AMONYAK/SU İLE ÇALIŞAN SÖÜRMLÜ SÖÜRMA

SISTEMİNİN TERMODINAMİK ANALİZİ VE DISTILASYON

KOLONUNUN TASARIMI

YÜKSEK LİSANS TEZİ

(KİMYA MÜHENDİSLİĞİ BÖLÜMÜ)

T. C.

Yükseköğretim Kurulu

Dokümantasyon Merkezi

Fatma AKINCI

Şubat 1991

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
Bu tezin Yüksek Lisans tezi olarak uygun olduğunu onaylıyoruz.

Danışman
Yrd.Doç. Dr. Sabahat ERDOĞAN

Sınav Jürisi

Başkan : Prof. Dr. Yalçın GÖĞÜŞ

Üye : Prof. Dr. Ö. Erçan ATAER

Üye : Yard. Doç. Dr. Sebahat ERDOĞAN

Bu Tez Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Esaslarına Uygundur.
İÇİNDEKİLER

ÜZ .. III
ABSTRACT .. IV
TEŞEKKÜR ... V
SEMBOLLER ... VI
TABLOLARIN LİSTESİ ... X
ŞEKİLLERİN LİSTESİ .. XV

BÖLÜM 1
GİRİŞ .. 1
1.1. Soğurmalı Soğutma Sistemleri ... 1
1.2. Bu Çalışmanın Amacı ... 6

BÖLÜM 2
AMONYAK/SU KARIŞIMININ ISİL VE FİZİKSEL ÜZELLİKLERİ 8
2.1. Giriş ... 8
2.2. Sıvı Fazındaki Amonyagın Üzelliğleri .. 9
2.3. Gaz Fazındaki Amonyagın Üzelliğleri .. 11
2.4. Sıvı ve Gaz Fazındaki Suyun Üzelliğleri ... 12
2.5. Amonyak/Su Karişiminin Üzelliğleri ... 14

BÖLÜM 3
İKİLİ SİSTEMLER İÇİN DISTILASYON KOLONU TEORİSİ 18
3.1. Giriş ... 18
3.2. Teorik Raf Sayısının Belirlenmesi .. 19
3.3. Distilasyon Kolonunun Etkinliği ... 25
3.4. Raf ve Kolon Tasarımı Teorisi .. 32
 3.4.1. Kolon Çapı .. 33
 3.4.2. Sıvııntı ... 36
 3.4.3. Sıvıma Noktasının Belirlenmesi ... 36
 3.4.4. Hidrolik Parametreler ... 38
Bölüm 4
SSS'İN TERMODINAMİK ANALİZİ VE DISTILASYON KOLONU TASARIMI... 43
 4.1. Giriş .. 43
 4.2. İşi Değiştirmcilerindeki Tersinmezlikler 47
 4.3. Distilasyon KOLONUNUN TASARIMI 53

Bölüm 5
SONUÇLAR, SONUÇLARIN TARTIŞILMASI, BULGULAR VE ÖNERİLER 59
 5.1. Sonuçlar ve Tartışma .. 59
 5.2. Bulgular ... 105
 5.3. Öneriler ... 106

KAYNAKLAR ... 109

EKLER

EK 1 'PONCHON SAVARİT GRAFİK YÜNTEMİ İLE ÜRNEK ÇÖZÜM E-1

EK 2 BİLGİSAYAR PROGRAMI .. E-4

EK 3 ENTAŁPI- BİLEŞİM DİYAGRAMI İLE İLGİLİ VERİLERİ ELDE ETMEK İÇİN GELİŞTİRİLEN BİLGİSAYAR PROGRAMI E-25

EK 4 BİLGİSAYAR PROGRAMI İÇİN ÇIZİLEN AKIŞ DİYAGRAMI E-30

ÖZGECMİŞ
AMONYAK/SU İLE ÇALIŞAN SOĞURMALI SOĞUTMA SISTEMİNİN TERMODINAMİK ANALİZİ VE DISTILASYON KOLONUNUN TASARIMI

(Yüksek Lisans Tezi)

Fatma AKINCI
GAZİ ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ
Şubat 1991

Üz

Bu çalışmada NH₃/H₂O, soğutucu-soğurucu akışkan çifti ile çalışan tek kademeli soğurmalı soğutma sistemi'nin (SSS) termodinamik analizi ve distilasyon kolonunun tasarıımı yapılmıştır. SSS, yoğunlaştırıcı, soğurucu, ayırıcı, distilasyon kolonu, deflakmatör, pompa ve genleşme vanaları ile karışım ve soğutucu sıvı değiştiricilerinden oluşur. Analizde deflakmatör çiğnəndəki buhar karışımının deflakmatör sıcaklığında ve kütle kesinin 0,999 olduğu, buharlaştırıcı çiğnəndəki karışımın buhar fazında ve buharlaştırıcı sıcaklığında olduğu varsayılmıştır. Basınç kayıplarının neden olduğu tersinmezliklerin etkisini göstermek amacıyla analizde ayırıcı ve yoğunlaştırıcı, buharlaştırıcı ve soğurucu arası ve distilasyon kolonu raflarındaki basınç kayıpları dikkate alınmıştır. Isı değiştiricilerinin etkinlikleri 0,8 alınarak akışkanların ısı değiştiricilerinden çıkarımlar belirlenmiştir. Sistemin referans noktalarındaki termodinamik özellikleri, distilasyon kolonunun teorik ve gerçek raf sayıları, kolon etkinliği ve kolon boyutlarını hesaplanmıştır. Maksimum teorik raf sayısı 150 °C ayırıcı ve -20 °C buharlaştırıcı sıcaklığında elde edilmiştir. SSS'nin soğutma gücü 1 kW alınmış ve bu düşük soğutma gücü nedeniyle literatürde verilen distilasyon kolonu tasarım yöntemlerinin uygulanmasında zorluklarla karşılaşılmıştır. Kolon tasarımını ile elde edilen sonuçlar Ponchon-Savarit grafik yöntemi uygulanarak elde edilen sonuçlarla karşılaştırılmıştır. Elde edilen sonuçlar tablolar ve diyagramlar halinde verilmiştir.
THERMODYNAMIC ANALYSIS AND DESIGN OF DISTILLATION COLUMN OF THE ABSORPTION REFRIGERATION SYSTEM

(M.Sc. Thesis)

Fatma AKINCI

GAZİ UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

February 1991

ABSTRACT

In this study, the thermodynamic analysis and the design of distillation column of a single effect absorption type refrigeration system is performed. $\text{NH}_3/\text{H}_2\text{O}$ was used as refrigerant/absorber pairs. Absorption refrigeration system consist of condenser, evaporator, absorber, refrigerant distillation column, deflasher, several pumps, expansion valves, refrigerant and mixture heat exchangers. In the analysis, the following assumptions have been made, the outlet vapor temperature of deflasher is equal to the deflasher temperature; mass fraction is 0.999; the mixture coming from the evaporator is at the vapor phase and its temperature is equal to the evaporator temperature. In the calculations, the pressure drop over the separator and condenser, evaporator and absorber have been considered. To see the effect of pressure loss. The outlet temperatures of fluids from the heat exchanger effectiveness as 0.8. Thermodynamics properties at the references points of system, theoretical and actual plate numbers of distillation column, the column effectiveness and column dimensions have been calculated. Maximum theoretical number of plates at the separator temperature of 150 °C and evaporator temperature of -20 °C have been obtained. Refrigeration load has been taken as 1 kW. Because, this is too low value, the methods found from the literature could not be used easily. The results obtained from the design of column have been compared with the results of Ponchon-Savarit grafic method. These results have been shown in Tables...
TEŞEKKÜR

Bu çalışmanın gerçekleştirilmesinde ilgi ve desteği esirgemeyen tez danışmanım Sayın Yrd.Doç. Dr. Sabahat ERDOĞAN'a ve konuya ilgili düşünce ve görüşlerinden yararlandığım Sayın Prof. Dr. Ü. Ercan ATAER'e teşekkürlerimi sunarım.
<table>
<thead>
<tr>
<th>Sembol</th>
<th>Anlam</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_a</td>
<td>Etkin alan, (m²)</td>
</tr>
<tr>
<td>A_d</td>
<td>Taşma borusu alanı, (m²)</td>
</tr>
<tr>
<td>A_{da}</td>
<td>Taşma borusundaki açıklık, (m²)</td>
</tr>
<tr>
<td>A_h</td>
<td>Delik alanı, (m²)</td>
</tr>
<tr>
<td>A_n</td>
<td>Net alanı, (m²)</td>
</tr>
<tr>
<td>A_t</td>
<td>Kolon alanı, (m²)</td>
</tr>
<tr>
<td>C</td>
<td>Birim zamandaki ısı kapasitesi, (kW/K)</td>
</tr>
<tr>
<td>C_f</td>
<td>Kapasite parametresi, (-)</td>
</tr>
<tr>
<td>C_{vo}</td>
<td>Orifis katsayısı, (-)</td>
</tr>
<tr>
<td>c_p</td>
<td>Sabit basınçtaki özgül ısı, (kJ/kmol K)</td>
</tr>
<tr>
<td>D</td>
<td>Kolon çapı, (cm)</td>
</tr>
<tr>
<td>D_{L}</td>
<td>Hacimsel diffüzyon katsayısı, (cm²/s)</td>
</tr>
<tr>
<td>d_h</td>
<td>Delik çapı, (mm)</td>
</tr>
<tr>
<td>η_E</td>
<td>Etkinlik faktörü, (-)</td>
</tr>
<tr>
<td>E_o</td>
<td>Murphree kuru-buhar raf etkinliği, (-)</td>
</tr>
<tr>
<td>E_p</td>
<td>Murphree nokta etkinliği, (-)</td>
</tr>
<tr>
<td>e</td>
<td>Sızıntı debisi, (mol/s)</td>
</tr>
<tr>
<td>f</td>
<td>Sürünme faktörü, (-)</td>
</tr>
<tr>
<td>F</td>
<td>Taşma faktörü, (-)</td>
</tr>
<tr>
<td>F_{uv}</td>
<td>Sıvı akış parametresi, (-)</td>
</tr>
<tr>
<td>FFA</td>
<td>Delik alanının kolon alanı oranı, (A_h/A_t), (-)</td>
</tr>
<tr>
<td>g</td>
<td>Özgül Gibbs fonksiyonu, (kJ/kg)</td>
</tr>
<tr>
<td>g</td>
<td>Yerçekimi ivmesi, (m/s²)</td>
</tr>
<tr>
<td>G</td>
<td>Kültüsel buhar hızı, (kg/s)</td>
</tr>
<tr>
<td>Sembol</td>
<td>Anlam</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>h</td>
<td>Üzgül entalpi , (kJ/kg)</td>
</tr>
<tr>
<td>h_a</td>
<td>Raftaki havalandırılmış sıvının neden olduğu yükseklik kayıbı , (cm)</td>
</tr>
<tr>
<td>h_da</td>
<td>Taşma borusundaki ön basınç düşüğü , (cm)</td>
</tr>
<tr>
<td>h_dc</td>
<td>Taşma borusundaki sıvı yüksekliği , (cm)</td>
</tr>
<tr>
<td>h_OW</td>
<td>Set üzerindeki sıvı yüksekliği , (cm)</td>
</tr>
<tr>
<td>h_w</td>
<td>Set yüksekliği , (mm)</td>
</tr>
<tr>
<td>h_q</td>
<td>Köpük oluşumu nedeniyle meydana gelen yükseklik kayıbı, (cm)</td>
</tr>
<tr>
<td>l_w</td>
<td>Set uzunluğu , (m)</td>
</tr>
<tr>
<td>L</td>
<td>KütleSEL sıvı hızı , (kg/s)</td>
</tr>
<tr>
<td>L_f</td>
<td>Setler arasındaki açıklık , (m)</td>
</tr>
<tr>
<td>L_w</td>
<td>Set uzunluğu , (m)</td>
</tr>
<tr>
<td>m</td>
<td>Kütle debisi , (kg/s)</td>
</tr>
<tr>
<td>(\dot{m})</td>
<td>Zayıf karışımın kütle debisi , (kg/s)</td>
</tr>
<tr>
<td>(\dot{m}_a)</td>
<td>Zengin karışımın kütle debisi , (kg/s)</td>
</tr>
<tr>
<td>M</td>
<td>Molekül ağırlığı , (kg/km²)</td>
</tr>
<tr>
<td>N</td>
<td>Transfer birim sayısı , (-)</td>
</tr>
<tr>
<td>P</td>
<td>Basınç , (bar)</td>
</tr>
<tr>
<td>AP_{kuru}</td>
<td>Kuru raf basınç düşüğü , (cm)</td>
</tr>
<tr>
<td>AP_T</td>
<td>Toplam basınç düşüğü , (cm)</td>
</tr>
<tr>
<td>q</td>
<td>Hacimsel sıvı hızı , (m³/s)</td>
</tr>
<tr>
<td>q_a</td>
<td>Ayırıcıya verilen ısı yükü , (kW)</td>
</tr>
<tr>
<td>q_d</td>
<td>Deflakmatörden çekilen ısı yükü , (kW)</td>
</tr>
<tr>
<td>q_b</td>
<td>Buharlaştırıcının soğutma yükü , (kW)</td>
</tr>
<tr>
<td>Q_B</td>
<td>Hacimsel buhar hızı , (m³/s)</td>
</tr>
<tr>
<td>Q_p</td>
<td>Havalama faktörü , (-)</td>
</tr>
<tr>
<td>R</td>
<td>Evrensel gaz sabiti , (kJ/kmol K)</td>
</tr>
<tr>
<td>Sembol</td>
<td>Anlam</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds Modülü , (−)</td>
</tr>
<tr>
<td>Rf</td>
<td>Döngüş akı oranı , (−)</td>
</tr>
<tr>
<td>RH</td>
<td>Hidrolık çap , (m)</td>
</tr>
<tr>
<td>rt</td>
<td>Raf kalınlığı , (mm)</td>
</tr>
<tr>
<td>t</td>
<td>Raf aralığı , (cm)</td>
</tr>
<tr>
<td>T</td>
<td>Sıcaklık , (K)</td>
</tr>
<tr>
<td>T∞</td>
<td>Çevre sıcaklığı , (K)</td>
</tr>
<tr>
<td>Uf</td>
<td>Havalandırılmış kütlenin hızı , (m/s)</td>
</tr>
<tr>
<td>Uh</td>
<td>Deliklerden geçen buharın hızı , (m/s)</td>
</tr>
<tr>
<td>Un</td>
<td>Net alana dayalı buhar hızı , (m/s)</td>
</tr>
<tr>
<td>Unf</td>
<td>Net alana dayalı taşma hızı , (m/s)</td>
</tr>
<tr>
<td>u'v</td>
<td>Doğrusal buhar hızı , (cm/s)</td>
</tr>
<tr>
<td>v</td>
<td>Üzgül hacim , (m³/kmol)</td>
</tr>
<tr>
<td>x</td>
<td>Kütle kesri , (−)</td>
</tr>
<tr>
<td>X</td>
<td>Mol kesri , (−)</td>
</tr>
<tr>
<td>χ</td>
<td>Sızıntı düzeltme faktörü , (−)</td>
</tr>
<tr>
<td>Y</td>
<td>Buhar fazındaki karışıımın kütle kesri , (−)</td>
</tr>
<tr>
<td>y</td>
<td>Buhar fazındaki karışıımın mol kesri , (−)</td>
</tr>
<tr>
<td>z</td>
<td>Isı kapasitesi oranı</td>
</tr>
<tr>
<td>ρl</td>
<td>Sıvı yoğunluğu , (kg/m³)</td>
</tr>
<tr>
<td>ρl'</td>
<td>Sıvı yoğunluğu , (g/cm³)</td>
</tr>
<tr>
<td>ρν</td>
<td>Buhar yoğunluğu , (kg/m³)</td>
</tr>
<tr>
<td>μ</td>
<td>Kimyasal potansiyel</td>
</tr>
<tr>
<td>μl</td>
<td>Sıvı viskozitesi , (Ns/m²)</td>
</tr>
<tr>
<td>μν</td>
<td>Sıvı viskozitesi , (cP)</td>
</tr>
<tr>
<td>η</td>
<td>Etkinlik</td>
</tr>
<tr>
<td>σ</td>
<td>Yüzey gerilim , (j/m²), (dyn/cm²)</td>
</tr>
<tr>
<td>Sembol</td>
<td>Anlam</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ψ</td>
<td>Sıçıntı kesri</td>
</tr>
<tr>
<td>Δ</td>
<td>Sıvı gradyanı, (cm)</td>
</tr>
<tr>
<td>φ</td>
<td>Köpük yoğunluğu, (-)</td>
</tr>
</tbody>
</table>

Alt İndisler

<table>
<thead>
<tr>
<th>İndis</th>
<th>Anlam</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ayırıcı</td>
</tr>
<tr>
<td>b</td>
<td>Buharlaştırıcı</td>
</tr>
<tr>
<td>c</td>
<td>Soğuk akışkan</td>
</tr>
<tr>
<td>g</td>
<td>Gaz</td>
</tr>
<tr>
<td>H₂O</td>
<td>Suya ait</td>
</tr>
<tr>
<td>h</td>
<td>Sıcak akışkan</td>
</tr>
<tr>
<td>ID</td>
<td>İsi değiştirici</td>
</tr>
<tr>
<td>i</td>
<td>Giriş</td>
</tr>
<tr>
<td>l</td>
<td>Sıvı</td>
</tr>
<tr>
<td>m</td>
<td>Karışım</td>
</tr>
<tr>
<td>mak</td>
<td>Maksimum</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>NH₃</td>
<td>Amonyaga ait</td>
</tr>
<tr>
<td>o</td>
<td>Çıkış</td>
</tr>
<tr>
<td>p</td>
<td>Pompa</td>
</tr>
<tr>
<td>s</td>
<td>Soğurucu</td>
</tr>
<tr>
<td>y</td>
<td>Yoğuşturucu</td>
</tr>
</tbody>
</table>

Üst İndisler

<table>
<thead>
<tr>
<th>İndis</th>
<th>Anlam</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>Boyutsuz</td>
</tr>
<tr>
<td>.</td>
<td>Birim zamandaki büyüklük</td>
</tr>
<tr>
<td>Tablo</td>
<td>Sayfa</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Tablo 1. Denklem 2.1 ve 2.2'deki Sabitlerin Değerleri</td>
<td>11</td>
</tr>
<tr>
<td>Tablo 2. Denklem 2.12 ve 2.13'deki Sabitlerin Değerleri</td>
<td>12</td>
</tr>
<tr>
<td>Tablo 3. Doymuş Sıvı Su İçin Denklem 2.1 ve 2.2'deki Sabitlerin Değerleri</td>
<td>13</td>
</tr>
<tr>
<td>Tablo 4. Doymuş Su Buharı İçin Denklem 2.12 ve 2.13'deki Sabitlerin Değerleri</td>
<td>13</td>
</tr>
<tr>
<td>Tablo 5. Denklem (2.16)'daki Sabitlerin Değerleri</td>
<td>15</td>
</tr>
<tr>
<td>Tablo 6. Kolonların Etkinliğini Etkileyen Parametreler</td>
<td>29</td>
</tr>
<tr>
<td>Tablo 7. SSS'nin Termodinamik Analizinde Kullanılan Veriler</td>
<td>44</td>
</tr>
<tr>
<td>Tablo 8. Raf ve Kolon Tasarımında Kullanılan Veriler</td>
<td>56</td>
</tr>
<tr>
<td>Tablo 9. 30 °C Yoğunlaştırıcı, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>71</td>
</tr>
<tr>
<td>Tablo 10. 30 °C Yoğunlaştırıcı, 28 °C Soğurucu, -20 °C Buharlaştırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>72</td>
</tr>
<tr>
<td>Tablo 11. 30 °C Yoğunlaştırıcı, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 130 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>73</td>
</tr>
<tr>
<td>Tablo 12. 30 °C Yoğunlaştırıcı, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>74</td>
</tr>
<tr>
<td>Tablo 13. 30 °C Yoğunlaştırıcı, 28 °C Soğurucu, -10 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>75</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Table 14</td>
<td>30°C Yeşilidir, 28°C Soğurucu, -10°C Buharlaştıracı ve 140°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 15</td>
<td>30°C Yeşilidir, 28°C Soğurucu, -10°C Buharlaştıracı ve 130°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 16</td>
<td>30°C Yeşilidir, 28°C Soğurucu, -10°C Buharlaştıracı ve 120°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 17</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 0°C Buharlaştıracı ve 150°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 18</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 0°C Buharlaştıracı ve 140°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 19</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 0°C Buharlaştıracı ve 130°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 20</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 0°C Buharlaştıracı ve 120°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 21</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 10°C Buharlaştıracı ve 150°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 22</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 10°C Buharlaştıracı ve 140°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 23</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 10°C Buharlaştıracı ve 130°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Table 24</td>
<td>30°C Yeşilidir, 28°C Soğurucu, 10°C Buharlaştıracı ve 120°C Ayrıçıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
</tr>
<tr>
<td>Tablo</td>
<td>Sayfa</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tablo 25. 27 °C Yoğunşurucu, 25 °C Soğurucu, -20 °C Buharlaştırici ve 150 °C Ayrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>87</td>
</tr>
<tr>
<td>Tablo 26. 27 °C Yoğunşurucu, 25 °C Soğurucu, -20 °C Buharlaştırici ve 120 °C Ayrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>88</td>
</tr>
<tr>
<td>Tablo 27. 27 °C Yoğunşurucu, 25 °C Soğurucu, 10 °C Buharlaştırici ve 150 °C Ayrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>89</td>
</tr>
<tr>
<td>Tablo 28. 27 °C Yoğunşurucu, 25 °C Soğurucu, 10 °C Buharlaştırici ve 120 °C Ayrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar</td>
<td>90</td>
</tr>
<tr>
<td>Tablo 29. 30 °C Yoğunşurucu, 28 °C Soğurucu, -20 °C Buharlaştırici ve 150 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>91</td>
</tr>
<tr>
<td>Tablo 30. 30 °C Yoğunşurucu, 28 °C Soğurucu, -20 °C Buharlaştırici ve 140 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>91</td>
</tr>
<tr>
<td>Tablo 31. 30 °C Yoğunşurucu, 28 °C Soğurucu, -20 °C Buharlaştırici ve 130 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>92</td>
</tr>
<tr>
<td>Tablo 32. 30 °C Yoğunşurucu, 28 °C Soğurucu, -20 °C Buharlaştırici ve 120 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>92</td>
</tr>
<tr>
<td>Tablo 33. 30 °C Yoğunşurucu, 28 °C Soğurucu, -10 °C Buharlaştırici ve 150 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>93</td>
</tr>
<tr>
<td>Tablo 34. 30 °C Yoğunşurucu, 28 °C Soğurucu, -10 °C Buharlaştırici ve 140 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>93</td>
</tr>
<tr>
<td>Tablo 35. 30 °C Yoğunşurucu, 28 °C Soğurucu, -10 °C Buharlaştırici ve 130 °C Ayrıcı Sıcaklığında Distilleyon Kolonu ile İlgili Sonuçlar</td>
<td>94</td>
</tr>
</tbody>
</table>
Tablo 36. 30 °C Yoğunşturucu, 28 °C Soğurucu, -10 °C Buharlaştıracı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 94

Tablo 37. 30 °C Yoğunşturucu, 28 °C Soğurucu, 0 °C Buharlaştıracı ve 150 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 95

Tablo 38. 30 °C Yoğunşturucu, 28 °C Soğurucu, 0 °C Buharlaştıracı ve 140 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 95

Tablo 39. 30 °C Yoğunşturucu, 28 °C Soğurucu, 0 °C Buharlaştıracı ve 130 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 96

Tablo 40. 30 °C Yoğunşturucu, 28 °C Soğurucu, 0 °C Buharlaştıracı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 96

Tablo 41. 30 °C Yoğunşturucu, 28 °C Soğurucu, 10 °C Buharlaştıracı ve 150 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 97

Tablo 42. 30 °C Yoğunşturucu, 28 °C Soğurucu, 10 °C Buharlaştıracı ve 140 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 97

Tablo 43. 30 °C Yoğunşturucu, 28 °C Soğurucu, 10 °C Buharlaştıracı ve 130 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 98

Tablo 44. 30 °C Yoğunşturucu, 28 °C Soğurucu, 10 °C Buharlaştıracı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 98

Tablo 45. 27 °C Yoğunşturucu, 25 °C Soğurucu, -20 °C Buharlaştıracı ve 150 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 99

Tablo 46. 27 °C Yoğunşturucu, 25 °C Soğurucu, -20 °C Buharlaştıracı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 99
Tablo 47. 27°C Yoğurtucu, 25°C Soğurucu, 10°C Buharlaştırıcı ve 150°C Ayıracı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 100

Tablo 48. 27°C Yoğurtucu, 25°C Soğurucu, 10°C Buharlaştırıcı ve 120°C Ayıracı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar 100

Tablo 49. 30°C Yoğurtucu ve 28°C Soğurucu Sıcaklığında Farklı Buharlaştırıcı ve Ayıracı Sıcaklıkları İçin Analizden Elde Edilen Kolon Tasarım Sonuçları 101

Tablo 50. 27°C Yoğurtucu ve 25°C Soğurucu Sıcaklığında Farklı Buharlaştırıcı ve Ayıracı Sıcaklıkları İçin Analizden Elde Edilen Kolon Tasarım Sonuçları 102

Tablo 51. Değişik Çalışma Şartlarında Raf Sayıları ve Etkinlik İle İlgili analizden Elde Edilen Sonuçlar 103

Tablo 52. 30°C Yoğurtucu, 28°C Soğurucu ve -20°C Buharlaştırıcı Sıcaklığında, 150°C Ayıracı Sıcaklığı İçin Grafik Çözümden elde Edilen Sonuçlar 104

Tablo 53. 27°C Yoğurtucu, 25°C Soğurucu ve 0°C Buharlaştırıcı Sıcaklığında 150°C Ayıracı Sıcaklığı İçin Grafik Çözümden Elde Edilen Sonuçlar 104
<table>
<thead>
<tr>
<th>Şekil</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 1. Soğurmalı Soğutma Sisteminin Şemathik Görüntümü</td>
<td>7</td>
</tr>
<tr>
<td>Şekil 2. Distilasyon Kolonunun Şemathik Görüntümü</td>
<td>20</td>
</tr>
<tr>
<td>Şekil 3. Minimum Dönüş Akl Oranı Koşulları</td>
<td>23</td>
</tr>
<tr>
<td>Şekil 4. Delikli Raf Performans Diyagramı</td>
<td>33</td>
</tr>
<tr>
<td>Şekil 5. Delik Düzeninin Serbest Alan Üzerine Etkisi</td>
<td>37</td>
</tr>
<tr>
<td>Şekil 6. Delikli Raflarda Sızıntı Debrisı</td>
<td>37</td>
</tr>
<tr>
<td>Şekil 7. Delikli Raflarda Sızmı Noktasının Belirlenmesi</td>
<td>39</td>
</tr>
<tr>
<td>Şekil 8. Delikli Raflarda Serbest Alana Göre Orifis Kat sayısının Değişimi</td>
<td>39</td>
</tr>
<tr>
<td>Şekil 9. Delikli Raflarda Havalanma Faktörü ve Bağlı Köpük Yoğunluğu</td>
<td>41</td>
</tr>
<tr>
<td>Şekil 10. Delikli Raflarda Sürünme Faktörü</td>
<td>41</td>
</tr>
</tbody>
</table>
| Şekil 11. 30 ve 27 °C Yoğunluklu Sıçaklıklarında x
 3 \text{'un Buharlaştırıcı Sıcaklığı İle Değişimi | 63 |
| Şekil 12. Ayırıcıdan Ayrılan Sıvı ve Buhar Karışımındaki Amonyak Kütle derişiminin Ayırıcı Sıcaklığı İle Değişimi | 63 |
| Şekil 13. T_{y}=30 °C, T_{s}=28 °C, T_{b}=-20 °C ve T_{a}=150 °C Sıcaklıklarında Kolon İçindeki Buhar Karışımındaki Amonyayığın Kütle Kesrinin Sıvı Karışımındaki Amonyayığın Kütle Kesri İle Değişimi | 64 |
| Şekil 14. T_{y}=30 °C, T_{s}=28 °C, T_{b}=-20 °C ve T_{a}=140 °C Sıcaklıklarında Kolon İçindeki Buhar Karışımındaki Amonyayığın Kütle Kesrinin Sıvı Karışımındaki Amonyayığın Kütle Kesri İle Değişimi | 64 |

Şekil 22. Farklı Buharlaştırıcı Sıcaklıklarında Kolon Etkinliğinin Ayırtıcı Sıcaklığı İle Değişimi.

Şekil 23. Delikli Rafin Şematik Görünümü.
BÖLÜM 1

GİRİŞ

1.1. Soğurmalı Soğutma Sistemleri

Soğurmalı Soğutma Sistemleri (SSS) çok az mekanik enerjiye ve oldukça fazla ısı enerjisine gereksinim duyarlar. Bu nedenle bu sistemlerde her türlü enerji kaynağı kullanılabilmekle beraber ısı enerjisinin ucuz olduğu güneş enerjisi ve atık ısı enerjisi uygulamalarında SSS ekonomik açıdan ilgi çekicidir ve diğer soğutma sistemlerine bir alternatif olarak düşünülebilir.

SSS'de, klasik buhar sıkıştırmalı soğutma sistemlerinde kullanılan kompresör yerine soğurucu, karışım pompası, basınç düşürücü vana, ayırıcı, deflakmatör ve distilasyon kolonu kullanılır. Klasik soğutma sistemlerinde kullanılan yoğuşturucu, buharlaştırıcı ve genleşme vanası SSS'de de kullanılır.

Soğurmalı soğutma sistemi Şekil 1'de şematik olarak görülmektedir. Şekilde görüldüğü gibi buharlaştırıcıdan çıkan düşük basınçtaki soğutucu buharı soğutucu ısı ısı değiştiricisinden geçerek sıcaklığı artırır ve soğurucuya girer. Soğurucuda soğurulan, sıvı fazdaki karışımın amonyak derišimi artar ve amonyakça zengin karışım pompası ile sistem üst basıncına pompalanır. Zengin karışım, karışım ısı ısı değiştiricisinden geçerek sıcaklığı artırır ve distilasyon kolonuna girer. Distilasyon kolonunun işlevi gereği deflakmatör çığından buhar fazından zengin amonyak/su karışımı elde edilir. Amonyakça zengin buhar karışımı yoğunlaştırucuya gönderilir. Diğer taraftan ayırıcidan ayrılan amon-
yakça zayıf karışım, sıvı değiştiricisinden geçerken soğur ve genleşme vanasında basıncı düşerek soğurucuya döner. Yoğunşturucudan çıkan sıvı fazdaki amonyakça zengin karışım soğutucu sıvı değiştiricisinden geçerken soğutulur. Genleşme vanasında basıncı düşerek buharlaştırıcıya girer ve buharlaşarak soğurucuya gelir ve çevrim tamamlanır.

Soğurmalı soğutma çevriminin termodinamik açıdan performansı limitlidir. \(T_b \) ve \(T_\infty \) çevre sıcaklığında çalışan bir Carnot soğutma çevriminin performansı ile \(T_a \) ayırıcı ve \(T_\infty \) çevre sıcaklığında çalışan bir Carnot makinasının verimlerinin çarpımı sistemin maksimum performansı katsayısını verir ve

\[
(CD)_{\text{mak}} = \frac{T_b}{T_a} \frac{T_a - T_\infty}{T_\infty - T_b}
\]

şeklinde tanımlanır. SSS'de uygun soğurucu ve soğutucu akışkanların kullanılması durumunda çevrimin %11 performansı katsayısının 1,0 dolayında olması beklenir.

SSS'de çalışma akışkanlarının seçimi oldukça önemlidir. Çevrimin performansı soğurucu ve soğutucu akışkanların %11, fiziksel özelliklerine bağlıdır. Özelliklerden bazıları:

a. Karışımın buhar basıncı,

b. Soğutucunun buharlaşma sırası,

c. Soğutucunun kütle derişimi,

d. Karışımın sıvı kapasitesi,

şeklinde sıralanabilir. Akışkan seçiminde kimyasal denge ve viskozite de dikkate alınırken akışkanların bulunabilirliğiniin ve fiyatlarından göz önünde bulundurulması gerekir.

SSS'de amonyak/su, soğutucu/soğurucu akışkan çifti çok sık kul-
lanılır. Amonyak ve suyun kaynama noktaları arasındaki sıcaklık farkı 133 °C'dir. Amonyak/su, soğutucu/soğurucu çiftinin yüksek buharlaşma ısıısı, bulunabilirliği, düşük viskozitesi, yüksek ısı iletim katsayısı, düşük fiyat ile eriyebilirliğinin iyi olması gibi avantajları da vardır.

Literatürde SSS’nin termodinamik ve deneySEL analizi için yapılmış çalışmalar vardır. Ziegler ve Trepp [1], amonyak/su karışımının denge özellikleri için korelasyonlar geliştirmişlerdir. 500 °K sıcaklık ve 50 bar basınç aralığındaki Shulz’un kullandığı durum denklikleri baz alınarak karışımların için özgül hacım, buhar basıncı, denge sabitleri ve entalpi değerleri deneySEL verilerle karşılaştırılmıştır. Elde edilen sonuçlar entalpi-bileşim ve basınç diyagramında gösterilmiştir.

Alvares ve Trepp [2], amonyak/su ile çalışan bir SSS’nin termodinamik analizini yapmışlardır.

Ataer ve Göğüş [3], amonyak/su ağıran çifti ile çalışan SSS’deki tersinmezlikleri ayrıntılı şekilde incelemişlerdir.

Anand ve Kumar [4], LiBr/H₂O’lu SSS’nin tersinmezliklerinin analizini yapmışlardır.

Haselden ve Sutherland [5], dört raf içeren 8 cm çaplı bir kolonda amonyak/su karışımının ayrılmасında raf etkinliğini incelemişler ve deneySEL sonuçlarla elde edilen etkinliklerle literatürde verilen distilasyon teorilerini karşılaştırmışlardır.

Lockett, Rahman ve Dhulesia [6], raf etkinliği üzerine sizmanın etkisini belirlemek için bir çalışma yapmışlar ve raf etkinliğinin sizma, sıvı Peclet sayısı, stripping faktör, nokta etkinliği ve özel Lewis durumu gibi faktörlerin fonksiyonu olduğunu göstermişlerdir.
Smith [7], differansiyel kontakt distilasyon kolonlarının performansı üzerine termal distilasyonun etkilerini incelemiştir. Kolonda net buharlaşma ve yoğunlaşma olduğunda transfer birimi yüksekliğinin adıabatik koşullardakinden daha küçük olduğunu differansiyel kontakt distilasyon kolonu için göstermiştir. Ayrıca deneysel olarak net yoğunma için kontakt distilasyona ek olarak termal distilasyonun meydana gelmesinin etkinliği artıracağı belirlenmiştir.

Szonyi ve Furzer [8], periyodik çevrili distilasyon kolonlarında yeni bir raf tasarımı kullanarak, 610 mm çaplı ve beş raf içeren bir kolonda metanol-su sistemi ile bir çalışma yapmışlar. Yapılan bu çalışma ile donanımlardaki kısmi değişimlerle çevrili kolonların yararlarının endüstriyel ölçekli kolonlarda elde edilebileceğini belirlemişlerdir.

Bubble-Cap raflar için Fair ve Matthews, delikli raflar için Fair [9], belirli sayıda sistem ve kolonlar için literatür verilerini kullanarak sızıntıyla ilgili bağıntılar geliştirmiştirlerdir. Bu bağıntılar akış ve kapasite parametresi baz alınarak taşıma yüzdesi, sızıntı kesri, sıvı ve buharın debisi, sıvı ve buharın yoğunluğunun fonksiyonu olarak %15 hata sınırları içinde yapılmıştır.

Bain ve Van Winkle [9], sızıntıyı 0,6 m çapındaki delik raflı kolonda, hava/su sistemiyle, raf aralıkları, delik çapı, delik merkezleri arasındaki uzaklık, set yüksekliği, sıvı ve buhar hızı etkilerini dikkate alarak incelemiştir ve %25 maksimum sapma ile deneysel verilerin %90'ı için geçerli

\[\ln E' = K \ln \left[\frac{d}{S} \left(\frac{I}{L} \right)^9 G^f \right] + B \]

bir bağıntı elde etmişlerdir. Deneysel su/hava sistemi kullanıldığından, buhar ve sıvının yoğunluğu ve yüzey gerilimi için
E' = E' \left(\frac{73}{\sigma} \right)^{0.2} \left(\frac{\rho_v/0.08}{\rho_L/62.4} \right)^{0.5}

şeklinde ifade edilen bir düzentleme önermüşlerdir.

Gerster ve arkadaşları [9], sıvı ve buhar hızları arasındaki ilişkinin raf etkinliği üzerindeki etkilerini incelemişler ve etkinlığın bazı sıvı hızlarında buhar hızındaki artış oranına paralel olarak arttığını, diğer durumlarda azaldığını, aynı şekilde sıvı hızındaki artma ve azalma ile ters orantılı olarak değiştğini göstermişlerdir.

Ellis ve Moya'da [9]'de aynı etkiyi gözlemişlerdir.

Hollums ve arkadaşları, Umboltz ve Van Winkle, Karim ve Nandi [9], \(\frac{L}{D} \) oranı 2'ye ulaştıktan sonra dönüş akı oranındaki azalmanın etkinliğini artırdığını, \(\frac{L}{D} \) oranının 2 ve 1 değerleri arasında etkinlikteki değişimini gölgeleyebilir, toplam dönüş akı oranı ve dönüş akı oranı 2 dolayında etkinin az olduğunu göstermişlerdir.

Gerster ve arkadaşları [9], metanol/su sistemi için çapı 0,33 m ve uzunluğu 4,5 m olan bir kolonda etkinliği incelemişler, hız ve köpük yüksekliğiyle etkinliğin karşılaştırılabileceğini göstermişlerdir.

Foss ve arkadaşları [9], bubble-cap rafların etkinliği üzerine sıvı karışımın etkisini incelemişler ve karşıma derecesini karakterize eden rafa alıkoma süresinden yararlanarak dağılım fonksiyonu için ayrıntılı bilgi gerektiren ifadeler vermişlerdir. Dağılım fonksiyonu için yaklaşık parametreler kullanarak etkinliği belirlemek için hızlı bir yöntem geliştirmişlerdir.

Oliver ve Watson [9], etilen/dikloroluven sistemini kullanarak 0,45 m çaplı bubble-cap rafı bir kolonda etkinliği etkileyen fak-
törleri belirlemiş ve karışık parametre denklemini geliştirmişlerdir.

Karim ve Nandi, Hellums ve arkadaşları [9], delikli raflarda delik çapının etkinlik üzerine etkisini incelemişler ve delik çapının etkinlik üzerine çok az bir etkisi olduğunu göstermişlerdir.

Volland, Foss ve Gerster [9], serbest alanın etkinlik üzerine etkisini incelemişler ve bu etkinin çok az olduğunu göstermişlerdir.

1.2. Bu Çalışmanın Amacı

Bu çalışmada SSS'nin termodinamik analizi ve distilasyon kolonunun tasarımını için bir yöntem geliştirilmiş ve bu yöntem kullanılarak bilgisayar yardımcıla çözümler elde edilmiştir. Analizde deflakmatör çıkısında amonyak/su karışımının buhar fazında ve kütle derişiminin 0,999 olduğu varsayılmıştır. Bu çalışmada analizi yapılan SSS'nin etkinliğini artırmak için sistemde ayırıcı ve soğurucu arasında eriyik ısı değiştiricisi, yoğurucu ve buharlaştırıcı arasında soğutucu ısı değiştiricisi kullanılmıştır. Analizde karışım ve soğutucu ısı değiştirgeçlerinin karşı akışlı olduğu varsayılarak etkinlikleri kabul edilmiş ve bu etkinlikler kullanılarak artışlanılan ısı değiştirgeçlerinden çıkış sıcaklıklar belirlenmiştir. Sistemi oluşturan bazı birimler arasındaki basınç kayıpları için literatürde verilen amprik bağıntılar kullanılmıştır. Yine literatürde kullanılan yöntemlerle distilasyon kolonunun tasarımını yapılmıştır.
Şekil 1. Soğurmalı Soğutma Sisteminin Şematik Görünümü
BÖLÜM 2

AMONYAK/SU KARIŞIMININ ISİL VE FIZIKSEL ÖZELLİKLERİ

2.1. Giriş

Bu çalışmada NH₃/H₂O soğutucu/soğurucu akışkan çifti ile çalışılan tek kademeli soğurmalı soğutma sisteminin termodinamik analizi ve distilasyon kolonunun tasarımını yapılmıştır. Sistemin termodinamik analizinde kullanılan NH₃/H₂O'nun fiziksel özellikleri ile ilgili bağntılar literatürden alınmıştır. Sıvı ve gaz fazındaki saf amonyağın sabit basınçtaki özgül ısısının veren bağntılar kullanılarak her iki fazdaki özgül Gibbs serbest enerji fonksiyonu hesaplanmış ve Maxwell bağntıları ile sıvı ve gaz fazındaki saf amonyağın özgül entalpileri ile özgül hacimleri hesaplanmıştır. Sıvı ve gaz fazındaki amonyağın özgül Gibbs serbest enerji fonksiyonu ile ilgili bağntılar Ziegler ve Trepp'in [1] çalışmalarından alınmış ve Bölüm 2.2 ve 2.3'de verilmiştir. Sıvı ve gaz fazındaki saf suyun hesaplanan özgül entalpileri Bölüm 2.4'de verilmiştir.

Sıvı ve gaz fazındaki amonyak/su karışımının doyuma basınçını ve özgül entalpileri ile ilgili bağntılar saf su ve amonyağın sıvı ve gaz fazındaki entalpileri kullanılarak elde edilmiştir. Schulz'un [10] denge şartlarındaki sıvı ve gaz fazı için verdiği bağntılar kullanılarak gaz fazındaki amonyak/su karışımı için amonyağın molar derişimini veren bir ifade elde edilmiştir. Bu bağntılar Bölüm 2.5'de verilmiştir.

Bourseau ve Bugarel [11]'de amonyak, su ve amonyak/su karışımı-
nin sıvı ve gaz fazındaki boyutsuz entalpileri için \(0,01 \leq P \leq 25\) bar basınç ve \(200 \leq T \leq 450\) K sıcaklık aralığında amprik bağıntılar elde etmişlerdir. Bu çalışmada Ziegler ve Trepp'ın geliştirdiği denklem-ler kullanılmıştır.

2.2. Sıvı Fazdaki Amonyağı'nın Özellikleri

\(230 \leq T \leq 500\) K sıcaklık ve \(0,2 \leq P \leq 50\) bar basınç aralığında Ziegler ve Trepp [1] doymuş sıvı amonyağın boyutsuz özgül Gibbs ser-best enerji fonksiyonu için

\[
\hat{\mathcal{G}}_L = \hat{\mathcal{G}}_{L,0} - \hat{s}_{L,0} \hat{T} + \int_0^{\hat{T}} \hat{c}_P \hat{T} \, d\hat{T} - \int_0^{\hat{T}} \left(\hat{c}_P \hat{T} / \hat{T} \right) d\hat{T} \\
+ \left(a_1 + a_3 \hat{T} + a_4 \hat{T}^2 \right) \left(\hat{\rho} - \hat{\rho}_0 \right) + a_2 \left(\hat{\rho}^2 - \hat{\rho}_0^2 \right) / 2
\]

(2.1)

bağıntısını elde etmişlerdir. Bu bağıntıdaki \(\hat{c}_P\) sıvı fazdaki amonyağın boyutsuz, sabit basınçtaki molar özgül isısısıdır ve

\[
\hat{c}_P = b_1 + b_2 \hat{T} + b_3 \hat{T}^2
\]

(2.2)

şeklinde tanımlanmıştır. Denklem (2.1) ve (2.2)'de kullanılan boyut- suz parametreler

\[
\hat{T} = \frac{T}{T_B}
\]

(2.3)

\[
\hat{\rho} = \frac{\rho}{\rho_B}
\]

(2.4)

\[
\hat{s} = \frac{c_p}{R}
\]

(2.5)

ve

\[
\hat{q} = \frac{q}{RT_B}
\]

(2.6)

bağıntıları ile tanımlanmıştır. Bu ifadelerdeki \(T_B\) nin değeri 100 K ve \(P_B\) nin değeri 10 bar'dir. \(R\) evrensel gaz sabitidir ve değeri
8,314 kJ/kmol K'dir. Denklem (2.1) ve (2.2)'deki sabitlerin değerleri Tablo 1'de verilmiştir. Gibbs serbest enerji fonksiyonu ile entalpi arasındaki bağıntı

\[\tilde{h} = -\delta^2 \left(\frac{\partial (\tilde{g}/T)}{\partial \tilde{t}} \right)_T \]

şeklinde ifade edilir. Denklem (2.1) ile verilen boyutsuz Gibbs serbest enerji fonksiyonu Denklem (2.7)'de kullanılarak sıvı amonyağın boyutsuz entalpisi

\[\hat{h}_{2, \text{NH}_3} = \hat{h}_{2, o_{\text{NH}_3}} - b_1 \tilde{t}_o - \frac{b_2}{2} (\tilde{t}^2 + \tilde{t}_o^2) - \frac{b_3}{3} (2\tilde{t}^3 + \tilde{t}_o^3) \\
+ b_1 \tilde{t} + b_2 \tilde{t}^2 + b_3 \tilde{t}^3 - (a_4 \tilde{t}^2 - a_5) (\tilde{p} - \tilde{p}_o) \]

\[+ \frac{a_2}{2} (\tilde{p}^2 - \tilde{p}_o^2) \]

(2.8)

şeklinde yazılabildir. Doymuş sıvı amonyağın molar entalpisi

\[\hat{h} = \hat{h}_{\text{RT}} \]

(2.9)

bağıntısı kullanılarak elde edilir.

Gibbs serbest enerji fonksiyonu ile özgül hacim arasındaki bağıntı

\[\theta = \left(\frac{\partial \hat{g}}{\partial \tilde{p}} \right)_T \]

(2.10)

şeklinde ifade edilir. Denklem (2.1) ile verilen doymuş sıvı amonyağın boyutsuz Gibbs serbest enerji fonksiyonu Denklem (2.6) ve (2.10) kullanılarak doymuş sıvı amonyağın molar özgül hacmi için

\[\tilde{v}_{2, o} = \text{R.T}_B \frac{10^{-2}}{\tilde{p}_B} (a_3 + a_4 \tilde{t} + a_5 \tilde{t}^2 + a_6 \tilde{p}) \]

(2.11)

bağıntısı elde edilir.
Tablo 1. Denklem (2.1) ve (2.2)'deki sabitlerin değerleri [1]

\(\hat{\lambda},0 \)	4,878573
\(\hat{\xi},0 \)	1,644773
\(a_1 \)	3,971423.10^{-2}
\(a_2 \)	-1,790557.10^{-5}
\(a_3 \)	-1,308905.10^{-2}
\(a_4 \)	3,752836.10^{-3}
\(b_1 \)	1,634519.10
\(b_2 \)	-6,508119
\(b_3 \)	1,448937
\(\hat{T}_0 \)	3,2252
\(\hat{P}_0 \)	2,0000

2.3. Gaz Fazındaki Amonyagın Özellikleri

Ziegler ve Trepp [1] gaz fazındaki amonyagın boyutsuz Gibbs serbest enerji fonksiyonunu

\[
\hat{g}_g = \hat{\rho}_{g,0} - \hat{\xi}_{g,0} \hat{T} + \int_{\hat{T}_0}^{\hat{T}} \hat{c}_{pg} d\hat{T} - \hat{T} \int_{\hat{T}_0}^{\hat{T}} \left(\hat{c}_{pg}/\hat{T} \right) d\hat{T} + \hat{T} \ln(\hat{P}/\hat{P}_0)
\]

\[
+ c_1(\hat{P} - \hat{P}_0) + c_2(\hat{P}/\hat{T}^3 - \hat{P}_0/\hat{T}_0^3 + 3\hat{P}_0/\hat{T}_0^4) + c_3(\hat{P}/\hat{T}_0^{11})
\]

\[
- 12\hat{P}_0/\hat{T}_0^2 + 11\hat{P}_0/\hat{T}_0^{12}) + c_4(\hat{P}/\hat{T}_0^{11} - 12\hat{P}_0/\hat{T}_0^{11} + 11\hat{P}_0/\hat{T}_0^{12})/3
\]

(2.12)

bağıntısı ile vermişlerdir. Denklem (2.12)'deki \(\hat{c}_{pg} \) gaz fazındaki amonyagın boyutsuz, sabit basınçtaki özgül ısısidir ve

\[
\hat{c}_{pg} = d_1 + d_2 \hat{T} + d_3 \hat{T}^2
\]

(2.13)

ifadesiyle tanımlanmıştır. Denklem (2.12) ve (2.13)'deki sabitlerin de-
değerleri Tablo 2'de verilmiştir.

Tablo 2. Denklem (2.12) ve (2.13)'deki sabitlerin değerleri [1]

$h_{g,o}$	26,468879
$s_{g,o}$	8,339026
c_1	-1,049377.10^{-2}
c_2	-8,288224
c_3	-6,647257.10^2
c_4	-3,045352.10^3
d_1	3,673647
d_2	9,989629.10^{-2}
d_3	3,617622.10^{-2}

Denklem (2.12) ile verilen boyutsuz Gibbs serbest enerji fonksiyonu Denklem (2.7)'de kullanılarak doymuş amonyak buharının boyutsuz özgül entalpisi için

$$
\hat{h}_{g_{\text{NH}_3}} = \hat{h}_{g_{\text{NH}_3}} - d_1 \hat{T}_o - \frac{d_2}{2} (\hat{T}^2 + \hat{T}_o^2) - \frac{d_3}{3} (2\hat{T}^3 + \hat{T}_o^3) + d_1 \hat{T} \\
+ d_2 \hat{T}^2 + d_3 \hat{T} + c_1 (\hat{P} - \hat{P}_o) + 4c_2 (\hat{P}/\hat{T}_o^3 - \hat{P}_o/\hat{T}_o^3) \\
+ 12c_3 (\hat{P}/\hat{T}_o^{11} - \hat{P}_o/\hat{T}_o^{11}) + 4c_4 (\hat{P}^3/\hat{T}_o^{11} - \hat{P}_o^3/\hat{T}_o^{11})
$$

bağıntısı elde edilir. Bu bağıntı Denklem (2.9) kullanılarak gaz fazındaki amonyağın molar entalpisi elde edilir.

2.4. Sıvı ve Gaz Fazındaki Suyun Özellikleri

Ziegler ve Trepp sıvı ve gaz fazındaki amonyak için verdikleri Gibbs serbest enerji fonksiyonu bağıntısının genel formunu farklı sabitler ile suyun sıvı ve gaz fazındaki entalpileri için de kullanmış-
lardır. Doymuş sıvı su için Denklem (2.1) ve (2.2)'deki sabitlerin değerleri Tablo 3'te verilmiştir.

h₀₂₀,0	21,821141
S₀₂₀,0	5,733498
a₁	2,748796·10⁻²
a₂	-4,45025·10⁻³
a₃	8,389246·10⁻⁴
a₄	-1,016665·10⁻⁵
b₁	1,214557·10
b₂	-1,898065
b₃	2,911966·10⁻¹
T₀	5,0705
P₀	3,000

Doymuş su buharı için Denklem (2.12) ve (2.13)'deki sabitlerin değerleri de Tablo 4'de verilmiştir.

h₀₂₉,0	60,965058
S₀₂₉,0	13,453430
c₁	2,136131·10⁻²
c₂	-3,169291·10
c₃	-4,634611·10⁴
c₄	0,0
d₁	4,01970
d₂	-5,175550·10⁻²
d₃	1,951939·10⁻²
2.5. Amonyak/Su Karışımının Özellikleri

Bourseau ve Bugarel [11]'de amonyak/su karışımının doyma basınıncı için

\[\log p = M - \frac{N}{T} \quad (2.15a) \]

ampir bağntısı elde ettiler. Bu bağntıldaki M ve N'nin değerleri

\[M = 10,440 - 1,767x + 0,9823x^2 + 0,3627x^3 \quad (2.15b) \]

ve

\[N = 2013,8 - 2155,7x + 1540,9x^2 - 194,7x^3 \quad (2.15c) \]

şeklinde tanımlanmıştır. Bu ifadelerde x amonyağın kütlesinebesiridir. Ziegler ve Trepp [1]'de svi fazdaki amonyak/su karışıının boyutsuz Gibbs serbest enerji fonksiyonu için

\[\hat{\theta}_2,m = (1 - X)\hat{\theta}_2,H_2O + x\hat{\theta}_2,NH_3 + \frac{T}{\bar{\theta}} [(1 - X) \ln(1 - X) + X \ln X] + \{ e_1 + e_2\hat{\theta} + (e_3 + e_4\hat{\theta})\hat{T} + e_5\hat{T} + e_6\hat{T}^2 + \} X(1 - X) \quad (2.16) \]

bağntısını elde etmişlerdir. Denklem (2.16)'daki sabitlerin değerleri Tablo 5'de verilmiştir. Denklem (2.16)'daki X amonyağın mol kesridir. Denklem (2.16), Denklem (2.7)'de kullanılarak svi fazdaki amonyak/su karışıının molar boyutsuz entalpisi

\[\hat{h}_2,m = (1 - X)\hat{h}_2,H_2O + x\hat{h}_2,NH_3 + \{ e_1 + e_2\hat{\theta} + 2e_5\hat{T} + 3e_6\hat{T}^2 + \} X(1 - X) \quad (2.17) \]

şeklinde elde edilir.
Tablo 5. Denklem (2.16)'daki sabitlerin değerleri [1]

e_1	-4,626129.10
e_2	2,060225.10$^{-2}$
e_3	7,292369
e_4	-1,032613.10$^{-2}$
e_5	8,074824.10
e_6	-8,461214.10
e_7	2,452882.10
e_8	9,598767.10$^{-3}$
e_9	-1,475383
e_{10}	-5,038107.10$^{-3}$
e_{11}	-9,640398.10
e_{12}	1,226973.102
e_{13}	-7,582637
e_{14}	6,012445.10$^{-4}$
e_{15}	5,487018.10
e_{16}	-7,667596.10

Ziegler ve Trepp gaz fazındaki amonyak/su karışımının boyutsuz Gibbs serbest enerji fonksiyonunu

$$
\hat{\gamma}_{g,m} = (1 - Y)\hat{\gamma}_{g,H_2O} + \hat{\gamma}_{g,NH_3} + \tilde{T}[(1 - Y)\ln (1 - Y) + Y\ln(Y)]
$$

(2.18)
bağlantı yazılabilir. Bu bağıntı Denklem (2.9)'da kullanılarak gaz fazındaki amonyak/su karışıımın molar entalpişo elde edilir.

Gaz fazında amonyak/su karışıımın molar özgül hacmini Denklem (2.18), Denklem (2.10)'da kullanılarak

$$\dot{v}_{g,m} = \frac{R\ T_B\ 10^{-2}}{P_B} \left[(1 - Y)(T/P + c_1/P_B + \frac{c_2}{T_B}P_B + \frac{c_3}{T_B^2}P_B^2 + \frac{c_4}{T_B^3}P_B^3) + \frac{c_4}{T_B^2}P_B^3H_2O + Y(T/P + c_1/P_B + c_2/T_B + c_3/T_B^2 + c_4/T_B^3 + c_5/P_B^3) \right]$$

(2.20)

şeklinde ifade edilir. Sıvı fazda amonyak/su karışıımın molar özgül hacmini de Denklem (2.16), Denklem (2.10)'da kullanılarak

$$\dot{V}_{x,m} = \frac{RT_B\ 10^{-2}}{P_B} \left[(1 - x)(a_1 + a_3T + a_4T^2 + a_2P)H_2O + X(a_1 + a_3T + a_4T^2 + a_2P)NH_3 \right. + (x - x^2) \left. \left[(e_2 + e_4T + (2x - l)(e_8 + e_{10}T) + (2x - l)^2 e_{14} \right) \right]$$

(2.21)

şeklinde ifade edilir.

Shultz [10], faz dengesi şartı ile sıvı ve gaz fazında kullanılabilecek bağıntılar arasında ilişkiler kurulabileceğini göstermiş ve farklı fazlar arasındaki bu ilişkileri

$$T_L = T_g$$

(2.22)

$$P_L = P_g$$

(2.23)

$$H_{L,H_2O} = H_{g,H_2O}$$

(2.24)

ve

$$H_{L,NH_3} = H_{g,NH_3}$$

(2.25)

şeklinde ifade etmiştir. Bu bağıntıdaki μ kimyasal potansiyeldir.

Shultz, denge durumunda karışımındaki suyun kimyasal potansiyelini
\[\mu_{g, H_2O} = g(T, P, x) - x \left(\frac{3g(T, P, x)}{\partial x} \right)_{P, T} \]

(2.26)

bağıntısı ile vermiştir. Ziegler ve Trepp tarafından Denklem (2.16) ve (2.18) ile verilen sıvı ve gaz fazındaki amonyak/su karışımının Gibbs serbest enerji fonksiyonları önce Denklem (2.26)'da daha sonra Denklem (2.24) ve (2.25)'te kullanılarak denge durumunda gaz fazında amonyak/su karışımındaki amonyağın mol kesiри için

\[y = 1 - \exp \left[\hat{\theta}_{g, H_2O} + \frac{T}{1} \ln(1 - x) + \left[e_1 + e_2 \hat{p} + (e_3 + e_4 \hat{p}) \right] \frac{T}{1} \right. \]

\[+ e_5 \frac{T}{1} + e_6 \frac{1}{1} \frac{T}{1}^2 \left] x^2 + \left[e_7 + e_8 \hat{p} + (e_9 + e_{10} \hat{p}) \right] \frac{T}{1} \right. \]

\[+ e_{11} \frac{T}{1} + e_{12} \frac{1}{1} \frac{T}{1}^2 \left] (4x^3 + 3x^2) + \left[e_{13} + e_{14} \hat{p} + e_{15} \frac{T}{1} + e_{16} \frac{1}{1} \frac{T}{1}^2 \right] \]

\[(12x^4 - 16x^3 + 5x^2) - \hat{\theta}_{g, H_2O} \right] \frac{T}{1} \]

(2.27)

bağıntısı elde edilir.
BÖLÜM 3

İKİLİ SİSTEMLER İÇİN DISTİLASYON KOLONU TEORİSİ

3.1. Giriş

Bu bölümde Şekil 1'de şematik olarak görülen amonyak/su ile çalışan SSS'nin distilasyon kolonunun tasarım teorisi verilmiştir. Tasarım yöntemi;

1. Teorik raf sayısının belirlenmesi,

2. Raf etkinliğinin ve gerçek raf sayısının belirlenmesi,

3. Raf ve kolonun ayrıntılı tasarımını gerektirir.

Distilasyon kolonlarında minimum ve toplam döngü akışı iki çalışma limitidir. Bu limitlerin bilinmesi gerekir. Distilasyon kolonunun tasarımında, teorik raf sayısı, kütle ve enerji denklikleri ile sıvı ve gaz fazlarındaki denge denkliği kullanılarak analitik olarak belirlenmiştir. Bu değerler grafik yöntemi ile elde edilen sonuçlarla karşılaştırılmıştır.

Distilasyon kolonunun analizi analitik olarak Lewis-Sorel yöntemi ile grafiksel olarak da Ponchon-Savarit ve McCabe-Thiele yöntemleri ile yapılır [12]. Lewis-Sorel analitik yönteminde, her raftaki sıvı ve buhar debilerini, raf sıcaklıklarını ve raftaki akım- partenin derişimlerini belirlemek için her rafa kütle ve enerji denklikleri ile sıvı ve gaz fazlarındaki denge durumu denklikleri yazılırlar. Ponchon-Savarit grafik yönteminde ayrıntılı entalpi verilerine gereksinim vardır. Daha yaklaşıklık bir yöntem olan McCabe-Thiele yönteminde ise
denge durumundaki konsantrasyon verileri tasarım için gereklidir.

Distilasyon kolonunun gerçek raf sayısının belirlenebilmesi için raf etkinliğinin bilinmesi gerekir. Literatürde raf etkinliği deneySEL ve teorik olarak belirlenebildiği gibi daha önce yapılan deney sonuçları benzer sistemler için kullanılabılır. Bu çalışmada raf etkinliği teorik olarak belirlenmiştir.
Delikli raf kullanıldığı kabul edilerek, raf tasarımı delik raflı kolonlar için literatürde verilen tasarım yöntemi kullanılarak yapılmıştır.

3.2. Teorik Raf Sayısının Belirlenmesi

Bu çalışmada SSS'nin distilasyon kolonunun teorik raf sayısı kütle ve enerji denklikleri ile sıvı ve gaz fazındaki denge durum denkliği kullanılarak, değişik çalışma şartlarında iteratif çözüm yöntemiyle bilgisayar kullanılarak belirlenmiştir.

Teorik raf sayısının belirlenmesinde kolon zenginleştirme (enriching) ve fakirleştirme (stripping) bölgesi olarak iki bölüme ayrılmıştır (Şekil 2). Deflakmatör ile beslemenin yapıldığı raf arası zenginleştirme bölgesi, ayırıcı ile besleme dahil besleme rafı arasındaki bölgede fakirleştirme bölgesi olarak tanımlanmış ve Şekil 2'de görüldüğü gibi numaralandırılmıştır.
Deflakmatörden 1 şıçkıldığı için deflakmatörden çıkan gaz fazındaki amonyak/su karışımini, G₇, deflakmatörden distilasyon kolonuna dönen sıvı fazda amonyak/su karışıımı da L₇'dir. Deflakmatörden kolona dönen sıvı karışıınının deflakmatörden ayrılan buhar karışıınına oranı dönüş akı oranı (reflux ratio), R₇ olarak tanımlanmıştır ve

$$ R_f = \frac{L_7}{G_7} \quad (3.1) $$

şeklinde ifade edilmiştir.
Şekil 2. Distilasyon Kolonunun Şematik Görünümü
Şekil 2'de görülen "I" no.lu kontrol hacmi için karışım ve soğutucu kütle denklikleri

\[G_{n+1} = L_n + G_7 \] \hfill (3.2)

ve

\[G_{n+1}^* y_{n+1} - L_n x_n = G_7 y_7 \] \hfill (3.3)

şeklinde ifade edilir. Benzer ifadeler kolondaki diğer raflar için de yazılabilir. Denklem (3.3)'ün sol tarafındaki terimler kolonda, yukarı çıkan ve aşağı inen amonyak miktarı arasındaki farkı veya net amonyak akışını ifade eder. SSS'nin belirli çalışma şartlarında bu ifadenin sağ tarafındaki kolondan alınan amonyak miktarını gösteren terim sabittir ve bu bölgedeki raf sayısına bağlı değildir. "I" no.-lu kontrol hacmi için enerji denkliği

\[G_{n+1}^* h_{g_{n+1}} = L_n h_{g_n} + G_7 h_7 + q_d \] \hfill (3.4)

şeklinde yazılır. Deflakmatörden çekilen ısı ile deflakmatörden çıkan gaz karışımının entalpileri toplamanın, gaz karışımının kütle debisine oranı \(q' \) ile tanımlanırsa bu oran

\[q' = \frac{q_d + G_7 h_7}{G_7} \] \hfill (3.5)

şeklinde yazılabilir. Denklem (3.4) ile Denklem (3.5) beraber çözülürse

\[G_{n+1}^* h_{g_{n+1}} - L_n h_{g_n} = G_7 q' \] \hfill (3.6)

bağıntısı elde edilir. Denklem (3.6)'nın sol tarafındaki ifade kolon içerisinde yukarı doğru yükselen karışım ile aşağı doğru inen karışımın taşdıkları birim zamandaki ısı enerjileri arasındaki fark veya yukarı doğru olan birim zamandaki net ısı enerjisidir. SSS'nin belirli çalışma şartları için Denklem (3.6)'nın sağ tarafı sabit olduğundan yukarıya doğru olan net ısı enerjisi aşağı veya farklı da sabittir ve ko-
lönün bu bölgesinde raf sayısına bağlı değildir. Denklem (3.2), (3.3) ve (3.6) kullanılarak

\[\frac{L_7}{G_{13}} = \frac{y_7 - y_{13}}{y_7 - x_7} = \frac{q' - h_{g13}}{q' - h_{g7}} \]

bağntısız yazılabilir. Bu oran iç dönüş akı oranı (internal reflux ratio) olarak bilinir. İki sistemlerde minimum dönüş akı oranı koşullarında Şekil 3'de görüldüğü gibi besleme rafi etrafında sabit bileşimli bir bölge oluşur ve bu matematiksel olarak

\[y_n = y_{n+1} = y_m = y_{m+1} \]

ve

\[x_n = x_{n+1} = x_m = x_{m+1} \]

şeklinde ifade edilir. Bu durumda alt indisler yok edilerek Denklem (3.7) minimum dönüş akı oranı koşullarında

\[\left(\frac{L}{G} \right)_{\text{min}} = \frac{y - y_7}{x - y_7} = \frac{h_{g} - h_{g} - q_{d}/G}{h_{g} - h_{g}} \]

şeklinde ifade edilir. Denklem (3.2), (3.3) ve (3.6) kullanılarak minimum dönüş akı oranı

\[\left(\frac{L}{G_{7}} \right)_{\text{min}} = \frac{y_7 - y}{y - x} = \frac{h_{g7} - h_{g} + q_{d}/G_{7}}{h_{g} - h_{g}} \]

şeklinde yazılır. Şekil 3'de görülen "III" no.lu kontrol hacmi için karışım ve soğutucu bileşen kütleye ve enerji denklikleri

\[L_3 + L_n + G_{m-1} = G_{n+1} + L_m \]

\[L_3 x_3 + L_n x_n + G_{m-1} y_{m-1} = G_{n+1} y_{n+1} + L_m x_m \]

ve

\[L_3 h_3 + L_n h_n + G_{m-1} h_{m-1} = G_{n+1} h_{n+1} + L_m h_{m} \]

şeklinde ifade edilirler. Bu ifadelerdeki alt indisler yok edilerek Denklem (3.12), (3.13) ve (3.14) kullanılarak minimum dönüş akı ora-
Sekil 3. Minimum dönüş akı oranı koşulları
ni koşulları için

\[
\frac{L_e - L_s}{G_s - G_e} = \frac{x_3 - y}{x - x_3} = \frac{h_3 - h_q}{h_3 - h_3} \tag{3.15}
\]

bağıntısı elde edilir. Bu bağıntıda e ve s sırasıyla zenginleştirmeye ve fakirleştirme bölgesini gösterir. Toplam dönüş akı oranı koşullarında deflakmatör çıkışındaki buhar karışıının kütle debisi \(G_7 = 0\) ve deflakmatörden kolona dönen sıvı karışıının kütle debisi, 13 noktasından yükselen buhar karışıının kütle debisine eşittir. Bu durum matematiksel olarak

\[
L_7 = G_{13}, \quad G_{14} = L_{13} \quad \text{ve} \quad x_7 = y_{13} , \quad x_{13} = y_{14} \tag{3.16}
\]

şeklinde ifade edilir. Deflakmatör için enerji denkliği

\[
G_{13} h_{13} + q_d = L_7 h_{7} \tag{3.17}
\]

şeklinde yazılır.

Şekil 2'de görülen "II" no.lu kontrol hacmi için karışıım ve soğutucu kütle denklikleri

\[
L_m = G_{m+1} + L_4 \tag{3.18}
\]

ve

\[
L_m x_m = G_{m+1} y_{m+1} + L_4 x_4 \tag{3.19}
\]

şeklinde ifade edilir (3.19) no.lu ifadenin sol tarafı aşağı doğru net amonyak akışını gösterir. Sağ tarafı ise ayırıcıdan çıkan karışımdaki amonyak miktarına eşittir ve bölgedeki raf sayısına bağlı değildir. II no.lu kontrol hacmi için enerji denkliği

\[
L_m h_{lm} + q_a = G_{m+1} h_{m+1} + L_4 h_4 \tag{3.20}
\]

şeklinde yazılır. "4" noktasındaki karışıım birim kütesi için ayırıcıdan net 1 sı akışı q" ile tanımlanır.
\[q'' = \frac{L_4 h_4 - q_a}{L_4} = h_4 - \frac{q_a}{L_4} \] \hspace{1cm} (3.21)

şekline yazılır. Denklem (3.20)'de, Denklem (3.21) kullanılarak
\[L_m h_m - G_{m+1} h_{m+1} = L_4 q'' \] \hspace{1cm} (3.22)

bağntısı elde edilir. Denklem (3.22)'nin sol tarafındaki ifade aşağı ve yukarı doğru akan karışımaların taşıdıkları birim zamandaki ısı enerjileri arasındaki farktır. Sağ taraf ise ayırıcıdan çekilen net ısı enerjisidir. Bu enerji SSS'nin belirli çalışma şartları için sabittir ve bölgedeki raf sayısına bağlı değildir. Şekil 2 kullanılarak distilasyon kolonu, deflakmatör ve ayırıcı için karışım ve soğutucu amonyak bileşeni için kütle denkliği
\[L_3 = L_4 + G_7 \] \hspace{1cm} (3.23)

ve
\[L_3 x_3 = L_4 x_4 + G_7 y_7 \] \hspace{1cm} (3.24)

şekline yazılabilir. Enerji denkliği
\[q_a = G_7 h_7 + L_4 h_4 + q_d - L_3 h_3 \] \hspace{1cm} (3.25)

şekline ifade edilir. denklem (3.5) ve Denklem (3.21) ile tanımlanan \(q' \) ve \(q'' \) büyüklükleri Denklem (3.25) de kullanılarak
\[L_3 h_3 = q'' L_4 + q' G_7 \] \hspace{1cm} (3.26)

bağntısı elde edilir.

3.3. Distilasyon Kolonunun Etkinliği

Distilasyon kolonunun sürekli şartlardaki çalışmasına kolonun etkinliği;

1. Buharda sıvı sıçantısı,

2. Sıvıda buhar sıçantısı,

3. Buhar sıvı temas etkisi,
4. Akiş düzeni,
5. Set yüksekliği,
6. Sıvı yolu uzunluğu,
7. Bağlı buhar ve sıvı debilerinin fonksiyonudur [9].

Araştırmacılar ayırma raflarında meydana gelen sıçrımıyi çalışma, sistem ve tasarım değişkenlerinin fonksiyonu olarak incelemişler [9] ve bu incelemelerin sonuçunda sıçrımınin artmasına neden olan etkenleri şu şekilde sıralamışlardır:

a. Raflar arası uzaklığın azalması,
b. Yüzeydeki buhar hızının artması,
c. Set yüksekliğinin artması,
d. Sıvı akiş hızının artması,
e. Buhar yoğunluğunun artması,
f. Sıvının yüzey geriliminin azalması,
g. Kep (cap) aralığının artması,
i. Sıvı akiş yolu nun azalması,
i. Delik çapının artması.

Buharın sıvı içerisine alt rafa taşınabilen köpük olarak emilmesi ya da taşma borusundaki sıvı tarafından buharın tutularak rafın altında taşınması "sivıda buhar sıçrımışi" olarak tanımlanır. Rafa
bulunan sıvıya oranla daha çok uçucu madde içeren buhar sıvısı seyreltir ve ayırma etkinliğini azaltarak ayırma için gerekli olan raf sayısının artmasına neden olur. Sivıda buhar sızıntısı, köpük yüksekliğini artırıran etkenlere bağlı olduğundan aynı parametrelerin fonksiyonudur. Sivıda buhar sızıntısı;

a. Sıvı ve buhar arasındaki yoğunluk farkının azaması,

b. Buhar ve sıvı yükünün artması,

c. Sıvı yüksekliğinin artması,

d. Sıvı akış yolunun artması,

e. Sıvının yüzey geriliminin azaması,

f. Buharın yoğunluğunun artması,

g. Taşma seti ile deliklerin son sırasındaki uzaklığın azaması ile artar. Sivıda buhar sızıntısı, deliklerin son sırasının taşıma setinden belli bir uzaklığa yerleştirilmesi ile azaltılabilir. Böylece buharın sıvı tarafından tutulma olasılığı azalır.

Buhar ve sıvı fazlarının temas alanı ve sıvı-buhar temas süresi yeterli olacaktır şekilde raf tasarımı yapıldığında bütün noktalarda sıvı-buhar bileşimleri arasında denge sağlanır ve teorik raf sayısı gerçek raf sayısına eşit olur. Fazlar arasındaki temas süresinin sağlanmasını ve temas alanının oluşma mekanizmasını içeren tasarım ve işletme etkenleri:

a. Sıvı derinliği,

b. Sıvı akış yolu uzunluğu,

c. Sıvı hızı,

d. Raf boyunca sıvı dağılımı,

e. Buhar hızı,

f. Buhar kabarcıklarının boyutları,

g. Sıvı faza dayalı olarak buhar dağılımı
olarak sıralanabilir. Fazlar arasındaki teması etkileyen sistem özelliklerini ise

a. Buhar ve sıvı yoğunluğu,
b. Buhar ve sıvı viskozitesi,
c. Sıvı yüzey gerilimi
d. Diffüzivite,
e. Bağlı uçuculuğ

olarak verilmektedir.

Literatürde raf etkinliğini etkileyen parametrelerin birbirlerine ve etkinlik üzerine etkilerini belirlemek amacıyla yapılmış deneyler vardır. Tablo 6, bubble-cap ve delikli raflarla yapılan deneylerden elde edilen sonuçları göstermektedir.

Delik raflı kolonlara ilgili olarak deneysel verilerden alınan birtakım işletme değişkenlerinin fonksiyonu olarak gizilen etkinlik eğrisinin ve aynı zamanda bu değişkenlerle ilgili farklı korelasyonların incelenmesi ile değişik ve zıt sonuçlar elde edilmiştir. Örneğin, fakirleştirme bölgesinde ve F delik faktörlerinde, buhar hızı boşaltma noktasındaki hızdan büyük oluncaya kadar etkinlik hızla artar. Bu noktada deneysel hata sınırları içinde sabit kalır. Yüksek hızlarda, F faktörünün 1,8 ile 2,0 değerleri arasında etkinlik bazen artar, bazen azalır ve bazende sabit kalır. Sonuç olarak taşıma koşullarında etkinlik eğrisi aşağı doğru yön değiştirir. Eğrinin son iki noktası boşaltma noktasının altında ve taşıma koşullarının başlama noktasının yukarısında kolayca açıklanmasına rağmen bu iki nokta arasındaki durum özel analizler gerektirir.

F delik faktörünün bazı ara değerleri için boşaltma ve taşıma noktasının üstünde, etkinlik set yüksekliğinin artmasıyla artar, ba-
<table>
<thead>
<tr>
<th>Tablo 6. Kolonların etkinliğini etkileyen parametreler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametreler</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Buharın akısı, G(kg/m².s)</td>
</tr>
<tr>
<td>G=0-0,27</td>
</tr>
<tr>
<td>G=0,27-0,68</td>
</tr>
<tr>
<td>G=0,68-1,36</td>
</tr>
<tr>
<td>Sıvı akısı, L</td>
</tr>
<tr>
<td>Çok yüksek hızlarda</td>
</tr>
<tr>
<td>Dönüş akı oranı, L/G</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Set yüksekliği, hₘ</td>
</tr>
<tr>
<td>Sıvı yolu, zₘ</td>
</tr>
<tr>
<td>Raf aralığı, S</td>
</tr>
<tr>
<td>Cap konsantrasyonu</td>
</tr>
<tr>
<td>veya serbest delik alanı</td>
</tr>
<tr>
<td>Delik çapı, dₘ</td>
</tr>
<tr>
<td>Delik adımı, p'</td>
</tr>
<tr>
<td>Basınç</td>
</tr>
<tr>
<td>Sistem özellikleri</td>
</tr>
<tr>
<td>Viskozite, μ</td>
</tr>
<tr>
<td>Alfa, α</td>
</tr>
<tr>
<td>Yüzey gerilimi, σ</td>
</tr>
</tbody>
</table>

Bağlı sıvı ve buhar hızlarının etkinlik üzerine etkisi literatürde deneySEL olarak gösterilmiştir [9].

3.3.1. Etkinliğin Belirlenmesi

Raf etkinliği deneySEL ve teorik olarak belirlenebilir. DeneySEL olarak

1. Murphree kuru-buhar raf etkinliği

\[
E_0 = \frac{Y_n - Y_{n+1}}{Y_n^* - Y_{n+1}}
\]

(3.27)
bağıntısı ile ifade edilir. Bu bağıntında \(E_0 \) raf etkinlik faktörü,
\(Y^*_n, L_n \) ile dengedeki buhar bileşimi, \(Y_{n+1} \) gerçek buhar bileşimi olarak tanımlanır. DeneySEL olarak, aynı anda sıvı örnekleri taşma borusundan, buhar örnekleri rafın altından ve üstünden alınarak ölçüm yapılır. Ayrıca raftaki herhangi bir naktadan buhar ve sıvı örnekleri alınarak belirlenen etkinlik Murphree nokta etkinliği olarak tanımlanır ve

\[
E_p = \left(\frac{Y_n - Y_{n+1}}{Y^*_n - Y_{n+1}} \right)_p
\]

(3.28)

şeklinde ifade edilir.

2. Raf ve Kolon Etkinliği

Distilasyon kolonlarında, raf ve kolon etkinliği olmak üzere iki etkinlik vardır. Herhangi bir raf için belirli çalışma koşullarında raf etkinliği ölçüm yöntemleriyle belirlenerek gerçek raf sayıları teorik raf sayıları / raf etkinlik faktörü = Gerçek raf sayıları ifadesi kullanılarak hesaplanır.

Teorik olarak raf etkinliği buhar-sıvı sızıntisına dayalı olarak

1. Buhar-sıvı sızıntisinin olmadığı durumlarda kuru-buhar etkinliği,

İki kolonlu sistemler için O'Connell

\[
E_0 = 0.17 - 0.616 \log \left(\frac{m}{\mu'_L} \right)
\]

(3.29)

şeklinde ifade edilen bir korelasyon geliştirmiştir. Bu bağıntında \(m \) denge eğrisinin eğimi, \(\mu'_L \) ortalama kolon sıcaklığında ortalama
sıvı viskozitesidir.

English ve Van Winkle ile Chaiavech ve Van Winkle çalışma ve tasarım değişkenleri ile etkinlik arasındaki ilişkiye belirlemek için literatürde elde edilen verilerle bir çalışma yapmışlar ve bu verilerin matematiksel analizinden deneysel ve matematiksel etkinlik arasındaki ortalama mutlak sapmayı veren bir bağıntı geliştirmişlerdir. Bu çalışmalarının sonunda etkinlik

\[\eta_E = 10.84(FFA) - 0.280 \left(\frac{L}{G_{13}} \right)^{0.024} h_w^{-0.241} G^{-0.013} \left(\frac{\sigma}{\mu_w \mu_L} \right)^{0.044} \left(\frac{L}{D_L} \right)^{0.137} \alpha^{-0.028} \]

(3.30)

bağıntısıyla verilmiştir. Bu bağıntıda FFA delik alanının etkin alanına oranı, \(L/G_{13} \) iç döngü aki oranı, \(G \) buhar karışımının kütesel aksılı (lb/h.ft²), \(h_w \) set yüksekliği (in), \(\sigma \) sıvı yüzey gerilimi (dyn/cm²). \(\mu_L \) ortalama sıvı viskozitesi (cP), \(u' \) doğrusal buhar hızı (cm/s), \(\rho_L \) sıvı yoğunluğu (g/cm³), \(D_L \) hacimsel diffüzyon katsayısı (cm²/s), \(\alpha \) bağlı uçuculuk'tur.

3.4. Raf ve Kolon Tasarımı Teorisi [13]

Şekil 4'deki ABCD alanı delikli bir rafın istenen çalışma limitlerini gösterir. A noktasında, düzük buhar hızlarında boşalma veya yağmurlama meydana gelir. AB doğrusu, buhar akış hızının raf üstündeki sıvıyı koruyacak yeterlilikte olmamasından kaynaklanan sızmayı gösterir. AD doğrusu, düzük sıvı akış hızlarında yüksek doğrusal buhar hızlarına uygun sızıntı limitlerini gösterir ve D noktasında buhar-sıvı temas süresinin yetersiz olmasıından dolayı buhar tarafından bir üst rafa sıvı damlaları taşınır. Bu nokta yüksek buhar hızlarında taşma koşullarını gösterir. CD doğrusu
a. Sıvının bir üst rafa fışkırması,
b. Bir üst rafta köpük oluşumu,
c. Yüksek buhar hızı ile raftaki sıvının yukarıya doğru itilmesi,
d. Buharla beraber sıvının aşırı miktarda girişi şeklinde sıralanabilen etkenlerin neden olduğu taşma limitlerini gösterir. Basıncın düşüşünde ani bir artış ve etkinlikte kesin bir azalış taşmanın belirtisidir.

![Diagram](image)

Şekil 4. Delikli raf performans diyagramı

B noktasında sıvı akış hızları yüksektiler ve raf üstünde sıvı gradyanı kabul edilebilir tolerans üzerindeidir. Diğer tarafından C noktasında aynı sıvı akımları altında yüksek buhar hızları etkinlikte kesin bir düşüşe neden olur.

3.4.1. Kolon Çapı

Kolon çapı, taşma yüzdesi, raf düzeni ve raf aralığı seçimine dayalı olarak geliştirilen empirik bağlantılar kullanılarak belirlenir.
Akvı̈ principalesı̈ F_{Lv}, raf üstü̈ndeki sıvı akı̈̈ı etkilerini açıklan̄ ve

$$F_{Lv} = \left(\frac{L}{G} \right) \left(\frac{\rho_v}{\rho_L} \right)^{0.5}$$ \hspace{1cm} (3.31)

şeklinde tanımlanı̈r. Bu bağını̈daki L, ρ_L ve G, ρ_v sırasıyla sıvı̈nın hızı̈, yoğunluğü ve buhar hızı̈ ile yoğunlüğudur. Raftaki etkin alana dayälı buhar hızı̈ U_{nf}

$$U_{nf} = C_F \left(\frac{\rho_L - \rho_v}{\rho_v} \right)^{0.5}$$ \hspace{1cm} (3.32)

şeklinde ifade edilir. Bu bağını̈dında C_F, kapasite parametresi olarak tanımlanı̈r ve

$$C_F = \left[\alpha \log \frac{1}{F_{Lv}} + \beta \right] \left(\frac{\sigma}{0.02} \right)^{0.2}$$ \hspace{1cm} (3.33)

şeklinde ifade edilir. Bu bağını̈dında σ sıvı̈ yüzey gerilimi, α ve β birer sabit olup,

$$\alpha = 0.0744t + 0.01173$$ \hspace{1cm} (3.34)

$$\beta = 0.0304t + 0.015$$ \hspace{1cm} (3.35)

şeklinde ifade edilirler. Burada t, raf aralığı̈dır. Denklem (3.33) A_h/A_a'nin 0.1'den küçük değerleri için

$$5 \cdot \frac{A_h}{A_a} + 0.5$$ \hspace{1cm} (3.36)

bağı̈ntısızlä çarpı̈lmalıdır. Bu bağını̈dında A_h, delik alanı̈ ve A_a, etkin alandır ve

$$\frac{A_h}{A_a} = 0.907 \left(\frac{d_h}{d'} \right)^2$$ \hspace{1cm} (3.37)

şeklinde ifade edilir. Bu bağını̈dında d_h, delik çapı̈, d' delik merkezler̄e arasındaki uzaklı̈ktır.
Raf aralığı kolon kapasitesi ve büyüklüğüne bağlı olarak seçilir. Büyük kolonlarda bakım kolaylığı ve yüksek buhar hızlarını karşılamak içinraf aralığı 0,6 - 0,9 m olarak alınır. Çapı 1,2 m'den küçük olan ince uzun kolonlarda destek problemini ortadan kaldırılmak için raf aralıkları 15 cm'ye kadar azaltılır.

Raf düzeni: Raf türünün belirlenmesi, raf üstünde deliklerin düzenlenmesi ve raf alanlarının belirlenmesi basamaklarına bağlı olarak yapılır. Raf düzenlenmesini sınırlayan limitler literatürde verilmiştir ve delikli raflar için:

a. 0-0,003 m^3/s arasındaki düşük sıvı akış hızları için ters akışlı raf

b. 0,003-0,03 m^3/s arasındaki sıvı akış hızları için çapraz akışlı raf

c. 0,03 m^3/s'den büyük sıvı akış hızları için çift geçişli raf

olmak üzere üç çeşit raf vardır. Delik düzeni eşkenar üçgen veya kare olarak seçilebilir. Bu seçim gerekli etkin alanı meydana getirecek delik merkezleri arasındaki uzaklığın delik çapına oranlı değerlerine dayalı olarak yapılır. Ve bu oranın 2,5:1 ve 4:1 değerlerinin gerekli etkin alan meydana getirdiği belirlenmiştir. Şekil 5 delik düzeninin serbest alan üzerindeki etkisini gösterir. Raf alanları, kolon kesit alanına dayalı olan alan A_t, taşma borusu alanı A_d, delik alanı A_h, net alan A_n ve aktif alan A_a olarak tanımlanan alanları içerir. Çapraz akışlı raflar için bu alanlar arasındaki ilişkiler

\[A_d = 0,12 A_t \] \hspace{1cm} (3.38)

\[A_n = 0,88 A_t \] \hspace{1cm} (3.39)

\[A_a = A_t - 2A_d = 0,76 A_t \] \hspace{1cm} (3.40)

\[A_h = 0,10 A_t \] \hspace{1cm} (3.41)
şeklinde verilmiştir. Taşma borusu alanı A_d'nin yüksek değeri boruda düşük sıvı hızı sağlar ve köpüğün sönmesine neden olur. Delik alanın fazla olması aşırı sızmaya, az olması yüksek basınç düşüşüne neden olur. Delik boyutları genellikle 3-12 mm aralığındaır. Genel olarak 4,75 mm boyutlu delikler kullanılır.

3.4.2. Sızmı (Entrainment)

Delik raflı kolonların normal çalışmasyaında sızmı meydana gelir. Etkinlik üzerine etkisinden ve taşmaya neden olmasından dolayı tasarım ve taşma koşulları dikkate alınarak, sızmı debisi belirlenmelidir. Fair [13], sızmı kesrini

$$\psi = \frac{e}{L + e}$$

(3.42)

şeklinde tanımlanmıştır. Bu bağntıdaki e sıvı sızmısi (mol/s), L ise sıvı akış hızıdır (mol/s). Ayrıca Fair, farklı yüzde taşma değerlerine bağlı olarak sızmı kesrinin belirlenmesini Şekil 6'da göstermiştir.

3.4.3. Sızmı Noktasının Belirlenmesi

Sızmı (weepage) noktasının belirlenmesi teorik olarak zor olmasi na rağmen deneySEL veriler gerçek çalıSMALARDAN ELDE EDILmiştir. Eğer yüzey gerilim etkileri ve buhar basınç düşüğü yeterli ise sıvı rafın deliklerinden akmayıaktır. Ve bu durum

$$\Delta P_{kuru} + h_\sigma \geq 0,1 \ h_w + h_{ow}$$

(3.43)

şeklinde tanımlanır. Bu bağntıdaki, ΔP cm olarak kuru raf basınç düşgü, h_w set yüksekliği (mm), h_σ köpük oluşumu nedeniyle meydana gelen yükseklik kaybı olarak tanımlanır ve

$$h_\sigma = 4,14 \times 10^4 \ \frac{\sigma}{\rho_L d_h} \ \text{cm}$$

(3.44)
Şekil 5. Delik Düzeninin Serbest Alan Üzerine Etkisi

\[F_{lv} = \frac{L}{G} \left(\frac{\rho_v}{\rho_\infty} \right)^{0.5} \]

Şekil 6. Delikli Raflarda Sızıntı Kesri
şeklinde ifade edilir. \(h_{ow} \) set üzerinden akan sıvının set üzerinde oluşturduğu sıvı yüksekliği dir (cm). Bu yükseklik

\[
h_{ow} = 66,6 \left(\frac{\theta}{\rho_w} \right)^{0,67}
\]

(3.45)

şeklinde tanımlanır. Bu bağintılardaki \(\sigma \) sıvı yüzey gerilimi (j/m²), \(d_{h} \) delik çapı (mm), \(q \) sıvının hacimsel debisi (m³/s), \(L_w \) set uzunluğu (m). Şekil 7'deki bir rafın uygun çalışma limitlerinin belirlenmesi için yapılan korelasyonu gösterir. İşletme noktası (delik alanı/aktif alan) oranı çizgisinin üstünde ise sızma noksasinın da üstündedir ve kolonun çalışması için uygundur.

3.4.4. Hidrolik Parametreler

a. Kuru raf basınç düşüğü
b. Toplam basınç düşüğü
c. Sıvı gradiyanı
d. Taşma borusundaki basınç düşüğü

olarak belirlenir. Kuru raf basınç düşüğü, buhar geçişi tarafından deliklerde oluşan basınç düşüğü olarak tanımlanır ve

\[
\Delta P_{kuru} = 5,08 \left(\frac{\rho_v}{\rho_l} \right) \left(\frac{U_{h}}{C_{vo}} \right)^2
\]

(3.46)

şeklinde ifade edilir. Bu bağintıda \(U_{h} \) deliklerden geçen buharın hızı (m/s), \(C_{vo} \) kuru orifis katsayısıdır ve yapılan araştırmalar sonucu raf kalınlığının delik çapına oranı, Reynolds sayısı, raf koşulları ve buhar hızının fonksiyonu olarak bulunmuştur ve Şekil 8 kullanılarak belirlenir. Bu şekildeki serbest alan yüzdesi kolon alanının delik alanına oranını olarak tanımlanmıştır. Sızinti kesri \(\Psi > 0,1 \) olduğu durumlar- da DENKLEM (3.46)'dan hesaplanan \(\Delta P_{kuru} \) değeri (15X+1)'e eşit olan düzeltme faktörü ile çarpılarak gerçek kuru raf basınç düşüğü elde edil-
Şekil 7. Delikli Raflarda Sızma Noktasının Belirlenmesi

Şekil 8. Delikli Raflarda Serbest Alana Göre Orifis Katsayısının Değişimi
lir. Düzeltme faktöründeki X, sıvıntı kesri ve akış parametresinin fonksiyonu olarak

$$X = \psi F_{xv} (1 - \psi) \quad (3.47)$$

şeklinde tanımlanır.

Toplam basınç düşüşü ΔP_T,

$$\Delta P_T = \Delta P_{kuru} + h_a \quad (3.48)$$

şeklinde ifade edilir. Bu bağıntıda h_a, raftaki havalandırılmış sıvının neden olduğu yükseklik kaybı olarak tanımlanır ve

$$h_a = Q_p (0,1 h_w + h_{ow}) \quad (3.49)$$

şeklinde ifade edilir. Bu bağıntıda Q_p havalandırma faktörüdür ve Şekil 9'dan elde edilir.

Raf üstündüğü havalandırılmış kütlein karşılık akış meydana getirilmesi için gerekli olan yükseklik sıvi gradyanı olarak tanımlanır ve Hugmark ve O'Connell'in yöntemi kullanılarak

$$\Delta = \frac{12 f U_f^2 L_f}{R_h g} \quad (3.50)$$

bağıntısından belirlenir. Bu bağıntıda f sürünme faktörüdür ve Reynolds modülü hesaplandıktan sonra Şekil 10'dan belirlenir. Reynolds modülü

$$Re = \frac{R_h U_f \rho_f}{\mu_f} \quad (3.51)$$

şeklinde tanımlanır. Bu bağıntıda R_h havalandırılmış kütlein hidrolik çapı olarak tanımlanır ve

$$R_h = \text{kesit alan} \quad \text{islak çeper} = \frac{h_f D_f}{2h_f + 100D_f} \quad (3.52)$$

şeklinde ifade edilir. D_f, sıvı akışına dik akış genişliğidir ve
Şekil 9. Delikli Raflarda Havalama Faktörü ve Bağlı Köpük Yoğunluğu

Şekil 10. Delikli Raflarda Sürünme Faktörü
\[D_f = \frac{l_w + D}{2} \]
(3.53)

şeklinde tanımlanır. Burada, \(l_w \) set uzunluğu (m), \(D \) kolon çapı (m), \(h_f \) raf üstündeki köpük yüksekliğidir. Bu yükseklik

\[h_f = \frac{h_a}{20p - 1} \]
(3.54)

şeklinde ifade edilir. \(U_f \) havalandırılış kütlenin hızıdır (m/s).

\[U_f = \frac{100 q}{h_f \cdot D_f} \]
(3.55)

şeklinde tanımlanır. \(\phi \) bir sabit olup, Şekil 9'dan belirlenir. \(q \) hacimsel sıvı akış hızıdır (m\(^3\)/s), \(g \) yerçekimi ivmesi (m/s\(^2\)), \(l_w \) setler arasındaki uzaklıklar (m).

Taşma borusundaki basınç düşüşü \(h_{dc} \),

\[h_{dc} = \Delta P_f + 0.1l_w + h_{cw} + \Delta + h_{da} \]
(3.56)

şeklinde tanımlanır ve aşırı derecede basınç düşüğünün meydana gelmesi taşıma ile sonuçlanır. Bu bağntıda \(h_{da} \), taşma borusundaki ön basınç düşüşü olarak tanımlanır ve

\[h_{da} = 16.5 \left(\frac{q}{A_{da}} \right)^2 \]
(3.57)

şeklinde ifade edilir. \(A_{da} \), set uzunluğu ile taşma borusu açıklığının çarpımı olarak tanımlanır. Taşma borusundan meydana gelen basınç düşüşünün havalandırma faktörüne oranı taşıma borusundaki sıvı yüksekliği olarak tanımlanır ve

\[\text{Sıvı yüksekliği} = \frac{h_{dc}}{q_p} \]
(3.58)

şeklinde ifade edilir. Bu değerin raflar arasındaki uzaklığın yarısından küçük olması uygun raf çalışma koşullarını sağlamak için gerekli-
BÖLÜM 4

SSS'NIN TERMODINAMİK ANALİZİ VE DISTILASYON KOLONU TASARIMI

4.1. Giriş

Bu bölümde Şekil 1'de görülen amonyak/su akışkan çifti ile çalışan SSS'nin termodinamik analizi ile distilasyon kolonunun tasarımını yapılmıştır. Distilasyon kolonunun tasarımını, teorik raf sayısının belirlenmesi ve raf tasarımını olmak üzere iki basamakta gerçekleştirilmişdir.

SSS'nin termodinamik analizinde aşağıdaki varsayımlar yapılmıştır:

a. Deflakmatör çıkışındaki buhar amonyak/su karışımdır ve karışımdaki amonyağın kütle kesri 0,999'dur.

b. Deflakmatörden çıkan amonyaka zengin buhar karışımı deflakmatör sıcaklığında dir.

c. Buharlaştıracı çıkışındaki karışımın tamamı buhar fazında ve buharlaştıracı sıcaklığında dir.

d. Yoğunlaştırıcı çıkışındaki karışım döşmuş sıvı fazda ve yoğunlaştırıcı sıcaklığında dir.

e. Soğurucu çıkışındaki amonyaka zengin karışım soğurucu sıcaklığında dir.

Termodinamik analizde her buharlaştıracı, yoğunlaştırıcı, soğurucu ve ayırıcı sıcaklığı için bir SSS'nin tasarımının yapıldığı varsayılarak termodinamik analiz farklı çalışma sıcaklıkları ve 1 kW soğutma
yükü için yapılmıştır. Analizde kullanılan veriler Tablo 7'de verilmıştır.

<table>
<thead>
<tr>
<th>Tablo 7. SSS'nin Termodinamik Analizinde Kullanılan Veriler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoğuşturucu sıcaklığı, (T_y) °C</td>
</tr>
<tr>
<td>Soğurucu sıcaklığı, (T_s) °C</td>
</tr>
<tr>
<td>Buharlaştırıcı sıcaklığı, (T_b) °C</td>
</tr>
<tr>
<td>Ayırlıcı sıcaklığı, (T_a) °C</td>
</tr>
<tr>
<td>Karışımındaki NH₃'ün kütle kesri, (y_7)</td>
</tr>
<tr>
<td>Soğutma yükü, (q_b) kW</td>
</tr>
</tbody>
</table>

Termodinamik analizde Denklem (2.15) kullanılarak SSS'nin düşük basıncı buharlaştırıcı ve yüksek basıncı yoğunşturucu sıcaklığında hesaplanmıştır. Analizde SSS'yi oluşturan birimlerdeki basınç kayıpları ihmal edilmiştir. Basınç kayıplarının neden olduğu tersinir meklerin etkisini göstermek amacıyla analizde ayırlıcı ve yoğunşturucu, buharlaştırıcı ve soğurucu arasındaki ve distilasyon kolonunun raflarındaki basınç kayıplarını dikkate alınmıştır. Buharlaştırıcı ve soğurucu ile yoğunşturucu ve ayırlıcı arasındaki basınç kaybı

\[
\frac{A_p}{p} = C_{pr} \tag{4.1}
\]

bağntısından hesaplanmıştır [2]. Bu bağntındaki \(p \) borudan çıkış basıncıdır. SSS'nin termodinamik analizinde \(C_{pr} \)'nin değeri soğurucu ve buharlaştırıcı arasındaki basınç kaybı için 0,075 ve ayırlıcı ile yoğunşturucu arasındaki basınç kaybı için 0,050 alınmıştır.

Soğurucudan çıkan amonyak/su karışıının soğurucu sıcaklığında ve basıncında olduğu kabul edilmiştir. Soğurucu çıkışında elde edilen karışımdaki amonyağın kütle kesri \(x_1 \) soğurucu basıncı ve sıcaklığında
Denklem (2.15) "Regüla Falsi Yöntemi" [14] ile, \(x_1 \) için çözülmek bulunmaktadır. Analizde soğurucuda denge şartlarının oluşması için yeterli zaman olmadığı varsayılarak bir denge faktörü kullanılmıştır.

Denge faktörü \(\eta_s \),

\[
\eta_s = \frac{x_1 - x_4}{(x_1)_{eq} - x_4}
\] \((4.2) \)

şeklinde tanımlanmıştır. Denge faktörünün değeri 0,98 alınarak Denklem \((4.2) \) \(x_1 \) için çözülmüş ve "1" noktasındaki karışığın amonyak kütle kesiği hesaplanmıştır. "1" noktasındaki karışığın entalpisi Denklem (2.17)'den soğurucu sıcaklığında ve basıncında hesaplanmıştır.

Ayırdıdan çıkan zayıf karımdaki amonya gokin kütleyi keser, Denklem (2.15) "Regüla Falsi Yöntemi" ile ayırıcı basınıc ve sıcaklığında \(x_4 \) için çözülmek hesaplandığından sonra soğurucuda olduğu gibi ayırdıça da denge şartlarının oluşması için yeterli zaman olmadığı varsayılarak denge faktörü yaklaşımı kullanılmış ve

\[
\eta_a = \frac{x_1 - x_4}{x_1 - (x_4)_{eq}}
\] \((4.3) \)

şeklinde tanımlanmıştır. Denge faktörü 0,98 olarak alınarak Denklem (4.3) \(x_4 \) için çözülemek "4" noktasındaki zayıf karımdaki amonya gokin kütleyi keser hesaplanmıştır. "4" noktasındaki karışığın entalpisi Denklem (2.17)'da ayırıcı sıcaklığı ve basıncı kullanılarak hesaplanmıştır.

Karışım ısi değiştirilicide çıkısdığındaki "3" noktasında zengin karışığın entalpisi ile "8" noktasındaki sıvı fazda amonyak/su karışığının entalpisi Denklem (2.17) kullanılarak hesaplanmıştır "9" noktasının entalpisi "10" noktasının entalpise eşittir ve Denklem (2.17) kullanılarak hesaplanmıştır. "11" noktasının entalpisi doymuş amonyak/su bulharının Denklem (2.19) ile verilen entalpı bağıntısında bulharlaştırıcı
sıcaklığı ve basıncı kullanılarak hesaplanmıştır.

Soğurucuya girişte amonyak/su buharının entalpisi, soğutucu ısı değiştirgeci çıkışındaki entalpiye eşit alınmıştır. Bunun için "12" ve "12'" noktaları arasındaki makaslama süreci olduğu varsayılmıştır. Böylece "12'" noktasının sıcaklığı \(h_{12} = h_{12}' \) olacak şekilde iteratif olarak hesaplanmıştır. Ayrıca "5" ve "6" noktaları arasındaki genleşme vanasındaki makaslama sürecinden "5" ve "6" noktalarının entalpileri eşittir ve Denklem (2.17) kullanılarak hesaplanmıştır.

SSS'nin termodinamik analizinde soğurucu kütle debisi iteratif olarak hesaplanmıştır. Buharlaştırıcı için Tablo 7'den alınan 1 kW soğutma yükü kullanılarak

\[
q_b = \dot{m}_{10} (h_{11} - h_{10})
\]

(4.4)

bağışımsız yardımcı ile \(\dot{m}_{10} \), iterasyon için başlangıç değeri hesaplanmıştır. Şekil 1'deki noktalar için

\[
\dot{m}_7 = \dot{m}_8 = \dot{m}_9 = \dot{m}_{10} = \dot{m}_{11} = \dot{m}_{12} = \dot{m}_{12}'
\]

(4.5)

bağışımsız yazılabilir. Soğurucu için kütle denkliği

\[
\dot{m}_1 = \dot{m}_{12}' + \dot{m}_6
\]

(4.6)

ve

\[
\dot{m}_1 x_1 = \dot{m}_{12}' x_{12}' + \dot{m}_6 x_6
\]

(4.7)

şeklinde yazılabilir. Ayrıca

\[
\dot{m}_1 = \dot{m}_2 = \dot{m}_3
\]

ve

\[
x_4 = x_5 = x_6
\]

(4.9)

eşitlikleri de yazılabilir. Denklem (4.7) \(\dot{m}_1 \) için çözülürse

\[
\dot{m}_1 = \frac{(x_7 - x_4)}{\left(\frac{x_1}{x_4} - 1\right)}
\]

(4.10)
bağlantısı elde edilir. \(\hat{m}_4 \),

\[
\hat{m}_4 = \hat{m}_1 - \hat{m}_{12},
\]

bağlantısı kullanılarak hesaplanır.

Pompadaki entalpi artışını için

\[
\Delta h_p = V_1 (P_y - P_s)
\]

ifadesi yazılabilir. Bu bağntındaki \(V_1 \), soğutucu çıkışındaki karışımın özgül hacimdir ve Denklem (2.21)'den hesaplanabilir. "1" ve "2" noktalar için enerji denkliği

\[
\hat{m}_1 h_1 + \hat{m}_1 \Delta h_p = \hat{m}_2 h_2
\]

şeklinde yazılarak buradan kütle debileri eşit olduğundan

\[
\Delta h_p = h_2 - h_1
\]

ifadesi yazılabilir.

4.2. Isı Değiştiricilerindeki Tersinmezlikler

SSS'yı oluşturan eriyik ve soğutucu ısı değiştiricilerindeki tersinmezliklerin hesaplanmasında ısı değiştiricilerinin karşı akışlı olduğu varsayılmasınıdır. Isı değiştiricisinde sıcak akışkan tarafından verilen enerji, soğuk akışkan tarafından alınır. Bu ısı akıtımları süreci için

\[
\dot{m}_h \cdot c_{ph} (T_{hi} - T_{ho}) = \dot{m}_c \cdot c_p (T_{co} - T_{ci})
\]

veya

\[
\dot{C}_{\text{min}} (T_{hi} - T_{ho}) = \dot{C}_{\text{mak}} (T_{co} - T_{ci})
\]

enerji eşitlikleri yazılabilir.

Amonyak/su akışkan çifti ile çalışan SSS'nin analizinde kullanılan eriyik ve soğutucu ısı değiştiricilerinin alanlarının bilindiği varsayılacak, akışkanların ısı değiştiricisinden çıkış sıcaklıklar
hesaplanmıştır. Transfer birim sayısı

\[
N = \frac{U \cdot A}{C_{\text{min}}}
\] \hspace{1cm} (4.17)

şeklinde tanımlanır. Bu bağıntıdaki \(A \), ısı değiştiricisi alanı ve \(U' \) da
bu alan bazındaki toplam ısı aktarım katsayısıdır. Isı değiştiricisinin
etkinliği, sıcak ve soğuk akışkanlar arasındaki gerçek ısı aktarımının
ideal ısı aktarımına oranı şeklinde tanımlanır. Ideal ısı aktarım,
minimum akışkanın sıcaklığının, ısı değiştiricisindeki en büyük
sıcaklık farkı kadar artması için gereken ısı aktarımı olarak tanımlanır.
Sıcak akışkan minimum akışkan olarak kabul edilirse, ideal ısı
aktarımı sıcak akışkanın, giriş sıcaklığından soğuk akışkanın giriş
sıcaklığına kadar soğuması için gereken ısı aktarımıdır ve

\[
\eta = \frac{C_{\text{min}} (T_{hi} - T_{ho})}{C_{\text{mak}} (T_{co} - T_{ci})}
\] \hspace{1cm} (4.18)

bağıntısı ile tanımlanır.

Akışkanların ısı kapasiteleri oranı

\[
z = \frac{C_{\text{min}}}{C_{\text{mak}}}
\] \hspace{1cm} (4.19)

şeklinde ifade edilir. Karış akışta ve sıcak akışkanın minimum olması
durumunda ısı değiştiricisi etkinliği \(z \) ve \(N' \)'ın fonksiyonu olarak

\[
\eta = \frac{1 - e^{-N(1-z)}}{1 - ze^{-N(1-z)}}
\] \hspace{1cm} (4.20)

şeklinde ifade edilir. Duffie ve Sheridan [15], Denklem (4.17) ile
verilen ifadedeki ısı değiştiricisi alanı ve bu alan bazındaki ısı aktarım
katsayısının çarpımları için

\[
U \cdot A = 379 \, \dot{m}_{a}^{1/3}
\] \hspace{1cm} (4.21)
ampirik bağıntısını öncermişlerdir. Bu bağıntı güneş enerjisi ile çalışan ve LiBr/H₂O akış çifti kullanan SSS için önermiştür. Denklem (4.21)'deki \(\dot{m}_a \) zayıf karışıının kütle debisidir.

Denklem (4.21)'den yararlanarak, ısı değiştiricisinin etkinliği 0,75 \(\leq \eta \leq 0,85 \) aralığında sağlayan, ısı değiştiricisi alanı ile bu alan bazındaki ısı aktarım katsayısının çarpımı minimum akışkanın kütle debisinin üstel fonksiyonu olarak belirlenmiştir.

Soğutucu ve ayırıcı arasındaki eriyic ısı değiştiricisi, zayıf karışımla zengin karışıımı ısıtarak sıcaklığında \(\Delta T_s \) kadar artışa neden olur. Bu artış

\[
\Delta T_s = \eta \Delta T_{mak}
\]

(4.22)

şeklinde ifade edilebilir. Bu bağıntıdaki \(\Delta T_{mak} \) ısı değiştiricisin- deki maksimum sıcaklık farkıdır. Eriyic ısı değiştiricisinde sıcaklığı yüksek olan zayıf eriyik minimum akışkanıdır. Şekil 1'de verilen referans noktaları kullanılarak Denklem (4.22)

\[
\eta = \frac{T_4 - T_5}{T_4 - T_2}
\]

(4.23)

şeklinde ifade edilebilir. Bu ifade \(T_5 \) sıcaklığı için çözülürse

\[
T_5 = T_4 - \eta (T_4 - T_2)
\]

(4.24)

bağıntısı elde edilir. Birim zamandaki ısı kapasite oranı Denklem (4.19) ile verilmiştir. Bu bağıntıda \(\dot{C}_{min} \) zayıf karışıım, \(\dot{C}_{mak} \) zengin karışıımın ısı kapasitesidir. Denklem (2.2)'de, amonyak için Tablo 1 ve su için Tablo 3'de verilen sabitlerin değerleri kullanılırsa

\[
\dot{C}_{min} = \dot{m}_a R \left[(\dot{C}_{p,H_2O} / M_{H_2O}) (1-x_a) + (\dot{C}_{p,NH_3} / M_{NH_3}) x_a \right]
\]

(4.25)

ve

\[
\dot{C}_{mak} = \dot{m}_s R \left[(\dot{C}_{p,H_2O} / M_{H_2O}) (1-x_s) + (\dot{C}_{p,NH_3} / M_{NH_3}) x_s \right]
\]

(4.26)
bağıntıları elde edilir. Bu ifadelerde M_{NH_3} ve M_{H_2O} sırasıyla amonya-ğin ve suyun molekül ağırlığıdır. Analizde soğutucu ve ayırıcı arasındaki karışım sıfı değiştiricisinin UA değeri, sıfı değiştiricisinin etkinliğinin $0.75 \leq \eta \leq 0.85$ aralığında olmasını sağlayacak şekilde

$$UA = \frac{A_{KID} \dot{m}_a^{0.9}}{C_{\min}}$$ (4.27)

bağıntısı ile belirlenmiştir. Bu ifade Denklem (4.17)'de kullanılarak

$$N = \frac{A_{KID} \dot{m}_a^{0.9}}{C_{\min}}$$ (4.28)

bağıntısı elde edilir. Hesaplamalarda $x_a = x_4$ ve $x_b = x_1$, $\dot{m}_a = \dot{m}_4$ ve $\dot{m}_b = \dot{m}_1$ alınmıştır. Denklem (4.25) ve (4.26), Denklem (4.19)'da kullanılan birim zamandaki sıfı kapasite oranı hesaplanmıştır. Denklem (4.29) ile transfer birim sayısı ve Denklem (4.20) ile de sıfı değiştiricisinin etkinliği hesaplanmıştır. Sıfı değiştiricisinin etkinliği Denklem (4.24)'de kullanılarak zayıf karışımın sıfı değiştiricisinden çıkış sıcaklığı T_5 hesaplanmıştır. Denklem (4.16)'da Şekil l'de verilen semboller kullanılarak, karışım sıfı değiştiricisi çıkışındaki zengin eriyiğin sıcaklığı için

$$T_3 = T_2 + (T_4 - T_5)\frac{C_{\min}}{C_{\max}}$$ (4.29)

bağıntısı yazılabilir.

Yoğunlaştırma ile buharlaştırıcı arasındaki soğutucu sıfı değiştiricisinin de, doymuş amonyak/su karışım buhari sıfı değiştiricisinden geçerken sıfımsız ve doymuş sıvı amonyak/su karışımında soğumuş olarak soğutucu sıfı değiştiricisinden çıkar. C_{\min} ve C_{\max} sırasıyla doymuş amonyak/su buharının ve doymuş sıvı karışımının sıfı kapasiteleridir.

Soğuk akışkanın minimum akışkan olması durumunda karış akışlı sıfı değiştiricisinin etkinliği
\[\eta = \frac{C_{\text{min}} (T_{\text{co}} - T_{\text{ci}})}{C_{\text{min}} (T_{\text{hi}} - T_{\text{ci}})} = \frac{T_{\text{co}} - T_{\text{ci}}}{T_{\text{hi}} - T_{\text{ci}}} \quad (4.30) \]

şeklinde ifade edilir. Şekil 1'de verilen semboller kullanılarak

\[\eta = \frac{T_{12} - T_{11}}{T_{8} - T_{11}} \quad (4.31) \]

bağımı elde edilir. Bu bağıntı da \(T_{8} \), yoğurtucu sıcaklığına ve \(T_{11} \) buharlaştırıcı sıcaklığına eşittir. Denklem (4.31) bilinmeyen \(T_{12} \) sıcaklığı için çözülürse

\[T_{12} = T_{11} + \eta (T_{8} - T_{11}) \quad (4.32) \]

bağımı elde edilir. Soğutucu ısı değiştiricisinde sıcak ve soğuk akışkanın kütle debileri eşittir. Denklem (2.2)'de doymuş sıvı amonyak için Tablo 1'de, doymuş sıvı su için Tablo 3'de, Denklem (2.13)-de doymuş amonyak buharı için Tablo 2'de, doymuş su suhurı için Tablo 4'de verilen sabitlerin değerleri kullanılarak

\[C_{\text{min}} = \dot{m}_{11} R \left[\left(\dot{c}_{p,\text{g},NH_{3}} / M_{NH_{3}} \right) x + \left(\dot{c}_{p,\text{g},H_{2}O} / M_{H_{2}O} \right) (1-x) \right] \quad (4.33) \]

ve

\[C_{\text{max}} = \dot{m}_{8} R \left[\left(\dot{c}_{p,\text{g},NH_{3}} / M_{NH_{3}} \right) x + \left(\dot{c}_{p,\text{g},H_{2}O} / M_{H_{2}O} \right) (1-x) \right] \quad (4.34) \]

bağıntıları elde edilir. Analizde soğutucu ısı değiştiricinin UA değeri için, ısı değiştiricisinin etkinliğini 0,75 \(\leq \eta \leq 0,85 \) aralığında sağlayacak

\[UA = A_{\text{SID}} \dot{m}_{11}^{1,2} \quad (4.35) \]

bağımı kullanılmıştır. Bu ifade Denklem (4.17)'de kullanılarak

\[N = \frac{A_{\text{SID}} \dot{m}_{11}^{1,2}}{C_{\text{min}}} \quad (4.36) \]

ifadesi elde edilir.
Denklem (4.33) ve (4.34), Denklem (4.19)'da kullanılan birim zamandaki ısı kapasitesi oranını hesaplanmıştır. Denklem (4.36) ile transfer birim sayısı ve Denklem (4.20) ile ısı değiştiricisinin etkinliği hesaplanmıştır. İısı değiştiricisinin etkinliği Denklem (4.32)'de kullanılarak ısı değiştiricisinden çıkış sıcaklığı hesaplanmıştır. Denklem (4.15) ile verilen enerji dengesi soğuk akışkanın minimum olma durumu için
\[\dot{C}_{mav} (T_{hi} - T_{ho}) = \dot{C}_{min} (T_{co} - T_{ci}) \] \hspace{1cm} (4.37)
şeklinde ifade edilir. Bu ifade soğutucu ısı değiştiricisi için Şekil l'de verilen referans noktaları kullanılarak
\[\dot{C}_{mav} (T_{B} - T_{G}) = \dot{C}_{min} (T_{12} - T_{11}) \] \hspace{1cm} (4.38)
şeklinde yazılabilir. Bu ifade bilinmeyen \(T_{G} \) için çözülürse
\[T_{G} = T_{B} - (T_{12} - T_{11}) \frac{\dot{C}_{min}}{\dot{C}_{mav}} \] \hspace{1cm} (4.39)
bağıntısı elde edilir.

4.3. **Distilasyon Kolonunun Tasarımı**

Distilasyon kolonunun tasarımında aşağıdaki varsayım lar yapılmalıdır.

a. Deflakmatör çıkışındaki buhar amonyak/su karışımı ve karışımındaki amonyağın kütle kesri 0,999'dur.

b. Her bir rafta buhar-sıvı denge durum olmuşdur.

c. Her bir raftaki basınç kaybı 0,008 bar (800 pascal) dır.

d. "3" noktasından kolona giren amonyak/su karışımı doymuş sıvı şartlarında dır.

Teorik raf sayısı dönüş aki oranının 0,1 değeri için belirlenmiştir.

Tasarım aşağıdaki işlem basamaklarına dayalı olarak yapılmıştır.

1. Deflakmatörden çıkan amonyakça zengin buhar karışımındaki amonyağın kütle kesrinin sabit ve 0,999 olduğu kabul edilmiştir. Deflakmatör ile yoğunlaştırıcı arasındaki basınç kaybı Denklem (4.1) kullanılarak hesaplanmıştır. Deflakmatörden kolona geri dönen sıvı karışımındaki amonyağın kütle kesri için bir başlangıç değeri kabul edilerek Denklem (2.15.a), (2.15.b) ve (2.15.c)'den deflakmatör sıcaklığı belirlenmiştir. Belirlenen deflakmatör sıcaklığı ve x değeri Denklem (2.27)'de kullanılarak deflakmatörden çıkan buhar karışımındaki amonyağın kütle kesri yeniden belirlenmiştir. Bu işlemle son basamakta hesaplanan buhar fazında amonyağın kütle kesri, deflakmatör çıkışında kabul edilen kütle kesrine \(10^{-4}\) mertebesinde eşit oluncaya kadar hesaplamalara devam edilmiştir. Bu işlemler sonucunda deflakmatör sıcaklığı ve deflakmatörden kolona dönen sıvı karışımındaki amon-
yağın kütle kesri iteratif olarak hesaplanmıştır. Deflakmatörden çıkan buhar karışıımın entalpisi Denklem (2.19)'da, deflakmatörden kolen dönen sıvı karışıımın entalpisi Denklem (2.17)'de deflakmatör sıcaklığı ve basınçını kullanılarak hesaplanmıştır.

2. Denklem (3.7) kullanılarak 13 noktasından (1.raf) yükselen doymuş buhar karışıımındaki amonyaın kütle kesri hesaplanmıştır. 13 noktası ile deflakmatör arasındaki basınç kaybinin 800 parcal olduğu kabul edilerek 13 noktasının basınç

\[P_{13} = P_d + 800 \]

bağıntısından hesaplanmıştır. 13 noktasından aşağıya inen karışıımda-

ki amonyaın kütle kesri için bir başlangıç değeri kabul edilerek 13 noktasının sıcaklığı ve sıvı-buhar fazında amonyaın kütle kesir

leri deflakmatör için yapılan işlemler tekrarlanarak iteratif olarak

hesaplanmıştır. 13 noktasından yükselen buhar karışıımın entalpisi

Denklem (2.19), aşağıya inen sıvı karışıımın entalpisi Denklem (2.17)

kullanılarak hesaplanmıştır.

3. 14 noktasının (2.raf) basınç

\[P_{14} = P_{13} + 800 \]

bağıntısından hesaplanmıştır. Sıcaklığı için

\[T_{14} = T_{13} + 10 \]

yaklaşımı yapılırlar Denklem (2.15.a), (2.15.b) ve (2.15.c)'den yararlanarak 14 noktasından aşağıya inen sıvı karışıımındaki amonyaın kütle kesri belirlenmiştir. 14 noktasından yükselen buhar karışıımındaki amon-

yaın kütle kesri Denklem (2.27), entalpisi Denklem (2.19) kullanılarak hesaplanmıştır. Sıcaklık yaklaşımının doğruluğunu kanıt lamak için 14 noktasından yükselen buhar karışıımın entalpisi Denklem (3.4) kulla

narak ta hesaplanmıştır ve hesaplanan bu entalpler karşilaştırıla-
larağ 14 noktazın sıcaklığı ile sıvı-buha fazında amonya'nın kütle kesirileri iteratif olarak hesaplanmıştır. Aynı işlemlerde \(x_n \leq x_3 \) oluncaya kadar devam edilir. \(n \) kolonda rafın bulunduğu noktayı gösterir. \(x_n \leq x_3 \) oluncaya kadar yapılan işlemlerle zenginleştirme bölgesindeki raf sayısı belirlenmiş olur. Daha sonra fakirleştirme bölgesindeki raf sayılarını belirlemek için aşağıdaki işlemler yapılır.

Deflakmatör ile ayırıcı arasında 4000 pascal basınç kaybı olduğu kabul edilerek ayırıcı basınıcı \(P_a \),

\[
P_a = P_d + 4000
\]
(4.43)

bağıntısından hesaplanmıştır. Ayrıcidan yükselen buhar karışımındaki amonya'nın kütle kesri, Denklem (2.27)'de ayırıcı sıcaklığı, basınıcı ve ayırıcidan ayrılan sıvı karışımındaki amonya'nın kütle kesri kullanılarak, entalpisi ise Denklem (2.19)'dan hesaplanmıştır.

Ayrıcı ile 16 noktaz (4.raf) arasındaki basınç kaybı

\[
P_{16} = P_a - 800
\]
(4.44)

bağıntısından hesaplanmıştır. 16 noktazın sıcaklığı için

\[
T_{16} = T_a - 10
\]
(4.45)

yaklaşımı kullanılmıştır. 16 noktazından ayrılan sıvı karışımındaki amonya'nın kütle kesri Denklem (2.15.a), (2.15.b) ve (2.15.c), entalpisi Denklem (2.17) kullanılarak belirlenmiştir. Denklem (3.18) ve (3.19) kullanılarak ayırıcidan yükselen buhar karışımının kütle debisi, Denklem (3.25) kullanılarak ayırıcıya verilen ısı yükü hesaplanmıştır. 16 noktazından aşağıya inen sıvı karışımının kütle debisi Denklem (3.18), entalpisi Denklem (3.20) kullanılarak yeniden hesaplanmıştır. Sıcaklık yaklaşımanın doğruluğunu kanıtlamak için Denklem (2.17)'den belirlenen entalpı ile Denklem (3.20)'den belirlenen en-
talpiler karşılaştırılarak 16 noktasının sıcaklığı ile sıvı-buhar karışımlarındaki amonyaın kötle kesirleri iteratif olarak hesaplanmıştır. Aynı işlemlere \(x_m \leq x_n \) 'e eşit oluncaya kadar devam ederek fakirleştirme bölgesindeki raf sayıları belirlenmiştir. \(m \) kolonda rafın bulunduğu noktayı gösterir.

Zenginleştirme ve fakirleştirme bölgesinde teorik raf sayılari belirlendikten sonra Denklem (3.30) kullanılarak raf etkinliği hesaplanmıştır. SSS'nin belirli çalışma şartları için gerekli gerçek raf sayısı

\[
\text{Gerçek raf sayısı} = \frac{\text{Teorik raf sayısı}}{\text{Raf etkinliği}} \tag{4.46}
\]

ifadesi kullanılarak belirlenmiştir.

Tablo 8. Raf ve Kolon Tasarımında Kullanılan Veriler

<table>
<thead>
<tr>
<th>Raf tipi</th>
<th>delikli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raf aralığı, (t) cm,</td>
<td>10</td>
</tr>
<tr>
<td>Raf düzeni</td>
<td>karşı akipıl</td>
</tr>
<tr>
<td>Delik çapı, (d_h) mm</td>
<td>3</td>
</tr>
<tr>
<td>Delik merkezleri arasındaki uzaklık, (p') mm</td>
<td>6</td>
</tr>
<tr>
<td>Delik düzeni, ((5,6,7,6,5)) 29 delik.</td>
<td>eşkenar üçgen</td>
</tr>
<tr>
<td>Taşma yaklaşı, (F^*)</td>
<td>% 30</td>
</tr>
<tr>
<td>Set yüksekliği, (h_{ow}) mm</td>
<td>30</td>
</tr>
<tr>
<td>Raf kalınılı, (r_t) mm</td>
<td>1,5</td>
</tr>
<tr>
<td>Taşma borusu açıklığı, mm</td>
<td>25</td>
</tr>
</tbody>
</table>

Tablo 8'de verilen veriler kullanılarak kolon ve raf tasarım'a ağız-daki basamaklarda gerçekleştirmiştir.
1. Ortalama kolon sıcaklığında akışkanların fiziksel özellikleri belirlenmiş ve Denklem (3.31) kullanılarak akış parametresi \(F_{Lv} \), Denklem (3.33) kullanılarak kapasite parametresi \(C_F \), Denklem (3.32) kullanılarakta taşmanın \(\% 100 \) olduğu durum için kolonda aşağıdan yukarıya doğru yükselten buharın hızı \(U_{nf} \) hesaplanmıştır. \(\% 30'lu \) taşma yaklaşımı için gerekli buhar hızı

\[
U_n^* = U_{nf} F^*
\]

bağıntısından hesaplanmıştır.

2. Kolon alanı \(A_t \),

\[
A_t = \frac{Q_B}{U_n^*}
\]

bağıntısından hesaplanmıştır. Bu bağıntıda \(Q_B \) buharın hacimsel debisidir. Denklem (3.38), (3.39), (3.40) ve (3.41) kullanılarak sırasıyla taşma borusu alanı, net alan, etkin alan ve delik alanı hesaplanmıştır.

3. Yapılan taşma yaklaşımının doğruğunu net alana dayalı buhar hızı \(U_n \),

\[
U_n = \frac{Q_B}{A_n}
\]

bağıntısı kullanılarak hesaplandıkta sonra

\[
F = F^* \left(\frac{U_n}{U_n^*} \right)
\]

bağıntısı kullanılarak kontrol edilir. Eğer \(F \neq F^* \) ise yeni bir taşma yaklaşımı yapılırak 1, 2 ve 3 no.lu basamakta yapılan işlemler \(F \approx F^* \) oluncaya kadar tekrarlanır.

4. Akış parametresi \(F_{Lv} \) ve taşma yaklaşımı \(F \) değerine karşılık gelen sızma debisi \(\psi \) Şekil 6'dan belirlenir ve \(\psi < 0,2 \) olması çalış-
ma koşullarının uygun olduğunu gösterir. Denklem (3.42) kullanılarak toplam sıvı debisi hesaplanmıştır.

5. Delik hızı U_h

$$U_h = \frac{Q_B}{A_h}$$ (4.51)

bağıntısından hesaplanmıştır. Kuru raf basınç düğüğü Denklem (3.46), set üzerindeki sıvı yüksekliği Denklem (3.45), köpük oluşumu nedeniyle meydana gelen yükseklik kayısı Denklem (3.44), raf üstündeki havalandırılmış sıvının neden olduğu yükseklik kayısı Denklem (3.49), toplam basınç düğüğü Denklem (3.48) kullanılarak hesaplanmıştır.

6. Raf üstündeki havalandırılmış kütlennen karşı akış meydana getirmesi için gerekli olan sıvı yüksekliği sırasıyla Denklem (3.51), (3.52), (3.53), (3.54), (3.55) ve (3.50) kullanılarak hesaplanmıştır. Delikli raflarda bu değer küçüktür ve raf kararlılığı için bir kriterdir. Bu değerin kuru basınç düğüğü değerinin yarısından az olması gerekir.

7. Taşma borusundaki ön basınç düğüğü Denklem (3.57), basınç düğüğü Denklem (3.56), taşma borusundaki sıvı yüksekliği Denklem (3.58) kullanılarak hesaplanmıştır. Taşma borusundaki sıvı yüksekliği değerin seçilen raf aralığının yarısından az olması tasarım yaparken yapılan varsayımaların uygun olduğunu gösterir. Eğer bu değer istenen limitler arasında değilse yeni varsayımlara dayalı olarak tasarım basamakları uygun koşulları sağlayıcaya kadar tekrarlanır.
BÖLÜM 5

SONUÇLAR, SONUÇLARIN TARTIŞILMASI, BULGULAR VE ÖNERİLER

5.1. Sonuçlar ve Tartışma

Bu çalışmada amonyak/su akışkan çifti ile çalışan SSS'nin termodinamik analizi ve distilasyon kolonunun tasarımını yapılmıştır. SSS'nin termodinamik analizinde Şekil 1'de gösterilen referans noktalarındaki sıcaklıklar, entalpiler, kütle debileri ile kütle kesirleri değişik çalışma şartlarında hesaplanmıştır. Analizde karışım ve soğutucu ısı değiştiricilerindeki tersinmezlikler ile sistem oluşturan bazı birimler arasındaki basınç kayıpları da dikkate alınmıştır.

SSS'nin termodinamik analizinde, sistemin güneş enerjisi veya atık ısı ile kullanılabileceği göz önüne alınarak ayırıcı sıcaklığı 50-150 °C arasında değiştirilmiştir. Analizde yoğunlaştırıcı ve soğutucu sıcaklıkları sırasıyla 30 ile 20 °C ve 27 ile 25 °C alınmıştır. Analizde soğutma yükünün sabit ve 1 kW, deflakmatörden çıkan buhar karışımındaki amonyağın kütle kesinin sabit ve 0,999 olduğu varsayılmaktır. SSS'nin farklı uygulamalarda kullanılabileceği göz önüne alınarak, buharlaştırıcı sıcaklığının -20, -10, 0 ve 10 °C değerleri için analizden sayısal sonuçlar elde edilmiştir.

Distilasyon kolonu tasarımında SSS'nin değişik çalışma şartları için gerekli teorik raf sayısı, kolon etkinliği, kolon boyutları ve basınç kayıpları ile kolonun etkin bir şekilde çalışmasını sağlayacak parametreler belirlenmiştir.
Şekil 1'de görülen SSS'nin referans noktalarındaki termodinamik özelliklerin sırasıyla 150, 140, 130 ve 120 °C ayırıcı sıcaklıklar ile değişimi 30 °C yoğunluk, 28 °C soğurucu ve -20 °C buharlaştırıcı sıcaklığında Tablo 9, Tablo 10, Tablo 11 ve Tablo 12'de verilmiştir. Yine aynı şekilde sistemin referans noktalarındaki termodinamik özelliklerin sırasıyla 150, 140, 130 ve 120 °C ayırıcı sıcaklıklar ile değişimi 30 °C yoğunluk, 28 °C soğurucu ve -10 °C buharlaştırıcı sıcaklığında Tablo 13, Tablo 14, Tablo 15 ve Tablo 16'da görülmektedir. 30 °C yoğunluk, 28 °C soğurucu ve 0 °C buharlaştırıcı sıcaklıklarda sistemin referans noktalarındaki termodinamik özellikler aynı ayırıcı sıcaklıklarda Tablo 17, Tablo 18, Tablo 19 ve Tablo 20'de verilmiştir. Aynı yoğunluk, soğurucu ve ayırıcı sıcaklıklarda, 10 °C buharlaştırıcı sıcaklığı için sistemin referans noktalarındaki termodinamik özellikler Tablo 21, Tablo 22, Tablo 23 ve Tablo 24'de görülmektedir.

Şekil 1'de görülen SSS'nin distilasyon kolonu ile ilgili referans noktalarındaki termodinamik özelliklerin sırasıyla 150, 140, 130 ve 120 °C ayırıcı sıcaklıklar ile değişimi 30 °C yoğunluk, 28 °C soğurucu ve -20 °C buharlaştırıcı sıcaklıklarda Tablo 29, Tablo 30, Tablo 31 ve Tablo 32'de verilmiştir. 30 °C yoğunluk, 28 °C soğurucu ve -10 °C buharlaştırıcı sıcaklıklarda distilasyon
kolonunun referans noktalarındaki termodinamik özellikler aynı ayrıncı sıcaklıklarında sırasıyla Tablo 33, Tablo 34, Tablo 35 ve Tablo 36'da verilmiştir. Benzer şekilde aynı yoğunluk, soğurucu ve ayrıncı sıcaklıklarında kolonun referans noktalarındaki termodinamik özellikler 0 °C buharlaştırıcı sıcaklığı için Tablo 37, Tablo 38, Tablo 39 ve Tablo 40'da, 10 °C buharlaştırıcı sıcaklığı için de Tablo 41, Tablo 42, Tablo 43 ve Tablo 44'de görülmektedir.

27 °C yoğunluk ve 25 °C soğurucu sıcaklıklarında sistemin distilasyon kolonunun referans noktalarındaki termodinamik özelliklerin sırasıyla 150 ve 120 °C ayrıncı sıcaklıkları ile değişimi - 20 °C buharlaştırıcı sıcaklığı için Tablo 45 ve Tablo 46'da, 10°C buharlaştırıcı sıcaklığı içinde Tablo 47 ve Tablo 48'de verilmiştir.

Ayrıncı sıcaklıklarının 50, 60 ve 70 °C değerlerinde belli yoğunluk ve soğurucu sıcaklıkları için kolona giren karışımındaki amonyağın kütlesi x_{3}, ayrıncidan çıkan karışımındaki amonyağın kütlesi x_{4} ten küçük olduğu için sistem çalışamaktadır. Ayrıncı sıcaklıklarının 80, 90, 100 ve 110 °C değerlerinde distilasyon kolonu için teorik olarak herhangi bir rafa gereksinim duylamamaktadır. Bu çalışmada kolon tasarım basamaklarından biri olan teorik raf sayısının belirlenmesine ağırlık verildiğinden kolon tasarımı gerektirmeyen sıcaklıklar için sonuçlar elde edilmemiştir.

Farklı yoğunluk sıcaklıkları için "3" noktasındaki (kolona giren) karışımındaki amonyağın kütlesi kesrinin buharlaştırıcı sıcaklığı ile değişimi Şekil 11'de görülmektedir. Şekilde görüldüğü gibi buharlaştırıcı sıcaklığı arttıkça kolona giren karışımındaki amonyağın kütlesi kesri artmaktadır. Aynı buharlaştırıcı sıcaklığında yoğunluk sıcaklığı arttıkça x_{3} azalmaktadır. 30 °C yoğunluk, 28 °C soğurucu ve -20 °C buharlaştırıcı sıcaklıkları için ayrıncıdan ayrı-
lan sıvı ve buhar karışımındaki amonyağın kütle kesirlerinin ayırıcı sıcaklığı ile değişimi Şekil 12'de verilmiştir. Şekilde görüldüğü gibi aynı yoğunרכ, soğurucu ve buharlaştırıcı sıcaklığında, ayırıcı sıcaklığı arttıkça ayırıcıdan ayrılan sıvı ve buhar karışım- larındaki amonyak derişimleri azalmaktadır. Aynı değişimler diğer ça- lışma şartlarında da gözlenmektedir. 30 °C yoğunrc, 28 °C soğu- rucu ve -20 °C buharlaştırıcı sıcaklıklarında sırasıyla 150, 140, 130 ve 120 °C ayırıcı sıcaklıklar için kolon içindeki buhar karışım- daki amonyağın kütle kesrinin sıvı karışımdaki amonyağın kütle kes- ri ile değişimi Şekil 13, Şekil 14, Şekil 15 ve Şekil 16'da görülmek- tedir. Şekillerdeki noktalar kolon içindeki her bir rafa karşılık gelmektedir. Şekillerde görüldüğü gibi ayırıcı sıcaklığı azaldıkça rafları gösteren noktalar arasındaki mesafeler azalmaktadır. Bu du- rumda 150 °C ayırıcı sıcaklığında dört rafa elde edilen 0,999 deri- şimi, 120 °C ayırıcı sıcaklığında 2 rafa elde edilebilmektedir. 30 °C yoğunrc, 28 °C soğurucu ve 0 °C buharlaştırıcı sıcaklıklar- rında sırasıyla 150, 140, 130 ve 120 °C ayırıcı sıcaklıklar için kolon içindeki buhar karışımdaki amonyağın kütle kesrinin sıvı karışımdaki amonyağın kütle kesri ile değişimi sırasıyla Şekil 17, Şe- kil 18, Şekil 19 ve Şekil 20'de verilmiştir. 30 °C yoğunrc, 28 °C soğurucu, -20 °C buharlaştırıcı sıcaklıklarında 150 °C ayırıcı sıcaklığı için kolondaki karışıımın sıcaklıkları ile kütle kesirleri- nin değişimi Şekil 21'de görülmektedir. Şekilde görüldüğü gibi ko- londa yukarıdan aşağıya doğru gidildikçe her bir rafaki sıcaklıklar artarken, karışıımın sıvı ve buhar fazdaki kütle kesri azalmaktadır. Değişik çalışma koşulları için teorik ve gerçek raf sayıları ile il- gili olarak elde edilen sonuçlar Tablo 51'de verilmiştir. Tabloda görüldüğü gibi ayırıcı sıcaklığı arttıkça belirli çalışma koşulları
Şekil 11. 30 ve 27 °C Yoğuşturucu Sıcaklıklarında \(x_3 \)‘ün Buharlaştırıcı Sıcaklığı \(T_b \) ile Değişimi

Şekil 12. Ayrıçidan Ayrılan Sıvı ve Buhar Karışımındaki Amonyak Kütle Dışırmının Ayrıç Sıcaklığı İle Değişimi
Şekil 13. \(T_y = 30 \, ^\circ C \), \(T_s = 28 \, ^\circ C \), \(T_b = 20 \, ^\circ C \) ve \(T_a = 150 \, ^\circ C \) sıcaklıklarında KOLON İÇİNDEKİ BUHAR KARIŞIMDAKİ AMONYAĞINI KÜLTE KESRİNİN SIVI KARIŞIMDAKİ AMONYAĞIN KÜLTE KESRI İLE DEĞİŞİMİ

Şekil 14. \(T_y = 30 \, ^\circ C \), \(T_s = 28 \, ^\circ C \), \(T_b = 20 \, ^\circ C \) ve \(T_a = 140 \, ^\circ C \) sıcaklıklarında KOLON İÇİNDEKİ BUHAR KARIŞIMDAKİ AMONYAĞINI KÜLTE KESRİNİN SIVI KARIŞIMDAKİ AMONYAĞIN KÜLTE KESRI İLE DEĞİŞİMİ
Şekil 15. \(T_y = 30 \, ^\circ C, \ T_s = 28 \, ^\circ C, \ T_b = 20 \, ^\circ C \) ve \(T_d = 130 \, ^\circ C \) sıcaklıklarında kolon içindeki buhar karışımdaki amonyağın kütle kesinin sıvı karışımdaki amonyağın kütle kesri ile değişimi.

Şekil 16. \(T_y = 30 \, ^\circ C, \ T_s = 28 \, ^\circ C, \ T_b = 20 \, ^\circ C \) ve \(T_d = 120 \, ^\circ C \) sıcaklıklarında kolon içindeki buhar karışımdaki amonyağın kütle kesinin sıvı karışımdaki amonyağın kütle kesri ile değişimi.
Şekil 17. $T_y=30 \, ^{\circ}C$, $T_s=28 \, ^{\circ}C$, $T_a=0 \, ^{\circ}C$ ve $T_a=150 \, ^{\circ}C$ sıcaklıklarda kolon içindeki buhar karışımdaki amonyağın kütleye kesrinin sıvı karışımdaki amonyağın kütleye kesri ile değişimi.

Şekil 18. $T_y=30 \, ^{\circ}C$, $T_s=28 \, ^{\circ}C$, $T_a=0 \, ^{\circ}C$ ve $T_a=140 \, ^{\circ}C$ sıcaklıklarda kolon içindeki buhar karışımdaki amonyağın kütleye kesrinin sıvı karışımdaki amonyağın kütleye kesri ile değişimi.
Şekil 19. $T_y=30^\circ C$, $T_s=28^\circ C$, $T_b=0^\circ C$ ve $T_a=130^\circ C$ Ayırıcı Sıcaklık-\nlarında Kolon İçindeki Buhar Karışımındaki Amonyağın Kütle Kesrinin Sıvı Karışımındaki Amonyağın Kütle Kesri İle Değişimi.

Şekil 20. $T_y=30^\circ C$, $T_s=28^\circ C$, $T_b=0^\circ C$ ve $T_a=120^\circ C$ Ayırıcı Sı-\ncaklık-\nlarında Kolon İçindeki Buhar Karışımındaki Amon-\nyağın Kütle Kesrinin Sıvı Karışımındaki Amonyağın Kütle Kesri İle Değişimi.

Değişik çalışma şartları için kolon ve raf tasarımını ile ilgili ola- rak analizden elde edilen sonuçlar Tablo 49 ve Tablo 50'de görülmek- tedir. Tablolarında görüldüğü gibi sistemin soğutma yükünün küçük ol- masına bağlı olarak kolondaki sıvı ve buhar karışıının debileri çok küçük olduğundan literatürde verilen raf tasarım kriterleri sağlanamamaktadır. Ayrıca tasarımın yapılan kolonun klasik distilasyon kolo- nu gibi olmaması da sonuçları olumsuz yönde etkilemektedir. Reynolds modülü çok küçük olduğundan, 30 mm set yüksekliği için Reynolds mo- dülüne karşılık gelen sürünme faktörünün değeri 1 olarak alınmıştır. Ayrıca yapılan analiz sonucunda taşıma borusundaki sıvı yüksekliği se- çilen raf aralığının yarısından büyük olarak hesaplanmıştır. Raf ka- rarlılığı için bu değerin raf aralığının yarısından az olması gerekmektedir. Literatürde raf tasarım kriteri olarak taşıma borusunda kalma sü- resi 3s'den büyük olarak verilmiştir. Bu çalışmada ise kalma süresi için 'çoğ yük-
sek değerler elde edilmiştir. Bu durum kolon içindeki debilerin çok küçük olmasından kaynaklanabilir.

Kolon çapı ayırıcı sıcaklığı arttıkça artmaktadır. Aynı ayırıcı ve buharlaştırıcı sıcaklığında yoğunlaştırıcı ve soğurucu sıcaklığı arttıkça azalmaktadır. 30 °C yoğunlaştırıcı, 28 °C soğurucu sıcaklıklarında ayırıcı ve buharlaştırıcı sıcaklığı ile kolon etkinliği neğini Şekil 22'de görmekteidir. Şekilde görüldüğü gibi ayırıcı sıcaklığı arttıkça kolon etkinliği azalmaktadır. Başka bir değerle SSS'nin belirli çalışma şartları için 0,999 derişimi elde etmek için gerekli gerçek raf sayısı artmaktadır. Örneğin, sırasıyla 30 ve 28 °C yoğunlaştırıcı ve soğurucu sıcaklıkların -20 °C buharlaştırıcı sıcaklığında ayırıcı sıcaklığı 120 °C'den 150 °C'ye yükselirken kolon etkinliği \(E \), 65,7'den 61,8'e azalmaktadır. Etkinlikteki azalma % 6 kadardır. Aynı yoğunlaştırıcı ve soğurucu sıcaklıkların buharlaştırıcı sıcaklığı -20 °C'den 10 °C'ye yükselirken sabit 150 °C ayırıcı sıcaklığı için etkinlik \(E \), 61,8'den 55,2'ye azalmaktadır. Etkinlikteki azalma % 12'dir.

Sabit 150 °C ayırıcı ve -20 °C buharlaştırıcı sıcaklığı için yoğunlaştırıcı ve sıcaklığı sırasıyla 27 ve 25 °C'den, 30 ve 28 °C'a yükselirken etkinlikte % 1,1'lük bir artış gözlenmektedir.

Böyle bir çalışmada geliştirilen model yardımıyla SSS'nin COP ve dolaşım oranı gibi çalışma parametreleri kolayca hesaplanabilir. Gerekgi zaman bu parametrelerin hesaplanabilmesi için, parametrelerin hesaplama yöntemi bilgisayar programına ilave edilmesine rağmen bu parametreler için elde edilen değerler bu çalışmada verilmişmiştir. Buna neden bu çalışmada ağırlık distilasyon kolonu tasarımına verilmiştir.
Şekil 21. \(T_y = 30 \, ^\circ C, \, T_s = 28 \, ^\circ C, \, T_b = -20 \, ^\circ C \) ve \(T_a = 150 \, ^\circ C \) sıcaklıklarında Kolondaki Karışımın Sıcaklıkları ile Kütle Kesirlerinin Değişimi

Şekil 22. Ayırıcı sıcaklık ile etkinliğin değişimi
Tablo 9. 30 °C Yoğıştırucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 150 °C ayırıcı sıcaklığında analizden elde edilen sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>m (kg/s) 10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>1,686</td>
<td>-106,1077</td>
<td>0,3631801</td>
<td>3,193876</td>
</tr>
<tr>
<td>2</td>
<td>28,0554</td>
<td>11,652</td>
<td>-104,8643</td>
<td>0,3631801</td>
<td>3,193876</td>
</tr>
<tr>
<td>3</td>
<td>104,1435</td>
<td>11,652</td>
<td>246,2272</td>
<td>0,3631801</td>
<td>3,193876</td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>11,692</td>
<td>554,889</td>
<td>0,1337621</td>
<td>2,347019</td>
</tr>
<tr>
<td>5</td>
<td>52,4732</td>
<td>11,652</td>
<td>122,5102</td>
<td>0,1337621</td>
<td>2,347019</td>
</tr>
<tr>
<td>6</td>
<td>52,6334</td>
<td>1,686</td>
<td>122,5102</td>
<td>0,1337621</td>
<td>2,347019</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>9</td>
<td>13,2647</td>
<td>11,09735</td>
<td>61,29212</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>10</td>
<td>13,3375</td>
<td>1,823071</td>
<td>61,29212</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>11</td>
<td>-20,0</td>
<td>1,823071</td>
<td>1241,824</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>12</td>
<td>19,9609</td>
<td>1,823071</td>
<td>1332,951</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>12'</td>
<td>19,5505</td>
<td>1,686</td>
<td>1332,951</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
</tbody>
</table>
Tablo 10. 30 °C Yoğurtucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 140 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>d (kg/s)10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>1,686</td>
<td>-106,2959</td>
<td>0,363913</td>
<td>3,626428</td>
</tr>
<tr>
<td>2</td>
<td>28,0554</td>
<td>11,652</td>
<td>-105,052</td>
<td>0,363913</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>101,4682</td>
<td>11,652</td>
<td>233,5068</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>140,0</td>
<td>11,692</td>
<td>489,4645</td>
<td>0,1704199</td>
<td>2,779571</td>
</tr>
<tr>
<td>5</td>
<td>50,5213</td>
<td>11,652</td>
<td>89,33268</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>50,6794</td>
<td>1,686</td>
<td>89,33268</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>0,999</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>13,2647</td>
<td>11,09735</td>
<td>61,29212</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>13,3375</td>
<td>1,823071</td>
<td>61,29212</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-20,0</td>
<td>"</td>
<td>1244,824</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>19,9609</td>
<td>"</td>
<td>1332,951</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>19,5505</td>
<td>1,686</td>
<td>1332,951</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 11. 30 °C Yoğunçurucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 130 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>h (kg/s) \times 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>1,686</td>
<td>-106,4908</td>
<td>0,3646774</td>
<td>4,289851</td>
</tr>
<tr>
<td>2</td>
<td>28,0554</td>
<td>11,652</td>
<td>-105,2464</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>98,4758</td>
<td>11,652</td>
<td>219,334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>130,0</td>
<td>11,692</td>
<td>424,0608</td>
<td>0,2086561</td>
<td>3,442994</td>
</tr>
<tr>
<td>5</td>
<td>48,5335</td>
<td>11,652</td>
<td>56,8556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48,6896</td>
<td>1,686</td>
<td>56,8556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8468567</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13,2647</td>
<td></td>
<td>61,29212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13,3375</td>
<td>1,823071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-20,0</td>
<td></td>
<td>1241,824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19,9609</td>
<td></td>
<td>1332,951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>19,5505</td>
<td>1,686</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 12. 30 °C Yoğuşturucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kj/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.0</td>
<td>1.686</td>
<td>-106.69</td>
<td>0.3654791</td>
<td>5.443302</td>
</tr>
<tr>
<td>2</td>
<td>28.0554</td>
<td>11.652</td>
<td>-105.4488</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>95.1626</td>
<td>"</td>
<td>203.7009</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>120.0</td>
<td>11.692</td>
<td>359.2117</td>
<td>9.2487582</td>
<td>4.964445</td>
</tr>
<tr>
<td>5</td>
<td>46.5009</td>
<td>11.652</td>
<td>25.72955</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>46.686</td>
<td>1.686</td>
<td>25.72955</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42.6065</td>
<td>11.652</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.8468567</td>
</tr>
<tr>
<td>8</td>
<td>30.0</td>
<td>11.09735</td>
<td>141.2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>13.2647</td>
<td>"</td>
<td>61.25212</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>13.3375</td>
<td>1.823071</td>
<td>61.25212</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-20.0</td>
<td>"</td>
<td>1241.824</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>19.9609</td>
<td>"</td>
<td>1332.951</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>19.5505</td>
<td>1.686</td>
<td>1332.951</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 13. 30 °C Yoğuşturucu, 28 °C Soğurucu, -10 °C Buharlaştırma rıcı ve 150 °C Ayırrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T</th>
<th>P</th>
<th>h</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>2,5566741</td>
<td>-118,3397</td>
<td>0,4326581</td>
<td>2,459558</td>
</tr>
<tr>
<td>2</td>
<td>28,0624</td>
<td>11,652</td>
<td>117,1622</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>95,2444</td>
<td>"</td>
<td>193,6382</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>11,684</td>
<td>554,1776</td>
<td>0,1350428</td>
<td>1,612292</td>
</tr>
<tr>
<td>5</td>
<td>52,5646</td>
<td>11,652</td>
<td>122,044</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>52,7078</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8472665</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>16,5093</td>
<td>"</td>
<td>76,57437</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>16,5594</td>
<td>2,763972</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-10,0</td>
<td>"</td>
<td>1225,818</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>21,9982</td>
<td>"</td>
<td>1331,235</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>21,3976</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 14. 30 °C Yoğuşurucu, 28 °C Soğurucu, -10 °C Buharlaştırıcı ve 140 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T</th>
<th>P</th>
<th>h</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>2.5566741</td>
<td>-118.4096</td>
<td>0,4333886</td>
<td>2,677739</td>
</tr>
<tr>
<td>2</td>
<td>28,0624</td>
<td>11,652</td>
<td>-117,2316</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>92,9541</td>
<td>"</td>
<td>182,736</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>140,0</td>
<td>11,676</td>
<td>488,8434</td>
<td>0,1715854</td>
<td>1,830473</td>
</tr>
<tr>
<td>5</td>
<td>50,475</td>
<td>11,652</td>
<td>88,37658</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>50,617</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8472665</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>16,5093</td>
<td>"</td>
<td>76,57437</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>16,5594</td>
<td>2,763972</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-10,0</td>
<td>"</td>
<td>1255,818</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>21,9982</td>
<td>"</td>
<td>1331,235</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>21,3976</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 15. 30 °C Yoğunluk, 20 °C Soğutucu, -10 °C Buharlaştırıcı ve 130 °C Ayıracı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (\times 10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>2,5666741</td>
<td>-118,4813</td>
<td>0,4341529</td>
<td>2,980542</td>
</tr>
<tr>
<td>2</td>
<td>28,0624</td>
<td>11,652</td>
<td>-117,4813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90,3112</td>
<td>"</td>
<td>170,1996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>130,0</td>
<td>11,676</td>
<td>423,4899</td>
<td>0,2098142</td>
<td>2,133275</td>
</tr>
<tr>
<td>5</td>
<td>48,4759</td>
<td>11,652</td>
<td>55,91957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48,6169</td>
<td>2,5566741</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8472665</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16,5093</td>
<td>"</td>
<td>76,57437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16,5594</td>
<td>2,763972</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-10,0</td>
<td>"</td>
<td>1225,818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21,9982</td>
<td>"</td>
<td>1331,235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>21,3976</td>
<td>2,5666741</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 16. 30 °C Yoğunluktan, 28 °C Soğurucu, -10 °C Buharlaştıracı ve 120 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T [K]</th>
<th>P [bar]</th>
<th>h [kJ/kg]</th>
<th>x</th>
<th>\dot{m} [(kg/s) \times 10^{-3}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>2,5566741</td>
<td>-118,555</td>
<td>0,4349544</td>
<td>3,429813</td>
</tr>
<tr>
<td>2</td>
<td>28,0624</td>
<td>11,652</td>
<td>-117,3761</td>
<td>0,577574</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>87,3535</td>
<td>"</td>
<td>156,2206</td>
<td>0,261179</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>120,0</td>
<td>11,676</td>
<td>358,7008</td>
<td>0,2499057</td>
<td>2,582547</td>
</tr>
<tr>
<td>5</td>
<td>46,5027</td>
<td>11,652</td>
<td>25,01594</td>
<td>0,996376</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>46,6426</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,792</td>
<td>0,999</td>
<td>0,8472665</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>0,998939</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>16,5093</td>
<td>"</td>
<td>76,57437</td>
<td>0,998939</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>16,5594</td>
<td>2,763972</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-10,0</td>
<td>"</td>
<td>1255,818</td>
<td>0,998939</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>21,982</td>
<td>"</td>
<td>1331,235</td>
<td>0,998939</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>21,3976</td>
<td>2,5566741</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 17. 30 °C Yoğuşurucu, 28 °C Soğurucu, 0 °C Buharlaştırıcı ve 150 °C Ayrıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (°C)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>3,759866</td>
<td>-118,8018</td>
<td>0,5096786</td>
<td>1,963961</td>
</tr>
<tr>
<td>2</td>
<td>28,0695</td>
<td>11,652</td>
<td>-117,7389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85,5319</td>
<td></td>
<td>148,5829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>11,676</td>
<td>553,3845</td>
<td>0,1364745</td>
<td>1,114179</td>
</tr>
<tr>
<td>5</td>
<td>52,7092</td>
<td>11,652</td>
<td>121,7179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>52,8315</td>
<td>3,759866</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8497813</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19,8109</td>
<td></td>
<td>92,23838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19,851</td>
<td>4,064722</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
<td>1268,599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23,9989</td>
<td></td>
<td>1327,368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>23,1681</td>
<td>3,759866</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 18. 30 °C Yoğurtucu, 20 °C Soğurucu, 0 °C Buharlaştırıcı ve 140 °C Ayırmacı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>3,759866</td>
<td>-118,7419</td>
<td>0,5104114</td>
</tr>
<tr>
<td>2</td>
<td>28,0655</td>
<td>11,652</td>
<td>-117,6786</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>83,6429</td>
<td>"</td>
<td>139,6549</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>140,0</td>
<td>11,676</td>
<td>488,0253</td>
<td>0,1731259</td>
</tr>
<tr>
<td>5</td>
<td>50,4933</td>
<td>11,652</td>
<td>87,47736</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>50,6141</td>
<td>3,759866</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>19,8109</td>
<td>"</td>
<td>92,23838</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>19,851</td>
<td>4,064722</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>"</td>
<td>1260,599</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>23,9989</td>
<td>"</td>
<td>1327,368</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>23,1681</td>
<td>3,759866</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 19. 30°C Yoğuşturucu, 28°C Soğurucu, 0°C Buharlaştırıcı ve 130°C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kj/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (\times 10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.0</td>
<td>3.759866</td>
<td>-118.6782</td>
<td>0.5111733</td>
<td>2.231905</td>
</tr>
<tr>
<td>2</td>
<td>28.0655</td>
<td>11.652</td>
<td>-117.6146</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>81.3784</td>
<td>"</td>
<td>128.9535</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>130.0</td>
<td>11.668</td>
<td>422.7813</td>
<td>0.2112393</td>
<td>1.382,124</td>
</tr>
<tr>
<td>5</td>
<td>48,4609</td>
<td>11.652</td>
<td>55.02606</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>48,5807</td>
<td>3,759866</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11.652</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.8497813</td>
</tr>
<tr>
<td>8</td>
<td>30.0</td>
<td>11.09735</td>
<td>141.2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>19,8109</td>
<td>"</td>
<td>92.23838</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>19,851</td>
<td>4,064722</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>"</td>
<td>1268.599</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>23,9989</td>
<td>"</td>
<td>1327.368</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>23,1681</td>
<td>3,759866</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 20. 30 °C Yoğunluk, 28 °C Soğurucu, 0 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kj/kg)</th>
<th>x</th>
<th>(kg/s) \times 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>3,759066</td>
<td>-118,6099</td>
<td>0,5119748</td>
<td>2,437616</td>
</tr>
<tr>
<td>2</td>
<td>28,0665</td>
<td>11,652</td>
<td>-117,5499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>78,7492</td>
<td></td>
<td>116,5736</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120,0</td>
<td>11,668</td>
<td>358,0712</td>
<td>0,2513273</td>
<td>1,387834</td>
</tr>
<tr>
<td>5</td>
<td>46,6147</td>
<td>11,652</td>
<td>24,81271</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46,7335</td>
<td>3,759066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td></td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8497813</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19,8109</td>
<td></td>
<td>92,23838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19,851</td>
<td>4,054722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
<td>1268,599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23,9989</td>
<td></td>
<td>1327,368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>23,1681</td>
<td>3,759066</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 21. 30 °C Yoğuşurucu, 28 °C Soğurucu, 10 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kj/kg)</th>
<th>x</th>
<th>m (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>5,38</td>
<td>-102,4371</td>
<td>0,5996152</td>
<td>1,590341</td>
</tr>
<tr>
<td>2</td>
<td>28,0635</td>
<td>11,652</td>
<td>-101,5544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74,4962</td>
<td></td>
<td>114,2775</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>11,668</td>
<td>552,4503</td>
<td>0,1381655</td>
<td>0,7378398</td>
</tr>
<tr>
<td>5</td>
<td>52,7417</td>
<td>11,652</td>
<td>120,7098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>52,8343</td>
<td>5,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8525007</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23,1592</td>
<td></td>
<td>108,2316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23,1792</td>
<td>5,816969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td></td>
<td>1280,065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25,9983</td>
<td></td>
<td>1320,986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>24,8872</td>
<td>5,38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 22. 30 °C Yüğütlürucu, 28 °C Soğurucu, 10 °C Buharlaştırıcı ve 140 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28,0</td>
<td>5,38</td>
<td>-102,2335</td>
<td>0,6003478</td>
<td>1,651145</td>
</tr>
<tr>
<td>2</td>
<td>28,0635</td>
<td>11,652</td>
<td>-101,3505</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>72,9346</td>
<td>"</td>
<td>107,0095</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>140,0</td>
<td>11,668</td>
<td>487,133</td>
<td>0,1748124</td>
<td>0,7996442</td>
</tr>
<tr>
<td>5</td>
<td>50,5612</td>
<td>11,652</td>
<td>86,71529</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>50,6528</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8525007</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>23,1592</td>
<td>"</td>
<td>108,2316</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>23,1792</td>
<td>5,816969</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td>"</td>
<td>1280,065</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>25,9983</td>
<td>"</td>
<td>1320,986</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>24,8872</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (°C)</td>
<td>P (bar)</td>
<td>h (kj/kg)</td>
<td>x</td>
<td>(\dot{m}) (kg/s) (10^{-3})</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>28,0</td>
<td>5,38</td>
<td>-102,0199</td>
<td>0,601112</td>
<td>1,726561</td>
</tr>
<tr>
<td>2</td>
<td>28,0635</td>
<td>11,652</td>
<td>-101,1365</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>71,1167</td>
<td>"</td>
<td>98,54594</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>130,0</td>
<td>11,668</td>
<td>421,8966</td>
<td>0,2130381</td>
<td>0,8740598</td>
</tr>
<tr>
<td>5</td>
<td>48,4913</td>
<td>11,652</td>
<td>54,13023</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>48,582</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8525007</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>23,1592</td>
<td>"</td>
<td>108,2316</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>23,1792</td>
<td>5,816969</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td>"</td>
<td>1280,065</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>25,9983</td>
<td>"</td>
<td>1320,986</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>24,8872</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T(K)</td>
<td>P(bar)</td>
<td>h(kj/kg)</td>
<td>x</td>
<td>(\dot{m}(\text{kg/s})\times10^{-3})</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>-----</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>28,0</td>
<td>5,38</td>
<td>-101,7945</td>
<td>0,6019135</td>
<td>1,823053</td>
</tr>
<tr>
<td>2</td>
<td>28,0635</td>
<td>11,652</td>
<td>-100,9108</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>69,0381</td>
<td>"</td>
<td>88,87878</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>120,0</td>
<td>11,668</td>
<td>357,2801</td>
<td>0,253126</td>
<td>0,9705526</td>
</tr>
<tr>
<td>5</td>
<td>46,5359</td>
<td>11,652</td>
<td>23,54409</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>46,6255</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>42,6065</td>
<td>11,652</td>
<td>1330,737</td>
<td>0,999</td>
<td>0,8525007</td>
</tr>
<tr>
<td>8</td>
<td>30,0</td>
<td>11,09735</td>
<td>141,2676</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>23,1592</td>
<td>"</td>
<td>108,2316</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>23,1792</td>
<td>5,816969</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td>"</td>
<td>1280,065</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>25,9983</td>
<td>"</td>
<td>1320,986</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>24,8872</td>
<td>5,38</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (K)</td>
<td>P (bar)</td>
<td>h (kJ/kg)</td>
<td>x</td>
<td>(\dot{m}) (kg/s) (10^{-3})</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>25,0</td>
<td>1,686</td>
<td>-124,2011</td>
<td>0,3798458</td>
<td>2,840159</td>
</tr>
<tr>
<td>2</td>
<td>25,0463</td>
<td>10,634421</td>
<td>-123,0797</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>99,0884</td>
<td>10,634421</td>
<td>218,8935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>10,674421</td>
<td>562,6857</td>
<td>0,1198252</td>
<td>2,000167</td>
</tr>
<tr>
<td>5</td>
<td>50,1122</td>
<td>10,634421</td>
<td>121,5003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50,2562</td>
<td>1,686</td>
<td>121,5003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40,4124</td>
<td>10,634421</td>
<td>1330,243</td>
<td>0,999</td>
<td>0,8399921</td>
</tr>
<tr>
<td>8</td>
<td>27,0</td>
<td>10,12802</td>
<td>126,6899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11,1532</td>
<td>10,12802</td>
<td>52,33071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11,2232</td>
<td>1,823071</td>
<td>51,33071</td>
<td>0,999</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-20,0</td>
<td>1,823071</td>
<td>1241,824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>17,5905</td>
<td>1,823071</td>
<td>1327,655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>17,1701</td>
<td>1,686</td>
<td>1327,655</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 26. 27 °C Yüksürlü, 25 °C Soğurucu, -20 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (°C)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>m (kg/s)10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25,0</td>
<td>1,686</td>
<td>-124,6856</td>
<td>0,3821128</td>
<td>4,320236</td>
</tr>
<tr>
<td>2</td>
<td>25,0463</td>
<td>10,634621</td>
<td>-123,5629</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>90,7065</td>
<td>10,634421</td>
<td>179,2707</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>120,0</td>
<td>10,666421</td>
<td>366,3177</td>
<td>0,2332208</td>
<td>3,480244</td>
</tr>
<tr>
<td>5</td>
<td>44,1102</td>
<td>10,634421</td>
<td>22,61916</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>44,2502</td>
<td>1,686</td>
<td>22,61916</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>40,4124</td>
<td>10,634421</td>
<td>1330,243</td>
<td>0,999</td>
<td>0,8399921</td>
</tr>
<tr>
<td>8</td>
<td>27,0</td>
<td>10,1282</td>
<td>126,6899</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>11,1532</td>
<td>10,1282</td>
<td>51,33071</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>11,2232</td>
<td>1,823071</td>
<td>51,33071</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>-20,0</td>
<td>1,823071</td>
<td>1241,824</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>17,5905</td>
<td>1,823071</td>
<td>1327,655</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>17,1701</td>
<td>1,686</td>
<td>1327,55</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 27. 27 °C Yoğuşturucu, 25 °C Soğurucu, 10 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Analizden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>(\dot{m}) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>5,38</td>
<td>-107,5726</td>
<td>0,6274978</td>
<td>1,470183</td>
</tr>
<tr>
<td>2</td>
<td>25,0504</td>
<td>10,634421</td>
<td>-106,8279</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>68,3378</td>
<td>10,634421</td>
<td>93,99886</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>150,0</td>
<td>10,650421</td>
<td>560,0768</td>
<td>0,1244302</td>
<td>0,6245084</td>
</tr>
<tr>
<td>5</td>
<td>50,152</td>
<td>10,634421</td>
<td>118,4459</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>6</td>
<td>50,2275</td>
<td>5,38</td>
<td>118,4459</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7</td>
<td>40,4124</td>
<td>10,634421</td>
<td>1330,243</td>
<td>0,999</td>
<td>0,8456741</td>
</tr>
<tr>
<td>8</td>
<td>27,0</td>
<td>10,12802</td>
<td>126,6899</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>9</td>
<td>21,1477</td>
<td>10,12802</td>
<td>98,57568</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>21,1677</td>
<td>5,816969</td>
<td>98,57568</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td>5,816969</td>
<td>1280,065</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12</td>
<td>23,5943</td>
<td>5,816969</td>
<td>1314,943</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>12'</td>
<td>22,4532</td>
<td>5,380</td>
<td>1314,943</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Tablo 28. 27 °C Yoğunşurucu, 25 °C Soğurucu, 10 °C Buharlaştı-
irci ve 120 °C Ayrıcı Sıcaklığında Analizden Elde
Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T</th>
<th>P</th>
<th>h</th>
<th>x</th>
<th>m (kg/s)10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25,0</td>
<td>5,38</td>
<td>-106,8095</td>
<td>0,629766</td>
<td>1,642541</td>
</tr>
<tr>
<td>2</td>
<td>25,0504</td>
<td>10,634421</td>
<td>-106,064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>63,2842</td>
<td></td>
<td>70,73423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120,0</td>
<td>10,650421</td>
<td>364,1111</td>
<td>0,2379182</td>
<td>0,7968671</td>
</tr>
<tr>
<td>5</td>
<td>44,273</td>
<td>10,634421</td>
<td>20,85876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>44,3465</td>
<td>5,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>40,4124</td>
<td>10,634421</td>
<td>1330,243</td>
<td>0,999</td>
<td>0,8456741</td>
</tr>
<tr>
<td>8</td>
<td>27,0</td>
<td>10,12802</td>
<td>126,6899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21,1477</td>
<td></td>
<td>98,57568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>21,1677</td>
<td>5,816969</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10,0</td>
<td></td>
<td>1280,065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>23,5943</td>
<td></td>
<td>1341,943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12'</td>
<td>22,4532</td>
<td>5,38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tablo 29. 30 °C Yoğunluk, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T K</th>
<th>P bar</th>
<th>(h_g) kj/kg</th>
<th>x</th>
<th>(h_g) kj/kg</th>
<th>y</th>
<th>(\dot{m}_l) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08468567</td>
<td>0.8468567</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.660</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.9761662</td>
<td>0.06303821</td>
<td>0.9315424</td>
</tr>
<tr>
<td>14</td>
<td>91.45</td>
<td>11.668</td>
<td>183.6527</td>
<td>0.3772279</td>
<td>1499.554</td>
<td>0.9605324</td>
<td>-</td>
<td>0.9098949</td>
</tr>
<tr>
<td>15</td>
<td>102.25</td>
<td>11.676</td>
<td>247.968</td>
<td>0.3246657</td>
<td>1556.517</td>
<td>0.9331326</td>
<td>3.162448</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>117.15</td>
<td>11.684</td>
<td>341.9001</td>
<td>0.2583064</td>
<td>1658.185</td>
<td>0.8741358</td>
<td>3.161887</td>
<td>0.81543</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>150.0</td>
<td>11.692</td>
<td>554.889</td>
<td>0.1337621</td>
<td>2021.513</td>
<td>0.6170243</td>
<td>2.347019</td>
<td>0.8148685</td>
</tr>
</tbody>
</table>

Tablo 30. 30 °C Yoğunluk, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 140 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T K</th>
<th>P bar</th>
<th>(h_g) kj/kg</th>
<th>x</th>
<th>(h_g) kj/kg</th>
<th>y</th>
<th>(\dot{m}_l) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08468567</td>
<td>0.8468567</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.660</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.9761662</td>
<td>0.06303821</td>
<td>0.9315424</td>
</tr>
<tr>
<td>14</td>
<td>91.45</td>
<td>11.668</td>
<td>183.6527</td>
<td>0.3772279</td>
<td>1499.554</td>
<td>0.9605324</td>
<td>-</td>
<td>0.9098949</td>
</tr>
<tr>
<td>15</td>
<td>98.80</td>
<td>11.676</td>
<td>227.0069</td>
<td>0.3410269</td>
<td>1536.983</td>
<td>0.9431114</td>
<td>3.611783</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>108.7521</td>
<td>11.684</td>
<td>288.3403</td>
<td>0.295008</td>
<td>1597.083</td>
<td>0.9108509</td>
<td>3.59711</td>
<td>0.8322118</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>140.0</td>
<td>11.692</td>
<td>489.4645</td>
<td>0.1704199</td>
<td>1885.39</td>
<td>0.7185983</td>
<td>2.779571</td>
<td>0.8175385</td>
</tr>
</tbody>
</table>
Tablo 31. 30 °C Yoğunşturucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 130 °C Ayırıcı Sıcaklığına Distilasyon Kolonu Ile İlgili Sonuçlar

Referans Noktaları	T (K)	P (bar)	h_g (kj/kg)	x	h_g (kj/kg)	
7 (Deflakmatör)	42.6065	11.652	28.07271	0.7478289	1330.737	
13	61.5851	11.660	128.5714	0.4437571	1457.588	
14	91.45	11.668	183.6527	0.3772279	1499.554	
15	96.40	11.676	212.6587	0.3526609	1524.154	
16	102.5036	11.684	249.4809	0.323611	1557.911	
4 (Ayırıcı)	130.0	11.692	424.0608	0.2086561	1772.866	
2 (Ayırıcı)					0.7986045	3.442994
3 (Ayırıcı)					0.8332517	

Tablo 32. 30 °C Yoğunşturucu, 28 °C Soğurucu, -20 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu Ile İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h_g (kj/kg)</th>
<th>x</th>
<th>h_g (kj/kg)</th>
<th>y</th>
<th>m_g (kg/s)</th>
<th>m_g (kg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08468567</td>
<td>0.8468567</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.660</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.9761662</td>
<td>0.06303821</td>
<td>0.9315424</td>
</tr>
<tr>
<td>14</td>
<td>91.45</td>
<td>11.668</td>
<td>183.6527</td>
<td>0.3772279</td>
<td>1499.554</td>
<td>0.9605324</td>
<td>-</td>
<td>0.9098949</td>
</tr>
<tr>
<td>15</td>
<td>94.6499</td>
<td>11.676</td>
<td>202.3295</td>
<td>0.3612837</td>
<td>1515.166</td>
<td>0.953659</td>
<td>4.298205</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>97.95</td>
<td>11.684</td>
<td>221.8647</td>
<td>0.3452582</td>
<td>1532.288</td>
<td>0.945359</td>
<td>4.276246</td>
<td>0.8552102</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>120.0</td>
<td>11.692</td>
<td>359.2117</td>
<td>0.2487582</td>
<td>1680.513</td>
<td>0.8602062</td>
<td>4.596445</td>
<td>8.613628</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T K</td>
<td>P bar</td>
<td>h_g kj/kg</td>
<td>x</td>
<td>h_g kj/kg</td>
<td>y</td>
<td>\dot{m}_g (kg/s)10^{-3}</td>
<td>\dot{m}_g (kg/s)10^{-3}</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08472665</td>
<td>0.8472665</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.66</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.8761662</td>
<td>-</td>
<td>0.9319931</td>
</tr>
<tr>
<td>14</td>
<td>88.5499</td>
<td>11.668</td>
<td>167.3563</td>
<td>0.3921961</td>
<td>1486.115</td>
<td>0.9661595</td>
<td>2.415373</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>109.3501</td>
<td>11.676</td>
<td>292.1569</td>
<td>0.292204</td>
<td>1601.212</td>
<td>0.9084652</td>
<td>2.391225</td>
<td>0.8030815</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>150.0</td>
<td>11.684</td>
<td>554.1776</td>
<td>0.1350428</td>
<td>2021.022</td>
<td>0.6175075</td>
<td>1.612292</td>
<td>0.7789333</td>
</tr>
</tbody>
</table>

Tablo 34. 30 °C Yoğunluk, 28 °C Soğurucu, -10 °C Buharlaştırıcılı ve 140 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T K</th>
<th>P bar</th>
<th>h_g kj/kg</th>
<th>x</th>
<th>h_g kj/kg</th>
<th>y</th>
<th>\dot{m}_g (kg/s)10^{-3}</th>
<th>\dot{m}_g (kg/s)10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08472665</td>
<td>0.8472665</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.66</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.9761662</td>
<td>-</td>
<td>0.9319931</td>
</tr>
<tr>
<td>14</td>
<td>99.9502</td>
<td>11.668</td>
<td>233.9939</td>
<td>0.3353891</td>
<td>1543.437</td>
<td>0.9398649</td>
<td>2.612505</td>
<td>-</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>140.0</td>
<td>11.676</td>
<td>488.8434</td>
<td>0.1715854</td>
<td>1885.24</td>
<td>0.7187979</td>
<td>1.830473</td>
<td>0.7820328</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (K)</td>
<td>P (bar)</td>
<td>(h_g) (kj/kg)</td>
<td>(x)</td>
<td>(h_g) (kj/kg)</td>
<td>(y)</td>
<td>(\dot{m}_k) (kg/s) (10^{-3})</td>
<td>(\dot{m}_g) (kg/s) (10^{-3})</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------------</td>
<td>------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08472665</td>
<td>0.8472665</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.660</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.9761662</td>
<td>-</td>
<td>0.9319931</td>
</tr>
<tr>
<td>14</td>
<td>92.9501</td>
<td>11.668</td>
<td>192.4452</td>
<td>0.3696357</td>
<td>1506.791</td>
<td>0.9573551</td>
<td>2.927719</td>
<td>-</td>
</tr>
<tr>
<td>4 (Ayrıcı)</td>
<td>130.0</td>
<td>11.676</td>
<td>423.4859</td>
<td>0.2098142</td>
<td>1772.722</td>
<td>0.7987951</td>
<td>2.133275</td>
<td>0.794444</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>(h_g) (kj/kg)</th>
<th>(x)</th>
<th>(h_g) (kj/kg)</th>
<th>(y)</th>
<th>(\dot{m}_k) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08472665</td>
<td>0.8472665</td>
</tr>
<tr>
<td>13</td>
<td>81.5851</td>
<td>11.660</td>
<td>128.5714</td>
<td>0.4437571</td>
<td>1457.588</td>
<td>0.8761662</td>
<td>-</td>
<td>0.9319931</td>
</tr>
<tr>
<td>14</td>
<td>87.7516</td>
<td>11.668</td>
<td>162.9028</td>
<td>0.3963858</td>
<td>1482.538</td>
<td>0.9675944</td>
<td>3.397845</td>
<td>-</td>
</tr>
<tr>
<td>4 (Ayrıcı)</td>
<td>120.0</td>
<td>11.676</td>
<td>358.7008</td>
<td>0.2499057</td>
<td>1680.388</td>
<td>0.8603778</td>
<td>2.582547</td>
<td>0.8152981</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (K)</td>
<td>P (bar)</td>
<td>h₀ (kJ/kg)</td>
<td>h₁ (kJ/kg)</td>
<td>h₂ (kJ/kg)</td>
<td>X</td>
<td>Y</td>
<td>ŷ (g)/(s) x 10⁻³</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>7 (DeFlakatör)</td>
<td>42.6065</td>
<td>11.662</td>
<td>11.630</td>
<td>11.614</td>
<td>0.735</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
</tr>
<tr>
<td>13</td>
<td>80.699</td>
<td>11.660</td>
<td>11.668</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
</tr>
<tr>
<td>14</td>
<td>104.6994</td>
<td>11.676</td>
<td>11.676</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
</tr>
<tr>
<td>4 (Ayrıçı)</td>
<td>150.0</td>
<td>11.676</td>
<td>11.676</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h₀ (kJ/kg)</th>
<th>h₁ (kJ/kg)</th>
<th>h₂ (kJ/kg)</th>
<th>X</th>
<th>Y</th>
<th>ŷ (g)/(s) x 10⁻³</th>
<th>ṁ (kg/(s) x 10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (DeFlakatör)</td>
<td>42.6065</td>
<td>11.662</td>
<td>11.630</td>
<td>11.614</td>
<td>0.735</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
<td>0.653</td>
</tr>
<tr>
<td>13</td>
<td>80.699</td>
<td>11.660</td>
<td>11.668</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
<td>0.653</td>
</tr>
<tr>
<td>14</td>
<td>104.6994</td>
<td>11.676</td>
<td>11.676</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
<td>0.653</td>
</tr>
<tr>
<td>4 (Ayrıçı)</td>
<td>150.0</td>
<td>11.676</td>
<td>11.676</td>
<td>11.676</td>
<td>0.747</td>
<td>0.560</td>
<td>11.666</td>
<td>11.648</td>
<td>0.653</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (K)</td>
<td>P (bar)</td>
<td>(h_L) (kj/kg)</td>
<td>(\chi)</td>
<td>(h_g) (kj/kg)</td>
<td>y</td>
<td>(\dot{m}_L) (kg/s) (10^{-3})</td>
<td>(\dot{m}_g) (kg/s) (10^{-3})</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------------</td>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>7(Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08497813</td>
<td>0.8497813</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>86.8487</td>
<td>11.660</td>
<td>157.9292</td>
<td>0.4010129</td>
<td>1478.616</td>
<td>0.9691296</td>
<td>2.040834</td>
<td>0.93475913</td>
<td></td>
</tr>
<tr>
<td>4(Ayrıç1)</td>
<td>130.0</td>
<td>11.668</td>
<td>422.7813</td>
<td>0.2112393</td>
<td>1772.314</td>
<td>0.7992011</td>
<td>1.382124</td>
<td>0.6587104</td>
<td></td>
</tr>
</tbody>
</table>

Tablo 40. 30 °C Yoğuşturucu, 28 °C Soğurucu, 0 °C Buharlaştırıcı ve 120 °C Ayrıç Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>(h_L) (kj/kg)</th>
<th>(\chi)</th>
<th>(h_g) (kj/kg)</th>
<th>y</th>
<th>(\dot{m}_L) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08497813</td>
<td>0.8497813</td>
</tr>
<tr>
<td>13</td>
<td>86.8487</td>
<td>11.660</td>
<td>126.3926</td>
<td>0.4332769</td>
<td>1454.024</td>
<td>0.9779934</td>
<td>2.263745</td>
<td>0.93476013</td>
</tr>
<tr>
<td>4(Ayrıç1)</td>
<td>120.0</td>
<td>11.668</td>
<td>358.0712</td>
<td>0.2513273</td>
<td>1680.061</td>
<td>0.8607088</td>
<td>1.587834</td>
<td>0.6579106</td>
</tr>
</tbody>
</table>
Tablo 41. 30 °C Yoğuşturucu, 28 °C Suğurucu, 10 °C Buharlaştırıcı ve 150 °C Ayırıcı Sıcaklığında Distilasyon Kolonu Ile İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>(h_g) (kj/kg)</th>
<th>x</th>
<th>(h_g) (kj/kg)</th>
<th>y</th>
<th>(\dot{m}_L) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflaktatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08525007</td>
<td>0.8525007</td>
</tr>
<tr>
<td>13</td>
<td>95.4665</td>
<td>11.660</td>
<td>208.2679</td>
<td>0.3560805</td>
<td>1520.405</td>
<td>0.9511098</td>
<td>1.349869</td>
<td>0.93775127</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>150.00</td>
<td>11.668</td>
<td>552.4503</td>
<td>0.1381655</td>
<td>2019.695</td>
<td>0.6187908</td>
<td>0.7378398</td>
<td>0.6120292</td>
</tr>
</tbody>
</table>

Tablo 42. 30 °C Yoğuşturucu, 28 °C Suğurucu, 10 °C Buharlaştırıcı ve 140 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>(h_g) (kj/kg)</th>
<th>x</th>
<th>(h_g) (kj/kg)</th>
<th>y</th>
<th>(\dot{m}_L) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflaktatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08525007</td>
<td>0.8525007</td>
</tr>
<tr>
<td>13</td>
<td>84.6492</td>
<td>11.660</td>
<td>145.9365</td>
<td>0.4128149</td>
<td>1469.163</td>
<td>0.9727048</td>
<td>1.417215</td>
<td>0.83775087</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>140.00</td>
<td>11.668</td>
<td>487.133</td>
<td>0.1748124</td>
<td>1883.855</td>
<td>0.720103</td>
<td>0.7986442</td>
<td>0.6185706</td>
</tr>
</tbody>
</table>
Tablo 43. 30 °C Yoğunluk, 28 °C Soğurucu, 10 °C Buharlaştırıcı ve 130 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>h_g (kJ/kg)</th>
<th>y</th>
<th>(\dot{m}_l) (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478280</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08525007</td>
<td>0.8525007</td>
</tr>
<tr>
<td>13</td>
<td>76.3988</td>
<td>11.660</td>
<td>103.6286</td>
<td>0.4595734</td>
<td>1436.596</td>
<td>0.9833679</td>
<td>1.507307</td>
<td>0.937751227</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>130.0</td>
<td>11.668</td>
<td>421.8966</td>
<td>0.2130381</td>
<td>1771.598</td>
<td>0.7998616</td>
<td>0.8740598</td>
<td>0.6332471</td>
</tr>
</tbody>
</table>

Tablo 44. 30 °C Yoğunluk, 28 °C Soğurucu, 10 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>h (kJ/kg)</th>
<th>x</th>
<th>h_g (kJ/kg)</th>
<th>y</th>
<th>m (kg/s) (10^{-3})</th>
<th>(\dot{m}_g) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>42.6065</td>
<td>11.652</td>
<td>28.07271</td>
<td>0.7478289</td>
<td>1330.737</td>
<td>0.999</td>
<td>0.08525007</td>
<td>0.8525007</td>
</tr>
<tr>
<td>13</td>
<td>70.3003</td>
<td>11.660</td>
<td>75.71865</td>
<td>0.4971949</td>
<td>1414.938</td>
<td>0.9889111</td>
<td>1.621265</td>
<td>0.93775047</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>120.0</td>
<td>11.668</td>
<td>357.2801</td>
<td>0.253126</td>
<td>1679.5</td>
<td>0.8612289</td>
<td>0.9705526</td>
<td>0.6507129</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T (K)</td>
<td>P (bar)</td>
<td>(h_g) (kj/kg)</td>
<td>x</td>
<td>(h_g) (kj/kg)</td>
<td>y</td>
<td>(\dot{m}_L) (kg/s) (10^{-3})</td>
<td>(\dot{m}_G) (kg/s) (10^{-3})</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------</td>
<td>---------------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7 (Deflakmatör)</td>
<td>40.4124</td>
<td>10.634421</td>
<td>10.09666</td>
<td>0.7339062</td>
<td>1330.243</td>
<td>0.999</td>
<td>0.083999921</td>
<td>0.8399921</td>
</tr>
<tr>
<td>13</td>
<td>80.1344</td>
<td>10.642421</td>
<td>122.7181</td>
<td>0.4314579</td>
<td>1459.269</td>
<td>0.9749006</td>
<td>0.06364355</td>
<td>0.9239913</td>
</tr>
<tr>
<td>14</td>
<td>89.7005</td>
<td>10.650421</td>
<td>177.7227</td>
<td>0.3673123</td>
<td>1500.588</td>
<td>0.9590277</td>
<td>–</td>
<td>0.9036356</td>
</tr>
<tr>
<td>15</td>
<td>96.30</td>
<td>10.659421</td>
<td>217.1449</td>
<td>0.3350611</td>
<td>1534.578</td>
<td>0.9429789</td>
<td>2.803516</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>115.0505</td>
<td>10.666421</td>
<td>335.4839</td>
<td>0.2509044</td>
<td>1660.513</td>
<td>0.8705989</td>
<td>2.803516</td>
<td>0.8038792</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>150.0</td>
<td>10.674421</td>
<td>562.6857</td>
<td>0.1198252</td>
<td>2069.508</td>
<td>0.5772635</td>
<td>2.000167</td>
<td>0.803349</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T (K)</th>
<th>P (bar)</th>
<th>(h_g) (kj/kg)</th>
<th>x</th>
<th>(h_g) (kj/kg)</th>
<th>y</th>
<th>(\dot{m}_L) (kg/s) (10^{-3})</th>
<th>(\dot{m}_G) (kg/s) (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>40.4124</td>
<td>10.634421</td>
<td>10.09666</td>
<td>0.7339062</td>
<td>1330.243</td>
<td>0.999</td>
<td>0.083999921</td>
<td>0.8399921</td>
</tr>
<tr>
<td>13</td>
<td>80.1344</td>
<td>10.642421</td>
<td>122.7181</td>
<td>0.4314579</td>
<td>1459.269</td>
<td>0.9749006</td>
<td>0.06364355</td>
<td>0.9239913</td>
</tr>
<tr>
<td>14</td>
<td>88.0499</td>
<td>10.650421</td>
<td>168.2906</td>
<td>0.3756916</td>
<td>1492.726</td>
<td>0.9624448</td>
<td>4.341301</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>93.0005</td>
<td>10.658421</td>
<td>197.2814</td>
<td>0.351051</td>
<td>1516.991</td>
<td>0.9515344</td>
<td>4.311853</td>
<td>0.8610564</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>120.0</td>
<td>10.666421</td>
<td>366.3177</td>
<td>0.2332208</td>
<td>1701.831</td>
<td>0.8441642</td>
<td>3.480244</td>
<td>0.8316094</td>
</tr>
<tr>
<td>Referans Noktaları</td>
<td>T</td>
<td>P</td>
<td>(h_f)</td>
<td>x</td>
<td>(h_g)</td>
<td>y</td>
<td>(\dot{m}_f)</td>
<td>(\dot{m}_g)</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7 (Deflakmatör)</td>
<td>40.4124</td>
<td>10.634421</td>
<td>10.09666</td>
<td>0.7339062</td>
<td>1330.243</td>
<td>0.999</td>
<td>0.08456741</td>
<td>0.8456741</td>
</tr>
<tr>
<td>13</td>
<td>93.85</td>
<td>10.642421</td>
<td>202.424</td>
<td>0.346613</td>
<td>1521.566</td>
<td>0.9493362</td>
<td>1.221191</td>
<td>0.93024201</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>150.0</td>
<td>10.650421</td>
<td>560.0768</td>
<td>0.1244302</td>
<td>2067.546</td>
<td>0.5791572</td>
<td>0.6245084</td>
<td>0.5966823</td>
</tr>
</tbody>
</table>

Tablo 48. 27 °C Yoğuşturucu, 25 °C Soğurucu, 10 °C Buharlaştırıcı ve 120 °C Ayırıcı Sıcaklığında Distilasyon Kolonu İle İlgili Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T</th>
<th>P</th>
<th>(h_f)</th>
<th>x</th>
<th>(h_g)</th>
<th>y</th>
<th>(\dot{m}_f)</th>
<th>(\dot{m}_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 (Deflakmatör)</td>
<td>40.4124</td>
<td>10.634421</td>
<td>10.09666</td>
<td>0.7339062</td>
<td>1330.243</td>
<td>0.999</td>
<td>0.08456741</td>
<td>0.8456741</td>
</tr>
<tr>
<td>13</td>
<td>65.1515</td>
<td>10.642421</td>
<td>52.39543</td>
<td>0.5075636</td>
<td>1403.787</td>
<td>0.9909834</td>
<td>1.432847</td>
<td>0.93024131</td>
</tr>
<tr>
<td>4 (Ayırıcı)</td>
<td>120.0</td>
<td>10.650421</td>
<td>364.1111</td>
<td>0.2379182</td>
<td>1700.526</td>
<td>0.8454226</td>
<td>0.7968671</td>
<td>0.63598</td>
</tr>
<tr>
<td>Durum No</td>
<td>Buhar Sic. Ayırıcı Sic. Sıvı Kesiri</td>
<td>Kuru raf basınç kaybı ΔP_k (cm)</td>
<td>Toplam basınç kaybı ΔP_t (cm)</td>
<td>$\Delta P_k^{+h_O}$ (cm)</td>
<td>$h_w^{+h_O}$ (cm)</td>
<td>Toplama sertliği kalma süresi Δ (s)</td>
<td>Sıva Dalgıçlığı Δ (cm)</td>
<td>h_{dc} (cm)</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>-20</td>
<td>150.0</td>
<td>-3</td>
<td>3.908317x10</td>
<td>3.0456974</td>
<td>0.92438654</td>
<td>3.0149093</td>
<td>170,9</td>
</tr>
<tr>
<td>2</td>
<td>-20</td>
<td>140.0</td>
<td>-3</td>
<td>3.908857x10</td>
<td>3.093487977</td>
<td>0.93031097</td>
<td>3.01485006</td>
<td>171,1</td>
</tr>
<tr>
<td>3</td>
<td>-20</td>
<td>130.0</td>
<td>-3</td>
<td>3.909332x10</td>
<td>3.03520885</td>
<td>0.93765495</td>
<td>3.01479408</td>
<td>171,2</td>
</tr>
<tr>
<td>4</td>
<td>-20</td>
<td>120.0</td>
<td>-3</td>
<td>3.909745x10</td>
<td>3.03554919</td>
<td>0.94595299</td>
<td>3.01474079</td>
<td>171,3</td>
</tr>
<tr>
<td>5</td>
<td>-10</td>
<td>150.0</td>
<td>-3</td>
<td>3.909908x10</td>
<td>3.03345963</td>
<td>0.8107983</td>
<td>3.0145616</td>
<td>176,9</td>
</tr>
<tr>
<td>6</td>
<td>-10</td>
<td>140.0</td>
<td>-3</td>
<td>3.91022x10</td>
<td>3.03377543</td>
<td>0.81868493</td>
<td>3.01451589</td>
<td>176,9</td>
</tr>
<tr>
<td>7</td>
<td>-10</td>
<td>130.0</td>
<td>-3</td>
<td>3.91048x10</td>
<td>3.0341095</td>
<td>0.827855</td>
<td>3.01447325</td>
<td>176,8</td>
</tr>
<tr>
<td>8</td>
<td>-10</td>
<td>120.0</td>
<td>-3</td>
<td>3.91071x10</td>
<td>3.03445454</td>
<td>0.8378932</td>
<td>3.01443319</td>
<td>176,8</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>150.0</td>
<td>-3</td>
<td>3.910778x10</td>
<td>3.03205936</td>
<td>0.69069166</td>
<td>3.01422392</td>
<td>183,5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>140.0</td>
<td>-3</td>
<td>3.910374x10</td>
<td>3.03224219</td>
<td>0.70562499</td>
<td>3.01423876</td>
<td>181,6</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>130.0</td>
<td>-3</td>
<td>3.911326x10</td>
<td>3.03297506</td>
<td>0.71683456</td>
<td>3.01408719</td>
<td>186,1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>120.0</td>
<td>-3</td>
<td>3.911177x10</td>
<td>3.03309187</td>
<td>0.72820757</td>
<td>3.01413625</td>
<td>182,8</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>150.0</td>
<td>-3</td>
<td>3.910135x10</td>
<td>3.03077378</td>
<td>0.57668358</td>
<td>3.01368376</td>
<td>199,6</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>140.0</td>
<td>-3</td>
<td>3.911279x10</td>
<td>3.03074554</td>
<td>0.58762504</td>
<td>3.0137948</td>
<td>193,8</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>130.0</td>
<td>-3</td>
<td>3.911062x10</td>
<td>3.03078065</td>
<td>0.59960465</td>
<td>3.01389112</td>
<td>188,7</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>120.0</td>
<td>-3</td>
<td>3.910047x10</td>
<td>3.03087643</td>
<td>0.61235353</td>
<td>3.01397108</td>
<td>184,6</td>
</tr>
<tr>
<td>T_b</td>
<td>T_a</td>
<td>(\Delta P_k)</td>
<td>(\Delta P_t)</td>
<td>(\Delta P_{k+h})</td>
<td>(h_{w+0})</td>
<td>(h_{dc})</td>
<td>(\Delta)</td>
<td>(h_{dc})</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>-20</td>
<td>150</td>
<td>3.904377 0.0362977</td>
<td>2.673826</td>
<td>0.9000736</td>
<td>3.01419206</td>
<td>194</td>
<td>3</td>
<td>3.871383x10^{-7}</td>
</tr>
<tr>
<td>-20</td>
<td>140</td>
<td>3.903605 0.03662849</td>
<td>2.671258</td>
<td>0.90668769</td>
<td>3.014139</td>
<td>194.5</td>
<td>3.829806x10^{-7}</td>
<td>5.685398</td>
</tr>
<tr>
<td>-20</td>
<td>130</td>
<td>3.911223 0.03697939</td>
<td>2.668674</td>
<td>0.914996</td>
<td>3.01408892</td>
<td>194.54</td>
<td>3.79098x10^{-7}</td>
<td>5.682764</td>
</tr>
<tr>
<td>-20</td>
<td>120</td>
<td>3.90201 0.03733662</td>
<td>2.666099</td>
<td>0.92394382</td>
<td>3.01404131</td>
<td>194.6</td>
<td>3.754441x10^{-7}</td>
<td>5.680142</td>
</tr>
<tr>
<td>-10</td>
<td>150</td>
<td>3.909665 0.03421453</td>
<td>2.674964</td>
<td>0.7851197</td>
<td>3.01411196</td>
<td>190.7</td>
<td>3.755718x10^{-7}</td>
<td>5.689077</td>
</tr>
<tr>
<td>-10</td>
<td>140</td>
<td>3.910195 0.0343889</td>
<td>2.673117</td>
<td>0.7936652</td>
<td>3.1411949</td>
<td>188.7</td>
<td>3.7535552x10^{-7}</td>
<td>5.687238</td>
</tr>
<tr>
<td>-10</td>
<td>130</td>
<td>3.910459 0.03462108</td>
<td>2.671107</td>
<td>0.803492</td>
<td>3.1411656</td>
<td>187.2</td>
<td>3.745828x10^{-7}</td>
<td>5.685225</td>
</tr>
<tr>
<td>-10</td>
<td>120</td>
<td>3.909204 0.03516146</td>
<td>2.668076</td>
<td>0.8142342</td>
<td>3.1402579</td>
<td>189.2</td>
<td>3.686784x10^{-7}</td>
<td>5.682103</td>
</tr>
<tr>
<td>0</td>
<td>150</td>
<td>3.89005 0.0335185</td>
<td>2.671509</td>
<td>0.6698537</td>
<td>3.1351344</td>
<td>209.9</td>
<td>3.493111x10^{-7}</td>
<td>5.685024</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>3.900602 0.03365495</td>
<td>2.670033</td>
<td>0.680077</td>
<td>3.1355309</td>
<td>206.6</td>
<td>3.367442x10^{-7}</td>
<td>5.683587</td>
</tr>
<tr>
<td>0</td>
<td>130</td>
<td>3.89597 0.03427304</td>
<td>2.666897</td>
<td>0.6917923</td>
<td>3.1345383</td>
<td>209.77</td>
<td>3.309636x10^{-7}</td>
<td>5.680352</td>
</tr>
<tr>
<td>0</td>
<td>120</td>
<td>3.897835 0.03449559</td>
<td>2.665217</td>
<td>0.7038155</td>
<td>3.1348018</td>
<td>207.2</td>
<td>3.321496x10^{-7}</td>
<td>5.678698</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>3.890006 0.03161962</td>
<td>2.672834</td>
<td>0.5465485</td>
<td>3.1308443</td>
<td>224.3</td>
<td>3.05595x10^{-7}</td>
<td>5.685919</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>3.893901 0.03177692</td>
<td>2.671591</td>
<td>0.5583387</td>
<td>3.1314744</td>
<td>219.9</td>
<td>3.088227x10^{-7}</td>
<td>5.684739</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>3.898705 0.03224053</td>
<td>2.669648</td>
<td>0.5844697</td>
<td>3.1324105</td>
<td>213.3</td>
<td>3.137625x10^{-7}</td>
<td>5.68189</td>
</tr>
</tbody>
</table>
Şekil 23 Delikli Rafin Şematik Görünümü
| \(T_y \) \(^\circ\text{C} \) | \(T_s \) \(^\circ\text{C} \) | \(T_b \) \(^\circ\text{C} \) | \(T_a \) \(^\circ\text{C} \) | Kolon Etkinliği | Raf Sayıları \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>28</td>
<td>-20</td>
<td>120</td>
<td>65,7</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>-20</td>
<td>130</td>
<td>64,5</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>-20</td>
<td>140</td>
<td>63,2</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>-10</td>
<td>120</td>
<td>61,8</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>-10</td>
<td>130</td>
<td>62,6</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>-10</td>
<td>140</td>
<td>61,3</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>0</td>
<td>120</td>
<td>59,9</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>130</td>
<td>120</td>
<td>61,6</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>0</td>
<td>140</td>
<td>60,4</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>0</td>
<td>150</td>
<td>59,2</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>10</td>
<td>120</td>
<td>57,9</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>10</td>
<td>130</td>
<td>57,8</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>10</td>
<td>140</td>
<td>56,5</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>10</td>
<td>150</td>
<td>55,2</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-20</td>
<td>120</td>
<td>64,9</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-20</td>
<td>130</td>
<td>63,8</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-20</td>
<td>140</td>
<td>62,5</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-20</td>
<td>150</td>
<td>61,1</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-10</td>
<td>120</td>
<td>63,3</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-10</td>
<td>130</td>
<td>62,2</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-10</td>
<td>140</td>
<td>60,9</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>-10</td>
<td>150</td>
<td>59,5</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>0</td>
<td>120</td>
<td>60,7</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>0</td>
<td>130</td>
<td>59,6</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>0</td>
<td>140</td>
<td>58,4</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>0</td>
<td>150</td>
<td>57,1</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>10</td>
<td>120</td>
<td>57,9</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>10</td>
<td>140</td>
<td>55,5</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>10</td>
<td>150</td>
<td>54,3</td>
<td>1</td>
</tr>
</tbody>
</table>
Tablo 52. 30 °C Yoğuşturucu, 28 °C Soğurucu ve -20 °C Buharlaştırıcı Sıcaklıklarında 150 °C Ayırıcı Sıcaklığı İçin Grafik Çözümden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T(K)</th>
<th>y</th>
<th>h<sub>g</sub></th>
<th>x</th>
<th>h<sub>θ</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>316,6105</td>
<td>0,999</td>
<td>1333,0798</td>
<td>0,726</td>
<td>20,207595</td>
</tr>
<tr>
<td>13</td>
<td>359,5971</td>
<td>0,97142</td>
<td>1476,9276</td>
<td>0,403</td>
<td>155,62033</td>
</tr>
<tr>
<td>14</td>
<td>367,1689</td>
<td>0,95714</td>
<td>1512,2122</td>
<td>0,364</td>
<td>198,58471</td>
</tr>
<tr>
<td>16</td>
<td>387,4625</td>
<td>0,89285</td>
<td>1636,8928</td>
<td>0,27</td>
<td>323,66103</td>
</tr>
<tr>
<td>4</td>
<td>424,6619</td>
<td>0,60714</td>
<td>2048,9206</td>
<td>0,123</td>
<td>567,54825</td>
</tr>
</tbody>
</table>

Tablo 53. 27 °C Yoğuşturucu, 25 °C Soğurucu ve 0° Buharlaştırıcı Sıcaklıklarında 150 °C Ayırıcı Sıcaklığı İçin Grafik Çözümden Elde Edilen Sonuçlar

<table>
<thead>
<tr>
<th>Referans Noktaları</th>
<th>T(K)</th>
<th>y</th>
<th>h<sub>g</sub></th>
<th>x</th>
<th>h<sub>θ</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>314,4277</td>
<td>0,999</td>
<td>1332,584</td>
<td>0,712</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>357,2359</td>
<td>0,97142</td>
<td>1474,9527</td>
<td>0,396</td>
<td>145,769</td>
</tr>
<tr>
<td>4</td>
<td>412,8536</td>
<td>0,700213</td>
<td>1922,3601</td>
<td>0,152</td>
<td>497,91052</td>
</tr>
<tr>
<td>4'</td>
<td>448,1405</td>
<td>0,17142</td>
<td>2584,0033</td>
<td>0,027</td>
<td>727,1524</td>
</tr>
</tbody>
</table>
5.2. Bulgular

Amonyak/su akışkan çifti ile çalışan SSS'nin termodinamik analizi ve distilasyon kolonunun tasarımı yapılmış, sistemi oluşturan birimlerin bazı termodinamik parametreleri ile deflakmatör çıkışında 0,999 amonyak derişiminin elde etmek için gerekli teorik raf sayısı, kolon çapı ve kolon etkinliği hesaplanmıştır.

1. 50, 60 ve 70 °C gibi düşük ayırıcı sıcaklıklarında SSS'nin çalışmamadığı gözlenmiştir.

2. Bunun yanında 80, 90, 100 ve 110 °C ayırıcı sıcaklıklarında sistem distilasyon kolonunda herhangi bir raf olmadan 0,999 derişimi yalnız deflakmatördeki soğutma ile elde edilebilmektedir.

3. Distilasyon kolonunun teorik raf sayısı analitik olarak ve Ponchon-Savarit grafik yöntemi ile belirlenmiş ve bilgisayar yardımıyla elde edilen analitik sonuçların daha hassas olduğu görülmüş-

4. SSS'nin bu çalışma şartlarında maksimum teorik raf sayısı dört tanedir. Bunun anlamı amonyak/su'lu sistemlerde çok az teorik raf sayısı ile yüksek amonyak derişimleri elde edilebilmektedir.

7. Ayırıcı sıcaklığı arttıkça teorik raf sayısı artarken buharlaştıracı sıcaklığı arttıkça raf sayısı az da olsa azalmaktadır.
8. Bu çalışmada SSS'nin soğutma yükü oldukça küçültür. Literature verilen sanayi tipi distilasyon kolonlarının tasarımını için geliştirilen yöntemlerin SSS'de kullanımı oldukça sınırlıdır. Üregi̇n sanayi tipi distilasyon kolonlarındaki taba borusunda kalma süresi üç saniye kadarken bu süre SSS'de 200 saniyenin üzerine çıkmaktadır. Dolayısıyla SSS için daha gerçekçi bir distilasyon kolonu tasarımını yapılması istenirse SSS'nin soğutma yükü oldukça yüksek olmalıdır.

9. Tasarımında delikli raf tipi seçilmiş ve delik çapı 3 mm'dir. Delikli tip raflar kabarcık bağlıklı (Bubble-cap) rafllarla karşılaştırıldığında zaman pratikte çok daha sık kullanılmaktadır.

5.3. Üzeriler

Amonyak/su, soğutucu/söğürücü akışkan çifti ile çalışan SSS'nin termodinamik ve kolon tasarımını içeren analizi yapılmış ve Bölüm 5.1'de verilen sonuçlar elde edilmiştir. Verilen modeli geliştirmek ve daha duyarlı sonuçlar elde etmek için aşağıdaki çalışmaların yapılması gerekir.

a. SSS'nin bütün birimlerindeki ve bağlantı elemanlarında ki basınç kayıpları da dikkate alınarak bir analiz yapılmalıdır.

b. Deflakmatör çıktığında karışıının amonyak derişimi için farklı değerler alınarak analizin yapılması gerekir.

c. Farklı soğutma yükleri ve geri dönüş akı oranı için analiz yapılabilir.

d. Sistemin otuk ısı ve güneş enerjisi kullanılabilirliği araştırlabilir.

e. Sistemin istenilen çalışma şartlarında optimum çalışma şartlarının belirlenmesi için bir analiz yapılabilir.
f. Sistemin ekonomik analizi yapılmalıdır.

g. Şekil 1'de görülen SSS bir ısı pompası gibi çalışılarak termodinamik analizi yapılabilir.

EK 1

PONCHON-SAVARIT GRAFİK YÖNTEMİ İLE ÖRNEK ÇÖZÜM
EK 2

BİLGİSAYAR PROGRAMI

Termodinamik analiz ve kolon tasarım için BASIC dilinde bir bilgisayar programı geliştirilmiş ve bu program aşağıda verilmiştir.
EK 2

BİLGİSAYAR PROGRAMI

Termodinamik analiz ve kolon tasarımı için BASIC dilinde bir bilgisayar programı geliştirilmiş ve bu program aşağıda verilmiştir.

```
10 PRINT "*******************************************************************"
20 PRINT "*******************************************************************"
30 PRINT "*** AMONYAK/SU İLE CALIŞAN SOĞURMALI SOĞUTMA ***"
40 PRINT "*** SİSTEemin TERMODINAMİK ANALİZI ***"
50 PRINT "*******************************************************************"
60 PRINT "*******************************************************************"
70 OPEN "D",#1,"B:Fl.DAT"
80 OPEN "D",#2,"B:F2.DAT"
90 OPEN "D",#3,"B:F3.DAT"
100 CLS
110 'Termodinamik Analizde Kullanılan Veriler
120 'Soğurucu Sıcaklığı (K)
130 T5=301.15
140 'Yoğurtucu Sıcaklığı (K)
150 T=353.15
160 'Buharlaştırıcı Sıcaklığı (K)
170 T=253.15
180 'Ayırıcı Sıcaklığı (K)
190 TA=423.15
200 'Sistemin Soğutma Yükü (kW)
210 QBUN=1
220 'Ayırıcı Çıkışında Soğutucu Kütle Konsantrasyonu
230 Y7=.999
240 'Gaz Sabiti (kJ/kmol K)
250 R=8.314
260 'Termodinamik Analiz İçin Gereklili Değerlerin Hesaplanması
270 'Çevrimin Düşük Basıncı *PBê
280 'Buharlaştırıcı Çıkışta Tamamen Gaz Karışım
290 X10=Y7; Y11=X10; XI1=Y11
300 T=T8;XI=X11
310 BOSUB 7070
320 P=P/(10^-5)
330 PRINT "PB=","PB"
340 'Çevrimin Yüksek Basıncı *PYê
350 T=TY; X=Y7
360 BOSUB 7070
370 PY=P/(10^-5)
380 PRINT "PY=","PY"n
390 "XI'in Hesaplanması
400 P=PB*10^-5*925
```
410 T=TS
420 GOSUB 7110
430 X1EQ=I
440 'X4' ön Hesaplanması
450 P=(P*1.05+.04)*10^5
460 T=TA
470 GOSUB 7110
480 I1EQ4=I
490 'Ayırici olan Denge Faktörü
495 NG=.98
500 X4=I1EQ-NG*(X1EQ-X1EQ4)
510 I1=I1+99* (X1EQ-X4)
520 I4=I1-NG*(I1-X1EQ4)
530 PRINT "X1=", X1 "X4=", X4
540 'H4'in Hesaplanması
550 X=Y7; P=PY; T=TY
560 GOSUB 7690
570 GOSUB 7420
580 GOSUB 8080
590 X=Y7
600 GOSUB 8560
610 'H4'in H1 TBB/MK
620 'Başlangıç Değerleri Olarak H10'nun Hesaplanması
630 P=PB; T=TB;X=Y7
640 GOSUB 7690
650 GOSUB 7420
660 GOSUB 8080
670 X=Y7
680 GOSUB 8560
690 H10=H4*R+TBB/MK
700 H9=H10
710 'H11'in Hesaplanması
720 T=TB; P=PB; Y1=Y11; X=Y1
730 GOSUB 7770
740 GOSUB 7850
750 GOSUB 7930
760 GOSUB 8560
770 H11=H4*R+TBB/MK
780 'H12'in Hesaplanması
790 T=TS; P=PB; 923; X=X1
800 GOSUB 7690
810 GOSUB 7420
820 GOSUB 8080
830 X=X1
840 GOSUB 8560
850 H1=H4*R+TBB/MK
B60 'H4'inin Hesaplanması
870 T=T+P;P=P*1.05;X=X1
880 GOSUB 7690
890 GOSUB 7420
900 GOSUB 8080
910 X=I4
920 GOSUB 8560
930 H4=H4+TBB/MK
940 'Pompadan Döşem; Entalpi Artışı HPinin Hesaplanması
950 T=TS;P1=P8*.925;P2=PY*1.05;X=X1
960 GOSUB 7270
970 'H2inin Hesaplanması
980 H2=H1+HP
990 'M1inin Hesaplanması
1000 'T2 Sıcaklığı
1010 T=TS
1020 X=X1;P=PY*1.05
1030 GOSUB 7690;GOSUB 7420;GOSUB 8080;X=X1;GOSUB 8560
1040 H2=H1+TBB/MK
1050 IF ABS(H2-H2T)<.1 THEN GOTO 1090
1060 PRINT 'H2=H2;H2T=H2T;H2T=';T='T;TS=';TS
1070 T=T+.001
1080 GOTO 1020
1090 T2=T
1100 M1=G8UH/(H11-H10)
1110 'M1inin Hesaplanması
1120 M12=M11;I3=I1
1130 M1=M12+(Y7-X4)/(X3-X4);M4=M1-M12
1140 'Soğutucu Isı Değiştirgeindeki Tersinmezliklerin Hesaplanması
1150 'IDE=20
1160 TB=TY
1170 T11=TB
1180 T=TB
1190 GOSUB 8200
1200 GOSUB 8350
1210 X=Y7
1220 CMAX=M11*(CPLNH3*X)+CPH2D*(1-X))
1230 PRINT 'CMAX=';CMAX
1240 T=T11
1250 GOSUB 8250
1260 GOSUB 8300
1270 Min=M11*(CPBNH3*X)+CPH2D*(1-X))
1280 PRINT 'CMIN=';CMIN
1290 Z=CMIN/CMAX
1300 PRINT 'Z=';Z
1310 'Isı Değiştirgeindeki Transfer Biriminin (M) Hesaplanması
1320 A=M11
1330 UA1=A'*12
1340 UA=IDE1*UA1*(1/10)
1350 '*' UA é == Toplam Isı Transfer Katsayısı=Isı Değiştirgecinin Alanı
1360 N=UA/CMIN
1370 EE=(1-EXP(-N*W(1-Z)))/(1-Z*EXP(-W*Z))
1380 PRINT "EE=";EE;"N=";N
1390 T12=T11+EE*(T08-T11)
1400 PRINT "T12=";T12;"T12=273.15"
1410 T9=T08-CMIN/CMAX*(T12-T11)
1420 PRINT "T9=";T9;"T9=273.15"
1430 'H9...H10...nun Hesaplanmasi
1440 T=T9;P=P9;Y=1=Y7
1450 GOSUB 7690
1460 GOSUB 7420
1470 GOSUB 8080
1480 X=Y7
1490 GOSUB 8560
1500 H9=H9*RTBB/MK
1510 H10=H9
1520 MD=GBUM/(H11-H10)
1530 PRINT "MD=";MD;"M11=";M11
1540 IF ABS(M11-MD)<.00001 THEN 1570
1550 M11=MD
1560 GOTO 1160
1570 PRINT "EE=";EE
1580 IF EE>=.795 AND EE<=.8 THEN GOTO 1610
1590 IDE1=IDE1-.05
1600 GOTO 1160
1610 PRINT B3,"EE=";EE
1620 P=P8*X=Y7; T=T9
1630 T=T+.01
1640 GOSUB 7690
1650 GOSUB 7420
1660 GOSUB 8080;X=Y7;GOSUB 8560
1670 H10G=H10*RTBB/MK
1680 PRINT "H9=";H9;"H10G=";H10G;"T9=";T9;"T10=";T
1690 IF ABS(H10G-H9)<.1 THEN GOTO 1710
1700 X=Y7;P=P8;GOTO 1630
1710 T10=T11-H10G
1720 PRINT "T10=";T10
1730 'H12...nun Hesaplanmasi
1740 T=T12+I=Y7;P=P8*9.25;Y1=Y7;T=T12
1750 GOSUB 7770
1760 GOSUB 7850
1770 GOSUB 7930
1780 GOSUB 8560
1790 H12=H12*RTBB/MK
1800 'H12US...nun Hesaplanmasi
1810 X=Y7;P=P8*9.25;Y1=Y7;T=T12
1820 T=T+.01
1830 GOSUB 7770
1840 GOSUB 7850
1850 GOSUB 7930
1860 GOSUB 8560
1870 H12US=H12*RTBB/MK
1880 PRINT "H12=";H12;"H12US=";H12US;"T12=";T12;"T=";T
1890 IF ABS(H12US-H12)<.1 THEN GOTO 1910
1900 GOTO 1820
1910 T12US=T1;M12US=M12
1920 'İlin Hesaplanması
1930 13=1;M12=M11
1940 M1=M12*(T7-T4)/(X3-X4);M4=M1-M12
1950 'Karışım ısı Değiştiricindeki Tersinmeiliklerin Hesaplanması
1960 T4=T4
1970 T=T4
1980 GOSUB 8200
1990 CH2=CPLNH3
2000 GOSUB 8350
2010 CH1=CPLH20
2020 CH=(CH1*(1-X4)+CH2*X4)
2030 M=M4
2040 IF M<0 THEN COP=0:CCOP=0;DO=0:DDO=0;ICOP=0;IAK=0;IYK=0;ISK=0;IKI=0;ISK=0
2050 'İsі Değiştiricindeki Transfer Biriminin (M) Hesaplanması
2060 IDE2=12
2070 CMIN=MCH
2080 UA=IDEX2*M*(1.9)
2090 'UA à =====> Toplam ısı Transfer Katsayısı=İsі Değiştiricinin Alanı
2100 UA=UA/CHN
2110 PRINT *;CMIN=;CMIN
2120 PRINT N=;N
2130 T=T2;GOSUB 8200;CH2=CPLNH3
2140 GOSUB 8350
2150 CH1=CPLH20 ;CMAX=(CH1*(1-X1)+CH2*X1)*M1
2160 PRINT *;CMAX=;CMAX
2170 Z=CMIN/CMAX;PRINT *;Z=*1
2180 EE=(1-EXP(-N*(1-Z)))/(1-Z*EXP(-N*(1-Z))
2190 IF EE=.795 AND EE<.8 GOTO 2220
2200 IDE2=IDEX2-.05
2210 GOTO 2070
2220 PRINT #3,*EE=*;EE
2230 * TS Sıcaklığı
2240 T5=T4-EE*(T4-T2)
2250 'H5 ve H6 nin Hesaplanması
2260 P=P*1.05;T=T5
2270 GOSUB 7690
2280 GOSUB 7420
2290 X=I4
2300 GOSUB 8080
2310 X=I4;GOSUB 8560
2320 H5=H4*1;TBB/MK
2330 'T4 Sıcaklığı
2340 X=I4*;P=P*B*.925; T=T5;REM Bağlanısta
2350 T=T+.001
2360 GOSUB 7690;GOSUB 7420;X=I4;GOSUB 8080;X=I4;GOSUB 8560
2370 H6=H4*1;TBB/MK
2380 PRINT 'H6=*1;H1; 'H5=*1;H5;*T5=**1;T5=**1;T
2390 IF ABS(H6-H5) < .1 THEN GOTO 2410
2400 GOTO 2350
2410 T6=T;H6=H5
2420 PRINT #3,*T5=**1;T5=273.14
2430 'T3 Sıcaklığı
2440 T3=T2+(T4-T5)*CMIN/CMAX
2450 'H3 entalpisi
2460 P=PY1.05;1=T3
2470 GOSUB 7690
2480 GOSUB 7420
2490 X=1
2500 GOSUB 8080
2510 X=1
2520 GOSUB 8560
2530 H3=H*+R*+TBB/MK
2540 PRINT 'T3=';T3-273.15;";H3=";H3
2550 'Distilasyon Kalonunun Tasarımı
2560 'Akı Ornani
2565 R=-1
2570 Y=2.999
2580 'Deflakktör Sıcaklığının Hesaplanması
2590 P=PY1.05*10^5;ID=.7485;Y=.999
2600 ID-ID-.0001;X=ID
2610 GOSUB 8400
2620 PRINT 'Z=';Z;";Y=';Y;
2630 T7=1;X=1;P=P/10^5;TBB=100;PBB=10
2640 GOSUB 7500:GOSUB 7600:GOSUB 7960
2650 PRINT 'Z=';Z;";Y=';Y;
2660 IF ABS(Y-Y)=.0001 THEN GOTO 2680
2670 P=P*10^5;GOTO 2600
2680 T7=1;X=1:PRINT 'Z=';Z;";Y=';Y;
2690 'Noktasındaki Buharın Entalpisi'nin Hesaplanması
2700 T=T7;P=PY1.05;Y1=Y7+18/(17+Y7)
2710 GOSUB 7770
2720 GOSUB 7850
2730 GOSUB 7930
2740 X=1
2750 GOSUB 8580
2760 H=H*+R*+TBB/MK
2770 PRINT 'H=';H;
2780 'Noktasındaki (def.kol. geri dönüş) Sıvının Entalpisi'nin Hesaplanması
2790 T=T7;P=PY1.05;X=X7
2800 GOSUB 7690
2810 GOSUB 7420
2820 GOSUB 8080
2830 X=X7
2840 GOSUB 8560
2850 HS=H*+R*+TBB/MK
2860 PRINT 'HS=';HS
2870 M7=M11+67=M7;L7=RR+G7
2880 IF X<3.45 THEN GOTO 2920
2890 IF X<3.45 THEN GOTO 2900
2900 G13=L+G+L3
2910 Y13=(L3+Y7+67/y7-L3*X3)/G13
2915 GOTO 2960
2920 '13 Noktasından Ayrılan Buhar Karışımındaki NH3 ün Kütle Kons.Hesaplanması
2930 X=X7;Y=Y7
2940 Y13=(Y+RR+X)/RR+1.1
2950 PRINT 'Y13=';Y13
2960 '13 Noktasının Sıcaklığının Hesaplanması
2970 P=(PY1.05+8.000001E-03)*10^5;XN=-39
2980 IN=IN-.0001;X=IN
2990 GOSUB 8400
3000 PRINT *X*X;T13=T7
3010 T13=T1;I=P=10^5;TBB=100;PBB=10
3020 GOSUB 7500;GOSUB 7600;GOSUB 7960
3030 PRINT *Y;Y1=Y1;YI=Y1;Y1
3040 IF ABS(Y13-Y1)<.001 THEN GOTO 3060
3050 P=P*10^5;GOTO 2980
3060 TI3=1;K13=1;PRINT *T13=T7;Y13=Y1
3070 '13 Noktasından Ayrılan Buhar Karışımını Entalpisinin Hesaplanması
3080 T=TI3;Y=1+Y1/((17-Y1*17-18));P=PY1.05+8.000001E-03
3090 GOSUB 7770;GOSUB 7850;GOSUB 7930
3100 X1=X
3110 GOSUB 8580
3120 H13=H*9+TBB/MK
3130 PRINT *H13=H13
3140 '13 Noktasından Ayrılan Sıvı Karışımının Entalpisinin Hesaplanması
3150 T=TI3; P=PY1.05+8.000001E-03
3160 X=X13
3170 GOSUB 7690; GOSUB 7420
3180 GOSUB 8080
3190 X=X13
3200 GOSUB 8560
3210 HS13=H*9+TBB/MK
3220 IF IX<.45 THEN GOTO 3250
3230 IF IX>.45 THEN GOTO 3240
3240 QQ=613+H13+L13+L7+H7+G7+H7
3245 GOTO 3520
3250 QQ=613+H13+L7+H7+G7+H7
3260 '14 Noktasından Ayrılan Buhar Karışımın NH3 ün Küt. Kons. Hesaplanması
3280 T14=T13+10
3290 P=(PY1.05+.016*10^5 ; I=T14
3300 GOSUB 7110
3310 X14=X;PRINT *X14=X1
3320 T=T14;P=PY1.05+.016;X=X14
3330 GOSUB 7500;GOSUB 7660;GOSUB 7960
3340 PRINT *Y=;Y1=Y1;YI=Y1;X=X1
3350 Y14=Y14;PRINT *Y14=X14
3360 '14 Noktasından Ayrılan Buhar Karışımının Entalpisinin Hesaplanması
3370 T=T14;P=PY1.05+.016;Y1=Y14*18/17+Y14
3380 GOSUB 7770;GOSUB 7850;GOSUB 7930
3390 X=X1
3400 GOSUB 8580
3410 H14=H*9+TBB/MK
3420 PRINT *H14=H14
3430 G7=H7
3440 L13=L7*(Y7-Y14)/(Y14-X13)
3450 G14=L13+G7
3460 IF ABS(H14-H614)<1 THEN GOTO 3511
3470 IF (H14-H614)<0 THEN GOTO 3500
3480 IF ABS(H14-H614)>0 THEN GOTO 3510
3490 GOTO 3511
3500 T14=T14+.05: GOTO 3290
3510 T14=T14-.05: GOTO 3290
3511 '14 Noktasından Ayrılan Sıvı Karışımın Entalpisinin Hesaplanması
3512 T=T14; P=PY#1,05+.016; X=X14
3513 GOSUB 7690: GOSUB 7420: GOSUB 8080
3514 X=X14
3515 GOSUB 8580
3516 HS14=HS+R+TBB/MK
3517 PRINT *HS14="HS14"
3520 'Ayrıçidan Yükselen Buhar Karışımındaki NH3 ün Küt.Kons.Hesaplanması
3530 T =TA+P=PY#1,05+.04; X=X14
3540 GOSUB 7500: GOSUB 7600: GOSUB 7800: GOSUB 7960
3550 YA=Y: PRINT "YA=Y; Y1="; Y1; "YA="; YA
3560 'Ayrıçidan Yükselen Buhar Karışımın Entalpisinin Hesaplanması
3570 T=TA+P=PY#1,05+.04; Y=18*YA/(17*YA)
3580 GOSUB 7770: GOSUB 7850: GOSUB 7930
3590 X=X1: GOSUB 8580
3600 HA=HR+TBB/MK
3610 PRINT "HA="; HA
3630 '16 Noktasından Ayrılan Sıvı Karışımın NH3 ün Küt.Kons.Hesaplanması
3640 T16=(TA-307.15)+273.15
3660 T=T16; P=PY#1,05+.032*10^5
3670 GOSUB 7120: PRINT "X="; X
3680 '16 Noktasından Ayrılan Sıvı Karışımın Entalpisinin Hesaplanması
3690 T=T16; P=PY#1,05+.032; X16=X; I=I16
3700 GOSUB 7690: GOSUB 7420
3710 GOSUB 8080
3720 I=I16: GOSUB 8560
3730 H16=HR+TBB/MK
3740 L4=M4+GA=L4+(X16-X14)/(YA-X16)
3750 L16=L4+GA
3760 QAYIRICI=M7+H7+M4+H4+QD-M1+H3: PRINT "QAYIRICI="; QAYIRICI
3770 G7=M11:L3=M11:L7=RR+87
3780 H0=(L4+H4+GA-HA-QAYIRICI)/L16
3790 IF ABS(H16-HL16)<2 THEN GOTO 3850
3800 IF (H16-HL16)<0 THEN GOTO 3830
3810 IF ABS(H16-HL16)>0 THEN GOTO 3840
3820 GOTO 3850
3830 T16=T16+.05: GOTO 3860
3840 T16=T16-.05: GOTO 3860
3850 PRINT "H16="; H16
3860 PRINT "L16="; L16; "HL16="; HL16
3870 '16 Noktasından Ayrılan Buhar Karışımın NH3 ün Küt.Kons.Hesaplanması
3880 T=T16; P=PY#1,05+.032; X=X16
3890 GOSUB 7500: GOSUB 7600: GOSUB 7960
3900 Y16=Y: PRINT "Y="; Y1; "Y1="; Y1
3910 '16 Noktasından Ayrılan Buhar Karışımın Entalpisinin Hesaplanması
3920 T=T15;P=PY1.05+.032;Y1=18*Y15/(17+Y15)
3930 GOSUB 7770;GOSUB 7850;GOSUB 7930
3940 X=Y1;GOSUB 8580
3950 HS1=H+R*TBB/MK
3960 PRINT "*H616=";*H616
3970 '15 Noktasından Ayrılan sıvı Kar. NH3 ün Küt. Kons. Hesaplanması
3980 T15=(T16-285.15)+273.15
3990 T=T15;P=(PY1.05+.024)*10^5;GOSUB 7120
4000 PRINT "Y1=";Y1
4010 '15 Noktasından Ayrılan sıvı Karışımın Entalpisinin Hesaplanması
4020 T=T15;P=PY1.05+.024;X15=115
4030 GOSUB 7690;GOSUB 7420;GOSUB 8080
4040 X=X15;GOSUB 8560
4050 H15=H+R*TBB/MK
4060 PRINT "*H15=";*H15
4070 G16=L+(I4-X15)/(X15-Y16)
4080 PRINT "*G16=";*G16
4090 L15=G16*L14
4100 L15=816*L4
4110 PRINT "*L15=";*L15
4120 HL15=(G616*G16+L14+H15-QAYIRICI)/L15
4130 PRINT "*HL15=";*HL15
4140 IF ABS(H15-HL15)<1 THEN GOTO 4200
4150 IF ABS(H15-HL15)>0 THEN GOTO 4180
4160 IF ABS(H15-HL15)<0 THEN GOTO 4190
4170 GOTO 4200
4180 T15=T15+.05;GOSUB 4000
4190 T15=T15-.5;GOSUB 4000
4200 REM '15 Noktasından Ayrılan Buhar Karışımın Küt. Kons. Hesaplanması
4210 T=T15;P=PY1.05+.024;Y1=115
4220 GOSUB 7500;GOSUB 7600;GOSUB 7960
4230 Y1=Y1;PRINT " Y1=";Y1;" Y1;"Y1;"Y1;"Y1
4240 REM '15 Noktasından Ayrılan sıvı Karışımın Entalpisinin Hesaplanması
4250 T=T15;P=PY1.05+.024;Y1=18*Y15/(17+Y15)
4260 GOSUB 7770;GOSUB 7850;GOSUB 7930
4270 X=Y1;GOSUB 8580
4280 H21=H+R*TBB/MK
4290 PRINT "*H21=";*H21
4300 'Delik Rafı Kolon Tasarımı
4310 6B=616;L=L7;Y1=18*Y13/(17+Y13);MV=17*YB+(1-YB)*18
4320 'Anonyak ve Suyun Fiziksel özellikleri Belirlenmesi
4330 'Anonyak/Su Buhar Karışımının Yoğunluğu, DV *kg/m³'ê
4350 T=T13;Y=PY1.05+8.00000E-3
4360 GOSUB 8990
4365 R=6.314;TB=100;PB=10
4370 YY=R*TBB*10^-2*VGM/NV;DV=1/YY
4380 'Anonyak/Su Sıvı Karışımının Yoğunluğu
4390 TORT=(T7+TAI)/2;T=TORT ;P=PY1.05
4395 I3=X1
4400 XL=18*Y3/(17+Y3)
4410 NL=17*YL+(1-XYL)*18
4420 X=XL
4430 GOSUB 9080
4440 VM=VLM+R*TBB*10^-2/(ML+PBB)+DL=1/VM
4450 QB=GB/ DV = Q/S= L/DL
4460 PRINT "GB=";GB;"GB=";GBS
4470 YGL; YH=Sıvı Sıvı Yüze Yerim Katsayısı
4475 T=TORT; X=T-273.15;GOSUB 9160
4476 YN=VYMH3
4477 T=TORT; X=T-273.15;GOSUB 9190
4478 YH=VYH20
4490 I=XL;YGL=(X*YN+(1-X)*YH)*10^-3
4500 VLN Sıvı Sıvı Viskozitesi
4515 T=TORT; X=T-273.15;GOSUB 9220
4516 VN=YVNH3
4517 T=TORT; X=T-273.15;GOSUB 9250
4518 VH=VYH20
4519 I=XL;VL=(X*VN+(1-X)*VH)*10^-3
4520 FLV Aşın Parametresi
4530 FLV=(L/GB)*(DV/DSL)^.5
4540 'Raf Aralığı ,S *m
4550 S=1
4560 'Delik Çapı ,DR *m
4565 DR=3
4570 DM=6
4580 ALFA=.0744+S+.0117355
4590 PRINT "ALFA=";ALFA
4600 WI=ALFA
4610 BETA=.0304+S+.0155
4620 PRINT "BETA=";BETA
4630 WZ=BETA
4640 ABRAA=.907*(DR/DM)^2
4650 IF ABRAA>.1 GOTO 4700
4655 IF ABRAA>.1 GOTO 4660
4660 CF, Kapasite Paramekresi
4670 CF=(M1*(DLG(1/FLV)/DLG(10)))*W2)*(YGL/.02)^.2
4680 PRINT "CF=";CF
4685 GOTO 4720
4690 'LOG(1/FLV)=(DLG(1/FLV)/DLG(10))
4700 CF=(M1*(DLG(1/FLV)/DLG(10)))*W2)*(YGL/.02)^.2*(5*ABRAA+.5)
4710 'PRINT "CF=";CF
4720 'UF, Doğrusal Buhar Hızı
4730 UF=CF*(DL-DV)/DV)^.5
4740 PRINT "UF=";UF
4750 PRINT "Taşma Yaklaşımın Yüzdesini Giriniz
4760 INPUT "Yüzde Taşma Yaklaşımı=";FTY
4770 F=FTY:U=UF+F
4780 PRINT "U=";U
4790 'AT, Kolin Alanı
4800 AT=GB/1.6346
4810 PRINT "AT=";AT
4820 D=(4*AT/3.14)^.5
4830 PRINT "D=";D
4840 'AD, Taşma Borusu Alanı
4845 AD=.124*AT
4850 PRINT "AD=";AD
AN.Net Alan
4865 AN.=88#AT
4870 PRINT *AN=\;AN
4880 'Aa,Etkin Alan
4885 AA=76#AT
4890 PRINT *AA=\;AA
4900 'Ah,DeliK Alanı
4905 AH=14#AT
4910 PRINT *AH=\;AH
4920 'Taşma Yaklaşımının Kontrolu
4930 UN=OB/AN
4940 PRINT *UN=\;UN
4950 FF=F*(UN/U)
4960 PRINT *FF=\;FF
4970 I=FLV
4980 IF FTY=.3 THEN GOSUB 8850
4990 IF FTY=.3 THEN GOSUB 8870
5000 FI=Y;PRINT *FI=\;Y
5030 'E,Toplam Sıza Kesri
5040 E=(FI*FL)/(1-FI)
5050 PRINT *E=\;E
5060 'Toplam Basıncı Düşüğü
5070 'Uh,Delik Hızı
5080 Uh=OB/AH
5090 PRINT *Uh=\;Uh
5090 RT=1.5
5100 'Raf Kalınığının Delik Çapına Oranı
5110 RD=RT/DR
5120 PRINT *RD=\;RD
5130 'Delik Alanının Etkin Alana Oranı
5135 DAE=AH/AA
5140 PRINT *DAE=\;DAE
5150 I=DAE*100
5150 GOSUB 8885
5170 HDKB=Y;PRINT *HDKB=\;Y
5180 BASHINCAYB=5.08*(DV/DL)*Uh*2+HDKB
5190 BK=BASHINCAYBI
5200 PRINT *BK=\;BK
5210 IF FI>.1 GOTO 5230
5220 IF FI<.1 GOTO 5260
5230 DUBASHINCAYBI=BK*(15*(FI*FLV/(1-FI))+1)
5240 DBK=DUBASHINCAYBI
5250 PRINT *DBK=\;DBK
5260 FV=(OB/AA)*DV*.5
5270 LW=.77*D
5280 HW=6.6*(OB/LW)^.67;'***'CMé ***
5290 'Set Yüksekliği 'mê
5295 HM=30
5300 I=FVA
5310 GOSUB 8905
5320 QP=Y;PRINT *QP=\;QP
5330 PRINT *QP=\;QP
5340 I=FVA
5350 GOSUB 8925
5360 KSI=Y;PRINT *KSI=\;KSI
5370 PRINT *KSI=\;KSI
5410 HAA=DP*(1.1*HW+HDW)
5420 PRINT "HAA=";HAA
5430 TOPLAMBASINCKAYBI=BK+HAA
5440 TBK=TOPLAMBASINCKAYBI
5450 PRINT "TBK=";TBK
5460 HDEL=4.14*(4.6+YGL)/(DL*DR) '### SIIZMA NOKTASI###
5470 PRINT "HDEL=";HDEL
5480 EK=BK+HDEL
5490 PRINT "EK=";EK
5500 BER=.1*HW+HDW
5510 PRINT "BER=";BER
5520 'Taşma Borusunda Kalma Süresi
5530 L=L7
5540 VD=L/(AD*DL)
5550 PRINT "VD=";VD
5560 KALMASURESİ=8/VD '###넣###
5570 KS=KALMASURESİ:PRINT "KS=";KS
5580 'Sıvı Dağılımı
5590 HF=HAA/(2*DP-1):'###cmé###
5600 PRINT "HF=";HF
5610 DF=(LM+D)/2: '###mé###
5620 PRINT "DF=";DF
5630 RH=HF+DF/(2*HF+100*DF)
5640 PRINT "RH=";RH
5650 UFF=100*DS/(HF*KS+DF)
5660 PRINT "UFF=";UFF
5670 'Reynold Modülü
5680 REH=RH*UFF*DL/VL
5690 PRINT "REH=";REH
5700 LW=.77*D: '###mé###
5710 'Vergekimi İması
5715 G1=9.807
5720 PRINT "REH ve HM Değerine Karşılık Gelen Değeri Giriniz
5730 INPUT "REH,ve,HM.Değ,Kar,Bel.Nok=":FS
5740 DEL=100*FS*UFF*2*LM/(RH*G1)
5750 PRINT "DEL=";DEL
5760 'Downcomer Açıklığı
5770 DW=2S: '### (mm) ###
5780 ADA=DN10^-3.77*D
5790 PRINT "ADA=";ADA
5800 HDA=16.5*(QS/ADA)^2: '###cmé###
5810 PRINT "HDA=";HDA
5820 HDC=TBK+.1*HW+HDW*DEL+HDA
5830 PRINT "HDC=";HDC
5840 SIVIYUKSEKLIGI=HDC/GP
5850 SY=SIVIYUKSEKLIGI:PRINT "SY=";SIVIYUKSEKLIGI
5860 'Raf Etkinliğinin Belirlenmesi
5870 'Buhran Kütlesel Debişi ,6K (lb/h*ft^2)
5880 6K=6B/AT
5890 PRINT "6K=";6K
5900 'Düzeltme Faktörü
5910 DFF=737,302
5920 GB=GB+DFF
5930 PRINT "GB=",GB
5940 'Serbest Alan, FFA
5950 FFA=AH/AT
5960 A=(FFA)^0.28
5970 PRINT "A=",A
5980 'İç Dönüç Akı Oranı, (L7/G13)
5990 RF=L/GB
6000 B=RF^0.024
6010 PRINT "B=",B
6020 HNW=2
6030 C=HNW^0.241
6040 PRINT "C=",C
6050 DJ=GD^0.013
6060 PRINT "D=",DJ
6070 'Doğrusal Buhar Hızı, UV (cm/s)
6080 UV=U*100
6090 PRINT "UV=",UV
6100 EJ=(YSL*10^3/(VL*10^3*UV))^-0.044
6110 PRINT "EJ=",EJ
6120 'Sıvı Yoğunluğu, DLL (g/cm^3)
6130 DLL=DL*10^-3
6140 PRINT "DLL=",DLL
6150 'Volumetrik Diffüzyon Katsayısı, DABL
6160 Suyun Molekül Ağırlığı, MB (kg/kmol)
6170 MB=18
6180 'Su İçin Association Faktörü, ASS
6190 ASS=2,26
6200 'Normal Kaynama Noktasında Çözün Maddenin Molal Hacmi (m^3/kmol)
6210 VANH3=25,8*10^-3
6220 VA=VANH3
6225 T=TORT
6230 DABL=((117,3*10^-19)*(ASS*MB)^5*T)/(VL*VA^0,6)
6240 'Volumetrik Sıvı Diffüzivitesi, DD (cm^2/s)
6250 DD=10*DABL*10^-4
6260 PRINT "DD=",DD
6270 FL=((VL*10^-3)/(DLL+DD))^0,137
6280 PRINT "FL=",FL
6290 'Bağlı Uyuculuğ , AL
6295 Y=999*X=7339062
6300 AL=+(Y7*(1-X7))/(1-(1-Y7)*X7)
6310 PRINT "AL=",AL
6320 RE=(10^8+B4*A4*B4*D4*E4*FL*((AL)^0.028)
6330 PRINT "RE=",RE
6340 'Çevrimin Performans Katsayısının (COP) Hesaplanması
6350 COP=QAHU/(QAYIRICI+M4*HP)
6360 DD=M4/N7
6370 PRINT #2,TAB(2);" No ";TAB(13);" H (kJ/kg) ";TAB(28);" T (°K) ";TAB(41)"; x (kk) ";TAB(53);" y (kk) ";TAB(66);" M (kg/s)"
6380 PRINT #2,
6390 PRINT #2,TAB(2);" 1 ";TAB(13);H1;TAB(28);TS;TAB(41);II;TAB(53);Y1;TAB(66)
6400 PRINT #2,TAB(2);" 2 ";TAB(13);H2;TAB(28);T2
6410 PRINT #2, TAB(2); "TAB(13); H3; TAB(28); T3"
6420 PRINT #2, TAB(2); "TAB(13); H4; TAB(28); T4; TAB(41); X4; TAB(66); M4"
6430 PRINT #2, TAB(2); "TAB(13); H5; TAB(28); T5"
6440 PRINT #2, TAB(2); "TAB(13); H6; TAB(28); T6"
6450 PRINT #2, TAB(2); "TAB(13); H7; TAB(28); T7; TAB(53); Y7; TAB(66); M7"
6460 PRINT #2, TAB(2); "TAB(13); H8; TAB(28); T8"
6470 PRINT #2, TAB(2); "TAB(13); H9; TAB(28); T9"
6490 PRINT #2, TAB(2); "TAB(13); H10; TAB(28); T10"
6500 PRINT #2, TAB(2); "TAB(13); H11; TAB(28); T11"
6510 PRINT #2, TAB(2); "TAB(13); H12; TAB(28); T12"
6520 PRINT #2, TAB(2); "TAB(13); H12U5; TAB(28); T12U5"
6530 PRINT #2, TAB(2); "TAB(13); H13; TAB(28); T13; TAB(53); Y13; TAB(66); G13"
6540 PRINT #2, TAB(2); "TAB(13); H13; TAB(28); T13; TAB(41); X13; TAB(66); L13"
6550 PRINT #2, TAB(2); "TAB(13); H14; TAB(28); T14; TAB(53); Y14; TAB(66); G14"
6555 PRINT #2, TAB(2); "TAB(13); H14; TAB(28); T14; TAB(41); X14; TAB(66); L14"
6560 PRINT #2, TAB(2); "TAB(13); H15; TAB(28); T15; TAB(41); X15; TAB(66); L15"
6570 PRINT #2, TAB(2); "TAB(13); H16; TAB(28); T16; TAB(41); X16; TAB(66); G16"
6580 PRINT #2, TAB(2); "TAB(13); H17; TAB(28); T17; TAB(66); B17"
6590 PRINT #2, TAB(2); "TAB(13); H18; TAB(28); T18; TAB(66); B18"
6600 PRINT #2, TAB(2); "TAB(13); H19; TAB(28); T19; TAB(53); Y19; TAB(66); B19"
6605 PRINT #2, TAB(2); "TAB(13); H19; TAB(28); T19; TAB(66); G19"
6606 PRINT #2, TAB(2); "TAB(13); MAGIRICI"
6610 PRINT #3, TAB(5); "Tablo Raflı ve Kolon Tasarım Sonuçları"
6620 PRINT #3,
6630 PRINT #3,
6640 PRINT #3, TAB(3); "Buhar ve Sıvı özellikleri"; TAB(40); "Kolon ve Raf özellikler"
6650 PRINT #3,
6660 PRINT #3,
6670 PRINT #3, "GB (kg/s) " TAB(18); GB; TAB(38); " AT (m) TAB(56); AT"
6680 PRINT #3, "L7 (kg/s) TAB(18); L7; TAB(38); " AD (m) TAB(56); AD"
6690 PRINT #3, "GB (m³/s) TAB(18); GB; TAB(38); " AN (m) TAB(56); AN"
6700 PRINT #3, "DS (m³/s) TAB(18); DS; TAB(38); " AA (m) TAB(56); AA"
6710 PRINT #3, "DV (m³/m²) TAB(18); DV; TAB(38); " AH (m) TAB(56); AH"
6720 PRINT #3, "DL (kg/m³) TAB(18); DL; TAB(38); " D (m) TAB(56); D"
6730 PRINT #3, " m (N/m²) TAB(18); m; TAB(38); " S (m) TAB(56); S"
6740 PRINT #3, " r (3/m³) TAB(18); r; TAB(38); " Dr (mm) TAB(56); DR"
6750 PRINT #3, "Um (m/s) TAB(18); Um; TAB(38); " Dm (mm) TAB(56); Dm"
6760 PRINT #3, "UH (m/s) TAB(18); UH; TAB(38); " Ah/Aa TAB(56); DAE"
6770 PRINT #3, "Uh (m/s) TAB(18); Uh; TAB(38); " Rt (mm) TAB(56); RT"
6780 PRINT #3, "UH (m/s) TAB(18); UH; TAB(38); " Lw (m) TAB(56); LM"
6790 PRINT #3, "CF (m/s) TAB(18); CF; TAB(38); " Hm (cm) TAB(56); HDM"
6800 PRINT #3, "FlV (-) TAB(18); FlV; TAB(38); " Hm (mm) TAB(56); HM"
6810 PRINT #3, "FvA TAB(18); FvA; TAB(38); " Hc (cm) TAB(56); HDEL"
6820 PRINT #3, "F TAB(18); F; TAB(38); " Hdc (cm) TAB(56); HDC"
6830 PRINT #3, "F TAB(18); FF; TAB(38); " Hda (cm) TAB(56); HDA"
6840 PRINT #3, "e TAB(18); Ef; TAB(38); " Ad (cm) TAB(56); ADA"
6850 PRINT #3, "E (kg/s) TAB(18); E; TAB(38); " Rt/Dr TAB(56); RD"
Basing Hasapları:

A=10,44-1,767×10^-3, 9823×10^-2, 3627×10^-3

B=2013,8-2155,7×10^-1, 1540,9×10^-2-194,7×10^-3

P=10^-6(A/B/T)

RETURN

Regula Falsi Yöntemi: X =

XL=XR=1:REM XL(Bağlangıç), XR (Bitiş) Sınırları

MAX=2000:REM MAX(En büyük iterasyon sayısı)

EPS=.001:REM EPS (Hata Miktari)

5 DEF FN F(X)=(X-3.567)×10^3+(-.9823×T-1540,9)×10^-1-1.767×10^3+2155,7)×10^4

4.447-2013,8-(LOG(P)/LOG(10))/2

6 N=1

1A=FN F(X); XB=FN F(XR)

2 I=(XR-XA)/X(XA-XB)

3 FIX=FN (X)

720 IF ABS(FX)<EPS THEN RETURN

220 IF N>MAX THEN PRINT "KOK BULUNAMADI: STOP"

222 N=N+1:S=X+BFX

223 ON SGN(S)+2 GOTO 7240,7260,7270

224 IF X=6 GOTO 7180

225 XR=X:GOTO 7180

226 PRINT Nh; "ITERASYONDA KOK=";X:RETURN

2270 "Doymuş H3 ambos Sivi Fazdaki özügür Hacmi VN * m^3/kg é

2280 21=3,971×10^-2; J=2,7-1,79055×10^-3; J3=-1,330895×10^-2; J4=3,752836×10^-3

2290 Q=TBB

730 VN=R=TBBA(1+J3×Q+J4×Q^2)/PBB+J2×P1/(PBB+2)×(100+17)

7310 X1=2,748796×10^-2; K2=1.016665×10^-5; K3=-4.452025×10^-3; K4=6.39249×10^-4

7320 "Doymuş H20 Sivi Sivi Fazdaki özügür Hacmi VN * m^3/kg é

7330 VN=R=TBBA(1+K3×Q+K4×Q^2)/PBB+K2×P1/(PBB+2)×(100+18)

7340 H=IV+P1; X=IVH

7350 HP=V; (P2-P1)×100
7360 RETURN
7370 'H3=1-(1/3)*(1-4)*(H4-H5)*H2
7380 RETURN
7390 '**
7400 'Gibbs Fonksiyonu ile Entalpiyelerin Bulunması
7410 '**
7420 'Doğrus H2O'ün Sıvı Fazdaki Entalpoi
7430 HDLR=21.8211416;AL1=2.74879610^-6:AL2=2.1.01665*10^-5;AL3=-4.452025*10^-3
7440 AL4=8.38924610^-4 :TBB=100:PPB=10
7450 'DLR=5.733498
7460 BL1=1.21455710^-6:BL2=1.89806510^-1
7470 PP=PPB=8/TBB
7480 HLH2O=HDLR-BL1*DLR-BL2*(0^2+TOLR^2)/2-BL3*(2*0^3+TOLR*3)/3*BL1*Q+BL2*Q^2+B L3*0^3-(AL4*0^2-AL1*Q*(PP-PPR)*AL2*Q*(PP^-2-PPR^2)/2)
7490 RETURN
7500 'Doğrus H2O' un Sıvı Fazdaki Gibbs Fonksiyonunun Değerinin Bulunması
7510 BL1=1.21455710^-6:BL2=1.89806510^-1
7520 HPLR=21.8211416:AL1=2.74879610^-6:AL2=2.1.01665*10^-5;AL3=-4.452025*10^-3
7530 AL4=8.38924610^-4 :TBR=5.733498
7540 TBB=100:PPB=10
7550 Q=T/TBB:PP=PPB
7560 PRINT 'Q=Q0=PP:PP=PPB
7570 PRINT 'DLHR=Q0=QAL1:Q2*Q3+TOLR-Q2/2=BL3*Q3*3+TOLR=3-Q*BL1*Q3*3+TOLR*3/3-3*Q2+BL1*Q2*2+BL2*Q2*2+B L3*Q3-(AL4*Q-2AL1*Q(Q-P-P)=AL2*Q(Q-P-P)=2/2)
7590 RETUR
7600 'H2O Nun Sıvı Fazdaki Gibbs Fonksiyonunun Değerinin Bulunması
7610 PP=PPB=Q=T/TBB
7620 E1=4.162129*10;E2=2.06225*10^-6;E3=7.292369;E4=1.32613*10^-2
7630 E5=0.478246;E6=-8.461211*10^-6;E7=2.45828210^-6;E8=5.95876710^-4
7640 E9=1.475383*10^-6;E10=5.3030710^-6;E11=-9.6039910^-6;E12=1.22697310^2
7650 E13=-7.58273710^-6;E14=0.0245510^-6;E15=5.48701*10^-6;E16=-7.66759610^-6
7660 I=3/10^11(I=17 Bis):Molar Konsantrasyon
7680 RETURN
7690 'Doğrus NH3' un Sıvı Fazındaki Entalpoi
7700 HQR=4.878573;AR1=3.97143*10^-2;AR2=-1.790557*10^-5;AR3=-1.30890510^-2
7710 AR4=3.75253*10^-3;PBB=10;TBB=100
7720 TOR=3.2252;PDR=2
7730 BN1=1.63451910^-3;BN2=-6.506119;BN3=1.446937
7740 PP=PPB=Q=T/TBB
7750 HLRH3=HQR-AR1*TOR-BN2*(1+10^-2)+AR2*(3+TOR*3+3*BN1+BN2*9+2*BN3*4 AR4+AR11*(PP-PDR)+AR2*(PP^-2-PDR^-2)/2
7760 RETURN
7770 TBB=100;PBB=10;HDoğrus NH3' un Gaz Fazındaki Entalpoi
7780 PP=P=10:Q=T/100
7790 DK=3.673647;DK2=-9.9962910^-2;DK3=1.61762210^-2
7800 HDG=-26.468797:CK1=-1.04937710^-2;CK2=-8.28822;CK3=-6.64725710^-2;CK4=-3.4535210^-3;TOR=3.2252;PDR=2
7910 G+K1=H0GR-DK1*TOR-DK2*(_Q^2+TOR^2)*2/2-DK3*(_2*Q^3+TOR^3)*3+DK1*Q+DK2*Q^2+DK3*Q^3
7920 G+K2=CK1*(_PP-POR)/4+CK2*(_PP-POR)*2/2-DK3*(_2*Q^3+TOR^3)*3+DK1*Q+DK2*Q^2+DK3*Q^3
7930 H+GKH=0+GKH
7940 RETURN
7950 'Doğmuş H2O'unun Gaz Fazındaki Entalpi
7960 40,4,917:DHK2=-5.17555*10^-2:DHK3=1.951939*10^-2
7970 HHGK=60,965058:CHK1=2.136131*10^-2:CHK2=-3.16929110:CHK3=-4.634611*10^-4:
7980 CHK4=0:SDGR=13.45434:TOR=5.0705:POR=3
7990 PP=-7.10;G=7/100
8000 G+K1=H0GR-DK1*TOR-DK2*(_Q^2+TOR^2)*2/2-DK3*(_2*Q^3+TOR^3)*3+DK1*Q+DK2*Q^2+DK3*Q^3
8010 G+K2=CHK1*(_PP-POR)/4+CHK2*(_PP-POR)*2/2-DK3*(_2*Q^3+TOR^3)*3+DK1*Q+DK2*Q^2+DK3*Q^3
8020 HHzq=H+GKH
8030 RETURN
8040 'Doğmuş NH3/H2O Karışımının Gaz Fazındaki Entalpi
8050 H=(1-Y1)*HGH2O+Y1*HGH3
8060 RETURN
8070 'H2O'unun Gaz Fazındaki Kimyasal Potansiyeli
8080 40,4,917:DHK2=-5.17555*10^-2:DHK3=1.951939*10^-2
8090 HHGK=60,965058:CHK1=2.136131*10^-2:CHK2=-3.16929110:CHK3=-4.634611*10^-4:
8100 CHK4=0:SDGR=13.45434:TOR=5.0705:POR=3
8110 Q=T/TBB;PP=P/PBB
8120 66H2O=H0GR-40:SDGR=DH1*(_Q-TOR)*2/2-DK3*(_2*Q^3-TOR^3)*3+Q
8130 CHK1=LOG(_Q-TOR)*2/2+4*LOG(PP/POR)+CHK4*(PP-POR)/TOR^4
8140 66H2O=CHK1*(_PP-POR)/4+CHK2*(_PP-POR)^2/2+CHK3*(_2*Q^3-TOR^3)*3+4*P
8150 66H2O=TOR/RAFT/11*11#POR/RAFT/12*12
8160 HN+H2O=HGH2O+Y1*HGH3
8170 RETURN
8180 'Doğmuş NH3/H2O Karışımının Sıvı Fazındaki Entalpi
8190 H80,74824:ES=8.461241*10:EB=95.98767*10^-4
8200 9*10^-3=0.94358*10:10=1.122973*10^-2
8230 PP=P/PBB;Q=T/TBB
8240 X=18*X/(17-18)
8250 H=H+LH2O=(1-X)+H+LH3x*(1+E+2*PP+2*E5+Q+3*E6+Q^2)+*(E7+EBPP+2*11+2+3*E12*Q^2
8260 =(2-E1)+E13*E14+PP+2*E15+Q+3*E16+Q^2*(2-E1)+E13*E14+PP+2*E15+Q+3*E16+Q^2)
8270 RETURN
8280 'Doğmuş NH3/H2O Karışımının Sıvı Fazındaki Entalpi'nin Alt Programı
8290 H=(1-X)*H+LH2O+H+LH3x+5F
8300 RETURN
8310 'NH3'in Sıvı Fazındaki CP'leri
8210 B1=16.34519; B2=-6.508119; B3=1.448937
8220 Q=T/TBB
8230 CPHNH3=(B1+B2@Q+B3@Q^2)*R/17
8240 RETURN
8250 'WH3ışın Gaz Fazdaki ' CP é 'si
8260 D1=3.67347; D2=9.98629@10^-2; D3=3.617622@10^-2
8270 Q=T/TBB
8280 CPHNH3=(D1+B2@Q+D3@Q^2)*R/17
8290 RETURN
8300 ' H2O1num Gaz Fazdaki ' CP é Isi
8310 B1=4.01917; B2=5.17555@10^-2; B3=1.951939@10^-2
8320 Q=T/TBB
8330 CPHH2O1=100+D1+B2@Q+B3@Q^2)*R/18
8340 RETURN
8350 ' H2O1num Sivi Fazdaki ' CP é Isi
8360 B1=12.14557; B2=-1.898065; B3=0.9211966
8370 Q=T/TBB
8380 CPHH2O2=(B1+B2@Q+B3@Q^2)*R/18
8390 RETURN
8400 'Regula Falsi Yöntemi ****** ' T é ******
8410 TLL=5273.14; TTR=170+273.14; REM TLL(Bağlantsız), TTR (Bitiş) Sınırları
8420 NMAX=2000; REM NMAX(Maksimum İterasyon Sayısı)
8430 EPS=.001; REM EPS (HATA MİKTARI)
8440 DEF FN F(T)=(-.3627*#T+947.7)^3+(-.9823*#T-1540.9)^2+(1.767*#T+2155.7)*#T+10
8450 IT=10.1-((LOG(P)/LOG(10))^T)
8460 N=1
8470 TAA=FN F(T)/TBB; FN F(T)
8480 T=T/(TR+TAA/TBB)/TAA/TBB
8490 SP=0.1; FN F(T)
8500 IF ABS(SF)<EPS THEN RETURN
8510 N=N+1; TBB=S
8520 ON SN(S)+2 GOTO 8530,8550,8540
8530 TLL=180 TO 8470
8540 TTR=180 TO 8470
8550 PRINT N;" Iterasyondaki KOK " =; T: RETURN
8560 'Karşıımın Mol Kütlesi
8570 I=1;B1=(17/I-17/I)
8580 NX=17*I+18*(I-1)
8590 RETURN
8600 'Regula Falsi Yöntemi ****** Xé *** Sıvı Gaz Bileşiminin Hesaplanması***
8610 XL=0.00005; XR=99999; XL:Bağlantsız, XR:Bitiş Sınırları
8620 P>PB=PBBQ-T/TBB
8630 E1=.4.262129@10^3; E2=2.060225@10^-2; E3=7.29236@10^-2
8640 E4=90.74624; E6=-8.461214@10^3; E7=2.452882@10^4; E8=95.9076@10^-4
8650 E9=-1.475383@10^-5; E10=-5.038107@10^-3; E11=-9.640398@10^4; E12=1.226973@10^6
8660 E13=-7.582637@E14=6.012443@10^-4; E15=5.487013@10^4; E16=7.667596@10^6
8670 NMAX=4000; REM NMAX(MAX İTERASYON SAYISI)
8680 EPS=.00001; REM EPS (HATA MİKTARI)
8690 DEF FN F(I)=(-EXP((ELH2O@Q/LOG(1-(1-I))+E1+E2@P+(E3+E4@P))*Q+E5@Q+E6@Q^2)*#(1-I)^2)+(E7+ELH4@P+(E9+E10@P)*Q+E11@Q+EL2@Q^2)*#(1-I)^2+(E12+ELH6@P)*(1-I)^2+(E13+E14@P)*Q+E15@Q+E16@Q^2)*#(1-I)^4+16*(1-I)^3+5*(1-I)^2-66H2O@Q-Y1
8700 N=1
8710 IA=FN F(I)
8720 IF FN F(X) = 0 THEN GOTO B880, B890
8730 X = XR / XA
8740 PRINT "X":; X
8750 IF ABS(F(X)) ≤ EPS THEN RETURN
8760 IF NMAX = 1 THEN PRINT "KOK BULUNAMADI:"; "STOP"
8770 N = N + 1; S = S + F(X)
8780 GOTO B890
8790 RETURN
8800 IF NMAX = 1 THEN PRINT "KOK BULUNAMADI:"; "STOP"
8810 X = XR / XA
8820 PRINT "N":; N
8830 IF I / C沃 = 0 THEN RETURN
8840 IF V / C沃 = 0 THEN RETURN
8850 IF V / C沃 = 0 THEN RETURN
8860 IF V / C沃 = 0 THEN RETURN
8870 IF V / C沃 = 0 THEN RETURN
8880 IF V / C沃 = 0 THEN RETURN
8890 IF V / C沃 = 0 THEN RETURN
8900 RETURN
8910 REM Amonyak ve Su Buhar Karışımının Yoğunluğunun Hesaplanması
8920 REM Amonyak İxin Verilen Sabitlerin Değeri
8930 REM Su İxin Verilen Sabitlerin Değeri
8940 REM Su İxin Verilen Sabitlerin Değeri
8950 REM Su İxin Verilen Sabitlerin Değeri
8960 REM Su İxin Verilen Sabitlerin Değeri
8970 REM Su İxin Verilen Sabitlerin Değeri
8980 REM Su İxin Verilen Sabitlerin Değeri
8990 REM Su İxin Verilen Sabitlerin Değeri
9000 REM Su İxin Verilen Sabitlerin Değeri
9010 REM Su İxin Verilen Sabitlerin Değeri
9020 REM Su İxin Verilen Sabitlerin Değeri
9030 REM Su İxin Verilen Sabitlerin Değeri
9040 REM Su İxin Verilen Sabitlerin Değeri
9050 REM Su İxin Verilen Sabitlerin Değeri
9060 REM Su İxin Verilen Sabitlerin Değeri
9070 RETURN
9080 REM Su İxin Verilen Sabitlerin Değeri
9090 REM Su İxin Verilen Sabitlerin Değeri
9100 REM Su İxin Verilen Sabitlerin Değeri
9110 REM Su İxin Verilen Sabitlerin Değeri
9120 REM Su İxin Verilen Sabitlerin Değeri
9130 REM Su İxin Verilen Sabitlerin Değeri
9140 REM Su İxin Verilen Sabitlerin Değeri
9150 RETURN
9160 REM Su İxin Verilen Sabitlerin Değeri
9170 Y = 3.971423 * 10^(-2) * A5 - 1.308905 * 10^(-2) * A4 - 3.752836 * 10^(-5) * A2 = -1.79057 * 10^(-5)
9180 RETURN
9190 RETURN
9200 RETURN
9210 RETURN
9220 RETURN
9230 RETURN
9240 RETURN
9250 RETURN
9260 RETURN
9270 RETURN
9280 RETURN
9290 RETURN
9300 RETURN
9310 RETURN
9320 RETURN
9330 RETURN
9340 RETURN
9350 RETURN
9360 RETURN
9370 RETURN
9380 RETURN
9390 RETURN
9400 RETURN
9410 RETURN
9420 RETURN
9430 RETURN
9440 RETURN
9450 RETURN
9460 RETURN
9470 RETURN
9480 RETURN
9490 RETURN
9500 RETURN
9510 RETURN
9520 RETURN
9530 RETURN
9540 RETURN
9550 RETURN
9560 RETURN
9570 RETURN
9580 RETURN
9590 RETURN
9600 RETURN
9610 RETURN
9620 RETURN
9630 RETURN
9640 RETURN
9650 RETURN
9660 RETURN
9670 RETURN
9680 RETURN
9690 RETURN
9700 RETURN
9710 RETURN
9720 RETURN
9730 RETURN
9740 RETURN
9750 RETURN
9760 RETURN
9770 RETURN
9780 RETURN
9790 RETURN
9800 RETURN
9810 RETURN
9820 RETURN
9830 RETURN
9840 RETURN
9850 RETURN
9860 RETURN
9870 RETURN
9880 RETURN
9890 RETURN
9900 RETURN
9910 RETURN
9920 RETURN
9930 RETURN
9940 RETURN
9950 RETURN
9960 RETURN
9970 RETURN
9980 RETURN
9990 RETURN
RETURN

'Sıvi Amonyunun Viskozitesinin Hesaplanması

YWH31 = 1983303344344044 - 5.73351942538654 * 10^-3 * x + 1.05205953317379 * 10^-4 * x^2 - 1.25274461972879 * 10^-7 * x^3 - 1.036760100722214 * 10^-8 * x^4 + 2.720319741322 * 10^-16 * x^5

YWH32 = -2.139260456422449 * 10^-14 * x^6 - 2.072503303430163 * 10^-14 * x^7 + 1.322903667960881 * 10^-16 * x^8 - 1.597561337857443 * 10^-19 * x^9

YWH3 = YWH31 + YWH32

RETURN

'Sıvi Suyun Viskozitesinin Hesaplanması

YWH201 = 1.7154268837188476 - 4.429408628986999 * 10^-2 * x + 7.09641805608891 * 10^-4 * x^2 - 2.76447265399773 * 10^-6 * x^3 - 3.16208171386871 * 10^-7 * x^4

YWH202 = 1.57745421599031 * 10^-9 * x^5 + 9.598133028583545 * 10^-12 * x^6 - 1.991759916215601 * 10^-13 * x^7 + 3.32377931013226 * 10^-16 * x^8 + 5.027318782659051 * 10^-18 * x^9

YWH20 = YWH201 + YWH202

RETURN
EK 3

Ponchan-Savarit Grafik Yöntemi için gerekli olan Entalpi-bileşim verilerini elde etmek için geliştirilen bilgisayar programı aşağıda verilmiştir.
EK 3

Ponchan–Savarit Grafik Yöntemi için gerekli olan Entalpi–bileşim verilerini elde etmek için geliştirilen bilgisayar programı aşağıda verilmiştir.

10 OPEN "O","#1,"B:EK-22.DAT"
40 OPEN "O","#3,"B:EK-HZ22.DAT"
50 CLS
60 REM *** HİY DIYAGRAMININ ÇİZİLMESİNDE KULLANILAN VERİLERİN HESAPLANMASI ***
70 TY=303.15 : *** 30 (C) YOGUSTURUCU SICAKLIĞI
80 Y7=.999 : *** Y7 *** AYIRICI ÇIKIŞINDA SOBUTUCU KUTLE KONSANTRASYONU ***
90 R=8.314 : *** GAZ SABİTİ *KJ/KG-MOL-KÉ
100 REM *** ÇEVİRİN YÜKSEK BASINCI * PY-N/M² @ ***
110 T=TY; I=I7
120 GOSUB 470
130 PY=P/(10^5)
140 PRINT #3,"PY=":PY
150 IX=0
160 FOR IX=1 TO 1000
170 REM *** "I" KUTLE KESİR ***
180 I=.001*IX
190 P=1.05*PY*10^5
200 REM *** SICAKLIKLARIN HESAPLANMASI ***
210 GOSUB 1570
220 REM *** SİVİ FAZDAKİ ENTAŁPİLERİN HESAPLANMASI ***
230 P=1,05*PY
240 GOSUB 820
250 GOSUB 1090
260 GOSUB 1480
270 HL=HR*MB
280 I=.001*IX
290 REM *** BÜHAR FAZDAKİ KUTLE KONSANTRASYONLARININ HESAPLANMASI ***
300 P=1.05*PY
310 GOSUB 900
320 GOSUB 1000
330 GOSUB 1370
340 REM *** BÜHAR FAZDAKİ ENTAŁPİLERİN HESAPLANMASI ***
350 P=1,05*PY
360 I=.001*IX
370 GOSUB 1260
380 GOSUB 1170
390 GOSUB 1340
400 HG=HR*MB
420 PRINT #3,T,X,HL,Y1,HG
430 NEXT X
440 CLOSE #3
450 END
460 REM *** BASINC ALI PROGRAMI ***
470 A=10.44-1.767*X+.9823*X^2+.3627*X^3
480 B=2013.8-2155.7*X+1540.9*X^2-194.7*X^3
490 P=10^*(A-(B/T))
500 RETURN
510 REM *** REGULA FALSI YONTEMI ' I E ***
520 XL=0:XR=1:REM XL(BASLANSIC),XR (BITIS) SINIRLARI
530 NMAX=2000:REM NMAX(MAXIMUM ITERASYON SAYISI)
540 EPS=.001:REM EPS (HATA MIKTARI)
550 DEF FN F(X)=(-3.627*X^2+194.7*X)^3+(.9823*X-1540.9)*X^2+(-1.767*X+2155.7)*X+10.
440 T=2013.8-(LOG(P)/LOG(10))#T
560 N=1
570 IF XN=FN F(XL)=FN F(XR) THEN RETURN
580 IF N>NMAX THEN PRINT"KOK BULUNAMADI:*";STOP
590 N=N+1:XR=XL:FX
600 GOTO 570
610 FOR S=1 TO 640: GOTO 570: FOR S=1 TO 640:
620 IF ABS(FX)<EPS THEN RETURN
630 IF N>NMAX THEN PRINT"KOK BULUNAMADI:*";STOP
640 NR=1:GOTO 570
650 XR=1:GOTO 580
660 PRINT N:"*ITERASYONDA KOK=";T:RETURN
790 '***
800 *** GIBBS FONKSİYONU İLE ENTALPILERİN BULUNMASI ***
810 '***
820 REM *** DOYHUS H2O'HUN SİVİ FAZDAKİ ENTLALİSİ ***
830 H0L=21.2114118:AL1=-2.74879610^-2:AL2=-1.01665*10^-5:AL3=-4.452025*10^-3
840 AL4=6.389246*10^-4 ; TBB=100:PBB=10
850 TOLR=5.0705;PDRL=3:SDLR=5.733498
860 BL1=1.214557*10^-1;BL2=-1.899065:BL3=2.911966*10^-1
870 PP=P;PBB=Q:TBB
880 HLH2O=H0L-BL1-TOLR-BL2*(Q^2-TOLR^2)/2-BL3*(Q^3-TOLR^3)/3+BL1*Q+BL2*Q^2
+BL3*Q^3-(AL4*Q^2-AL1)*(PP-PDRL)+AL2*(PP-POLR)^2/2
890 RETURN
900 REM *** DOYHUS H2O'UN SİVİ FAZDAKİ GIBBS FONKSİYONUN HESAPLANMASI ***
910 BL1=1.214557*10^-1;BL2=-1.899065:BL3=2.911966*10^-1
920 H0L=21.2114118:AL1=-2.74879610^-2:AL2=-1.01665*10^-5:AL3=-4.452025*10^-3
930 AL4=6.389246*10^-4
940 TOLR=5.0705;PDRL=3:SDLR=5.733498
950 Q=T;TBB;P=P;PBB
980 HLH2O=H0L-Q*SDLR+BL1*(Q-TOLR)+BL2*(Q^2-TOLR^2)/2+BL3*(Q^3-TOLR^3)/3-Q*(BL1
+LOG(1/Q)+TOLR)+BL2*(Q-TOLR)+BL3*(Q^2-TOLR^2)/2+(AL1+AL3*Q+AL4*Q^2)*(PP-POLR)
+AL2*(PP-POLR^2)/2

1410 6SH2D1=HHOGR-Q*DSG+DHK1*(Q-TLRL)+DHK2*(Q*2-TLRL*2)/2+DHK3*(Q*3-TLRL*3)/3-Q
* (DHK1*LOG(Q/TLRL)+DHK2*(Q-TLRL)+DHK3*(Q*2-TLRL*2)/2)*Q*LOG(P/POLR)+CHK1*(
PP-POLR)*CHK2*(PP/Q*3+4*POLR/TLRL*3+3*POLR*4/TLRL*4)
1420 6SHZD3=CHK3*(PP/Q*11-12*POLR/TLRL*11+14*POLR*Q/TLRL*12)+CHK4*(PP/Q*3/Q*11-12*
POLR*3/TLRL*11+14*POLR*3*Q/TOLR*12)/3
1430 6SH2DO=6SH2D1+6SH2D3
1450 REM ### GAZ FAZINDAKI ANONYAGIN KUTLE KONSANTRASYONU ###
1460 YI=1-EXP((WH20-6SH2D0)/8)
1470 RETURN
1480 REM ### DOYKUS NH3-H2O KARISIMININ SIVI FAZINDAKI ENTRALPISI ###
1490 ES=0.78424;E6=-8.461214*10^E7=2.452882*10^E8=95.98767*10^4
1500 E9=-1.475383*E10=-5.038107*10^-3;E11=-9.40398*10^E12=1.22673*10^2
1510 E13=-7.82637;E14=6.012445*10^-4;E15=5.487018*10^E16=-7.66759*10^1
1520 E17=-4.626129*10^E2=2.606225*10^-2;E3=7.292369;E4=-1.032613*10^-2
1530 PP=P/PBB;Q=T/TBB
1540 I=18*X/(17-I*X*(17-I))
*(2*X-1)+*(E13*E14*PP+2*E15/Q*3*E16/Q*2)/(2*X-1)*(2*Y-1))#I*(1-I)
1560 RETURN
1570 REM ### GAZ FAZINDAKI KONSEMD HEDER ###
1580 TLL=5+273.14;TRR=170+273.14;REM TLL(BASLANGIC),TRR (BITIS) SINIRLARI
1590 NMAX=2000;REM NMAX(MAXIMUM INTERASYON SAYISI)
1600 EPS=.001;REM EPS (HATA Miktari)
1610 DEF FN F(T)=(.5627*T+194.7)*X^3+(1.9823*T-1540.91)*X^2+(-1.767*T+2155.7)*X+10
.441*T-2013.8*(LOG(P)/LOG(10))
1620 N=1
1630 TAA=FN F(TLL);TBB=FN F(TRR)
1640 T=(TAA+TBB)/2
1650 FT=FN F(T)
1660 IF ABS(FT)<EPS THEN RETURN
1670 IF N>NMAX THEN PRINT "KOK DULUNAMADI:";STOP
1680 N=N+1;S=TBB*FT
1690 ON SGN(S)+2 GOTO 1700,1720,1710
1700 TLL=T;GOTO 1640
1710 TRR=T;GOTO 1640
1720 PRINT N;"INTERASYONDA KOK=":T;RETURN
1730 REM ### KARISMIM MOL KUTlesi ###
1740 I=18*X/(17-I*X*(17-I))
1750 MX=17*X*18*X*(1-X)
1760 RETURN
EK 4

BİLGİSAYAR PROGRAMI İÇİN ÇIZİLEN AKIŞ DİYAGRAMI
(H_{12US} - H_{12}) < 0.1

T_{12US} = T, H_{12US} = H_{12}

M_1'in HESAPLANMASI

KARŞIM ISI DEĞİŞİRGECİNDEKİ TERSİNMEZLİKLERİN HESABI

M = M_4

M_4 < 0

DUR

ISI DEĞİŞİRGECİNDEKİ TRANSFER BİRİMİNİN (N) HESAPLANMASI

ID_2 = 12

TOPLAM ISI TRANSFER KATSAYISI DEĞİŞİRGECİNİN ALANI

CMIN, N

CMAK, Z

EE > 0.795

EE < 0.8

ID_2 = ID_2 - 0.05

EE

T_5 SICAKLIĞI

H_5 VE H_6'NIN HESAPLANMASI

X = X_4

T_6 SICAKLIĞI

T = T_5, X = X_4, P = PB x 0.925

T = T - 0.001

H_6, H_5, T_5, T

(H_6 - H_5) < 0.1

T_6 = T, H_6 = H_5

T_5

T_3 SICAKLIĞI

H_3 ENALPİSİ
13 NOK. AYRILAN SİVİ KARIŞIMININ
ENTALPİSİNİN HESAPLANMASı

H13

X = X13

X3 < 0.45

X3 ≥ 0.45

Rd ≥ G13 H13 - L7 HS7 - G7 H7

Y14 ün HEPİLANMASI

X14 = X

Y14 = Y

Y14

14 NOK AYRILAN BÜHAR KARIŞIMIN
ENTALPİSİNİN HESAPLANMASı

X = X14

HS14

14 NOK AYRILAN SİVİ KARIŞIMIN
ENTALPİSİNİN HESAPLANMASı

H14

HG14

(H14 - HG14) ≤ 1

(H14 - HG14) > 0

T14 = T14 + 0.005

T14 = T14 - 0.05

C

C

C
AYIRICIDAN YÜKSELEN BUHAR KARİŞIMINDAKİ NH₃'ÜN KÜT. KONS. HESAPLANMASI

YA = Y

Y, Y₁, YA

AYIRICIDAN YÜKSELEN BUHAR KARİŞİMİNİN ENALPİSİİNİN HESAP.

X = YA

HA

16 NOK. AYRILAN SİVİ KARIŞIMINDAKİ NH₃'ÜN KÜT. KONS. HESAPLANMASI

T₁₆ = Tₐ - 10

16 NOK. AYRILAN SİVİ KARIŞİMİN ENALPİSİİNİN HESAPLANMASI

X = X₁₆

qₐ'nın HESABI

16 NOKTAŞINDAN AYRILAN BUHAR KARİŞİM. NH₃'ÜN KÜT. KONS. HESAPLANMASI

T = T₁₆

16 NOKTAŞINDAN AYRILAN BUHAR KARİŞİMİN ENALPİSİİNİN HESAPLANMASI

Y₁₆ = Y

Y, Y₁

16 NOKTAŞINDAN AYRILAN BUHAR KARİŞİMİN ENALPİSİİNİN HESAPLANMASI

X = Y₁
15 NOKTASINDAN AYRILAN SIVI KAR, NH₃ ÜN KÜT. KONS. HESAPLANMASI

T₁₅ = T₁₆ - 10

X

15 NOKTASINDAN AYRILAN SIVI KARISIM ENTALPisinin HESAPLANMASI

T = T₁₅

Y₁₅ = Y

Y₁₅, Y₁, Y

15 NOKTASINDAN AYRILAN BUHAR KARISIM ENTALPisinin HESAPLANMASI

T = T₁₅

DELIK RAFLI KOLON TASARIIMI

AMONYAK VE SUYUN ÖZ. BELLIRLENMESİ

AMONYAK SU BUHAR KARISIMININ YOGUNLUGU
AMONYAK/SU SİVİ KARIŞIMININ YÖĞÜNLÜĞÜ

q_B / q_S

SİVİ YÜZEY GERİLİM KATSAYISININ HESAPLAN

SİVİ VİSKOZİTESİNIN HESAPLAN,

FİV AKIŞ PARAMETRESİ

RAF ARALﮕI , S(m)

S = 0.1

DELİK ÇAPI DR (mm)

DR = 3

DELİK MERKEZLERİ ARASINDAKI UZAKLIK DM (mm)

DM = 6

CF KAPASİTE PARAMETRESİNİN HESAPLANMASI

CF

UF DOGRUSAL BUHAR HIZI

UF

TAŞMA YAKLAŞIM YÜZDESİNİ GİRİNİZ

YÜZEDE TAŞMA YAKLAŞIMI

U

AT KOLON ALANI

AT , D

Ad TAŞMA BORUSU ALANI

Ad = 0.12 x At

Ad

An NET ALAN

An = 0.88 x At

An

Aa ETKİN ALAN

Aa = 0.76 x At

Aa

Ah DEÜK ALANI

Ah = 0.1 x At

Ah

TAŞMA YAKLAŞIMININ KONTROLÜ

Un , FF
\[X = Flv \]

\[FTY = 0.3 \]

\[FTY = 0.6 \]

\[F1 = Y \]

\[F1 \]

E TOPLAM SIZMA KESİM

E

TOPLAM BASINÇ DÜŞÜŞÜ

Uh

Uh DELİK HIZI

RAFKALINLĠĠĠI (RD)

RAFKALINLĠGININ DELIK CAPINA ORANI (RD)

RD

DELĠK ALANININ ETKĠN ALANA ORANI

\[Fva \text{'nin HESAPLANI} \]

\[How \text{'nin HESAPLANMASI} \]

SET YÜKSEKLĠĞI Hw (mm)

\[Hw < 30 \]

\[X = Fva \]
1. Basınç hesaplama alt programı.
2. Regüla falsi Yöntemi ile kütle kesri hesaplama alt programı.
3. Amonyağın sıvı fazdaki entalpisisini hesaplama alt programı.
4. Suyun sıvı fazdaki entalpisisini hesaplama alt programı.
5. Amonyak/su sıvı karışımının entalpisisini hesaplama alt programı.
6. Mol ağırlığı hesaplama alt programı.
7. Amonyağın gaz fazındaki entalpisisini hesaplama alt programı.
8. Suyun gaz fazındaki entalpisisini hesaplama alt programı.
9. Amonyak/su gaz karışımının entalpisisini hesaplama alt programı.
10. Amonyak/su karışımının sıvı fazdaki özgül hacmini hesaplama alt programı.
11. Amonyağın sıvı fazdaki ısıınma ısıısını hesaplama alt programı.
12. Suyun sıvı fazdaki ısıınma ısıısını hesaplama alt programı.
13. Regüla Falsi Yöntemi ile sıcaklık hesaplama alt programı.
15. Suyun sıvı fazdaki kimyasal potansiyelini hesaplama alt programı.
16. Suyun gaz fazındaki Gibbs fonksiyonunun değerini ve gaz karışım-
 daki amonyağın kütle kesrini hesaplama alt programı.
19. Amonyak/su Buhar karışımının yoğunluğunu hesaplama alt programı.
20. Amonyak/su sıvı karışımının yoğunluğunu hesaplama alt programı.
22. Suyun yüzey gerilim katsayısını hesaplama alt programı.
23. Amonyağın viskozitesini hesaplama alt programı.
25. Taşma yaklaşma % 30 iken sızıntı kesrini hesaplama alt programı.
26. Taşma yaklaşma % 80 iken sızıntı kesrini hesaplama alt programı.
27. \((1/Cvo)^2\) hesaplama alt programı.
29. Köpük yoğunluğu \(\phi\)'yi hesaplama alt programı.
ÜZGEÇMİŞ

T. O.
Yükseköğretim Kurulu
Dokümantasyon Merkezi