THE EFFECTS OF SERIOUS GAMES ON STUDENTS’
CONCEPTUAL KNOWLEDGE OF OBJECT-ORIENTED PROGRAMMING

AND COMPUTATIONAL THINKING SKILLS

ALI AKKAYA

BOGAZICI UNIVERSITY

2018



THE EFFECTS OF SERIOUS GAMES ON STUDENTS’
CONCEPTUAL KNOWLEDGE OF OBJECT-ORIENTED PROGRAMMING

AND COMPUTATIONAL THINKING SKILLS

Thesis submitted to the
Institute for Graduate Studies in Social Sciences

in partial fulfillment of the requirements for the degree of

Master of Arts
in

Educational Technology

by
Ali Akkaya

Bogazici University

2018



The Effects of Serious Games on Students’
Conceptual Knowledge of Object-Oriented Programming

and Computational Thinking Skills

The thesis of Ali Akkaya
has been approved by:
Prof. Yavuz Akpinar MAA
(Thesis Advisor) J (/

Prof. Birgiil Kutlu Bayraktar {k\ N

Assist. Prof. Yavuz Samur =
(External Member)

May 2018



DECLARATION OF ORIGINALITY

I, Ali Akkaya, certify that

o Tam the sole author of this thesis and that I have fully acknowledged and
documented in my thesis all sources of ideas and words, including digital
resources, which have been produced or published by another person or
institution;

¢ this thesis contains no material that has been submitted or accepted for a degree
or diploma in any other educational institution;

o this is a true copy of the thesis approved by my advisor and thesis committee at
Bogazigi University, including final revisions required by them.

Signature.......[...

Date 25052048



ABSTRACT
The Effects of Serious Games on Students’ Conceptual Knowledge

of Object-Oriented Programming and Computational Thinking Skills

The aim of this study is to investigate the effects of a serious game, Curious Robots:
Operation Asgard (Merakli Robotlar: Operasyon Asgard), on undergraduate
students’ learning performance on conceptual knowledge of object-oriented
programming (OOP) of and computational thinking (CT) skills in Turkish. The study
was conducted with a pre-test and post-test quasi-experimental design model. Data
were collected from 30 freshman students without programming experience and 31
sophomore students with procedural programming experience. Each student took a
creative problem-solving test and a pre-test before playing the game. After playing
the developed game, students took a post-test and an attitude scale for serious game
assisted programming learning. Analyses showed that the game helped students to
develop conceptual knowledge of OOP and improve their CT skills. Analysis also
showed that there were no significant two-way or direct interactions among students’
creative problem-solving skills, attitudes towards digital game-based learning of
programming on the achievement scores of students. This study makes a significant
contribution to the literature by providing empirical data about the effects of serious
games on novice programmers’ conceptual knowledge of OOP and CT skills. It is
thought that in the lights of the findings of the study, serious game designers and
instructors would have the opportunity to design effective games that help novice

programmers to overcome their learning difficulties and improve their learning.



OZET
Egitsel Oyunlarin Ogrencilerin Nesne Tabanli Programlamanin

Temel Kavramsal Bilgisi ve Bilgi islemsel Diisiinme Becerilerine Etkisi

Bu calismanin amac1 Tiirkce dilinde gelistirilmis olan Merakli Robotlar: Operasyon
Asgard isimli egitsel oyunun iiniversite 6grencilerinin nesne tabanli programlamanin
temel kavramsal bilgisi ve bilgi islemsel becerileri iizerine olan etkisini incelemektir.
Calisma yari-deneysel Ontest — sontest arastirma deseninde tasarlanmustir. Veriler
Bogazici Universitesi Bilgisayar ve Ogretim Teknolojileri Egitimi Boliimiindeki
daha 6nce hi¢ programlama tecriibesi olmayan 30 birinci sinif 68rencisi ve temel
programlama egitimini C dilinde almis olan 31 ikinci simif 6grencisinden
toplanmustir. {1k olarak, dgrencilere yaratici problem ¢dzme testi ve nesne tabanli
programlama ve bilgi islemsel diisiinme becerilerini 6l¢en 6n test uygulanmustir.
Ogrenciler 6n testleri tamamladiktan sonra gelistirilen oyunu oynamuslardir.
Sonrasinda dgrencilere ilk testteki siras1 degistirilmis sorulardan olusan nesne tabanli
programlama ve bilgi islemsel diisiinme son testi ve egitsel bilgisayar oyunlari
destekli kodlama 6grenimine yonelik tutum 6l¢egi uygulanmistir. Yapilan
istatistiksel veri analizleri, gelistirilen oyunun her iki 6grenci grubundaki
Ogrencilerin nesne tabanli programlamanin temel kavramlarini 6grenmeye ve bilgi
islemsel diisiinme becerilerini gelistirmeye yardimei oldugunu gdstermistir. Ayrica
Ogrencilerin yaratic1 problem ¢ozme becerileri ve bilgisayar oyunu destekli
programlama 6grenimine karsi tutumlarinin nesne tabanli programlamanin kavramsal
bilgisi ve bilgi islemsel becerileri iizerine birlikte ve ayr1 ayr1 etkisinin olmadigini
gostermistir. Bu ¢alisma sundugu deneysel verilerle bilgisayar oyunu destekli

programlama 6grenimi alanyazinina 6nemli bir katkida bulunmustur. Calismanin



bulgular1 vasitasiyla egitsel oyun gelistiricileri ve 6gretim elemanlarinin acemi
programcilarin problemlerini ortadan kaldirabilmelerine yardimci olacak daha etkili

egitsel oyunlar gelistirebilmesine olanak saglanmasi beklenmektedir.

Vi



ACKNOWLEDGEMENTS

I am pleased to acknowledge the substantial contributions of those who helped me
with my thesis. First and foremost, | would like to express my sincere gratitude to my
thesis advisor, Prof. Yavuz Akpinar, for his commitment, motivation and meticulous
guidance during my research study. Despite his heavy workload and limited time, it
is his invaluable experience, ideas, and his continuous encouragement and belief in
me that made this thesis possible.

| would like to express my greatest appreciation to each of the members of
my thesis committee, Prof. Birgilil Kutlu Bayraktar and Assist. Prof. Yavuz Samur,
for their insightful comments, feedback, suggestions and their possitive attitudes that
broadened my perspective and increased my motivation.

Moreover, | want to thank my friends and colleagues who made contributions
to my research and made this thesis possible. First, | would like to offer my special
thanks to my friend and colleague, Ekrem Kutbay, for his valuable feedbacks,
suggestions and also for his support during the data collection phase of my research.
I also want to thank my friends Yakup Adakli, Hiiseyin Demir and Barig Demirer for
their valuable suggestions that improved the design of the game. Lastly, | am grateful
to Oguz Ak for his permission and support to conduct the experiments in his lecture.

Last but not least, | owe very special debt of gratitude to my beloved family:
to my mother and father, Sirmali and Mahmut Akkaya, to my older brother and
sisters Adem, Elmas and Riikiye Akkaya all of whom were very supportive all the
time. |, especially, owe a very important debt of gratitude to my nearest and dearest
love, Giilhizar Bollu, who has always been there for me throughout this tough and

tiring process, and had faith in me even when | had doubts about myself.

vii



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ....ciiiiiiiiiiiesiie et 1
1.1 Statement of the ProbIem ... 3
1.2 PUrpose OF the STUAY .......coveiiiieiee e 5
1.3 RESLAICN QUESTIONS ....veveeieeie ettt re e ae e nne s 5
1.4 Significance of the StUAY ........ccovveii i 6
1.5 Organization of the StUAY ........ccccciiiiiiiiic e 7

CHAPTER 2: REVIEW OF THE LITERATURE ......ooiiii e 8
2.1 Problems of teaching and learning programming ..........ccccceeeeerenenenenieniennnns 8

2.2 Object-oriented programming concepts and computational thinking skills.... 11

2.3 Digital game-based learning in introductory programming ............c.cceceeeeneen. 21
2.4 Summary of the Herature.........c.ooveieeie i 46
CHAPTER 3: METHODOLOGY ...ttt 49
3.1 RESEAICH UESIGN ...ttt 49
3.2 Participants and sampling ProCeAUNE..........c.coiiriiieieieee e 49
3.3 TTEAIMENTS ... 51
34 INSIFUMENTS ..t 70
3.5 Data COIleCtion ProCEAUIES .......c.cciiieieierie et 73
3.6 Data @NAlYSIS. .....ccviiiieiiiiiesiire e 74
CHAPTER 4: RESULTS ...t 77
4.1 Learning gain of freshman and sophomore students..........c.ccccovveiieeiicinnenn, 77

4.2 Comparison of the achievement scores of freshman and sophomore students87
4.3 Covariate effects on the aChieVEMENt SCOIES.........ccvvvereiieiiere e 89

CHAPTER 5: DISCUSSION AND CONCLUSION ......cocociiiiiiiiiiiiiieiiciee 93

5.1 Effects of a serious game on students’ conceptual knowledge of OOP and CT
SKIIS ..o 93



5.2 Comparison of achievement scores of students without programming

experience and students with procedural programming experience ............... 99

5.3 The relationship among students’ creative problem-solving skills, attitudes

towards digital game-based learning of programming and learning............. 100

5.4 Implication for practice and recommendations for further research ............. 102
5.5 Limitations of the StUAY ........c.ccoeiiiiiiccr e 105
APPENDIX A: CREATIVE PROBLEM-SOLVING SKILL TEST......ccccccveinennee. 106

APPENDIX B: CREATIVE PROBLEM-SOLVING SKILL TEST (TURKISH).. 111

APPENDIX C: ATTITUDE SCALE FOR SERIOUS GAME ASSISTED
PROGRAMMING LEARNING.......ooiiiieieieiieniiee s 116

APPENDIX D: ATTITUDE SCALE FOR SERIOUS GAME ASSISTED

PROGRAMMING LEARNING (TURKISH)......ccooiiiiiiiiee e, 117
APPENDIX E: PRE/POST TEST ..ottt 118
APPENDIX F: ETHICAL APPROVAL ..ottt 121

APPENDIX G: PARTICIPANT INFORMATION AND CONSENT FORM ....... 122

REFERENGCES ... ..o s 124



LIST OF TABLES

Table 1. CT Skillsets Defined in the LIterature ...........ccocooovvviiieneinieceee, 17
Table 2. A Review of the Serious Games to Teach Programming ............cccccueenne. 30
Table 3. Variables of the StUY..........ccoeiiiiiiiie e 50
Table 4. Participants 0f the STUAY ..o 50
Table 5. Distribution of the Adapted Test IteMS.........cccocvevieeiieiieiiere e 72
Table 6. Learning Objectives and Corresponding Measurement Item Numbers...... 73
Table 7. Shapiro-Wilk Result of Pre-test and Post-test SCOres.........ccccocvvvvereiennen. 77

Table 8. Descriptive Statistics of the Pre-test and Post-test Scores of Freshman
STUABNTS ... 78
Table 9. Wilcoxon Signed Rank Test for Pre-test and Post-test............ccccceevivennen. 78
Table 10. Descriptive Statistics of Freshman Students' Pre-test and Post-test Results
of Conceptual Knowledge of OOP............ccccooveviiiieii e 79
Table 11. Shapiro-Wilk Result of the Pre-test and Post-test Scores on Conceptual
KNOWIEdge OFf OOP ..o 79
Table 12. Wilcoxon Signed Rank Test for Pre-test and Post-test Scores on
Conceptual Knowledge 0f OOP ..........cooiieeiiecree e 79
Table 13. Frequency Distribution of Freshman Students’ Number of Correct
ANSWENS FOr OOP CONCEPLS ...cvvveveeivieiieeie ettt 80
Table 14. Descriptive Statistics of Freshman Students' Pre-test and Post-test Scores
ON CT SKIIS.c.iieiee e 81
Table 15. Shapiro-Wilk Result of Pre-test and Post-test Scores on CT Skills.......... 81
Table 16. Wilcoxon Signed Rank Test for Freshman Students’ Pre-test and Post-test

SCOMES ON CT SKIIS ..o et 82



Table 17. Frequency Distribution of Freshman Students’ Number of Correct
ANSWETS TOr CT SKIllS ...t e 82
Table 18. Descriptive Statistics of Pre-test and Post-test Scores of Sophomore
STUABNES ... 83
Table 19. Shapiro-Wilk Result of Pre-test and Post-test Scores of Sophomore
STUABNTS .. 83
Table 20. Paired Sample Test for Post-test and Pre-test of Sophomore Students..... 83
Table 21. Descriptive Statistics for Sophomore Students’ Pre-test and Post-test
Scores of Conceptual Knowledge of OOP.........ccccoviieiiiiiiie i, 84
Table 22. Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test on
Conceptual Knowledge 0f OOP ........ccccoveiiiiiieir e 84
Table 23. Paired-Samples t-Test for Sophomore Students' Post-test and Pre-test
Scores on Conceptual Knowledge of OOP ........ccccoveieiiiiiiie e, 84
Table 24. Frequency Distribution of Sophomore Students’ Number of Correct
ANSWENS FOr OOP CONCEPLS ...cvvvevveieieiieeie ettt 85
Table 25. Descriptive Statistics for Sophomore Students' Pre-test and Post-test
SCOrES OF CT SKillS......oviiiicieiieesee e 86
Table 26. Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test Scores
ON CT SKIIS.c.iieiee e 86
Table 27. Wilcoxon Signed Rank Test Result for Sophomore Students' CT Skills . 87
Table 28. Frequency Distribution of Sophomore Students” Number of Correct
ANSWETS TOr CT SKIllS ... 87
Table 29. Shapiro-Wilk Result of Achievement Scores of Freshman and Sophomore
STUABNTS .t 88

Table 30. Descriptive Statistics for Students' Achievement Scores...........ccccccevenee. 88

Xi



Table 31. Independent-Samples t-Test for Students' Achievement Scores .............. 88
Table 32. Shapiro-Wilk Result of Residuals for Achievement Scores..................... 89
Table 33. Two-way ANOVA Test for Freshman and Sophomore Students'
ACHRIEVEMENT SCOTES ...t 90
Table 34. Shapiro-Wilk Result of CPSS, Attitude and Achievement Scores........... 92

Table 35. The Correlations Between Students' CPSS, Attitudes and Achievement

Xii



Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Figure 16.

LIST OF FIGURES

Layers of abstraction with onion metaphor ...........ccccoevevieiiieiic e, 20
Experiential gaming model...........ccoovveiiiiiiiiii 53
Model of the FIOW State..........cccvviiiiiie e 54
Mission information panel..........ccccceveiiie e 58
The REIP MENU ... 59
Class definition aCtIVILY ........cccveiieiicie e 60
Creating a robot iNStanCe aCtiVIty ..........cevvviveiieeie e 61
Defining Method aCtiVILY .........cccveviviiiieie e 63
Programming the robot to go to the spaceship .........c.ccccveveviiericieieenen, 63
. The feedbaCk MEeSSAgE ........cevieiiiicii s 64
Encapsulation activity panel ... 65
G0oing to ASQard MISSION .......cceevvieieiieie e 66
First exploration MISSION .........cccveiveiiiieie e 66
Inherited class define actiVity ..........ccccovveieiiiiiccc e 68
Defining polymorphic methods ............cccovveviiiiieecec e 69
Final explorations in ASQard............ccoveveieeiesie i 70

Xiii



CHAPTER 1

INTRODUCTION

Motivation is the sine qua non of effective learning: nothing can stop a motivated
learner (Prensky, 2003). For this reason, researchers put emphasis on developing
learning environments that engage students and provide effective learning. Games,
thanks to their motivating and engaging nature, started to be considered as learning
environments by researchers (Prensky, 2003). The use of video games as a learning
environment is one of the approaches that researchers have adopted. In the literature
serious games are identified as video games which have educational goals and
provide intriguing contexts (Gunter, Kenny, & Vick, 2008). Computer programming,
on the other hand, is one of most important skills of today’s world thanks to the
industry 4.0 revolution. However, students who start to learn computer programming
lose their motivation because of the monotonous lessons and the difficulties they
encounter while learning to program. Hence, researchers developed tools that
encouraged the digital game-based learning of computer programming.
Object-Oriented Programming (OOP) is the most popular programming
approach, which has a broad range of use in many domains and is currently being
taught in educational institutions (Kolling, 1999a). Students starting to learn
computer programming are excited to develop applications and games or work on
operating systems and web browsers. Unfortunately, programming courses include
complex activities that can cause learning difficulties for novice programmers
(Pellas, 2014), which results in demotivation. Some of the difficulties students face
stem from the abstract nature of OOP, the distribution of control flows in OOP, the

complexity of the syntax of programming languages and the programming



environments. Additionally, Computational Thinking (CT) skills are the fundamental
skills that the lie at the bottom of students’ problems. CT is a problem-solving
approach in which solutions to problems are generated in a way that computers are
able to perform (Wing, 2006). Students have problems in understanding and
analyzing a problem, building step-by-step algorithmic solution designs for problems
(Xinogalos, 2016) and visualizing the programming concepts from a problem
situation (McCracken, et al., 2001).

Recently, researchers adopted a digital game-based learning approach to help
novice programmers overcome their learning problems and increase their motivation
for teaching computer programming. The current literature in digital game-based
learning of programming has two focuses: using visual programming environments
to teach programming and using serious games as learning environment to introduce
programming learning through game-play experience.

Visual programming environments such as Scratch (Resnick, et al., 2009),
Alice (Cooper, Dann, & Pausch, 2000), and Greenfoot (K6lling, 2010) were used by
researchers to teach the basics of OOP and CT, and the findings of the research
conducted on these programming environments were promising. Even though the
visual programming environments had positive effects on students’ learning
performance, they still need to be used with well-designed teaching methods and
learning materials (Meerbaum-Salant, Armoni, & Ben-Ari, 2013; Repenning, Webb,
& loannidou, 2010). Moreover, these programming environments do not have a
proper feedback mechanism to help novice programmers understand the errors in
their algorithms (Meerbaum-Salant, Armoni, & Ben-Ari, 2011).

Using games as learning environment is the other main approach in the

literature of digital game-based learning of programming. Jones (2000) states that



games are excellent examples of object-oriented environments if the aim is to teach
object-orientation and programming. Similarly, Weintrop and Wilensky (2016)
asserted that, with the integration of coding activities into game-play, students would
become more familiar with fundamentals of programming. Consequently, many
researchers studied the effects of serious games on learning computer programming
in recent years. The majority of the findings in the literature agree on the positive
effects of serious games on novice programmers’ motivation (Barnes, et al., 2007;
Liu, Cheng, & Huang, 2011; Mathrani, Christian, & Ponder-Sutton, 2016; Muratet,
Torguet, Viallet, & Jessel, 2011; Ramirez-Rosales, Vazquez-Reyes, Villa-Cisneros,
& De Leon-Sigg, 2016; Wong, Hayati, & Tan, 2016).

For this reason, instructors, educational technologists and serious game
developers should develop appealing, meaningful and effective learning materials,
contents and serious games to improve novice programmers’ learning and help them

overcome their difficulties.

1.1 Statement of the problem
Much of the research up to now has studied the effects of serious games on novice
programmers’ learning performance and motivation. However, there are still some
crucial criticism of weaknesses in those studies.

Firstly, there is a need for research on the conceptual knowledge of OOP and
CT skills because it is important for novice programmers to understand how
problems are solved before learning specific programming languages (Liu, Cheng, &
Huang, 2011). Hadjerrouit (1999) states that the fundamental concepts of OOP have
a crucial role in understanding and analyzing problems and generating solutions to

problems. CT, on the other hand, is a fundamental problem-solving skill in which the



solutions of problems are designed in a way that computers can perform effectively
(Aho, 2012; Lu & Fletcher, 2009; Wing, 2006; Wing, 2008). According to
McFarlane, Sparrowhawk, and Heald (2002), games can be helpful for students to
enhance their critical thinking and problem-solving skills. Yet there has been little
discussion about the effects of serious games on novice programmers’ conceptual
knowledge of OOP and CT skills.

Second, only a few studies provide a well-conceived experimental design and
demonstrated inferential statistical analysis (Livovsky & Porubén, 2014; Mathrani,
Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017), even though there
has been much research conducted on the topic. The majority of the findings in the
literature are based either on anecdotal evidence or on initial evaluation results that
do not provide substantial data on the learning performance of novice programmers.
Furthermore, the majority of the studies conducted on the current issue are conducted
with a limited number of participants, and the focal point of the studies was the
motivation of students, not their learning performance (Barnes, Chaffin, Godwin,
Powell, & Richter, 2007; Barnes, Richter, et al., 2007; Kazimoglu, Kiernan, Bacon,
& Mackinnon, 2012a; Livovsky & Porubin, 2014; Ramirez-Rosales, et al., 2016).

Nevertheless, most of the research conducted on the current issue has been
developed in English. Although there are a few studies examining the effects of
serious games on novice programmers’ performance and motivation using languages
such as Spanish (Ramirez-Rosales, et al., 2016), there is not enough substantial data
about the effects of serious games on students’ programming skills in Turkish.

To conclude, by considering the findings of the studies in the current

literature, it can be said that there has been little discussion about the effects of



serious games on novice programmers’ learning performance on the conceptual

knowledge of OOP and CT skills in Turkish.

1.2 Purpose of the study
The main purpose of this quasi-experimental study is to examine the effects of the
use of a serious game which is in Turkish on undergraduate students’ learning

performance on conceptual knowledge of OOP of and CT skills.

1.3 Research questions
The current study is designed to answer the following research questions:

1. Is there any significant difference between post-test and pre-test scores on the
conceptual knowledge of OOP and CT skills of undergraduate students with
no programming experience?

a. Is there any significant difference between post-test and pre-test scores
on conceptual knowledge of OOP of undergraduate students with no
programming experience?

b. Is there any significant difference between post-test and pre-test scores
on CT skills of undergraduate students with no programming experience?

2. Is there any significant difference between post-test and pre-test scores on the
conceptual knowledge of OOP and CT skills of undergraduate students with
procedural programming experience?

a. Is there any significant difference between post-test and pre-test scores
on conceptual knowledge of OOP of undergraduate students with

procedural programming experience?



b. Is there any significant difference between post-test and pre-test scores
on CT skills of undergraduate students with procedural programming
experience?

3. Is there any significant difference between the achievement scores on the
conceptual knowledge of OOP and CT skills of undergraduate students with
no programming experience, and of undergraduate students with procedural
programming experience?

4. To what extent do the students’ creative problem-solving skills and attitudes
towards digital game-based learning of programming influence achievement

score on the conceptual knowledge of OOP and CT skills?

1.4 Significance of the study

A review of the literature shows that the majority of the research in this area is
centered on the motivational effects of serious games on the learning of
programming by novice programmers. There are a few studies that focus on the
effects of serious games on improvement in students’ learning from the proposed
games. Moreover, there is not enough substantial data about the effects of serious
games on novice programmers’ programming skills in Turkish. The current study
aims to contribute to the research area of the use of serious games to teach
programming by providing empirical data on students’ achievement scores on
conceptual knowledge of OOP and computational thinking. The goal is to provide
practical direction and knowledge for instructors, serious game designers, and
educational technologists. With such knowledge, serious games for programming can
be designed in a way that novice programmers have better and effective learning

experience with high motivation.



1.5 Organization of the study

Chapter 2 introduces a literature review of digital game-based learning of
programming, along with the problems of teaching and learning OOP, and the
relationship between CT and OOP. Chapter 3 includes the research methodology: the
design, participants, sampling procedures, developed serious game with the
underlying theories, instruments, the data collection procedures and the data analysis
procedures in detail. Chapter 4 contains the results of the data analyses. Finally,
Chapter 5 focuses on the outcomes of the findings, the limitations of the study and

recommendations for future research on the topic.



CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Problems of teaching and learning programming

OOP is the most popular programming method that has a broad range of use, from
education to different domains of industry, and almost every university in the
computer science (CS) field covers OOP within its curriculum (Kolling, 1999a).
Students engaging in the programming field for the first time are excited about the
possibility of being the person to develop the next great action video game, or even
work on an operating system or a Web browser. Although students are excited about
learning to program, most of them soon realize that programming courses are
monotonous and boring, and they start to lose their motivation and desire to learn to
program (Prensky, 2003; Sarkar, 2006). Students’ losing interest in learning OOP
results in a decline in the number of the enrollments in CS courses in spite of the
attempts to increase students’ interest in CS (Ali & Shubra, 2010). There are several
other reasons behind students’ problems in learning OOP, and these reasons can be
categorized based on the source of the problems. The problems emerge from the
nature of the OOP, from fundamental problem-solving skills in computer
programming, and from the programming environment.

The abstract nature of OOP itself causes problems for novice programmers
(Kolling, 1999a; Xinogalos, 2016). For example, students have difficulties in
understanding the nature and necessity of abstract concepts of OOP such as
inheritance, polymorphism, overriding, abstract classes, and interfaces; hence, they
cannot make use of these concepts properly (Xinogalos, 2016). Hadjerrouit (1999)

emphasized the role of OOP concepts in understanding and analyzing problems,



generating solutions to problems, and in the implementation of the designed
solutions of problems. Therefore, students’ difficulties in understanding the
fundamental concepts of OOP could give rise to much bigger problems.

The transition from procedural programming to OOP also causes problems
for novice programmers in understanding OOP (Hadjerrouit, 1999). Students have
difficulties in changing their mindset from focusing on defining special functions as
a main way of forming a solution to a problem to trying to find a solution to a
problem by creating functions that utilize classes and objects (Xinogalos, 2016). In
other words, OOP requires one to generate functions making use of classes and
objects for finding a solution to a problem, while procedural programming requires
one to form a function that is special for that problem, and that is what poses a
problem for students. Additionally, the distributed nature of control flows and
functions of OOP is also what makes this transition a reason for the problems
students come across. This difference in the nature of control flows and functions
between OOP and procedural programming makes it harder for novice programmers
to form mental representations of functions and control flows in OOP terms than in
procedural programming (Wiedenbeck, Ramalingam, Sarasamma, & Corritore,
1999).

Another important problem that students encounter while learning OOP is
the programming languages that they use while learning (Kolling, 1999a). Starting to
learn OOP with a real programming language like C# or Java makes it harder for
students to learn OOP than learning it via a pseudo language (Guzdial, 2008;
Xinogalos, 2016). It is believed that using pseudo languages in teaching OOP helps

students to focus on important aspects of OOP such as the algorithmic design of the



solution, OOP concepts and constructs instead of worrying about the syntax of a
specific programming language (Xinogalos, 2016).

However, getting students not to worry about the syntax of a programming
language and to focus on developing an algorithm for the solution does not solve all
the problems. One of the reasons behind this situation is that students also have
problems in developing algorithms and implementing these algorithms with a
programming language (Xinogalos, 2016). In addition, novice programmers have
difficulties figuring out what constructs to use and where to use them in their
algorithms while they are programming (Kazimoglu, et al., 2012a; Soloway, 1986).
Another reason behind students’ difficulties in programming is that many students
have problems in visualizing the execution of their programs. This problem of
visualization prevents students from understanding what is wrong or what is missing
in their program when their code is not executed as it is supposed to be (Cooper,
Dann, & Pausch, 2000).

According to Kolling (1999b), another reason for the major problems of
teaching OOP is the environments used. One of the main problems with these
environments is the ease of use of the environment. Programming environments
should not be very complicated so that novice learners will not have to worry about
learning how to use the environment (K6lling, 1999b). Moreover, Watson, Li, and
Lau (2011) claim that unspecific compiler messages cause difficulties for novice
programmers because they need proper feedback from the compiler that guides them.
Another problem about OOP is the lack of visual representation of classes. Kolling
(1999b) suggests that programming environments should provide visual
representation of classes and objects because it is difficult for students to think about

problems in object-oriented terms when they first start learning OOP. The cost of

10



existing programming environments is another problem of teaching programming.
According to Kolling (1999b), programming environments should be available at a
lower cost, and they must also be compatible with computers with low-quality

hardware.

2.2 Object-oriented programming concepts and computational thinking skills
Object-oriented programming is an approach where objects and interactions of
objects in a real-world problem domain are modeled, and the production of a system
via OOP is based on these objects and their interactions with the environment (Poo,
Kiong, & Ashok, 2007). Abstract concepts such as class, objects, inheritance,
encapsulation, polymorphism in OOP make it difficult for novice programmers to
understand the nature of OOP. According to Hadjerrouit (1999), OOP concepts play
an important role in understanding the problems, designing solutions to these
problems and in the implementation of the proposed solution suggestions. In
addition, students’ CT skills such as conditional logic, algorithmic thinking,

debugging and simulation are important factors in learning to program.

2.1.1 Object-oriented programming concepts

2.1.1.1 Objects and classes

Obijects consist of methods that share a state and determine the calls to which the
object can respond. The shared state of an object is hidden from the outside world
and is accessible only to the object’s operations (Wegner, 1990). Object attribute
definitions enable objects to have different attribute values in each object instance

(Poo, Kiong, & Ashok, 2007).

11



A class, on the other hand, is a definition which provides a structural template
of an object and enables programmers to create instances of objects with the same
attributes and methods (Poo, Kiong, & Ashok, 2007). One of the major differences
between a class and an object is that classes are definitions of objects, and they do
not have values in their attributes and methods. However, objects contain values in
their attributes and methods because they are created as instances of a class (Poo,

Kiong, & Ashok, 2007).

2.1.1.2 Methods

Methods are functions that include the behaviors and procedures that belong to a
particular class. Communication between objects is done through a method call or a
message with additional information called arguments from a message-sending
object to a receiver object. Objects responds to messages only if they have a valid
method which corresponds to the incoming method call, and the appropriate

arguments of that call (Poo, Kiong, & Ashok, 2007).

2.1.1.3 Inheritance
Inheritance enables newly created classes to inherit the properties and the methods of
previously defined classes. In other words, the properties of a superclass can be made
available as part of the definition of its subclasses (Poo, Kiong, & Ashok, 2007).
Thus, it enables programmers to make use of a behavior of a superclass in the newly
created subclasses of it. Additionally, new attributes and methods can be added to
these inherited classes (Wegner, 1990).

In OOP, classes can be in hierarchical relationships with other classes.

Classes with more general attributes are called generalized classes, and they are

12



placed toward the top of the hierarchical relationship. Classes that have more
specialized attributes are called specialized classes, and these are placed toward the
bottom of the hierarchy. Specialized classes are a subclass of generalized classes, and
generalized classes are superclass of subclasses (Poo, Kiong, & Ashok, 2007). The
relationship between human beings and mammals is a good example of the
inheritance concept. In this example, the mammals class is defined as having more
general attributes, while human beings class have more special attributes along with

inherited attributes and behavior of the mammals class.

2.1.1.4 Polymorphism

In procedural programming, it is not possible to have two methods with the same
name, but this is possible in OOP. Polymorphism is the ability of different objects to
perform a response to the same message (Poo, Kiong, & Ashok, 2007). For example
if a programmer wants to define a function that calculates areas of different shapes,
the programmer has to define different functions for each shape in procedural
programming. In OOP, programmers can simply define multiple functions that have
the same name (for example, calculateArea), but that performs different actions

according to the inputs of methods such as triangle, square, rectangle, and so on.

2.1.1.5 Encapsulation

Defining attributes and methods of objects and hiding the implementation of these
attributes and methods of an object from the users of objects — instances of other

classes — is called encapsulation in OOP terms. In other words, the structure of an
object and the implementation of its methods are not visible to other objects that

interact with it. Other objects cannot directly access the attributes of an object, and

13



the data of an object can be manipulated through its public methods (Poo, Kiong, &

Ashok, 2007).

2.1.2 Computational thinking

Computational thinking (CT) term has a long history in computer science, dating
back to the 1950s and 1960s (Denning, 2009; Guzdial, 2008). However, CT became
popular after Wing (2006) claimed that it is a fundamental skill which can be used by
anyone in a variety of professions. Barr and Stephenson (2011) make a similar
argument and claim that almost all of today’s children will have a life that is
influenced by computation, and some of these children will even have a profession
related to computing. After the popularization of the term that resulted from Wing’s
claims in her seminal paper, researchers conducted studies to integrate CT into
curricula (Perkovic, et al., 2010; Qualls & Sherrel, 2010). According to Guzdial
(2008), teaching CT to people with different levels of background knowledge and
different professions requires different approaches to learning. Therefore,
understanding the nature of CT and skills that compose CT is important before
integrating it into a curriculum and developing CT learning environments.

Although researchers aimed to integrate CT into a curriculum, there is not an
agreed and clear definition of CT in the current literature (Guzdial, 2008; Berland &
Lee, 2011). Various studies have aimed to construct a clear definition and the skill
set that composes computational thinking (Perkovié, Settle, Hwang, & Jones, 2010).
According to Wing (2006) CT is a problem-solving approach in which expressions
of solutions of problems are presented in a way that a computer can perform them
effectively. Wing (2006) claims that there are five main components of CT:

conditional logic, distribution of a process, error debugging, simulation and building

14



algorithms. Dierbach et al. (2011) also proposed a model in which fundamental skills
of CT are listed. These skills are decomposition of the problem, evaluating the
problem, building algorithms, and developing computational solution methods for a
problem. Similarly Berland and Lee (2011) asserted that CT involves five main
concepts: conditional statements, building algorithms, debugging, simulation and
distribution of a computation. According to Lee et al. (2011), defining, understanding
and solving problems, abstraction, automation and analyzing the suitability of the
abstractions define computational thinking. They also emphasize that the terms of
abstraction, automation and analysis can be useful for understanding how young
students make use of CT while solving problems.

Brennan and Resnick (2012) present a definition of CT that is specific to the
Scratch visual programming environment; in this context, CT consists of three
dimensions, namely, computational concepts, computational practices, and
computational perspectives. Computational concepts are sequences, loops,
parallelism, events, conditionals, operators and data. They claim that there are four
main sets of computational thinking practices: being incremental and iterative,
testing and debugging, reusing and remixing, and abstracting and modularizing. The
last dimension of computational thinking is the computational thinking perspective,
which involves expressing oneself, connecting with others and questioning. Selby
and Woollard’s (2013) review of the literature on the definition of CT showed that
there are three common terms in the definition of CT. These three terms are
abstraction, decomposition and the concept of a thought process. Apart from these,
there are other terms in the literature which are not supported by all researchers.
Selby and Woollard listed these terms under four main categories: thinking terms,

problem-solving terms, computer science terms and imitation terms. In the light of

15



their literature review, they claimed that CT involves problem-solving, abstraction,
decomposition of a problem, algorithmic design, evaluation and generalization of the
solution of a problem. A summary of CT skills are listed in Table 1.

Voogt, Fisser, Good, Mishra, and Yadav (2015) state that instead of
propounding an exact definition of CT, researchers should try to find similarities and
relationships among the definitions of CT that are made by different parties.
Therefore, by considering all aforementioned studies, it can be said that the main
skills which form CT are conditional logic, algorithmic thinking, debugging and
simulation. Conditional logic is a problem-solving method in which logical thinking
and different computational models are involved. Conditional logic includes the
decomposition of the problem and evaluation of the problem to generate alternative
representations (Berland & Lee, 2011). Algorithm building is the process of dividing
the solution to a problem into step-by-step procedures. Selecting the most
appropriate solution for a problem is important for the abstraction of the solution,
because, in this way, the solution can be re-used in other problems (Barr, Harrison, &
Conery, 2011). Debugging is the analysis of a solution to the problem and the
process of correcting errors. The debugging process involves both critical and
procedural thinking which makes it crucial for programming and computational
thinking (Berland & Lee, 2011; Brennan & Resnick, 2012). Simulation is the
demonstration of the solution to the problem, and the simulation skill includes the
design and implementation of the solution based on the built algorithm (Basu,

Dickes, Kinnebrew, Sengupta, & Biswas, 2013).

16



Table 1. CT Skillsets Defined in the Literature

Wing (2006) Dierbach et al. Berland & Lee Leeetal. (2011) Brennan & Resnick Selby & Woollard
(2011) (2011) (2012) (2013)
e Building e Building e Building Abstraction Abstraction Abstraction
algorithms algorithms algorithms . . . o o
Analyzing the abstraction Creative thinking Algorithmic
e Conditional e Decomposition of e Conditional . ) design
logic a problem logic Automation Debugging _
o o Evaluation of a
o Debugging e Developing e Debugging Defining a problem Modularization solution
e Distributed computational e Distributed Understanding/Solving a Reusing/Mixing Decomposition of

processing

e Simulation

solution methods

Evaluating a
problem

computation

Simulation

problem

Testing

a problem
Generalization

Problem-solving

17



2.1.3 The relationship between computational thinking and object-oriented
programming
Contrary to the belief that CT and programming are the same, researchers have
pointed out that these two terms are similar in nature but are not the same (Lu &
Fletcher, 2009; Voogt, et al., 2015). Student problems in solving methods and skills
in computer programming are identified as CT in the current literature (Aho, 2012;
Lu & Fletcher, 2009; Wing, 2006). Hence, researchers put an emphasis on the early
introduction and development of CT skills before students start to learn computer
programming (Liu, Cheng, & Huang, 2011). In other words, it is important for
novice programmers to understand how problems in a domain are solved
conventionally before moving to understand how problems are solved in
programming. Students’ difficulties in learning computer programming are also
connected to their problem-solving skills and to the computational learning
environment where they learn programming (Gomes & Mendes, 2007). Therefore, it
is critical to understand the relationship between CT and programming, especially
OOP.

Problem-solving is one of the fundamental ways of having effective and
meaningful learning (Jonassen, 2004). It is a way of thinking which has four main
phases: understanding the problem, preparing a plan for the solution of the problem,
implementing the proposed solution and reviewing the solution (Polya, 1957). It can
be seen that Polya’s definition of problem-solving is very similar to the CT skills that
are defined in the literature. Lu and Fletcher (2009) have embraced Wing’s idea
about the importance of the CT, and they claim that CT should be taught to students
before they start learning computer programming. They also claim that it is more

crucial to understand the nature of CT rather than CT’s manifestation in actual

18



programming languages because the integration of CT into a curriculum requires
problem-solving skills. Therefore, activities involving CT should be introduced to
students as early as possible (Qualls & Sherrel, 2010).

The idea of CT being a problem-solving approach is commonly held in the
current literature, but CT is not limited to only a problem-solving method (Selby &
Woollard, 2013). Along with being an approach to problem-solving, CT also
involves skills such as abstract and logical thinking, decomposition, algorithm
building, evaluating, and debugging. Computer science (CS), especially computer
programming, is the field where the definition and the practice of CT emerged, yet it
does not necessarily mean that CT requires the use of programming (Voogt, et al.,
2015). Researchers point out that CT and computer programming do not mean the
same thing (Lu & Fletcher, 2009; Voogt, et al., 2015), but computer programming
and CT are intertwined concepts. In order to show the relationship between
programming and CT, Kazimoglu (2013) used an onion metaphor which is a popular
metaphor in the cognitive science community to represent the relationship between
CT and computer programming (see Figure 1).

In the onion metaphor, there are three layers corresponding to the layers of
abstractions. Machine coding is the core of the onion, which is referred as the
physical layer. The layer on top of the core layer is the procedural layer where
computer programming is located. The outmost layer of the onion metaphor is the
conceptual or so-called operational layer in which CT is located. According to this
model, novice programmers analyze a problem and design their solutions to the
given problem at the CT layer. The implementation of novice programmers’
solutions to a problem with a programming language occurs in the computer

programming layer.

19



Computer Programming

(high level, medium level
and scripting programming
languages, etc)

Figure 1. Layers of abstraction with onion metaphor

Source: Kazimoglu, 2013, p. 19

In the current literature of CT, researchers considered abstraction as the core
concept of CT (Grover & Pea, 2013). Abstraction is the process of eliminating
unnecessary details and selecting common and critical features and patterns of a
problem to make a general representation of problems (Wing, 2008). Defining
multiple layers of abstraction of problems and understanding the relationships among
the different layers of abstractions are the basic practical facts of CT. Apart from
being a key concept of CT, abstraction is also one of the fundamental features of
OOP (Glasser, 2009; Poo, Kiong, & Ashok, 2007; Wegner, 1990). It plays a crucial
role in the identification of the common features of objects and the categorization of
similar objects into classes in object-oriented modeling. With the right abstraction
method, objects can be grouped into classes, and programmers can form a
hierarchical structure of superclasses and subclasses. Abstraction is not the only

common ground between CT and OOP. According to Hadjerrouit (1999), it is

20



essential for novice programmers to have higher level of problem-solving skills in
order to build object-oriented schemata rather than having technical coding skills.
The researcher emphasized four main problem-solving skills for building well-
structured object-oriented schemata; the analysis of the problem, the design of the
solution, analogical thinking, and critical thinking skills.

Taking all of the aforementioned studies into consideration, it can be said that
CT is a fundamental problem-solving skill approach in CS (Barr & Stephenson,
2011; Wing J. M., 2006; Wing J. M., 2008). Additionally, research in the current
literature put emphasis on the importance of introducing CT as early as possible to
novice programmers before letting them practice in actual programming languages.
Similarly, OOP requires programmers to have high levels of problem-solving skills
even before having met the technical competence requirements of programming with
an actual programming language (Hadjerrouit, 1999). With such problem-solving
skills, novice programmers would be able to build object oriented schemata and

generic solutions to problems in the CS domain.

2.3 Digital game-based learning in introductory programming

The current literature in digital game-based learning for teaching programming to
novice programmers focuses on two main approaches. These approaches are making
use of visual programming environments to teach programming and learning

programming through game-play experience.

2.3.1 Visual programming environments to teach programming
Kolling (1999b) claims that problems with the environment in which students learn

object orientation are the most important problems, and therefore, researchers have

21



focused on developing different kinds of programming environments for teaching
OOP (Carlisle, 2009; Cooper, Dann, & Pausch, 2003; Kolling, 2010; Kélling, Quig,
Patterson, & Rosenberg, 2003).

BlueJ (Kolling, et al., 2003) is one of the first and the most popular
educational programming environments. BlueJ has a window which presents a
simple Unified Modelling Language (UML) class diagram to its users, and in this
window, students can create objects from the classes of the UML diagram and
interact with these objects via their methods. The BlueJ programming environment
puts an emphasis on the visualization of OOP concepts, and it allows students to
have dynamic interactions with classes to test those classes and methods (K6lling, et
al., 2003). Van Haaster and Hagan (2004) conducted a survey to investigate the
effects of the BlueJ programming environment on novice programmers. The
respondents were 115 students who were taking the second compulsory
programming course answered the survey. According to the responses, students
made use of BlueJ features which helped them to facilitate higher order skill
development in the cognitive, affective and psychomotor domains. Apart from that,
participants had already been taught OOP with the Java programming language.
Therefore, it is not clear whether or not students learnt OOP by using BluelJ, and the
result of Van Haaster and Hagan’s (2004) study depend on the perceptions of
students, not on empirically collected achievement data.

Furthermore, Cooper et al. (2000) designed a 3-D interactive programming
environment, Alice, which aims to help novice programmers to overcome their
problems in learning OOP. In Alice, students can create their own 3D objects and
manipulate these objects with drag-and-drop code blocks in the editor. Like the

BlueJ programming environment, Alice enables programmers to see the immediate

22



results of their code blocks in their animation, which helps students easily understand
the relationship between the code that they created and its results. Nowadays, the 3.2
version of Alice is available for Microsoft Windows, Mac and Linux. Wang et al.
(2009) conducted a quasi-experimental study to investigate whether or not Alice
could be used as a tool to teach fundamental programming concepts to high school
students in Taiwan. Participants were 166 tenth-grade students from four different
classes, 81 of whom were taught programming by using the Alice programming
environment (experimental group), and 85 were taught programming with C++
(control group). The experiment lasted 8 weeks. Before the experiment, all
participants took a motivation test which evaluated their motivation to learn
programming, their self-efficacy of programming and their perception of computer
programming. During the experiment, the same instructor taught both groups for
about 50 minutes of lecture and 50 minutes of hands-on practice of programming
each week. At the end of the eighth week, participants took the same motivation
questionnaire, an experience questionnaire which assessed their experience of
learning programming, and an achievement test on the programming concepts taught
during the experiment. The results showed no statistically significant difference
between the motivation and the learning experience of the experimental and control
group students. The analysis of the achievement test showed that students who were
taught programming with Alice performed significantly superior to the students in
control group. Therefore, researchers claimed that visual programming tools can be a
more effective way to teach basics of programming to novice learners. Florea et al.
(2016) conducted another experiment with 60 undergraduate students. In this
experiment, Alice was used as both a game and a game development tool for students

while they are learning programming. Participants answered a survey which

23



evaluated their level of satisfaction with the proposed teaching method. The results
showed that students had a positive perception of learning by playing and developing
games. Therefore, researchers claimed that developing games with a visual
programming environment, e.g. Alice, can be a good alternative to the current
teaching methods for programming (Florea, Gellert, Florea, & Florea, 2016).

The Rapid Algorithmic Prototyping Tool for Ordered Reasoning
(RAPTOR) (Carlisle, Wilson, Humphries, & Hadfield, 2005) is another visual
programming environment that aims to help students improve their problem-solving
skills and to reduce the problems of syntax of programming languages. In the
RAPTOR programming environment, students create visual representations of
algorithms to solve problems with the use of basic graphical symbols that the
environment provides. RAPTOR provides an opportunity to run created algorithms
either in a step-by-step mode or in a play mode to students. Researchers integrated
RAPTOR programming tool into the spring 2003, fall 2003, and spring 2004
offerings of an introduction to computing course. In order to assess the effects of
RAPTOR programming environment on students’ problem-solving skills, three
algorithmic design questions were asked to students at the final exam of the courses.
The analysis of the results of the tests showed that there was a statistically significant
increase in the performance of students on two of the questions. However, there was
a statistically significant decrease in the performance of students on the array
question. The results of this study indicated that students develop better problem-
solving skills with the help of visual programming tools than with traditional non-
visual methods. In 2009, RAPTOR was upgraded with the aim of teaching OOP to
novice programmers (Carlisle M. C., 2009). The new RAPTOR opens with a UML

diagram window. In this UML diagram, users can create classes just like the ones in

24



the BlueJ programming environment, but in RAPTOR there is another window, class
editor window, for users to add methods and attributes to classes. One of the most
important aspects of RAPTOR is that it supports OOP features such as
polymorphism and inheritance, which were not supported in the previous
programming environments. However, in the current literature, there is not enough
substantial data on the effectiveness of the new version of the tool on students’ OOP
learning.

Another visual programming environment is Scratch, developed by the
Lifelong Kindergarten Group at the MIT Media Laboratory. With Scratch, people are
able to create different types of projects such as animated stories, mini games, music
videos, simulations, etc. (Maloney, Resnick, Rusk, & Silverman, 2010). Scratch is
designed to introduce the basics of programming to learners with little or no
experience in programming. There were three main considerations in the
development of Scratch: making it more tinkerable, more meaningful and able to
create a bigger community of sharing than other programming environments
(Resnick, et al., 2009). Developers of Scratch wanted users of Scratch to have the
sense of playing and building as if they were playing with LEGO bricks. Therefore,
Scratch has code blocks that are similar to LEGO bricks, and like LEGO bricks,
these code blocks are designed in a way that they can be used only if they fit
together. In Scratch, programming is done by snapping these code blocks together to
control and manipulate 2D objects, sprites, in the stage. The developers of Scratch
believed that these LEGO-like code blocks added more tinkerability, and students
learn best when they work personally on meaningful projects (Resnick, et al., 2009).
Maloney et al. (2008) introduced young learners aged 8 to 18 to a computer

clubhouse with Scratch. The young learners worked with Scratch in extracurricular

25



activities without getting help from any instructors. The researchers collected
students’ Scratch projects to analyze how the young learners had worked with
programming concepts such as interactions, loops, conditionals, booleans, variables,
synchronization and random numbers. Their analysis showed that the majority of the
students built Scratch projects by making use of these programming concepts without
any formal help from instructors. Likewise, Meerbaum-Salant et al. (2013)
conducted a mixed-method study to examine the effects of Scratch on the learning of
CS concepts, namely, variables, loops, booleans, control structures, concurrency and
message passing. Participants were 204 eighth and ninth grade students from a
middle school, and Scratch was taught two hours per week for 20 weeks. Students
took three different tests: a pretest, an interim test, and a posttest. The aim of the
pretest was to measure students’ abstract algorithmic skills. The interim and the
posttest were aimed to measure the learning of these CS concepts. The results
showed that students’ learning of CS concepts was improved with Scratch. Yet the
students had difficulty understanding concepts such as variables, concurrency and
repeated executions. The researchers suggested that these difficulties could be
overcome by explaining the relationship among between these concepts in detail.
Even though Scratch visual programming environment has positive effects on the
learning of CS concepts, this programming environment does not necessarily support
object orientation.

An improved version of the BlueJ programming environment is Greenfoot
(Kolling, 2010), and in this version, visualization of the current behavior and the
state of the objects is instantaneous. In Greenfoot, users interact with classes in a
specified world where students define behaviors of actors by calling methods in

those actors through the editor and compiler windows. Begosso et al. (2012)

26



conducted a research to investigate the effects of the Greenfoot programming
environment on students’ conceptual knowledge of OOP. Participants in the study
consisted of 30 first-year computer science undergraduate students. The study
comprised four main phases. In the first phase, researchers conducted a survey to
identify participants’ level of OOP knowledge. The questionnaire consisted of 25
five-point Likert questions; 21 of the questions were about the knowledge of OOP,
and the remaining 4 assessed knowledge of algorithms. According to the analysis of
answers to the questionnaire, most of the participants did not have any knowledge of
OOP and algorithms. After the first phase of the experiment, an instructor taught
students the basics of OOP. After being taught about OOP, in the third phase of the
experiment, students had hands-on practice with the Greenfoot environment and
students had tasks about the process of developing of a game. While working with
Greenfoot, students were first provided with examples to understand application of
OOP concepts. Researchers asked students to solve problems about developing a
game by using the concepts they had learnt after finishing each example. In the
fourth and the last phase of the experiment, the researchers conducted an assessment
test to find out how much students had learnt about OOP and algorithms. The results
of the assessment test showed that students had an achievement rate of more than
60%. The researchers, based on their observations during the experiment, also
claimed that students were motivated while they were learning OOP with Greenfoot.
In the current literature, visual programming environments used mostly as a
platform for developing games. The researchers integrated visual programming
environments into CS education in order to help novice programmers overcome their
learning difficulties. Although the programming environments cited above have

positive effects on teaching programming, research in the current literature reveals

27



that visual programming environments need to be used with a well-designed teaching
methods, and learning materials should be provided to support their use (Meerbaum-
Salant, Armoni, & Ben-Ari, 2013; Repenning, Webb, & loannidou, 2010).
Otherwise, these programming environments will only bring a short burst of
enthusiasm for novice programmers (Repenning, Webb, & loannidou, 2010).
Furthermore, these programming environments lack the mechanism that provides
feedback to students about their errors or the appropriate use of programming blocks
(Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Another concern about visual
programming environments is that, even though these programming environments
remove the extraneous cognitive load of syntax during programming process, there is
still a need to write algorithms, which increases intrinsic cognitive load (Lister,
2011). Overall, developing programming environments is not the sole solution to the
problems in teaching OOP. Teaching methods and the context such as games are also
considered to be effective tools to teach programming to students. According to
Jones (2000), games are wonderful examples of object-oriented environments if

teaching object-oriented design and programming is the objective.

2.3.2 Serious games for learning programming

Serious games are defined as computer games which have educational goals and
provide intriguing contexts with interactive, engaging and immersive activities
(Gunter, Kenny, & Vick, 2008). Soflano (2011) argues that using games as learning
environment is an efficient way to increase student engagement in courses because
students of both genders and different ages can play games hour after hour, and they
still can be in a teaching and learning environment while playing. Weintrop and

Wilensky (2016) claim that the integration of coding into gameplay mechanics of the

28



game will enable students to become familiar with basic concepts of programming
and allow them to develop programs in a more motivating and meaningful
environment. Therefore, many researchers have showed interest in using games as
learning environments for teaching programming to novice learners because of their
engaging and motivational nature (Barnes, Chaffin, et al., 2007; Barnes, Richter, et
al., 2007; Kazimoglu, et al., 2012a; Mathrani, Christian, & Ponder-Sutton, 2016;
Muratet, Torguet, Viallet, & Jessel, 2011; O’Kelly & Gibson, 2006). A review of the
serious games and the corresponding CS concepts that games cover are presented in
Table 2.

Phelps, Egert, and Bierre (2005) used a web-based 3D collaborative virtual
environment, Multi User Programming Pedagogy for Enhancing Traditional Study
(MUPPETS), which aims to teach encapsulation, inheritance, and polymorphism
concepts of OOP using the Java programming language. In this environment,
students create their own robots that will fight with other players’ robots in a virtual
arena. In MUPPETS world, the difference between the concepts of class and object is
visually represented so that students can define a class and create an instance of the
class with specific attributes in the game world. Phelps et al. (2005) conducted a
study in which MUPPETS is integrated as a tool for students to develop their final
projects in one of the courses of first-year programming sequence at the Rochester
Institute of Technology. In their study, students were asked to develop a final project,
which was more complex than a weekly assignment and required a teamwork, in
MUPPETS world. Before starting to develop their final projects, students developed
chat applications, basic multiplayer games, voting machine simulations and so on via

Robocode.

29



Students who developed final projects with MUPPETS world found the

graphical system to be the key their enjoyment of programming. One of the students

Table 2. A Review of the Serious Games to Teach Programming

Serious Game

Computer science concepts

Programming language

MUPPETS (Phelps, Egert, &
Bierre, 2005)

RoboCode (O'Kelly & Gibson,
2006)

Saving princess Sera — Catacombs
(Barnes, Chaffin, et al., 2007)

Second Life (Esteves, Fonseca,
Morgado, & Martins, 2011)

Prog&Play (Muratet, Torguet,
Viallet, & Jessel, 2011)

TrainB&P (Liu, Cheng, & Huang,
2011)

Program your robot (Kazimoglu,
Kiernan, Bacon, & Mackinnon,
2012a)

Alien Breed (Livovsky &
Porubin, 2014)

ZTECH (Wong, Hayati, & Tan,
2016)

LightBot (Mathrani, Christian, &
Ponder-Sutton, 2016)

Software KIDS (Ramirez-Rosales,
Vazquez-Reyes, Villa-Cisneros, &
De Leon-Sigg, 2016)

RoboBUG (Miljanovic &
Bradbury, 2017)

Fundamental OOP concepts

Fundamental OOP concepts

Variables, conditionals, and loops

Basics of computer programming

Functions, recursion, data
structures management

Basic concepts of OOP,
conditional logic, and loops

Computational thinking skills

Fundamental OOP concepts

Fundamental OOP concepts

Functions, conditional flows and
recursion

Fundament OOP concepts and
basics of software engineering

Tracing codes, print functions,
divide-and-conquer strategy,
breakpoints

Java

Java

Micro-language

C-style micro-language

C, Java, Scratch, C++

C like programming language

Programming blocks

Java

Micro-language

Programming blocks

Micro-language

C++

that participated in the study felt uncomfortable about the sample materials used in
the study by pointing out its being too male looking. Based on the anecdotal data, the
researchers claimed that MUPPETS helped students to reach the cognitive learning

objectives that had been specified in their course syllabi. Although the findings seem

30



promising, there is a need to provide empirical data on the issue by controlling all
variables that influence the learning outcome.

RoboCode is another game and a game development environment
developed by IBM that aims to teach students the basic concepts of structured
programming and the fundamental concepts of OOP. In this game, students create
robots by writing programs in the Java programming language, and players’ robots
fight each other in a small rectangular online environment. One of the most
important features of this environment is that it enables a player to see instantly how
the robots are affected by the player’s codes. O’Kelly and Gibson (2006) held a
competition using the RoboCode game development platform for students in their
first year of programming. Students were introduced to the competition after the first
half of the semester, which means that students were already familiar with basic
programming concepts such as variables, iterations, control flows, and functions. The
competition required students to work as a team. Additionally, since RoboCode was
used in the competition, it offered students the opportunity to have a problem-based
learning experience. Students submitted their robot-tanks, code and documentation of
their robot-tanks to enter the competition. The competition consisted of a league in
which the teams were divided into groups and matched with each other. Each team
which became the leader in the groups proceeded to the next level in the competition
and they were able to alter the code that defined their robot-tanks. Even though
RoboCode gathers up different aspects such as fun, programming, games, artificial
intelligence and competition, it does not free students from worrying about problems
with syntax of a programming language because it uses a real OOP language, Java,
not pseudo codes. The researchers also emphasized that in order to be successful in

their game, students had to have prior experience in working as a team. Otherwise, if

31



students formed a team that was not balanced well, it was likely that there would be a
decrease in their learning and success. Another important point that the researchers
emphasized is that, with problem-based learning, the focus is shifted from teaching
to learning, thus resulting in freedom for students to think for themselves, to use their
existing knowledge on the topic and to gain new knowledge through explorations.
However, the claims of the researchers were based mostly on their observations.
Therefore, there is a need to do research on the effects of the problem-based learning
of programming to provide empirical data on the issue.

Moreover, Saving Princess Sera (Barnes, Richter, et al., 2007) is a 2D role
playing game (RPG) which aims to teach students variable declaration along with the
simple usage of conditions, structures, and loops. In the game, a monster named
Gargamel captures a princess named Sera, and the player’s role is to help a man from
the village, Arshes, to save the princess. Each of the tasks in the game involves
programming concepts such as reordering while loop statements, correcting nested
loops and solving picture puzzle of algorithms. The Catacombs is another game
developed by Barnes, Richter, et al. (2007), but it is a 3D multiplayer game that
shares the same objectives as Saving Princess Sera. In this game, users play the role
of an apprentice wizard who is trying to help a mother to find her two children that
are lost. The game has a linear structure in which students have only one option to
perform in each task. The Catacombs game has two different versions. One of the
versions has multiple-choice questions and dialogues with a spell book named
Grimore. In the second version, Konijn, players are expected to select the correct
scroll among the incorrect ones, and players receive game stones, which are code
snippets that help players fill in the blanks in the codes. In order to examine the

interface options of the games and overall feedback on the concept, Barnes, Richter,

32



et al. (2007) conducted a study with 13 students with prior knowledge in
programming. The participants took a demographic questionnaire and a pre-test that
assessed their existing knowledge in programming concepts. After completing the
pre-test, the students were asked to play Saving Princess Sera for 20 minutes and The
Catacombs for 20 minutes. When students finished playing the games, they took a
post-test, after which they were interviewed for their opinions about the games.
There was no meaningful difference between pre-test scores and post-test scores.
Although there was no difference in achievement scores, the research showed that
students liked the idea of games being used as a reinforcement tool for a
programming class. In the light of the student comments, the researchers realized that
these two games did not provide clear feedback to players, and therefore, they
emphasized that such games should be providing clear and proper feedback (Barnes,
Richter, et al., 2007).

According to the initial results, Barnes, Chaffin, et al. (2007) added a
ranking system into Saving Princess Sera game. In this ranking system, players start
as a rank 7 player, and by performing well on tasks, they ascend to rank 1. They also
made modifications in Grimore version of The Catacombs game, but not in the
Konijn version. A cut scene was added to the game that tells players they are a
wizard who has a final task to complete in order to graduate from wizardry school.
Players were also penalized for each of their mistakes in the game by a 20% decrease
in their experience points. The final addition to the second game was another cut
scene at the end of the game in which students were told how they performed in the
game. With these modifications in their game prototypes, the researchers’ had the
goal was to investigate whether or not this explicit feedback would make a difference

in game behavior and in the opinions of players. Barnes, Chaffin, et al., (2007)

33



conducted a second study with the same format and materials, except for the
improvements in two games, with 8 participants. They compared the average time
spent on each activity and the number of incorrect answers in both studies. Although
there was no statistical difference between the average time spent on activities for the
games, in the second study, the students completed the quests faster than the students
in the first study. Five out of eight students in the second study reported that they
were motivated by the feedback, the gold rewards and the ranking in the games. The
researchers therefore claimed that the feedback in the two games may have affected
the way students thought about using games to learn how to program. They
suggested that the form of feedback in serious games should be examined in further
studies to determine which one/s would be more effective with a broad range of
students.

Esteves, Fonseca, Morgado and Martins (2011) analyzed how the teaching
and learning of computer programming can be developed in the Second Life (SL)
virtual world. SL is a 3D virtual world which enables students to program the
behavior of objects by writing basic script codes. SL also provides immediate
visualized feedback of written codes. Another important aspect of SL is the
opportunity for collaboration in the 3D world. In the SL virtual world, more than one
student can edit the same avatar by writing their own script and changing ideas via
messaging through the system. The researchers conducted an action research which
was a cyclical research that involved interventions or changes while it was being
conducted. It consisted of four cycles, which started in March 2007 and ended in July
2008. Three different undergraduate student groups participated in the study:
beginner students, students with a little previous knowledge of programming, and

students with experience in semester-long programming projects. The participants

34



were asked to develop a semester-long project with their peers using a C-style
scripting language called Linden Scripting Language (LSL). Once students were
given an identical project description, they formed pair groups and started to develop
their project in SL. The teachers met with students once a week in SL for 2 hours to
monitor their progress and to help them with their problems in developing the
project. Communication among students and between students and teachers was
mostly text-based, although SL enables both voice-based and text-based
communication. Data was collected through observations and a questionnaire that
aimed to gather students’ ideas about the difficulty level and the nature of the tasks in
the project description. The findings of the study pointed to three important issues
related to the subject: communication issues, students’ process of learning, and the
process of teaching programming. There were problems with communication among
between students, and between students and teachers because text-based
communication was preferred, and all of the messages appeared on the screen. Thus,
students had difficulty following the conversations and instructions. Apart from that,
students had the chance to talk with an instructor in a private conversation. Although
students were grateful for the opportunity to talk with instructors, it was hard for the
instructors to provide immediate feedback. Another problem that the researchers
emphasized was the students’ learning process. Student tasks were of two types:
visual and nonvisual. In the visual tasks, students had immediate visual feedback of
their program as the behaviors of the object that they defined in the project. On the
other hand, in nonvisual tasks, students did not understand why they were doing the
task; therefore, they had problems creating the right algorithm and finding the
execution errors in their programs. The last issue that researchers emphasized is

related to the process of teaching programming. The researchers claimed that the

35



teachers’ physical presence at the beginning of the study was a crucial part of the
learning process in case students have difficulty understanding the SL world. They
also found that there was a feature that informed the teacher about the students’
progress by email in the SL platform. With the use of such a feature, teachers could
be guided through their teaching process by learning students’ difficulties and
attempts to solve these problems.

A multiplayer real time strategy game, Prog&Play, was developed by Muratet
et al. (2011) to teach programming to novice programmers. The game motivates
players by making them heroes in the story. Another important aspect of the game is
that it gradually introduces programming concepts in its story, therefore enabling
students to be masters at the end of the game. The game enables students to pause
their program execution, to modify their codes and to execute the program again to
see the effects of their changes in the codes. In order to study the possibility of a
serious game being used to teach programming to draw computer science students’
attention, Muratet et al. (2011) conducted three experiments. First, they selected 15
students, novice programmers, via a questionnaire that assessed motivation to
playing video games and learning programming. Students who were interested in
playing games but not interested in programming were selected for the first
experiment, which consisted of two parts. In the first part, students played the game
in a multiplayer session without focusing on programming tasks; they focused only
on the game environment and the mechanics. In the second phase, Prop&Play was
introduced and students were asked to play it. In the second experiment, the effects
of the game on students’ achievement scores and teachers’ assessment were
evaluated. The Prog&Play game was used in the first semester of the computer

programming curriculum. There were 300 students taking the first-year programming

36



course, and half of these students continued to learn programming within traditional
settings while the other half learned by playing the proposed game.

The third experiment tested the usability of the game by third parties, other
instructors who wanted to adapt this serious game into their own pedagogy. Three
teachers used the game to adapt their own pedagogy and conducted experiments with
their students to analyze the effects of the game. The researchers defined four
evaluation criteria to evaluate the results of the three experiments: (i) improvement in
students’ programming skills, (ii) usability of the game system, (iii) entertainment
factor of the game and (iv) teachers’ assessments. In order to evaluate the
enhancement of programming skills, the researchers counted the number of missions
completed by the students and the number of compiling instances was also recorded
for each task in the game. With this data, the researchers defined the level of
difficulty of the tasks in the game, and they saw that the fourth task was much harder
than the first three. Although students had problems with the difficulty level of the
tasks, the serious game reduced the failure rate of the students who were in the
experimental group compared to students who were in the reference group. The
usability and the entertainment aspect of the game was evaluated by a questionnaire
administered in the first two experiments. The results of the questionnaire showed
that students liked the way in which programming was taught with a game. Apart
from that, students considered the game functional because there were no critical
bugs that prevented them from playing the game. Overall, the results of the
entertainment effect of the proposed game were also positive, which indicated that
students found the game entertaining, and they appreciated being able to use their
programming knowledge in such a context. The final criterion for the evaluation of

the game was teacher assessment. Course sessions were filmed to observe teachers’

37



activities during the experiments. Apart from filming the lectures, a questionnaire
was filled by the teachers about their perception of serious games before the
experiments. After the experiments, the teachers were asked to submit a file to report
their opinions about the experiments. Teachers’ assessment of the game was positive,
and they said the effect of the game on students’” work was also positive.

Liu, Cheng, and Huang (2011) developed a 3D simulation game, Train: Build
and Program It (TrainB&P), and conducted an empirical study on the effects of
simulation games on the computational problem-solving skills and learning
experiences of novice programmers. The learning activities of the game were based
on Papert’s constructionism (1972). In the game, students were expected to design,
develop and program the transportations in a railway network. One hundred
seventeen freshman students participated in the study. Students had studied
programming for one and a half months via traditional lessons before the experiment.
The researchers proffered a learning experience survey to students in order to have a
better understanding of the students’ opinions of the learning experiences in the
traditional lessons. After the traditional lectures, students worked with the game for
two weeks. Students were asked to build and program a train that goes three rounds
and stops at the starting point. The researchers stated that, in order for students to
complete the mission, they needed to learn the basic concepts of OOP, conditional
logic, and loops. Along with learning basic programming concepts, students also
needed to consider physical laws because the game had a physics engine. Therefore,
they needed to program their trains to complete the mission as quickly and as
securely as possible. The researchers recorded students’ railway network programs
and the details of the design and development process of the railway systems. At the

end of the game-based learning activity, they asked students to complete the same

38



learning experience survey to understand the students’ perception of the learning
experience in the game. The researchers also administered a survey to have a better
understanding of students’ motivation towards the game-based learning activity.
Students responded to the motivation survey before and after the game activity phase
of the study. The analysis of the learning experience survey suggested that students
are more likely to be in a flow state when they practice computational problem-
solving skills in a game rather than in traditional lectures. The same result was
obtained from the analysis of the motivation survey. Thus, researchers suggested that
integrating examples into games might help reduce student anxiety. Finally, a
detailed analysis of the activity logs showed that a simulation game, which draws
from constructionism, might enhance students’ computational problem-solving skills.
Additionally, the results suggested a help in the form of instructional support could
help foster learning. Although the findings of the study are promising, it does not
provide empirical data on the effects of the game on students’ learning performance
of OOP concepts. Furthermore, the researchers focused on the learning experiences,
not the learning performance of novice programmers.

Kazimoglu et al. (2012) developed a prototype game called Program Your
Robot to study the effects of serious games on students’ CT skills. They claim that
developed serious game focus on abstract and conceptual knowledge of
programming rather than on the functions of developing CT skills, which underlie
the basics of programming. In order to have students acquire basic CT skills,
researchers proposed a game which enables students to create algorithms of solutions
of problems, to apply computational thinking methods to the given problems, to
debug errors in their algorithms, and to observe visual representation of their

algorithmic solution. They conducted an experiment with 25 undergraduate students

39



at different levels of classes within computer science discipline. In the experiment,
students were asked to write feedback about the game they had played. The results
revealed that the majority of students thought game was helpful in improving their
problem-solving skills and understanding basic programming constructs.

Livovsky and Porubén (2014) developed the Alien Breed game, a remake of
a 1991 action-adventure game called Amiga, to teach the basic concepts of OOP to
novice programmers without making students write programs in a real OOP
language. The game is a top-view two-dimensional game in which players are
expected to shoot their way through enemies and to find the exit in order to proceed
to the next level. In the proposed game, researchers made use of an object-first
approach, which aims to introduce fundamental concepts and principles of OOP to
students before writing programs in OOP. The game focused on several concepts of
OOP, namely, object, class, attribute, operation, encapsulation, and inheritance. The
proposed game has three different levels which aim several learning objectives.

These objectives are:

Explaining the concept of object
e Understanding the relationship between objects and classes
e Knowing the roles of attributes and operation in terms of OOP
e Explaining why encapsulation is needed
e Explaining the inheritance concept by identifying relationships between
subclasses and superclasses
e Understanding the inheritance concept’s importance in OOP
Livovsky and Porubén (2014) developed an educational tool called Object
Access Tool (OAT) to support the interaction with concepts of OOP while students

are playing the game, Alien Breed. The OAT has three components for

40



representations of object models in the UML class diagram: displaying instances of
selected class, and displaying members of an object, or a static class. In order to
measure the effects of Alien Breed on students’ conceptual knowledge and
understanding of OOP, a questionnaire was administered to students after they
played the game for about an hour. Fourteen undergraduate students studying in the
informatics program answered the questionnaire, which consisted of two types of
questions: multiple-choice questions, which measured the basic conceptual
knowledge of students; and open-ended questions, which asked students to write
concepts of OOP in their own words, measured deeper information about students’
conceptual knowledge of OOP. All of the respondents except two had no prior
experience with OOP, but they did have experience with procedural programming.
The results of the study showed that 5 students had scored 90% or higher on the
multiple-choice questions and also had partially correct answers in the open-ended
questions. Apart from the questionnaire, researchers also collected data by observing
students. According to the observations, there were some problems with the
presentation of tutorials, task instructions and conceptual knowledge of OOP in text
format. The researchers stated that students were reluctant to read help texts,
instructions for tasks, and to learn content. They believe that the length of those texts
was the reason, and they recommend replacing these text tutorials with animations or
video tutorials.

ZTECH (Wong, Hayati, & Tan, 2016) is a role-playing game (RPG) which
aims to teach basic OOP concepts such as encapsulation, polymorphism, and
inheritance in a fun, easy, and interactive environment. The game consists of ten
mini-puzzle games with 8 main quests that cover some basic programming concepts.

Sixty first-year students who study game development were asked to play the game

41



to evaluate the effects of the game. After completing game play, students were
required to complete a 15-item questionnaire. The first three asked for personal
details and existing programming knowledge; the other five questions were about the
usability of the game. The remaining seven asked students’ perceptions about the
game-based approach used in learning object-oriented programming. The results
showed that 65% of the students found ZTECH an effective tool to teach object-
oriented paradigms. The researchers also stated that 15 of the participants had passed
an OOP course at the university with grade of A. They claimed that pseudo codes
should be used in introductory programming courses in order to overcome
difficulties that are caused by the syntax of a real programming language.

Mathrani et al. (2016) used the LightBot game in their research on game-
based learning issue. The LightBot game has a fictional story in which players
program a robot to light all blue tiles in a specific path. Players accomplish tasks by
using prefabricated commands that represent fundamental programming concepts
such as functions, conditional flows, recursion. The researchers conducted a study
with two different student groups. The first group consisted of 20 students with no
prior programming experience but with a little computing experience. The second
group had 24 students with basic programming knowledge. Students in both groups
were asked to play the game, but the two groups had different orders in the game and
they also had different time sets. The task and the time span were different because
the groups differed in prior knowledge of programming. The researchers made the
first group play the basic level first to learn the basic mechanics of the game and to
learn functions, procedures and the sequential flow of execution of the program.
After completing the basic level, students in the first group played the first level that

covers recursions and conditional. On the other hand, students in group two played

42



the game as it was designed by the developers. Immediately after playing the game,
students in both groups were asked to complete an online survey to collect qualitative
and quantitative data. The qualitative data used open-ended questions about the
students’ opinion about the game. Qualitative data was collected with a 5-point
Likert scale questionnaire. This questionnaire aimed to gather the understanding of
students’ perceptions of the game, conceptual knowledge on loops, conditionals and
recursion, and also about the difficulty of the game. Students in the first group rated
the basic level of the game as easy, recursions as difficult, and conditionals as very
difficult. Thirteen of 20 students in the first group correctly answered the questions
about their learning through game. Students in the second group thought that the
game was an effective tool to learn programming concepts, and the game also
clarified earlier conceptual difficulties in programming. Overall, the findings of the
study indicated that students loved the game, and the researchers stated that games
can be useful in learning basic programming concepts such as functions, procedures,
conditionals, loops, and recursions. They concluded that LightBot was designed for
basic-level programming and they suggested that another more complicated and
intensive game should be used to study advanced programming.

Ramirez-Rosales, Vazquez-Reyes, Villa-Cisneros, and De Leon-Sigg (2016)
developed a serious game, Software KIDS, to teach basic conceptual knowledge of
OOP and the basics of software engineering (SE) to children older than eight years
old. The game has ten levels that focus on fundamentals of OOP such as class,
object, attributes, methods, inheritance, polymorphism, abstraction, encapsulation
etc., and the basic concepts of SE, such as algorithms, conditional and iterative
structures, and arrangements. Although the proposed game is aimed at children older

than 8 years old, researchers conducted an experiment with 12 children aged between

43



6 and 12. The experiment consisted of two sessions: In the first session, the children
were given a short lesson about technology creation for an hour. In the second part of
the experiment, students played the Software KIDS game for about 50 minutes and
then had 10 minutes to answer a questionnaire. Both sessions were held under the
supervision of mentors, who supported the children while they were playing the
game. Data collected through mentors’ observations and a questionnaire that asked
students’ opinions about levels of difficulty, easiness, fun, and satisfaction with the
game. The average score for the Software KIDS game was 9 out of 10. The
researchers found that the Software KIDS game motivated children to play and learn
programming even if they had difficulty in playing the game. The findings of the
study showed that after playing the game, students’ perceptions about software
development had changed. Although the children enjoyed the game, they needed the
help of a mentor to solve problems they encountered in the gameplay. Therefore, the
researchers emphasised that the difficulty levels of the game needed to be suitable for
age group. The researchers also stated that it was hard for novice programmers to
understand, because the proposed game was highly based on OOP and specialized in
the software engineering area.

RoboBUG (Miljanovic & Bradbury, 2017) is a puzzle-type serious game
designed for first-year computer science students who are learning C++. The
standard version of the game implements debugging in C++, but it also allows
instructors to create new levels with different programming languages. In the
proposed game, players have a role of a scientist who tries to save the world from
invader alien bugs by purging bugs from the scientist’s robotic suit of armor, Mech
Suit. The player as a scientist purges the alien bugs from the armor by correcting

errors in the infected source code of the different parts of the Mech Suit. The

44



RoboBUG game has four different levels that focus on code tracing, print statements,
divide-and-conquer methods, and breakpoints in the C++ programming language.
Each level in the game starts with a tutorial in which new debugging tools are
introduced to the players, 2 or 3 sub problems involving small debugging tasks, and a
final challenge in which students are expected to use newly introduced debugging
tools along with the knowledge they gained while doing the small tasks. The
researchers conducted a study to examine the effects of the game on students’
understanding of debugging and the players’ experience. The participants were 14
first-year computer science students at the University of Ontario Institute of
Technology between 18 and 25 years old. They first completed a test, the Positive
and Negative Affect Scale (PANAS), that assessed their feelings. After the
completion of the PANAS test, the students took a pre-test of 10 multiple-choice
questions to measure their existing knowledge on debugging techniques. After
completing the pre-test, they had 30 minutes to play the game. At the end of the
experiment, they completed a post-test on debugging and they completed the
PANAS questionnaire one more time. The researchers conducted a paired t-test to
analyze the scores of pre-test, post-test and PANAS tests. The results of the analysis
showed that the proposed game helped students to acquire debugging skills. In
addition to this, the RoboBUG game yielded more improvement in test scores of
students with low prior knowledge on the topic than of students with a higher level of
prior knowledge on debugging. An analysis of the PANAS test showed no significant
difference in the positive and negative effects. The researchers claim that the game

should include a hint system to relieve the frustration of players.

45



2.4 Summary of the literature

In order to overcome the problems of novice programmers in learning OOP and CT
skills and to motivate them, researchers have adopted digital game-based learning
approaches. There are two main approaches in the literature on the digital game-
based learning of programming: learning by developing games and learning through
gameplay experience.

In the learning-programming-by-developing game approach, researchers have
made use of visual programming environments to teach programming to novice
programmers. Although there is much supporting empirical data for the use of
programming environments, there is still significant criticism of them. First, the
research in the current literature points out that these visual programming
environments will only bring a short burst of enthusiasm unless they are used with
well-designed teaching methods and learning materials (Repenning, Webb, &
loannidou, 2010). These programming environments lack the mechanism to provide
feedback to students about their error or about the appropriate use of programming
blocks (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). Another important concern
about these environments is that there is still a need to write algorithms for solutions
to problems, which increases the intrinsic cognitive load (Lister, 2011). In other
words, the visual programming environments do not provide guidance or assistance
for developing algorithms even though they enable novice programmers to
implement their algorithms in a more user-friendly way.

The other main approach in the digital game-based learning of programming
uses serious games to teach programming to novice programmers by providing a
gameplay experience for students. In recent years, many researchers investigated the

effects of serious games on learning computer science skills and programming.

46



Although a considerable amount of experimental research has been conducted on this
topic, few of the studies provided a well-prepared experimental design and
demonstrated inferential statistical analysis (Livovsky & Porubén, 2014; Mathrani,
Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017). The findings of
the majority of the studies on the current problem are based either on anecdotal
evidence or on initial evaluation results that do not provide empirical data about what
students learn from these proposed games. Additionally, there is not enough
substantial data about the effects of serious games on Turkish students’ programming
skills. Finally, the majority of the studies in the current literature focus on what is
being taught rather than how the developed games support novice programmers’
learning by providing details about the instructional design of the game (Laporte &
Zaman, 2018).

Nonetheless, there are some common findings in those studies. The most
prominent one of those findings is that, thanks to the games developed, abstract
programming concepts can be concretized and students are provided with chances to
see the instant results of the programming activities in the games; both help students
during the debugging phase. Additionally, as revealed by another finding in a
number of studies, games particularly enhance motivation to learn programming, and
some studies found out that games might even encourage students to study in the
field of programming.

This thesis, by drawing from the findings of current literature on the problem,
aims to examine the effects of a serious game, Curious Robots: Operation Asgard
(Merakli Robotlar: Operasyon Asgard), on students’ conceptual knowledge of OOP
and CT skills. By considering all aforementioned issues, this study was designed to

answer the following research questions:

47



1. Is there any significant difference between the post-test and pre-test scores on
the conceptual knowledge of OOP and CT skills of undergraduate students
with no programming experience?

a. Is there any significant difference between the post-test and pre-test
scores on the conceptual knowledge of OOP of undergraduate students
with no programming experience?

b. Is there any significant difference between the post-test and pre-test
scores on CT skills of undergraduate students with no programming
experience?

2. s there any significant difference between the post-test and pre-test scores on
the conceptual knowledge of OOP and CT skills of undergraduate students
with procedural programming experience?

a. Is there any significant difference between the post-test and pre-test
scores on the conceptual knowledge of OOP of undergraduate students
with procedural programming experience?

b. Is there any significant difference between the post-test and pre-test
scores on CT skills of undergraduate students with procedural
programming experience?

3. s there any significant difference between the achievement scores on the
conceptual knowledge of OOP and CT skills of undergraduate students with
no programming experience and of undergraduate students with procedural
programming experience?

4. To what extent do students’ creative problem-solving skills and attitudes
towards digital game-based learning of programming influence their

achievement score on the conceptual knowledge of OOP and CT skills?

48



CHAPTER 3

METHODOLOGY

This chapter presents the details of the methods and procedures followed in the
current study. The chapter consists of the following sections: (1) research design, (2)
participants and sampling procedures, (3) treatments, (4) instruments, (5) data

collection procedures.

3.1 Research design

This study employs a quasi-experimental design approach in order to minimize the
effects of extraneous variables on the outcome. A pre—test and post-test quasi-
experimental design (Creswell, 2011) is used to study the effects of serious games on
undergraduate students’ conceptual knowledge of OOP and CT skills. Another
reason for using a quasi-experimental design is that the researcher was unable to
create groups with a random assignment method.

The independent variables of the study were the level of the students’ creative
problem-solving skill, students’ attitude towards digital game based learning of
programming and OOP and CT pre-test scores of the students. The dependent
variable of the study is students’ achievement scores in conceptual knowledge of
OOP and CT skills test. The independent and dependent variables of the study are

displayed in Table 3.

3.2 Participants and sampling procedure
The target population of the study was undergraduate students studying computer

programming in non-engineering disciplines in Turkey. Identifying all the

49



individuals in the population would not be possible because the population of the
study is extremely large. Sample undergraduate students who were accessible to the
researcher were selected from the Computer Education and Educational Technology
Department of Bogazici University. Convenience sampling (Creswell, 2011) was
followed as the sampling method because there was no chance to access participants
randomly. For selection of the participants, the main criterion was that students

should not have had experience in OOP before the experiment.

Table 3. Variables of the Study

Independent variables Dependent variables

The level of creative problem-solving skill Achievement in conceptual knowledge of OOP
Attitude towards digital game-based learning of ] ] ]

. Achievement in CT skills
programming

Prior knowledge of OOP and CT skills

The researcher selected two different student groups in the 2017-2018
academic year. The first group of the sample consisted of freshman students without
prior experience in programming, while the students in the second group were
sophomores with experience in procedural programming but not in object-oriented
programming. Data were collected from the all 61 students in these two groups (see
Table 4). A pre-test on the basic conceptual knowledge of OOP and CT skills is
given to the students, and according to the results of this test, a student with higher

level of conceptual knowledge on OOP and CT skills is excluded from the study.

Table 4. Participants of the Study

Freshman students Sophomore students

Female Male Female Male

20 10 12 19

50



3.3 Treatments

In this study, a 2D science-fiction themed hybrid (puzzle-solving and simulation)
serious game, Curious Robots: Operation Asgard (Merakli Robotlar: Operasyon
Asgard), was developed by the researcher with Unity 3D game engine using C#
programming language. The game was specifically designed to be a simulation game
because simulation games allow players to explore virtual game world and interact
with the other game objects to test their hypotheses (Kiili, 2005). The main objective
of the developed game is to introduce fundamental concepts of OOP namely class,
object, attribute, data, method, inheritance, polymorphism and encapsulation to
students in a meaningful and fun environment. Apart from introducing OOP
concepts, it also aims to enable students to practice CT skills: conditional logic,
algorithm building, simulation and debugging, even if students have no programming
knowledge.

After the development of the first version of the game, the researcher asked
the opinion of three educational technology specialists and four software engineers in
terms of usability, instructional design and the integration of programming concepts
and procedures into gameplay. Additionally, a pilot study with 5 students with
experience in OOP was also conducted to assess the usability of the game. In the
light of the feedback from these initial evaluations, the gameplay, the screen and the

message design of the game were revised.

3.3.1 Serious game design model
In the design and the development of a serious game using a game design model that
successfully integrates game characteristics, educational theory is important. In order

to ensure that students would accomplish the objectives of the learning unit, it was

o1



necessary to choose a suitable serious game model. In choosing the conceptual

design framework of the game developed, | took into consideration certain criteria

that the framework should bear:

e alearning environment which would provide a high level of interactivity to
motivate learners,

¢ alearning environment that would provide problems in an authentic context,

e |earners would be able to analyze a problem situation and generate their
solutions,

o learners would be able to actively test their solutions and discover,

e learners would be able to observe the outcomes of their solutions and alter them
to get better solutions.

Even though there are many serious game development frameworks in the
current literature, Kiili (2005)’s Experiential Gaming Model was selected as the
conceptual design framework of the developed game because it was the one that
most closely met the researcher’s criteria. Another reason this framework was
selected was that the experiential gaming model is one of the most widely accepted
and referenced frameworks in the literature, even though there are several other
serious game models.

This model aims to create a link between gameplay mechanics and
experiential learning theory to enhance players’ flow experience. Experiential
learning theory stresses the importance of direct experience and reflective thinking in
learning (Kolb, 1984). Flow, on the other hand, is the state of having optimal
experience from an activity by being completely engaged (Csikszentmihalyi, 2014).
Players are commonly in a state of flow when they play a game. By grounding the

design of the game in this study according to an experiential gaming model, | aimed

52



to increase in the motivation of novice programmers because novice programmers
often have low motivation to learn OOP (Prensky, 2003; Sarkar, 2006).

The experiential gaming model consists of three main cycles, namely
preinvative idea generation, idea generation and the active experimentation cycle
consisting of reflective observation and schemata construction (see Figure 2).
Challenges or problems, which according to the researcher is the heart of the model
in the games, are at the center of these three cycles. Challenges in a serious game
play a crucial role in keeping players in a state of flow. The level of the challenges in
game activities is important in the design of instructional games because easy
challenges may bore players, while hard one may cause players to be anxious (see
Figure 3). Therefore, it is important for a serious game to provide learners with
challenges that will match the students’ skill and knowledge level. Furthermore,
challenges in a game should be designed in a way that the difficulty of the tasks will

increase when players make progress in the game.

Learning objectives

Preinvative idea

i Idea generation
generation

Challenges
(problems)

Control over game
SkiI{Is develop

Clear io*als

Schemata Active
construction experimentation
X /
Focused attention Feedback
Usabilit ;
y\ Reﬂectlye
observation

Figure 2. Experiential gaming model
Source: Kiili, 2005

53



Anxiety
&
Worry -
Action &
Opportunities &/ Boredom
(Challenges) o\
\Q\
ot
QY Anxiety
Actlon
Capabilities
(Skills)

Figure 3. Model of the flow state

Source: Adapted from Csikszentmihalyi, 1975

There are two idea generation loops, preinvative idea generation and the idea
generation loops, in the experiential gaming model in which players develop their
solutions to the problems. The difference between the preinvative idea generation
and the idea generation cycle is that the preinvative idea generation cycle has a
disorganized structure which can usually be seen in the way children play. In the idea
generation loop of the model, players analyze the problems and generate their

solutions according to the rules and constraints of the game world.

After completing their solutions in the idea generation stage of the model, the
players move on to the experimentation stage. They implement their solutions to the
problems and observe their effects on the problem situation. In the reflective
observation phase of the experimentation cycle, clear feedback plays a crucial role.
With the help of feedback from the game world, learners may understand the
deficiencies in their solutions and thereby improve their solutions to create more
effective ones. This experimentation and observation process of solutions would help

students to construct new knowledge schemata, consequently resulting in learning.

54



The researcher emphasized that it is important for learners to test different solutions
to a problem to improve their creative problem-solving skills and current knowledge
on the topic (Kiili, 2005). Although this model provides guidance and information
about the fundamentals of designing serious games, it does not necessarily refer to
the instructional design of the activities in a game. Therefore, along with a
conceptual design framework of serious games, an instructional design model was

used in the design and the development of the activities of the game.

3.3.2 Instructional design model
The instructional design of the activities of the game in this study is based on the
four-component instructional design model (4C/ID model) (van Merriénboer, Clark,
& de Croock, 2002). The 4C/ID model regards authentic learning tasks as the core of
teaching and complex learning because with such tasks, learners are able to integrate
their knowledge, skills and attitudes. The experiential gaming model and the 4C/ID
model are similar in terms of the design of their learning activities. Both models
encourage the use of ill-structured problems in a learning environment to support
discovery learning. Furthermore, gradual increase in the level of difficulty of
learning tasks are emphasized in both models. The experiential gaming model lays
emphasis on clear feedback in supporting students. Similarly, the 4C/ID model also
points out the role of providing support to learners in the form of procedural and
supportive information.

The 4C/ID model consists of four major components and these are (1)
learning tasks, (2) supportive information, (3) procedural information and (4) part-
task practice. Learning tasks are authentic whole-task problems which are based on

real-life situations. By working on learning tasks, learners build knowledge schemata

55



and integrate their current knowledge, skills and attitudes. Learning tasks are divided
into task classes according to their level of difficulty. In other words, learning tasks
should be organized in a way that students will start working on relatively easy tasks
and finish with the difficult ones. According to this model, supportive and procedural
information should be presented to students over the course of their learning
experience. Supportive information is provided to help learners to perform
nonroutine, complex and problem-solving parts of the learning tasks. Procedural
information, on the other hand, provides help to students in routine aspects of
learning tasks. In other words, procedural information indicates a step-by-step
instruction about a routine task in learning process. While learning tasks in this
model refers to whole-task activities, the last component of the 4C/ID, the part-task,
refers to the practice of automated constituent skills. When a high level of
automaticity is required to perform a task, the learning tasks may not be sufficient. In

such circumstances, additional part-task practice should be provided for learners.

3.3.3 Conceptual design of the game

Based on the guidelines and information from the game model and the instructional
design model, the Curious Robots: Operation Asgard (Merakli Robotlar: Operasyon
Asgard) game was developed. The game developed is similar to LightBot (Mathrani,
et al., 2016) and Program Your Robot (Kazimoglu, et al., 2012) in terms of game
play. Even though these two games are designed to teach the basics of procedural
programming and computational thinking, neither aims to teach OOP concepts to
novice programmers. Unlike the other two games, Curious Robots: Operation Asgard

(Merakl1 Robotlar: Operasyon Asgard) includes a component that enables students to

56



build their own code blocks according to the needs of their missions as a game play
experience.

One of the most important aspects of the game is that the fundamental
concepts of OOP are integrated into the story of the game. Fantasy elements such as
imaginary machines and planets were used to integrate OOP concepts into the story
of the game because the use of fantasy elements may enhance students’ learning
(Garris, Ahlers, & Driskell, 2002). Using stories is one of the core components of the
game design process (Rollings & Adams, 2003). Stories set the background for
games, and using stories in games enables the integration of small tasks into a main
goal. Therefore, | aimed to help students understand the need of such concepts and
where to use them in authentic problem settings. An Animated Pedagogical Agent
(APA), Professor Ekrem, plays a crucial role in the integration of OOP concepts into
the story of the game by telling the story and providing information about the
learning activities. APAs are on-screen characters that act as personal tutors in
computer-based learning environments, and they provide feedback and
contextualized information about the learning unit in an activity (Bates, 1994; Lester,
etal., 1997). Using APAs in computer-based discovery-learning environments
increases learners’ motivation and leads to deep learning (Moreno, Mayer, Spires, &
Lester, 2001). Furthermore, in the current literature, the chosen serious game and
instructional design models emphasize the importance of feedback for novice
programmers (Barnes, Chaffin, et al., 2007; Kiili, 2005; van Merriénboer, et al.,
2002). Therefore, an immediate feedback mechanism in which students are informed
about their mission is provided with hints about their mistakes, both visually and

verbally.

57



3.3.3.1 Supportive information

In the developed game, supportive information is given via a panel called mission
information. With such information, students were expected to construct a
knowledge schemata by building a bridge between their current knowledge and the
new ones. In the information panel, the English word of each OOP concept was
provided — even though the language of the game is Turkish — along with the
corresponding Turkish word and the definition of the concept (see Figure 4). The
English word for the concepts was provided to minimize the problems that students
might encounter in the future because they will be using these concepts in English

when they start to work with real programming languages.

Gorevimiz: Sinif Tarmmlama

Sinif (Class]: Ortals ézellilsleri ve davranislart olan nesnelerin s6z
konusu ortals ozellilslerini ve ortals davramisiarini barindiran soyut
bir lsavramdir.

Nesne (Object]: Ait oldugu simifin tarmmiladigr davranis bicimlerine

sahip olan ve sinifta tarmmianmis olan ozellilslerinde Lendisine ait
deqer bulunduran siniftan (Class] taretiimis (instantiate) belirli bir
ornelstir (instance).

Figure 4. Mission information panel

A help menu that provides hints and examples for each mission in the game is
another important feature of the game developed (see Figure 5). Thanks to the help
menu of the game, students will be able to get help whenever they need. Finally, the

researcher paid special attention to not to overwhelm learners’ the cognitive load in

58



the course of designing the learning activities. According to Sweller, van
Merriénboer and Paas (1998), human beings have a limited capacity for working
memory, for this reason all instructional materials should be developed by
considering the cognitive load of learners. Thus, some key points and concepts of
OOP were highlighted in the instructions in order to lower the cognitive load of

students.

Yardim
Nasil Yapmaligyim?
* Kahtim metoduyla mevcut siniflardan yeni alt
sminiflar olusturabilirsin.
* Olusturulan alt sinifa yeni czellikler elslenebilir.

Nelere Oilslsat Etmeliyim?
* Sirif tarimlarisen baz alinan simifin tam ozellilsleri

o yeni olusan sinifa alstarilir.
A @ + Siiflar arasinda alt-ust iliskisi vardir.

o * Zaman icin tarih ve saat tipinde kayit tutulur.
Simif \ /

Analizci robotumuzu olusturmadan once yapilacals analize ait verilerin tutulacag: Analiz
Class i tarumlaman gerekiyor. Analiz yaparken analiz arasi. zaman. bulgular ve
analizi yapan ot T umarasin kaydetmemiz gerekiyor. Analiz Class i tarumlamals
icin Simf Tarmmlayici makinesinin Tarumila butonuna basmahsin.

Figure 5. The help menu

3.3.4 Associating game-play with object-oriented concepts and computational
thinking

The player’s role in the game is to work in the Turkish Space Agency (TSA) as a

programmer who is specialized in programming robots. According to the story of the

game, in 2048 the world is on the verge of a crisis because of global warming, and

scientists in the TSA are looking for a new planet for humans to live. The game is a

puzzle-solving simulation game in which students first build their own robots and

program them to explore the planet Asgard so as to decide determine whether

59



humans can live on that planet or not. There are eleven different activities with a
gradual increase in the level of difficulty. Throughout the game, students are given
instructions about their current mission through an APA, Professor Ekrem, in an
instruction area at the bottom of the screen.

In the first mission of the game, students are expected to build a chip which
will contain the specifications of a robot to be used in the exploration mission. The
chip in this activity is an analogy that represents the class concept. One of the
problems of teaching and learning of OOP stems from using a real programming
language to learn because of the complex syntax of the programming language
(Guzdial, 2008; Xinogalos, 2016). Therefore, in order to get students to be more
comfortable and not to worry about the syntax of a real programming language,
defining a class called robot is done through an imaginary machine called Class

Definer Machine (see Figure 6).

eeeee Sinit Tonimlama ®°°*°*°* @

Ozellils Veri Tipi
Sirif Ach:

s
v .
Tarumia o Waydet e

inceie |8 L Oz (CEICTI veri T T € -

duzenle v Ozelik Seg  Veri Tipi Se¢
Seri Numaras: Metin
Isim Say
Simif Tarmmlayici Hareket Hizi

Tagima Kapasitesl |

— &
Meralsh robotlar ile macerana baslamals icin lkendi robotunu programlamalisin. Sinf -
Tarmmiayicisini kullanarals robotunun ozellilslerini iceren Aobot classin tarmmia. Aobotunda
olmas gerelsen temel ozellilsler soyle: seri numaras.. isim. harelset hizi ve tasima
hkapasitesi. Bu ozellilslerin hangi turde veriler tuttuqunu da belirtmeyi unutmamalsin.

Figure 6. Class definition activity

60




After defining the robot class, students will be directed to create an instance of
the class by inserting the created chip into one of the robots. Three different robot
options are presented, and one of them may be chosen. When students choose a robot
to put their chip in, a pop-up window will appear. This pop-up window is used as an
analogy for constructors in OOP. The students create their own robot by indicating
the name, speed, and the carrying capacity of their robot (see Figure 7). The visual
representations of abstract concepts of OOP play an important role in novice
programmers’ learning of OOP (Ko6lling, 1999b). Therefore, the visualization of
abstract concepts of OOP are provided by an animation after students indicate the
specifications of their robots. In the animation, the chip enters the robot and brings it
to life. Thus, while the chip was representing an abstract concept, class, the live robot

refers to a specific instance of the class, an object.

_l

b=

Seri Numarasi : HI5-47

isim - (L

Harelset Hizi (m/sn): 860 70 8o

Tasima Kapasitesi(g): @10 @15 20

Aobot Gorsel : Yidiz Tozu

o Kaycdet °

Ouzenle

Siif Tarumiayici

- V /4
Aobotunun temel ozellilslerini bunyesinde barindiran cipi basariyla drettin. Simdi elsrana W\
gelen robotlardan birisini Sec butonuna basarals secmelisin. Robotu sectilsten sonra
karsina gelen pencerede robotunun ozellilslerini belirtip Aobot Classina ait bir Ob ject

tdretebilirsin.

Figure 7. Creating a robot instance activity

The next mission is about defining methods of the created robot by using code

blocks in the game. The APA in the instruction panel of the game presents the details

61



of methods to the students. The method creation window allows students to try their
methods and see the immediate results of their coding in a simulation screen on the
right side of the Method Definer Machine (see Figure 8). As stated earlier, novice
programmers have difficulties in developing algorithms to solve a problem
(Xinogalos, 2016). Therefore, this activity is specifically designed in a way that it
will help novice programmers to think their daily motions critically and divide basic
motions such as walking into small steps. The main purpose of the activity is to give
the novice programmers a smooth introduction to algorithmic thinking by making
them analyze their daily movements step-by-step. Another reason of letting students
to develop methods of the robot is to design a solution to a problem which is
independent of a particular situation. According to the literature, students have
problems changing their mindsets from procedural programming to OOP
(Hadjerrouit, 1999; Xinogalos, 2016). In other words, novice programmers develop
the habit of generating problem specific solutions in procedural programming, but
the nature of OOP requires programmers to develop generic solutions that could be
applicable in different problem situations.

After defining the basic movement methods of their robots, students are asked
to program their robot to walk towards the spaceship to start their journey in space.
In this activity, the basic layout of their programming environment will be introduced
in a concealable coding panel on the right side of the screen (see Figure 9). Methods
that are created by students are shown on the upper side of the coding panel. By
simply dragging and dropping these code blocks into the free space below the coding
panel, students will be programming their robots. There are two buttons at the bottom
of the coding panel: Run (Calistir) and Clear (Temizle). When the Run button is

clicked, the code blocks in the coding area are executed, and the coding panel

62



becomes inactive. The aim of disabling the coding panel is to get students to pay

close attention to the execution of their codes and find mistakes, if there are any.

° Temizle 0 Kaydet
A —N

Aobotunun ydrame metodunu tarimlamals icin acim atma harelsetini tarimlamalisin. Panelin N
sag tarafinda achm atmayla ilgili olan lsod bloklarini soldalki boslulslara dogru sirayla

dizmelisin. Kod siralamasini yapip adim sayisini girdilsten sonra dene butonuna basarals ‘
kodlarimin calsip calismadigiru gorebilirsin. 0

Metotlar

Sosskmal| 2onme
Yén Seg- |

donme

e

Temizie
A
o -
Kesfe cilsmals icin robotunu uzay aracina gidecels sekilde programlamalisin. Elsrarin sag
lkismuindalsi kodlama alarmina metotlar listesinden metotlar tutup sdrdlsleyerels lsodlama
yapabilirsin. Robotunun bir adwmi elsrandalsi bir birim lkareye denls geliyor. Kodlarini
olusturdulstan sonra butonuna basarals lkodlarim calhstirabilirsin.

k

Figure 9. Programming the robot to go to the spaceship

A visual and textual feedback mechanism, which is one of the most essential

characteristics of the game, is specifically designed to help novice programmers to

63



understand the execution of their program and debug their codes, because the lack of
such a mechanism in visual programming environments causes problems for novice
programmers (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). For example, if a code
block runs properly, the block will turn green, or if there is an error with the code
block, it will be red, and if an input is missing in any of the code blocks, the code
blocks will be yellow. Along with the visual feedback for code blocks, a pop-up
feedback message providing information about the error will also appear if there are

any bugs in the code (see Figure 10).

Metotlar )

| T (o
Yon Seg-

B=
\ e il

W HKod bloklariry cahstirman icin deger girisi
bekleyen ksod bloklarina deger girmelisin.
Kod blolklarinda adim sayisi ve yon k=

belirttilsten sonra telsrar denemelisin.

2
' R Temizie y.

=

Kesfe cilsmals icin robotunu uzay aracina gidecels sekiide programlamalisin. Elsranin sag
lismundalsi lkodlama alaruna metotlar listesinden metotlar: tutup surulsleyerels kodlama
yapabilirsin. Robotunun bir adimi elsrandalsi bir birim kareye denls geliyor. Kodlarini
olusturdulstan sonra butonuna basarals lsodlariru cahstirabilirsin.

Figure 10. The feedback message

The next mission introduces the encapsulation concept of OOP. Students are
asked to establish a connection between the created class, robot, and spaceship class
so that their robot will be able to use methods of the spaceship to go to the planet
Asgard. This activity introduces one of the main reasons for using the encapsulation

process in programming, which is ensuring the security of a class. Students are able

64



to change access conditions of the methods of spaceship class by simply clicking on

the radio buttons namely, as public and private (see Figure 11).

Uzay Melsigi
Metot Ach Erisim durumu

Yalsit Kapag Ac __Public v |Private
Harelset £t Public v|Private
Yulsari D6n Public [v|Private
Asagi dén _|Public V|Private
Saga don _ Public v Private
Sola don Public (v|Private
Isils Hizina Geg _|Public |v|Private

9 soucct

-

A Panel Ac
= ;
- i
. Uzay mekigi simifindalsi metotiar guvenlils nedeniyle Encapsulation islemi yapilarals
* gizlenmis durumda. Aobotunia disaridan mekigi kullanmals icin harelset etme ve yon
degistirme metotlarim ortals erisime acmalsin. Panel Ac dugmesine basarals uzay mekigi

' sinifindalsi metotlarin erisim durumlarim dazenleyebilirsin.

w v

Figure 11. Encapsulation activity panel

After properly setting the access conditions of the methods of the spaceship, a
mini space map will be displayed to students (see Figure 12). According to the story
of the game, this mini map is shown in a simulation screen because the spaceship
travels with the speed of light and it is not possible to drive the spaceship manually at
such speed. Therefore, they need to program their journey from planet Earth to
Asgard in advance. The same coding panel appears on the right side of the screen,
but this time in the methods part of the coding panel students will see the methods of
the spaceship. If students arrive at one of the other planets or leave behind the mini
map, they will get a warning message reminding them of their mission objective.

When the spaceship arrives on Asgard, students start to program their robot to
collect sample objects, small stones, from the planet’s surface (see Figure 13). There

are two different small stones to collect and huge rocks as obstacles on the surface of

65



=
il
Yardum ‘Aobotum) o

N

/
/
Temizle /

Sag ust kosedeli gezegen kesif yapacagimiz Asgard gezegeni. Uzay mekigimiz isils I'uztm:la(<
harekset ettigi icin melsigimizi bu gezegene gidecels selilde simulasyonda programlamaliyiz.
Senin cizecegin rotaya gore mekigimiz ucacals. Elsrarun sag alarundalksi lsodlama alanin ‘ :
kullanarals melsigimizi Asgard’a gidecels sekilde programla ve kesfe basla!

- . -Q
Mang,

L e e

Gizie Metotiar

~ BEE8
\\mnmn

-
\

Temizie

Asgard gezegenindelsi ills kesfimizde lsuculs tas ornelslerini toplamarmiz gereksiyor.
Aobotunu yerdelksi taslardan birisini alacals selilde programia. Robotunu programiarken
gezegenin yuzeyinde bulunan buyuls kayalarin hareketimize engel olmamasimina dilkat
etmelisin.

Figure 13. First exploration mission

the planet. Each of the stones has four alternative locations, and they are positioned
randomly in one of the alternatives. This ensures that students are not able to use the
same code sequence as their peers to solve the problem in this mission. In this
activity, students need to program their robot so that it can collect the stones without
hitting the huge rocks or leaving the exploration area. In order to write the code of

their solutions to a problem, students need to understand the problem and divide it

66



into smaller parts and generate a strategic solution to these smaller parts (Gomes &
Mendes, 2007; Lahtinen, Ala-Mutka, & Jarvinen, 2005). Therefore, the collection
task of the small stones is divided into two main parts. In the first part, students
program their robot just to pick one of the stones and then clear the coding panel to
program their robot to put the stone into the gathering point in front of the ship. In
the second part of the mission, students are asked to program their robot to collect
the other small stone and put it into to the gathering point within a single execution
of their code.

When students finish collecting the stones and have put them in the gathering
point, they will be asked to program the spaceship to travel back to the Earth from
Asgard. Students program their spaceship according to the same principles that were
used for going to the Planet Asgard.

In the next activity, students are introduced to the inheritance concept and
why such a feature is needed within an authentic problem situation in the story.
According to the story of the game, the professor welcomes the player’s robot when
it comes back to the TSA. In an animation, the professor informs students that the
analysis of the stones from the first mission on Asgard was promising. The professor
adds that scientists in the TSA need liquid and gas samples from Asgard in order to
decide whether this planet is suitable for humans to live.

In the meantime, the professor states that “they have little time left and they
need a new robot to analyze the samples and accelerate the exploration mission.”
Therefore, students are asked to create a new robot class, analyzer robot, for their
final exploration mission. This new robot class needs to be able to collect solid and
gas samples from Asgard, along with having all properties of previously defined

robot class. Therefore, students will need to define the new class which will be

67



inherited from the robot class and have its own unique properties. The previous Class
Definer Machine was improved with a new add-on that enables students to select the
base class while defining a new one (see Figure 14). When students define the new
class according to the instructions of the professor, they will instantiate an instance

of the newly defined class the same way they did in the second activity.

,.J.qnnq,_

h Tanimlama ***°° x

Ozellils Veri Tipi
Sirif Adh:

HKat: Onitesi Sayr

Baz Alinan
Sinif Ach:

inif Se
Tarumia o o Baycet °
lobot Gorsel = 2
aliz —

Incele i ]
B veri Tioi - EEEEEEEE © =

ddzenle

Simif Tanimlayici

- V /4
Analizci Robot Class’l. Robot Class ' inin tum ozellils ve davrarnislarinu inheritance islemiyle -
miras olarals alan bir derived class olacals. Analizci robotun kati. sivi ve gaz haldelsi

ornelsleri haznesinde ayri ayri salsdlayabilmeli. Bu nedenle robot sinifirn baz alan ve kati,

sivi ve gaz unitelerine sahip olan bir Analizci Robot Class’| tarmmlamalsin.

Figure 14. Inherited class define activity

When students build their analyzer robot, they need to define new methods of
the robot according to the given directions. In this activity, students use polymorphic
methods by defining new methods and altering old ones. The professor indicates that
the new robot should have the ability to collect and analyze the samples according to
the physical state of the matter. The need and the underlying logic of polymorphic
methods will be explained to students by embedding into the story of the game. The
so-called Method Definer Machine was improved with a new add-on which shows

the inherited methods of the class on the left side and the newly defined polymorphic

68



methods on the right side of the panel (see Figure 15). The same method defining

procedures are held for the polymorphic method defining activity.

Metotlar

Analiz (Kati] :

Aobot Sinifindan Miras
Alinan Metotlar:
Analiz (5vi1):

Ydrume :Tanmmi

(Gaz):| Tammia
Yiils Alma :Tarumii Ansiz i ,
- - Yulks Aima
b denme ::m (sivi madde)*
Uls Bogaltma : Ydls Alma ( Tarumia

(gaz madde]*

so@ o PLalstir oee

Tarumlamals istedigin metodun yarindalsi Tarmmla butonuna basarals tarimlayabilirsin. Her
bir metodu tarimiarisen siraladigin lsod blolslarimin yulsaridan asagiya dogru calstigin
unutmamalsin. Metotlariri olusturan lsodlari dogru siraya dizdilsten sonra metodunu
kaydedebilirsin.

Figure 15. Defining polymorphic methods

After finishing the polymorphic method activity, students play a
reinforcement activity for encapsulation concept. This time students try to establish a
connection between the newly created analyzer robot and the analysis machine in the
TSA station so that collected samples will be analyzed while it is in Asgard. The aim
of this activity is to emphasize another use of encapsulation concept, which is hiding
unnecessary details of a complex operation from users. This activity has the same
layout as the previous encapsulation mission, except for the fact that the
encapsulation panel is part of the analyze machine.

In the last activity of the game, students go on their final exploration mission
on the planet Asgard with their freshly created analyzer robot. The second
exploration on Asgard is in a different part of the planet so that students will

encounter different obstacles on the planet’s surface. Another important difference of

69



this activity is that students use polymorphic methods of previously defined as the

“pick an object” method and the “put an object” method (see Figure 16).

A5
’ ! 1
Yarcm ). Robotum)

Metatlar =

voi aimall o IO
Seg S» \unsc:

A=

. Bu kesfimizde lkat. sivi ve gaz Grnelslerini taplamamlz geremyar Aobotunu t c
Q gezegen yuzeyinde bulunan kuculs tas!. sivi ve gaz ilerinden ornels ahp uzay

mekigimizin onundelsi banda biralsacals selsilde pro

-a™ .

Figure 16. Final explorations in Asgard

With a dropdown list addition to the method blocks, students are able to
select the physical state of the material that they need to pick or put. Thus, the
necessity of the polymorphic methods are clarified in an authentic problem situation.
In the final episode of the game, there is a small stone, a puddle, and a gas beam on
the surface of the planet, and students have to program their robot to collect these
three samples from the surface and put them in the gathering point in a single
execution of their codes. When all three objects are collected, a final animation of the

game will play.

3.4 Instruments
In the present study, four sets of data collection instruments were used: (1) a Creative
Problem-Solving Test (Ozkok, 2005), (2) an Attitude Scale for Serious Game

Assisted Programming Learning (Kegeci, Alan, & Zengin, 2016), (3) a pre-test, and

70



(4) a post-test. The aim of the creative problem-solving test (see Appendix A) was to
measure students’ creative problem-solving skills. The test consists of 30 multiple-
choice questions, each with 5 options; there is one correct answer and four distracters
for each question. Each correct answer was assigned 1 point while each wrong
answer was assigned 0 points. The Cronbach coefficient alpha of the test is 0.94. Ten
of the questions in the test cover the identification of a problem, twelve involve the
decomposition of a problem, and the remaining eight questions are about
interpretation and making judgement skills.

The attitudes for serious game assisted programming learning were indicated
on a 5-point Likert scale that ranged from (1) strongly disagree to (5) strongly agree
(see Appendix C). There are 28 statements, 22 positive and six negative ones in the
scale, and the Cronbach coefficient alpha reliability of the test is 0.833. Students
were divided into two groups based on their attitude, either positive or with negative.
Each statement was graded according to the weight of the items, with 1 point
corresponding to strongly disagree to 5 points corresponding to strongly agree. The
negative items in the scale were graded reversely.

There was no single test that evaluated both the conceptual knowledge of
OOP and CT skills at the same time, for which reason the researcher prepared a test
by adapting items from three different tests to measure students’ conceptual
knowledge of OOP and CT skills (see Appendix E). Eight questions of the test were
adapted from an object-oriented computer programming semantic knowledge
instrument (Gerola, 1997). The internal consistency reliability of alpha was 0.614.
Eight questions were adapted from another instrument used in a doctoral dissertation
(Pitsatorn, 2003). Pitsatorn (2003) and two instructors checked the tests and answers

to assure reliability. The last three questions, questions 17 to 19, were adapted from

71



another study (Basu, 2016) in which students’ science and CT learning were
measured. The reliability of the instrument was not provided by the researcher. Table
5 shows the distribution of the adapted test items. After adapting all these items into
one instrument, an instructor, a researcher and | matched learning objectives with
measurement items (see Table 6) and checked pre- and post-tests in order to assure
the reliability of the developed instrument. Additionally, the Cronbach alpha
coefficient alpha of the instrument was also calculated for the pre-test and the post-
test based on the answers of participants of the study. The Cronbach alpha coefficient

of the pre-test was .83, and of the post-test was .63.

Table 5. Distribution of the Adapted Test Items

Test item number Adapted from Measured learning unit
1-8 Gerola, 1997 Conceptual knowledge of OOP
9-16 Pitsatorn, 2003 Conceptual knowledge of OOP
17-19 Basu, 2016 Computational thinking skills

While the aim of the pre-test was to measure students’ existing conceptual
knowledge of OOP and CT skills, the aim of the post-test was to measure students’
conceptual knowledge of OOP and CT skills after they studied the learning unit with
the game developed. The order of the questions and options were changed in the
post-test. Seventeen of the questions were multiple-choice, each with four options;
there was one correct answer and three distracters for each question. The last two
questions of the test were open-ended questions which asks students to provide a
solution to the given problems by building a solution algorithm and writing a simple
program with pseudo codes. Each correct answer was graded out of 5 points; each

wrong answer received 0 points.

72



Table 6. Learning Objectives and Corresponding Measurement ltem
Numbers

Instructional objective Corresponding test

item
Explain class concept 4
Identify object concept 5
Distinguish a class from an object 3
Distinguish object instantiation from class declaration process 10
Give an example of a class and instance from the class 12
State the roles of class attributes 8
Explain object instantiation process 2
State the difference between attributes of a class and attributes of an object 15
Define method concept 16
Explain how classes communicate with each other 13
Explain encapsulation concept 6
Explain the role of encapsulation in object-oriented programming 11
Explain polymorphism concept 7
Explain method overriding process 14
Differentiate a base (derived) class from a sub-class in an inheritance relationship 9
List the characteristics of object-oriented programming 1
Understand conditional statements 17
Write a conditional statement 18
Design a step-by-step solution to a problem 19

3.5 Data collection procedures
Prior to the data collection and treatments of the study, ethical approval (see
Appendix F) was obtained from the Committee on Human Research of Bogazici
University (INAREK). The study was conducted in three sessions — pre-test,
treatment and post-test — that took place on two different days over a period of 2
weeks, according to the availability of the participants.

Data collection and the experiment took place in the computer laboratories of

the Faculty of Education at the university where the students study. Before starting

73



the experiment, the researcher informed the participants about the procedure of the
experiment and indicated that they were free to participate (or not) in the experiment.
The researcher obtained a written consent form from the students who volunteered to
participate in the experiment (see Appendix G).

In two groups, freshman and sophomore students, all participants were given
two tests: a Creative Problem-Solving Test (Ozkok, 2005) and a pre-test on
conceptual knowledge of OOP and CT skills. The pre-test session lasted
approximately 50 minutes. A week after the pre-test phase, the second and third
sessions of the study were performed on the same day. In the second part of the
study, students in both groups played the game developed, Curious Robots:
Operation Asgard (Merakli Robotlar: Operasyon Asgard), under the supervision of
the researcher and the instructor of the course for about one and a half lesson period
(90 minutes). After a 15-minute break, in the last session of the experiment the post-
test was administered to students to measure conceptual knowledge of OOP and CT
skills. At the end of the third phase, the researcher administered an attitude scale for
serious game-assisted programming learning. The administration of the post-test and

attitude scale took 40 minutes.

3.6 Data analysis

In order to answer the research questions, a series of different statistical tests were
conducted. Data sets of the students’ pre-test scores, post-test scores, creative
problem-solving test scores and the attitude scale scores were first matched for each
student in both groups. The data were then checked to ensure that each student had
scores for all five measurements. Four students who did not have all of these scores

were dropped from the study. For the data analysis of this study, quantitative

74



methods were used. First, the descriptive statistics of the achievement scores
(difference between pre-test and post-test) and the normal distributions of each
group’s data were examined before conducting hypothesis testing through either
parametric or nonparametric methods. In all statistical tests, the IBM SPSS statistical
software (Version 24) was used.

The first question (Is there any significant difference between the post-test
and pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate
students with no programming experience?) was answered as follows. First, the
Shapiro-Wilk normality test was applied in order to check the distribution of
students’ pre-test scores and post-test scores. The post-test scores were normally
distributed, but the pre-test scores were not distributed normally. Therefore, a
nonparametric, Wilcoxon signed-rank test was conducted in order to analyze the
difference between the post-test and pre-test scores on conceptual knowledge of OOP
and CT skills.

For the second question, (Is there any significant difference between the post-
test and pre-test scores on conceptual knowledge of OOP and CT skills of
undergraduate students with procedural programming experience?), first, Shapiro-
Wilk test was applied in order to check the distribution of the data. Then, a
parametric, paired-samples t-test was conducted because the data was distributed
normally.

In order to answer the third question, (Is there any significant difference
between the achievement scores on conceptual knowledge of OOP and CT skills of
undergraduate students with no programming experience, and of undergraduate
students with procedural programming experience?), the following methods were

implemented. First, a Shapiro-Wilk test was conducted to check the distribution of

75



the achievement scores of students in both groups. Then, to compare the matched
groups, an independent-samples t-test was used because the achievement scores of
students with no programming experience and students with procedural
programming experience were distributed normally.

The fourth question of the study (To what extend do the students’ creative
problem-solving skills and attitudes towards digital game-based learning of
programming influence the students’ achievement score on the conceptual
knowledge of OOP and CT skills?) was answered by conducting a two-way ANOVA
test. In order to test whether the level of creative problem-solving skills and attitudes
towards digital game-based learning of programming together or pairwise influence
the students’ achievement scores, a general linear model 2x2 ANOVA test was
conducted. Additionally, a series of Pearson’s r and Spearman’s rho tests were
conducted to analyze the correlations among students’ CPSS, attitudes towards
digital game-based learning of programming and achievement scores in detail. First,
a series of Shapiro-Wilk test was conducted to assess the distribution of students’
data. Then, a Pearson correlation coefficient was computed if the data was normally
distributed, and a Spearman’s rho was computed if the data was not normally

distributed.

76



CHAPTER 4

RESULTS

This chapter provides results of the data analyses conducted to answer the research
questions. Specific findings for each research question are presented under title of the

each group of research questions.

4.1 Learning gain of freshman and sophomore students

4.1.1 Learning gain of freshman students

Research question 1: Is there any significant difference between the post-test and
pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate
students with no programming experience?

In order to analyze the pre-test and post-test scores of freshman students
without programming experience, first normality of the data was checked to decide
the type of statistical test to be conducted. A Shapiro-Wilk’s test showed that the
post-test scores were normally distributed (p > .05) but that pre-test scores were not
(see Table 7). Therefore, a nonparametric, Wilcoxon signed-rank, test was conducted
to analyze the difference between the post-test and pre-test scores on conceptual

knowledge of OOP and CT skills.

Table 7. Shapiro-Wilk Result of Pre-test and Post-test Scores

Statistics df Sig.
Pre-test 797 30 .000
Post-test .959 30 .295

7



A Wilcoxon signed-rank test was conducted to examine the difference in the
pre-test and post-test scores of students without programming experience. Table 8
shows the descriptive statistics of pre-test and post-test scores of freshman students.
A Wilcoxon signed-rank test (z = -4.797, p = 0.000) revealed that there was a
statistically significant increase in the post-test scores of students after playing the
developed game with a large (r = .87) (Rosenthal & Rosnow, 1984) effect size (see
Table 9). The median score on conceptual knowledge of OOP and CT skills test
increased from pre-test (Md = 5.00) to post-test (Md = 40.00) after playing the

developed game.

Table 8. Descriptive Statistics of the Pre-test and Post-test Scores of Freshman
Students

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 10.67 5.00 30 12.229 2.233
Post-test 40.00 40.00 30 16.713 3.051
Table 9. Wilcoxon Signed Rank Test for Pre-test and Post-test
N Mean Rank Sum of Ranks
Negative Ranks 02 .00 .00
Positive Ranks 300 15.50 465.00
Post-test — Pre-test
Ties o°¢
Total 30

a. post-test < pre-test; b. post-test > pre-test; c. post-test = pre-test

4.1.1.1 Freshman students’ learning gain on conceptual knowledge of OOP
Research question 1a: Is there any significant difference between the post-test and
pre-test scores on conceptual knowledge of OOP of undergraduate students with no

programming experience?

78



In order to analyze freshman students’ pre-test and post-test scores on
conceptual knowledge of OOP, first the normality of the data was checked to decide
which statistical test to be conducted. Table 10 shows the descriptive statistics of the
pre-test and post-test scores. A Shapiro-Wilk’s test revealed that the post-test scores
were normally distributed but that the pre-test scores were not (see Table 11).
Therefore, a nonparametric, Wilcoxon signed-rank test was conducted. The result of
the test (z = -4.793; p = 0.000) showed that there was a statistically significant
increase in the post-test scores of students after playing the developed game with a
large effect size r = .87 (see Table 12). The median score on conceptual knowledge

of OOP test increased from 0.00 to 35.00 after playing the developed game.

Table 10. Descriptive Statistics of Freshman Students' Pre-test and Post-test
Results of Conceptual Knowledge of OOP

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 6.67 .00 30 9.589 1.751
Post-test 33.50 35.00 30 14.090 2.573

Table 11. Shapiro-Wilk Result of the Pre-test and Post-test Scores on Conceptual
Knowledge of OOP

Statistics df Sig.
Pre-test .689 30 .000
Post-test .966 30 427

Table 12. Wilcoxon Signed Rank Test for Pre-test and Post-test Scores on
Conceptual Knowledge of OOP

N Mean Rank Sum of Ranks
Negative Ranks 02 .00 .00
Positive Ranks 300 15.50 465.00
Posttest - Pretest .
Ties o°
Total 30

a. Post-test < pre-test; b. Post-test > pre-test; c. Post-test = pre-test

79



The frequency distribution of the number of correct answers to questions
involving OOP concepts of freshman students are shown in the Table 13. Overall,
there was an increase in the number of correct answers to all of the questions for the
instructional objectives after playing the developed game. The learning objectives
with the highest improvement were: stating the roles of class attributes,
distinguishing object instantiation from class declaration process, stating the
difference between attributes of a class and attributes of an object, explaining how

classes communicate with each other, and listing the characteristics of OOP.

Table 13. Frequency Distribution of Freshman Students’ Number of Correct
Answers for OOP Concepts

Instructional Objective Correct Answers
Pre-test  Post-test
Explain class concept 1 13
Identify object concept 4 12
Distinguish a class from an object 9 18
Distinguish object instantiation from class declaration process 1 15
Give an example of a class and instance from the class 1 6
State the roles of class attributes 1 16
Explain object instantiation process 2 11
State the difference between attributes of a class and attributes of an object 4 18
Define method concept 2 8
Explain how classes communicate with each other 4 18
Explain encapsulation concept 2 13
Explain the role of encapsulation in object-oriented programming 6 18
Explain polymorphism concept 0 4
Explain method overriding process 2 10
Differentiate a base (derived) class from a sub-class in an inheritance relationship 0 6
List characteristics of object-oriented programming 1 15

80



4.1.1.2 Freshman students’ learning gain on CT skills

Research question 1b: Is there any significant difference between the post-test and
pre-test scores on CT skills of undergraduate students with no programming
experience?

In order to analyze the pre-test and post-test scores on CT skills of freshman
students’ without programming experience; the normality of the data was checked to
decide which statistics to be used. The descriptive statistics of pre-test and post-test
scores of sophomore students were presented in Table 14. Shapiro-Wilk’s test
showed that the pre-test scores and post-test scores were not normally distributed
(see Table 15). Therefore, a Wilcoxon signed-rank test was conducted to analyze the
difference between the post-test and pre-test scores on CT skills of freshman

students.

Table 14. Descriptive Statistics of Freshman Students' Pre-test and Post-test
Scores on CT Skills

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 4.00 5.00 30 3.806 .695
Post-test 6.50 7.50 30 5.438 .993

Table 15. Shapiro-Wilk Result of Pre-test and Post-test Scores on CT Skills

Statistics df Sig.
Pre-test .253 30 .000
Post-test .240 30 .000

A Wilcoxon signed-rank test (z = -2.500; p = 0.012) revealed that there was a
statistically significant increase in the post-test scores of students after playing the

developed game with a medium (r = .45) effect size (see Table 16).

81



Table 16. Wilcoxon Signed Rank Test for Freshman Students’ Pre-test and Post-
test Scores on CT skills

N Mean Rank Sum of Ranks
Negative Ranks 3 3.50 10.50
Positive Ranks 10P 8.05 80.50
Post-test — Pre-test
Ties 17¢
Total 30

a. Post-test < pre-test; b. Post-test > Pre-test; c. Post-test = Pre-test

The frequency distribution of the number of correct answers to questions for
the instructional objectives involving CT skills of freshman students are shown in the
Table 17. Overall, there was an increase in the number of correct answers to all three
questions for the instructional objectives after playing the developed game. The

highest improvement was in the learning objective of writing a conditional statement.

Table 17. Frequency Distribution of Freshman Students’ Number of Correct
Answers for CT Skills

. o Correct Answers
Instructional Objective
Pre-test Post-test
Understand conditional statements 18 20
Write a conditional statement 6 14
Design a step-by-step solution to a problem 0 5

4.1.2 Learning gain of sophomore students

Research question 2: Is there any significant difference between the post-test and
pre-test scores on conceptual knowledge of OOP and CT skills of undergraduate
students with procedural programming experience?

In order to analyze the pre-test and post-test scores of sophomore students
with procedural programming experience, the normality of the data was checked to
decide which statistical test to be used. The descriptive statistics of pre-test and post-
test scores of sophomore students are presented in Table 18. The students’ pre-test

scores and post-test scores were normally distributed, as assessed by a Shapiro-

82



Wilk’s test (see Table 19). Therefore, a parametric, paired-samples t-test was
conducted to analyze the difference between the post-test and pre-test scores on
conceptual knowledge of OOP and CT skills. The analysis (t(30) = 4.558, p < 0.001)
showed that playing the developed game elicited a statistically significant increase in
the post-test mean scores compared to the pre-test mean scores with a large effect

size (Cohen’s d = .92) (see Table 20).

Table 18. Descriptive Statistics of Pre-test and Post-test Scores of Sophomore
Students

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 40.32 45.00 31 14.772 2.653
Post-test 53.48 50.00 31 13.721 2.464

Table 19. Shapiro-Wilk Result of Pre-test and Post-test Scores of Sophomore
Students

Statistics df Sig.
Pre-test .955 31 211
Post-test .973 31 .614

Table 20. Paired Sample Test for Post-test and Pre-test of Sophomore Students

Std. Sig.
Mean L t df . Cohen’s d
Deviation (2-tailed)

Posttest-Pretest 13.161 16.077 4.558 30 .000 .923

4.1.2.1 Sophomore students’ learning gain on conceptual knowledge of OOP
Research question 2.a: Is there any significant difference between the post-test and
pre-test scores on conceptual knowledge of OOP of undergraduate students with
procedural programming experience?

In order to analyze the pre-test and post-test scores of sophomore students

with procedural programming experience, the normality of the data was checked to

83



decide which statistical test to be used. The descriptive statistics of pre-test and post-
test scores of sophomore students were presented in Table 21. Pre-test scores and
post-test scores of students were normally distributed as assessed by Shapiro-Wilk’s
test (see Table 22). Therefore, a parametric, paired-samples t-test was conducted to
analyze the difference between the post-test and pre-test scores on conceptual

knowledge of OOP.

Table 21. Descriptive Statistics for Sophomore Students’ Pre-test and Post-test
Scores of Conceptual Knowledge of OOP

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 32.26 35.00 31 12.964 2.328
Post-test 42.58 45.00 31 11.963 2.149

Table 22. Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test on
Conceptual Knowledge of OOP

Statistics df Sig.
Pre-test .935 31 .060
Post-test .966 31 413

The result of the test (t(30) = 3.359, p = 0.002) showed that playing the
developed game elicited a statistically significant increase in the post-test mean
scores compared to the pre-test mean scores, with a large (d = .83) effect size (see

Table 23).

Table 23. Paired-Samples t-Test for Sophomore Students' Post-test and Pre-test
Scores on Conceptual Knowledge of OOP

Std. Sig.
Mean o t df . Cohen’s d
Deviation (2-tailed)
Post-test — Pre-test 2.839 4.705 3.359 30 .002 827

84



The frequency distribution of the number of correct answers for questions
involving OOP concepts of sophomore students are shown in Table 24. Overall,
there was an increase in the number of correct answers to 15 of the questions for the
instructional objectives after playing the developed game. The learning objectives
with the highest improvement were: stating the difference between attributes of a
class and attributes of an object, distinguishing object instantiation from class
declaration process, explaining method overriding process and explaining class
concept. However, there was not an increase or a decrease in one of the instructional
objectives which is explaining encapsulation concept. In addition, the number of
correct answers to pre-test and post-test questions for three instructional objectives
was decreased after playing the developed game. These three learning objectives
were: explaining polymorphism concept, differentiating a base (derived) class from a

sub-class and listing characteristics of OOP.

Table 24. Frequency Distribution of Sophomore Students” Number of Correct
Answers for OOP Concepts

) o Correct Answers
Instructional Objectives

Pre-test Post-test

Explain class concept 12 21
Identify object concept 17 19
Distinguish a class from an object 22 28
Distinguish object instantiation from class declaration process 8 21
Give an example of a class and instance from the class 13 17
State the roles of class attributes 6 9
Explain object instantiation process 9 15
State the difference between attributes of a class and attributes of an object 8 23
Define method concept 9 13
Explain how classes communicate with each other 14 16
Explain encapsulation concept 14 14
Explain the role of encapsulation in object-oriented programming 15 16
Explain polymorphism concept 15 10
Explain method overriding process 10 20
Differentiate a base (derived) class from a sub-class in an inheritance relationship 16 12
List characteristics of object-oriented programming 12 10

85



4.1.2.2 Sophomore students’ learning gain on CT skills

Research question 2.b: Is there any significant difference between the post-test and
pre-test scores on CT skills of undergraduate students with procedural programming
experience?

In order to analyze the pre-test and post-test scores of sophomore students
with procedural programming experience, the normality of the data was checked to
decide which statistics to be used. By inspecting the boxplots of the data, two outliers
were found and excluded from the analysis. The descriptive statistics of pre-test and
post-test scores of sophomore students are presented in Table 25. The Pre-test scores
and post-test scores of students were not normally distributed as assessed by Shapiro-
Wilk’s test (see Table 26). Therefore, a nonparametric, Wilcoxon signed-rank test
was conducted in order to analyze the difference between the post-test and pre-test
scores on CT skills. The test (z = -2.849; p = 0.004) revealed that there was a
statistically significant increase in the post-test scores of students after playing the
developed game with a large effect size (r = .53) (see Table 27). The sophomore
students’ median score in CT skKills test increased from pre-test (Md = 10.00) to post-

test (Md = 13.00) after playing the developed game.

Table 25. Descriptive Statistics for Sophomore Students' Pre-test and Post-test
Scores of CT Skills

Std. Error
Mean Median N Std. Deviation
Mean
Pre-test 8.62 10.00 29 4.411 .819
Post-test 11.66 13.00 29 3.801 .706

Table 26. Shapiro-Wilk Result of Sophomore Students' Pre-test and Post-test
Scores on CT Skills

Statistics df Sig.
Pre-test .830 29 .000
Post-test .769 29 .000

86



Table 27. Wilcoxon Signed Rank Test Result for Sophomore Students' CT Skills

N Mean Rank Sum of Ranks
Negative Ranks 28 11.50 23.00
Positive Ranks 16° 9.25 148.00
Post-test — Pre-test
Ties 11°¢
Total 29

a. Post-test < Pre-test; b. Post-test > Pre-test; ¢. Post-test = Pre-test

The frequency distribution of the number of correct answers for questions
involving CT skills of sophomore students are shown in the Table 28. Overall, there
was an increase in the number of correct answers to all three questions for the
instructional objectives after playing the developed game. Designing a step-by-step

solution to a problem learning objective was the one with the highest improvement.

Table 28. Frequency Distribution of Sophomore Students” Number of Correct
Answers for CT Skills

Correct Answers
Instructional Objective
Pre-test Post-test
Understand conditional statements 26 27
Write a conditional statement 16 20
Design a step-by-step solution to a problem 8 21

4.2 Comparison of the achievement scores of freshman and sophomore students
Research question 3: Is there any significant difference between the achievement
scores on conceptual knowledge of OOP and CT skills of undergraduate students
with no programming experience, and of undergraduate students with procedural
programming experience?

First, the students’ achievement scores were calculated by subtracting their

pre-test scores from the post-test scores. In order to analyze the achievement scores

87



of freshman students without programming experience and of sophomore students
with procedural programming experience, the normality of the data was checked to
decide which statistical test to be applied. Achievement scores for each group were
normally distributed, as assessed by a Shapiro-Wilk’s test (see Table 29). Thus, to

compare the matched groups, an independent-samples t-test was conducted.

Table 29. Shapiro-Wilk Result of Achievement Scores of Freshman and
Sophomore Students

Statistics df Sig.
Freshman Students .936 30 .072
Sophomore Students 977 31 734

An independent-samples t-test was run to determine if there were any
significant difference in the achievement scores of freshman and of sophomore
students. Table 30 shows the descriptive statistics of the achievement scores of
freshman and sophomore students. There was homogeneity of variances, as assessed
by Levene’s test for equality of variances (see Table 31). The independent-samples t-
test revealed that there was a significant difference between the achievement scores
of the freshman students (M = 29.33, SD = 14.55) and of the sophomore students (M

= 13.16, SD = 16.08); t (59) = 4.115, p < .001 (see Table 31).

Table 30. Descriptive Statistics for Students' Achievement Scores

Groups Mean Median Std. Deviation N Std. Error
Mean
Freshman 29.33 30.00 14.547 30 2.656
Sophomore 13.16 15.00 16.077 31 2.888
Table 31. Independent-Samples t-Test for Students' Achievement Scores
Levene Statistics Sig. Mean Std. Error
F Sign t df (2-tailed) Difference Difference
721 .399 4.115 59 .000 16.172 3.930

88



4.3 Covariate effects on the achievement scores

Research question 4: To what extent do the students’ creative problem-solving skills
(CPSS) and attitudes towards digital game-based learning of programming influence
the students’ achievement score on the conceptual knowledge of OOP and CT skills?

In order to test whether CPSS and the attitudes towards digital game-based
learning of programming together or pairwise influence the students’ achievement
scores, a general linear model 2x2 ANOVA test was conducted.

Before conducting the test of covariate effects, participants’ CPSS test scores
and attitudes survey results were inspected to categorize the students. To categorize
CPSS, the CPSS test scores that were lower than 15 out of 30 constituted the low-
level group (n = 17), and the ones higher than or equal to 15 out of 30 constituted the
high-level group (n = 44). To categorize students according to their attitudes towards
digital game-based learning of programming, 105 points out of 150 points was
designated as threshold because a 70 percent is set as a success rate. Hence, 32
students were assigned to the low-attitude group, while 29 students were assigned to
the high-attitude group. An inspection of boxplots of the data showed that there were
two outliers, which were excluded from the analysis. The normality of the data was
assessed using a Shapiro-Wilk’s normality test for each group of the design.
Residuals were normally distributed (see Table 32), and there was homogeneity of

variances (F = 2.421, df1 = 3, df2 = 55, p = 0.76).

Table 32. Shapiro-Wilk Result of Residuals for Achievement Scores

The Level of

Creative Problem- Attitudes Statistics df Sig.

Solving Skills

Low Neggt_ive 921 10 .365
Positive .807 5 .093

High Neggt_ive 917 20 .088
Positive .983 24 .939

89



A two-way ANOVA test was conducted to examine the effects of the level of

CPSS and attitudes towards digital game-based learning of programming on

students’ achievement scores. According to a general linear model 2x2 ANOVA test,

the following statistical outcomes were found (see Table 33):

(1) There was no statistically significant two-way interaction between the students’
level of CPSS and attitudes towards digital game-based learning of
programming on achievement scores, F(1, 55) = .229, p = .634.

(2) There was no statistically significant interaction between the students’ level of
CPSS and achievement scores, F(1, 55) = .299, p = .586.

(3) There was no statistically significant interaction between the students’ attitudes
towards digital game-based learning of programming and achievement scores,

F(1, 55) = 1.124, p = .294.

Table 33. Two-way ANOVA Test for Freshman and Sophomore Students'
Achievement Scores

Type 111 Sum Mean ] Partial Eta

Source df F Sig.
of Squares Square Squared

CPSS 72624 1 72.624 .299 .586 .005
Attitude 272624 1 272.624 1.124 .294 .020
CPSS * attitude 55.603 1 55.603 .229 634 .004
Error 13338.833 55 242.524
Total 39774.000 59

Additionally, a series of Pearson’s r and Spearman’s rho tests were conducted
to analyze the correlation between students’ CPSS, attitudes towards digital game-
based learning of programming and achievement scores in detail. The normality of
the data was checked to decide which statistical test to be applied. Students’ all
scores were normally distributed but achievement score in CT skills was not (see

Table 34). A Pearson correlation coefficient was computed if the data was normally

90



distributed, and a Spearman’s rho was computed if the data was not normally

distributed. Three outliers were found in the CT skills achievement data and

excluded from the analysis. The following statistical outcomes were found (see Table

35):

(1) A Pearson correlation coefficient was computed to assess the relationship
between the students’ overall achievement scores and their CPSS scores. There
was a weak negative, statistically non-significant, correlation between the two
variables, r(59) = -.153, p = .239.

(2) A Pearson correlation coefficient was computed to assess the relationship
between the students’ achievement scores in OOP concepts and their CPSS
scores. There was a weak negative, statistically non-significant, correlation
between the two variables, r (59) =-.167, p =.197.

(3) A Spearman’s rho was computed to assess the relationship between the students’
achievement scores in CT skills and their CPSS scores. There was a weak
positive, statistically non-significant, correlation between the two variables, rs
(56) = .032, p = .809.

(4) A Pearson correlation coefficient was computed to assess the relationship
between the students’ overall achievement scores and their attitude scores. There
was a weak negative, statistically non-significant, correlation between the two
variables, r(59) = -.157, p = .226.

(5) A Pearson correlation coefficient was computed to assess the relationship
between the students’ achievement scores in OOP concepts and their attitude
scores. There was a weak negative, statistically non-significant, correlation

between the two variables, r (59) =-.172, p = .184.

91



(6) A Spearman’s rho was computed to assess the relationship between the students’
achievement scores in CT skills and their attitude scores. There was a weak
negative, statistically non-significant, correlation between the two variables, rs
(56) = -.013, p = .924.

(7) A Pearson correlation coefficient was computed to assess the relationship
between the students’ overall achievement scores and achievement scores in
OOP concepts. There was a strong positive, statistically significant, correlation
between the two variables, r (59) = .96, p <.001

(8) A Spearman’s rho was computed to assess the relationship between the students’
overall achievement scores and achievement scores in CT skills. There was a
moderate positive, statistically significant, correlation between the two variables,

s (56) = .338, p < .05.

Table 34. Shapiro-Wilk Result of CPSS, Attitude and Achievement Scores

Statistics Df Sig.
CPSS Score 973 61 .189
Attitude Score .986 61 737
Achievement Score in OOP Concepts 977 61 321
Achievement Score in CT Skills .836 58 .000
Achievement Score 976 61 275

Table 35. The Correlations Between Students' CPSS, Attitudes and Achievement
Scores

Achv. in OOP Achv. inCT

CPSS Attitude Concepts Skills Achv. Overall
CPSS —
Attitude .186 —
Achv. in OOP Concepts -.167 -172 —
Achv. in CT Skills .032 -.013 .092 —
Achv. Overall -.153 -.157 .960 .338 —

92



CHAPTER 5

DISCUSSION AND CONCLUSION

Previous research on digital game-based learning of computer programming has
focused mostly on the motivational effects of serious games, and the findings of the
majority of the studies were either based on anecdotal evidence or on initial
evaluation results that fail to provide enough empirical data about students’ learning
performance, particularly students in Turkey. Therefore, the current research
examined the effects of a serious game, Curious Robots: Operation Asgard (Merakli
Robotlar: Operasyon Asgard), on undergraduate students’ learning performance on
conceptual knowledge of OOP and CT skills.

In this chapter, the results of the data are discussed by referring to the
literature, and possible implications of the findings are presented. Finally, the

suggestions for future research and limitations of the study are provided.

5.1 Effects of a serious game on students’ conceptual knowledge of OOP and CT
skills
Conceptual knowledge of OOP and CT skills play an important role in understanding
how problems are solved in OOP (Hadjerrouit, 1999; Liu, Cheng, & Huang, 2011;
Wing J. M., 2006; Wing J. M., 2008). Students’ problem-solving methods and skills
in computer science are referred as CT in the recent literature (Aho, 2012; Lu &
Fletcher, 2009; Wing J. M., 2006; Wing J. M., 2008). Fundamental concepts of OOP,
on the other side, also have a critical role in understanding problems, designing and
implementing solutions of problems (Hadjerrouit, 1999). Furthermore, various

researchers have emphasized that some of the learning difficulties of novice

93



programmers may be related to the computational learning environment in which
they are introduced to programming (Gomes & Mendes, 2007; K6lling, 1999b). Yet
there has been little discussion about the effects of serious games on novice
programmers’ both conceptual knowledge of OOP and CT skills. This study focused
on this issue and made a significant contribution to the literature by demonstrating
inferential statistics.

The first two questions of the study focused on the effects of the developed
game on students’ learning of conceptual knowledge of OOP and CT skills. In order
to answer these questions, the pre-test and post-test scores of freshman students
without programming experience and sophomore students with procedural
programming experience were analyzed using a series of statistical tests. A Wilcoxon
signed-rank test was conducted to examine freshman students’ data, while a paired-
samples t-test was used to analyze sophomore students’ pre-test and post-test scores.
The analyses of both groups’ data showed that both freshman and sophomore
students significantly improved their conceptual knowledge of OOP and CT skills
after playing the developed game. This result is consistent with the idea that serious
games can be effective in fostering novice programmers’ programming knowledge
(Livovsky & Porubidn, 2014; Mathrani, Christian, & Ponder-Sutton, 2016;
Miljanovic & Bradbury, 2017; Muratet, Torguet, Viallet, & Jessel, 2011; O'Kelly &
Gibson, 2006; Phelps, Egert, & Bierre, 2005).

A more detailed analysis of the pre-test and post-test scores on conceptual
knowledge of OOP was also conducted for both groups. The results reveal that
students with no programming experience and students with procedural
programming experience significantly improved their understanding of fundamental

concepts of OOP such as class, object, method, encapsulation, inheritance and

94



polymorphism. Such findings corroborate the findings of other studies in the current
literature (Livovsky & Porubin, 2014; O'Kelly & Gibson, 2006; Phelps, Egert, &
Bierre, 2005; Wong, Hayati, & Tan, 2016) by demonstrating inferential statistical
analyses. Similarly, both freshman and sophomore students’ pre-test and post-test
scores on CT skills were analyzed. The analysis revealed that the mean post-test
scores of freshman and sophomore students were significantly higher than their mean
pre-test scores on CT skills. The sophomore students had completed a semester-long
course on procedural programming before the experiment, so it was assumed that
there would be no significant difference in the achievement scores of sophomore
students on CT skills. Yet the significant increase in sophomore students’ mean CT
skills scores were a delightful surprise.

Additionally, a detailed analysis of the number of correct answers of
freshman students for pre-test and post-test showed that there was an increase in the
number of correct answers for all of the questions after playing the developed game.
Freshman students had significant improvement in learning objectives such as stating
the roles of class attributes, distinguishing object instantiation from class declaration
process, stating the difference between attributes of a class and attributes of an
object, explaining how classes communicate with each other, listing the
characteristics of OOP and writing a conditional statement.

On the other hand, a detailed analysis of the sophomore students’ number of
correct answers to pre-test and post-test questions showed that there was an increase
in the number of correct answers to questions for 15 of the instructional objectives
after playing the developed game. Sophomore students had significant improvement
in learning objectives such as stating the difference between attributes of a class and

attributes of an object, distinguishing object instantiation from class declaration

95



process, explaining method overriding process and class concept. However, there
was not an increase or a decrease in one of the instructional objectives which is
explaining encapsulation concept. In addition, there was decrease in three of the
instructional objectives in the sophomore students’ number of correct answers to pre-
test and post-test questions. These three learning objectives were explaining
polymorphism concept, differentiating a base class from a sub-class and listing
characteristics of OOP. One of the possible reasons of this result is that the
sophomore students may have not carefully read the instruction and mission
information texts in the game because they might have thought they had already
known the topic thanks to their prior knowledge in procedural programming.
Another possible reason of this result is the complexity of the activities involving
these learning objectives. For example, there were seven different methods in one of
the game activities (the ninth activity, defining polymorphic methods) that
introduced the polymorphism concept, and this may have been overwhelming for the
novice programmers. Therefore, it can be said that the game activities involving
these four learning objectives were not effective for students who started computer
programming with procedural programming and shifted to OOP, and these game
activities need to be revised. This result appears to support the idea that the transition
from procedural programming to OOP may cause problems for novice programmers
(Hadjerrouit, 1999; Xinogalos, 2016) because freshman students who has no prior
programming knowledge had improvement in each of these learning objectives.

This study differs from the previous studies in terms of the conceptual design
of the learning activities and the scope of learning objectives. The serious games that
were developed in the current literature focused on the goals of teaching conceptual

knowledge of OOP and developing CT skills separately. The game developed in this

96



study, on the other hand, aimed to teach fundamental concepts of OOP along with
enabling students to improve their CT skills by providing authentic problem
situations. In order to provide a constructivist learning experience for novice
programmers the game is developed based on the Experiential Gaming Model (Kiili,
2005) and the 4C/ID model (van Merriénboer, Clark, & de Croock, 2002). Overall,
both models encourages the use of ill-structured problems in a learning environment
to support discovery learning. For example, students are asked to program their robot
to collect objects from the surface of the Asgard without hitting the obstacles on its
way. The fundamental concepts of OOP and CT skills were integrated into the story
of the game, and the level of difficulty of tasks in the game increased gradually.
Furthermore, fantasy elements such as imaginary machines and planets were used to
integrate OOP concepts into the story of the game and to provide visual
representations of abstract concepts of OOP. The imaginary machines in the game
play crucial role in the concretization of abstract concepts of OOP by enabling
novice programmers to not to worry about the syntax of a real programming
language. For example, in the developed game students create their robots in a class
definer machine, and program its behaviors in a method definer machine via
dragging-and-dropping code blocks. The class definer machine is used to concretize
the class concept as a programmable chip, and the object concept as a robot by
visually representing the processess of defining a class and object instantiation in the
panel of the machine. The method definer machine, on the other hand, visualized the
execution of code blocks on students’ robots to enable students to test codes and
observe its results. Hence, a constructivist learning approach was followed in the
developed game to help students understand the necessity and possible usages of

such concepts and CT skills.

97



Another difference between this study and the previous studies is the design
of the instructions. The instructions in the game were conveyed by an APA to
increase learners” motivation and lead to deep learning. Livovsky and Porubén
(2014) claimed that long texts in instructions affected students’ learning negatively.
Similarly, Sweller, van Merriénboer, and Paas (1998) claimed that human beings
have a limited capacity for working memory, for this reason instructional materials
should be designed by considering the learners’ cognitive load. Therefore, in the
current study some key points and concepts of OOP were highlighted in the
instructions to lower the students’ cognitive load. For example, critical points in a
problem situation were highlighted in the instruction text to help novice
programmers understand and analyze a problem before finding a solution to it. Thus,
though the length of the instruction texts were long, it did not affect students’
learning performance adversely.

This study makes a significant contribution to the literature by providing
empirical data about the effects of serious games on novice programmers’ conceptual
knowledge of OOP and CT skills. This study showed that teaching fundamental
concepts of OOP and CT skills through a game play experience can foster novice
programmers’ learning performance and help them overcome their learning
difficulties. The integration of fundamental concepts of OOP and CT skills into the
story of the game can be an effective way to teach programming through game play
experience. Additionally, it is important that a game, which aims to teach
programming, should offer students an opportunity to implement their solutions to
the given problems, observe and reflect the results on a problem situation, and make
necessary changes in their solutions. In this reflective observation phase of the

learning experience, clear feedback plays a crucial role. Therefore, an immediate,

98



visual and textual, feedback mechanism should be provided in the game to inform
and guide students about their missions and mistakes. It is thought that, in the light of
the findings, serious game designers and instructors will have the opportunity to
design effective games that help novice programmers to overcome their learning

difficulties and improve their learning.

5.2 Comparison of achievement scores of students without programming experience
and students with procedural programming experience
The third question of the study explored the differences between the mean
achievement scores of freshman students with no programming experience and
sophomore students with procedural programming experience. In order to answer the
question, the pre-test scores of students were first subtracted from post-test scores,
and then an independent-samples t-test was conducted to compare the achievement
scores of the two groups.

Hadjerrouit (1999) and Xinogalos (2016) stated that novice programmers are
likely to have problems when they are first introduced to procedural programming
and then move to OOP. However, there has been little discussion about the effects of
the transition from procedural programming to OOP on novice programmers’
understanding of fundamental concepts of OOP and CT skills. Therefore, in order to
provide a fresh insight into the current problem, this study compared the mean
achievement scores of freshman students with no programming experience and
sophomore students with procedural programming experience. The results reveal that
freshman students (M = 29.33, SD = 14.55) have higher achievement scores than the
sophomore students (M = 13.16, SD = 16.08). However, the sophomore students’

mean average scores on both pre-test (M = 40.32, SD = 14.77) and post-test (M =

99



53.48, SD = 13.72) were higher than the freshman students’ mean average scores on
pre-test (M = 10.67, SD = 12.23) and post-test (M = 40.00, SD = 16.71). Therefore,
it can be said that the developed game was effective in fostering both groups’
learning performance although both groups did not have high mean post-test scores.
Moreover, developed game was more effective in teaching computer programming to
students without programming experience than to students with procedural
programming knowledge. One of the possible explanations of this result is that
sophomore students’ existing knowledge of programming might have been a factor.
In other words, it was more likely for freshman students to have a higher
achievement scores than sophomore students because the former had no previous
experience of programming. Therefore, a burst in the learning performance of
computer programming of students, who have no programming experience, to some
extent is likely to be expected from. The findings of this study showed that serious
games can foster novice programmers’ OOP knowledge and CT skills, and help them
to overcome the problems derive from the transition from procedural programming

to OOP.

5.3 The relationship among students’ creative problem-solving skills, attitudes
towards digital game-based learning of programming and learning
The fourth question of the study was to what extent students’ creative problem-
solving skills and attitudes towards digital game-based learning of programming
influence the students’ achievement score on the conceptual knowledge of OOP and
CT skills.
In the current literature, researchers have stated that the knowledge of

fundamental concepts of OOP and CT skills play important role in understanding and

100



solving problems in computer programming (Aho, 2012; Barr & Stephenson, 2011;
Wing J. M., 2006). Additionally, researchers have advised that CT should be
introduced to students as early as possible (Liu, Cheng, & Huang, 2011; Lu &
Fletcher, 2009; Qualls & Sherrel, 2010). Therefore, in order to test whether the level
of CPSS and attitudes towards digital game-based learning of programming together
or pairwise influence the students’ achievement scores, a general linear model 2x2
ANOVA test was conducted. The test revealed that there were no significant two-
way or one-way interactions among the level of CPSS and attitudes towards digital
game-based learning of programming on students’ achievement scores. Additionally,
a series of Pearson’s r and Spearman’s rho tests were conducted to analyze the
correlation between students’ CPSS, attitudes towards digital game-based learning of
programming and achievement scores in detail. The tests revealed that there were
only weak correlations among students’ CPSS, attitudes towards digital game-based
learning of programming and learning. Although the current literature indicates that
CT and fundamental concepts of OOP are closely related to students’ programming
performance, the findings of the present study did not reveal a significant
relationship between students’ CPSS and achievement scores, and thus contradicted
such arguments. One possible explanation of this result is that the items in the CPSS
test required mostly knowledge of symmetry. Therefore, in order to have a better
understanding of the nature of the relationship between students’ problem-solving
skills and programming performance, a follow-up study could be conducted with
another instrument measuring CPSS with a wide range of items.

Furthermore, many researchers have studied students’ attitudes towards the
digital game-based learning of programming and have agreed on the positive effects

of games on novice programmers motivation (Barnes, Richter, et al., 2007; Liu,

101



Cheng, & Huang, 2011; Mathrani, Christian, & Ponder-Sutton, 2016; Muratet,
Torguet, Viallet, & Jessel, 2011; Ramirez-Rosales, et al., 2016; Wong, Hayati, &
Tan, 2016). Some of the studies (Phelps, Egert, & Bierre, 2005; Wong, Hayati, &
Tan, 2016) claim that serious games could be effective in fostering novice
programmers’ learning of programming based on the data of students’ attitudes. The
findings of the current study contradict such claims, this study showed that there was
not a significant interaction between students’ attitudes towards digital game-based
learning of programming and their achievement scores. This study makes a
significant contribution to the literature by demonstrating that fun and engaging
aspects of serious games might be motivating, but it does not necessarily improve
novice programmers’ learning performance at a university level. Therefore, it is
important that serious game developers, instructors and educational technologists
should pay more attention to the instructional design of the activities than the

motivational fun aspects of the game.

5.4 Implication for practice and recommendations for further research

The present study is the first to directly examine the effects of serious games on
undergraduate students’ conceptual knowledge of OOP and CT skills of Turkish
students. The findings of the study, which show serious games can be effective in
fostering novice programmers’ programming knowledge and CT skills, are
consistent with the current literature (Livovsky & Porubén, 2014; Mathrani,
Christian, & Ponder-Sutton, 2016; Miljanovic & Bradbury, 2017; Muratet, Torguet,
Viallet, & Jessel, 2011; O'Kelly & Gibson, 2006; Phelps, Egert, & Bierre, 2005).
Additionally, by providing empirical data on the current issue, this study has

beneficial theoretical and practical implications for digital game-based learning of

102



programming, and may provide valuable information and guidance for serious game
developers, educational technologists and instructors.

The developed game shares the same objectives with the majority of the
studies in the literature, which is improving students’ programming skills. Yet this
study differs from other studies in terms of the conceptual design of the game. The
majority of the studies in the literature focus on the learning objectives of the
developed serious games, but few provide information about the instructional design
of the activities (Laporte & Zaman, 2018). With this in mind, the learning activities
of the developed game were developed based on Kiili’s (2005) experiential gaming
model and 4C/ID model (van Merriénboer, Clark, & de Croock, 2002) to encourage
discovery learning. Kiili (2005) advised that serious games should enable students to
test different solutions in an authentic problem situation to improve students’
problem-solving skills and current knowledge on the topic. Therefore, to encourage
discovery learning, the developed game adopted a problem-based learning approach
by introducing fundamental concepts of OOP in authentic problem situations. In
addition, the difficulty of the tasks in the game increase gradually as students make
progress in the game, as indicated by the experiential gaming model and 4C/ID
model. The findings of the current study reveal that novice programmers’
understanding of fundamental OOP concepts and CT skills improved after playing
the developed game. Therefore, from a practical point of view, serious game
designers should consider providing a learning environment with authentic problems
to support discovery learning.

A well-designed visual and textual feedback mechanism is the other unique
feature of the developed game. In the developed game, supportive and procedural

information was provided to students via a mission information panel, an instruction

103



panel and a help menu. For example, while students are introduced with class
concept in mission information panel, specific instructions and points to take into
consideration to define a class are presented in the instruction panel and help menu.
Abstract concepts of OOP were represented as concrete objects in the game. For
example class concept is represented as a programmable chip which contains the
specifications of a robot. Morevover, CT skills were practiced in a simulation
environment to help students understand the necessity and the forms of utilization of
such concepts and skills. For example, students are asked to program their robot to
pick an object from the surface of the Asgard without hitting the obstacles on its
way. Barnes, Chaffin, et al. (2007) and Esteves et al. (2011) advise that serious
games for programming should have a well-designed feedback mechanism to help
students overcome their learning difficulties, and the findings of this study are in
agreement with these arguments. Similarly, Kiili (2005) reported that feedback in
serious games helps learners understand the deficiencies in their solution and thus
improves their solutions to create ones that are more effective. From a practical
standpoint, these findings suggest that serious game developers should establish a
well-designed feedback mechanism to help novice programmers to overcome their
learning problems.

In order to provide guidelines that are more specific for serious game
development, further research with a number different versions of the current game
could be conducted to deeply analyze the effects of different components of serious
games on novice programmers’ learning performance. Additionally, more research
could be conducted with different student groups to find out whether or not the
effects of the developed game can be generalized to a greater population with

different properties.

104



5.5 Limitations of the study

The first limitation of the study is about the generalizability of the findings because
of the convenient sampling procedures that were used. In order to generalize the
findings of the study to a larger population of novice programmers, a replication of
the study with true experimental design should be conducted.

Secondly, using an immediate post-testing phase in the study may be
considered as another limitation. A delayed post-test for measuring the students’
conceptual knowledge of OOP and CT skills could be conducted. Nonetheless, this
did not seem applicable in the present study due to practical constraints, particularly
the lack of access to the students’ class time.

Another limitation of the study is using the same instrument as a pre-test and
a post-test. A follow up study could be conducted with two different instruments
measuring the same learning objectives. However, this did not seem applicable in the
present study due to the lack of a second instrument which evaluates the conceptual
knowledge of OOP and CT skills.

In order to have a better understanding of the effects of the developed game
on novice programmers’ achievement scores of conceptual knowledge of OOP and
CT skills, another study with a control group can be conducted. However, it did not
seem feasible in the current study because of the limited number of participants.

Finally, it is better to be cautious to generalize the findings of this study to
serious games for learning programming of all programming languages such as C#,
Java or Python. More research is necessary to find out whether or not the effects of
the design principles used in this game can be generalized to other serious games

with different languages and age groups.

105



APPENDIX A

CREATIVE PROBLEM-SOLVING SKILL TEST

Creative Problem Sobving Skill Test

Thas fest aims to measure vour creative problems-solving skalls and 1t consists of 30 maltple-choice queshons. Flease
thunk about each question carefully. There 15 only one correct answer for each question. Mark the options that yvou

think are comect with a cirele for each question.
1. Whach one'ones of the following shapes 15/are
not regular polygons?

ANMING

CandD}
Caly C
AamdB
Coly Dy
All of them are repular polyzons

P oo

2. Whch one'ones of the following polygons 15'are

il

¥ .
a OuolyA
b. AandD
c. OolyC
d CandD
e All of them are symmoseincal
A B C 0

3. Inwhich of the followng, are the polyzons seen
i the picture below given commectly?

A mangle and a square

Only a hexagon

Cly 2 mangle

A tmangle, a heapon and a

parallelogram

e A mangle and a parallelogram

pop oo

106

4.

5.

[

W W =

Which one'ones of the following shapes consist
of hexapons?
a. Band D
b, AandC
c. AandB
d CulyA
e. Al of them

Symmetry: The quabty of different objects
matching proporfionally.
Apcording to this defirvfion which one'ones of
the following terms are synomyms of symmety?
Pi, axi=, identical, right angle

a OnlvPi

b, Omlyidentical

c.  Axs and identical

d  Awxs and nght angle

e. Mone of them
Which one'ones of the followmng shapes 15'are a
regular quadnlateral polygon?
. AamdB
CandD
Only B
Only C
Aand C

OO0

i

LI = I -

Which one of the following gives the shapes that
has symmetrical reflection?

a AandD

b, OnlvA

c. OnlyB

d CandD

e BandD
RRR RAR A RERE R AR A
RRR RARA RERE ¥ ¥4K ¥
ERRE RARA RERE g agr a
RRR RARA REREF K ¥HE ¥



8. Which one of the followmg gives the shapes that
does not have symmemmcal shifting?

a
b.
c
d
e

W X

Only C
AandC
BandC
OnlyD
All of them

o
Qo*_p
6N ®
o'e
D

B O

9. Which one of the following zives the shapes that
have symmetncal rotation?

P o

&

AandB
AandD
AandC
OnlyD
All of them

B C D

10. Which of the following 15 an example of
symmetry in nature?

Ppp o

Honey comb
Chamonule
Pine cone
Marble

All of them

11. What 15 the angle of the junction point in the
parallelogram below?

a
b.
c
d
e

180°
270°
60°

120°
360°

107

12. Which of the symmetry methods can be applied
to the shape below?

a
b.
c
d
e

Only rotation

Rotztion and reflection
Only reflaction

None

13. Which of the following gzives the shapes that
have the same number of rotation applied?

a
b.
c.
d
e

BandC
AandC
AandB
BandD
None of them

A B C D

14, What are the coordinates of A, B and C points on
the grven line segment below?

PR o

A(8.5).B(3.6),C(25.05)
A (5.-8).B(-6,3),C(-05,-2.5)
A(5.8).B(6.3).C(05,.25)
A(-8,5).B(3.-6).C(-2.5.-0.5)
None of them

v
]

N




15, Whch of the following statements 15 true for the 18, In the planary symmetrical shape below, which

shapes ziven below? of the followang shapes should be placed In x
a2  Reflection symmmetry method 15 used m and v spots?

A —

b.  Shifting symmetry method is used in B s AN A B

¢ Shifting and reflection syoumetry -4 §F B

- - \“‘_r S Y -:I 1 !

mﬂ:u:d.smmadc Ba I_L. i i . |

d %ﬂmﬁjmﬂlﬂbﬂ Wiy T ol T :lE‘jl'i

m -_-'. e L d "H' | i i

e MNone of them b Tale Tt I |

h & .24 1 %S
4\ "< A #e owp
. |:'|'I-; b ;1;‘_ T
A B C i L B
il ol b T,
16, Whch of the following can MOT be seen mn the :;II: “ J:-’ ""'-
plctl.:'_ebelcrw? 2 Wb p
" & i
b Repen vy  OF
¢ Dhrection J“. g <
d Balanee " no

e Rotahon b
X £ .
e a'"

e. Mone of them

19 In the planary symmmetnieal shape below, which
of the following shapes should be placed in x

and v spots?
iy iy TR
" . r T 1 ]
= 5 § 0
17. What are the angles of each marked pomt m A, L i : i
B and C shapes? =1 k= "l"': i
a A (3607, B (180°) and C (270°) W el X Y
b. A (2407, B (180°) and C (120°) L7 SSL7 Ny §
e A (60:), B (45) and C (30¢) o3 £ N £ 3 1
d A (1207, B (90%) and C (60%) SISl )
e Nons of themy
e W T
N ’_‘ o “u *.",_'.,
‘}_X—, i s Ta il O
VW ( R iy T
N a b
p— W & -'I'.'|-
A B C Uyt "
A" beled
- i d 1y
2. Mone of them

108



20. In the planary symmetrical shape below, which 22. Which of the following forms the base of K

of the following shapes should be placed in the x shape?
spot? -
= TR N
s 2Ty ¥ :
5, W) Wi i
W T :
E 1 A T X 3
s 1 s - :
X e 3 o | !
ey L L A
= & y A
- ~ 3 %
e ¥, -
R\ E S
& f ) Hme »6
X S * a b.
" ud - 3
2 o . K
e o %
¥ & 3 W £
a 3 b.
R 1 . d.
o ¥y ¢ e. None of them
o s s
¥ 5 N
SR w3
B2 1.3 23. Which symmetry methods have been used in the
< N ".1';: o following M. C. Escher’s work of art named
7 p ). W “Fishes™ :
'-‘_’ 3 a. Only rotation
o) (08 d & b. Only reflection
. Rotation and reflection
e. None of them & 2
d. Only shifting
e. Reflection. rotation and shiftin
X W

21. In the linear symmetrical shape below, which of
the following shapes should be placedinx and y

spots?
‘:;, C :.r" ": ' ! g -:- -‘I
A P R o y ' | | 24. Different symmetry methods have been used in
g > 1 =L 2T y! M.C. Escher’s following works.
A / P r / , I' : In which one/ones of the following, rotation
(' \ ¢ . '. Y 3 : " symmetry method is used?
- e g - —a
L L
a b.
0 a OnlyA
e R B b. OnlyB
.. (5l sl e . ¢ CandD
d A CandD
e. None of them e. None of them

109



25. What is meant to be emphasized by the
geometrical designes in works of art from
different cultures?

a.

L N

26. In which culture do we meet geometric designes

Eternity

Hunger

Environmental pollution
Wealth

None of them

based on the symmetry the most?

o DR

European art
Mesopotomian art
Byzantium art
Izlamic art

None of them

27. The reason why the following Anatolian Seljuk

Empire work is considered as a work of art could

fRDR SR

28, Beside the fact that the following textile product
from Ottoman Empire period is a work of art.

It consists of geometric shapes.

It covers the surface with no space left.
It is original.

It is fonctional.

All of the above

symimetry method(s) were used in its design.

O RDSE

only shifting

only rotation

shifting and rotation

shifting. reflection and rotation
None of the above

110

29, I think the reason for why the following

30.

Anatolian Seljuk Empire carpet 15 considered as
an artwork 1z NOT that ...

a. 1t has flowers.

. it symbolizes the tree of life.
c. it uses reflection symmetry method in
its design.
d. 1t is fonctional
e. itis original

Through symmetry, we feel that there 15 a
distinet logical structure that exists
independently in the vniverse and that we can
perceive with our minds.

With this proposition, which of the following
branches of science has been tried to be
associated with?

a. Physics

b. Chemistry
c. Art

d.  Geometry
e. All of them



APPENDIX B

CREATIVE PROBLEM-SOLVING SKILL TEST (TURKISH)

Yaratua Problem Cozme Test

Bu test, &&rencilarin varanc: problem ¢fzme becerisi 8lemektedir ve 30 somdan olugmaktadir. Dogr oldufunu
disindifiniz segenek fizerinde disfimin Her som igin tek bir dogm cevap vardir. Dofru olduinnn disindisiniz
secanedl somn izennde isarstleyin.

1. Asamdakilerden hangisi ya da hangiler dazzin 4. Aszandskilerden hangisi ya da hangileri
gokgen degildir? alngenden olusnmsymar?
a Bwe D
b, Awel
.. AwebB
d. Yanhz A
e Hepsi
A B C ]
a CweD I’K*’)\
b. YamzC L PR
c AveB [T pROKP
d YalmzD
e Hepsi dizgin cokgendir - " = ¥
5. Simefri: Nesnelerin birhinine oramnm aym
olmasidr.
I. Ajsafidaki gokgenlerden hangisi ya da hangileri Yukaridaki Snermeye gore, asafidakilerden
simemriktr? hangizi ya da hangileri simesr ile eg anlama
g, Yaliz A gelmektedir?
b, Avel P, ekzen dzdes, dik ag1
. YamzC 3. Yalmzea Bi
d CweD b. Yalmzca ozdes
e. Hepsi simetriktir . Eksenve dzdes
d. Eksenve dik aq1
. i Fi K e. Highid
¢ i
A 6. Asafdskilerden hangisi dizzin déngendir?
i AwB
A B ¢ D b. CveD
3. Asaidaki sekilde gérilen gokgenler, N :ﬁ?
seqensklerden hangisindedir? e AveC
3. Ugzen ve kare )
b. Yalmz alogen #
c. Valmzdggen l 1
d. Uggen, alngen, paralelkenar
e. Uggen ve paralelkenar

A ] Y 1

7. Asazidskileriv hangisi ya da hangilerinda
simeirik yansima ozelligi vardo?

AveD

Talmz 4

Talmz B

CvelD

BveD

FAaRMNgR

AR A
AR A
AR H
AR A

ol ]
wmm oW m
= mmm
mmEm
mwwmw
mwmm
o
B
TN
o
T O EDna:m
Ew e
0 B A

A B

3]

111



8. Asapdakilerden hangisi yada hangilen simemk

12, Asagdaka gekilde simetn yontemleninden

Steleme Szelligi gérilmemektedir? hangisi ya da hangilen uygulanabilir?
a YamzC a.  Yalmzca dondirme
b, AveC b. Dénditrme ve yansitma
c. BveC c. Yansitma ve Steleme
d YalmzD d Yalmzca yansitma
e, Yukandak: seceneklerin hepsi dogrudur e.  Yukandaki seceneklenn hicbin dogm

9. Asagdakilenn hangisinde simetrik dondirme
ozelligs varda?

sanow

AveB
AveD
AveC
Yalmz D

Hepsi

AT X

10. Asagdakilerden hangisi dogadaki simetnive bir
Smektir?

ranoe

Bal peteg:
Papatya
Kozalak
Mermer
H

epst
11. Asagidaki paralelkenarda kesiim noktasindaka
bir aguun Slgisit kagtu?

a
b.
c

d.
e

180°
270°
60°

120°
360°

dezildir

13. Asapdakilenn hangilerinde aym sayida
donditrme simetri yontenu kullamlnugty?

PO

BveC
AveC
AveB
BveD
Hi¢bin

A B C D

14, Dogru pargas: izenndek: A, B, C noktalanmn

koordinatian

P RO

agafndakilerden hangisidir?
A(8.5).B(3,.6).C(25.05)

A (5, -8),B (-6, 3),C(.0.5,-2.5)
A(5.8).B(6,3), C05,25)
A(-8. 35),B(3,-6),C(-25,-05)
Hichin

£

112



15. Aszazmdak zekallerden hanzis segeneklerdel 18. Ajzamdaka dizlem simetmismde x ve v yerine
ifadey: desteklemektedn? gelmesi gereken sekil segeneklerden hanzizadn?
a2  A’'da yansma simetnst kullamlmushr. . Qe
b. B'de dteleme simetrisi kullam:lnugtir s A A By
¢ (C'de oteleme ve yansitma simetrisi 'fl' o ,»':
W ¥y

>
e —————

~
becccncccnceend

)
d A ve B'de yansima simetns1 \k. ™ ok 1 :
Jullam] LY o [ o m«_:
e Higbin W T ol T
A B4 NEg LN
‘ k .‘ kkk A 'y
_ m.' o % Ta
A B C L L” A
{EED : : : Ao/ 1237y
16. Asazdak zekilde seceneklerdekn hanz ozelhk -m ‘ o «-‘r_

Lt 2% AL ¥,
gomlmez.‘ 3 WAL p e

a Rim W Th
b. Tekrar o 4 )
~ wrd / L

c. Yon - o BNgf
d Denge b g e Cr
e Déndiime 3 -
‘._x‘ o -;3\ :.QI

c. d -

19. Aszasndaka dizlem simemsinde x ve v yerine
gelmesi gereken sekil segeneklerden hanzizidu?

W CE -_g.'“‘f']
g B
Hh AT NL) §
o \ A =3 '
17. Asagadaki A B, C seklinde her bir agumn slgisi it ¥
kagtn? W C=Wr XY
a A (360°. B (180°) ve C (270°) ‘AN AN EE
b. A (240%, B (180°) ve C (120°) SN £Tan£TE |
¢ A(60%), B (459 ve C (30 T\ E L.
d A (1209, B (90 ve C (60)
e Hicbm o R o1 w, b
\ahs ” -
\ < 9 L 3
w ."‘j W
£ W iy o,
oo . 3,33
y ) AW Ay
% 4
A B C 2 ! Jl
« % a hi

113



20. Asagidaki diizlem simetrisinde x yerine gelmesi 22. Asagida verilen seceneklerin hangisi K seklinin

gereken sekil seceneklerden hangisidir? temel binmidir?
B CER T
m e TR :
z'l e o 1 !
A W W | !
X M |
TR .’;(_" : X :
wh R ;
). WL i |
WD WL s K
o
P vy e
- b %
WANS Y &
B oo iy €
i & %
z » ) LY a. b.
-~ e 3 €
§e W
a. b. -
o ? a2
x #n ’\‘“ ‘”'.A" > i': C. d.
T & W e. Hicbiri
& W e
s & Z
=5 » 17
W 1% 23. M. C. Escher ‘in “Fishes™ adh eserinde,
p = Z R asagidaki simetri yontemlerinden hangisi ya da
N i W hangileri L;ullzmmlstlr"
a. Yalmz déndiirme
e. Hicbiri b. Yalmz yansima
c. Déndiirme ve yansima
d  Yalmz oteleme
e.

Yansima, dondiimme ve dteleme
21. Asagidaki dogrusal simetrik sekilde x ve y RV \
yerine gelmesi gereken sekil seceneklerden

hangisidir?
) ® ) £ i i
v T T 1 ! ! '
) S -t R 8
‘l - e i g ') N x I | A Tade
1 f . d ' ! | 24. M.C. Escher’ e ait agagidaki eserlerinde. farkh:
f \ Tl e : i ! simetri yontemleri teknikleri kullanmmstir.
L d { : - r Hangisi ya da hangileninde dondiirme yontemi
kullaminugtir?
NN .
a L ' b.
22 T : ‘
) A . /
AN g - a YalmzA
c. 4 ¢ . b. YalmzB
e. Hicbiri c. CveD
d A CveD
e. Hicbhinn

114



25. Farkh kalrarlers ait eserlerde gonilen geometnk
tasarimiar ile vurgulanmak istenen nedir?

a. Sonsuziuk

b. Achk

c.  Cevre kirlilligi
d. Zenginlik

e. Higbiri

26. Simemi yontemlerne dayah geometrik tasanma
en fazla hang kiiltirde karsilagmakeayiz?
2.  Avrupa sanan

b. Mezopotamya sanat
c. Bizans sanan

d. Islam sanat

e. Higbin

27. Asazidaki Anadolu Selguklu eserinin bir sanat
yapin olarak kabul edilmesinin sebebi sanimm

a. Geometrik sekillerden meydana gelmesi

b. Hig bosluk brrakmadan yiizeyi
kaplamas:

c. Ozgin olmas:

d. Izlevsel olmast

e. Hepal

28. Aszazidaki Osmanhlar donemine ait tekstil
eserinin onemli dzelliZi bir sanat eseri olmasinm
yamnda, ........ -... simetri yontemi ya da
yontemlerinin kullamilmig olmasidar.

a.  Yalmzca oteleme

b. Yalmzca dondamme

c. Oteleme ve dondarme

d. Oteleme, yansitma ve dondiirme
e. Higbiri

115

29, Asazmdaki Anzdolu Selgukln halisimn bir sanat
yapia olarak kabul edilmesinin sebebi saminm
.. degildr.

a. Qigekli olman
Hayat agacim sembolize etmesi
¢ Yansima simetn yonteminin kullanilmig
olmast
. Islevsel olmas:
e. Ozgiin olmas:

30. Simemi aracilig: ile bizim diymmzda var olan,

yine de kend: aklumzls kavrayabilecegimiz
belirgin bir mannksal yapimn evrende ijlemekte

oldugum hissederiz.
Onermesi ile asazidaki bilim dallanmn hangisi
tle thigki kurulmaya ¢ahsilmgar?

a. Fizk

b. Kimya

c. Sanat

d. Geometri

e Hepsl



APPENDIX C

ATTITUDE SCALE FOR

SERIOUS GAME ASSISTED PROGRAMMING LEARNING

Attitudes Scale for Serious Game Assisted Programming Learning
Dear studenits, this survey aims to assess your attitudes for serious game assisted programming learning. ltems in the

survey focus on your attitudes towards learning programming, your interest in the use of video games in learning of

programming and concerns about antisocial effects of computers. Please consider the following points while
answering the items.

1. The games played on mobile phones, tablet computers, etc. should also be considered as video games.
2. Coding: A sequence of commands for making computer and computer like devices perform operations.
3. Name surname: Gender: Lge:
& @ w | ® £ 28
Items g% ‘% E _Eﬂ TE_DED
1 = a o
1 | Playing games on my computer (tablet computer, phone, etc.)
contributes to my success at school.
2 | Itis useful to study by playing video games.
3 | I'would like to learn by playing videc games.
4 | I'would like to adjust the physical appearance of characters in video
games myself.
5 | I'would like to design my own games an computer.
& | |'would like to learn computer programming.
7 | 1think people who work in the field of computer science are not
socially active.
& | I find games with multiple levels intereseting.
9 | The multiplicity of the levels of a game increases my interest in
playing it.
10 | | would like to decide what might happen to the character when |
design a game.
11 | | would like my friznds to play with the games that | developed.
12 | 1 am not interested in developing my own game on a computer.
13 | It would be fun to play games that are developed by my friends.
14 | It is hard for me to write codes in computer.
15 | | do not want to learn computer programming.
16 | | think that games played on streets are dangerous.
17 | |1 think that learning computer programming would be useful for me.
18 | | do not think that games can be used for teaching / l=arning.
19 | Because learning computer programming would increase my
problem-solving skills, it would increase my success at exams.
20 | Designing my own games would improve my creativity.
21 | Itisideal to spend your free time by playing games on computer.
22 | The games played on computer are better than the games played on
strest (like football, basketball, etc.).
23 | | would rather play games on computer than play with my friends.
24 | | love video games with two-players more than the single player
ones.
25 | Learning computer programming improves one’s intelligence.
26 | Playing games on computer makes individuals lazy.
27 | Lessons with video games would increase my interests in a lesson.
28 | My academic sucess will increase if | learn how to program a video
game.

116




APPENDIX D
ATTITUDE SCALE FOR
SERIOUS GAME ASSISTED PROGRAMMING LEARNING (TURKISH)

Egitsel Bilgisayar Oyunlan Destekli Kodlama Ogrenimine Yonelik Tutum Olgegi

sevgili dgrenciler bu test egitsel bilgisayar oyunlar destekli kodlama 6grenimine karsi tutumlannizi tespit etmeyi
amacglamaktadir. Glgekteki maddeler kodlama d8renimine karsi istek, bilgisayar oyunlanmin derslerde 8grenme amach
kullarimina yanelik ilgi ve bilgisayann asosyallestirmesine yonelik endiseleri kapsayacak sekilde hazirlanmistir. Gloege
cevap verirken asaBidaki hususlara dikkat ediniz.

1. dlgekte gecen hilgisayar oyunu sadece bilgisayarda oynanan oyunlar degil tablet, telefon vs. gibi ortamlarda
oynanan oyunlar olarak disonalmelidir.

2. Kodlama: Bilgisayar ve benzeri dizeneklere bir islem yaptirmak igin verilen komut dizisidir.

3. Isim soyisim: Cinsiyet: Yas:

Maddeler

Kesinlikle
Katiliyorum
Katiliyorum

Kararsizim
Katilmmyorum
Kesinlikle
Katilmyorum

Bilgizayarla (tablet, telefon vh) oyun oynamak okul basanma katk
saglar.
Bilgisayar oyunlarnindan yararlanilarak ders ¢alismak faydalidir.

ra

Dersleri bilgisayarla oyun oynayarak islemeyi isterim.

B | o

Bilgisayar oyunlanndaki kahramanlann dig géranisind kendim
ayarlamak isterim.
Bilgisayarda kendi oyunumu tasarlamak isterim.

Bilgisayarda kodlama yapmayl 6Erenmek isterim.

Bilgisayar ile ilgili meslek sahibi olanlar aktif degildir.

Cyunlarn seviyeli olmasi ilgimi geker.

W oo =J| |

Oyunlardaki seviyelerin goklugu oyuna olan ilgimi artirir.

10 | Oyun hazirlarken kahramanin basina neler gelebilecegini kendim
belirlemek isterim.

11 | Kendi hazirladi@im bilgisayar oyununu arkadaslarnimin da oynamasini
isterim.

12 | Bilgisayarda kendi oyunumu hazirlamak ilgimi gekmez.

13 | Arkadaslanimin tasarladig oyunlan oynamak eglenceli alabilir.

14 | Bilgisayarda kod yazmak benim igin zordur.

15 | Bilgisayarda kod yazmayl d@renmek istermem.

16 | Sokakta oynanan oyunlar benim igin tehlikelidir.

17 | Kodlama &greniminin benim icin faydah olacagim dasdndyorum.

18 | Bilgisayar oyunlar ile egitim,/&gretim olmaz.

19 | Kodlama &grenimi problem gdzme becerimi gelistirecegi icin
sinavlardz basanm artar.

20 | Kendi oyunumu tasarlamak yaraticih@imi gelistirecektir.

21 | Bilgisayarla oyun oynamak bos zamanlan degerlendirmek igin
idealdir.

22 | sanda (futbol, basketbol, evcilik vb.) oynanan oyunlardansa
bilgisayarla oynanan oyunlar daha iyidir.

23 | Arkadaslarnimla oyun oynamaktansa bilgisayar oyunu oynamay tercih
ederim.

24 | Bilgisayar oyunlarinda ikili oyunlan daha cok severim.

25 | Kodlama 6grenimi zeka gelistirir.

26 | Bilgisayarda oyun oynamak bireyleri tembellegtirir.

27 | Derslerin bilgisayar oyunlan ile islenmesi derse clan ilgimi artinr.

28 | Bilgisayarda oyun kodlamay grenirsem derslerim de basanm artar.

117



APPENDIX E

PRE/POST TEST

Pre-Test

Hello, welcome to our pre-game test. This test is designed to assess your current knowledge on object oriented

programming concepts and computational thinking. Please be assured that vour personal information is

confidential and no attempts will be done to identify you.

1. Which is NOT one of the most important 6.
characteristics of object-oriented programming?
a. Encapsulation
b, Information hiding
c. Inhertance
d. Static binding
2. What may be concluded when an instance of a
class 15 created?
a. A new class has been defined
b, An cbject has been instantiated
c. A set of superclasses i1s now available for use
d.  Protocols become vnigue
3. A primary distinction between a class and an
object is that:
a. A class is horizontal metaphor and an object
15 a lnerarchical construct
b. An object is a general category and a class is a 8.
specific instance
c. Aclass is a general category and an objectis a
specific instance
d.  An cbject is a singular member of a class enly
4. Abasic function of a class 1s to do what?
a. Maintain encapsulated stiucture 9.
b, Allow use of subroutines
c.  Setup data types for compression
d. Define a particular type of object
5. An object can be sumply defined as:
a. Parameter creation through structural analegy

b, An example of class compaction 10.

c. Any vanable attribute

d.  Aninstance of a particular class

118

The act of separating external aspects of an object

from its internal implementation details is known

as:

a. Application-domain abstraction

b. Encapsulation

c. Functional model methodology

d.  Enomerated data flow processes

“Polymorphism™ can be defined as:

a. The same operation applied to different
classes using different forms

b. The same operation applied fo objects
asynchronously

c. The same operation applied to different
homogenous variable groups

d.  The same sequence of operations applied to
one class repeatedly

The role of class variables in object-oriented

programming are the:

a. Objects to be manipulated

b. Classes to be manipulated

¢. Functional parameters to be developed

d. Data typecasting directives

A class which inherits another class is thereafter

known as a:

a.  Base class

b.  Derived class

c. Substiution class

d. Functional parameter class

Which of the following statement is NOT true?

a. Objects are instantiated from objects

b. Class is a prototype for objects

o

Class is a prototype for classes

R

Objects are created from classes



11.

What is the benefit of encapsulation?

a.  When information in a class 1= modified. it
will not affect the other classes.

b.  When information in a class is modified, it
will antomatically change information in the
related classes

c.  When information in an object is modified, it
will not affect other classes

d.  When informaticn in an object 1s modified, it
will autematically change information in
related classes

12. Can wished to send a flower to his grandmother,

Zeynep, on her birthday. Since his grandmother
lives in Ankara, he has to ask Elif a salesperson
who works at the flower shop to send the flower to
his grandmother in Ankara. Which of the
following relationships is correct?

a.  Class =Flower shop, Instance = Can

b.  Class = Salesperson. Instance = Elif

c.  Class = Salesperson. Instance = Can

d.  Class =TFlower shop, Instance = Elf

13. How can objects communicate with each other?

a.  Broadcast a signal throughout the interface
network

b. Use pipeline to synchromize an object’s clock

c. Call another object’s method

d.  Place a message in a software bus

14. What is “method overniding™?

a. To define a method having the same name
and functionality as one of its parent class

b. To define a method having the same
functicnality but a different name from one of
its parent class

¢. To define a method having the same name but
a different functionality from one of its parent
class

d.  To define a method having a different name
and functionality from one of its parent class.

119

15.

16.

17.

What 13 the difference between “class variable™

and “instance variable™?

a. Class variable refers to a data item associated
with a particular class while mstance variable
refers to a data item associated with a
particular obyject

b. Class variable refers to a data item associated
with a parent class while instance variable
refers to a data item associated with a child
class

¢. Class varaible refers to a data ttem nsed within
a particular class while instance variable refers
to a data item used within a particular object

d. Mone of the above are troe. class variable and
instance variable have no difference

Which of the following pairs of werds are

synonyms?

a. Behavior and method
b.  Information ding and instantiation

Polymorphism and dynamic binding
d. Encapsulation and interface
Consider the following program:
If (time iz after § pm)
Then: Work on science project

Else: If (tume is after 3 pm)
Then: Play with friends
Else:

Giiliz is in London and it 15 4 pm. while GSzde 13
in Mugla and it 15 7 pm. What are Giiliz and Gozde
doing based on the given code above?

a. Giiliz: work on science project; Gozde: play
with friends.

b. Giiliz- work on science project and play with
friends; Gozde: play with friends

c. Giiliz: work on science project, Gozde: work
on science project and play with friends

d.  Giliz: play with friends; Gbzde: work on

science project.



18, You are training a robot to aveid obstacles as it moves. To make things mere interesting vou tell the robot to
turn right fo go around the obstacle if the color of the obstacle is red. If the obstacle is of any color other than
red, the robot should turn left to go around the obstacle. How will vou program your robot to follow these
instructions using a When-Do-Otherwise do structure?

When

Otherwise do:

19. Imagine you have established a colony en the moon and have robots helping you with your tasks. Teday
vou need to program your robot to go test an instrument that is 5 miles away. Your rebot can only travel 1
mile on a filly charged battery. Fortunately, you have a charging station every mile long the way. Using
the loop structare (the Repeat command), write a program to command your robot to successfinlly reach

the instrument so 1t can conduct the test. Assume your robot 1s folly charged when it starts its mission

120



APPENDIX F

ETHICAL APPROVAL

BC.
BOGAZICI UNIVERSITESI
Insan Aragtirmalar Kurumsal Degerlendirme Alt Kurulu
Saejlc Qol¥ — 02 - 1 Subat 2018
Al Akkaya

Bilgisayar ve Ogretim Teknolojileri Egitimi

Sayin Aragtirmaci,

"Egitsel oyunlarm Ogrencilerin nesne tabanli programlamanmn kavramsal bilgisi ve bilgi
iglemsel dilgiinme becerilerine etkisi" baghkh projeniz ile ilgili olarak yaptiginiz SBB-EAK
2017/79 sayili basvuru INAREK/SBB Etik Alt Kurulu tarafindan 1 Subat 2018 tarihli
toplantida incelenmis ve uygun bulunmustur.

Dog. Dr. Ebru Kaya

o¢. Dr. Mehmet Yigit Giirdal Yrd. Dog. Dr. Bengii Borkan

Dr. Nur Yenigeri

121



APPENDIX G

PARTICIPANT INFORMATION AND CONSENT FORM

KATILIMCI BILGI ve ONAM FORMU

Arasnrmayi destekleyen kurum: Bogazigi Universitesi

Arastrmanm adi: Egitzel oyunlann Sgrencilerin nesne tabanli programlamanm kavramsal bilgisi ve bilgi
i5lemse] dilgiinme becerilerine etkisi

Proje Yiiritiiciisii: Prof. Dr. Yavuz Akpinar (Tez Damgmani)

E-mail adresi: akpinar@boun edu.tr

Telefonu: 0 212 359 &7 88

Arastrmacimn adi: Ali Akkava

E-mail adresi: ali akkaval @boun edu tr

Telefonu: 0 212 359 67 89

Proje konusu: Nesne tabanli programlama egitimnden sanayive bircok alanda kullamlan en popiiler
programlama vaklagimudir Bu ¢alisma “egitsel oyunlarin &grencilerin nesne tabanli programlamanin
kavramsal bilgisi ve bilgi 15lemsel diigiinme becerilen tizenine etkisini incelemeyi” amaclamalktadir.
Calisma sonucunda programlamaya yvem baslayan dgrencilere nesne tabanli programlamanm temel
kavramlarimm ve kullanim alanlarimn &gretilmesi ve égrencilerin bilgi i5lemsel ditsiinme becenlerinin
gelistirilmesi hedeflenmektedir. Deneysel calismalar Bogazigi Universitesi etik kurulu onay: ile
Bilgisayar ve Ogretim Teknolojilen Egitini baliimiinde vapilacaktar.

Omnam: Egitsel oyunlarin 6grencilerin nesne tabanli programlamanin kavramsal bilgisi ve bilgi 15lemsel
ditsiinme becerilerine etkisi fizerine vapmak istedigimuz bilimsel arastirmaya katilmava sizi davet
edivoruz. Bu arastirma programlama alaminda kendim gelistirmek isteyen acenu programcilara temel
programlama beceri ve bilgilerini eglenebilecekleri bir ortam sunarak kazandumayt hedeflemeltedir.
Aragtirma ayrica programlama oGgreten egitsel ovunlar gelistiren Sgretim tasartmcalarina, egitim
teknolojilen vzmanlanna ve arastirmacilara programlama §gretimunde uygulanabilic bir egitsel oyun
vapist ve bu yapimn ézelliklerim sunmayt hedeflemelktedir.

Aragtirmaya katilmay: kabul ettifiniz takdirde ¢alisma éncesinde size problem ¢ozme testi ve
egitsel bilgisayar oyunlan destekli kodlama égrenimine yénelik tutum &leedi verlecektir. Tutum dlgeg:
ve testi yanitladiltan sonra sizlere nesne tabanli programlama bilgilerinizi ve bilgi islemsel diigiinme
becerilerinizi dlgmek igin bir 6n test verilecektir. On test asamasindan sonra sizlerden arastirma
kapsamunda gelistinlen Merakli Robotlar: Operasyon Asgard 1simli egitsel oyunu bir buguk saat
icerisinde oynayip bitirmeniz istenecektir Oyundala her bir etkinlikte gecirdiginiz siire ve deneme
sayimiz oyun tarafindan kavit altina alinp son etkinligin bitmesivle birlikte arastirmaciya e-posta
araciligryla iletilecektir. Bu nedenle oyuna baslarken sizden isim ve soyisminizi girmeniz istenecektir.
Calismanin son asamasinda ise sizlere nesne tabanlt programlama bilgilermizi ve bilgi islemsel
ditgtinme becenlerinizi 6lgmek icin calisma Gncesinde verilen on teste paralel olan bir son test
verilecektir. Ayrica, ekteki formda istenen bilgilen de saglamamizi rica edivoruz. Isminiz ve bu bilgiler
tamamen gizh tutulacaltir

Calismayva katilmaniz tamamen istege baglidir. Sizden ticret talep etmivoruz ve size herhangi
bir ddeme vapmayacagiz.

Testlere vermis oldugunuz vamtlar ileride baska calismalar icin de kullanalabilir. Istediginiz
zaman calismaya katilmaktan vazgecebilirsiniz. Bu durumda vamitlamis oldugunuz testler ve oyundaki
performans kayitlariniz imha edilecektir.

Yapmak istedifinuz arastirmamin sizlere hethangi bir risk getirmesi beklenmemeltedir. Séz
konusu aragtirmamn tez calismasina oldugu kadar sizlere ve programlama dersleri veren 6gretmen ve
akademisyenlere de katkisinin olacag diigiiniilmektedir.

Bu formu imzalamadan &nce, calismayla ilgili somularmiz varsa litfen sorun. Daha sonra
sorunuz olursa, proje yiiritiiciisiine (Ofis Telefonu: 0 212 359 67 88) sorabilirsiniz. Aragtirmayla 1lgil
haklanmz konusunda yverel etik kurullarina da damsabilirsmiz.

122



Ben, (katilmetninade) yukaridaki metni okudum ve katilmam
1stenen calismanin kapsamum ve amacim, goniillii olarak tizerime ditgen sorumluluklan tamamen
anladim Calisma hakkinda soru sorma imkam buldum. Bu calismayt istedifim zaman ve herhangi bir
neden belirtmek zorunda kalmadan birakabileceginn ve biraktigim takdirde herhangi bir olumsuzluk
ile karsilasmayacaginu anladim.

Bu kosullarda séz konusu arastirmaya kendi istegimle. hicbir basks ve zorlama olmaksizin katilmayi
kabul ediyorum.

Formun bir drmegimi aldim / almak istemiyorum (bu durumda arastirmact bu kopyay: sakdar).

Katthmewn Adi-Sovade. ...

Imzast ...

Tanh (gin/ay/yil).......... I S

Varsa Katbmein Vasismin Adi-Sovadio .o
e OSSR
Tanh (gian/ayiyd) ./ fo

Varsa Katthmemm VELISINDN Adi-Sovadic e
IZast e
Tanh (gin/ay/yil).......... I S

123



REFERENCES

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,
55(7), 832-835.

Ali, A., & Shubra, C. (2010). Efforts to reverse the trend of enroliment decline in
computer science programs. The Journal of Issues in Informing Science and
Information Technology, 7, 209-225.

Barnes, T., Chaffin, A., Godwin, A., Powell, E., & Richter, H. (2007). The role of
feedback in Game2Learn. In M. B. Rosson, & D. Gilmore (Eds.),
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1-5). New York: ACM.

Barnes, T., Richter, H., Chaffin, A., Godwin, A., Powell, E., Ralph, T., . .. Jordan,
H. (2007, March). Game2Learn: A study of games as tools for learning
introductory programming concepts. Paper presented at SIGCSE '07: The
38th ACM Technical Symposium on Computer Science Education,
Covington, KY.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age
skill for everyone. Learning & Leading with Technology, 38(6), 20-23.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What
is involved and what is the role of the computer science education
community? ACM Inroads, 2(1), 48-54.

Basu, S. (2016). Fostering synergistic learning of computational thinking and middle
school science in computer-based intelligent learning environments.
(Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses
Global. (10151674)

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM:
A computational thinking environment for learning science through
simulation and modeling. In M. Helfert, O. Foley, M. T. Restivo, & J.
Uhomoibhi (Eds.), Proceedings of the 5th International Conference on
Computer Supported Education (pp. 369-378). Aachen, Germany:
SciTePress.

Bates, J. (1994). The role of emotion in believable agents. Communications of the
ACM, 37(7), 122-125. d0i:10.1145/176789.176803

Begosso, L. C., Begosso, L. R., Gongalves, E. M., & Gongalves, J. R. (2012). An
approach for teaching algorithms and computer programming using
Greenfoot and Python. In R. Leblanc, & A. Sobel (Eds.), Proceedings of the
2012 IEEE Frontiers in Education Conference (FIE) (pp. 1-6). Seattle: IEEE.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for
distributed computational thinking. International Journal of Game-Based
Learning, 1(2), 65-81.

124



Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and
assessing the development of computational thinking. Paper presented at the
annual meeting of the American Educational Research Association,
Vancouver, BC, Canada.

Carlisle, M. C. (2009). RAPTOR: A visual programming environment for teaching
object-oriented programming. Journal of Computing Sciences in Colleges,
24(4), 275-281.

Carlisle, M. C., Wilson, T. A., Humphries, J. W., & Hadfield, S. M. (2005).
RAPTOR: A visual programming environment for teaching algorithmic
problem solving. ACM SIGCSE Bulletin, 37(1), 176-180.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5),
107-116.

Creswell, J. W. (2011). Educational research: Planning, conducting, and evaluating
quantitative and qualitative research (4th ed.). Boston, MA: Pearson.

Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-
Bass Publishers.

Csikszentmihalyi, M. (2014). Toward a psychology of optimal experience. In M.
Csikszentmihalyi, Flow and the foundations of positive psychology: The
collected works of Mihaly Csikszentmihalyi (pp. 209-226). Dordrecht,
Netherlands: Springer.

Denning, P. J. (2009). The profession of IT beyond computational thinking.
Communications of the ACM, 52(6), 28-30.

Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C., Kelleher, T., . ..
Kaza, S. (2011). A model for piloting pathways for computational thinking in
a general education curriculum. In T. J. Cortina, E. L. Walker, L. S. King, &
D. R. Musicant (Eds.), Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education (pp. 257-262). New York: ACM.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching
and learning of computer programming through the use of the Second Life
virtual world. British Journal of Educational Technology, 42(4), 624-637.

Florea, A., Gellert, A., Florea, D., & Florea, A.-C. (2016). Teaching programming by
developing games in Alice. In I. Roceanu, D. Dubois, D. Beligan, F.
Moldoveanu, M. I. Dascalu, I. Stanescu, & D. Barbieru (Eds.), The
International Scientific Conference eLearning and Software for Education. 1,
pp. 503-510. Bucharest: "Carol I National Defence University Publishing
House.

125



Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A
research and practice model. Simulation & Gaming, 33(4), 441-467.

Gerola, R. J. (1997). Identification of object-oriented computer programmer mastery
status through evaluation of object-oriented programming semantic
knowledge. (Doctoral dissertation). Retrieved from ProQuest Dissertations &
Theses Global. (304370368)

Glasser, M. (2009). Fundamentals of object-oriented programming. In M. Glasser,
Open Verification Methodology Cookbook (pp. 27-48). New York: Springer-
Verlag.

Gomes, A., & Mendes, A. J. (2007, September). Learning to program-difficulties and
solutions. Paper presented at the International Conference on Engineering
Education-ICEE, Coimbra, Portugal.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state
of the field. Educational Researcher, 42(1), 38-43.

Gunter, G. A., Kenny, R. F., & Vick, E. H. (2008). Taking educational games
seriously: using the RETAIN model to design endogenous fantasy into
standalone educational games. Educational Technology Research and
Development, 56(5-6), 511-537.

Guzdial, M. (2008). Paving the way for computational thinking. Communications of
the ACM, 51(8), 25-27.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and
programming. ACM SIGCSE Bulletin, 31(3), 171-174.

Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide.
San Francisco: Pfeiffer.

Jones, R. (2000). Design and implementation of computer games: A capstone course
for undergraduate computer science education. ACM SIGCSE Bulletin, 32(1),
260-264.

Kazimoglu, C. (2013). Emprical evidence that proves a serious game is an
educationally effective tool for learning computer programming constructs at
the computational thinking level. (Doctoral dissertation, University of
Greenwich).

Kazimoglu, C., Kiernan, M., & Bacon, L. (2012b). Understanding computational
thinking before programming: Developing guidelines for the design. In P.
Felicia, Developments in Current Game-Based Learning Design and
Deployment (p. 316). IGI Global.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2012a). A serious game

for developing computational thinking and learning introductory computer
programming. Procedia-Social and Behavioral Sciences, 47, 1991-1999.

126



Kegeci, G., Alan, B., & Zengin, F. K. (2016). Egitsel bilgisayar oyunlar1 destekli
kodlama 6grenimine yonelik tutum 6lgegi: Gegerlilik ve giivenilirlik
calismasi. Education Sciences, 11(4), 184-194.

Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming
model. The Internet and Higher Education, 8, 13-24.

Kolb, D. (1984). Experiential learning: Experience as the source of learning and
development. New Jersey: Prentice Hall.

Kolling, M. (1999a). The problem of teaching object-oriented programming. Journal
of Object Oriented Programming, 11(8), 8-15.

Kolling, M. (1999b). The problem of teaching object-oriented programming, Part I1:
Environments. Journal of Object-Oriented Programming, 11(9), 6-12.

Koélling, M. (2010). The greenfoot programming environment. ACM Transactions on
Computing Education, 10(4), 14:1-21.

Kolling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and
its pedagogy. Journal of Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13(4), 249-268.

Lahtinen, E., Ala-Mutka, K., & Jarvinen, H.-M. (2005). A study of the difficulties of
novice programmers. ACM SIGCSE Bulletin, 37(3), 14-18.

Laporte, L., & Zaman, B. (2018). A comparative analysis of programming games,
looking through the lens of an instructional design model and a game
attributes taxonomy. Entertainment Computing, 25, 48-61.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . .. Werner, L.
(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32-
37.

Lester, J., Converse, S. A., KAhler, S. E., Barlow, S. T., Stone, B. A., & Bhogal, R.
(1997). The persona effect: Affective impact of animated pedagogical agents.
In S. Pemberton (Ed.), Proceedings of the ACM SIGCHI Conference on
Human factors in computing systems (pp. 359-366). New York: ACM.

Lister, R. (2011). Programming, syntax and cognitive load (part 2). ACM Inroads,
2(2), 21-22.

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on
the laerning of computational problem solving. Computers & Education,
57(3), 1907-1918.

Livovsky, J., & Porubin, J. (2014). Learning object-oriented paradigm by playing
computer games: concepts first approach. Central European Journal of
Computer Science, 4(3), 171-182.

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. ACM
SIGCSE Bulletin, 41(1), 260-264.

127



Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008).
Programming by choice: Urban youth learning programming with scratch. In
J. D. Dougherty, S. Rodger, S. Fitzgerald, & M. Guzdial (Eds.), Proceedings
of the 39th SIGCSE technical symposium on Computer science education (pp.
367-371). Portland: ACM.

Maloney, J., Resnick, M., Rusk, N., & Silverman, B. E. (2010). The scratch
programming language and environment. ACM Transactions on Computing
Education (TOCE), 10(4), 16.

Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlaylT: Game Based
Learning Approach for Teaching Programming Concepts. Journal of
Educational Technology and Society, 5-17.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-
D., ... Wilusz, T. (2001). A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students. In H. M. Walker
(Eds.), Working group reports from ITiCSE on Innovation and Technology in
Computer Science Education (pp. 125-140). New York: ACM.

McFarlane, A., Sparrowhawk, A., & Heald, Y. (2002). Report on the educational use
of games. Cambridge: Teachers Evaluating Educational Media.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in
Scratch. In G. RoBling, T. Naps, & C. Spannagel (Eds.), Proceeedings of the
16th annual joint conference on Innovation and technology in computer
science education (pp. 168-172). New York: ACM.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer
science concepts with scratch. Computer Science Education, 23(3), 239-264.

Miljanovic, M. A., & Bradbury, J. S. (2017). RoboBUG: A serious game for learning
debugging techniques. In J. Tenenberg, D. Chinn, J. Sheard, & L. Malmi
(Eds.), Proceeding of the 2017 ACM Conference on International Computing
Education Research (pp. 93-100). New York: ACM.

Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social
agency in computer-based teaching: Do students learn more deeply when
they interact with animated pedagogical agents? Cognition and Instruction,
19(2), 177-213. doi:10.1207/S1532690XCI11902_02

Muratet, M., Torguet, P., Viallet, F., & Jessel, J. P. (2011). Experimental feedback
on Prog&Play: a serious game for programming practice. In E. Groller, & H.
Rushmeier (Eds.), Computer Graphics Forum. 30, pp. 61-73. Blackwell
Publishing Ltd.

O'Kelly, J., & Gibson, J. P. (2006, June). RoboCode & problem-based learning: A
non-prescriptive approach to teaching programming. ACM SIGCSE Bulletin,
38(3), 217-221.

128



Ozkok, A. (2005). Disiplinlerarasi yaklasima dayali yaratici problem ¢ozme Ggretim
programinin yaratici problem ¢dzme becerisine etkisi. Hacettepe Universitesi
Egitim Fakiiltesi Dergisi, 28, 159-167.

Papert, S. (192). Teaching children thinking. Programmed Learning and Educational
Technology, 9(5), 245-255.

Pellas, N. (2014). Exploring interrelationships among high school students'
engagement factors in introductory programming courses via a 3D multi-user
serious game created in open sim. Journal of Universal Computer Science,
20(12), 1608-1628.

Perkovi¢, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for
computational thinking across the curriculum. In R. Ayfer, J. Impagliazzo, &
C. Laxer (Eds.), Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education (pp. 123-127). New York:
ACM.

Phelps, A. M., Egert, C. A., & Bierre, K. J. (2005). MUPPETS: multi-user
programming pedagogy for enhancing traditional study: an environment for
both upper and lower division students. Proceedings of the 4th Conference on
Information Technology Curriculum (pp. 100-105). New York: ACM.

Pitsatorn, P. P. (2003). Object-oriented programming training: Bottom-up versus
top-down approach. (Doctoral dissertation). Retrieved from ProQuest
Dissertations & Theses Global. (305334331)

Polya, G. (1957). How to solve it: A new aspect of mathematical method. Princeton,
New Jersey: Princeton University Press.

Poo, D., Kiong, D., & Ashok, S. (2007). Object-oriented programming and Java.
London: Springer Science & Business Media.

Prensky, M. (2003). Digital game-based learning. ACM Computers in Entertainment,
1-4.

Qualls, J. A., & Sherrel, L. B. (2010). Why computational thinking should be
integrated into the curriculum. Computing Sciences in Colleges, 25(5), 66-71.

Ramirez-Rosales, S., Vazquez-Reyes, S., Villa-Cisneros, J. L., & De Leon-Sigg, M.
(2016). A Serious Game to Promote Object Oriented Programming and
Software Engineering Basic Concepts Learning. In R. Judrez-Ramirez, S. J.
Calleros, H. J. Oktaba, C. F. Fernandez, R. A. Vera, G. L. Sandoval, ... J. A.
(Eds.), 2016 4th International Conference in Software Engineering Research
and Innovation (CONISOFT) (pp. 97-103). Los Alamitos: IEEE.

Repenning, A., Webb, D., & loannidou, A. (2010). Scalable game design and the
development of a checklist for getting computational thinking into public
schools. In G. Lewandowski, S. Wolfman, T. J. Cortina, & E. L. Walker
(Eds.), Proceedings of the 41st ACM technical symposium on Computer
science education (pp. 265-269). New York: ACM.

129



Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., ... Kafai, Y. (2009). Scratch: programming for all. Communications of
the ACM, 52(11), 60-67.

Rieber, L. P. (1996). Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and games.
Educational Technology Research and Development, 44(2), 43-58.

Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest Adams on game
design. Indianapolis: New Riders.

Rosenthal, R., & Rosnow, R. L. (1984). Essentials of behavioral research: Methods
and data analysis. New York: McGraw-Hill.

Sarkar, N. I. (2006). Teaching computer networking fundamentals using practical
laboratory exercises. IEEE Transactions on Education, 49(2), 285-291.

Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing
definition. In J. Carter, I. Utting, & A. Clear (Eds.), Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science
Education (p. 6). Canterbury: ACM.

Soflano, M. (2011). Modding in serious games: Teaching structured query language
(SQL) using neverwinter nights. In M. Ma, A. Oikonomou, & L. Jain (Eds.),
Serious Games & Edutainment Applications (pp. 347-368). London:
Springer.

Soloway, E. (1986). Learning to program= learning to construct mechanisms and
explanations. Communications of the ACM, 29(9), 850-858.

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W., Goldstein, D. S., & Nordlinger,
J. (2011). Game-themed programming assignment modules: A pathway for
gradual integration of gaming context into existing introductory programming
courses. IEEE Transactions on Education, 54(3), 416-427.

Sweller, J., van Merriénboer, J. J., & Paas, F. G. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10(3), 251-296.

Van Haaster, K., & Hagan, D. (2004). Teaching and learning with BlueJ: An
evaluation of a pedagogical tool. Issues in Informing Science & Information
Technology, 1, 455-470.

van Merriénboer, J. J., Clark, R. E., & de Croock, M. B. (2002). Blueprints for
complex learning: The 4C/ID-model. Educational Technology Research and
Development, 50(2), 39-61.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational
thinking in compulsory education: Towards an agenda for research and
practice. Education and Information Technologies, 20(4), 715-728.

Wang, T.-C., Mei, W.-H., Lin, S.-L., Chiu, S.-K., & Lin, J. M.-C. (2009). Teaching
programming concepts to high school students with Alice. In J. Froyd (Ed.),

130



Proceedings of the 39th IEEE International Conference on Frontiers in
Education Conference (pp. 955-960). Piscataway, NJ: IEEE Press.

Watson, C., Li, F. W., & Lau, R. W. (2011). Learning programming languages
through corrective feedback and concept visualisation. In H. Leung, E.
Popescu, Y. Cao, R. W. Lau, & W. Nejdl (Eds.), Proceedings of the 10th
International Conference on Web-Based Learning (pp. 11-20). Heidelberg:
Springer-Verlag.

Wegner, P. (1990). Concepts and paradigms of object-oriented programming. ACM
SIGPLAN OOPS Messenger, 1(1), 7-87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A
comparison of the comprehension of object-oriented and procedural programs
by novice programmers. Interacting with Computers, 11(3), 255-282.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical transactions of the royal society of London A: mathematical,
physical and engineering sciences, 366, 3717-3725.
doi:10.1098/rsta.2008.0118

Wong, Y. S., Hayati, M. Y., & Tan, W. H. (2016). A Propriety Game-Based
Learning Game as Learning Tool to Learn Object-Oriented Programming
Paradigm. Joint International Conference on Serious Games (pp. 42-54).
Brisbane: Springer International Publishing.

Xinogalos, S. (2016). Designing and deploying programming courses: Strategies,

tools, difficulties and pedagogy. Education and Information Technologies,
21(3), 559-588.

131



