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ABSTRACT 
 

Playing the Turkish Tile Game Okey 

With Deep Reinforcement Learning 

 

Games are important test beds for machine learning studies for over the last decades. 

Significant progress has been made in games such as Checkers, Chess, Go and Poker 

with the help of deep neural networks used for function approximation within 

reinforcement learning algorithms. Agents were able to reach champion or 

superhuman levels by beating the top players of the world. This study focuses on the 

Turkish tile game Okey and aims to prove that agents can learn to play this game 

with the guidance of deep reinforcement learning. Okey has a unique setting where 

there is partially observable environment, stochastic nature and multiple players 

which are fully competitive. The study focuses on teaching a learning agent to play 

the game without any direct supervision, solely by receiving reward signals at each 

step for drawing and discarding tiles, with the help of stochastic policy gradients, 

actor-critic algorithm, prioritized experience replays which are explained thoroughly 

in this thesis. The learning agent plays against a random computer opponent in the 

custom Gym environment created for the Okey game as a two-player game version. 

Within the game framework, learning agent plays against an opponent that draws a 

tile from discarded tiles of the agent or from the center tile randomly, and always 

discards from the free tiles which makes it compelling enough for the learning agent. 

The results of the games through the experiments are reflected and win rates of the 

agent against the computer opponent can be considered as the achieved success of 

this study. Extensive research on the existing literature shows that this is the first 

study that uses reinforcement learning to play the game of Okey. 
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ÖZET 

Türk Taş Oyunu Okeyi  

Derin Pekiştirmeli Öğrenmeyle Oynamak 

 

Geçtiğimiz yıllardan bu yana oyunlar makine öğrenmesi çalışmaları için önemli bir 

test yatağı olmaktadır. Satranç, Dama, Go ve Poker oyunlarında pekiştirmeleri 

öğrenme algoritmaları kapsamında derin yapay sinir ağlarıyla fonksiyon 

tahminlemeyle kayda değer ilerlemeler yapılmıştır. Yapay zekalar, oyunlarda 

dünyadaki en iyi insan oyuncuları yenerek şampiyon veya süper insan seviyelerine 

ulaşmıştır. Bu çalışma Türk taş oyunu Okey’e odaklanır ve derin pekiştirmeli 

öğrenmenin yönlendirmesiyle yapay zekanın bu oyunu öğrenebileceğini ispatlamayı 

amaçlar. Okey’in kısmi gözlemlenebilir ortamı, olasılıksal doğası ve birbirleriyle tam 

rekabet içinde olan oyuncularıyla kendine özgü bir yapısı vardır. Bu çalışma öğrenen 

bir yapay zekanın hiçbir doğrudan yönlendirme olmadan, sadece taş çekerken ve taş 

atarken her adımda ödül sinyalleri alarak, tez boyunca anlatılan olasılıksal davranış 

meyilleriyle, aktör-kritik algoritmasıyla, önceliklendirilmiş tecrübe tekrarlarıyla 

oyunu öğrenmesine odaklanmaktadır. Öğrenen yapay zeka, özel tasarlanmış 2 kişilik 

Okey’i Gym ortamında rastgele oynayan bilgisayar rakibine karşı oynar. Oyun çatısı 

içinde, öğrenen yapay zeka, yere atılan taşlardan ya da ortadaki taşlardan rastgele 

çeken ve her zaman elinde boşta olan taşlardan atan bilgisayar rakibine karşı oynar 

ve bu yapısı onu, öğrenen yapay zeka için yeterince zorlu kılar. Yapılan deneyler 

boyunca elde edilen sonuçlar bu çalışmada sunulmaktadır ve yapay zekanın rakibine 

karşı kazanma oranları bu çalışmanın elde ettiği başarı seviyesi olarak görülebilir. 

Literatürde yapılan kapsamlı araştırma sonucunda bu çalışma, pekiştirmeli öğrenme 

kullanılarak Okey oyununu oynatan ilk çalışma olarak gösterilebilir. 
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CHAPTER 1 

INTRODUCTION 

 

 

Games have been important test beds for artificial intelligence (AI) studies over the 

past decade. Significant progress has been made on Chess, Go, Texas Hold’em 

Poker, and Atari games to name a few examples. Silver and his colleagues (2016) 

from DeepMind’s work AlphaGo in Go, Carnegie Mellon University with Facebook 

AI’s Pluribus by Brown & Sandholm (2019) in No Limit Texas Hold’em 

Poker, portray promising results of reinforcement learning (RL) algorithms beating 

the top players and reaching superhuman level. This subset of the field of machine 

learning called reinforcement learning is getting more attention after these important 

advancements. Reinforcement learning differs from supervised learning, where there 

is labeled data set and training takes place with respect to these labels; like in image 

classification. It also differs from unsupervised learning where there are no labels in 

the input data and algorithms mainly find similarities in the data in order to group 

them into clusters. As described by Hu and Wellman (1999), supervised learning 

contains examples in the form of input and output pairs which are observed by the 

learning algorithm, and it tries to learn how to map them to each other. Environment 

provides the output values which guides the algorithm like a teacher or supervisor. 

However, in reinforcement learning, there is no outer guidance for the learning 

algorithm (agent) and it only learns by interacting with the environment and 

receiving observations (states) and rewards (see Figure 1). These observations and 

reward feedbacks guide the agent about which actions to abandon and which actions 

to keep doing in order to achieve the goal which is winning the game in gaming 
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context; even without knowing the game rules. So, the interesting part is that the 

agent learns to play with optimal strategies even without having to learn the game 

dynamics (although there are approaches for first figuring out the game dynamics 

using that insight to learn the optimal policy) and still being able to defeat the top 

players. This study will explain an attempt in teaching an agent the Turkish tile game 

Okey with model-free reinforcement learning methods. 

 

 

Okey is a popular Turkish tile game generally played with 4 people but can 

also be played with 2 or 3 people. The game is played with 106 tiles, 2 stacks of 4 

different colored tiles (i.e. red, black, blue, yellow), ranging from number 1 to 13 and 

Figure 2.  The complete set of Okey tiles 

 

Figure 1.  RL Agent-Environment interaction diagram 

From Wikimedia Commons, licensed under the Creative 

Commons Attribution-Share Alike 4.0 International license. 
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two false joker tiles (see Figure 2). To begin the game, the tiles are placed with 

values facing down and shuffled. One tile is placed in the center face-up and the one 

value greater than this tile’s value indicates the joker (a.k.a. okey) tile. This wildcard 

tile symbolizes the name of the game and can be used in place of any tile in player’s 

rack. The false joker tiles, however, can only be used as the real color and value of 

the joker tile only. For example, if the tile placed face-up is Yellow 5, false joker 

tiles will only be used as Yellow 6, and the Yellow 6 tiles will be used as wildcard 

joker tiles. The starting player takes 15 tiles and rest of the players take 14 tiles. The 

aim is to group or order these tiles in 3-, 4- or 5-tile series on your rack obtaining 

either tiles with the same rank with different colors like “Red 2, Blue 2, Yellow 2” or 

the same color with rank ordered tiles like “Blue 1, Blue 2, Blue 3, Blue 4” (see 

Figure 3).  In contrast, players can also choose to form double pairs with the same 

tiles as in “Yellow 2, Yellow 2”, “Black 5, Black 5” and so on but they must 

complete the hand with only double pairs, thus having seven such double pairs to 

win the game.  

Figure 3.  An example Okey hand 
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The starting player with 15 tiles begins by discarding a tile and each player 

takes turn anticlockwise by either drawing the discarded tile of the previous player or 

by drawing a tile from the center. The game goes on until a player finishes her/his 

hand by having no free tile left, therefore having all of tiles on her/his rack 

grouped/paired, indicating that s/he has won the episode. The game can also 

terminate at a state when there is no center tile left and no player has a finished hand 

(no free tiles left). If this is the case, the game is considered as a draw and a new 

game can be started, although in one version of the game, players continue to play by 

shuffling the discarded tiles faced down, forming new deck of center tiles. The 

winning players score is deducted by 2 points for a regular tile discard, 4 points for 

winning by discarding an Okey tile or 4 points again by winning with double pairs 

style in an episode. Usually game is played in episodes by discounting from 20 and 

until a player reaches 0 which indicates that s/he won the game.  

This type of game environment is challenging in terms of reinforcement 

learning perspective for various reasons. First, there should be multiple agents in 

Okey, playing in a fully competitive fashion and in some versions additionally in a 

cooperative fashion. Secondly, the environment is partially observable because an 

agent cannot see the other agents’ racks and the faced down center tiles. To name a 

few examples, there are similar games like Blackjack and Poker that contain partially 

observable settings. In Blackjack by Perez-Uribe & Sanchez (1998), players do not 

see one of the dealer’s cards at the beginning and in Poker by Brown & Sandholm 

(2019) , players do not have the chance to see each other’s cards. There are also 

cooperative games like Hanabi by Bard and his colleagues (2019), where you do not 

see your own card and hold them facing to the other players and you communicate 

with the other players to try to figure out your own cards so that you can come up 
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with the best hand combination together with the other players while each player is 

trying to figure out what cards they might be holding. Lastly, the game is stochastic 

because of the randomness of the center tile drawn. Again, same randomness also 

holds for Blackjack and Poker because no player knows for sure which card will be 

dealt by the dealer. On top of these challenges of the environment, the extensive 

research done on the topic shows that, to the best of our knowledge, there is no 

attempt that has been made in applying reinforcement learning algorithms to the 

game Okey. Comprehensive examples from the existing literature on multi-agent 

reinforcement learning studies which influenced this study is shared in the Literature 

Review section. 

With all these challenging characteristics of Okey, the goal of this study is to 

try teaching an agent to play Turkish tile game Okey by using the reinforcement 

learning algorithms. Can we implement an intelligent agent who can play Okey 

without any guidance, taking required actions wisely like a human would do? 

In order to tackle this problem, deep reinforcement learning architectures 

including policy networks has been designed for each draw and discard decisions to 

be made by the Okey playing AI agent. Initially, the agent will start by taking actions 

according to the policy networks initialized randomly and then with the help of the 

observations received from the environment. Rewards obtained after taking an action 

in particular states were fed back to the system to improve the effectiveness of the 

decisions made in the next steps. Details of the methodology followed in this respect 

will be explained in Methodology section. 

Aru and his colleagues (2017) state that, when an agent trains against another 

agent, this approach is called self-play and it is possible to come up with more 
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general strategies as a benefit. Usually, first the agents are trained with supervised 

learning because supervised learning is used to give example games as input. 

Afterwards, they train by self-play in order to increase the performance. For 

example, for the training of the AlphaGo by Silver and his colleagues (2016), the 

human expert moves were used as the initial training data. However, in this study it 

is preferred to train the agents with only self-play in order to find out adaptive 

strategies which is also the case in the follow up work for the improved version of 

AlphaGo, named AlphaZero, as presented in Silver and his colleagues (2017) and 

again in Silver and his colleagues (2018). We elaborated more on the outcome of the 

experiments performed in this study in Results and Findings section. 

  



7 

 

CHAPTER 2 

LITERATURE REVIEW 

 

Games can be classified into perfect information games and imperfect information 

games depending on the player’s visibility of the game environment information. 

Perfect information game is the game in which the player can get all information 

about the state of the game, and imperfect information game is the game in which 

there is hidden information. For example, as Takaoka, Kawakami and Ooe (2017) 

illustrated, some examples for perfect information games are Chess, Go and Shogi, 

and in contrast, Rummikub, Mahjong and Bridge are the examples for imperfect 

information games. Okey being very similar to Rummikub game, is also an imperfect 

information game. Rummikub is also played with same racks and tiles but only 

difference is that first person to reach a pair of 30 points (each tile’s face value 

indicating the point of a tile) melds the pair on to the center and players keep adding 

tiles to the center, similar to Scrabble in this sense, instead of keeping the ordered 

sets or groups in their rack secretly. So, the game still contains partial observability 

but in a different manner. In one of the key studies in reinforcement learning field, 

Heinrich and Silver (2016) stated that it is possible for each player to observe only 

his own state information, like a poker player sees his own private cards but doesn’t 

know the other players’ cards. Likewise, in Okey, a player can only partially observe 

the game environment, being able to see his/her own tiles, last discarded tiles of the 

other players and face-up tile in the center. Besides, the randomness in the tile that 

can be drawn from the center tiles and other players’ actions bring stochasticity to 

the game.  
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While considering other players’ decisions, it is also necessary to delve into 

the agents’ interaction with each other when conducting a research, especially in 

multi-agent reinforcement learning (MARL) games. Buşoniu, Babuska and De 

Schutter (2011) implied that MARL techniques in games can be classified as fully 

cooperative, fully competitive or mixed stochastic games depending on the type of 

task targeted by the learning algorithm and how they address the learning agents’ 

behaviours. In this manner, Okey is a type of game comprising of fully competitive 

players. A contrasting example can be given as Hanabi, which according to Bard and 

his colleagues (2019) is an imperfect information game played by two to five players 

which are in full cooperation, making the game like teamed version of solitaire. This 

is a game where players fully cooperate to maximize the shared reward. In Hanabi 

game, players only see the other players’ hands and communicate with them to give 

clues about each other’s hands to form the best combination of cards, consequently, 

to form the best possible cumulative hand in full cooperation. 

Another important classification for games is made depending on the reward 

functions of the environment. Nowe, Vrancx and De Hauwere (2012) described that, 

the game is an identical payoff or common interest game when the same reward 

function is shared among all players, however, a zero-sum game when the total of all 

players’s rewards sum up to 0. Two-player version of Okey can be considered as 

zero-sum game. According to Bard and his colleagues (2019), important two-player 

zero-sum games which contributed remarkable studies in the field of artificial 

intelligence by enabling computers to reach super-human skills are chess (Campbell, 

Hoane, & Hsu, 2002), checkers (Schaeffer, Lake, Lu, & Bryant, 1996), go (David 

Silver et al., 2016), backgammon (Tesauro, 1995) and two-player poker (Moravcik et 

al., 2017). Furthermore, Diddigi, Kamanchi and Bhatnagar (2019) stated that 
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information of the model of the game dynamics is not given to the players in 

majority of the two player zero-sum game settings in real life, and players try to 

utilize the states and rewards gathered from the environment, in order to come up 

with the optimal policies by just knowing the rules of the game only. 

 Another important factor affecting the complexity of the problem is the 

number of players, or learning agents, in the game because each agent adds its own 

variables to the joint state-action space. As a result, Foerster and his collegues (2018) 

expressed that when the number of agents increase, the growth in the joint action 

space is exponential and it makes the learning very challenging. Moreover, Neto 

(2005) explained that there is stationary environment in single agent examples but in 

multi-agent scenario, each agent is changing the environment. This is a though 

challenge because the agent is learning in a non-stationary environment with the 

possibility of other agents learning in a similar fashion as well. In parallel to that, 

Buşoniu, Babuska and De Schutter (2011) described that the best policy keeps 

changing with the changes in other agents’ policies, which they defined as moving-

target learning problem for each agent to deal with. So, this explains how dynamic 

state-space is being shaped after each turn of an agent. In single agent scenario, there 

is no such issue, and the problem is considerably easier to tackle. As it is stated in 

Wai, Wang and Hong (2018), there has been a considerable success achieved in 

single-agent reinforcement learning, but multi-agent reinforcement learning (MARL) 

is still being challenging because each agent interacts with each other while they are 

also interacting with the environment. 

Reinforcement learning methods are chosen to be applied to try teaching a 

machine how to play Okey like a human player. According to Sethy, Patel and 

Padmanabhan (2015), reinforcement learning is the field of machine learning that 
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deals with agent figuring out how to behave in a certain situtation by mapping 

situations to actions in order to maximize a numerical reward signal. The learner has 

no preconception of which actions to take, it is not told externally, but instead it has 

to decide on its own by trial and error considering the maximum reward it collects in 

the long run. Generally, this is a challenging and interesting approach because the 

actions taken may not affect only the immediate reward received but also the 

upcoming situations and therefore all subsequent rewards in the long run. So, RL 

agent must make the decisions and take actions accordingly, and receive observation 

and reward from the environment and update its beliefs on what is the correct action 

in a particular state of the game and this loop continues until the game ends.  

In order to overcome the problem of making sequential decisions in a 

dynamic game environment, deep neural networks were implemented within 

reinforcement learning framework for making decisions, thus named deep RL. There 

are two moves to be made by the agent playing Okey game which are drawing a tile 

and discarding a tile. Endicott (2017) clarified the network setup attentively by 

stating that we should use our state as input to the neural network before making a 

move. In order to select the move with the help of the network, the resulting state 

from each possible move can be send to the network and the network will output the 

move with the highest probability to win with respect to the past moves. The state 

will contain the most recent observation of the agent either before it withdraws a tile 

or draws one. Technical details about how decision-making units are modeled as 

deep neural networks together with the reward design are provided in the 

Methodology section. 
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Deep learning and deep neural networks are two important terms that are used 

interchangeably where a neural network has more than one hidden layer, possibly 

many of them. 

Lastly, there are other interesting and promising studies on RL, in other 

application domains as well. One example is by Zheng and his colleagues (2018) 

where they applied RL in a news recommendation system. They used Deep Q-

Network to calculate the Q-value of a news article using the user features and context 

features representing the state of the environment are fed as the input. Based on the 

resulting Q-value, a list of news is recommended to a user. User’s click on a certain 

news article is used as part of the reward agent received to improve the system. 

Another interesting application of RL is in finance domain. As it is stated in 

Srinivasan (2018), IBM built a complex trading system which makes financial trades 

using the power of reinforcement learning.  
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CHAPTER 3 

METHODOLOGY 

 

Can one implement intelligent agents who can play Okey without any human 

guidance and take required actions wisely in a manner like a human would do? To 

answer this research question, deep reinforcement learning methods are investigated 

and implemented, which corresponds to using deep neural networks as a function 

approximator within reinforcement learning algorithms. Specific to the game of 

Okey, there are two decisions to be made. First one is to decide on whether player 

should draw the tile that is discarded by the opponent player or from a tile from the 

center tiles. Second decision to be made is about which tile to be discarded from the 

player’s hand tiles. As a result, a player is represented by a combination of two 

decision making entities, one for the draw action and the other for the discard action. 

We handle the problem of creating these entities at two different steps. The first step 

is to understand and implement the policy gradient algorithm and value functions for 

reinforcement learning, where the agent interacts with the environment by sending 

actions and receiving observations representing the state of the game as well as 

rewards. Policy and value networks get the current environment state that the agent is 

in as the input and output the action probability distribution and value of the state as 

the output, respectively. As it is prescribed in the study by Foerster and his 

colleagues (2018), each agent should learn independently from its own action and 

observation history when applying policy gradients to multiple agents in the simplest 

way possible. As Foerster and his colleagues suggest, the learning agent has an actor 

network corresponding to the policy network for each decision, draw and discard, 

and a critic network which embodies the value network to predict the value of the 
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state and return the error in actor’s actions and value predictions. The details about 

the actor-critic setup is explained in detail under “3.2 Actor Critic Setting” section. 

In order to choose the draw and discard action, deep neural networks are designed 

for each action. Policy network is forwarded to calculate the probabilities of actions 

in order to choose the action either stochastically according the output probabilities 

or greedily where the action with the highest probability is selected. Then, agents are 

trained at each episode with the state, action and reward tuples to improve its 

decisions. Training corresponds to minimizing the loss function which is the term 

that agent tries to optimize to learn the best decisions to be made and tuning the 

action probabilities accordingly for the next episode. Multiple runs of the game have 

been executed in order to observe the improvements in the winning rates, net value 

gained and mean rewards after each game episode in the long run. Net value gained 

is the difference between the hand value for the final hand and the hand value for the 

initial hand obtained at the beginning of the game. Information about the hand value 

and rewards are detailed under “3.1 Reward Function Design” part.  

In addition to considering the implementation details of the actor critic 

algorithm, different architectural parameters have been tested and detailed 

experiments has been conducted to evaluate greedy vs. stochastic action selection 

approaches, and utilization of prioritized experience replay. Greedy approach is 

where the agent always chooses the action with the highest probability, or exploits in 

other words, rather than randomly selecting an action according to the action 

probabilities returned from the decision network. Prioritized experience replay is also 

an important concept for reinforcement learning systems because it allows you to 

keep important samples, as (state, action, reward, next state) tuple, and with a 

priority assigned to each sample which is the temporal difference error calculated for 
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these examples which is the difference between the estimated value of a state and 

bootstrapped estimation of that state. The details about how the temporal difference 

error is calculated are stated in “3.2 Actor Critic Setting” section and details about 

the prioritized experience replay are elaborated in “3.4 Prioritized Experience 

Replay” section. Crucial point is that experiences observed after each step of the 

discard action are stored in experience replay memory and selection of a 

predetermined sized batches of the most important samples are used at the end of 

each episode for training the discard networks of the agent. Also, the comparison of 

the results obtained with respect to the employed approaches stated here are 

evaluated in “Chapter 4: Results and Findings”. 

For this research, custom Gym Environment of the game Okey is 

implemented where a randomly acting computer opponent plays against the learning 

agent which is the matter of subject for this study. The computer opponent picks to 

draw from discarded tiles or from the center tiles randomly but always discards a free 

tile where that tile does not belong to any three or four-tile groups. For example, in 

the Figure 4, “Red 1, 2, 3” is a three-tiled series and 7’s are four-tiled series and the 

rest of the tiles are free tiles which are of no use.  

 

To detail the steps of the research, it is important to start with the neural 

networks’ designs. There are three deep neural networks designed for the research 

Figure 4.  An example Okey hand with free tiles 
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problem in this study: one network for discarding tile, one network for drawing tile 

which take the role of actor part of the learning agent. Actor determines the action 

probability distributions. Also, there is one network for the critic which acts as a 

judge for the actor about the discard action, generating value for the given input 

state.  

The neural network for drawing a tile is a simple one and consists of one 

input layer of 107 nodes, one hidden layer of 512 nodes and one output layer of two 

nodes. 107 nodes at the input layer holds the hand tiles represented as an array of 52 

indicators (13 values for each 4 different colors, Red, Black, Green and Yellow in 

order) where each indicator denotes the number of tiles at hand. For example, if the 

player has one “Red 1” tile in the hand tiles, the indicator at the first index of the 

hand tiles representation takes value 1 and otherwise it takes the value of 0 if the 

player doesn’t have “Red 1” tile in its hand tiles. So, if the player has two “Red 1” 

tiles, then the first index will be 2 instead of 1, representing the count of that specific 

tile. As a result, sum of the values in hand tiles representation will add up to 14. 

Also, joker count is appended at the end as the 53rd item. So, hand representation for 

the state is always an integer array with 53 items.  

Additional 53 nodes for the discard neural networks input layer is similarly an 

array of 53 integers allocated for representing the opponents’ discarded tile lying on 

the ground, available for drawing by the learning agent. For example, if this 

discarded tile is a “Yellow 13” which is the last tile in the representation of all tiles, 

the array will contain 51 0’s followed by a 1 as the last item. Also, 53rd item will be 

appended as 1 or 0 depending on this item being the joker or not. In total, this makes 

106 nodes, where first 53 items represent the hand tiles plus the next 53 items 

represent the last discarded tile by the opponent. The last, 107th node contains the 
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number of the center tiles remaining which is available for drawing. These nodes in 

the input layer reflects the observation returned from the Okey environment before 

deciding on the action to be taken in drawing a tile. On the other hand, two nodes at 

the output layer symbolizes the possible actions for drawing either from the center 

tiles or drawing the discarded tile. First node (which gets inactive if the drawing is 

made from the center tiles and active if the discarded tile is drawn which corresponds 

to a value of 0 or 1 for the draw_a variable seen in Figure 5, accordingly) is designed 

for drawing the discarded tile. Second node gets active if the player draws from the 

center tiles (where variable draw_a gets a value of 1). Action probabilities 

(draw_action_probs) are output from the network and used for selecting the draw 

action taking these probabilities into account. Related source code for agent action 

selection for the draw is given as follows; 

 

Figure 5.  Action selection agent code 

 

The flags can_draw_from_discarded and can_draw_from_center take values 

depending on the agents’ observation’s discarded_tile and num_center_tiles_left 

representations, respectively. If one of them reaches zero, the related boolean value 

is set to false which means that the agent cannot draw from discarded tiles or from 

center tiles. This is how first neural network works by inputting the last observation 

before drawing a tile and outputting the probabilities of either drawing from the 
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discarded tiles or from the center tiles which guides the agent to try to select the one 

considering the probabilities. It is also important to note that, in Figure 6 dark blue 

circles are symbolizing the input neurons and there are 107 of them. Light blue 

circles are the hidden nodes which consists of 512 neurons. Finally, two green  

neurons denote the nodes in the output layer which give the probabilities of drawing 

the discarded tile and drawing from the center tiles, respectively.  

  

Furthermore, the structure of the neural network designed for the discarding 

tile action is similar to the draw network with minor differences. First, number of 

input neurons is 53 in discard network because only the hand tiles are given as the 

observation where the first 52 integers represent the counts of hand tiles plus 1 

integer denoting the joker count. Second, there are 15 nodes at the output layer, 

containing 1 node per each existing tile in the agent’s hand. This design guarantees 

that the network selects one of the tiles that the current hand contains. Also, there are 

three hidden layers in the discard network because the optimal target policy that is 

aimed to be learned is much more complex for the discard action as compared to the 

draw action. As it can be seen from Figure 7, integer representation of the tile at 

agent’s hand are fed into the input layer and discard action probabilities are 

computed as the results of the output layer. Finally, the agent will choose to discard 

the tile with the highest probability returned from this neural network in the greedy 

Figure 6. Neural network design for draw action 
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action selection approach or choose the one stochastically according to the selection 

probabilities. There is also another network that is used as critic which is explained 

in Section 3.2. 

 But the important question is how are the agents going to learn and improve 

their decisions when they start with random actions? What makes them to reinforce 

better game play just by playing with each other without any external guidance? 

How will this setting react when there is one randomly playing agent against a 

learning AI agent? To answer these crucial questions, next subsection elaborates on 

the reward function design which shapes the feedback loop and guides agents for 

improvement. 

 

3.1  Reward function design 

In order to design a good reinforcement learning framework, it is important to devise 

an effective reward mechanism within the environment. Initial attempt was to place a 

reward only at the end of the game which is the information as win or lose. So, if the 

agent wins the game, it receives a predetermined positive reward (i.e., 100), and gets 

the same but negative reward (i.e., -100) if the agent loses the game in that episode. 

Figure 7.  Neural Network Design for Discard Action 
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This design has the problem of learning too slow because agent must wait till the end 

of the episode in order to receive reward and discount this reward to all the actions 

taken throughout that episode which provides sparse rewards. Although this setting 

would have found the optimal action policies for the draw and discard, it requires 

much more training time and/or more processing power. To overcome this problem, 

partial reward scheme was designed to ease the sparse reward environment as 

follows.  

The value of a given hand is calculated by considering the number of 3, 4 and 

5-tile series at agent’s hand tiles. Each 3-tile series (i.e. Black 3, Black 4, Black 5) 

are given 10 points, 4-tile series are given 15 points, and 5-tile series are given 20 

points. So, the hand value is the sum of points obtained by taking tile series into 

consideration. Before each draw action, initial the hand value is calculated. The hand 

value is once more calculated after the drawing action is performed. The difference 

between this value and the initial value is returned as the reward. For example, if the 

agent draws a tile and makes a new 3-tile series as a result, 10 points is the total 

computed reward for this step. This is provided as an intermediary reward, which 

guides the agent in each step in finding the optimal draw policy.  

Similarly, for each discarding action, value of the agent state can be 

calculated as the difference between the resulting hand value after taking the discard 

action and the hand value before that action. For example, -10 reward is given for 

each broken 3-tiled series, and -5 for each 4 or 5-tiled series, meaning a tile from the 

series is discarded. In addition to these, +5 reward is returned if the player discarded 

a free tile, meaning that it made the right decision by keeping all series in hand. So, 

as a result, with the help of rewards obtained at each step, our framework reinforces 

the learning of the agent.  
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Finally, when the episode ends, sum of these SAR triples (State, Action, 

Reward) collected at each turn from the agent actions are fed back to the network for 

training. After training the agent networks, a new episode starts and agent selects its 

action with the network trained with the experience obtained in previous episode. 

 It is also important to state that although the okey tile is valued the highest in 

the original game, the current reward design puts no emphasis on the uniqueness of 

the okey tile and it is valued as any other tile in a series. Similarly, opting for double 

series has no reward for the moment even though they have value more than regular 

series. These limitations are also referred in the Limitations chapter.  

 

3.2  Actor – Critic setting 

Actor – Critic algorithms play a vital role in reinforcement learning systems because 

they speed up the learning process significantly. The main idea is that there are actor 

networks which predict the action to be taken and the agent takes these actions and 

ends up in a new state, and receives new observation as a result. At this point, the 

critic comes into play to assess the value of the actor’s states and assigns a score for 

both the state after the previous action is taken, and the resulting state after the 

current action is taken. For example, for the discard action, the steps taken in that 

respect are given as follows; 

1. Critic takes the current state representation after the draw action is taken into 

its’ network as input and outputs a score as the next state’s value. 

2. Reward is calculated as the sum of the reward after the discard plus the 

reward after the draw because there are two steps in between two consecutive 

discard actions, a draw followed by a discard. 
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3. Temporal difference target (td-target) is calculated as the reward obtained if 

the episode is done, or the reward obtained plus the discounted value of the 

next state where the discount factor is set as 0.99. 

4. Critic predicts the current state’s value score by taking the previous state 

representation as input. 

5. Temporal difference error is calculated by subtracting the current state value 

from the td-target from Step 3. 

6. Critic is updated with the previous state drawn from Step 4 and the td-target 

computed at Step 3 to minimize the loss and improve its’ discard action 

selection policy. 

So, critic network predicts scores for the two consecutive states after the 

discard action is taken by the actor network and updates itself with the resulting state 

and the bias resulted from its’ predictions. Thus, for the next discard, the critic 

predicts with less bias and keep minimizing its’ loss to be optimized for value score 

predictions for the states. 

 

3.3  Greedy approach 

Another approach that is tested through the experiments is the greedy approach 

where the agent opts for the action with the highest probability instead of randomly 

selecting considering the action probabilities. When the agent acts with the greedy 

approach, both in drawing a tile and discarding a tile, the output with the highest 

probability is selected as the action to be taken. Learning efficiency is tested by 

training agent networks both with the greedy and stochastic action selection 

approaches. 
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As an example, the agent action selection code for the tile drawing action is 

given as follows; 

 
  

 

3.4  Prioritized experience replay 

Different forms of experience replays are common methods used in the 

reinforcement learning applications because it is an effective way of reusing the 

previous knowledge to improve the agent. The idea is to hold the moves represented 

as (state, action, reward, next state) tuples attached with the temporal difference error 

explained in Actor-Critic Setting part as the priority value at each step and reuse a 

selected batch of them with the desired size for learning at the end of each episode. 

The important point for the prioritized experience replay is that memory is kept for 

the whole run and used at each episode in contrast to the agent SAR triples which are 

discarded at the end of each episode. For this reason, more important experiences 

meaning that the experiences with high td-errors, either positive or negative, 

regarding decisions made throughout the whole episodes are guiding the agent at 

each episode. This is parallel to real life experiences where a real upsetting or 

glowing memory is kept more importantly in our brain and reused more carefully 

when we are in a similar situation or “environment”. The setting of the prioritized 

experience replay buffer is to hold 20,000 memories in total and to discard the oldest 

when a new experience is added to the memory. A batch of 64 most important 

experience tuples, ones with highest priorities, are fed into the actor’s discard 

network at the end of each episode to try to reach the optimal action selection policy. 

Figure 8. Agent action selection code for drawing tile 
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Training is carried out for 100 times at the end of each episode to improve the 

learning of the agent.  

Results obtained from the experiments performed by considering the use of 

greedy action selection approach and utilization of the prioritized experience replay 

are stated in the next section. 

Following is the process flowchart of the self-play reinforcement learning 

implemented in our research (Figure 9).  

  

Figure 9. The process flow chart of the Okey 

game  
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 CHAPTER 4  

RESULTS AND FINDINGS 

 

Gathering the results of the experiments is interesting part of this research because 

the system runs for 100,000 episodes and the logs are observed throughout the 

process of running. The key factors to indicate the learning of the agents are mean 

draw reward, mean discard reward and the win rates for the runs. Majority of the 

episodes end by center tiles finishing which can be interpreted as draw. Computer 

opponent generally performed better than the learning agent because it always 

discarded intelligently from the free tiles similar to what a human player would have 

done, which means making no mistakes in keeping the series in hand. On the other 

hand, the agent managed to win some of the episodes and the details of the ratios of 

each party is shared in this section. 

First of all, there are two different flags in place for the controlled 

experiments; utilizing a greedy action selection approach, and whether or not 

employing prioritized experience replays in training of the learning agent. As a 

result, 22 = 4 unique runs were conducted to test every combination, each for 100,000 

episodes. Each parameter has been explained in detail the previous Methodology 

chapter. The results are as below; 

1. Discard greedily, prioritized experience replay 

Agent Won: 16 (0.016%) 

Draw: 68,436 (68.436%) 

Comp. Opp. Won: 31,548 (31.548%) 

Mean Draw Reward: 73.4 

Mean Discard Reward: 133.7 
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2. Discard non-greedily, prioritized experience replay 

Agent Won: 2,337 (2.337%) 

Draw: 65,471 (65.471%) 

Comp. Opp. Won: 32,192 (32.192%) 

Mean Draw Reward: 68.3 

Mean Discard Reward: 145.9 

 

3. Discard greedily, no prioritized experience replay 

Agent Won: 5,937 (5.937%) 

Draw: 48,983 (48.983%) 

Comp. Opp. Won: 45,080 (45.080%) 

Mean Draw Reward: 117.9 

Mean Discard Reward: 407.4 

 

4. Discard non-greedily, no prioritized experience replay 

Agent Won: 1,356 (1.356%) 

Draw: 54,417 (54.417%) 

Comp. Opp. Won: 44,227 (44.227%) 

Mean Draw Reward: 133.9 

Mean Discard Reward: 390.7 
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 As it can be concluded from the results of the experiments, highest winning 

rate and the highest mean discard reward is from the 3rd experiment where discarding 

action was taken greedily, without the aid of prioritized experience replay. Higher 

the mean discard reward means the agent performed better in holding on to the 

existing series discarding from the series belonging tiles as less as possible. 5.937% 

of the games for this run resulted as the learning agent winning which is the 

maximum value in between all experiments. Around 48% - 68% of games ended as a 

draw and this can be seen as a target for the agent win rate to steal from for further 

studies because the computer opponent will never be able to improve itself. It will be 

a major step if the learning agent can pass the 38.2% winning rate of the computer 

opponent which is the average for the computer opponent among the 4 experiments. 

Also, it is possible to reach stronger confidence level of results if the experiments 

can be conducted with higher episodes per run, much higher than 100 thousand 

episodes.  

One last point that needs to be elaborated is the effect of the use of prioritized 

experience replay in conjunction with greedy action selection where an unexpected 

outcome is obtained. It is expected that the use of prioritized experience replay 

improves the learning rate of the agent, but in the experiment where it is used with 

greedy action selection, it is seen that it actually deteriorates the learning of the agent 

and agent wins lesser number of episodes. This situation may be observed due to the 

design of the architecture of the critic network or because the number of episodes is 

not enough for populating sufficient number of important examples. So, the use of 

prioritized experience replay needs further investigation. 
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CHAPTER 5  

LIMITATIONS 

 

One limitation of current Okey implementation is that playing with the paired tiles 

was not implemented. This type of strategy is discussed in the first chapter, where a 

player can try to collect pairs of exactly the same tiles and trying to reach to 7 pairs 

in order to win the game. To allow this type of game play learning, existing reward 

model must be expanded to support “paired tiles”. It is not easy to come up with the 

comparison of the value of the existing tile series and pairs. Furthermore, the 

environment state representation has to be refactored to specify that a certain player 

is aiming for pairs because other players has to be notified for this case. Also, 

finishing/winning with pairs has the same value as finishing by discarding the Okey 

tile which is another limitation of the current version. The case where the agent 

discards an Okey tile to have a finished hand, to win the game in other words, is not 

covered as well but the reward model can be thought as parallel to pairs strategy 

mentioned to extend the game to a more real-world scenario.  

 In addition, the game can be implemented with four players placed on sides 

of the square board where two players facing each other teamed together. This 

version of the game is called “Eşli Okey” in Turkish (can be translated as Teamed 

Okey or Okey with Pairs). For this type of the game, the reward model must be 

revisited to consider a team’s cumulative success. Also, the communication channels 

must be developed so that teamed agents can cooperate with each other. For 

example, one common scenario is when one agent stops aiming for a good hand and 

starts discarding the tiles strategically (discard like the next player’s discards) so that 

the next player, who is an opponent player, cannot draw the discarded tiles. As a 
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result, the opponent player, next to the agent aiming to prevent him/her from 

winning, is forced to draw from the center and left with only chance from drawing a 

random tile and therefore other teammate can try to finish before the opponent. 

These type of strategies and communications are hard to design but can be 

considered for extending the study for further. Mixed agent behavior algorithms can 

be searched to figure out a solution from similar games where there is both 

cooperation and competition.  

 Also, current game environment lacks to play for certain number of rounds 

when center tiles are finished, for example there can be an additional round to play 

by drawing discarded tiles of the opponent to have a minor extension to the episode 

length. 

 Another limitation is about the state representation provided to the learning 

agent. Current state representation for the discarded tile contains only the one hot 

encoded representation of the last tile but it will be more comprehensive to include a 

list of past discarded tiles within the current episode, i.e. last 10 tiles discarded by the 

opponent and include this within the observation seen by the learning agent so that 

the agent can decide considering more information from a greater memory. Besides, 

since all the discarded tiles can be observed by all the player, in addition to the 

discarded tile that can be drawn by the agent, all the discarded tiles can be 

incorporated into the state representation of the agent. 

 Moreover, current hand ordering logic does not allow for creating 5-tiled 

series. It is a minor limitation to the current game play because it allows up to 4-tiled 

series. Creating more than 4 tiled series is a rare case and usually the strategy is to 

split series when reaching to 6 tiles into 2 different 3-tiled series for increasing the 
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chances of expanding within more options but 5-tiled is a special case which should 

be allowed. This way, the win rates of the players can be improved slightly. 

 Lastly, there is another limitation in the game when trying to discard from 5 

separate 3-tiled series. It is a rare case but with considering all the discarded tiles of 

the opponent or all the other players, the learning agent can decide better which 3-

tiled series it needs to break and discard from it. Currently it doesn’t follow 

discarded tiles carefully because no such observation is provided by the environment. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

The goal of this study was to try to figure out if an intelligent agent can be 

implemented for learning to play the popular Turkish tile game Okey just with self-

play and with no human guidance. It is shown in the study that a deep reinforcement 

learning agent can learn to play a simplified version of the game successfully with 

the help of deep neural networks used in conjunction with reinforcement learning 

algorithms. Methodology section described how the simplified problem was dealt 

with in detail and how the reward function was modeled as well as other supporting 

algorithms and parameters like prioritized experience replay and greedy approach. 

Results and findings showed the progress of the experiments and success of the 

learning agent in each experiment. It can be concluded that this research provides 

valuable insights for implementing the learning agents for the Okey game. It can be 

considered as an initial attempt for applying deep reinforcement learning to Okey 

game and provides a new testing environment for further studies. This research can 

be extended by considering specifically the partially observable nature as well as the 

multi-agent cooperation and competition among the players that exists in the original 

version of the game.   

In the multi-agent case, it will be crucial to understand how existence of the 

other agents as well as cooperation and competition among the players affect the 

learning capability of the agent. Because when there are multiple agents learning in 

the environment, there will be more information to observe, but at the same time 

there will be increased uncertainty due to extra non-observable hands of the 

opponents as well as allied player in the game. 
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 Finally, apart from the limitations and improvements that can be made to the 

game environment, neural network or agent design, one future work can be planned 

to train the agents not by just self-play but also playing against human opponents. 

For example, game can be extended to 4 players and 3 human players can play 

against the learning agent which can help the agent to learn from other’s decisions. 

Also, it can be beneficial for evaluation purposes because AI succeeding against 

human players is an important criterion for proving the strength of the system. 

Furthermore, a tournament can be found or organized in order to categorize the 

strengths of the players and try to beat all players to become the winner of the 

tournament. Unfortunately, there is no existing association or league of the game 

Okey as far as our research is concerned, but the study can be announced to related 

communities who can be interested. To help this somewhat formal evaluation 

process, official rules of the game Okey can be gathered (there is none yet according 

to our research) but it will be useful to revise the game environment with the light of 

such a rule set. 

As another future work, design of the reward function will be reconsidered 

since the design in this study provides information to the agent which may lead it to 

learn and stuck at sub-optimal policy. Instead of leading the agent with the current 

reward design, a sparse reward function that only provides win/lose information to 

the agent can be implemented in order for the agent to find optimal policy. 

 To wrap up, this study has proven the fact that an intelligent agent can learn 

to play the Okey game without any human guidance or without even knowing the 

rule set of the game. Besides learning agent succeeds against an intelligent computer 

opponent just with the help of deep reinforcement learning algorithms. The deep 

reinforcement learning agent reached up to 5.937% winning rate and this level can be 
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considered as a basis for future studies to be conducted in reinforcement learning 

field considering the game Okey.  
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CHAPTER 7 

BUSINESS IMPLICATIONS 

 

Reinforcement learning studies generally focus on games at first because of their safe 

nature and easier to simulate environments. For these reasons, games serve as a good 

test bed for this research field but broader goal of course is to find practical 

applications that will serve for businesses as well as humanity itself. There are 

outstanding efforts in robotics, self-driving cars, industrial automation, healthcare 

and medicine, resource management for computers, personalized recommendations 

for targeted marketing, and automated financial stock trading to name a few areas. 

First of all, self-driving car industry is a prominent application field of 

reinforcement learning. Although, the main focus is on sensor interpretation for 

recognizing road marking, traffic signs, pedestrians and other related objects, 

reinforcement learning is used in control systems of autonomous vehicles for 

supporting to select accelerator, brake and steering. According to Lytvynova’s 

(2019) recent article on RL business applications, UK Company Wayve claims that 

they are the first company to develop a driverless car that operates with the help of 

reinforcement learning. Since autonomous driving is done in a partially observable 

environment, reinforcement learning algorithms and approaches developed in game 

environments like Okey can be benefited in self-driving car domain. 

Secondly, robotics is as important application area for RL studies and 

production lines are heavily dependent on robots especially in big industries. And 

robotic applications keep gaining more importance in the era of fourth industrial 

revolution that we are in. Smart robots are needed to operate relentlessly to optimize 
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business operations and lower operating costs. For example, Lorica (2017) states that 

American company Bonsai develops AI for tuning machines used in complex 

industrial systems to replace expert human operators with the help of RL 

applications.  

Healthcare is another important area of application for RL because according 

to Shortreed and her colleagues (2011), learning treatment policies in medical 

sciences share the same nature of receiving feedback based on actions taken. Clinical 

trials are being held while discussing the risks and ethical aspects of the implications 

and thus there are various potential applications of RL in medicine such as 

medication dosing, optimization of treatment policies for chronic diseases, usage of 

medical equipment. 

Furthermore, as it is shown in the work by Mao and his colleagues (2016) 

that RL can be used to automatically learn to allocate and schedule computer 

resources to waiting jobs in order to optimize resource allocation and minimize the 

average job slowdown. 

RL proves to be a good fit when there are dynamically changing streams of 

information like news. As it has been shown in Zheng and his colleagues (2018), RL 

can be used to recommend news articles to website visitors to increase the click rate. 

Finally, there is vast amounts of effort spent in the financial sector for RL 

applications, especially to automate financial stock trading via creating intelligent 

trading agents. As it has been portrayed by Srinivasan (2018), software-giant 

corporate IBM built a complex system on their DSX platform which makes financial 

trades with the power of reinforcement learning. The model they developed is trained 

with historical stock price data using stochastic actions at each time step and the 

reward function is calculated based on the profit or loss for each trade. Similarly, 
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Lorica (2017) points out that, JPMorgan Chase uses an RL-based system for optimal 

trade execution. Their system aims to execute trading orders as fast as possible with 

the optimum price calculated. So, the insights gained from the current study may be 

utilized to enhance these systems. 
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