance, polymorphism and encapsulation to 

students in a meaningful and fun environment. Apart from introducing OOP 

concepts, it also aims to enable students to practice CT skills: conditional logic, 

algorithm building, simulation and debugging, even if students have no programming 

knowledge. 

 After the development of the first version of the game, the researcher asked 

the opinion of three educational technology specialists and four software engineers in 

terms of usability, instructional design and the integration of programming concepts 

and procedures into gameplay. Additionally, a pilot study with 5 students with 

experience in OOP was also conducted to assess the usability of the game. In the 

light of the feedback from these initial evaluations, the gameplay, the screen and the 

message design of the game were revised. 

 

3.3.1  Serious game design model 

In the design and the development of a serious game using a game design model that 

successfully integrates game characteristics, educational theory is important. In order 

to ensure that students would accomplish the objectives of the learning unit, it was 



52 

 

necessary to choose a suitable serious game model. In choosing the conceptual 

design framework of the game developed, I took into consideration certain criteria 

that the framework should bear: 

 a learning environment which would provide a high level of interactivity to 

motivate learners, 

 a learning environment that would provide problems in an authentic context, 

 learners would be able to analyze a problem situation and generate their 

solutions, 

 learners would be able to actively test their solutions and discover, 

 learners would be able to observe the outcomes of their solutions and alter them 

to get better solutions. 

Even though there are many serious game development frameworks in the 

current literature, Kiili (2005)’s Experiential Gaming Model was selected as the 

conceptual design framework of the developed game because it was the one that 

most closely met the researcher’s criteria. Another reason this framework was 

selected was that the experiential gaming model is one of the most widely accepted 

and referenced frameworks in the literature, even though there are several other 

serious game models. 

This model aims to create a link between gameplay mechanics and 

experiential learning theory to enhance players’ flow experience. Experiential 

learning theory stresses the importance of direct experience and reflective thinking in 

learning (Kolb, 1984). Flow, on the other hand, is the state of having optimal 

experience from an activity by being completely engaged (Csikszentmihalyi, 2014). 

Players are commonly in a state of flow when they play a game. By grounding the 

design of the game in this study according to an experiential gaming model, I aimed 



53 

 

to increase in the motivation of novice programmers because novice programmers 

often have low motivation to learn OOP (Prensky, 2003; Sarkar, 2006). 

The experiential gaming model consists of three main cycles, namely 

preinvative idea generation, idea generation and the active experimentation cycle 

consisting of reflective observation and schemata construction (see Figure 2). 

Challenges or problems, which according to the researcher is the heart of the model 

in the games, are at the center of these three cycles. Challenges in a serious game 

play a crucial role in keeping players in a state of flow. The level of the challenges in 

game activities is important in the design of instructional games because easy 

challenges may bore players, while hard one may cause players to be anxious (see 

Figure 3). Therefore, it is important for a serious game to provide learners with 

challenges that will match the students’ skill and knowledge level. Furthermore, 

challenges in a game should be designed in a way that the difficulty of the tasks will 

increase when players make progress in the game. 

 

 

Figure 2.  Experiential gaming model 

Source: Kiili, 2005 



54 

 

 

 

Figure 3.  Model of the flow state 

Source: Adapted from Csikszentmihalyi, 1975 

There are two idea generation loops, preinvative idea generation and the idea 

generation loops, in the experiential gaming model in which players develop their 

solutions to the problems. The difference between the preinvative idea generation 

and the idea generation cycle is that the preinvative idea generation cycle has a 

disorganized structure which can usually be seen in the way children play. In the idea 

generation loop of the model, players analyze the problems and generate their 

solutions according to the rules and constraints of the game world. 

 After completing their solutions in the idea generation stage of the model, the 

players move on to the experimentation stage. They implement their solutions to the 

problems and observe their effects on the problem situation. In the reflective 

observation phase of the experimentation cycle, clear feedback plays a crucial role. 

With the help of feedback from the game world, learners may understand the 

deficiencies in their solutions and thereby improve their solutions to create more 

effective ones. This experimentation and observation process of solutions would help 

students to construct new knowledge schemata, consequently resulting in learning. 



55 

 

The researcher emphasized that it is important for learners to test different solutions 

to a problem to improve their creative problem-solving skills and current knowledge 

on the topic (Kiili, 2005). Although this model provides guidance and information 

about the fundamentals of designing serious games, it does not necessarily refer to 

the instructional design of the activities in a game. Therefore, along with a 

conceptual design framework of serious games, an instructional design model was 

used in the design and the development of the activities of the game. 

 

3.3.2  Instructional design model 

The instructional design of the activities of the game in this study is based on the 

four-component instructional design model (4C/ID model) (van Merriënboer, Clark, 

& de Croock, 2002). The 4C/ID model regards authentic learning tasks as the core of 

teaching and complex learning because with such tasks, learners are able to integrate 

their knowledge, skills and attitudes. The experiential gaming model and the 4C/ID 

model are similar in terms of the design of their learning activities. Both models 

encourage the use of ill-structured problems in a learning environment to support 

discovery learning. Furthermore, gradual increase in the level of difficulty of 

learning tasks are emphasized in both models. The experiential gaming model lays 

emphasis on clear feedback in supporting students. Similarly, the 4C/ID model also 

points out the role of providing support to learners in the form of procedural and 

supportive information. 

The 4C/ID model consists of four major components and these are (1) 

learning tasks, (2) supportive information, (3) procedural information and (4) part-

task practice. Learning tasks are authentic whole-task problems which are based on 

real-life situations. By working on learning tasks, learners build knowledge schemata 



56 

 

and integrate their current knowledge, skills and attitudes. Learning tasks are divided 

into task classes according to their level of difficulty. In other words, learning tasks 

should be organized in a way that students will start working on relatively easy tasks 

and finish with the difficult ones. According to this model, supportive and procedural 

information should be presented to students over the course of their learning 

experience. Supportive information is provided to help learners to perform 

nonroutine, complex and problem-solving parts of the learning tasks. Procedural 

information, on the other hand, provides help to students in routine aspects of 

learning tasks. In other words, procedural information indicates a step-by-step 

instruction about a routine task in learning process. While learning tasks in this 

model refers to whole-task activities, the last component of the 4C/ID, the part-task, 

refers to the practice of automated constituent skills. When a high level of 

automaticity is required to perform a task, the learning tasks may not be sufficient. In 

such circumstances, additional part-task practice should be provided for learners. 

 

3.3.3  Conceptual design of the game 

Based on the guidelines and information from the game model and the instructional 

design model, the Curious Robots: Operation Asgard (Meraklı Robotlar: Operasyon 

Asgard) game was developed. The game developed is similar to LightBot (Mathrani, 

et al., 2016) and Program Your Robot (Kazimoglu, et al., 2012) in terms of game 

play. Even though these two games are designed to teach the basics of procedural 

programming and computational thinking, neither aims to teach OOP concepts to 

novice programmers. Unlike the other two games, Curious Robots: Operation Asgard 

(Meraklı Robotlar: Operasyon Asgard) includes a component that enables students to 



57 

 

build their own code blocks according to the needs of their missions as a game play 

experience. 

One of the most important aspects of the game is that the fundamental 

concepts of OOP are integrated into the story of the game. Fantasy elements such as 

imaginary machines and planets were used to integrate OOP concepts into the story 

of the game because the use of fantasy elements may enhance students’ learning 

(Garris, Ahlers, & Driskell, 2002). Using stories is one of the core components of the 

game design process (Rollings & Adams, 2003). Stories set the background for 

games, and using stories in games enables the integration of small tasks into a main 

goal. Therefore, I aimed to help students understand the need of such concepts and 

where to use them in authentic problem settings. An Animated Pedagogical Agent 

(APA), Professor Ekrem, plays a crucial role in the integration of OOP concepts into 

the story of the game by telling the story and providing information about the 

learning activities. APAs are on-screen characters that act as personal tutors in 

computer-based learning environments, and they provide feedback and 

contextualized information about the learning unit in an activity (Bates, 1994; Lester, 

et al., 1997). Using APAs in computer-based discovery-learning environments 

increases learners’ motivation and leads to deep learning (Moreno, Mayer, Spires, & 

Lester, 2001).  Furthermore, in the current literature, the chosen serious game and 

instructional design models emphasize the importance of feedback for novice 

programmers (Barnes, Chaffin, et al., 2007; Kiili, 2005; van Merriënboer, et al., 

2002). Therefore, an immediate feedback mechanism in which students are informed 

about their mission is provided with hints about their mistakes, both visually and 

verbally. 



58 

 

3.3.3.1  Supportive information 

In the developed game, supportive information is given via a panel called mission 

information. With such information, students were expected to construct a 

knowledge schemata by building a bridge between their current knowledge and the 

new ones. In the information panel, the English word of each OOP concept was 

provided — even though the language of the game is Turkish — along with the 

corresponding Turkish word and the definition of the concept (see Figure 4).  The 

English word for the concepts was provided to minimize the problems that students 

might encounter in the future because they will be using these concepts in English 

when they start to work with real programming languages. 

 

 

 Figure 4.  Mission information panel 

A help menu that provides hints and examples for each mission in the game is 

another important feature of the game developed (see Figure 5). Thanks to the help 

menu of the game, students will be able to get help whenever they need. Finally, the 

researcher paid special attention to not to overwhelm learners’ the cognitive load in 



59 

 

the course of designing the learning activities. According to Sweller, van 

Merriënboer and Paas (1998), human beings have a limited capacity for working 

memory, for this reason all instructional materials should be developed by 

considering the cognitive load of learners. Thus, some key points and concepts of 

OOP were highlighted in the instructions in order to lower the cognitive load of 

students. 

 

 

Figure 5.  The help menu 

3.3.4  Associating game-play with object-oriented concepts and computational 

thinking 

The player’s role in the game is to work in the Turkish Space Agency (TSA) as a 

programmer who is specialized in programming robots. According to the story of the 

game, in 2048 the world is on the verge of a crisis because of global warming, and 

scientists in the TSA are looking for a new planet for humans to live. The game is a 

puzzle-solving simulation game in which students first build their own robots and 

program them to explore the planet Asgard so as to decide determine whether 



60 

 

humans can live on that planet or not. There are eleven different activities with a 

gradual increase in the level of difficulty. Throughout the game, students are given 

instructions about their current mission through an APA, Professor Ekrem, in an 

instruction area at the bottom of the screen. 

In the first mission of the game, students are expected to build a chip which 

will contain the specifications of a robot to be used in the exploration mission. The 

chip in this activity is an analogy that represents the class concept. One of the 

problems of teaching and learning of OOP stems from using a real programming 

language to learn because of the complex syntax of the programming language 

(Guzdial, 2008; Xinogalos, 2016). Therefore, in order to get students to be more 

comfortable and not to worry about the syntax of a real programming language, 

defining a class called robot is done through an imaginary machine called Class 

Definer Machine (see Figure 6). 

 

 

Figure 6.  Class definition activity 



61 

 

After defining the robot class, students will be directed to create an instance of 

the class by inserting the created chip into one of the robots. Three different robot 

options are presented, and one of them may be chosen. When students choose a robot 

to put their chip in, a pop-up window will appear. This pop-up window is used as an 

analogy for constructors in OOP. The students create their own robot by indicating 

the name, speed, and the carrying capacity of their robot (see Figure 7). The visual 

representations of abstract concepts of OOP play an important role in novice 

programmers’ learning of OOP (Kölling, 1999b). Therefore, the visualization of 

abstract concepts of OOP are provided by an animation after students indicate the 

specifications of their robots. In the animation, the chip enters the robot and brings it 

to life. Thus, while the chip was representing an abstract concept, class, the live robot 

refers to a specific instance of the class, an object.  

 

 

Figure 7.  Creating a robot instance activity  

The next mission is about defining methods of the created robot by using code 

blocks in the game. The APA in the instruction panel of the game presents the details 



62 

 

of methods to the students. The method creation window allows students to try their 

methods and see the immediate results of their coding in a simulation screen on the 

right side of the Method Definer Machine (see Figure 8). As stated earlier, novice 

programmers have difficulties in developing algorithms to solve a problem 

(Xinogalos, 2016). Therefore, this activity is specifically designed in a way that it 

will help novice programmers to think their daily motions critically and divide basic 

motions such as walking into small steps. The main purpose of the activity is to give 

the novice programmers a smooth introduction to algorithmic thinking by making 

them analyze their daily movements step-by-step. Another reason of letting students 

to develop methods of the robot is to design a solution to a problem which is 

independent of a particular situation. According to the literature, students have 

problems changing their mindsets from procedural programming to OOP 

(Hadjerrouit, 1999; Xinogalos, 2016). In other words, novice programmers develop 

the habit of generating problem specific solutions in procedural programming, but 

the nature of OOP requires programmers to develop generic solutions that could be 

applicable in different problem situations. 

After defining the basic movement methods of their robots, students are asked 

to program their robot to walk towards the spaceship to start their journey in space. 

In this activity, the basic layout of their programming environment will be introduced 

in a concealable coding panel on the right side of the screen (see Figure 9). Methods 

that are created by students are shown on the upper side of the coding panel. By 

simply dragging and dropping these code blocks into the free space below the coding 

panel, students will be programming their robots. There are two buttons at the bottom 

of the coding panel: Run (Çalıştır) and Clear (Temizle). When the Run button is 

clicked, the code blocks in the coding area are executed, and the coding panel 



63 

 

becomes inactive. The aim of disabling the coding panel is to get students to pay 

close attention to the execution of their codes and find mistakes, if there are any. 

 

 

Figure 8.  Defining method activity 

 

Figure 9.  Programming the robot to go to the spaceship 

A visual and textual feedback mechanism, which is one of the most essential 

characteristics of the game, is specifically designed to help novice programmers to 



64 

 

understand the execution of their program and debug their codes, because the lack of 

such a mechanism in visual programming environments causes problems for novice 

programmers (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). For example, if a code 

block runs properly, the block will turn green, or if there is an error with the code 

block, it will be red, and if an input is missing in any of the code blocks, the code 

blocks will be yellow. Along with the visual feedback for code blocks, a pop-up 

feedback message providing information about the error will also appear if there are 

any bugs in the code (see Figure 10). 

 

 

Figure 10.  The feedback message 

The next mission introduces the encapsulation concept of OOP. Students are 

asked to establish a connection between the created class, robot, and spaceship class 

so that their robot will be able to use methods of the spaceship to go to the planet 

Asgard. This activity introduces one of the main reasons for using the encapsulation 

process in programming, which is ensuring the security of a class. Students are able 



65 

 

to change access conditions of the methods of spaceship class by simply clicking on 

the radio buttons namely, as public and private (see Figure 11). 

 

Figure 11.  Encapsulation activity panel 

After properly setting the access conditions of the methods of the spaceship, a 

mini space map will be displayed to students (see Figure 12). According to the story 

of the game, this mini map is shown in a simulation screen because the spaceship 

travels with the speed of light and it is not possible to drive the spaceship manually at 

such speed. Therefore, they need to program their journey from planet Earth to 

Asgard in advance. The same coding panel appears on the right side of the screen, 

but this time in the methods part of the coding panel students will see the methods of 

the spaceship. If students arrive at one of the other planets or leave behind the mini 

map, they will get a warning message reminding them of their mission objective. 

When the spaceship arrives on Asgard, students start to program their robot to 

collect sample objects, small stones, from the planet’s surface (see Figure 13). There 

are two different small stones to collect and huge rocks as obstacles on the surface of  



66 

 

 

Figure 12.  Going to Asgard mission 

 

Figure 13.  First exploration mission 

the planet. Each of the stones has four alternative locations, and they are positioned 

randomly in one of the alternatives. This ensures that students are not able to use the 

same code sequence as their peers to solve the problem in this mission. In this 

activity, students need to program their robot so that it can collect the stones without 

hitting the huge rocks or leaving the exploration area. In order to write the code of 

their solutions to a problem, students need to understand the problem and divide it 



67 

 

into smaller parts and generate a strategic solution to these smaller parts (Gomes & 

Mendes, 2007; Lahtinen, Ala-Mutka, & Järvinen, 2005). Therefore, the collection 

task of the small stones is divided into two main parts. In the first part, students 

program their robot just to pick one of the stones and then clear the coding panel to 

program their robot to put the stone into the gathering point in front of the ship. In 

the second part of the mission, students are asked to program their robot to collect 

the other small stone and put it into to the gathering point within a single execution 

of their code. 

When students finish collecting the stones and have put them in the gathering 

point, they will be asked to program the spaceship to travel back to the Earth from 

Asgard. Students program their spaceship according to the same principles that were 

used for going to the Planet Asgard. 

In the next activity, students are introduced to the inheritance concept and 

why such a feature is needed within an authentic problem situation in the story. 

According to the story of the game, the professor welcomes the player’s robot when 

it comes back to the TSA. In an animation, the professor informs students that the 

analysis of the stones from the first mission on Asgard was promising. The professor 

adds that scientists in the TSA need liquid and gas samples from Asgard in order to 

decide whether this planet is suitable for humans to live. 

In the meantime, the professor states that “they have little time left and they 

need a new robot to analyze the samples and accelerate the exploration mission.” 

Therefore, students are asked to create a new robot class, analyzer robot, for their 

final exploration mission. This new robot class needs to be able to collect solid and 

gas samples from Asgard, along with having all properties of previously defined 

robot class. Therefore, students will need to define the new class which will be 



68 

 

inherited from the robot class and have its own unique properties. The previous Class 

Definer Machine was improved with a new add-on that enables students to select the 

base class while defining a new one (see Figure 14). When students define the new 

class according to the instructions of the professor, they will instantiate an instance 

of the newly defined class the same way they did in the second activity. 

 

 

Figure 14.  Inherited class define activity 

When students build their analyzer robot, they need to define new methods of 

the robot according to the given directions. In this activity, students use polymorphic 

methods by defining new methods and altering old ones. The professor indicates that 

the new robot should have the ability to collect and analyze the samples according to 

the physical state of the matter. The need and the underlying logic of polymorphic 

methods will be explained to students by embedding into the story of the game. The 

so-called Method Definer Machine was improved with a new add-on which shows 

the inherited methods of the class on the left side and the newly defined polymorphic 



69 

 

methods on the right side of the panel (see Figure 15). The same method defining 

procedures are held for the polymorphic method defining activity. 

 

Figure 15.  Defining polymorphic methods 

After finishing the polymorphic method activity, students play a 

reinforcement activity for encapsulation concept. This time students try to establish a 

connection between the newly created analyzer robot and the analysis machine in the 

TSA station so that collected samples will be analyzed while it is in Asgard. The aim 

of this activity is to emphasize another use of encapsulation concept, which is hiding 

unnecessary details of a complex operation from users. This activity has the same 

layout as the previous encapsulation mission, except for the fact that the 

encapsulation panel is part of the analyze machine. 

In the last activity of the game, students go on their final exploration mission 

on the planet Asgard with their freshly created analyzer robot. The second 

exploration on Asgard is in a different part of the planet so that students will 

encounter different obstacles on the planet’s surface. Another important difference of 



70 

 

this activity is that students use polymorphic methods of previously defined as the 

“pick an object” method and the “put an object” method (see Figure 16). 

 

Figure 16.  Final explorations in Asgard 

With a dropdown list addition to the method blocks, students are able to 

select the physical state of the material that they need to pick or put. Thus, the 

necessity of the polymorphic methods are clarified in an authentic problem situation. 

In the final episode of the game, there is a small stone, a puddle, and a gas beam on 

the surface of the planet, and students have to program their robot to collect these 

three samples from the surface and put them in the gathering point in a single 

execution of their codes. When all three objects are collected, a final animation of the 

game will play. 

 

3.4  Instruments 

In the present study, four sets of data collection instruments were used: (1) a Creative 

Problem-Solving Test (Özkök, 2005), (2) an Attitude Scale for Serious Game 

Assisted Programming Learning (Keçeci, Alan, & Zengin, 2016), (3) a pre-test, and 



71 

 

(4) a post-test. The aim of the creative problem-solving test (see Appendix A) was to 

measure students’ creative problem-solving skills. The test consists of 30 multiple-

choice questions, each with 5 options; there is one correct answer and four distracters 

for each question. Each correct answer was assigned 1 point while each wrong 

answer was assigned 0 points. The Cronbach coefficient alpha of the test is 0.94. Ten 

of the questions in the test cover the identification of a problem, twelve involve the 

decomposition of a problem, and the remaining eight questions are about 

interpretation and making judgement skills. 

The attitudes for serious game assisted programming learning were indicated 

on a 5-point Likert scale that ranged from (1) strongly disagree to (5) strongly agree 

(see Appendix C). There are 28 statements, 22 positive and six negative ones in the 

scale, and the Cronbach coefficient alpha reliability of the test is 0.833. Students 

were divided into two groups based on their attitude, either positive or with negative. 

Each statement was graded according to the weight of the items, with 1 point 

corresponding to strongly disagree to 5 points corresponding to strongly agree. The 

negative items in the scale were graded reversely. 

There was no single test that evaluated both the conceptual knowledge of 

OOP and CT skills at the same time, for which reason the researcher prepared a test 

by adapting items from three different tests to measure students’ conceptual 

knowledge of OOP and CT skills (see Appendix E). Eight questions of the test were 

adapted from an object-oriented computer programming semantic knowledge 

instrument (Gerola, 1997). The internal consistency reliability of alpha was 0.614. 

Eight questions were adapted from another instrument used in a doctoral dissertation 

(Pitsatorn, 2003). Pitsatorn (2003) and two instructors checked the tests and answers 

to assure reliability. The last three questions, questions 17 to 19, were adapted from 



72 

 

another study (Basu, 2016) in which students’ science and CT learning were 

measured. The reliability of the instrument was not provided by the researcher. Table 

5 shows the distribution of the adapted test items. After adapting all these items into 

one instrument, an instructor, a researcher and I matched learning objectives with 

measurement items (see Table 6) and checked pre- and post-tests in order to assure 

the reliability of the developed instrument. Additionally, the Cronbach alpha 

coefficient alpha of the instrument was also calculated for the pre-test and the post-

test based on the answers of participants of the study. The Cronbach alpha coefficient 

of the pre-test was .83, and of the post-test was .63. 

 

Table 5.  Distribution of the Adapted Test Items 

Test item number Adapted from Measured learning unit 

1 - 8 Gerola, 1997 Conceptual knowledge of OOP 

9 - 16 Pitsatorn, 2003 Conceptual knowledge of OOP 

17 - 19 Basu, 2016 Computational thinking skills 

 

While the aim of the pre-test was to measure students’ existing conceptual 

knowledge of OOP and CT skills, the aim of the post-test was to measure students’ 

conceptual knowledge of OOP and CT skills after they studied the learning unit with 

the game developed. The order of the questions and options were changed in the 

post-test. Seventeen of the questions were multiple-choice, each with four options; 

there was one correct answer and three distracters for each question. The last two 

questions of the test were open-ended questions which asks students to provide a 

solution to the given problems by building a solution algorithm and writing a simple 

program with pseudo codes. Each correct answer was graded out of 5 points; each 

wrong answer received 0 points. 



73 

 

Table 6.  Learning Objectives and Corresponding Measurement Item 

Numbers 

Instructional objective 
Corresponding test 

item 

Explain class concept 4 

Identify object concept 5 

Distinguish a class from an object 3 

Distinguish object instantiation from class declaration process 10 

Give an example of a class and instance from the class 12 

State the roles of class attributes 8 

Explain object instantiation process 2 

State the difference between attributes of a class and attributes of an object 15 

Define method concept 16 

Explain how classes communicate with each other 13 

Explain encapsulation concept 6 

Explain the role of encapsulation in object-oriented programming 11 

Explain polymorphism concept 7 

Explain method overriding process 14 

Differentiate a base (derived) class from a sub-class in an inheritance relationship 9 

List the characteristics of object-oriented programming 1 

Understand conditional statements 17 

Write a conditional statement 18 

Design a step-by-step solution to a problem 19 

 

3.5  Data collection procedures 

Prior to the data collection and treatments of the study, ethical approval (see 

Appendix F) was obtained from the Committee on Human Research of Boğazici 

University (İNAREK). The study was conducted in three sessions — pre-test, 

treatment and post-test — that took place on two different days over a period of 2 

weeks, according to the availability of the participants. 

Data collection and the experiment took place in the computer laboratories of 

the Faculty of Education at the university where the students study. Before starting 



74 

 

the experiment, the researcher informed the participants about the procedure of the 

experiment and indicated that they were free to participate (or not) in the experiment. 

The researcher obtained a written consent form from the students who volunteered to 

participate in the experiment (see Appendix G). 

In two groups, freshman and sophomore students, all participants were given 

two tests: a Creative Problem-Solving Test (Özkök, 2005) and a pre-test on 

conceptual knowledge of OOP and CT skills. The pre-test session lasted 

approximately 50 minutes. A week after the pre-test phase, the second and third 

sessions of the study were performed on the same day. In the second part of the 

study, students in both groups played the game developed, Curious Robots: 

Operation Asgard (Meraklı Robotlar: Operasyon Asgard), under the supervision of 

the researcher and the instructor of the course for about one and a half lesson period 

(90 minutes). After a 15-minute break, in the last session of the experiment the post-

test was administered to students to measure conceptual knowledge of OOP and CT 

skills. At the end of the third phase, the researcher administered an attitude scale for 

serious game-assisted programming learning. The administration of the post-test and 

attitude scale took 40 minutes. 

 

3.6  Data analysis 

In order to answer the research questions, a series of different statistical tests were 

conducted. Data sets of the students’ pre-test scores, post-test scores, creative 

problem-solving test scores and the attitude scale scores were first matched for each 

student in both groups. The data were then checked to ensure that each student had 

scores for all five measurements. Four students who did not have all of these scores 

were dropped from the study. For the data analysis of this study, quantitative 



75 

 

methods were used. First, the descriptive statistics of the achievement scores 

(difference between pre-test and post-test) and the normal distributions of each 

group’s data were examined before conducting hypothesis testing through either 

parametric or nonparametric methods. In all statistical tests, the IBM SPSS statistical 

software (Version 24) was used.  

 The first question (Is there any significant difference between the post-test 

and pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate 

students with no programming experience?) was answered as follows. First, the 

Shapiro-Wilk normality test was applied in order to check the distribution of 

students’ pre-test scores and post-test scores. The post-test scores were normally 

distributed, but the pre-test scores were not distributed normally. Therefore, a 

nonparametric, Wilcoxon signed-rank test was conducted in order to analyze the 

difference between the post-test and pre-test scores on conceptual knowledge of OOP 

and CT skills. 

For the second question, (Is there any significant difference between the post-

test and pre-test scores on conceptual knowledge of OOP and CT skills of 

undergraduate students with procedural programming experience?), first, Shapiro-

Wilk test was applied in order to check the distribution of the data. Then, a 

parametric, paired-samples t-test was conducted because the data was distributed 

normally. 

In order to answer the third question, (Is there any significant difference 

between the achievement scores on conceptual knowledge of OOP and CT skills of 

undergraduate students with no programming experience, and of undergraduate 

students with procedural programming experience?), the following methods were 

implemented. First, a Shapiro-Wilk test was conducted to check the distribution of 



76 

 

the achievement scores of students in both groups. Then, to compare the matched 

groups, an independent-samples t-test was used because the achievement scores of 

students with no programming experience and students with procedural 

programming experience were distributed normally. 

The fourth question of the study (To what extend do the students’ creative 

problem-solving skills and attitudes towards digital game-based learning of 

programming influence the students’ achievement score on the conceptual 

knowledge of OOP and CT skills?) was answered by conducting a two-way ANOVA 

test. In order to test whether the level of creative problem-solving skills and attitudes 

towards digital game-based learning of programming together or pairwise influence 

the students’ achievement scores, a general linear model 2x2 ANOVA test was 

conducted. Additionally, a series of Pearson’s r and Spearman’s rho tests were 

conducted to analyze the correlations among students’ CPSS, attitudes towards 

digital game-based learning of programming and achievement scores in detail. First, 

a series of Shapiro-Wilk test was conducted to assess the distribution of students’ 

data. Then, a Pearson correlation coefficient was computed if the data was normally 

distributed, and a Spearman’s rho was computed if the data was not normally 

distributed. 

  



77 

 

CHAPTER 4 

RESULTS 

 

This chapter provides results of the data analyses conducted to answer the research 

questions. Specific findings for each research question are presented under title of the 

each group of research questions. 

 

4.1  Learning gain of freshman and sophomore students 

 

4.1.1  Learning gain of freshman students 

Research question 1: Is there any significant difference between the post-test and 

pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate 

students with no programming experience? 

In order to analyze the pre-test and post-test scores of freshman students 

without programming experience, first normality of the data was checked to decide 

the type of statistical test to be conducted. A Shapiro-Wilk’s test showed that the 

post-test scores were normally distributed (p > .05) but that pre-test scores were not 

(see Table 7). Therefore, a nonparametric, Wilcoxon signed-rank, test was conducted 

to analyze the difference between the post-test and pre-test scores on conceptual 

knowledge of OOP and CT skills. 

 

Table 7.  Shapiro-Wilk Result of Pre-test and Post-test Scores 

 Statistics df Sig. 

Pre-test .797 30 .000 

Post-test .959 30 .295 

 



78 

 

A Wilcoxon signed-rank test was conducted to examine the difference in the 

pre-test and post-test scores of students without programming experience. Table 8 

shows the descriptive statistics of pre-test and post-test scores of freshman students. 

A Wilcoxon signed-rank test (z = -4.797, p = 0.000) revealed that there was a 

statistically significant increase in the post-test scores of students after playing the 

developed game with a large (r = .87) (Rosenthal & Rosnow, 1984) effect size  (see 

Table 9). The median score on conceptual knowledge of OOP and CT skills test 

increased from pre-test (Md = 5.00) to post-test (Md = 40.00) after playing the 

developed game. 

 

Table 8.  Descriptive Statistics of the Pre-test and Post-test Scores of Freshman 

Students 
 

Mean Median N Std. Deviation 

Std. Error 

Mean 

Pre-test 10.67 5.00 30 12.229 2.233 

Post-test 40.00 40.00 30 16.713 3.051 

 

Table 9.  Wilcoxon Signed Rank Test for Pre-test and Post-test 

  N Mean Rank Sum of Ranks 

Post-test – Pre-test 

Negative Ranks 0a .00 .00 

Positive Ranks 30b 15.50 465.00 

Ties 0c   

Total 30   

a. post-test < pre-test; b. post-test > pre-test; c. post-test = pre-test 

 

 

4.1.1.1  Freshman students’ learning gain on conceptual knowledge of OOP 

Research question 1a: Is there any significant difference between the post-test and 

pre-test scores on conceptual knowledge of OOP of undergraduate students with no 

programming experience? 



79 

 

In order to analyze freshman students’ pre-test and post-test scores on 

conceptual knowledge of OOP, first the normality of the data was checked to decide 

which statistical test to be conducted. Table 10 shows the descriptive statistics of the 

pre-test and post-test scores. A Shapiro-Wilk’s test revealed that the post-test scores 

were normally distributed but that the pre-test scores were not (see Table 11). 

Therefore, a nonparametric, Wilcoxon signed-rank test was conducted. The result of 

the test (z = -4.793; p = 0.000) showed that there was a statistically significant 

increase in the post-test scores of students after playing the developed game with a 

large effect size r = .87 (see Table 12). The median score on conceptual knowledge 

of OOP test increased from 0.00 to 35.00 after playing the developed game. 

 

Table 10.  Descriptive Statistics of Freshman Students' Pre-test and Post-test 

Results of Conceptual Knowledge of OOP 
 

Mean Median N Std. Deviation 
Std. Error 

Mean 

Pre-test 6.67 .00 30 9.589 1.751 

Post-test 33.50 35.00 30 14.090 2.573 

 

Table 11.  Shapiro-Wilk Result of the Pre-test and Post-test Scores on Conceptual 

Knowledge of OOP 
 Statistics df Sig. 

Pre-test .689 30 .000 

Post-test .966 30 .427 

 

Table 12.  Wilcoxon Signed Rank Test for Pre-test and Post-test Scores on 

Conceptual Knowledge of OOP 
  N Mean Rank Sum of Ranks 

Posttest - Pretest 

Negative Ranks 0a .00 .00 

Positive Ranks 30b 15.50 465.00 

Ties 0c   

Total 30   

a. Post-test < pre-test; b. Post-test > pre-test; c. Post-test = pre-test 



80 

 

The frequency distribution of the number of correct answers to questions 

involving OOP concepts of freshman students are shown in the Table 13. Overall, 

there was an increase in the number of correct answers to all of the questions for the 

instructional objectives after playing the developed game. The learning objectives 

with the highest improvement were: stating the roles of class attributes, 

distinguishing object instantiation from class declaration process, stating the 

difference between attributes of a class and attributes of an object, explaining how 

classes communicate with each other, and listing the characteristics of OOP. 

 

Table 13.  Frequency Distribution of Freshman Students’ Number of Correct 

Answers for OOP Concepts 

Instructional Objective 
Correct Answers 

Pre-test Post-test 

Explain class concept 1 13 

Identify object concept 4 12 

Distinguish a class from an object 9 18 

Distinguish object instantiation from class declaration process 1 15 

Give an example of a class and instance from the class 1 6 

State the roles of class attributes 1 16 

Explain object instantiation process 2 11 

State the difference between attributes of a class and attributes of an object 4 18 

Define method concept 2 8 

Explain how classes communicate with each other 4 18 

Explain encapsulation concept 2 13 

Explain the role of encapsulation in object-oriented programming 6 18 

Explain polymorphism concept 0 4 

Explain method overriding process 2 10 

Differentiate a base (derived) class from a sub-class in an inheritance relationship 0 6 

List characteristics of object-oriented programming 1 15 

 



81 

 

4.1.1.2  Freshman students’ learning gain on CT skills 

Research question 1b: Is there any significant difference between the post-test and 

pre-test scores on CT skills of undergraduate students with no programming 

experience? 

In order to analyze the pre-test and post-test scores on CT skills of freshman 

students’ without programming experience; the normality of the data was checked to 

decide which statistics to be used. The descriptive statistics of pre-test and post-test 

scores of sophomore students were presented in Table 14. Shapiro-Wilk’s test 

showed that the pre-test scores and post-test scores were not normally distributed 

(see Table 15). Therefore, a Wilcoxon signed-rank test was conducted to analyze the 

difference between the post-test and pre-test scores on CT skills of freshman 

students. 

 

Table 14.  Descriptive Statistics of Freshman Students' Pre-test and Post-test 

Scores on CT Skills 
 

Mean Median N Std. Deviation 
Std. Error 

Mean 

Pre-test 4.00 5.00 30 3.806 .695 

Post-test 6.50 7.50 30 5.438 .993 

 

Table 15.  Shapiro-Wilk Result of Pre-test and Post-test Scores on CT Skills 

 Statistics df Sig. 

Pre-test .253 30 .000 

Post-test .240 30 .000 

 

A Wilcoxon signed-rank test (z = -2.500; p = 0.012) revealed that there was a 

statistically significant increase in the post-test scores of students after playing the 

developed game with a medium (r = .45) effect size (see Table 16). 

 



82 

 

Table 16.  Wilcoxon Signed Rank Test for Freshman Students’ Pre-test and Post-

test Scores on CT skills 
  N Mean Rank Sum of Ranks 

Post-test – Pre-test 

Negative Ranks 3a 3.50 10.50 

Positive Ranks 10b 8.05 80.50 

Ties 17c   

Total 30   

a. Post-test < pre-test; b. Post-test > Pre-test; c. Post-test = Pre-test 

 

The frequency distribution of the number of correct answers to questions for 

the instructional objectives involving CT skills of freshman students are shown in the 

Table 17. Overall, there was an increase in the number of correct answers to all three 

questions for the instructional objectives after playing the developed game. The 

highest improvement was in the learning objective of writing a conditional statement.  

 

Table 17.  Frequency Distribution of Freshman Students’ Number of Correct 

Answers for CT Skills 

Instructional Objective 
Correct Answers 

Pre-test Post-test 

Understand conditional statements 18 20 

Write a conditional statement 6 14 

Design a step-by-step solution to a problem 0 5 

 

4.1.2  Learning gain of sophomore students 

Research question 2: Is there any significant difference between the post-test and 

pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate 

students with procedural programming experience? 

In order to analyze the pre-test and post-test scores of sophomore students 

with procedural programming experience, the normality of the data was checked to 

decide which statistical test to be used. The descriptive statistics of pre-test and post-

test scores of sophomore students are presented in Table 18. The students’ pre-test 

scores and post-test scores were normally distributed, as assessed by a Shapiro-



83 

 

Wilk’s test (see Table 19). Therefore, a parametric, paired-samples t-test was 

conducted to analyze the difference between the post-test and pre-test scores on 

conceptual knowledge of OOP and CT skills. The analysis (t(30) = 4.558, p < 0.001) 

showed that playing the developed game elicited a statistically significant increase in 

the post-test mean scores compared to the pre-test mean scores with a large effect 

size (Cohen’s d = .92) (see Table 20). 

 

Table 18.  Descriptive Statistics of Pre-test and Post-test Scores of Sophomore 

Students 
 

Mean Median N Std. Deviation 
Std. Error 

Mean 

Pre-test 40.32 45.00 31 14.772 2.653 

Post-test 53.48 50.00 31 13.721 2.464 

 

Table 19.  Shapiro-Wilk Result of Pre-test and Post-test Scores of Sophomore 

Students 
 Statistics df Sig. 

Pre-test .955 31 .211 

Post-test .973 31 .614 

 

Table 20.  Paired Sample Test for Post-test and Pre-test of Sophomore Students 

 
Mean 

Std. 

Deviation 
t df 

Sig. 

(2-tailed) 
Cohen’s d 

Posttest-Pretest 13.161 16.077 4.558 30 .000 .923 

 

4.1.2.1  Sophomore students’ learning gain on conceptual knowledge of OOP 

Research question 2.a: Is there any significant difference between the post-test and 

pre-test scores on conceptual knowledge of OOP of undergraduate students with 

procedural programming experience? 

In order to analyze the pre-test and post-test scores of sophomore students 

with procedural programming experience, the normality of the data was checked to 



84 

 

decide which statistical test to be used. The descriptive statistics of pre-test and post-

test scores of sophomore students were presented in Table 21. Pre-test scores and 

post-test scores of students were normally distributed as assessed by Shapiro-Wilk’s 

test (see Table 22). Therefore, a parametric, paired-samples t-test was conducted to 

analyze the difference between the post-test and pre-test scores on conceptual 

knowledge of OOP. 

 

Table 21.  Descriptive Statistics for Sophomore Students' Pre-test and Post-test 

Scores of Conceptual Knowledge of OOP 
 

Mean Median N Std. Deviation 
Std. Error 

Mean 

Pre-test 32.26 35.00 31 12.964 2.328 

Post-test 42.58 45.00 31 11.963 2.149 

 

Table 22.  Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test on 

Conceptual Knowledge of OOP 
 Statistics df Sig. 

Pre-test .935 31 .060 

Post-test .966 31 .413 

 

The result of the test (t(30) = 3.359, p = 0.002) showed that playing the 

developed game elicited a statistically significant increase in the post-test mean 

scores compared to the pre-test mean scores, with a large (d = .83) effect size (see 

Table 23). 

 

Table 23.  Paired-Samples t-Test for Sophomore Students' Post-test and Pre-test 

Scores on Conceptual Knowledge of OOP 
 

Mean 
Std. 

Deviation 
t df 

Sig. 

(2-tailed) 
Cohen’s d 

Post-test – Pre-test 2.839 4.705 3.359 30 .002 .827 

 



85 

 

The frequency distribution of the number of correct answers for questions 

involving OOP concepts of sophomore students are shown in Table 24. Overall, 

there was an increase in the number of correct answers to 15 of the questions for the 

instructional objectives after playing the developed game. The learning objectives 

with the highest improvement were: stating the difference between attributes of a 

class and attributes of an object, distinguishing object instantiation from class 

declaration process, explaining method overriding process and explaining class 

concept. However, there was not an increase or a decrease in one of the instructional 

objectives which is explaining encapsulation concept. In addition, the number of 

correct answers to pre-test and post-test questions for three instructional objectives 

was decreased after playing the developed game. These three learning objectives 

were: explaining polymorphism concept, differentiating a base (derived) class from a 

sub-class and listing characteristics of OOP. 

 

Table 24.  Frequency Distribution of Sophomore Students’ Number of Correct 

Answers for OOP Concepts 

Instructional Objectives 
Correct Answers 

Pre-test Post-test 

Explain class concept 12 21 

Identify object concept 17 19 

Distinguish a class from an object 22 28 

Distinguish object instantiation from class declaration process 8 21 

Give an example of a class and instance from the class 13 17 

State the roles of class attributes 6 9 

Explain object instantiation process 9 15 

State the difference between attributes of a class and attributes of an object 8 23 

Define method concept 9 13 

Explain how classes communicate with each other 14 16 

Explain encapsulation concept 14 14 

Explain the role of encapsulation in object-oriented programming 15 16 

Explain polymorphism concept 15 10 

Explain method overriding process 10 20 

Differentiate a base (derived) class from a sub-class in an inheritance relationship 16 12 

List characteristics of object-oriented programming 12 10 



86 

 

4.1.2.2  Sophomore students’ learning gain on CT skills 

Research question 2.b: Is there any significant difference between the post-test and 

pre-test scores on CT skills of undergraduate students with procedural programming 

experience? 

In order to analyze the pre-test and post-test scores of sophomore students 

with procedural programming experience, the  normality of the data was checked to 

decide which statistics to be used. By inspecting the boxplots of the data, two outliers 

were found and excluded from the analysis. The descriptive statistics of pre-test and 

post-test scores of sophomore students are presented in Table 25. The Pre-test scores 

and post-test scores of students were not normally distributed as assessed by Shapiro-

Wilk’s test (see Table 26). Therefore, a nonparametric, Wilcoxon signed-rank test 

was conducted in order to analyze the difference between the post-test and pre-test 

scores on CT skills. The test (z = -2.849; p = 0.004) revealed that there was a 

statistically significant increase in the post-test scores of students after playing the 

developed game with a large effect size (r = .53) (see Table 27). The sophomore 

students’ median score in CT skills test increased from pre-test (Md = 10.00) to post-

test (Md = 13.00) after playing the developed game. 

 

Table 25.  Descriptive Statistics for Sophomore Students' Pre-test and Post-test 

Scores of CT Skills 
 

Mean Median N Std. Deviation 
Std. Error 

Mean 

Pre-test 8.62 10.00 29 4.411 .819 

Post-test 11.66 13.00 29 3.801 .706 

 

Table 26.  Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test 

Scores on CT Skills 
 Statistics df Sig. 

Pre-test .830 29 .000 

Post-test .769 29 .000 



87 

 

Table 27.  Wilcoxon Signed Rank Test Result for Sophomore Students' CT Skills 

  N Mean Rank Sum of Ranks 

Post-test – Pre-test 

Negative Ranks 2a 11.50 23.00 

Positive Ranks 16b 9.25 148.00 

Ties 11c   

Total 29   

a. Post-test < Pre-test; b. Post-test > Pre-test; c. Post-test = Pre-test 

 

The frequency distribution of the number of correct answers for questions 

involving CT skills of sophomore students are shown in the Table 28. Overall, there 

was an increase in the number of correct answers to all three questions for the 

instructional objectives after playing the developed game. Designing a step-by-step 

solution to a problem learning objective was the one with the highest improvement.  

 

Table 28.  Frequency Distribution of Sophomore Students’ Number of Correct 

Answers for CT Skills 

Instructional Objective 

Correct Answers 

Pre-test Post-test 

Understand conditional statements 26 27 

Write a conditional statement 16 20 

Design a step-by-step solution to a problem 8 21 

 

 

4.2  Comparison of the achievement scores of freshman and sophomore students 

Research question 3: Is there any significant difference between the achievement 

scores on conceptual knowledge of OOP and CT skills of undergraduate students 

with no programming experience, and of undergraduate students with procedural 

programming experience? 

First, the students’ achievement scores were calculated by subtracting their 

pre-test scores from the post-test scores. In order to analyze the achievement scores 



88 

 

of freshman students without programming experience and of sophomore students 

with procedural programming experience, the normality of the data was checked to 

decide which statistical test to be applied. Achievement scores for each group were 

normally distributed, as assessed by a Shapiro-Wilk’s test (see Table 29). Thus, to 

compare the matched groups, an independent-samples t-test was conducted. 

 

Table 29.  Shapiro-Wilk Result of Achievement Scores of Freshman and 

Sophomore Students 
 Statistics df Sig. 

Freshman Students .936 30 .072 

Sophomore Students .977 31 .734 

 

An independent-samples t-test was run to determine if there were any 

significant difference in the achievement scores of freshman and of sophomore 

students. Table 30 shows the descriptive statistics of the achievement scores of 

freshman and sophomore students. There was homogeneity of variances, as assessed 

by Levene’s test for equality of variances (see Table 31). The independent-samples t-

test revealed that there was a significant difference between the achievement scores 

of the freshman students (M = 29.33, SD = 14.55) and of the sophomore students (M 

= 13.16, SD = 16.08); t (59) = 4.115, p < .001 (see Table 31). 

 

Table 30.  Descriptive Statistics for Students' Achievement Scores 

Groups Mean Median Std. Deviation N 
Std. Error 

Mean 

Freshman 29.33 30.00 14.547 30 2.656 

Sophomore 13.16 15.00 16.077 31 2.888 

 

Table 31.  Independent-Samples t-Test for Students' Achievement Scores 

Levene Statistics 

t df 

Sig. 

(2-tailed) 

Mean 

Difference 

Std. Error 

Difference F Sign 

.721 .399 4.115 59 .000 16.172 3.930 



89 

 

4.3  Covariate effects on the achievement scores 

Research question 4: To what extent do the students’ creative problem-solving skills 

(CPSS) and attitudes towards digital game-based learning of programming influence 

the students’ achievement score on the conceptual knowledge of OOP and CT skills? 

In order to test whether CPSS and the attitudes towards digital game-based 

learning of programming together or pairwise influence the students’ achievement 

scores, a general linear model 2x2 ANOVA test was conducted. 

 Before conducting the test of covariate effects, participants’ CPSS test scores 

and attitudes survey results were inspected to categorize the students. To categorize 

CPSS, the CPSS test scores that were lower than 15 out of 30 constituted the low-

level group (n = 17), and the ones higher than or equal to 15 out of 30 constituted the 

high-level group (n = 44). To categorize students according to their attitudes towards 

digital game-based learning of programming, 105 points out of 150 points was 

designated as threshold because a 70 percent is set as a success rate. Hence, 32 

students were assigned to the low-attitude group, while 29 students were assigned to 

the high-attitude group. An inspection of boxplots of the data showed that there were 

two outliers, which were excluded from the analysis. The normality of the data was 

assessed using a Shapiro-Wilk’s normality test for each group of the design. 

Residuals were normally distributed (see Table 32), and there was homogeneity of 

variances (F = 2.421, df1 = 3, df2 = 55, p = 0.76). 

 

Table 32.  Shapiro-Wilk Result of Residuals for Achievement Scores 

The Level of 

Creative Problem-

Solving Skills 

Attitudes Statistics df Sig. 

Low 
Negative .921 10 .365 

Positive .807 5 .093 

High 
Negative .917 20 .088 

Positive .983 24 .939 



90 

 

A two-way ANOVA test was conducted to examine the effects of the level of 

CPSS and attitudes towards digital game-based learning of programming on 

students’ achievement scores. According to a general linear model 2x2 ANOVA test, 

the following statistical outcomes were found (see Table 33): 

(1) There was no statistically significant two-way interaction between the students’ 

level of CPSS and attitudes towards digital game-based learning of 

programming on achievement scores, F(1, 55) = .229, p = .634. 

(2) There was no statistically significant interaction between the students’ level of 

CPSS and achievement scores, F(1, 55) = .299, p = .586. 

(3) There was no statistically significant interaction between the students’ attitudes 

towards digital game-based learning of programming and achievement scores, 

F(1, 55) = 1.124, p = .294. 

 

Table 33.  Two-way ANOVA Test for Freshman and Sophomore Students' 

Achievement Scores 

Source 
Type III Sum 

of Squares 
df 

Mean 

Square 
F Sig. 

Partial Eta 

Squared 

CPSS 72.624 1 72.624 .299 .586 .005 

Attitude 272.624 1 272.624 1.124 .294 .020 

CPSS * attitude 55.603 1 55.603 .229 .634 .004 

Error 13338.833 55 242.524    

Total 39774.000 59     

 

Additionally, a series of Pearson’s r and Spearman’s rho tests were conducted 

to analyze the correlation between students’ CPSS, attitudes towards digital game-

based learning of programming and achievement scores in detail. The normality of 

the data was checked to decide which statistical test to be applied. Students’ all 

scores were normally distributed but achievement score in CT skills was not (see 

Table 34). A Pearson correlation coefficient was computed if the data was normally 



91 

 

distributed, and a Spearman’s rho was computed if the data was not normally 

distributed. Three outliers were found in the CT skills achievement data and 

excluded from the analysis. The following statistical outcomes were found (see Table 

35): 

(1) A Pearson correlation coefficient was computed to assess the relationship 

between the students’ overall achievement scores and their CPSS scores. There 

was a weak negative, statistically non-significant, correlation between the two 

variables, r(59) = -.153, p = .239. 

(2) A Pearson correlation coefficient was computed to assess the relationship 

between the students’ achievement scores in OOP concepts and their CPSS 

scores. There was a weak negative, statistically non-significant, correlation 

between the two variables, r (59) = -.167, p = .197. 

(3) A Spearman’s rho was computed to assess the relationship between the students’ 

achievement scores in CT skills and their CPSS scores. There was a weak 

positive, statistically non-significant, correlation between the two variables, rs 

(56) = .032, p = .809. 

(4) A Pearson correlation coefficient was computed to assess the relationship 

between the students’ overall achievement scores and their attitude scores. There 

was a weak negative, statistically non-significant, correlation between the two 

variables, r(59) = -.157, p = .226. 

(5) A Pearson correlation coefficient was computed to assess the relationship 

between the students’ achievement scores in OOP concepts and their attitude 

scores. There was a weak negative, statistically non-significant, correlation 

between the two variables, r (59) = -.172, p = .184. 



92 

 

(6) A Spearman’s rho was computed to assess the relationship between the students’ 

achievement scores in CT skills and their attitude scores. There was a weak 

negative, statistically non-significant, correlation between the two variables, rs 

(56) = -.013, p = .924. 

(7) A Pearson correlation coefficient was computed to assess the relationship 

between the students’ overall achievement scores and achievement scores in 

OOP concepts. There was a strong positive, statistically significant, correlation 

between the two variables, r (59) = .96, p < .001 

(8) A Spearman’s rho was computed to assess the relationship between the students’ 

overall achievement scores and achievement scores in CT skills. There was a 

moderate positive, statistically significant, correlation between the two variables, 

rs (56) = .338, p < .05. 

 

Table 34.  Shapiro-Wilk Result of CPSS, Attitude and Achievement Scores 

 Statistics Df Sig. 

CPSS Score .973 61 .189 

Attitude Score .986 61 .737 

Achievement Score in OOP Concepts .977 61 .321 

Achievement Score in CT Skills .836 58 .000 

Achievement Score .976 61 .275 

 

Table 35.  The Correlations Between Students' CPSS, Attitudes and Achievement 

Scores 
 

CPSS Attitude 
Achv. in OOP 

Concepts 

Achv. in CT 

Skills 
Achv. Overall 

CPSS —     

Attitude .186 —    

Achv. in OOP Concepts -.167 -.172 —   

Achv. in CT Skills .032 -.013 .092 —  

Achv. Overall -.153 -.157 .960 .338 — 

  



93 

 

CHAPTER 5 

DISCUSSION AND CONCLUSION 

 

Previous research on digital game-based learning of computer programming has 

focused mostly on the motivational effects of serious games, and the findings of the 

majority of the studies were either based on anecdotal evidence or on initial 

evaluation results that fail to provide enough empirical data about students’ learning 

performance, particularly students in Turkey. Therefore, the current research 

examined the effects of a serious game, Curious Robots: Operation Asgard (Meraklı 

Robotlar: Operasyon Asgard), on undergraduate students’ learning performance on 

conceptual knowledge of OOP and CT skills. 

 In this chapter, the results of the data are discussed by referring to the 

literature, and possible implications of the findings are presented. Finally, the 

suggestions for future research and limitations of the study are provided. 

 

5.1  Effects of a serious game on students’ conceptual knowledge of OOP and CT 

skills 

Conceptual knowledge of OOP and CT skills play an important role in understanding 

how problems are solved in OOP (Hadjerrouit, 1999; Liu, Cheng, & Huang, 2011; 

Wing J. M., 2006; Wing J. M., 2008). Students’ problem-solving methods and skills 

in computer science are referred as CT in the recent literature (Aho, 2012; Lu & 

Fletcher, 2009; Wing J. M., 2006; Wing J. M., 2008). Fundamental concepts of OOP, 

on the other side, also have a critical role in understanding problems, designing and 

implementing solutions of problems (Hadjerrouit, 1999). Furthermore, various 

researchers have emphasized that some of the learning difficulties of novice 



94 

 

programmers may be related to the computational learning environment in which 

they are introduced to programming (Gomes & Mendes, 2007; Kölling, 1999b). Yet 

there has been little discussion about the effects of serious games on novice 

programmers’ both conceptual knowledge of OOP and CT skills. This study focused 

on this issue and made a significant contribution to the literature by demonstrating 

inferential statistics. 

The first two questions of the study focused on the effects of the developed 

game on students’ learning of conceptual knowledge of OOP and CT skills. In order 

to answer these questions, the pre-test and post-test scores of freshman students 

without programming experience and sophomore students with procedural 

programming experience were analyzed using a series of statistical tests. A Wilcoxon 

signed-rank test was conducted to examine freshman students’ data, while a paired-

samples t-test was used to analyze sophomore students’ pre-test and post-test scores. 

The analyses of both groups’ data showed that both freshman and sophomore 

students significantly improved their conceptual knowledge of OOP and CT skills 

after playing the developed game. This result is consistent with the idea that serious 

games can be effective in fostering novice programmers’ programming knowledge 

(Livovský & Porubän, 2014; Mathrani, Christian, & Ponder-Sutton, 2016; 

Miljanovic & Bradbury, 2017; Muratet, Torguet, Viallet, & Jessel, 2011; O'Kelly & 

Gibson, 2006; Phelps, Egert, & Bierre, 2005). 

A more detailed analysis of the pre-test and post-test scores on conceptual 

knowledge of OOP was also conducted for both groups. The results reveal that 

students with no programming experience and students with procedural 

programming experience significantly improved their understanding of fundamental 

concepts of OOP such as class, object, method, encapsulation, inheritance and 



95 

 

polymorphism. Such findings corroborate the findings of other studies in the current 

literature (Livovský & Porubän, 2014; O'Kelly & Gibson, 2006; Phelps, Egert, & 

Bierre, 2005; Wong, Hayati, & Tan, 2016) by demonstrating inferential statistical 

analyses. Similarly, both freshman and sophomore students’ pre-test and post-test 

scores on CT skills were analyzed. The analysis revealed that the mean post-test 

scores of freshman and sophomore students were significantly higher than their mean 

pre-test scores on CT skills. The sophomore students had completed a semester-long 

course on procedural programming before the experiment, so it was assumed that 

there would be no significant difference in the achievement scores of sophomore 

students on CT skills. Yet the significant increase in sophomore students’ mean CT 

skills scores were a delightful surprise. 

Additionally, a detailed analysis of the number of correct answers of 

freshman students for pre-test and post-test showed that there was an increase in the 

number of correct answers for all of the questions after playing the developed game. 

Freshman students had significant improvement in learning objectives such as stating 

the roles of class attributes, distinguishing object instantiation from class declaration 

process, stating the difference between attributes of a class and attributes of an 

object, explaining how classes communicate with each other, listing the 

characteristics of OOP and writing a conditional statement. 

On the other hand, a detailed analysis of the sophomore students’ number of 

correct answers to pre-test and post-test questions showed that there was an increase 

in the number of correct answers to questions for 15 of the instructional objectives 

after playing the developed game. Sophomore students had significant improvement 

in learning objectives such as stating the difference between attributes of a class and 

attributes of an object, distinguishing object instantiation from class declaration 



96 

 

process, explaining method overriding process and class concept. However, there 

was not an increase or a decrease in one of the instructional objectives which is 

explaining encapsulation concept. In addition, there was decrease in three of the 

instructional objectives in the sophomore students’ number of correct answers to pre-

test and post-test questions. These three learning objectives were explaining 

polymorphism concept, differentiating a base class from a sub-class and listing 

characteristics of OOP. One of the possible reasons of this result is that the 

sophomore students may have not carefully read the instruction and mission 

information texts in the game because they might have thought they had already 

known the topic thanks to their prior knowledge in procedural programming. 

Another possible reason of this result is the complexity of the activities involving 

these learning objectives. For example, there were seven different methods in one of 

the game activities (the ninth activity, defining polymorphic methods) that 

introduced the polymorphism concept, and this may have been overwhelming for the 

novice programmers. Therefore, it can be said that the game activities involving 

these four learning objectives were not effective for students who started computer 

programming with procedural programming and shifted to OOP, and these game 

activities need to be revised. This result appears to support the idea that the transition 

from procedural programming to OOP may cause problems for novice programmers 

(Hadjerrouit, 1999; Xinogalos, 2016) because freshman students who has no prior 

programming knowledge had improvement in each of these learning objectives. 

This study differs from the previous studies in terms of the conceptual design 

of the learning activities and the scope of learning objectives. The serious games that 

were developed in the current literature focused on the goals of teaching conceptual 

knowledge of OOP and developing CT skills separately. The game developed in this 



97 

 

study, on the other hand, aimed to teach fundamental concepts of OOP along with 

enabling students to improve their CT skills by providing authentic problem 

situations. In order to provide a constructivist learning experience for novice 

programmers the game is developed based on the Experiential Gaming Model (Kiili, 

2005) and the 4C/ID model (van Merriënboer, Clark, & de Croock, 2002). Overall, 

both models encourages the use of ill-structured problems in a learning environment 

to support discovery learning. For example, students are asked to program their robot 

to collect objects from the surface of the Asgard without hitting the obstacles on its 

way. The fundamental concepts of OOP and CT skills were integrated into the story 

of the game, and the level of difficulty of tasks in the game increased gradually. 

Furthermore, fantasy elements such as imaginary machines and planets were used to 

integrate OOP concepts into the story of the game and to provide visual 

representations of abstract concepts of OOP. The imaginary machines in the game 

play crucial role in the concretization of abstract concepts of OOP by enabling 

novice programmers to not to worry about the syntax of a real programming 

language. For example, in the developed game students create their robots in a class 

definer machine, and program its behaviors in a method definer machine via 

dragging-and-dropping code blocks. The class definer machine is used to concretize 

the class concept as a programmable chip, and the object concept as a robot by 

visually representing the processess of defining a class and object instantiation in the 

panel of the machine. The method definer machine, on the other hand, visualized the 

execution of code blocks on students’ robots to enable students to test codes and 

observe its results. Hence, a constructivist learning approach was followed in the 

developed game to help students understand the necessity and possible usages of 

such concepts and CT skills. 



98 

 

Another difference between this study and the previous studies is the design 

of the instructions. The instructions in the game were conveyed by an APA to 

increase learners’ motivation and lead to deep learning. Livovský and Porubän 

(2014) claimed that long texts in instructions affected students’ learning negatively. 

Similarly, Sweller, van Merriënboer, and Paas (1998) claimed that human beings 

have a limited capacity for working memory, for this reason instructional materials 

should be designed by considering the learners’ cognitive load. Therefore, in the 

current study some key points and concepts of OOP were highlighted in the 

instructions to lower the students’ cognitive load. For example, critical points in a 

problem situation were highlighted in the instruction text to help novice 

programmers understand and analyze a problem before finding a solution to it. Thus, 

though the length of the instruction texts were long, it did not affect students’ 

learning performance adversely. 

This study makes a significant contribution to the literature by providing 

empirical data about the effects of serious games on novice programmers’ conceptual 

knowledge of OOP and CT skills. This study showed that teaching fundamental 

concepts of OOP and CT skills through a game play experience can foster novice 

programmers’ learning performance and help them overcome their learning 

difficulties. The integration of fundamental concepts of OOP and CT skills into the 

story of the game can be an effective way to teach programming through game play 

experience. Additionally, it is important that a game, which aims to teach 

programming, should offer students an opportunity to implement their solutions to 

the given problems, observe and reflect the results on a problem situation, and make 

necessary changes in their solutions. In this reflective observation phase of the 

learning experience, clear feedback plays a crucial role. Therefore, an immediate, 



99 

 

visual and textual, feedback mechanism should be provided in the game to inform 

and guide students about their missions and mistakes. It is thought that, in the light of 

the findings, serious game designers and instructors will have the opportunity to 

design effective games that help novice programmers to overcome their learning 

difficulties and improve their learning. 

 

5.2  Comparison of achievement scores of students without programming experience 

and students with procedural programming experience 

The third question of the study explored the differences between the mean 

achievement scores of freshman students with no programming experience and 

sophomore students with procedural programming experience. In order to answer the 

question, the pre-test scores of students were first subtracted from post-test scores, 

and then an independent-samples t-test was conducted to compare the achievement 

scores of the two groups.  

Hadjerrouit (1999) and Xinogalos (2016) stated that novice programmers are 

likely to have problems when they are first introduced to procedural programming 

and then move to OOP. However, there has been little discussion about the effects of 

the transition from procedural programming to OOP on novice programmers’ 

understanding of fundamental concepts of OOP and CT skills. Therefore, in order to 

provide a fresh insight into the current problem, this study compared the mean 

achievement scores of freshman students with no programming experience and 

sophomore students with procedural programming experience. The results reveal that 

freshman students (M = 29.33, SD = 14.55) have higher achievement scores than the 

sophomore students (M = 13.16, SD = 16.08). However, the sophomore students’ 

mean average scores on both pre-test (M = 40.32, SD = 14.77) and post-test (M = 



100 

 

53.48, SD = 13.72) were higher than the freshman students’ mean average scores on 

pre-test (M = 10.67, SD = 12.23) and post-test (M = 40.00, SD = 16.71). Therefore, 

it can be said that the developed game was effective in fostering both groups’ 

learning performance although both groups did not have high mean post-test scores. 

Moreover, developed game was more effective in teaching computer programming to 

students without programming experience than to students with procedural 

programming knowledge. One of the possible explanations of this result is that 

sophomore students’ existing knowledge of programming might have been a factor. 

In other words, it was more likely for freshman students to have a higher 

achievement scores than sophomore students because the former had no previous 

experience of programming. Therefore, a burst in the learning performance of 

computer programming of students, who have no programming experience, to some 

extent is likely to be expected from. The findings of this study showed that serious 

games can foster novice programmers’ OOP knowledge and CT skills, and help them 

to overcome the problems derive from the transition from procedural programming 

to OOP. 

 

5.3  The relationship among students’ creative problem-solving skills, attitudes 

towards digital game-based learning of programming and learning 

The fourth question of the study was to what extent students’ creative problem-

solving skills and attitudes towards digital game-based learning of programming 

influence the students’ achievement score on the conceptual knowledge of OOP and 

CT skills. 

In the current literature, researchers have stated that the knowledge of 

fundamental concepts of OOP and CT skills play important role in understanding and 



101 

 

solving problems in computer programming (Aho, 2012; Barr & Stephenson, 2011; 

Wing J. M., 2006). Additionally, researchers have advised that CT should be 

introduced to students as early as possible (Liu, Cheng, & Huang, 2011; Lu & 

Fletcher, 2009; Qualls & Sherrel, 2010). Therefore, in order to test whether the level 

of CPSS and attitudes towards digital game-based learning of programming together 

or pairwise influence the students’ achievement scores, a general linear model 2x2 

ANOVA test was conducted. The test revealed that there were no significant two-

way or one-way interactions among the level of CPSS and attitudes towards digital 

game-based learning of programming on students’ achievement scores. Additionally, 

a series of Pearson’s r and Spearman’s rho tests were conducted to analyze the 

correlation between students’ CPSS, attitudes towards digital game-based learning of 

programming and achievement scores in detail. The tests revealed that there were 

only weak correlations among students’ CPSS, attitudes towards digital game-based 

learning of programming and learning. Although the current literature indicates that 

CT and fundamental concepts of OOP are closely related to students’ programming 

performance, the findings of the present study did not reveal a significant 

relationship between students’ CPSS and achievement scores, and thus contradicted 

such arguments. One possible explanation of this result is that the items in the CPSS 

test required mostly knowledge of symmetry. Therefore, in order to have a better 

understanding of the nature of the relationship between students’ problem-solving 

skills and programming performance, a follow-up study could be conducted with 

another instrument measuring CPSS with a wide range of items. 

Furthermore, many researchers have studied students’ attitudes towards the 

digital game-based learning of programming and have agreed on the positive effects 

of games on novice programmers motivation (Barnes, Richter, et al., 2007; Liu, 



102 

 

Cheng, & Huang, 2011; Mathrani, Christian, & Ponder-Sutton, 2016; Muratet, 

Torguet, Viallet, & Jessel, 2011; Ramírez-Rosales, et al., 2016; Wong, Hayati, & 

Tan, 2016). Some of the studies (Phelps, Egert, & Bierre, 2005; Wong, Hayati, & 

Tan, 2016) claim that serious games could be effective in fostering novice 

programmers’ learning of programming based on the data of students’ attitudes. The 

findings of the current study contradict such claims, this study showed that there was 

not a significant interaction between students’ attitudes towards digital game-based 

learning of programming and their achievement scores. This study makes a 

significant contribution to the literature by demonstrating that fun and engaging 

aspects of serious games might be motivating, but it does not necessarily improve 

novice programmers’ learning performance at a university level. Therefore, it is 

important that serious game developers, instructors and educational technologists 

should pay more attention to the instructional design of the activities than the 

motivational fun aspects of the game. 

 

5.4  Implication for practice and recommendations for further research 

The present study is the first to directly examine the effects of serious games on 

undergraduate students’ conceptual knowledge of OOP and CT skills of Turkish 

students. The findings of the study, which show serious games can be effective in 

fostering novice programmers’ programming knowledge and CT skills, are 

consistent with the current literature (Livovský & Porubän, 2014; Mathrani, 

Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017; Muratet, Torguet, 

Viallet, & Jessel, 2011; O'Kelly & Gibson, 2006; Phelps, Egert, & Bierre, 2005). 

Additionally, by providing empirical data on the current issue, this study has 

beneficial theoretical and practical implications for digital game-based learning of 



103 

 

programming, and may provide valuable information and guidance for serious game 

developers, educational technologists and instructors. 

 The developed game shares the same objectives with the majority of the 

studies in the literature, which is improving students’ programming skills. Yet this 

study differs from other studies in terms of the conceptual design of the game. The 

majority of the studies in the literature focus on the learning objectives of the 

developed serious games, but few provide information about the instructional design 

of the activities (Laporte & Zaman, 2018). With this in mind, the learning activities 

of the developed game were developed based on Kiili’s (2005) experiential gaming 

model and 4C/ID model (van Merriënboer, Clark, & de Croock, 2002) to encourage 

discovery learning. Kiili (2005) advised that serious games should enable students to 

test different solutions in an authentic problem situation to improve students’ 

problem-solving skills and current knowledge on the topic. Therefore, to encourage 

discovery learning, the developed game adopted a problem-based learning approach 

by introducing fundamental concepts of OOP in authentic problem situations. In 

addition, the difficulty of the tasks in the game increase gradually as students make 

progress in the game, as indicated by the experiential gaming model and 4C/ID 

model. The findings of the current study reveal that novice programmers’ 

understanding of fundamental OOP concepts and CT skills improved after playing 

the developed game. Therefore, from a practical point of view, serious game 

designers should consider providing a learning environment with authentic problems 

to support discovery learning.  

A well-designed visual and textual feedback mechanism is the other unique 

feature of the developed game. In the developed game, supportive and procedural 

information was provided to students via a mission information panel, an instruction 



104 

 

panel and a help menu. For example, while students are introduced with class 

concept in mission information panel, specific instructions and points to take into 

consideration to define a class are presented in the instruction panel and help menu. 

Abstract concepts of OOP were represented as concrete objects in the game. For 

example class concept is represented as a programmable chip which contains the 

specifications of a robot. Morevover, CT skills were practiced in a simulation 

environment to help students understand the necessity and the forms of utilization of 

such concepts and skills. For example, students are asked to program their robot to 

pick an object from the surface of the Asgard without hitting the obstacles on its 

way. Barnes, Chaffin, et al. (2007) and Esteves et al. (2011) advise that serious 

games for programming should have a well-designed feedback mechanism to help 

students overcome their learning difficulties, and the findings of this study are in 

agreement with these arguments. Similarly, Kiili (2005) reported that feedback in 

serious games helps learners understand the deficiencies in their solution and thus 

improves their solutions to create ones that are more effective. From a practical 

standpoint, these findings suggest that serious game developers should establish a 

well-designed feedback mechanism to help novice programmers to overcome their 

learning problems. 

In order to provide guidelines that are more specific for serious game 

development, further research with a number different versions of the current game 

could be conducted to deeply analyze the effects of different components of serious 

games on novice programmers’ learning performance. Additionally, more research 

could be conducted with different student groups to find out whether or not the 

effects of the developed game can be generalized to a greater population with 

different properties. 



105 

 

 

5.5  Limitations of the study 

The first limitation of the study is about the generalizability of the findings because 

of the convenient sampling procedures that were used. In order to generalize the 

findings of the study to a larger population of novice programmers, a replication of 

the study with true experimental design should be conducted. 

 Secondly, using an immediate post-testing phase in the study may be 

considered as another limitation. A delayed post-test for measuring the students’ 

conceptual knowledge of OOP and CT skills could be conducted. Nonetheless, this 

did not seem applicable in the present study due to practical constraints, particularly 

the lack of access to the students’ class time. 

 Another limitation of the study is using the same instrument as a pre-test and 

a post-test. A follow up study could be conducted with two different instruments 

measuring the same learning objectives. However, this did not seem applicable in the 

present study due to the lack of a second instrument which evaluates the conceptual 

knowledge of OOP and CT skills. 

In order to have a better understanding of the effects of the developed game 

on novice programmers’ achievement scores of conceptual knowledge of OOP and 

CT skills, another study with a control group can be conducted. However, it did not 

seem feasible in the current study because of the limited number of participants. 

Finally, it is better to be cautious to generalize the findings of this study to 

serious games for learning programming of all programming languages such as C#, 

Java or Python. More research is necessary to find out whether or not the effects of 

the design principles used in this game can be generalized to other serious games 

with different languages and age groups.  



106 

 

APPENDIX A 

CREATIVE PROBLEM-SOLVING SKILL TEST 

 

 



107 

 

 

 



108 

 

 

 



109 

 

 

 



110 

 

 

  



111 

 

APPENDIX B 

CREATIVE PROBLEM-SOLVING SKILL TEST (TURKISH) 

 

 



112 

 

 



113 

 

 

 



114 

 

 



115 

 

 

  



116 

 

APPENDIX C 

ATTITUDE SCALE FOR 

SERIOUS GAME ASSISTED PROGRAMMING LEARNING 

 



117 

 

APPENDIX D 

ATTITUDE SCALE FOR 

SERIOUS GAME ASSISTED PROGRAMMING LEARNING (TURKISH) 

  



118 

 

APPENDIX E 

PRE/POST TEST 

 



119 

 

 



120 

 

  



121 

 

APPENDIX F 

ETHICAL APPROVAL 

 

  



122 

 

APPENDIX G 

PARTICIPANT INFORMATION AND CONSENT FORM 

 



123 

 

 

 



124 

 

REFERENCES 

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 

55(7), 832-835. 

Ali, A., & Shubra, C. (2010). Efforts to reverse the trend of enrollment decline in 

computer science programs. The Journal of Issues in Informing Science and 

Information Technology, 7, 209-225. 

Barnes, T., Chaffin, A., Godwin, A., Powell, E., & Richter, H. (2007). The role of 

feedback in Game2Learn. In M. B. Rosson, & D. Gilmore (Eds.), 

Proceedings of the SIGCHI Conference on Human Factors in Computing 

Systems (pp. 1-5). New York: ACM. 

Barnes, T., Richter, H., Chaffin, A., Godwin, A., Powell, E., Ralph, T., . . . Jordan, 

H. (2007, March). Game2Learn: A study of games as tools for learning 

introductory programming concepts. Paper presented at SIGCSE '07: The 

38th ACM Technical Symposium on Computer Science Education, 

Covington, KY. 

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age 

skill for everyone. Learning & Leading with Technology, 38(6), 20-23. 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What 

is involved and what is the role of the computer science education 

community? ACM Inroads, 2(1), 48-54. 

Basu, S. (2016). Fostering synergistic learning of computational thinking and middle 

school science in computer-based intelligent learning environments. 

(Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses 

Global. (10151674) 

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM: 

A computational thinking environment for learning science through 

simulation and modeling. In M. Helfert, O. Foley, M. T. Restivo, & J. 

Uhomoibhi (Eds.), Proceedings of the 5th International Conference on 

Computer Supported Education (pp. 369-378). Aachen, Germany: 

SciTePress. 

Bates, J. (1994). The role of emotion in believable agents. Communications of the 

ACM, 37(7), 122-125. doi:10.1145/176789.176803 

Begosso, L. C., Begosso, L. R., Gonçalves, E. M., & Gonçalves, J. R. (2012). An 

approach for teaching algorithms and computer programming using 

Greenfoot and Python. In R. Leblanc, & A. Sobel (Eds.), Proceedings of the 

2012 IEEE Frontiers in Education Conference (FIE) (pp. 1-6). Seattle: IEEE. 

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for 

distributed computational thinking. International Journal of Game-Based 

Learning, 1(2), 65-81. 



125 

 

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and 

assessing the development of computational thinking. Paper presented at the 

annual meeting of the American Educational Research Association, 

Vancouver, BC, Canada. 

Carlisle, M. C. (2009). RAPTOR: A visual programming environment for teaching 

object-oriented programming. Journal of Computing Sciences in Colleges, 

24(4), 275-281. 

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield, S. M. (2005). 

RAPTOR: A visual programming environment for teaching algorithmic 

problem solving. ACM SIGCSE Bulletin, 37(1), 176-180. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory 

programming concepts. Journal of Computing Sciences in Colleges, 15(5), 

107-116. 

Creswell, J. W. (2011). Educational research: Planning, conducting, and evaluating 

quantitative and qualitative research (4th ed.). Boston, MA: Pearson. 

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-

Bass Publishers. 

Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. In M. 

Csikszentmihalyi, Flow and the foundations of positive psychology: The 

collected works of Mihaly Csikszentmihalyi (pp. 209-226). Dordrecht, 

Netherlands: Springer. 

Denning, P. J. (2009). The profession of IT beyond computational thinking. 

Communications of the ACM, 52(6), 28-30. 

Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C., Kelleher, T., . . . 

Kaza, S. (2011). A model for piloting pathways for computational thinking in 

a general education curriculum. In T. J. Cortina, E. L. Walker, L. S. King, & 

D. R. Musicant (Eds.), Proceedings of the 42nd ACM Technical Symposium 

on Computer Science Education (pp. 257-262). New York: ACM. 

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching 

and learning of computer programming through the use of the Second Life 

virtual world. British Journal of Educational Technology, 42(4), 624-637. 

Florea, A., Gellert, A., Florea, D., & Florea, A.-C. (2016). Teaching programming by 

developing games in Alice. In I. Roceanu, D. Dubois, D. Beligan, F. 

Moldoveanu, M. I. Dascalu, I. Stanescu, & D. Barbieru (Eds.), The 

International Scientific Conference eLearning and Software for Education. 1, 

pp. 503-510. Bucharest: "Carol I" National Defence University Publishing 

House. 



126 

 

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A 

research and practice model. Simulation & Gaming, 33(4), 441-467. 

Gerola, R. J. (1997). Identification of object-oriented computer programmer mastery 

status through evaluation of object-oriented programming semantic 

knowledge. (Doctoral dissertation). Retrieved from ProQuest Dissertations & 

Theses Global. (304370368) 

Glasser, M. (2009). Fundamentals of object-oriented programming. In M. Glasser, 

Open Verification Methodology Cookbook (pp. 27-48). New York: Springer-

Verlag. 

Gomes, A., & Mendes, A. J. (2007, September). Learning to program-difficulties and 

solutions. Paper presented at the International Conference on Engineering 

Education–ICEE, Coimbra, Portugal. 

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state 

of the field. Educational Researcher, 42(1), 38-43. 

Gunter, G. A., Kenny, R. F., & Vick, E. H. (2008). Taking educational games 

seriously: using the RETAIN model to design endogenous fantasy into 

standalone educational games. Educational Technology Research and 

Development, 56(5-6), 511-537. 

Guzdial, M. (2008). Paving the way for computational thinking. Communications of 

the ACM, 51(8), 25-27. 

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and 

programming. ACM SIGCSE Bulletin, 31(3), 171-174. 

Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. 

San Francisco: Pfeiffer. 

Jones, R. (2000). Design and implementation of computer games: A capstone course 

for undergraduate computer science education. ACM SIGCSE Bulletin, 32(1), 

260-264. 

Kazimoglu, C. (2013). Emprical evidence that proves a serious game is an 

educationally effective tool for learning computer programming constructs at 

the computational thinking level. (Doctoral dissertation, University of 

Greenwich). 

Kazımoğlu, Ç., Kiernan, M., & Bacon, L. (2012b). Understanding computational 

thinking before programming: Developing guidelines for the design. In P. 

Felicia, Developments in Current Game-Based Learning Design and 

Deployment (p. 316). IGI Global. 

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012a). A serious game 

for developing computational thinking and learning introductory computer 

programming. Procedia-Social and Behavioral Sciences, 47, 1991-1999. 



127 

 

Keçeci, G., Alan, B., & Zengin, F. K. (2016). Eğitsel bilgisayar oyunları destekli 

kodlama öğrenimine yönelik tutum ölçeği: Geçerlilik ve güvenilirlik 

çalışması. Education Sciences, 11(4), 184-194. 

Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming 

model. The Internet and Higher Education, 8, 13-24. 

Kolb, D. (1984). Experiential learning: Experience as the source of learning and 

development. New Jersey: Prentice Hall. 

Kölling, M. (1999a). The problem of teaching object-oriented programming. Journal 

of Object Oriented Programming, 11(8), 8-15. 

Kölling, M. (1999b). The problem of teaching object-oriented programming, Part II: 

Environments. Journal of Object-Oriented Programming, 11(9), 6-12. 

Kölling, M. (2010). The greenfoot programming environment. ACM Transactions on 

Computing Education, 10(4), 14:1-21. 

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and 

its pedagogy. Journal of Computer Science Education, Special issue on 

Learning and Teaching Object Technology, 13(4), 249-268. 

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of 

novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18. 

Laporte, L., & Zaman, B. (2018). A comparative analysis of programming games, 

looking through the lens of an instructional design model and a game 

attributes taxonomy. Entertainment Computing, 25, 48-61. 

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . . . Werner, L. 

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32-

37. 

Lester, J., Converse, S. A., KAhler, S. E., Barlow, S. T., Stone, B. A., & Bhogal, R. 

(1997). The persona effect: Affective impact of animated pedagogical agents. 

In S. Pemberton (Ed.), Proceedings of the ACM SIGCHI Conference on 

Human factors in computing systems (pp. 359-366). New York: ACM. 

Lister, R. (2011). Programming, syntax and cognitive load (part 2). ACM Inroads, 

2(2), 21-22. 

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on 

the laerning of computational problem solving. Computers & Education, 

57(3), 1907-1918. 

Livovský, J., & Porubän, J. (2014). Learning object-oriented paradigm by playing 

computer games: concepts first approach. Central European Journal of 

Computer Science, 4(3), 171-182. 

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. ACM 

SIGCSE Bulletin, 41(1), 260-264. 



128 

 

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). 

Programming by choice: Urban youth learning programming with scratch. In 

J. D. Dougherty, S. Rodger, S. Fitzgerald, & M. Guzdial (Eds.), Proceedings 

of the 39th SIGCSE technical symposium on Computer science education (pp. 

367-371). Portland: ACM. 

Maloney, J., Resnick, M., Rusk, N., & Silverman, B. E. (2010). The scratch 

programming language and environment. ACM Transactions on Computing 

Education (TOCE), 10(4), 16. 

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlayIT: Game Based 

Learning Approach for Teaching Programming Concepts. Journal of 

Educational Technology and Society, 5-17. 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-

D., . . . Wilusz, T. (2001). A multi-national, multi-institutional study of 

assessment of programming skills of first-year CS students. In H. M. Walker 

(Eds.), Working group reports from ITiCSE on Innovation and Technology in 

Computer Science Education (pp. 125-140). New York: ACM. 

McFarlane, A., Sparrowhawk, A., & Heald, Y. (2002). Report on the educational use 

of games. Cambridge: Teachers Evaluating Educational Media. 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in 

Scratch. In G. Rößling, T. Naps, & C. Spannagel (Eds.), Proceeedings of the 

16th annual joint conference on Innovation and technology in computer 

science education (pp. 168-172). New York: ACM. 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer 

science concepts with scratch. Computer Science Education, 23(3), 239-264. 

Miljanovic, M. A., & Bradbury, J. S. (2017). RoboBUG: A serious game for learning 

debugging techniques. In J. Tenenberg, D. Chinn, J. Sheard, & L. Malmi 

(Eds.), Proceeding of the 2017 ACM Conference on International Computing 

Education Research (pp. 93-100). New York: ACM. 

Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social 

agency in computer-based teaching: Do students learn more deeply when 

they interact with animated pedagogical agents? Cognition and Instruction, 

19(2), 177-213. doi:10.1207/S1532690XCI1902_02 

Muratet, M., Torguet, P., Viallet, F., & Jessel, J. P. (2011). Experimental feedback 

on Prog&Play: a serious game for programming practice. In E. Gröller, & H. 

Rushmeier (Eds.), Computer Graphics Forum. 30, pp. 61-73. Blackwell 

Publishing Ltd. 

O'Kelly, J., & Gibson, J. P. (2006, June). RoboCode & problem-based learning: A 

non-prescriptive approach to teaching programming. ACM SIGCSE Bulletin, 

38(3), 217-221. 



129 

 

Özkök, A. (2005). Disiplinlerarası yaklaşıma dayalı yaratıcı problem çözme öğretim 

programının yaratıcı problem çözme becerisine etkisi. Hacettepe Üniversitesi 

Eğitim Fakültesi Dergisi, 28, 159-167. 

Papert, S. (192). Teaching children thinking. Programmed Learning and Educational 

Technology, 9(5), 245-255. 

Pellas, N. (2014). Exploring interrelationships among high school students' 

engagement factors in introductory programming courses via a 3D multi-user 

serious game created in open sim. Journal of Universal Computer Science, 

20(12), 1608-1628. 

Perković, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for 

computational thinking across the curriculum. In R. Ayfer, J. Impagliazzo, & 

C. Laxer (Eds.), Proceedings of the fifteenth annual conference on Innovation 

and technology in computer science education (pp. 123-127). New York: 

ACM. 

Phelps, A. M., Egert, C. A., & Bierre, K. J. (2005). MUPPETS: multi-user 

programming pedagogy for enhancing traditional study: an environment for 

both upper and lower division students. Proceedings of the 4th Conference on 

Information Technology Curriculum (pp. 100-105). New York: ACM. 

Pitsatorn, P. P. (2003). Object-oriented programming training: Bottom-up versus 

top-down approach. (Doctoral dissertation). Retrieved from ProQuest 

Dissertations & Theses Global. (305334331) 

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton, 

New Jersey: Princeton University Press. 

Poo, D., Kiong, D., & Ashok, S. (2007). Object-oriented programming and Java. 

London: Springer Science & Business Media. 

Prensky, M. (2003). Digital game-based learning. ACM Computers in Entertainment, 

1-4. 

Qualls, J. A., & Sherrel, L. B. (2010). Why computational thinking should be 

integrated into the curriculum. Computing Sciences in Colleges, 25(5), 66-71. 

Ramírez-Rosales, S., Vázquez-Reyes, S., Villa-Cisneros, J. L., & De León-Sigg, M. 

(2016). A Serious Game to Promote Object Oriented Programming and 

Software Engineering Basic Concepts Learning. In R. Juárez-Ramírez, S. J. 

Calleros, H. J. Oktaba, C. F. Fernández, R. A. Vera, G. L. Sandoval, . . . J. A. 

(Eds.), 2016 4th International Conference in Software Engineering Research 

and Innovation (CONISOFT) (pp. 97-103). Los Alamitos: IEEE. 

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the 

development of a checklist for getting computational thinking into public 

schools. In G. Lewandowski, S. Wolfman, T. J. Cortina, & E. L. Walker 

(Eds.), Proceedings of the 41st ACM technical symposium on Computer 

science education (pp. 265-269). New York: ACM. 



130 

 

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, 

K., . . . Kafai, Y. (2009). Scratch: programming for all. Communications of 

the ACM, 52(11), 60-67. 

Rieber, L. P. (1996). Seriously considering play: Designing interactive learning 

environments based on the blending of microworlds, simulations, and games. 

Educational Technology Research and Development, 44(2), 43-58. 

Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest Adams on game 

design. Indianapolis: New Riders. 

Rosenthal, R., & Rosnow, R. L. (1984). Essentials of behavioral research: Methods 

and data analysis. New York: McGraw-Hill. 

Sarkar, N. I. (2006). Teaching computer networking fundamentals using practical 

laboratory exercises. IEEE Transactions on Education, 49(2), 285-291. 

Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing 

definition. In J. Carter, I. Utting, & A. Clear (Eds.), Proceedings of the 18th 

ACM Conference on Innovation and Technology in Computer Science 

Education (p. 6). Canterbury: ACM. 

Soflano, M. (2011). Modding in serious games: Teaching structured query language 

(SQL) using neverwinter nights. In M. Ma, A. Oikonomou, & L. Jain (Eds.), 

Serious Games & Edutainment Applications (pp. 347-368). London: 

Springer. 

Soloway, E. (1986). Learning to program= learning to construct mechanisms and 

explanations. Communications of the ACM, 29(9), 850-858. 

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W., Goldstein, D. S., & Nordlinger, 

J. (2011). Game-themed programming assignment modules: A pathway for 

gradual integration of gaming context into existing introductory programming 

courses. IEEE Transactions on Education, 54(3), 416-427. 

Sweller, J., van Merriënboer, J. J., & Paas, F. G. (1998). Cognitive architecture and 

instructional design. Educational Psychology Review, 10(3), 251-296. 

Van Haaster, K., & Hagan, D. (2004). Teaching and learning with BlueJ: An 

evaluation of a pedagogical tool. Issues in Informing Science & Information 

Technology, 1, 455-470. 

van Merriënboer, J. J., Clark, R. E., & de Croock, M. B. (2002). Blueprints for 

complex learning: The 4C/ID-model. Educational Technology Research and 

Development, 50(2), 39-61. 

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational 

thinking in compulsory education: Towards an agenda for research and 

practice. Education and Information Technologies, 20(4), 715-728. 

Wang, T.-C., Mei, W.-H., Lin, S.-L., Chiu, S.-K., & Lin, J. M.-C. (2009). Teaching 

programming concepts to high school students with Alice. In J. Froyd (Ed.), 



131 

 

Proceedings of the 39th IEEE International Conference on Frontiers in 

Education Conference (pp. 955-960). Piscataway, NJ: IEEE Press. 

Watson, C., Li, F. W., & Lau, R. W. (2011). Learning programming languages 

through corrective feedback and concept visualisation. In H. Leung, E. 

Popescu, Y. Cao, R. W. Lau, & W. Nejdl (Eds.), Proceedings of the 10th 

International Conference on Web-Based Learning (pp. 11-20). Heidelberg: 

Springer-Verlag. 

Wegner, P. (1990). Concepts and paradigms of object-oriented programming. ACM 

SIGPLAN OOPS Messenger, 1(1), 7-87. 

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A 

comparison of the comprehension of object-oriented and procedural programs 

by novice programmers. Interacting with Computers, 11(3), 255-282. 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 

33-35. 

Wing, J. M. (2008). Computational thinking and thinking about computing. 

Philosophical transactions of the royal society of London A: mathematical, 

physical and engineering sciences, 366, 3717-3725. 

doi:10.1098/rsta.2008.0118 

Wong, Y. S., Hayati, M. Y., & Tan, W. H. (2016). A Propriety Game-Based 

Learning Game as Learning Tool to Learn Object-Oriented Programming 

Paradigm. Joint International Conference on Serious Games (pp. 42-54). 

Brisbane: Springer International Publishing. 

Xinogalos, S. (2016). Designing and deploying programming courses: Strategies, 

tools, difficulties and pedagogy. Education and Information Technologies, 

21(3), 559-588. 

 


