

PLAYING THE TURKISH TILE GAME OKEY

WITH DEEP REINFORCEMENT LEARNING

İLKE UYGUN

BOĞAZİÇİ UNIVERSITY

 2019

PLAYING THE TURKISH GAME OKEY

WITH DEEP REINFORCEMENT LEARNING

Thesis submitted to the

Institute for Graduate Studies in Social Sciences

in partial fulfillment of the requirements for the degree of

Master of Arts

in

Management Information Systems

by

 İlke Uygun

 Boğaziçi University

 2019

Playing The Turkish Tile Game Okey

With Deep Reinforcement Learning

The thesis of İlke Uygun

has been approved by:

Assist. Prof. Ahmet Onur Durahim _____________________________

(Thesis Advisor)

Prof. Aslı Sencer _____________________________

Prof. Erkay Savaş _____________________________

(External Member)

September 2019

iii

iv

ABSTRACT

Playing the Turkish Tile Game Okey

With Deep Reinforcement Learning

Games are important test beds for machine learning studies for over the last decades.

Significant progress has been made in games such as Checkers, Chess, Go and Poker

with the help of deep neural networks used for function approximation within

reinforcement learning algorithms. Agents were able to reach champion or

superhuman levels by beating the top players of the world. This study focuses on the

Turkish tile game Okey and aims to prove that agents can learn to play this game

with the guidance of deep reinforcement learning. Okey has a unique setting where

there is partially observable environment, stochastic nature and multiple players

which are fully competitive. The study focuses on teaching a learning agent to play

the game without any direct supervision, solely by receiving reward signals at each

step for drawing and discarding tiles, with the help of stochastic policy gradients,

actor-critic algorithm, prioritized experience replays which are explained thoroughly

in this thesis. The learning agent plays against a random computer opponent in the

custom Gym environment created for the Okey game as a two-player game version.

Within the game framework, learning agent plays against an opponent that draws a

tile from discarded tiles of the agent or from the center tile randomly, and always

discards from the free tiles which makes it compelling enough for the learning agent.

The results of the games through the experiments are reflected and win rates of the

agent against the computer opponent can be considered as the achieved success of

this study. Extensive research on the existing literature shows that this is the first

study that uses reinforcement learning to play the game of Okey.

v

ÖZET

Türk Taş Oyunu Okeyi

Derin Pekiştirmeli Öğrenmeyle Oynamak

Geçtiğimiz yıllardan bu yana oyunlar makine öğrenmesi çalışmaları için önemli bir

test yatağı olmaktadır. Satranç, Dama, Go ve Poker oyunlarında pekiştirmeleri

öğrenme algoritmaları kapsamında derin yapay sinir ağlarıyla fonksiyon

tahminlemeyle kayda değer ilerlemeler yapılmıştır. Yapay zekalar, oyunlarda

dünyadaki en iyi insan oyuncuları yenerek şampiyon veya süper insan seviyelerine

ulaşmıştır. Bu çalışma Türk taş oyunu Okey’e odaklanır ve derin pekiştirmeli

öğrenmenin yönlendirmesiyle yapay zekanın bu oyunu öğrenebileceğini ispatlamayı

amaçlar. Okey’in kısmi gözlemlenebilir ortamı, olasılıksal doğası ve birbirleriyle tam

rekabet içinde olan oyuncularıyla kendine özgü bir yapısı vardır. Bu çalışma öğrenen

bir yapay zekanın hiçbir doğrudan yönlendirme olmadan, sadece taş çekerken ve taş

atarken her adımda ödül sinyalleri alarak, tez boyunca anlatılan olasılıksal davranış

meyilleriyle, aktör-kritik algoritmasıyla, önceliklendirilmiş tecrübe tekrarlarıyla

oyunu öğrenmesine odaklanmaktadır. Öğrenen yapay zeka, özel tasarlanmış 2 kişilik

Okey’i Gym ortamında rastgele oynayan bilgisayar rakibine karşı oynar. Oyun çatısı

içinde, öğrenen yapay zeka, yere atılan taşlardan ya da ortadaki taşlardan rastgele

çeken ve her zaman elinde boşta olan taşlardan atan bilgisayar rakibine karşı oynar

ve bu yapısı onu, öğrenen yapay zeka için yeterince zorlu kılar. Yapılan deneyler

boyunca elde edilen sonuçlar bu çalışmada sunulmaktadır ve yapay zekanın rakibine

karşı kazanma oranları bu çalışmanın elde ettiği başarı seviyesi olarak görülebilir.

Literatürde yapılan kapsamlı araştırma sonucunda bu çalışma, pekiştirmeli öğrenme

kullanılarak Okey oyununu oynatan ilk çalışma olarak gösterilebilir.

vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: LITERATURE REVIEW ... 7

CHAPTER 3: METHODOLOGY ... 12

3.1 Reward function design ... 18

3.2 Actor – Critic setting .. 20

3.3 Greedy approach .. 21

3.4 Prioritized experience replay ... 22

CHAPTER 4: RESULTS AND FINDINGS .. 24

CHAPTER 5: LIMITATIONS ... 27

CHAPTER 6: CONCLUSION AND FUTURE WORK ... 30

CHAPTER 7: BUSINESS IMPLICATIONS .. 33

REFERENCES ... 36

vii

LIST OF FIGURES

Figure 1. RL agent-environment interaction diagram ... 2

Figure 2. The complete set of Okey tiles .. 2

Figure 3. An example Okey hand ... 3

Figure 4. An example Okey hand with free tiles .. 14

Figure 5. Action selection agent code ... 16

Figure 6. Neural network design for draw action ... 17

Figure 7. Neural network design for discard action .. 18

Figure 8. Agent action selection code for drawing tile ... 22

Figure 9. The process flow chart of the Okey game ... 23

file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195273
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195274
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195275
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195276
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195278
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195279
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195280
file:///C:/Users/ilkeu/Documents/Thesis%20Final/Ilke_Uygun_Playing_Turkish_Game_Okey_With_Deep_Reinforcement_Learning_Final_ilke2drhm2ilke1440.docx%23_Toc19195281

1

CHAPTER 1

INTRODUCTION

Games have been important test beds for artificial intelligence (AI) studies over the

past decade. Significant progress has been made on Chess, Go, Texas Hold’em

Poker, and Atari games to name a few examples. Silver and his colleagues (2016)

from DeepMind’s work AlphaGo in Go, Carnegie Mellon University with Facebook

AI’s Pluribus by Brown & Sandholm (2019) in No Limit Texas Hold’em

Poker, portray promising results of reinforcement learning (RL) algorithms beating

the top players and reaching superhuman level. This subset of the field of machine

learning called reinforcement learning is getting more attention after these important

advancements. Reinforcement learning differs from supervised learning, where there

is labeled data set and training takes place with respect to these labels; like in image

classification. It also differs from unsupervised learning where there are no labels in

the input data and algorithms mainly find similarities in the data in order to group

them into clusters. As described by Hu and Wellman (1999), supervised learning

contains examples in the form of input and output pairs which are observed by the

learning algorithm, and it tries to learn how to map them to each other. Environment

provides the output values which guides the algorithm like a teacher or supervisor.

However, in reinforcement learning, there is no outer guidance for the learning

algorithm (agent) and it only learns by interacting with the environment and

receiving observations (states) and rewards (see Figure 1). These observations and

reward feedbacks guide the agent about which actions to abandon and which actions

to keep doing in order to achieve the goal which is winning the game in gaming

2

context; even without knowing the game rules. So, the interesting part is that the

agent learns to play with optimal strategies even without having to learn the game

dynamics (although there are approaches for first figuring out the game dynamics

using that insight to learn the optimal policy) and still being able to defeat the top

players. This study will explain an attempt in teaching an agent the Turkish tile game

Okey with model-free reinforcement learning methods.

Okey is a popular Turkish tile game generally played with 4 people but can

also be played with 2 or 3 people. The game is played with 106 tiles, 2 stacks of 4

different colored tiles (i.e. red, black, blue, yellow), ranging from number 1 to 13 and

Figure 2. The complete set of Okey tiles

Figure 1. RL Agent-Environment interaction diagram

From Wikimedia Commons, licensed under the Creative

Commons Attribution-Share Alike 4.0 International license.

3

two false joker tiles (see Figure 2). To begin the game, the tiles are placed with

values facing down and shuffled. One tile is placed in the center face-up and the one

value greater than this tile’s value indicates the joker (a.k.a. okey) tile. This wildcard

tile symbolizes the name of the game and can be used in place of any tile in player’s

rack. The false joker tiles, however, can only be used as the real color and value of

the joker tile only. For example, if the tile placed face-up is Yellow 5, false joker

tiles will only be used as Yellow 6, and the Yellow 6 tiles will be used as wildcard

joker tiles. The starting player takes 15 tiles and rest of the players take 14 tiles. The

aim is to group or order these tiles in 3-, 4- or 5-tile series on your rack obtaining

either tiles with the same rank with different colors like “Red 2, Blue 2, Yellow 2” or

the same color with rank ordered tiles like “Blue 1, Blue 2, Blue 3, Blue 4” (see

Figure 3). In contrast, players can also choose to form double pairs with the same

tiles as in “Yellow 2, Yellow 2”, “Black 5, Black 5” and so on but they must

complete the hand with only double pairs, thus having seven such double pairs to

win the game.

Figure 3. An example Okey hand

4

The starting player with 15 tiles begins by discarding a tile and each player

takes turn anticlockwise by either drawing the discarded tile of the previous player or

by drawing a tile from the center. The game goes on until a player finishes her/his

hand by having no free tile left, therefore having all of tiles on her/his rack

grouped/paired, indicating that s/he has won the episode. The game can also

terminate at a state when there is no center tile left and no player has a finished hand

(no free tiles left). If this is the case, the game is considered as a draw and a new

game can be started, although in one version of the game, players continue to play by

shuffling the discarded tiles faced down, forming new deck of center tiles. The

winning players score is deducted by 2 points for a regular tile discard, 4 points for

winning by discarding an Okey tile or 4 points again by winning with double pairs

style in an episode. Usually game is played in episodes by discounting from 20 and

until a player reaches 0 which indicates that s/he won the game.

This type of game environment is challenging in terms of reinforcement

learning perspective for various reasons. First, there should be multiple agents in

Okey, playing in a fully competitive fashion and in some versions additionally in a

cooperative fashion. Secondly, the environment is partially observable because an

agent cannot see the other agents’ racks and the faced down center tiles. To name a

few examples, there are similar games like Blackjack and Poker that contain partially

observable settings. In Blackjack by Perez-Uribe & Sanchez (1998), players do not

see one of the dealer’s cards at the beginning and in Poker by Brown & Sandholm

(2019) , players do not have the chance to see each other’s cards. There are also

cooperative games like Hanabi by Bard and his colleagues (2019), where you do not

see your own card and hold them facing to the other players and you communicate

with the other players to try to figure out your own cards so that you can come up

5

with the best hand combination together with the other players while each player is

trying to figure out what cards they might be holding. Lastly, the game is stochastic

because of the randomness of the center tile drawn. Again, same randomness also

holds for Blackjack and Poker because no player knows for sure which card will be

dealt by the dealer. On top of these challenges of the environment, the extensive

research done on the topic shows that, to the best of our knowledge, there is no

attempt that has been made in applying reinforcement learning algorithms to the

game Okey. Comprehensive examples from the existing literature on multi-agent

reinforcement learning studies which influenced this study is shared in the Literature

Review section.

With all these challenging characteristics of Okey, the goal of this study is to

try teaching an agent to play Turkish tile game Okey by using the reinforcement

learning algorithms. Can we implement an intelligent agent who can play Okey

without any guidance, taking required actions wisely like a human would do?

In order to tackle this problem, deep reinforcement learning architectures

including policy networks has been designed for each draw and discard decisions to

be made by the Okey playing AI agent. Initially, the agent will start by taking actions

according to the policy networks initialized randomly and then with the help of the

observations received from the environment. Rewards obtained after taking an action

in particular states were fed back to the system to improve the effectiveness of the

decisions made in the next steps. Details of the methodology followed in this respect

will be explained in Methodology section.

Aru and his colleagues (2017) state that, when an agent trains against another

agent, this approach is called self-play and it is possible to come up with more

6

general strategies as a benefit. Usually, first the agents are trained with supervised

learning because supervised learning is used to give example games as input.

Afterwards, they train by self-play in order to increase the performance. For

example, for the training of the AlphaGo by Silver and his colleagues (2016), the

human expert moves were used as the initial training data. However, in this study it

is preferred to train the agents with only self-play in order to find out adaptive

strategies which is also the case in the follow up work for the improved version of

AlphaGo, named AlphaZero, as presented in Silver and his colleagues (2017) and

again in Silver and his colleagues (2018). We elaborated more on the outcome of the

experiments performed in this study in Results and Findings section.

7

CHAPTER 2

LITERATURE REVIEW

Games can be classified into perfect information games and imperfect information

games depending on the player’s visibility of the game environment information.

Perfect information game is the game in which the player can get all information

about the state of the game, and imperfect information game is the game in which

there is hidden information. For example, as Takaoka, Kawakami and Ooe (2017)

illustrated, some examples for perfect information games are Chess, Go and Shogi,

and in contrast, Rummikub, Mahjong and Bridge are the examples for imperfect

information games. Okey being very similar to Rummikub game, is also an imperfect

information game. Rummikub is also played with same racks and tiles but only

difference is that first person to reach a pair of 30 points (each tile’s face value

indicating the point of a tile) melds the pair on to the center and players keep adding

tiles to the center, similar to Scrabble in this sense, instead of keeping the ordered

sets or groups in their rack secretly. So, the game still contains partial observability

but in a different manner. In one of the key studies in reinforcement learning field,

Heinrich and Silver (2016) stated that it is possible for each player to observe only

his own state information, like a poker player sees his own private cards but doesn’t

know the other players’ cards. Likewise, in Okey, a player can only partially observe

the game environment, being able to see his/her own tiles, last discarded tiles of the

other players and face-up tile in the center. Besides, the randomness in the tile that

can be drawn from the center tiles and other players’ actions bring stochasticity to

the game.

8

While considering other players’ decisions, it is also necessary to delve into

the agents’ interaction with each other when conducting a research, especially in

multi-agent reinforcement learning (MARL) games. Buşoniu, Babuska and De

Schutter (2011) implied that MARL techniques in games can be classified as fully

cooperative, fully competitive or mixed stochastic games depending on the type of

task targeted by the learning algorithm and how they address the learning agents’

behaviours. In this manner, Okey is a type of game comprising of fully competitive

players. A contrasting example can be given as Hanabi, which according to Bard and

his colleagues (2019) is an imperfect information game played by two to five players

which are in full cooperation, making the game like teamed version of solitaire. This

is a game where players fully cooperate to maximize the shared reward. In Hanabi

game, players only see the other players’ hands and communicate with them to give

clues about each other’s hands to form the best combination of cards, consequently,

to form the best possible cumulative hand in full cooperation.

Another important classification for games is made depending on the reward

functions of the environment. Nowe, Vrancx and De Hauwere (2012) described that,

the game is an identical payoff or common interest game when the same reward

function is shared among all players, however, a zero-sum game when the total of all

players’s rewards sum up to 0. Two-player version of Okey can be considered as

zero-sum game. According to Bard and his colleagues (2019), important two-player

zero-sum games which contributed remarkable studies in the field of artificial

intelligence by enabling computers to reach super-human skills are chess (Campbell,

Hoane, & Hsu, 2002), checkers (Schaeffer, Lake, Lu, & Bryant, 1996), go (David

Silver et al., 2016), backgammon (Tesauro, 1995) and two-player poker (Moravcik et

al., 2017). Furthermore, Diddigi, Kamanchi and Bhatnagar (2019) stated that

9

information of the model of the game dynamics is not given to the players in

majority of the two player zero-sum game settings in real life, and players try to

utilize the states and rewards gathered from the environment, in order to come up

with the optimal policies by just knowing the rules of the game only.

 Another important factor affecting the complexity of the problem is the

number of players, or learning agents, in the game because each agent adds its own

variables to the joint state-action space. As a result, Foerster and his collegues (2018)

expressed that when the number of agents increase, the growth in the joint action

space is exponential and it makes the learning very challenging. Moreover, Neto

(2005) explained that there is stationary environment in single agent examples but in

multi-agent scenario, each agent is changing the environment. This is a though

challenge because the agent is learning in a non-stationary environment with the

possibility of other agents learning in a similar fashion as well. In parallel to that,

Buşoniu, Babuska and De Schutter (2011) described that the best policy keeps

changing with the changes in other agents’ policies, which they defined as moving-

target learning problem for each agent to deal with. So, this explains how dynamic

state-space is being shaped after each turn of an agent. In single agent scenario, there

is no such issue, and the problem is considerably easier to tackle. As it is stated in

Wai, Wang and Hong (2018), there has been a considerable success achieved in

single-agent reinforcement learning, but multi-agent reinforcement learning (MARL)

is still being challenging because each agent interacts with each other while they are

also interacting with the environment.

Reinforcement learning methods are chosen to be applied to try teaching a

machine how to play Okey like a human player. According to Sethy, Patel and

Padmanabhan (2015), reinforcement learning is the field of machine learning that

10

deals with agent figuring out how to behave in a certain situtation by mapping

situations to actions in order to maximize a numerical reward signal. The learner has

no preconception of which actions to take, it is not told externally, but instead it has

to decide on its own by trial and error considering the maximum reward it collects in

the long run. Generally, this is a challenging and interesting approach because the

actions taken may not affect only the immediate reward received but also the

upcoming situations and therefore all subsequent rewards in the long run. So, RL

agent must make the decisions and take actions accordingly, and receive observation

and reward from the environment and update its beliefs on what is the correct action

in a particular state of the game and this loop continues until the game ends.

In order to overcome the problem of making sequential decisions in a

dynamic game environment, deep neural networks were implemented within

reinforcement learning framework for making decisions, thus named deep RL. There

are two moves to be made by the agent playing Okey game which are drawing a tile

and discarding a tile. Endicott (2017) clarified the network setup attentively by

stating that we should use our state as input to the neural network before making a

move. In order to select the move with the help of the network, the resulting state

from each possible move can be send to the network and the network will output the

move with the highest probability to win with respect to the past moves. The state

will contain the most recent observation of the agent either before it withdraws a tile

or draws one. Technical details about how decision-making units are modeled as

deep neural networks together with the reward design are provided in the

Methodology section.

11

Deep learning and deep neural networks are two important terms that are used

interchangeably where a neural network has more than one hidden layer, possibly

many of them.

Lastly, there are other interesting and promising studies on RL, in other

application domains as well. One example is by Zheng and his colleagues (2018)

where they applied RL in a news recommendation system. They used Deep Q-

Network to calculate the Q-value of a news article using the user features and context

features representing the state of the environment are fed as the input. Based on the

resulting Q-value, a list of news is recommended to a user. User’s click on a certain

news article is used as part of the reward agent received to improve the system.

Another interesting application of RL is in finance domain. As it is stated in

Srinivasan (2018), IBM built a complex trading system which makes financial trades

using the power of reinforcement learning.

12

CHAPTER 3

METHODOLOGY

Can one implement intelligent agents who can play Okey without any human

guidance and take required actions wisely in a manner like a human would do? To

answer this research question, deep reinforcement learning methods are investigated

and implemented, which corresponds to using deep neural networks as a function

approximator within reinforcement learning algorithms. Specific to the game of

Okey, there are two decisions to be made. First one is to decide on whether player

should draw the tile that is discarded by the opponent player or from a tile from the

center tiles. Second decision to be made is about which tile to be discarded from the

player’s hand tiles. As a result, a player is represented by a combination of two

decision making entities, one for the draw action and the other for the discard action.

We handle the problem of creating these entities at two different steps. The first step

is to understand and implement the policy gradient algorithm and value functions for

reinforcement learning, where the agent interacts with the environment by sending

actions and receiving observations representing the state of the game as well as

rewards. Policy and value networks get the current environment state that the agent is

in as the input and output the action probability distribution and value of the state as

the output, respectively. As it is prescribed in the study by Foerster and his

colleagues (2018), each agent should learn independently from its own action and

observation history when applying policy gradients to multiple agents in the simplest

way possible. As Foerster and his colleagues suggest, the learning agent has an actor

network corresponding to the policy network for each decision, draw and discard,

and a critic network which embodies the value network to predict the value of the

13

state and return the error in actor’s actions and value predictions. The details about

the actor-critic setup is explained in detail under “3.2 Actor Critic Setting” section.

In order to choose the draw and discard action, deep neural networks are designed

for each action. Policy network is forwarded to calculate the probabilities of actions

in order to choose the action either stochastically according the output probabilities

or greedily where the action with the highest probability is selected. Then, agents are

trained at each episode with the state, action and reward tuples to improve its

decisions. Training corresponds to minimizing the loss function which is the term

that agent tries to optimize to learn the best decisions to be made and tuning the

action probabilities accordingly for the next episode. Multiple runs of the game have

been executed in order to observe the improvements in the winning rates, net value

gained and mean rewards after each game episode in the long run. Net value gained

is the difference between the hand value for the final hand and the hand value for the

initial hand obtained at the beginning of the game. Information about the hand value

and rewards are detailed under “3.1 Reward Function Design” part.

In addition to considering the implementation details of the actor critic

algorithm, different architectural parameters have been tested and detailed

experiments has been conducted to evaluate greedy vs. stochastic action selection

approaches, and utilization of prioritized experience replay. Greedy approach is

where the agent always chooses the action with the highest probability, or exploits in

other words, rather than randomly selecting an action according to the action

probabilities returned from the decision network. Prioritized experience replay is also

an important concept for reinforcement learning systems because it allows you to

keep important samples, as (state, action, reward, next state) tuple, and with a

priority assigned to each sample which is the temporal difference error calculated for

14

these examples which is the difference between the estimated value of a state and

bootstrapped estimation of that state. The details about how the temporal difference

error is calculated are stated in “3.2 Actor Critic Setting” section and details about

the prioritized experience replay are elaborated in “3.4 Prioritized Experience

Replay” section. Crucial point is that experiences observed after each step of the

discard action are stored in experience replay memory and selection of a

predetermined sized batches of the most important samples are used at the end of

each episode for training the discard networks of the agent. Also, the comparison of

the results obtained with respect to the employed approaches stated here are

evaluated in “Chapter 4: Results and Findings”.

For this research, custom Gym Environment of the game Okey is

implemented where a randomly acting computer opponent plays against the learning

agent which is the matter of subject for this study. The computer opponent picks to

draw from discarded tiles or from the center tiles randomly but always discards a free

tile where that tile does not belong to any three or four-tile groups. For example, in

the Figure 4, “Red 1, 2, 3” is a three-tiled series and 7’s are four-tiled series and the

rest of the tiles are free tiles which are of no use.

To detail the steps of the research, it is important to start with the neural

networks’ designs. There are three deep neural networks designed for the research

Figure 4. An example Okey hand with free tiles

15

problem in this study: one network for discarding tile, one network for drawing tile

which take the role of actor part of the learning agent. Actor determines the action

probability distributions. Also, there is one network for the critic which acts as a

judge for the actor about the discard action, generating value for the given input

state.

The neural network for drawing a tile is a simple one and consists of one

input layer of 107 nodes, one hidden layer of 512 nodes and one output layer of two

nodes. 107 nodes at the input layer holds the hand tiles represented as an array of 52

indicators (13 values for each 4 different colors, Red, Black, Green and Yellow in

order) where each indicator denotes the number of tiles at hand. For example, if the

player has one “Red 1” tile in the hand tiles, the indicator at the first index of the

hand tiles representation takes value 1 and otherwise it takes the value of 0 if the

player doesn’t have “Red 1” tile in its hand tiles. So, if the player has two “Red 1”

tiles, then the first index will be 2 instead of 1, representing the count of that specific

tile. As a result, sum of the values in hand tiles representation will add up to 14.

Also, joker count is appended at the end as the 53rd item. So, hand representation for

the state is always an integer array with 53 items.

Additional 53 nodes for the discard neural networks input layer is similarly an

array of 53 integers allocated for representing the opponents’ discarded tile lying on

the ground, available for drawing by the learning agent. For example, if this

discarded tile is a “Yellow 13” which is the last tile in the representation of all tiles,

the array will contain 51 0’s followed by a 1 as the last item. Also, 53rd item will be

appended as 1 or 0 depending on this item being the joker or not. In total, this makes

106 nodes, where first 53 items represent the hand tiles plus the next 53 items

represent the last discarded tile by the opponent. The last, 107th node contains the

16

number of the center tiles remaining which is available for drawing. These nodes in

the input layer reflects the observation returned from the Okey environment before

deciding on the action to be taken in drawing a tile. On the other hand, two nodes at

the output layer symbolizes the possible actions for drawing either from the center

tiles or drawing the discarded tile. First node (which gets inactive if the drawing is

made from the center tiles and active if the discarded tile is drawn which corresponds

to a value of 0 or 1 for the draw_a variable seen in Figure 5, accordingly) is designed

for drawing the discarded tile. Second node gets active if the player draws from the

center tiles (where variable draw_a gets a value of 1). Action probabilities

(draw_action_probs) are output from the network and used for selecting the draw

action taking these probabilities into account. Related source code for agent action

selection for the draw is given as follows;

Figure 5. Action selection agent code

The flags can_draw_from_discarded and can_draw_from_center take values

depending on the agents’ observation’s discarded_tile and num_center_tiles_left

representations, respectively. If one of them reaches zero, the related boolean value

is set to false which means that the agent cannot draw from discarded tiles or from

center tiles. This is how first neural network works by inputting the last observation

before drawing a tile and outputting the probabilities of either drawing from the

17

discarded tiles or from the center tiles which guides the agent to try to select the one

considering the probabilities. It is also important to note that, in Figure 6 dark blue

circles are symbolizing the input neurons and there are 107 of them. Light blue

circles are the hidden nodes which consists of 512 neurons. Finally, two green

neurons denote the nodes in the output layer which give the probabilities of drawing

the discarded tile and drawing from the center tiles, respectively.

Furthermore, the structure of the neural network designed for the discarding

tile action is similar to the draw network with minor differences. First, number of

input neurons is 53 in discard network because only the hand tiles are given as the

observation where the first 52 integers represent the counts of hand tiles plus 1

integer denoting the joker count. Second, there are 15 nodes at the output layer,

containing 1 node per each existing tile in the agent’s hand. This design guarantees

that the network selects one of the tiles that the current hand contains. Also, there are

three hidden layers in the discard network because the optimal target policy that is

aimed to be learned is much more complex for the discard action as compared to the

draw action. As it can be seen from Figure 7, integer representation of the tile at

agent’s hand are fed into the input layer and discard action probabilities are

computed as the results of the output layer. Finally, the agent will choose to discard

the tile with the highest probability returned from this neural network in the greedy

Figure 6. Neural network design for draw action

18

action selection approach or choose the one stochastically according to the selection

probabilities. There is also another network that is used as critic which is explained

in Section 3.2.

 But the important question is how are the agents going to learn and improve

their decisions when they start with random actions? What makes them to reinforce

better game play just by playing with each other without any external guidance?

How will this setting react when there is one randomly playing agent against a

learning AI agent? To answer these crucial questions, next subsection elaborates on

the reward function design which shapes the feedback loop and guides agents for

improvement.

3.1 Reward function design

In order to design a good reinforcement learning framework, it is important to devise

an effective reward mechanism within the environment. Initial attempt was to place a

reward only at the end of the game which is the information as win or lose. So, if the

agent wins the game, it receives a predetermined positive reward (i.e., 100), and gets

the same but negative reward (i.e., -100) if the agent loses the game in that episode.

Figure 7. Neural Network Design for Discard Action

19

This design has the problem of learning too slow because agent must wait till the end

of the episode in order to receive reward and discount this reward to all the actions

taken throughout that episode which provides sparse rewards. Although this setting

would have found the optimal action policies for the draw and discard, it requires

much more training time and/or more processing power. To overcome this problem,

partial reward scheme was designed to ease the sparse reward environment as

follows.

The value of a given hand is calculated by considering the number of 3, 4 and

5-tile series at agent’s hand tiles. Each 3-tile series (i.e. Black 3, Black 4, Black 5)

are given 10 points, 4-tile series are given 15 points, and 5-tile series are given 20

points. So, the hand value is the sum of points obtained by taking tile series into

consideration. Before each draw action, initial the hand value is calculated. The hand

value is once more calculated after the drawing action is performed. The difference

between this value and the initial value is returned as the reward. For example, if the

agent draws a tile and makes a new 3-tile series as a result, 10 points is the total

computed reward for this step. This is provided as an intermediary reward, which

guides the agent in each step in finding the optimal draw policy.

Similarly, for each discarding action, value of the agent state can be

calculated as the difference between the resulting hand value after taking the discard

action and the hand value before that action. For example, -10 reward is given for

each broken 3-tiled series, and -5 for each 4 or 5-tiled series, meaning a tile from the

series is discarded. In addition to these, +5 reward is returned if the player discarded

a free tile, meaning that it made the right decision by keeping all series in hand. So,

as a result, with the help of rewards obtained at each step, our framework reinforces

the learning of the agent.

20

Finally, when the episode ends, sum of these SAR triples (State, Action,

Reward) collected at each turn from the agent actions are fed back to the network for

training. After training the agent networks, a new episode starts and agent selects its

action with the network trained with the experience obtained in previous episode.

 It is also important to state that although the okey tile is valued the highest in

the original game, the current reward design puts no emphasis on the uniqueness of

the okey tile and it is valued as any other tile in a series. Similarly, opting for double

series has no reward for the moment even though they have value more than regular

series. These limitations are also referred in the Limitations chapter.

3.2 Actor – Critic setting

Actor – Critic algorithms play a vital role in reinforcement learning systems because

they speed up the learning process significantly. The main idea is that there are actor

networks which predict the action to be taken and the agent takes these actions and

ends up in a new state, and receives new observation as a result. At this point, the

critic comes into play to assess the value of the actor’s states and assigns a score for

both the state after the previous action is taken, and the resulting state after the

current action is taken. For example, for the discard action, the steps taken in that

respect are given as follows;

1. Critic takes the current state representation after the draw action is taken into

its’ network as input and outputs a score as the next state’s value.

2. Reward is calculated as the sum of the reward after the discard plus the

reward after the draw because there are two steps in between two consecutive

discard actions, a draw followed by a discard.

21

3. Temporal difference target (td-target) is calculated as the reward obtained if

the episode is done, or the reward obtained plus the discounted value of the

next state where the discount factor is set as 0.99.

4. Critic predicts the current state’s value score by taking the previous state

representation as input.

5. Temporal difference error is calculated by subtracting the current state value

from the td-target from Step 3.

6. Critic is updated with the previous state drawn from Step 4 and the td-target

computed at Step 3 to minimize the loss and improve its’ discard action

selection policy.

So, critic network predicts scores for the two consecutive states after the

discard action is taken by the actor network and updates itself with the resulting state

and the bias resulted from its’ predictions. Thus, for the next discard, the critic

predicts with less bias and keep minimizing its’ loss to be optimized for value score

predictions for the states.

3.3 Greedy approach

Another approach that is tested through the experiments is the greedy approach

where the agent opts for the action with the highest probability instead of randomly

selecting considering the action probabilities. When the agent acts with the greedy

approach, both in drawing a tile and discarding a tile, the output with the highest

probability is selected as the action to be taken. Learning efficiency is tested by

training agent networks both with the greedy and stochastic action selection

approaches.

22

As an example, the agent action selection code for the tile drawing action is

given as follows;

3.4 Prioritized experience replay

Different forms of experience replays are common methods used in the

reinforcement learning applications because it is an effective way of reusing the

previous knowledge to improve the agent. The idea is to hold the moves represented

as (state, action, reward, next state) tuples attached with the temporal difference error

explained in Actor-Critic Setting part as the priority value at each step and reuse a

selected batch of them with the desired size for learning at the end of each episode.

The important point for the prioritized experience replay is that memory is kept for

the whole run and used at each episode in contrast to the agent SAR triples which are

discarded at the end of each episode. For this reason, more important experiences

meaning that the experiences with high td-errors, either positive or negative,

regarding decisions made throughout the whole episodes are guiding the agent at

each episode. This is parallel to real life experiences where a real upsetting or

glowing memory is kept more importantly in our brain and reused more carefully

when we are in a similar situation or “environment”. The setting of the prioritized

experience replay buffer is to hold 20,000 memories in total and to discard the oldest

when a new experience is added to the memory. A batch of 64 most important

experience tuples, ones with highest priorities, are fed into the actor’s discard

network at the end of each episode to try to reach the optimal action selection policy.

Figure 8. Agent action selection code for drawing tile

23

Training is carried out for 100 times at the end of each episode to improve the

learning of the agent.

Results obtained from the experiments performed by considering the use of

greedy action selection approach and utilization of the prioritized experience replay

are stated in the next section.

Following is the process flowchart of the self-play reinforcement learning

implemented in our research (Figure 9).

Figure 9. The process flow chart of the Okey

game

24

 CHAPTER 4

RESULTS AND FINDINGS

Gathering the results of the experiments is interesting part of this research because

the system runs for 100,000 episodes and the logs are observed throughout the

process of running. The key factors to indicate the learning of the agents are mean

draw reward, mean discard reward and the win rates for the runs. Majority of the

episodes end by center tiles finishing which can be interpreted as draw. Computer

opponent generally performed better than the learning agent because it always

discarded intelligently from the free tiles similar to what a human player would have

done, which means making no mistakes in keeping the series in hand. On the other

hand, the agent managed to win some of the episodes and the details of the ratios of

each party is shared in this section.

First of all, there are two different flags in place for the controlled

experiments; utilizing a greedy action selection approach, and whether or not

employing prioritized experience replays in training of the learning agent. As a

result, 22 = 4 unique runs were conducted to test every combination, each for 100,000

episodes. Each parameter has been explained in detail the previous Methodology

chapter. The results are as below;

1. Discard greedily, prioritized experience replay

Agent Won: 16 (0.016%)

Draw: 68,436 (68.436%)

Comp. Opp. Won: 31,548 (31.548%)

Mean Draw Reward: 73.4

Mean Discard Reward: 133.7

25

2. Discard non-greedily, prioritized experience replay

Agent Won: 2,337 (2.337%)

Draw: 65,471 (65.471%)

Comp. Opp. Won: 32,192 (32.192%)

Mean Draw Reward: 68.3

Mean Discard Reward: 145.9

3. Discard greedily, no prioritized experience replay

Agent Won: 5,937 (5.937%)

Draw: 48,983 (48.983%)

Comp. Opp. Won: 45,080 (45.080%)

Mean Draw Reward: 117.9

Mean Discard Reward: 407.4

4. Discard non-greedily, no prioritized experience replay

Agent Won: 1,356 (1.356%)

Draw: 54,417 (54.417%)

Comp. Opp. Won: 44,227 (44.227%)

Mean Draw Reward: 133.9

Mean Discard Reward: 390.7

26

 As it can be concluded from the results of the experiments, highest winning

rate and the highest mean discard reward is from the 3rd experiment where discarding

action was taken greedily, without the aid of prioritized experience replay. Higher

the mean discard reward means the agent performed better in holding on to the

existing series discarding from the series belonging tiles as less as possible. 5.937%

of the games for this run resulted as the learning agent winning which is the

maximum value in between all experiments. Around 48% - 68% of games ended as a

draw and this can be seen as a target for the agent win rate to steal from for further

studies because the computer opponent will never be able to improve itself. It will be

a major step if the learning agent can pass the 38.2% winning rate of the computer

opponent which is the average for the computer opponent among the 4 experiments.

Also, it is possible to reach stronger confidence level of results if the experiments

can be conducted with higher episodes per run, much higher than 100 thousand

episodes.

One last point that needs to be elaborated is the effect of the use of prioritized

experience replay in conjunction with greedy action selection where an unexpected

outcome is obtained. It is expected that the use of prioritized experience replay

improves the learning rate of the agent, but in the experiment where it is used with

greedy action selection, it is seen that it actually deteriorates the learning of the agent

and agent wins lesser number of episodes. This situation may be observed due to the

design of the architecture of the critic network or because the number of episodes is

not enough for populating sufficient number of important examples. So, the use of

prioritized experience replay needs further investigation.

27

CHAPTER 5

LIMITATIONS

One limitation of current Okey implementation is that playing with the paired tiles

was not implemented. This type of strategy is discussed in the first chapter, where a

player can try to collect pairs of exactly the same tiles and trying to reach to 7 pairs

in order to win the game. To allow this type of game play learning, existing reward

model must be expanded to support “paired tiles”. It is not easy to come up with the

comparison of the value of the existing tile series and pairs. Furthermore, the

environment state representation has to be refactored to specify that a certain player

is aiming for pairs because other players has to be notified for this case. Also,

finishing/winning with pairs has the same value as finishing by discarding the Okey

tile which is another limitation of the current version. The case where the agent

discards an Okey tile to have a finished hand, to win the game in other words, is not

covered as well but the reward model can be thought as parallel to pairs strategy

mentioned to extend the game to a more real-world scenario.

 In addition, the game can be implemented with four players placed on sides

of the square board where two players facing each other teamed together. This

version of the game is called “Eşli Okey” in Turkish (can be translated as Teamed

Okey or Okey with Pairs). For this type of the game, the reward model must be

revisited to consider a team’s cumulative success. Also, the communication channels

must be developed so that teamed agents can cooperate with each other. For

example, one common scenario is when one agent stops aiming for a good hand and

starts discarding the tiles strategically (discard like the next player’s discards) so that

the next player, who is an opponent player, cannot draw the discarded tiles. As a

28

result, the opponent player, next to the agent aiming to prevent him/her from

winning, is forced to draw from the center and left with only chance from drawing a

random tile and therefore other teammate can try to finish before the opponent.

These type of strategies and communications are hard to design but can be

considered for extending the study for further. Mixed agent behavior algorithms can

be searched to figure out a solution from similar games where there is both

cooperation and competition.

 Also, current game environment lacks to play for certain number of rounds

when center tiles are finished, for example there can be an additional round to play

by drawing discarded tiles of the opponent to have a minor extension to the episode

length.

 Another limitation is about the state representation provided to the learning

agent. Current state representation for the discarded tile contains only the one hot

encoded representation of the last tile but it will be more comprehensive to include a

list of past discarded tiles within the current episode, i.e. last 10 tiles discarded by the

opponent and include this within the observation seen by the learning agent so that

the agent can decide considering more information from a greater memory. Besides,

since all the discarded tiles can be observed by all the player, in addition to the

discarded tile that can be drawn by the agent, all the discarded tiles can be

incorporated into the state representation of the agent.

 Moreover, current hand ordering logic does not allow for creating 5-tiled

series. It is a minor limitation to the current game play because it allows up to 4-tiled

series. Creating more than 4 tiled series is a rare case and usually the strategy is to

split series when reaching to 6 tiles into 2 different 3-tiled series for increasing the

29

chances of expanding within more options but 5-tiled is a special case which should

be allowed. This way, the win rates of the players can be improved slightly.

 Lastly, there is another limitation in the game when trying to discard from 5

separate 3-tiled series. It is a rare case but with considering all the discarded tiles of

the opponent or all the other players, the learning agent can decide better which 3-

tiled series it needs to break and discard from it. Currently it doesn’t follow

discarded tiles carefully because no such observation is provided by the environment.

30

CHAPTER 6

CONCLUSION AND FUTURE WORK

The goal of this study was to try to figure out if an intelligent agent can be

implemented for learning to play the popular Turkish tile game Okey just with self-

play and with no human guidance. It is shown in the study that a deep reinforcement

learning agent can learn to play a simplified version of the game successfully with

the help of deep neural networks used in conjunction with reinforcement learning

algorithms. Methodology section described how the simplified problem was dealt

with in detail and how the reward function was modeled as well as other supporting

algorithms and parameters like prioritized experience replay and greedy approach.

Results and findings showed the progress of the experiments and success of the

learning agent in each experiment. It can be concluded that this research provides

valuable insights for implementing the learning agents for the Okey game. It can be

considered as an initial attempt for applying deep reinforcement learning to Okey

game and provides a new testing environment for further studies. This research can

be extended by considering specifically the partially observable nature as well as the

multi-agent cooperation and competition among the players that exists in the original

version of the game.

In the multi-agent case, it will be crucial to understand how existence of the

other agents as well as cooperation and competition among the players affect the

learning capability of the agent. Because when there are multiple agents learning in

the environment, there will be more information to observe, but at the same time

there will be increased uncertainty due to extra non-observable hands of the

opponents as well as allied player in the game.

31

 Finally, apart from the limitations and improvements that can be made to the

game environment, neural network or agent design, one future work can be planned

to train the agents not by just self-play but also playing against human opponents.

For example, game can be extended to 4 players and 3 human players can play

against the learning agent which can help the agent to learn from other’s decisions.

Also, it can be beneficial for evaluation purposes because AI succeeding against

human players is an important criterion for proving the strength of the system.

Furthermore, a tournament can be found or organized in order to categorize the

strengths of the players and try to beat all players to become the winner of the

tournament. Unfortunately, there is no existing association or league of the game

Okey as far as our research is concerned, but the study can be announced to related

communities who can be interested. To help this somewhat formal evaluation

process, official rules of the game Okey can be gathered (there is none yet according

to our research) but it will be useful to revise the game environment with the light of

such a rule set.

As another future work, design of the reward function will be reconsidered

since the design in this study provides information to the agent which may lead it to

learn and stuck at sub-optimal policy. Instead of leading the agent with the current

reward design, a sparse reward function that only provides win/lose information to

the agent can be implemented in order for the agent to find optimal policy.

 To wrap up, this study has proven the fact that an intelligent agent can learn

to play the Okey game without any human guidance or without even knowing the

rule set of the game. Besides learning agent succeeds against an intelligent computer

opponent just with the help of deep reinforcement learning algorithms. The deep

reinforcement learning agent reached up to 5.937% winning rate and this level can be

32

considered as a basis for future studies to be conducted in reinforcement learning

field considering the game Okey.

33

CHAPTER 7

BUSINESS IMPLICATIONS

Reinforcement learning studies generally focus on games at first because of their safe

nature and easier to simulate environments. For these reasons, games serve as a good

test bed for this research field but broader goal of course is to find practical

applications that will serve for businesses as well as humanity itself. There are

outstanding efforts in robotics, self-driving cars, industrial automation, healthcare

and medicine, resource management for computers, personalized recommendations

for targeted marketing, and automated financial stock trading to name a few areas.

First of all, self-driving car industry is a prominent application field of

reinforcement learning. Although, the main focus is on sensor interpretation for

recognizing road marking, traffic signs, pedestrians and other related objects,

reinforcement learning is used in control systems of autonomous vehicles for

supporting to select accelerator, brake and steering. According to Lytvynova’s

(2019) recent article on RL business applications, UK Company Wayve claims that

they are the first company to develop a driverless car that operates with the help of

reinforcement learning. Since autonomous driving is done in a partially observable

environment, reinforcement learning algorithms and approaches developed in game

environments like Okey can be benefited in self-driving car domain.

Secondly, robotics is as important application area for RL studies and

production lines are heavily dependent on robots especially in big industries. And

robotic applications keep gaining more importance in the era of fourth industrial

revolution that we are in. Smart robots are needed to operate relentlessly to optimize

34

business operations and lower operating costs. For example, Lorica (2017) states that

American company Bonsai develops AI for tuning machines used in complex

industrial systems to replace expert human operators with the help of RL

applications.

Healthcare is another important area of application for RL because according

to Shortreed and her colleagues (2011), learning treatment policies in medical

sciences share the same nature of receiving feedback based on actions taken. Clinical

trials are being held while discussing the risks and ethical aspects of the implications

and thus there are various potential applications of RL in medicine such as

medication dosing, optimization of treatment policies for chronic diseases, usage of

medical equipment.

Furthermore, as it is shown in the work by Mao and his colleagues (2016)

that RL can be used to automatically learn to allocate and schedule computer

resources to waiting jobs in order to optimize resource allocation and minimize the

average job slowdown.

RL proves to be a good fit when there are dynamically changing streams of

information like news. As it has been shown in Zheng and his colleagues (2018), RL

can be used to recommend news articles to website visitors to increase the click rate.

Finally, there is vast amounts of effort spent in the financial sector for RL

applications, especially to automate financial stock trading via creating intelligent

trading agents. As it has been portrayed by Srinivasan (2018), software-giant

corporate IBM built a complex system on their DSX platform which makes financial

trades with the power of reinforcement learning. The model they developed is trained

with historical stock price data using stochastic actions at each time step and the

reward function is calculated based on the profit or loss for each trade. Similarly,

35

Lorica (2017) points out that, JPMorgan Chase uses an RL-based system for optimal

trade execution. Their system aims to execute trading orders as fast as possible with

the optimum price calculated. So, the insights gained from the current study may be

utilized to enhance these systems.

36

REFERENCES

Aru, J., Korjus, K., Vicente, R., Kuzovkin, I., Aru, J., Tampuu, A., … Matiisen, T.

(2017). Multiagent cooperation and competition with deep reinforcement

learning. Plos One, 12(4), e0172395.

https://doi.org/10.1371/journal.pone.0172395

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot, M., Song, H. F., …

Bowling, M. (2019). The hanabi challenge: A new frontier for AI research.

Retrieved from http://arxiv.org/abs/1902.00506

Brown, N., & Sandholm, T. (2019). Superhuman AI for multiplayer poker. Science,

2400(July), eaay2400. https://doi.org/10.1126/science.aay2400

Buşoniu, L.; Babuska, R.; De Schutter, B. (2011). A comprehensive survey of

multiagent reinforcement learning. 38(2), 156–172. https://doi.org/10.1007/978-

94-007-1162-4

Campbell, M., Hoane, A. J., & Hsu, F. H. (2002). Deep Blue. Artificial Intelligence,

134(1–2), 57–83. https://doi.org/10.1016/S0004-3702(01)00129-1

Diddigi, R. B., Kamanchi, C., & Bhatnagar, S. (2019). Solution of two-player zero-

sum game by successive relaxation. Retrieved from

http://arxiv.org/abs/1906.06659

Endicott, S. (2017). Game applications of deep neural networks. Retrieved from

https://github.com/jeffheaton/t81_558_deep_learning/blob/master/README.m

d

Foerster, J. N., de Witt, C. A. S., Farquhar, G., Torr, P. H. S., Boehmer, W., &

Whiteson, S. (2018). Multi-agent common knowledge reinforcement learning.

Retrieved from http://arxiv.org/abs/1810.11702

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018).

Counterfactual multi-agent policy gradients. AAAI 2974–2982. Retrieved from

https://arxiv.org/abs/1705.08926

Heinrich, J., & Silver, D. (2016). Deep reinforcement learning from self-play in

imperfect-information games. Retrieved from http://arxiv.org/abs/1603.01121

Hu, J., & Wellman, M. P. (1999). Multiagent reinforcement learning in stochastic

games. ICML 1999. Retrieved from

https://pdfs.semanticscholar.org/7ce1/4dbb9add4d9656746703babd00d8f765b2

2a.pdf?_ga=2.155249275.1723981294.1568874307-315415511.1564661226

Lorica, B. (2017). Practical applications of reinforcement learning in industry.

Retrieved from https://www.oreilly.com/radar/practical-applications-of-

reinforcement-learning-in-industry/

37

Lytvynova, K. (2019). Reinforcement learning explained: Overview, comparisons

and applications in business. Retrieved from

https://www.topbots.com/reinforcement-learning-explained-business-

applications/

Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016). Resource management

with deep reinforcement learning. HotNets 2016 - Proceedings of the 15th ACM

Workshop on Hot Topics in Networks, 50–56.

https://doi.org/10.1145/3005745.3005750

Moravcik, M., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson, M., &

Bowling, M. (2017). DeepStack: Expert-level artificial intelligence in no-limit

poker. Science, 513(May), 1–32. https://doi.org/10.1126/science.aam6960.1

Neto, G. (2005). From single-agent to multi-agent reinforcement learning:

foundational concepts and methods. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.9511&rep=rep1

&type=pdf

Nowe, Ann & Vrancx, Peter & De Hauwere, Yann-Michaël. (2012). Game theory

and multi-agent reinforcement learning. 10.1007/978-3-642-27645-3_14.

Perez-Uribe, A., & Sanchez, E. (1998). Blackjack as a test bed for learning strategies

in neural networks. IEEE International Conference on Neural Networks -

Conference Proceedings, 3(May), 2022–2027.

https://doi.org/10.1109/IJCNN.1998.687170

Schaeffer, J., Lake, R., Lu, P., & Bryant, M. (1996). Chinook: The world man-

machine checkers champion. AI Magazine, 17(1), 21–29.

https://doi.org/10.1609/aimag.v17i1.1208

Sethy, H., Patel, A., & Padmanabhan, V. (2015). Real time strategy games: A

reinforcement learning approach. Procedia Computer Science, 54, 257–264.

https://doi.org/10.1016/j.procs.2015.06.030

Shortreed, S. M., Laber, E., Lizotte, D. J., Stroup, T. S., Pineau, J., & Murphy, S. A.

(2011). Informing sequential clinical decision-making through reinforcement

learning: An empirical study. Mach Learn., 84(1-2), 109–136.

doi:10.1007/s10994-010-5229-0.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

… Hassabis, D. (2016). Mastering the game of Go with deep neural networks

and tree search. Nature, 529(7587), 484–489.

https://doi.org/10.1038/nature16961

Silver, D, Schrittwieser, J., Simonyan, K., Nature, I. A.-, & 2017, U. (2016).

Mastering the game of go without human knowledge. Nature, 550(7676), 354.

38

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., …

Hassabis, D. (2018). A general reinforcement learning algorithm that masters

chess, shogi, and go through self-play. Science, 362(6419), 1140–1144.

https://doi.org/10.1126/science.aar6404

Srinivasan, A. (2018). Reinforcement learning: the business use case, part 2.

Retrieved from https://medium.com/inside-machine-learning/reinforcement-

learning-the-business-use-case-part-2-c175740999

Takaoka, Y., Kawakami, T., & Ooe, R. (2017). A fundamental study of a computer

player giving fun to the opponent. Journal of Computer and Communications,

06(01), 32–41. https://doi.org/10.4236/jcc.2018.61004

Tesauro, G. (1995). Temporal difference learning and td-gammon. ICGA Journal,

18(2), 88–88. https://doi.org/10.3233/ICG-1995-18207

Wai, H.-T., Yang, Z., Wang, Z., & Hong, M. (2018). Multi-agent reinforcement

learning via double averaging primal-dual optimization. (NeurIPS). Retrieved

from http://arxiv.org/abs/1806.00877

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., & Li, Z. (2018).

DRN: A deep reinforcement learning framework for news recommendation.

[WWW2018]Proceedings of the 2018 World Wide Web Conference, 2, 167–176.

https://doi.org/10.1145/3178876.3185994

