1,2- BİS(2-PİRİDİL)ETİLEN VE TRANS 1,2- BİS(4-PİRİDİL)ETİLEN MOLEKÜLLERİNİN SERBEST HALDE VE KOMPLEKS YAPIDAKİ TİTREŞİM FREKANSLARININ HESAPLANMASI

Zehra ÖZHAMAM

DOKTORA TEZİ FİZİK

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

> TEMMUZ 2007 ANKARA

Zehra Özhamam tarafından hazırlanan 1,2- BİS(2-PİRİDİL)ETİLEN VE TRANS 1,2- BİS(4-PİRİDİL)ETİLEN MOLEKÜLLERİNİN SERBEST HALDE VE KOMPLEKS YAPIDAKİ TİTREŞİM FREKANSLARININ HESAPLANMASI adlı bu tezin Doktora tezi olarak uygun olduğunu onaylarım.

> Prof. Dr. Şenay YURDAKUL Tez Yöneticisi

Bu çalışma, jürimiz tarafından oybirliği ile Fizik Anabilim Dalında Doktora tezi olarak kabul edilmiştir.

Başkan	: Prof. Dr. Mehmet ZENGİN	
Üye	: Prof. Dr. Bayram KATIRCIOĞLU	
Üye	: Prof. Dr. Ziya KANTARCI	
Üye	: Prof. Dr. Süleyman ÖZÇELİK	
Üye	: Prof. Dr. Şenay YURDAKUL	
Tarih	: 10/07/2007	

Bu tez, Gazi Üniverisitesi Fen Bilimleri Enstitüsü tez yazım kurallarına uygundur.

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada orijinal olmayan her türlü kaynağa eksiksiz atıf yapıldığını bildiririm.

ZEHRA ÖZHAMAM

1,2- BİS(2-PİRİDİL)ETİLEN VE TRANS 1,2- BİS(4-PİRİDİL)ETİLEN MOLEKÜLLERİNİN SERBEST HALDE VE KOMPLEKS YAPIDAKİ TİTREŞİM FREKANSLARININ HESAPLANMASI

(Doktora Tezi)

Zehra ÖZHAMAM

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Temmuz 2007

ÖZET

Bu çalışmada, Gaussian 98 ve Gaussview paket programlarının HF ve DFT / B3LYP, BLYP, B3PW91 fonksiyonellerinin 6-311G* temel seti ile Trans 1,2 bis(4-piridil)etilen (bpe1) ve 1,2 bis(2-piridil)etilen (bpe2) moleküllerinin geometrik optimizasyonu yapılarak yapısal parametreleri(bağ uzunlukları, bağ açıları) ve infrared ve Raman titreşim frekans değerleri hesaplanmıştır. Teorik titreşim frekans değerleri, moleküllerin KBr peleti içinde alınan deneysel infrared titreşim frekans değerleri ile karşılaştırılmıştır.

Bunun için öncelikle bu iki molekülün ayrı ayrı üç boyuttaki yaklaşık geometrisi Gaussview programında çizilmiştir. Bu çizimler, Gaussian 98 paket programında giriş verileri olarak kullanılmıştır. Elde edilen değerler, deneysel değerlerle karşılaştırılmıştır. DFT/ B3LYP ve B3PW91 fonksiyonları ile hesaplanan titreşim frekans değerlerinin ve geometrik parametrelerin deneysel değerlerle çok uyumlu olduğu görülmüştür.

Bu çalışmanın deneysel kısmında ise, trans 1,2 bis(4-piridil)etilen (bpe₁) ile Mn (bpe₁)Cl₂, Mn (bpe₁)Br₂, Mn (bpe₁)I₂, Fe (bpe₁)Cl₂, Fe(bpe₁)Br₂, Fe(bpe₁)I₂, Co(bpe₁)Cl₂, Co(bpe₁)Br₂, Co(bpe₁)I₂, Ni(bpe₁)Cl₂, Ni(bpe₁)Br₂, Ni(bpe₁)I₂

,Cu(bpe₁)Cl₂, Cu(bpe₁)Br₂, Cu(bpe₁)I₂, Zn(bpe₁)Cl₂, Zn(bpe₁)Br₂, Zn(bpe₁)I₂, Cd(bpe₁)Cl₂, Cd(bpe₁)Br₂, Cd(bpe₁)I₂, Hg(bpe₁)Cl₂, Hg(bpe₁)Br₂, Hg(bpe₁)I₂ olmak üzere 24 ve 1,2 bis(2-piridil)etilen (bpe₂) ile Co (bpe₂)Cl₂, Cu (bpe₂)Cl₂, Cu(bpe₂)Br₂, Cu(bpe₂)I₂, Zn (bpe₂)Cl₂, Zn (bpe₂)Br₂, Zn (bpe₂)I₂, Cd(bpe₂)Cl₂, Cd(bpe₂)Br₂, Cd(bpe₂)I₂, Hg(bpe₂)Cl₂, Hg(bpe₂)Br₂, Hg(bpe₂)I₂, olmak üzere 13 tane metal halojenli bileşik ilk kez elde edilmiş ve titreşimsel spektrumları incelenmiştir.

Deneyler Gazi Üniversitesi Fizik Bölümünün Araştırma Laboratuarlarında yapılmış, IR spektrumları Kimya Bölümü'nde bulunan 4000-400 cm⁻¹ aralığındaki Mattson 1000 F-TIR spektrometresi ile çekilmiştir. Frekanslar polystyrene bantlarla düzeltilmiştir. Ayrıca bîleşiklerin C, H, N analiz sonuçları verildi. Elde edilen bileşiklerin titreşim frekans değerleriyle serbest ligand moleküllerinin titreşim frekans değerleri karşılaştırıldı. Bileşiklerin titreşim frekans değerlerinde serbest ligand değerlerine göre kaymalar olduğu belirlendi. Bu kaymaların metale bağlı olarak değiştiği ve ligandın iç titreşimleri ile M-N bağı titreşimleri arasındaki mekanik çiftlenimden kaynaklandığı anlaşıldı. Bileşiklerin spektrumları incelenerek, yapılarının tetrahedral olduğu belirlendi.

Sayfa Adedi : 131 Tez Yöneticisi : Prof. Dr. Şenay Yurdakul THE CALCULATION OF THE VIBRATIONAL SPECTRA OF 1,2- BIS(2-PYRIDYL)ETHYLENE AND TRANS 1,2- BIS(4-PYRIDYL)ETHYLENE AND THE METAL COMPLEXES OF THEM (Ph.D. Thesis)

Zehra ÖZHAMAM

GAZI UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY July 2007

ABSTRACT

In this study, the geometric parameters and the vibrational frequencies of Trans 1,2 bis(4-pyridyl)ethylene (bpe₁) and 1,2 bis(2- pyridyl)ethylene (bpe₂) molecules are calculated by means of HF ve DFT / B3LYP, BLYP, B3PW91 functionals and 6-311G* basis set of Gaussian 98 and Gaussview programs. Calculated vibrational frequencies are compared with the vibrational frequencies of free ligands. Calculated frequencies by DFT/ B3LYP and B3PW91 very close to the experimental vibrational frequencies of free ligands. The 24 metal complexes of trans 1,2 bis(4-pyridyl)ethylene (bpe₁) which are Mn (bpe₁)Cl₂, Mn (bpe₁)Br₂, Mn $(bpe_1)I_2$, Fe $(bpe_1)Cl_2$, Fe $(bpe_1)Br_2$, Fe $(bpe_1)I_2$, Co $(bpe_1)Cl_2$, Co $(bpe_1)Br_2$, $Co(bpe_1)I_2$, $Ni(bpe_1)Cl_2$, $Ni(bpe_1)Br_2$, $Ni(bpe_1)I_2$, $Cu(bpe_1)Cl_2$, $Cu(bpe_1)Br_2$, $Cu(bpe_1)I_2$, $Zn(bpe_1)Cl_2$, $Zn(bpe_1)Br_2$, $Zn(bpe_1)I_2$, $Cd(bpe_1)Cl_2$, $Cd(bpe_1)Br_2$, $Cd(bpe_1)I_2$, $Hg(bpe_1)Cl_2$, $Hg(bpe_1)Br_2$, $Hg(bpe_1)I_2$ and 13 metal complexes of 1,2 bis(2-pyridiyl)ethylene (bpe₂) with are Co (bpe₂)Cl₂, Cu (bpe₂)Cl₂, Cu(bpe₂)Br₂, Cu(bpe₂)I₂, Zn (bpe₂)Cl₂, Zn (bpe₂)Br₂, Zn (bpe₂)I₂, Cd(bpe₂)Cl₂, Cd(bpe₂)Br₂, Cd(bpe₂)I₂, Hg(bpe₂)Cl₂, Hg(bpe₂)Br₂, Hg(bpe₂)I₂, obtained for the first time in this study.

All experiments are made in laboratories of Physics department of Gazi University, the infrared spectra of the ligands are recorded in Chemistry Department of Gazi University in 4000-400 cm⁻¹ region⁻. The results of the C, H, N analyses of the complexes are given in this study. The vibrational IR spectra of the complexes and the free ligands are compared. There are some shifts in the IR spectra of metal complexes due to the complex formation. These shifts are metal dependent and explained by the coupling of the internal modes of ligand molecules with the M-N vibration. The structure of the complexes of these two ligands are in tetrahedral structure.

Metal halogen complexes, Gaussian 98, HF, DFT.Page Number: 131Supervisor: Prof. Dr. Şenay Yurdakul

TEŞEKKÜR

Çalışmalarım süresince, yüksek bilgi birikimini benimle paylaşan, bana rehber olan, her zaman hoşgörülü ve sabırlı davranan değerli hocam Prof. Dr. Şenay Yurdakul'a teşekkür ederim.

Engin bilgilerini bizimle paylaşan, bölüm başkanı olduğu süre boyunca ders seçimlerimizde ve kayıtlarımızda büyük bir sabırla bize yardımcı olan Prof Dr. Hüseyin Koru'yu rahmetle anarım.

Bana laboratuarı ve deney araçlarını tanıtan ve bilgi birikimini benimle paylaşan Dr.Kani Arıcıya teşekkür ederim.

Hayatımın başlangıcından bu güne kadar bana maddi ve manevi olarak her konuda destek olan sevgili annem Zübeyde Özhamam'a, babam Selahattin Özhamam'a, engin bilgisayar bilgilerini ve bilgisayarlarını benimle paylaşan kardeşlerim Elif Özhamam ve Murat Özhamam'a ve biricik oğlum Bora'ya teşekkür ederim.

İÇİNDEKİLER

ÖZETiv
ABSTRACTvi
TEŞEKKÜRviii
İÇİNDEKİLERix
ÇİZELGELERİN LİSTESİxii
ŞEKİLLERİN LİSTESİxiv
1.GİRİŞ1
2.TEMEL BİLGİLER
2.1. Titreşim Spektroskopisi
2.2. Bir Molekülün Yapabileceği Temel Titreşim Hareketleri7
2.2.1. Gerilme titreșimi <i>v</i> 7
2.2.2. Açı bükülme titreşimleri (ρ)
2.2.3. Burulma titreșimi (Torsion) τ
2.2.4. Düzlem dışı açı bükülmesi
3. MOLEKÜLLERİN TİTREŞİM SPEKTRUMLARININ İNCELENMESİ9
3.1 İnfrared Spektroskopisi9
3.1.1. Klasik kuram10
3.1.2. Kuantum kuramı 11
3.2. Raman Spektroskopisi 12
3.2.1. Klasik teori

	3.2.2. Kuantum mekaniksel teori	14
	3.3. Moleküler Simetri , İnfrared Ve Raman Aktiflik	15
		Sayfa
	3.4. Katıların Titreşim Spektrumları	17
	3.5. Kristal Alan Yarılmaları Ve Etkileri	18
	3.6 Çok Atomlu Moleküllerin Titreşimleri	19
	3.7. Grup Frekansları	20
	3.8. Grup Frekanslarına Etkiyen Faktörler	21
4.	DENEYSEL DÜZENEKLER	24
	4.1. İnfrared Spektrometresi	24
	4.2. Raman Spektrometresi	26
	4.3. Fourier Transform İnfrared Spektrometresi (FTTR)	27
5.	TİTREŞİM SPEKTRUMU YORUMU VE MOLEKÜL YAPISININ BULUNMASI	30
	5.1. Titreşim Spektrumlarında Beklenenden Fazla Pik Gözlenmesi	30
	5.2. Titreşim Spektrumlarında Beklenenden Az Pik Gözlenmesinin Sebeple	eri30
6.	BİLGİSAYAR HESAPLAMALI MOLEKÜLER SPEKTROSKOPİ	32
	6.1. Kuantum Mekaniksel Enerji İfadeleri Ve Yoğunluk Fonksiyonu Teoris DFT	i 34
	6.1.1. Nükleer çekim, fonksiyonu	36
	6.1.2. Coulomb fonksiyonu	36
	6.1.3. Hartree kinetik fonksiyonu	36
	6.1.4. Fock değiş tokuş fonksiyonu	37
	6.1.5. Thomas-Fermi kinetik fonksiyonu	37

6.1.6. Dirac değiş tokuş fonksiyonu	38
6.1.7. Vosko-Wilk-Nusair fonksiyonu	39
6.1.8. Lee-Yang-Parr korelasyon fonksiyonu	40
\$	Sayfa
6.1.9. B3LYP karma yoğunluk fonksiyonu teorisi	41
6.1.10. Temel Setler ve 6-311 G* Temel Seti Sayfa	42
6.2. Geometrik Optimizasyon	45
6.3. Hesaplama Metodu Yoğunluk Fonksiyonu Teorisinde Öz Uyumlu Alan Yöntemi (DFT SCF)	49
6.4. SQM Metodu	53
7. SONUÇLAR VE TARTIŞMA	55
7.1. Trans 1,2- Bis(4-Piridil)Etilen Molekülü İle Yapılan Deneysel Çalışma Sonuçları	56
7.2. Trans 1,2- Bis(4-Piridil)Etilen Maddesinin Teorik Hesaplama Sonuçları.	68
7.2.1. Geometrik Parametrelerin Hesaplanması ve Sonuçları	68
7.2.2. Titreşim Frekansı Değerlerinin Hesaplanması ve Sonuçları	72
7.3. 1,2-Bis(2-Piridil)Etilen Molekülünün Deneysel Çalışma Sonuçları	82
7.4. 1,2- Bis(2-Piridil)Etilen Molekülünün Teorik Hesaplama Sonuçları	89
7.4.1. Geometrik Parametrelerin Hesaplanması Ve Sonuçları	89
7.4.2. Titreşim Frekans Değerlerinin Hesaplanması Ve Sonuçları	92
KAYNAKLAR	101
 EKLER EK-1 Trans 1,2-bis(4-piridil) etilen molekülü ile hazırlanan metal haloje bileşiklerin infrared titreşim spektrumları EK-2 1,2-bis(2-piridil) etilen molekülü ile hazırlanan metal halojen bileşiklerin infrared titreşim spektrumları ÖZGECMİS 	105 106 124 131

ÇİZELGELERİN LİSTESİ

Çizelge Sayfa	a
Çizelge 2.1. Elektromanyetik spektrum bölgeleri	3
Çizelge 3.1. İnfrared spektral bölge	9
Çizelge 3.2. Grup frekansları	3
Çizelge 6.1. Enerji türevlerinden fiziksel büyüklüklerin hesaplanması	4
Çizelge 7.1.Trans 1,2- bis(4-piridil)etilen molekülünün bazı metal halojen bileşiklerinin analiz sonuçları57	7
Çizelge 7.2. Trans 1,2- bis(4-piridil)etilen molekülünün Zn(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları (cm ⁻¹)	9
Çizelge 7.3. Trans 1,2- bis(4-piridil)etilen molekülünün Cu(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)	1
Çizelge 7.4. Trans 1,2- bis(4-piridil)etilen molekülünün Co(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)62	2
Çizelge 7.5 Trans 1,2- bis(4-piridil)etilen molekülünün Mn(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)	3
Çizelge 7.6. Trans 1,2- bis(4-pyridyl)ethylene molekülünün Cd(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)64	4
Çizelge 7.7. Trans 1,2- bis(4-piridil)etilen molekülünün Hg(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)69	5
Çizelge 7.8. Trans 1,2- bis(4-piridil)etilen molekülünün Fe(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)66	6
Çizelge 7.9. Trans 1,2- bis(4-piridil)etilen molekülünün Ni(bpe)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)67	7
Çizelge 7.10.Trans 1,2- bis(4-piridil)etilen için bağ açıları (A°) ve bağ	

	uzunlukları (A [°])6	9
Çizelge 7.11.	Trans 1,2- bis(4-piridil)etilen molekülünün teorik ve deneysel titreşim frekanslarının karşılaştırılması7	7
Çizelge7.12.	1,2- bis(4-piridil)etilen molekülünün bazı metal halojen bileşiklerinin analiz sonuçları	3
Çizelge	Say	fa
Çizelge 7.13.	1,2-bis(2-piridil)etilen molekülünün Zn(bpe ₂)X ₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹) 8	34
Çizelge 7.14.	1,2- bis(2-pyridyl)ethylene molekülünün Cu(bpe ₂) X_2 [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹)8	6
Çizelge 7.15.	1,2-bis(2-piridil)etilen Molekülünün Hg(bpe)X ₂ [X=Cl,Br,I] Metal halojen bileşiklerinin titreşim frekansları(cm ⁻¹) 8	7
Çizelge 7.16.	1,2-bis(2-piridil)etilen molekülünün Cd(bpe ₂) X_2 ve Co(bpe) X_2 [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm ¹)8	8
Çizelge 7.17.	1,2-bis(2-piridil)etilen molekülünün bağ uzunlukları (A [°]) ve Bağ açıları (A [°])90)
Çizelge 7.18.	1,2-bis(2-piridil)etilen molekülünün teorik ve deneysel titreşim frekanslarının karşılaştırılması	6

ŞEKİLLERİN LİSTESİ

Şekil Sayfa
Şekil 2.1. İki atomlu bir molekülün enerji şeması 4
Şekil 2.2. Temel titreşim türleri
Şekil 3.2. Raman olayının kuantum mekaniksel görüşe göre gösterimi15
Şekil 4.1. İnfrared spektrometresi
Şekil 4.2. Michelson interferometresi
Şekil 6.1. İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı
Şekil 6.2. İki boyutta potansiyel enerji yüzeyi48
Şekil 7.1. Trans 1,2- bis(4-piridil)etilen molekülünün yapısı ve numaralandırılması
Şekil 7.2. Trans 1,2- bis(4-piridil)etilen molekülünün IR spektrumu (KBr)73
Şekil 7.3. Trans 1,2-bis(4-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) HF6311 b)B3LYP6311
Şekil 7.4. Trans 1,2-bis(4-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) BLYP6311 b)B3PW916311
Şekil 7.5. Trans 1,2-bis(4-piridil)etilen molekülünün temel titreşim şekilleri a) 820cm ⁻¹ (B3LYP) b) 1077cm ⁻¹ (B3LYP) c)1541cm (B3LYP)81
Şekil 7.6. 1,2- bis(2-Piridil)Etilen molekülünün yapısı ve numaralandırılması89
Şekil 7.7. 1,2- bis(2-Piridil)ethilen molekülünün IR spektrumu (KBr)95
Şekil 7.8. 1,2-bis(2-piridil)etilen molekülünün deneysel ve teorik olarak

	hesaplanan titreşim frekanslarının korelasyon grafikleri a) HF6311 b) B3LYP6311	98
Şekil 7.9.	1,2-bis(2-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) BLYP6311b)B3PW916311	99
Şekil		Sayfa
Şekil 7.10). 1,2-bis(2-piridil)etilen molekülünün temel titreşim şekilleri	100

1.GİRİŞ

Bu çalışma, teorik ve deneysel olmak üzere iki kısımdan oluşmaktadır. Teorik kısımda, Gaussian 98 [1] ve Gaussview [2] paket programları kullanılmıştır. Hesaplamalar, bu programdaki HF ve DFT / B3LYP, BLYP, B3PW91 fonksiyonellerinin 6-311G* temel seti ile yapılmıştır. İlk olarak, Trans 1,2 bis(4piridil)etilen (bpe1) ve 1,2 bis(2-piridil)etilen (bpe2) moleküllerinin üç boyuttaki yaklaşık geometrisi Gaussview [2] programında çizilmiştir. Bu çizim, Gaussian 98 paket programında giriş verileri olarak kullanılmıştır[1]. Bu program yardımıyla molekülün geometrik optimizasyonu yapılarak yapısal parametreleri; bağ uzunlukları, bağ açıları ve infrared ve Raman titreşim dalga sayıları, toplam elektronik enerjisi ve dipol momenti, temel titreşim frekansları ve IR ve Raman şiddetleri hesaplanmıştır. İnfrared aktif olan teorik titreşim frekansları, moleküllerin KBr peleti içinde alınan infrared spektrumu verileri ile karşılaştırılmıştır. Karşılaştırma yapmak için titreşim frekans değerleri tablolar haline getirilerek verilmiştir. B3LYP ve B3PW91 ile hesaplanan frekans değerlerinin deneysel değerlere çok yakın olduğu görülmüştür.

Deneysel kısımda, Trans 1,2 bis(4-piridil)etilen (bpe₁) ile Mn (bpe₁)Cl₂, Mn (bpe₁)Br₂, Mn (bpe₁)I₂, Fe (bpe₁)Cl₂, Fe(bpe₁)Br₂, Fe(bpe₁)I₂, Co(bpe₁)Cl₂, Co(bpe₁)I₂, Co(bpe₁)I₂, Ni(bpe₁)Cl₂, Ni(bpe₁)Br₂, Ni(bpe₁)I₂, Cu(bpe₁)Cl₂, Cu(bpe₁)Br₂, Cu(bpe₁)I₂, Zn(bpe₁)Cl₂, Zn(bpe₁)Br₂, Zn(bpe₁)I₂, Cd(bpe₁)Cl₂, Cd(bpe₁)I₂, Hg(bpe₁)Cl₂, Hg(bpe₁)Br₂, Hg(bpe₁)I₂ olmak üzere 24 ve 1,2 bis(2-piridil)etilen (bpe₂) ile Co (bpe₂)Cl₂, Cu (bpe₂)Cl₂, Cu(bpe₂)Br₂, Cu(bpe₂)I₂, Zn (bpe₂)Cl₂, Zn (bpe₂)Br₂, Zn (bpe₂)I₂, Cd(bpe₂)Cl₂, Hg(bpe₂)Br₂, Hg(bpe₂)I₂, Hg(bpe₂)Cl₂, Hg(bpe₂)Br₂, Hg(bpe₂)I₂, distance 13 tane metal halojenli bileşik ilk kez elde edilmiş ve tek tek bileşiklerin titreşimsel spektrumları alınmıştır.

Bu bileşiklerin tümünün FTIR spektrumları 4000-400 cm⁻¹ bölgesinde kaydedilmiştir. Spektrumlar incelenerek, bileşiklerin olabilecek mümkün yapıları tartışılmıştır. Elde edilen bileşiklerin ve serbest ligand moleküllerinin titreşim

frekansları deneysel değerlerle karşılaştırılmıştır. Bileşiklerin titreşim frekans değerlerinde serbest haldeki ligandın titreşim frekans değerlerine göre biraz kayma olduğu görülmüştür. Bu kaymanın miktarının liganda bağlanan metal ve halojene bağlı olduğu anlaşılmıştır. Ayrıca bileşiklerin C, H, N analiz sonuçları verilmiştir. Bu analiz sonuçları ile bileşikler oluşurken metale kaç tane ligandın bağlandığı anlaşılmıştır.

Deneyler Gazi Üniversitesi Fizik Bölümünün Araştırma Laboratuarlarında yapılmış, IR spektrumları Kimya Bölümü'nde bulunan 4000-400 cm⁻¹ aralığındaki Mattson 1000 F-TIR spektrometresi ile çekilmiştir. Frekanslar polystyrene bantlarla düzeltilmiştir.

2.TEMEL BİLGİLER

2.1. Titreşim Spektroskopisi

Molekül titreşim spektroskopisi, elektromanyetik dalgayla maddenin etkileşmesini inceler. Moleküllerin yapısını belirlemek amacıyla kullanılır. Molekülün yapısıyla ilgili; simetri, bağ uzunluğu, bağlar arasındaki açılar hakkında bilgiler verir. Ayrıca titreşim spektroskopisi ile molekülün yapısı hakkında fikir edinilebilir[3].

Elektromanyetik dalganın maddeyi oluşturan moleküllerle etkileşmesi, molekülün değişik enerji düzeyleri arasındaki geçişe sebep olur. Bu geçişler gelen elektromanyetik dalganın enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır (Çizelge 2.1) [4].

X(Dalga Boyu)	Bölgesi	Spektroskopisi	Frekans(Hz)
300-3 m	Radyo Frekans	NMR ve NQR	$10^{6} - 10^{8}$
30m- 0.3 m	Mikrodalga	ESR ve Moleküler Dönme	$10^{10} - 10^{12}$
300µm-1µm	Infrared	Moleküler Dönme ve Titreşim	10^{12} -3.10 ¹⁴
1µm-300A°	Görünür veya Mor ötesi (UV)	Elektronik Geçişler Dış e"	$3.10^{14} - 10^{16}$
100-0.3A ⁰	X- Işınları	Elektronik Geçişler İç e"	3.10 ¹⁶ -10 ¹⁹

Çizelge 2.1. Elektromanyetik spektrum bölgeleri [4]

Serbest bir molekülün toplam enerjisi; titreşim, dönme, elektronik, öteleme ve nükleer dönme enerjileri olmak üzere beş kısımda incelenir. Bunlardan öteleme enerjisi sürekli bir enerji olmasından dolayı dikkate alınmaz. Nükleer dönme enerjisi ise diğerlerinin yanında çok küçük olduğundan ihmal edilebilir [5].

Bu durumda bir molekülün toplam enerjisi, moleküldeki elektronların hareketinden kaynaklanan *elektronik enerji*, moleküldeki atomların titreşiminden

kaynaklanan *titreşim enerjisi*, molekülün dönmesinden kaynaklanan *dönü enerjisi* olmak üzere üç kısma ayrılabilir. Dolayısı ile bir molekülün toplam enerjisini,

$$E = E_e + E_t + E_d \tag{2.1}$$

ifadesi ile verebiliriz. Burada E_{e_i} elektronik enerjiyi, E_t , titreşimsel enerjiyi, E_d , dönü enerjisini göstermektedir. İki atomlu bir molekülün Eş. 2.1 ile verilen enerji şeması Şekil 2.1'de verilmektedir. Molekülün dönme enerji seviyeleri birbirine çok yakın olduğu için düşük frekanslarda oluşur. Genel olarak molekülün saf dönme geçişleri 1cm-1µm dalga boyu aralığına düşen mikrodalga spektroskopisi ve uzak infrared spektrum bölgesinde incelenir. Titreşim enerji seviyesi arasındaki geçişler 100µm-1µm dalga boyu aralığında infrared ve Raman spektroskopisi ile incelenir.

Gaz fazındaki örneklerin titreşim enerji geçişleri sırasında, dönme enerjisi de değişebildiğinden titreşim bantları ile üst üste binmiş dönme ince yapısı da gözlenebilir. Görünür veya mor ötesi spektroskopisi ile moleküllerin elektronik geçişleri incelenir. İki atomlu bir molekül için elektronik, titreşim ve dönü geçişleri Şekil 2.1'de verilmiştir.

Şekil 2.1. İki atomlu bir molekülün enerji şeması[6]

Bir molekülün Eş.2.1 ile verilen enerjilerinden her biri, birbirinden farklı deneysel ve teorik metotlar ile incelenmektedir.

Molekülün titreşim enerjisi ise;

$$E_{t} = hc \,\omega_{e} \,(\nu + \frac{1}{2}) - hcx \,\omega_{e} \,(\nu + \frac{1}{2})^{2} + \dots$$
(2.2)

ifadesi ile verilmektedir. Burada eşitliğin sağındaki ilk ifade harmonik katkıya, ikinci ifade ise ilk anharmonik katkıya karşılık gelmekte olup, v titreşimsel kuantum sayısı, ω_e dalgasayısı, χ anharmoniklik sabitini göstermektedir, v titreşim kuantum sayısı olmak üzere, v = 0 titreşimsel olarak taban enerji düzeyine $v \ge 1$ ise titreşimsel olarak uyarılmış enerji düzeylerine karşılık gelmektedir. $v:0 \rightarrow 1$ geçişine *temel geçiş*, $v:0 \rightarrow 2,3,4,...$ geçişlerine ise *üstton geçişleri* denilmektedir. Eş. 2.2 düzenlenecek olursa

$$\frac{(E_t - E_0)}{hc} = v \omega_e \chi \omega_e (v^2 + v) + \dots$$
(2.3)

yazılabilir. Bu ifadeden hareketle temel geçişe karşılık gelen temel titreşim dalgasayısı,

$$v = \omega_e - 2\chi\omega_e \tag{2.4}$$

ifadesi ile verilmektedir. Moleküller mutlak sıfır sıcaklığında da titreşmektedirler, bu titreşimin enerjisine *sıfır nokta enerjisi* denilmektedir ve Eş.2.5 ile verilmektedir.

$$E_o = \frac{1}{2}h\nu \tag{2.5}$$

Bir moleküldeki atomlar arasındaki etkileşmeler kuvvet veya potansiyel enerji ile ifade edilmektedir. Potansiyel enerji denge konumu civarında Taylor serisine açılacak olursa, Eş. 2.6 ve Eş. 2.7 ile verilir.

$$V = V(q_o) + \sum_i \frac{\partial V_i}{\partial q_j} q_i + \frac{1}{2} \sum_{ij} \frac{\partial^2 V}{\partial q_i \partial q_j} q_i q_j + \dots$$
(2.6)

$$V = \frac{1}{2} \sum_{ij} F_{ij} q_i q_j + \frac{1}{6} \sum_{ijk} F_{ijk} q_i q_j q_k + \dots$$
(2.7)

Burada,

$$F_{ij} = \frac{\partial^2 V}{\partial q_i \partial q_j} \tag{2.8}$$

olup harmonik kuvvet sabiti adını almaktadır. Harmoniklik yaklaşımda dalgasayısı Eş. 2.9 ile verilmektedir.

$$\overline{\nu} = \frac{1}{2\pi c} \sqrt{\frac{\partial^2 V}{\partial q_i \partial q_j}} (cm^{-1})$$
(2.9)

Eş. 2.7 numaralı ifadedeki 2. terim ve diğer üst mertebeden terimler anharmonik katkıya karşılık gelmektedir [6,7].

Bir molekülün herhangi bir frekansta hangi titreşim hareketini yaptığının belirlenmesine *işaretleme* denilir. Bir molekülün herhangi bir frekansta yaptığı titreşim hareketi oldukça basit olabileceği gibi çok karmaşıkta olabilir.

2.2. Bir Molekülün Yapabileceği Temel Titreşim Hareketleri

2.2.1. Gerilme Titreşimi v

Bağ ekseni doğrultusundaki periyodik uzama ve kısalma hareketine gerilme titreşimi denilir. Yer değiştirme vektörü bağ uzunluğundaki değişmeyi verir. Molekülün tüm bağlarının uzaması veya kısalması hareketi (simetrik gerilme) olabildiği gibi, bağların biri veya birkaçı uzarken diğeri kısalma (asimetrik gerilme) yada bunun tam tersi hareket yapabilir. Gerilme titreşimleri v ile gösterilir. Şekil 2.2.a'da gerilme titreşimi şematik olarak verilmiştir.

2.2.2. Açı bükülme titreşimleri(*p*)

İki bağ arasındaki açının periyodik olarak değişerek deformasyona uğrama hareketidir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Açı bükülme titreşimleri ρ ile gösterilir. Şekil 2.2.b,c,d'de gerilme titreşimi şematik olarak gösterilmiştir.

a) Makaslama (Scissoring) (ρ_s): İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak değişim hareketidir. Yerdeğiştirme vektörleri bağ doğrultusuna diktir.

b) Sallanma (Rocking)(ρ_r): Yer değiştirme vektörleri birbirini takip edecek yöndedir. İki bağ arasındaki veya bir bağ ile bir grup atom arasındaki açının yer değiştirmesidir. Bağ uzunluğu ve açının α değeri değişmez kalır. ρ_r ile gösterilir. Açı bükülmesinin özel bir durumudur.

c) Dalgalanma(ω): Bir bağ ile bir düzlem arasındaki açı değişimidir. Tüm atomlar denge konumunda aynı düzlemdedir. Atomlardan birinin bu düzleme dik hareket etmesine dalgalanma denilir.

d) Kıvırma(twisting)(t): Doğrusal ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesidir. Bağlardan biri ile bir düzlem arasındaki açı değişimidir. Burada bağın deformasyonu söz konusu değildir. Yer değiştirme vektörü bağ doğrultusuna diktir, t ile gösterilir.

2.2.3. Burulma titreșimi (Torsion) τ

İki düzlem arasındaki açının bir bağı veya açıyı burarak yaptığı periyodik değişim hareketidir, τ ile gösterilir. Şekil 2.2. g'de burulma titreşimi şematik olarak verilmiştir.

2.2.4. Düzlem dışı açı bükülmesi

Molekül düzlemine dik doğrultudaki açı değişimidir. Genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı şemsiye titreşimi denir ve γ ile gösterilir. Şekil 2.2. h'de düzlem dışı açı bükülme titreşimi şematik olarak gösterilmiştir.

- a) Gerilme titreşimi b) Açı bükülme titreşimi c) Makaslama d) Sallanma
- e) Kıvırma f) Dalgalanma g) Burulma h)Düzlem dışı açı bükülmesi

3. MOLEKÜLLERİN TİTREŞİM SPEKTRUMLARININ İNCELENMESİ

3.1. İnfrared Spektroskopisi

Moleküllerin titreşimsel spektrumları IR ve Raman spektroskopisi ile incelenir. IR spektrumu genellikle üç bölgeye,

a) Orta IR,

b) Yakın IR,

c) Uzak IR

olmak üzere ayrılır [8]. Çizelge 3.1'de bunlar verilmiştir.

Çizelge 3.1. İnfrared spektral bölge [8]

BÖLGE		v (cm-1)	v(Hz)
Yakın IR	0,78-2,5	12800-4000	3t8x1014 -
Orta IR	2,5-50	4000-200	1,2x1014 -
Uzak IR	50-1000	200-10	6,0x1012 -3,0x1011

Yakın IR Bölgesi: Moleküler titreşim frekanslarının üst ton veya harmoniklerinin gözlendiği bölgedir.

Orta IR Bölgesi: Moleküllerin hemen hemen bütün titreşimlerinin gözlendiği bölgedir. Yani infrared spektroskopisi denince akla bu bölge gelir. Moleküler temel titreşimler genellikle bu bölgeye düştüğünden spektroskopide en çok kullanılan bölgedir.

Uzak IR Bölgesi: Ağır atomların titreşim frekanslarının ve örgü titreşimlerinin incelendiği bölgedir Moleküllerin saf dönü hareketiyle ilgilidir. Mikrodalga bölgesine yakın olduğu için moleküllerin dönme hareketleri de incelenebilir.

Kimyasal spektroskopide nadiren kullanılır. Kristal örgü titreşimlerinin incelendiği bölgedir [9].

IR spektroskopisinde, infrared bölgede tüm frekansları içeren elektromanyetik ışık, numune üzerine gönderilerek, geçen veya soğurulan ışık incelenir [10]. Molekül v frekanslı bir ışın soğurduğunda, molekülün μ elektriksel dipol momenti (veya bileşenlerinden en az biri) bu frekansta titreşecektir. Böyle bir titreşim spektrumun infrared bölgesine düşer. Moleküllerin titreşimleri ile ilgili olan, İnfrared soğurma, iki kısımda incelenebilir. Bunlar; klasik kuram ve kuantum kuramıdır.

3.1.1. Klasik kuram

Klasik elektrodinamiğe göre, bir sistemin elektrik dipol momentinde bir değişme oluyorsa, o sistem radyasyon yayınlayabilir. Değişen bu dipol titreşimlerinin frekansı ile yayınlanan radyasyonun frekansı birbirine eşittir. Soğurma ise yayınlamanın tam tersi olarak düşünülebilir. Yani bir sistem yayınlayabildiği frekansa eşdeğerde frekanslı bir ışını soğurabilir. Molekülün elektrik dipol momenti μ , kartezyen koordinat sisteminde μ_x , μ_y , μ_z şeklinde üç bileşene sahiptir. Bir molekül, üzerine düşen v frekanslı bir ışını soğurduğunda, molekülün μ elektriksel dipol momenti veya bileşenlerinden en az biri, bu frekansta titreşecektir [11]. Yani genel anlamda, bir molekülün v frekanslı bir ışını soğurabilmesi veya yayabilmesi için, μ elektrik dipol momentinin bu frekansta bir titreşim yapması gereklidir. Bu titreşim, spektrumu infrared bölgesine düşer [12]. Basit harmonik yaklaşımda, moleküler dipol momentin titreşim genliği, bütün Q titreşim koordinatlarının bir fonksiyonudur. μ dipol momenti, molekülün denge konumu civarında Taylor serisine açılırsa;

$$\vec{\mu} = \vec{\mu} + \sum \left\{ \left[\frac{\partial \vec{\mu}}{\partial Q_k} \right]_0 Q_k \right\} + \frac{1}{2} \sum_k \left\{ \frac{\partial^2 \vec{\mu}}{Q_k^2} Q_k^2 \right\} + \dots \dots$$
(3.1)

elde edilir. Burada toplamın k üzerinden alınması, dipol momentin, bütün titreşim koordinatları üzerinden olduğunun bir göstergesidir. Küçük genlikli salınımlar için, iyi bir yaklaşıkla Q_k 'nın birinci dereceden terimini alıp, daha yüksek mertebeden terimler ihmal edilirse ; molekülün elektrik dipol momenti,

$$\vec{\mu} = \vec{\mu}_0 + \sum \left\{ \frac{\partial \vec{\mu}}{\partial Q_k} \right\}_0 Q_k$$
(3.2)

şeklinde yazılabilir [13]. Eş. 3.2'ye göre bir molekülün bir titreşim modunun IR aktif olabilmesi için o molekülün elektriksel dipol momentindeki veya elektriksel dipol moment bileşenlerinden en az birindeki değişimin sıfırdan farklı olması gerekir.

Yani,

$$\left[\frac{\partial \overline{\mu_i}}{\partial Q_k}\right]_0 \neq 0 \qquad (i = x, y, z)$$
(3.3)

olmalıdır.

3.1.2. Kuantum kuramı

Kuantum mekaniğine göre, Ψ^n ve Ψ^m dalga fonksiyonları ile belirtilen n ve m gibi iki titreşim enerji düzeyi arasında geçiş olabilmesi için , ışınımın soğurulma şiddetinin bir ölçüsü olan $\vec{\mu}_{nm}$ geçiş dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olması gerekir.

$$\vec{\mu}_{nm} = \int \Psi^{(n)} \vec{\mu} \Psi^{(m)} d\tau \neq 0 \tag{3.4}$$

Burada $\Psi^{(n)}$ n. uyarılmış enerji seviyesindeki molekülün titreşim dalga fonksiyonu, $\Psi^{(m)}$ taban enerji seviyesindeki molekülün titreşim dalga fonksiyonu, dt hacim elemanı, μ ise elektriksel dipol moment operatörüdür. Eş. 3.2, Eş. 3.4' de yerine konursa;

$$\vec{\mu}_{nm} = \mu_0 \int \Psi^{(n)} \Psi^{(m)} d\tau + \frac{\partial \vec{\mu}}{\partial Q_k} \int \Psi^{(n)} Q_k \Psi^{(m)} d\tau + \frac{\partial^2 \vec{\mu}}{Q_k^2} \int \Psi^{(n)} Q_k^2 \Psi^{(m)} d\tau$$
(3.5)

elde edilir. Burada ilk terimdeki $\Psi^{(n)}$ ve $\Psi^{(m)}$ ortogonal fonksiyonlar olduklarından (n \neq m) bu terim sıfır olur. Taban enerji düzeyinden, uyarılmış enerji düzeyine geçiş olasılığı, $|\mu_{nm}|^2$ ile orantılıdır. Bu nedenle, infrared spektroskopisinde bir molekülün herhangi bir titreşiminin gözlenebilmesi için, söz konusu titreşimi sırasında molekülün, elektriksel dipol momentindeki değişiminin sıfırdan farklı olması gerekir. Ayrıca $\int \Psi^{(n)}Q_k\Psi^{(m)}d\tau$ integralinin sıfırdan farklı olması gerekir. Yani $\int \Psi^{(n)}Q_k\Psi^{(m)}d\tau \neq 0$ olmalıdır.

3.2. Raman Spektroskopisi

IR spektroskopisinin tamamlayıcısı olan Raman spektroskopisinde molekülden saçılan radyasyon incelenir. Raman saçılmasının iki teorisi vardır.

3.2.1. Klasik teori

Moleküller üzerine gönderilen elektriksel alan,

$$E = E_0 \sin(2\pi v_0 t) \tag{3.6}$$

ifadesi ile verilir. Bu elektrik alan molekülde bir dipol moment oluşturur,

$$\vec{\mu} = \alpha \vec{E} \tag{3.7}$$

bu son iki bağıntı bir araya getirildiğinde molekülde oluşan elektriksel dipol moment,

$$\mu = \alpha E_0 \sin(2\pi v_0 t) \tag{3.8}$$

ifadesi elde edilir, μ ve *E* vektörel büyüklükler olmasına karşın α skaler bir büyüklüktür Eş.3.8 bileşenleri cinsinden,

$$\mu_x = \alpha_{xx} E_x + \alpha_{xy} E_{xy} + \alpha_{xz} E_z \tag{3.9}$$

$$\mu_{y} = \alpha_{yx}E_{x} + \alpha_{yy}E_{xy} + \alpha_{yz}E_{z}$$
(3.10)

$$\mu_z = \alpha_{zx} E_x + \alpha_{zy} E_{xy} + \alpha_{zz} E_z \tag{3.11}$$

ifadesi ile verilir.

Molekülün titreşimi kutuplanabilirliği ile periyodik olarak değişiyorsa, kutuplanabilirlik katsayısı α denge konumu civarında Taylor serisine açılabilir.

$$\alpha = \alpha_0 + \sum_k \left\{ \left[\frac{\partial \alpha}{\partial Q_k} \right]_0 Q_k \right\}$$
(3.12)

Burada α_0 denge konumunda kutuplanma yatkınlığı ve Q titreşim koordinatıdır. Raman spektroskopisinde molekül görünür bölgede v₀ frekanslı monokromatik bir ışın ile uyarıldığında indüklenmiş dipol moment,

$$\vec{\mu} = \alpha \vec{E} = \alpha_0 \vec{E} + \sum_k \left\{ \left[\frac{\partial \alpha}{\partial Q_k} \right] Q_k \right\} \vec{E}$$
(3.13)

ifadesi ile verilir. Dolayısı ile indüklenmiş dipol momentin x bileşeni ise

$$\mu_{x} = (\alpha_{xx})_{0}E_{x} + (\alpha_{xy})_{0}E_{x} + (\alpha_{xz})_{0}E_{x} + \sum \left[\frac{\partial\alpha_{xx}}{\partial Q_{k}}\right]_{0}E_{x} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{y} + \left[\frac{\partial\alpha_{xz}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial Q_{k}}\right]_{0}E_{z} + \left[\frac{\partial\alpha_{xy}}{\partial$$

ile verilir. Qk normal koordinatı,

$$Q_k = Q_0 \sin(2\pi v_k t) \tag{3.15}$$

 v_t frekansı ile titreşir. Eş.3.15 ve Eş.3.6, Eş.3.12'de yerine yazılıp trigonometrik özdeşlikler kullanılırsa,

$$\mu = \alpha E_0 \sin(2\pi v_0 t) + \frac{1}{2} \left\{ \left[\frac{\partial \alpha}{\partial Q_k} \right]_0 E_0 Q_k \left[\cos 2\pi (v_0 - v_k) t - \cos 2\pi (v_0 + v_k) t \right] \right\}$$
(3.16)

ifadesi elde edilir. Eşitliğin sağındaki ilk terim Rayleigh saçılmasına, $v_o - v_k$ içeren terim Stokes saçılmasına , $v_o + v_k$ içeren terim anti Stokes saçılmasına karşılık gelir. Böylece klasik teori Rayleigh saçılmasını açıklamış olmaktadır. Bir titreşimin Raman aktif olabilmesi için titreşim hareketi esnasında molekülün kutuplanabilirliğinin değişmesi gerekir. Genel bir ifade ile verecek olursak Raman aktiflik için seçim kuralı, aşağıdaki şekilde verilmektedir.

$$\left[\frac{\partial \alpha_{ij}}{\partial Q_k}\right] \neq 0 \qquad (i, j = x, y, z) \qquad (3.17)$$

3.2.2. Kuantum mekaniksel teori

Raman saçılma teorisinin kuantum mekaniksel yorumuna göre Ψ_m ve Ψ_n dalga fonksiyonel arı ile sembolize edilen iki titreşim enerji düzeyi arasında Raman geçişi gözlenebilmesi için geçiş dipol momentinin aşağıdaki gibi olması gerekir.

$$\mu_{mn} = \int \Psi_n \alpha \Psi_m \partial \tau \neq 0 \tag{3.18}$$

Raman olayının kuantum mekaniksel gösterimi Şekil 3.2'de verilmiştir. Raman olayı kuantum mekaniksel olarak şöyle açıklanır. Örnek üzerine monokromatik ışık

demeti düşürüldüğünde hv_o enerjili fotonlar moleküller ile çarpışır ,eğer foton ile molekül arasındaki çarpışma elastik ise saçılan foton ve gelen foton aynı enerjiye sahiptir, eğer bu çarpışma inelastik ise saçılan fotonun enerjisi kuantum şartlarına uygun olarak gelen fotonun enerjisinden daha çok veya daha azdır.

Şekil 3.2. Raman olayının kuantum mekaniksel görüşe göre gösterimi [7]

Taban titreşim enerji düzeyinde bulunan bir molekül hv_0 enerjili fotonlar ile etkileştiğinde esnek veya esnek olmayan çarpışma yapar ve üst kararsız titreşim seviyelerine uyarılır. Üst kararsız titreşim seviyesinde bulunan bir molekül $h(v_0 - v_k)$ enerjili foton yayınlayarak farklı bir uyarılmış enerji düzeyine geçiş yaparsa buna Stokes saçılması, taban titreşim enerji düzeyine v_0 frekansı ile geçiş yaparsa buna Rayleigh saçılması denir. Eğer molekül başlangıçta birinci uyarılmış enerji düzeyindeyken hv_0 enerjisini alarak üst kararsız titreşim enerji düzeylerinden birine uyarılır ve $h(v_Q + v_k)$ enerjili foton salarak taban titreşim enerji düzeyine geçiş yaparsa buna anti Stokes saçılması denilir [7,14].

3.3. Moleküler Simetri, İnfrared ve Raman Aktiflik

Bir molekülün simetrisi, atomlarının uzaydaki geometrik dağılımıyla oluşmaktadır. Bir molekülün nokta, eksen ve düzlem gibi simetri elemanları bir grup meydana getirir. Yansıma, dönü ve terslenme gibi simetri işlemleri simetri elemanlarına uygulandığında molekül ilk durumu ile özdeş olur. Simetri işlemleri sonunda molekülün en az bir noktası yer değiştirmemiş olarak kaldığında bu gruplara *nokta gruplar* denir. Çok sayıdaki molekül, simetri elemanlarının sayısına ve özelliklerine göre sınırlı sayıdaki gruplar içinde sınıflandırılmıştır. Moleküllerin simetri özelliklerinden yararlanılarak karakter tabloları hazırlanmıştır. Grup teorisi kullanılarak, bu karakter tabloları yardımıyla her bir temel titreşimin indirgenemez gösterimlerden hangisine temel oluşturduğu ve hangi simetri türünde olduğu bulunabilir. Böylelikle simetrisi bilinen bir molekülün 3N-6 tane titreşiminden hangilerinin infrared aktif ,hangilerinin raman aktif olduğu bulunabilir.

Kuantum mekaniğine göre bir titreşimin infrared veya raman aktif olabilmesi için;

$$\mu_{mn} = \int \Psi_n \mu \Psi_m \partial \tau \neq 0 \tag{3.19}$$

$$\mu_{mn} = \int \Psi_n \alpha \Psi_m \partial \tau \neq 0 \tag{3.20}$$

ifadelerinin (veya bileşenlerinden en az birinin) sıfırdan farklı olması gerekir. Alt titreşimsel enerji düzeyi m'den üst titreşimsel enerji düzeyi n'ye geçiş olasılığı $S \propto |\mu_{nm}|^2$ ile orantılıdır.

Bir moleküle sahip olduğu simetri işlemi uygulandığında molekül ilk durumuna göre değişmez kalır. Bu yüzden yukarıdaki integral terimine bir simetri işlemi uygulandığında değişmemesi gerekir. Yani integral içindeki üç terimin her biri bir indirgenemez temsile karşılık gelir ve bu üç indirgenemez temsilin direkt çarpımı tamamen simetrik olan indirgenemez temsile karşılık gelmeli yada onu içermelidir. Taban titreşim enerji düzeyine ait dalga fonksiyonu { $\Psi^{(n)}$ } tüm simetri işlemleri altında değişmez ve tam simetriktir. Üst titreşim enerji düzeyine ait dalga fonksiyonu { $\Psi^{(m)}$ } ise Q_k ile aynı simetri türünde olduğu zaman üçlü direkt çarpımı tamamen simetrik olan taban titreşim dalga fonksiyonu ile aynı olur ve bu durumda infrared aktiflik söz konusudur. Bir temel geçişin infrared aktif olabilmesi için $\vec{\mu}$ dipol moment vektörünün x, y, z bileşenlerinden birinin simetrisi ile normal modların simetrileri aynı olmalıdır [8]. Moleküle ait temel titreşim modların hangi simetri türlerine ait olduğu ve bu titreşimlerin infrared aktif olup olmadığı; grup teori yardımıyla karakter tabloları kullanılarak bulunabilir. Bunun için indirgeme bağıntısından yararlanılır [10].

$$n_{i} = \frac{1}{h} \sum_{s} n_{r} \chi(R) \chi_{i}(R)$$
(2.10)

Burada

n_i; i simetri türündeki titreşim mod sayısı

h; grubun derecesi (simetri elemanı sayısı)

nr; R sınıfındaki simetri elemanı sayısı

 χ (R); R simetri elemanına ait indirgenebilir temsilin karakteri

 $\chi_i(s)$; i. simetri türündeki R elemanına ait indirgenemez temsilin karakteri

N tane atomdan oluşan bir molekülde, 3N tane temel titreşim vardır. Bu titreşimlerden dönme ve öteleme hareketleri molekülün şekline bağlı olarak çıkartılır ve molekül doğrusal ise 3N-5, değilse 3N-6 tane temel titreşim sayısı vardır. İndirgeme formülünden bulunan sonuçlarla moleküle ait temel titreşimlerin toplam sayısı bulunur.

3.4. Katıların Titreşim Spektrumları

Bir maddenin katı, sıvı ve gaz fazlarında farklı infrared spektrumları elde edilir. Gaz fazından, sıvı ve katı faza geçen moleküllerin dönmeleri önleneceğinden genellikle dönme enerji seviyelerine ait bantlar kaybolur ve titreşim bantları keskinleşir [6]. Faz değişimi sonucu frekanslarda kayma ve ince yapı gözlenir. Serbest haldeki bir molekülün simetrisi, molekülün kristal yapı içinde sahip olduğu simetriden farklıdır. Bu nedenle molekülün kendi normal titreşimlerine ek olarak örgü titreşimlerinin de gözlenmesi gerekir. Sonsuz sayıda bir kristal yapıda molekülün ve örgünün titreşim bantları da sonsuz sayıdadır. Kristalin titreşim modları kristali oluşturan birim hücredeki titreşim modları ile aynı olmalıdır. Bundan dolayı kristalin normal titreşimleri sadece bir birim hücre içerisindeki moleküllerin titreşim modları incelenerek bulunabilir. Kristalin içerisindeki moleküllerin titreşim spektrumlarının farklı olmasının bir diğer nedeni, bu moleküllerin potansiyel enerjilerindeki değişimdir. Bu değişim temel titreşim frekanslarında küçük kaymalara neden olur [14]. Bu tür kaymalara statik kayma denir. Diğer bir neden de yer simetri faktörüdür. Molekülün kristal içindeki simetrisine yer simetrisi denir. Molekülün kristal içindeki simetri elemanları, kristalin simetri elemanının bir kısmı şeklindedir. Molekülün ait olduğu nokta grubunda aktif olmayan bir titreşim, kristal içindeki yer simetrisinde aktif olabilir. Bunun tersi de mümkündür. Yer simetri etkisiyle, serbest molekül için dejenere olan bazı titreşim bantlarında yarılmalar da gözlenebilir [8]. Bu yarılmalara yer grup yarılmaları denir.

Bir kristalin simetri hücresindeki birim elemanlarının uygulanmasıyla, birim hücre içindeki bir nokta, başka hücredeki özdeş bir nokta üzerine gelir. Bu işlemler faktör grubu olarak isimlendirilen matematiksel bir grup oluşturur. N moleküllü bir birim hücrede, N katı dejenere titreşim modu vardır. Kristal içinde moleküller arası etkileşim büyükse bu dejenerelik kalkarak spektrumda yarılmalar gözlenir. Bu yarılmaları faktör grup yarılmaları veya kristal alan yarılmaları denir [8,9].

3.5. Kristal Alan Yarılmaları ve Etkileri

Ligandların eksi yüklü noktalar olarak kabul edildiği kristal alan yarılma kuramı H. Bethe tarafından 1929 yılında önerilmiştir. Ligand ile merkez atomu arasındaki etkileşme sadece elektrostatik etkileşme olduğundan buna elektrostatik alan kuramı da denir.

Kristal alan kuramı ligandların iç yapılarını dikkate almaz. Ligandları bir eksi yük gibi kabul ederek eksi yüklü noktaların oluşturduğu elektrik alan ile merkez atomunun d yörüngelerindeki elektronlar arasındaki itme enerjilerini belirleyen etkileşmedir, örnek olarak koordinat eksenleri boyunca merkezden eşit uzaklıklarda bulunan noktasal eksi yüklü altı ligandın oktahedral elektrik alanı ele alalım. Toplam elektrik alan şiddeti oktahedral alanın küresel alana eşit olduğu varsayımından yola çıkıldığında d yörüngelerinin toplam enerjisi küresel simetrideki enerjilerinin aynıdır. Ancak yönelmeleri farklı olan d yörüngeleri ligandlardan farklı etkileneceğinden d yörüngelerinin birbirine göre bağıl enerjileri farklı olur. Ligandlar koordinat eksenleri üzerinde olduğundan (d_z^2) , $(d_x^2-y^2)$ yörüngeleri elektriksel alandan çok fazla etkilenirler ve yörünge enerjileri yükselir. d_{xy} , d_{xz} ve d_{yz} yörüngeleri daha az etkilendiği için yörünge enerjileri daha düşük olur. Bu durum d yörüngelerinde yarılmalar meydana getirir [10].

3.6. Çok Atomlu Moleküllerin Titreşimleri

N atomlu bir molekülde her atomun konumu x , y , z yer değiştirme koordinatları ile verilir. Çok atomlu moleküllerin titreşim hareketi genel olarak oldukça karışıktır. Bir molekülün temel titreşim kipleri (normal mod), bütün atomların aynı fazda ve aynı frekansta yaptıkları titreşim hareketidir. N atomlu bir molekülün 3N tane serbestlik derecesi vardır. Lineer olmayan bir molekül için 3 tane eksen boyunca ötelenme ve 3 eksen etrafında dönme (doğrusal moleküllerde iki) titreşimleri, serbestlik derecesinden çıkarılırsa, 3N-6 tane (molekül lineer ise 3N-5) temel titreşim elde edilir [15]. Kapalı halka oluşturmayan N atomlu bir molekülün N-1 bağ gerilmesi, 2N-5 açı bükülme (lineer ise 2N-4) titreşimi vardır. Çok atomlu bir molekülün herhangi bir gözlenen bandına karşılık gelen titreşimi 3N-6 temel titreşimden bir veya birkaçının üst üste binmesi olarak tanımlanabilir [3].

Boltzman olasılık dağılımına göre moleküller oda sıcaklığında taban titreşim enerji düzeyinde, çok az bir kısmı da uyarılmış titreşim enerji düzeyinde bulunabilir. Bu nedenle bir molekülün infrared spektrumunda en şiddetli bantlar birinci titreşim düzeyinden kaynaklanan ($v = 0 \rightarrow 1$) geçişlerinde gözlenir. Bu geçişlerde gözlenen titreşim frekanslarına temel titreşim frekansı denir. Temel titreşim bantları yanında, üst ton, birleşim ve fark bantları ortaya çıkar. Temel titreşim frekansının iki, üç veya daha fazla katlarında (2v,3v) üst ton geçişleri gözlenir, iki veya daha fazla temel titreşim frekansının toplamı ve farkı olarak ortaya çıkan frekansıarda da birleşim ve fark bantları oluşur. Bu bantların şiddeti, temel titreşim bantlarına göre oldukça zayıftır. Bu titreşimlerin aktif olması daha önce açıklanan aktiflik şartı ile aynıdır.

Aynı simetri türünde olan bir titreşim ile bir üst ton ve birleşim frekansı birbirine çok yakın ise aralarında bir etkileşme (rezonans) olur. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst ton veya birleşim bandı gözleneceği yerde, temel titreşim bandı civarında gerçek değerlerden sapmış iki şiddetli band gözlenir. Bu olay ilk kez Fermi tarafından gözlendiğinden Fermi rezonansı olarak adlandırılır [7].

3.7. Grup Frekansları

Grup frekansı yöntemi, çok atomlu moleküllerin titreşim spektrumlarının yorumlanmasında en çok kullanılan yöntemlerden birisidir. Molekülün bütün atomlarının aynı faz ve frekansta hareket etmesi anlamına gelen temel titreşimlerin genlikleri, titresim frekanslarının kütle ile ters orantılı olmalarından dolayı birbirinden farklıdır.Molekül içindeki bir grup, moleküldeki diğer atomlara oranla daha hafif (OH, NH, NH₂, CN₂ gibi) veya daha ağır atomlar içeriyorsa (CCI, CBr, Cl gibi), bu tip grupların molekülün geri kalan kısmından bağımsız olarak hareket ettiği kabul edilir. Bunun nedeni bu grupların harmonik titreşim genliğinin molekülün diğer atomlara oranla daha büyük veya daha küçük olmasıdır. Yani bir moleküldeki bir grup titreşirken, bunun titreşim potansiyeline katkısı ile molekülün geri kalan kısmında olan titreşimlerin potansiyele olan katkısı oldukça farklıdır. Bundan dolayı molekülde titreşen grup, molekülün geri kalan kısmından bağımsız titreşiyormuş gibi düşünülebilir. Harmonik titreşicinin frekansı,

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \tag{3.21}$$

ifadesi ile verilir. Burada; k : kuvvet sabiti, μ : indirgenmiş kütledir. Kuvvet sabitinin büyük olması atomların denge pozisyonunda hareketin zorlaşmasına sebep olacağından ikili ve üçlü bağların (C=C, C=O, C=N, C=C, C=N gibi) gerilme frekansları tekli bağlardan daha yüksektir. Grup frekanslarının bazıları Çizelge 3.2'de verilmiştir. Birçok inorganik ve organik grupların frekansları belirli olup bunlar yapı analizinde kullanılır [6]. Moleküllerin normal titreşimlerini iskelet ve grup titreşimleri olarak iki gruba ayırabiliriz. 1400-700 cm-¹ dalga sayısı aralığında çok farklı frekanslarda bandların gözlendiği iskelet titreşim bölgesine parmak izi bölgesi de denir.

3.8. Grup Frekanslarına Etkiyen Faktörler

Grup frekanslarına etkiyen faktörler molekül içi ve molekül dışı olmak üzere iki kısımda incelenir [16].

a)Molekül içi etkiler titreşimsel çiftlenim (coupling), komşu bağ etkisi ve elektronik etki olmak üzere üç kısma ayrılır.

i)Titreşimsel Çiftlenim (Coupling) : Bir molekülde frekansı birbirine yakın iki titreşim veya bir atoma bağlı iki titreşim arasında görülür. Buna örnek olarak iki atomlu C=O molekülü verilebilir. Bu molekülde gerilme titreşimi teorik olarak 1871 cm⁻¹ de gözlenmesi gerekirken (Bu hesap CO₂ den elde edilen kuvvet sabiti kullanılarak yapılmıştır), CO₂ molekülünün infrared spektrumuna baktığımızda 1871 cm⁻¹ de bir pik gözlenmeyip 1340 cm⁻¹ ve 2350 cm⁻¹ olmak üzere iki gerilme titreşim gözlenmektedir. Bunun nedeni, CO₂ molekülündeki titreşimlerin birbirlerini etkilemeleri ve iki C-O bağı olmasıdır. Bu olaya titreşimsel çiftlenim denir.

ii)Komşu Bağ Etkisi: Bu etkide önemli olan bağlar arasındaki kuvvet sabitidir. Bir bağa komşu olan bağın kuvvet sabitinin küçülmesi, o bağın kuvvet sabitinin de küçülmesine sebep olduğundan, bağın titreşim frekansı da düşer. Buna komşu bağ etkisi denir. Bunun tersi de doğrudur. Örneğin, nitril (R—C=N, R : alkali
radikal) bileşiklerinde R yerine halojenler geldiği zaman titreşim frekansının düştüğü görülmektedir.

iii)Elektronik Etki: Bağın elektron yoğunluğunda değişiklik meydana getiren etkilerdir. Bunlar indüksiyon ve rezonans etkisi olmak üzere iki kısımda incelenebilir. İndüksiyon etki bağın elektron yoğunluğunu artıran pozitif ve azaltan negatif etkiden oluşur. Bu etki, diğer gruplardaki elektron dağılımının elektrostatik etkisinin, bir gruba olan etkisi olarak tanımlanabilir. Rezonans etkisi ise, sadece elektronların yerlerinin birbirinden farklılık gösterdiği yapılar olarak tanımlanabilir. Bu yapılarda yalnız elektronlar hareket etmekte, çekirdek sabit kalmaktadır [9].

b)Molekül dışı etkiler bir maddenin spektrumu en iyi gaz fazında iken alınır. Bunun nedeni madde gaz halindeyken moleküller arası uzaklık fazla olduğundan, molekül normal titreşimini yapar. Ancak madde sıvı halde iken molekül yakınında bulunan başka moleküllerden etkilenebilir. Bu etkilenme dipolar etkilenme ve hidrojenbağı ile etkilenme olmak üzere iki çeşittir.

i)Dipolar (çift kutupsal) etkilenme : Polar bir molekülün pozitif ucuyla diğer bir molekülün negatif ucunun birbirlerini çekmeleri dipolar etkileşmedir, örneğin aseton molekülünün ((CH3)₂-C=O) gaz halindeki titreşim frekansı 1738 cm-¹,sıvı haldeki aynı titreşimin frekansı 1715 cm-¹ de gözlenmiştir [16]. Bunun nedeni sıvı haldeyken dipol olan iki C=O grubunun birbirlerini çekmeleridir. Böylece bağların polarlığı daha da artar ve karbonil grubunun bağ derecesi düşer. Bu halde meydana gelen kaymalar 25 cm-¹ civarındadır. Polar çözücülerde, çözünen ve çözücü arasında etkileşim olmaktadır. Dolayısıyla değişik çözücülerde değişik dalga boylarında bandlar oluşabilmektedir [16].

ii)Hidrojen bağı ile etkilenme: Hidrojen bağından ileri gelen kaymalar, dipolar etkilerden ileri gelen kaymalardan daha büyüktür.Bir molekülün A-H molekülü ile diğer molekülün donoru olan ve üzerinde ortaklanmamış elektron çifti bulunan B atomu arasındaki etkileşme olarak tanımlanır (A-H...B). A; hidrojenden daha

elektronegatif bir atom ihtiva eder. Burada H...B bağı, normal kovalent bağa göre çok zayıf olduğundan infrared bölgede 300 cm-¹ in altında gözlenir. Buna örnek olarak karboksilli asitler verilebilir. Bunlar polar olmayan çözücüler ile derişik çözeltilerinde dimer moleküllerden oluşurlar. Bu dimerleşmenin nedeni iki molekül arasında iki hidrojen bağının meydana gelmesidir. Bu tür hidrojen bağları O-H bağının titreşim dalga sayısını, 3560-3500 cm-¹' den 3000-2500 cm⁻¹ 'e yaklaşık 1000 cm⁻¹ kadar düşürür. Hidrojen bağı sonucu aynı zamanda O-H bağının soğurma bandında da genişleme gözlenebilir.

Hidrojen atomu etrafındaki kuvvet alanı A-H....B bağının oluşumu sonucunda değiştiğinden, A-H titreşim bantları da değişebilir. Hidrojen bağı A-H bağını da zayıflattığı için gerilme titreşim frekansı da düşer. Buna karşılık H....B bağı nedeniyle bükülme frekansı yükselir. Örneğin primer amidlerde (R-NH₂ C=O) C=O gerilme titreşimleri ve NH bükülme titreşimlerinin frekansları hidrojen bağına imkan sağlayan bir ortamda çalışıldığı zaman yaklaşık 40 cm-¹ düşer. C=O gerilme titreşimleri çok seyreltik çözeltilerde 1690 cm-¹ de, parafin KBr içinde ise 1650 cm-¹ gözlenmektedir. Çünkü bu ortamda amid molekülleri arasında hidrojen bağı meydana gelir. Buna karşılık seyreltik çözeltilerde 1620-1590 cm-¹' de gözlenen N-H gerilme titreşimleri 1650-1620 cm-¹ 'e yükselebilmektedir [17].

Grup	Gösterim	Titreşim Dalga Sayısı Aralığı (cm ¹)			
O-H gerilme	v(OH)	3640-3600			
N-H gerilme	v(NH)	3500-3380			
C-H gerilme (aromatik halkalarda)	v(CH)	3100-3000			
C-H gerilme	v(CH)	3000-2900			
CH3 gerilme	v(CH3)	2962±10ve2872±5			
CH2 gerilme	v(CH ₂)	2926±10ve2853±10			
C=C gerilme	v(CC)	2260-2100			
CSN gerilme	v(CN)	2200-2000			
C=O gerilme	v(CO)	1800-1600			
NH ₂ bükülme	δ(NH ₂)	1600-1540			
CH2 bükülme	δ(CH ₂)	1465-1450			
CH3 bükülme	ð(CH3)	1450-1375			
C-CH ₃ bükülme	ρτ(CH3)	1150-850			
S=O gerilme	v(SO)	1080-1000			
C=S gerilme	v(CS)	1200-1050			
C-H düzlem dışı açı bükülme	γ(CH)	650-800			

Çizelge 3.2. Grup frekansları [18]

4. DENEYSEL DÜZENEKLER

4.1. İnfrared Spektrometresi

Şekil 4.1. İnfrared spektrometresi [16]

İnfrared ışın kaynağı olarak 1700-2000 °C ye kadar ısıtılmış iyi bir siyah cisim özelliği taşıyan maddeler kullanılır. Nernst ve glober çubukları bu özelliktedir. Nernst çubuğu toryum oksit, seryum oksit, zirkonyum oksit gibi nadir toprak oksitlerinin iyi bir bağlayıcı ile pişirilmeleri sonucu elde edilir. Globar çubuğu ise, silisyum karbürden yapılır nernst çubuğundan daha iyi sonuç verir. Şekil 4.1'de infrared spektrometresi şematik olarak verilmiştir.

İnfrared ışınlarının şiddetinin ölçülmesi, foton detektörleri veya ısısal detektörler ile yapılır. Foton detektörleri, PbS, PbTe, PbSe, InAs, InSb gibi yarıiletken maddelerden yapılmıştır. İnfrared ışınları İle etkileştikleri zaman iletken hale gelerek devrede elektrik akımının geçmesini sağlayan bu detektörlere fotoiletken detektör adı verilir. Fotoiletken detektörler, ısısal detektörlere göre daha hızlı ve daha duyarlıdır. Ancak 10000 cm⁻¹ ile 2000 cm⁻¹ arasındaki yakın infrared bölgesinde kullanılabilirler. Isısal detektörler, infrared fotonlarının soğurulması sonucu ısınarak elektriksel direnç gibi bazı fiziksel özelliklerini değiştirebilen maddelerden yapılır. Bu tür çalışan detektörlerin en yaygın olarak kullanılanları termoçiftler, termopiller ve bolometrelerdir. En yaygın olarak kullanılan termoçiftler, iki değişik metal levha birbirine veya siyah bir filmle kaplı altın levhaya kaynak yapılmasıyla elde edilir. İki metal levha arasında oluşan potansiyel farkının değeri bağlantı yerinin üzerine düşen infrared ışınlarının neden olduğu sıcaklık artışı ile doğru orantılı olarak artar bu yöntemle spektrum elde edilir. Termoçiftlerle yapılan ışık şiddeti ölçümü yavaş olmakla beraber yapılan ölçümlerin dalgaboyundan bağımsız olması ve yakın, uzak ve orta infrared bölgelerin tümünde termoçiftlerin kullanılabilmesi çok önemli bir üstünlüktür.

Pizoelektrik detektörler bir kristal ekseni boyunca bir iç elektriksel polarlanma özelliği olan triglisin sülfat, baryum titanat, kurşun zirkonat veya lityum tantalat kristallerinin infrared ışımasını soğurması sonucu bu özelliklerini değiştirmeleri ilkesi ile çalışırlar. Bir başka deyişle, bu tür pizoelektrik malzemeler, üzerlerine düşen infrared ışınlarının ısı etkisiyle sığaları sıcaklıkla değişen bir kapasitör olarak davranırlar. Diğer detektörlerden üstünlüğü infrared bölgesinde kullanılan ve sinyal oluşturma süresi en kısa olan ısısal detektörlerdir [19].

İnfrared spektroskopisinde spektrumu alınacak numune katı, sıvı, çözelti ve gaz haline getirilerek alınır. Bir maddenin katı halinin spektrumu genellikle nujol (sıvı parafin) veya hegzaklorobütadien yada KBr içinde alınır. Bunun için madde iyice toz haline getirilir. Işının yansıması veya dağılmasını önlemek amacı ile maddenin parçacıklarının boyutları kullanılan ışınların dalga boyundan daha küçük olmalıdır. Katı maddelerin IR spektrumları alınmadan önce bir yardımcı madde ile (potasyum bromür gibi) disk haline getirme tekniği uygulanabilir veya süspansiyon haline getirme tekniği ile ağat bir havan da iyice ezilen spektrumu alınacak katı numune üzerine nujol denilen saf parafinden bir iki damla konur iyice karıştırıldıktan sonra sodyum klorür veya potasyum bromür diskinin üzerine akıtılır.

Bir çözeltinin spektrumunu almak için en iyi yol onu uygun bir çözücüde çözelti haline getirmektir. Bunun için maddenin oldukça derişik bir çözeltisi yapılır (%0.1 ile 10 gibi) çözeltileri koymak için kullanılan numune kaplarının ışın demetini geçiren pencereler sodyum klorür, lityum florür gibi suda çözünün maddelerden

yapıldığından kullanılan çözücü numune kaplarını çözmemelidir. Bu yüzden IR'de çözücü olarak su kullanılmaz ve spektrumu alınacak maddelerin de nem içermemesi gerekir.

Sıvıların IR spektrumları sıvı halde veya uygun bir çözücüde çözelti haline getirilerek alınabilir. Eğer uygun bir çözücü yoksa potasyum bromürden yapılan bir disk üzerine küçük bir damla alınarak spektrumu çekilebilir. Gazların IR spektrumları ve düşük sıcaklıklarda kaynayan maddelerin spektrumları özel olarak vakuma dayanıklı numune kaplarında alınır.

Monokromatör olarak hem prizma hem de optik ağ kullanılabilir. Cam ve kuartz IR bölgesinde ışığı iyi geçirmediklerinden, prizma ve mercek gibi optik yapımında cam ve kuartzdan yapılan prizmaların yerine bu bölgede geçirgen olan bazı kristal tuzlar kullanılır. (NaCl gibi). Monokromatör yapımında kullanılan kristal tuzlarının geçirgen oldukları dalga boyu aralıkları birbirinden farklıdır. NaCl nem çekici olduğundan optik kısımların nemden korunmaları gerekir. IR bölgede mercek yapımı için az madde bulunduğundan, IR-spektrometrelerinde mercek yerine iç bükey ayna kullanılır.

IR bölgesinde ışının ısı etkisine dayalı termal detektörler veya yarı iletken kristallerden yapılan ve foto iletkenliğe dayalı detektörler kullanılır. En çok kullanılan termal detektörler; termoçift , bolometreler ve Golay hücrelerdir. Golay detektör aslında duyarlı bir gaz termometresidir. Detektör içine hapsedilmiş gazın, üzerine düşen ışınların etkisi ile gazın ısınması sonucu oluşan basınçtaki artışın elektrik sinyaline çevrilmesi ile ölçüm yapılır.

4.2. Raman Spektrometresi

Raman IR'nin tamamlayıcısı olup IR'de gözlenmeyen zayıf titreşimler burada gözlenir. Ayrıca kullanılan malzeme açısından sınırlama olmayışı, UV, Görünür ve yakın IR ışınların kullanılabilmesi, optik olarak ölçüm kolaylığının olması, sulu ortamda rahatlıkla çalışılabilmesi, dipol moment değişimine gerek duyulmaksızın

yani simetrik gerilmelerin Raman aktif olması gibi IR'ye göre bir takım avantajları vardır.

Raman cihazı başlıca üç kısımdan oluşur: ışın kaynağı, özel numune kabı ve detektör.

Işın kaynağının çok şiddetli olması gerekir. Bunun için düşük basınçlı ve yüksek akımla civa ark lambaları kullanılır. Numune üzerine düşen ışığın şiddetini daha da arttırmak için civa ark lambası, yay şeklinde yapılır. Böylece numunenin emisyonu artırılır. Bu koşullarda çalışan cihazın fazla ısınmaması için lamba kısmı suyla soğutulur.

Son zamanlarda civa ark lambasının yerine daha şiddetli ışın veren Helyum Neon lambası kullanılmaya başlanmıştır. Bu lambanın civa lambasına göre kullanılan numunenin yaklaşık 0.1 mL olması, daha uzun dalga boylu ışın kullanıldığından numunede ki moleküllerin parçalanmaması ve numunenin floresans ışığı yaymaması gibi avantajları vardır.

Raman spektrometrelerinde dalga boyu ayırıcıları olarak prizmalar kullanılır. Prizmadan geçen ışın demetleri bir fotoğraf filmi üzerine düşürülür. Prensip olarak sulu çözeltilerin, tek kristallerin ve polimerlerin incelenmesinde kullanılır.

4.3. Fourier Transform İnfrared Spektrometresi (FTIR)

Fourier dönüşümlü spektrometrelerde, Michelson interferometresi adı verilen bir düzenek kullanılır (Şekil 4.2).

Şekil 4.2. Michelson interferometresi [16]

Işık kaynağından çıkan ışın demeti ışın ayırıcı yardımı ile şiddetleri birbirine eşit iki demete ayrılır. Bu ışınlardan birisi A aynasına gider ve buradan yansıyarak örneğe ulaşır. Diğer ışık demeti belli bir frekans ile titreşen ve konumunu periyodik olarak bir kaç mm kadar değiştiren hareketli B aynasından yansıyarak örnek ile etkileşir. Sonuçta örneğe ulaşmadan önce, A aynasından yansıyan demet sabit bir yol, B aynasından yansıyan demet ise değişken bir yol almış olur. A ve B aynalarından yansıyarak örneğe ulaşan iki ışık demetinin aldıkları yollar birbirine eşit ise, iki ışın arasında yapıcı bir girişim oluşur ve dalga kuvvetlenir. Bu iki demetin yol farkı $\lambda I2$ ise aralarında yıkıcı bir girişim oluşur ve dalga tamamen söner. İki ışının yol farkı λ kadar ise bu durumda yapıcı bir girişim ortaya çıkar ve dalga kuvvetlenir.

Michelson interferometresinin ışığı 2Vv frekansı ile bölen bir ışın bölücü gibi davrandığı düşünülebilir. Burada V hareketli aynanın hızı, v ise dalga sayısıdır. Hareketli B aynasının her bir konumu için belli bir dalga sayısına sahip infrared ışın, bu eşitliği sağlayarak ve yapıcı bir girişim oluşturarak örneğe ulaşır, örnek, herhangi bir veya bir kaç dalga boyundaki ışığı soğuruyorsa o dalga sayılarındaki ışığın şiddeti azalır. Bu bilgi birbiri ile örtüşen bir dizi dalga içinde saklı kalır. Fakat ters Fourier dönüşümü işleminden sonra ışığın şiddetinin azaldığı dalga sayısı, yani soğurma spektrumu ortaya çıkar.

Örneklerimizin IR spektrumlarını çekmek için kullandığımız Mattson 1000 FTIR spektrometresinde kaynak olarak 633 nm dalga boyunda lmW gücünde enerji

veren sürekli He-Ne lazeri kullanılır, radyasyon demeti interferometreye gelir ve burada gelen radyasyon demeti karmaşık bir girişim deseni oluşturur. İnterferometreden çıkan ışınlar örnekte belirli dalga boylarında soğurmaya uğrayarak geçer. Sonuç girişim deseni elektriksel sinyal olarak detektöre gelir ve analog-sayısal dönüştürücü tarafından sayısal bilgilere dönüştürülür. Fourier dönüştürücüsü tarafından sayısal bilgilerden örneğin infrared spektrumu elde edilir. İnfrared spektrumu ekranda görülebilir veya bir yazıcıdan alınabilir.

5. TİTREŞİM SPEKTRUMU YORUMU VE MOLEKÜL YAPISININ BULUNMASI

5.1. Titreşim Spektrumlarında Beklenenden Fazla Pik Gözlenmesi

Bu sonucun gözlenmesinin iki sebebi vardır.

1-Kombinasyon ve üstton yada fermi rezonansının ortaya çıkması2-Örnek madde içinde değişik konfigürasyonlu moleküllerin varlığıdır.

5.2. Titreşim Spektrumlarında Beklenenden Az Pik Gözlenmesinin Sebepleri

1-Eş enerjili (dejenere) titreşimlerin (simetrik titreşimler) varlığı,

2-Molekülün farklı kısımlarında benzer grupların aynı titreşimi göstermesi,3-Rastlantıyla eş enerji titreşimlerin oluşumu,

4-Titreşimlerin infrared yada Raman inaktif olmalarıdır.

Titreşim spektrumu yorumu bir bileşiğin yapısını tümüyle aydınlatmaya yeterli olmamakla birlikte, bileşikteki bağ türleri ve fonksiyonlu gruplar hakkında önemli bir bilgi ve ip uçları verir. Bir bileşiğin titreşim spektrumu o bileşik için belirleyicidir ve optik izomerler dışında hiçbir bileşiğin titreşim spektrumu bir başkası ile aynı değildir.

Titreşim spektrumunu oluşturan infrared ve Raman sinyalleri birbirlerini tamamlayacak nitelikte yapı aydınlatma problemlerine ışık tutarlar. Dipol moment değişimine yol açan polar bağlar ve asimetrik titreşimler infrared de kuvvetli sinyal verirken Ramanda çoğu kez zayıf sinyal verirler. Buna karşılık polarlaşabilme değişimine yol açan apolar bağlar ve simetrik titreşimler ise Ramanda kuvvetli sinyal verirken infrared de zayıf sinyal verirler. Bu noktalar göz önünde tutularak değerlendirilen spektrumlarda molekülün simetrisi, polarlığı gibi konularda da önemli bilgiler elde edilebilir. Her bir fonksiyonlu grubun belirlenmesi o grup için belirgin olan titreşim frekansları ile sağlanır. Organik ve inorganik bir çok bileşikte yer alan fonksiyonlu gruplara ait titreşim frekansları daha önce hazırlanan tablolardan bulunur. Karakteristik fonksiyonlu grup frekansları ve IR-Raman atlasları yardımıyla tablolardan belirlenen bilinmeyen bileşiğe ait fonksiyonlu grupların hem infrared de hem de Ramanda verdikleri sinyallerden o grubun bileşikteki sayısı, bulunduğu kimyasal çevre (konfigürasyon, elektronegatif komşu atomlar vb.) hakkında sonuçlar çıkarılabilir. Örneğin bir metil (-CH₃) yada metilen (-CH₂-) grubu için simetrik ve asimetrik C-H gerilme titreşimleri için hem infrared ve hem de Ramanda 3000 cm bölgesinde ayrıca C-C-H bükülme titreşimleri için de hem infrared ve hem de Ramanda 1400-1470 cm bölgesinde sinyal elde edilebilir. Ramanda daha kuvvetli gözlenebilen simetrik titreşimler infrared daha kuvvetli gözlenebilen asimetrik titreşimlerden genelde daha düşük dalga sayılarında gözlenir.

Çoğu zaman maddelerin yapı tayininde infrared ve Raman spektrumu yalnız başına yeterli olmaz. Böyle durumlarda söz konusu maddenin infrared ve Raman spektrumu; UV, kütle ve NMR spektrumları ile birlikte yorumlanır.

6. BİLGİSAYAR HESAPLAMALI MOLEKÜLER SPEKTROSKOPİ

Bilgisayar hesaplamalı moleküler spektroskopi, temel fizik yasalarına dayanarak moleküler yapıyı, kimyasal reaksiyonları ve spektroskopik büyüklükleri hesaplar. Moleküllerin yapısını ve spektroskopik özelliklerini incelerken bilgisayar hesaplamalı moleküler spektroskopi yöntemleri iki ana gruba ayrılır:

a)Moleküler mekanikb)Elektronik yapı teorisi.

Her ikisi de benzer tip hesaplamalar yapar.Bu hesaplamalar;

i)Belirli bir moleküler yapının enerjisini hesaplamaktır.

ii)Geometrik optimizasyon yapmaktır. Geometrik optimizasyon en düşük enerjili moleküler yapıyı yani denge durumu geometrisini bulmaktır. Geometri optimizasyonları temelde enerjinin atomik koordinatlara göre birinci türevine dayanır.

iii)Molekülün titreşim frekanslarını hesaplamaktır. Moleküldeki atomların hareketinden kaynaklanan molekülün titreşim frekanslarının hesabı enerjinin atomik koordinatlara göre ikinci türevinden elde edilir.

Moleküler mekanik hesaplamaları moleküllerin yapısının ve özelliklerinin belirlenmesinde klasik fizik kanunlarını kullanır. Elektronik yapı metotları ise kuantum mekaniksel yasaları kullanır. Kuantum mekaniği bir molekülün enerjisini ve diğer büyüklükleri,

$$H\Psi = E\Psi \tag{6.1}$$

Schrödinger denklemi ile verir. Çok küçük sistemler hariç Schrödinger denkleminin tam çözümü mümkün değildir. Bu nedenle yaklaşık çözümler yapılır. Elektronik yapı metotları, değişik yaklaşık matematiksel metotlar ile karakterize

edilir. Elektronik yapı metotları iki ana sınıfta toplanır. Bunlar; yarı deneysel metotlar ve ab initio metotlardır. Yarı deneysel metotlar; ilgili molekül için oldukça fazla deneysel veri kullanır. MINDO, AMI, PM3 hesaplama metotları yarı deneysel metotlardır. Ab initio metotlar ise moleküler mekanik ve yarı deneysel metotların tersine, ilgilenilen molekül için ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fiziksel sabitler hariç deneysel değer kullanmaz [20]. Moleküllerin kuvvet alanlarının ve titreşim spektrumlarının kuantum mekaniksel ab initio yöntemler ile hesaplanması P. Pulay'ın 1969 daki klasik çalışmasına dayanır[21]. Bu çalışmasında Pulay "kuvvet" veya "gradyent" metodu denilen metodu önermiştir. Bu metot çok atomlu moleküllerin kuvvet alanlarının hesaplanmasına gerçekçi bir yaklaşımdır. Pulay'ın temel katkısı enerjinin nükleer koordinatlara göre birinci türevinin, ab initio metotlarda analitik olarak elde edilebile bileceğini göstermesi ve Hartree-Fock metodu için elde etmiş olmasıdır [50]. Ab initio metotlardan Hartree-Fock (HF), yoğunluk fonksiyonu teorisi (DFT), Möller-Plesset teorisi (MP₂), 1970-1980'li yıllarda enerji ifadesinin 1. ve 2. analitik türevleri alınarak, spektroskopik büyüklüklerin hesabı için kullanılmışlardır[22]. Birinci türevlerin hesaplanması sonucunda geometrik optimizasyon yapılır. İkinci türevler kuvvet sabitini dolayısı ile titreşim frekanslarını verir. IR şiddetleri ise dipol momentlerin türevinden bulunur. Günümüzde kuantum mekaniksel yöntemler ile hesaplama yapan GAUSSIAN XX, GAMESS, HONDO. Q-CHEM gibi paket programların tamamı değişik mertebelerden analitik türevler kullanır. Çizelge 6.1'de enerjinin türevlerinden hangi büyüklüklerin hesaplanabileceği verilmektedir. Burada E_e toplam elektronik enerjiye, R atomik koordinatlara, \in elektrik alan bileşenine karşılık gelir [23].

Türev	Hesaplanan Büyüklükler					
$\partial E_e / \partial R$	Atomlara etki eden kuvvetler, moleküllerin geometrisi, kararlı noktalar					
$\partial^2 E_e / \partial R_i \partial R_j$	Kuvvet sabitleri, Temel titreşim frekansları, infrared ve Raman spektrumları, titreşim genlikleri					
$\partial^2 \mathbf{E}_{\mathbf{e}} / \partial \mathbf{R}_{\mathbf{i}} \partial \in \mathbf{\alpha}$	Dipol moment türevleri, harmonik yaklaşımda infrared şiddeti					
$\partial^{3} \mathbf{E}_{e} / \partial \mathbf{R}_{i} \partial \in {}_{\alpha} \partial \in {}_{\beta}$	Kutuplanabilirlik türevleri, harmonik yaklaşımda Raman şiddeti					

Cizelge 6.1. Enerji türevlerinden fiziksel büyüklüklerin hesaplanması [16]

6.1. Kuantum Mekaniksel Enerji İfadeleri ve Yoğunluk Fonksiyonu Teorisi DFT

Bir molekülün enerjisi veya diğer fiziksel büyüklükleri Eş.6.1'de ki Schrödinger denkleminin çözülmesi ile elde edilir. Burada H moleküldeki etkileşmeleri tanımlayan bir operatör, Ψ moleküler dalga fonksiyonu, *E* ise moleküler sistemin farklı kararlı durumlarına karşılık gelen enerjilerdir. Moleküller kuantum mekaniksel olarak incelenirken molekül hareketi; çekirdeğin hareketi ve elektronların hareketi olmak üzere iki kısma ayrılır. Çekirdeğin kütlesi elektronun kütlesinden çok büyük olduğu için bu iki hareket ayrı ayrı incelenebilir. Bu yaklaşıma Born-Oppenheimer Yaklaşımı adı verilir. Bir molekülün elektronik enerjisi kuantum mekaniksel olarak kapalı formda,

$$\mathbf{E} = \mathbf{E}^{\mathrm{T}} + \mathbf{E}^{\mathrm{v}} + \mathbf{E}^{\mathrm{J}} + \mathbf{E}^{\mathrm{xc}} \tag{6.2}$$

yazılabilir. Burada E^{T} elektronların hareketinden kaynaklanan kinetik enerji, E^{v} çekirdek-elektron çekim ve çekirdek çiftleri arasındaki itme potansiyel enerjisidir, E^{J} elektron-elektron itme terimi (elektron yoğunluğunun Coulomb öz-etkileşimi olarak da tanımlanır), $E^{XC} = E^{X} + E^{C}$ ise değiş tokuş (E^{X}) ve korelasyon (E^{C}) terimidir ve elektron-elektron etkileşimlerinin geri kalan kısmını kapsar. Değiş tokuş

enerjisi aynı spinli elektronlar arasındaki etkileşim enerjisidir. Kuantum mekaniksel dalga fonksiyonunun antisimetrikliğinden dolayı ortaya çıkar. Korelasyon enerjisi ise, farklı spinli elektronlar arasındaki etkileşme enerjisidir. Eğer enerjinin açık ifadesi moleküler dalga fonksiyonu ψ 'ye bağımlı ise bu Hartree-Fock (HF) modeli olarak bilinir. HF modeli korelasyon yani etkileşim enerjisini dikkate almaz. Eğer enerji ifadesi elektron yoğunluğu ρ 'ya bağlı ise bu yoğunluk fonksiyonu modeli DFT olarak bilinir.

Yoğunluk fonksiyonu teorisinde sıkça kullanılan üç temel kavramın tanımı aşağıdaki gibi verilmektedir;

1. Elektron yoğunluğu, $\rho = \rho(r)$, herhangi bir noktadaki elektron yoğunluğudur.

2. Tekdüze elektron gazı modeli, bir bölgedeki yük dağılımının, sisteme düzgün dağılmış n tane elektron ve sistemi nötralize edecek kadar pozitif yükten oluştuğu varsayımına dayalı idealize edilmiş bir modeldir. Klasik DFT modellerinde enerji ifadeleri elde edilirken elektron dağılımının V hacimli bir küp içinde olduğu ve elektron yoğunluğunun $\rho = n/V$ ile verildiği ve sistemde n, V $\rightarrow\infty$ olduğu varsayımı yapılmıştır yani ρ sabit kabul edilmiştir.

3. Bağımsız bir x değişkenine bağımlı değişkene fonksiyon denilir ve f(x) ile gösterilir. Bir F fonksiyonu f(x)'e bağımlı ise bu bağımlılığa fonksiyonel denilir ve F[f] ile gösterilir [24,25]. Fonksiyonel kavramı DFT'de sıkça kullanılmaktadır.

Buradaki Eş.6.2 ile verilen enerji fonksiyonları sırasıyla aşağıdaki gibi açıklanmıştır[24,25].

6.1.1. Nükleer çekim fonksiyonu

 Z_a nükleer yüküne sahip R_a 'da sabitlenmiş bir a. çekirdek ve elektronlar arasındaki elektrostatik Coulomb potansiyeli,

$$E^{V} = -\sum_{a}^{N} Z_{a} \int \frac{\vec{\rho(r)}}{\vec{|r-\vec{R}_{a}|}} d\vec{r}$$
(6.3)

ile verilmektedir. Burada N toplam çekirdek sayısıdır.

6.1.2. Coulomb fonksiyonu

Atomdaki elektronların birbirinden bağımsız hareket ettiğini varsayarsak bir elektronun diğer elektronlar ile etkileşim enerjisi,

$$E^{j} = \frac{1}{2} \iint \rho(\vec{r}) \frac{1}{\left|\vec{r} - \vec{r}\right|} \rho(\vec{r}) d\vec{r} d\vec{r}$$
(6.4)

ifadesi ile verilir.

6.1.3. Hartree kinetik fonksiyonu

Hartree, 1928 yılında bir atomdaki i. elektronun diğerlerinden tamamen bağımsız olarak Ψi orbitalinde hareket ettiği varsayımı altında toplam kinetik enerjinin her bir elektronun kinetik enerjilerinin toplamı olarak aşağıdaki gibi yazılabileceğini gösterdi,

$$E_{H_{28}}^{T} = -\frac{1}{2} \sum_{i}^{n} \int \Psi_{i}(\vec{r}) \nabla^{2} \Psi_{i}(\vec{r}) d\vec{r}$$
(6.5)

Tek elektronlu sistemler hariç bu yaklaşım bize tam doğru kinetik enerjiyi vermez. Çünkü gerçekte elektronlar birbirinden bağımsız olarak hareket etmezler. Bu nedenle $E_{H28}^{\tau} < E^{\tau}$ dir. Bununla birlikte H₂₈ iyi bir yaklaşıklıktır.

6.1.4. Fock değiş tokuş fonksiyonu

1930'da Fock Hartree dalga fonksiyonunun antisimetrik olmaması nedeni ile Pauli dışarlama ilkesini ihlal ettiğini ve bu eksikliğin dalga fonksiyonunun antisimetrikleştirilmesi ile ortadan kaldırılabileceğini gösterdi, bu durumda aynı spinli elektronlar birbirinden kaçınmaktadır. Buna Fermi düzeltmesi veya değiş tokuşu denilmektedir. Fock bu düzeltme enerjisinin aşağıdaki değiş tokuş fonksiyonu ile verilebileceğini gösterdi,

$$E_{F30}^{X} = -\frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} \iint \frac{\Psi_{i}(\vec{r})\Psi_{j}(\vec{r})\Psi_{j}(\vec{r})\Psi_{j}(\vec{r})}{\left|\vec{r}-\vec{r}\right|} d\vec{r}d\vec{r}$$
(6.6)

Burada Ψ antisimetrik dalga fonksiyonudur.

6.1.5. Thomas-Fermi kinetik fonksiyonu

1927 yılında Thomas ve Fermi tekdüze elektron gazı modelinde kinetik enerji için bir formül türetti. Bu modelde kinetik enerji ifadesi,

$$E_{TF27}^{T} = \frac{3}{10} (6\pi^{2})^{2/3} \int \rho^{5/3}(\vec{r}) d\vec{r}$$
(6.7)

ile verilmektedir. Bu ifade atom ve moleküllerin enerjilerini H28 modelinde yaklaşık % 10 daha küçük hesaplamaktadır. TF27 ifadesi klasik yoğunluk fonksiyonu teorisinin doğuşu olarak kabul edilir.

6.1.6. Dirac değiş tokuş fonksiyonu

Çok elektronlu sistemlerde, elektronların ρ yoğunluğu ile tekdüze dağılımı varsayımı altında 1930'da Dirac değiş tokuş enerjisinin,

$$E_{D30}^{X} = E_{LDa}^{X} = -\frac{3}{2} (\frac{3}{4\pi})^{1/3} \int \rho^{4/3}(\vec{r}) d^{3}\vec{r}$$
(6.8)

ifadesi ile verilebileceğini gösterdi. $E_{TF27}^{T}, E_{D30}^{X}$ ifadelerine klasik yoğunluk fonksiyonları denilir.

Yoğunluk fonksiyonu teorisi DFT 'nin bugünkü anlamda temelleri 1964 yılında Hohenberg ve Kohn tarafından atılmıştır. Hohenberg ve Kohn yoğunluk ve enerjiyi tanımlayan tek bir fonksiyonun varlığını gösterdiler, fakat bu teorem fonksiyonun açık ifadesini vermemiştir [26-27].

DFT 'de toplam enerji, yoğunluğun bir fonksiyonu olarak verilmektedir.

$$E[\rho] = E^{T}[\rho] + E^{V}[\rho] + E^{J}[\rho] + E^{XC}[\rho]$$
(6.9)

Hohenberg ve Kohn E^{XC} ifadesinin tamamen elektron yoğunluğuna bağlı olarak belirlenebileceğini gösterdi. Pratikte, E^{XC} spin yoğunluğunu ve gradyentlerini içeren bir integral ile hesaplanır.

$$E^{XC}[\rho] = \int \left[\rho_{\alpha}(\vec{r}), \rho_{\beta}(\vec{r}), \nabla \rho_{\alpha}(\vec{r}), \nabla \rho_{\beta}(\vec{r}) \right] d^{3}\vec{r}$$
(6.10)

Burada ρ_{α} , α spin yoğunluğunu, ρ_{β} , β spin yoğunluğunu, ρ ise toplam elektron yoğunluğunu ($\rho_{\alpha}+\rho_{\beta}$) göstermektedir.

 E^{xc} ise aynı-spin etkileşmelerine karşılık gelen değiş tokuş ve karışık-spin etkileşmelerine karşılık gelen korelasyon enerjileri olmak üzere iki kısma ayrılır.

Her üç terimde yine elektron yoğunluğunun fonksiyonudur.Yerel değiş tokuş fonksiyonu Eş.6.11'de verilmektedir.

$$E_{LDa}^{X} = -\frac{3}{2} (\frac{3}{4\pi})^{1/3} \int \rho^{4/3} (\vec{r}) d^{3} \vec{r}$$
(6.11)

Bu eşitlik tekdüze elektron gazı için değiş tokuş enerjisidir. Ancak bu eşitlik moleküler sistemleri tanımlamakta yetersizdir. Becke 1988 yılında LDA değiş tokuş fonksiyonunu göz önüne alarak gradyent-düzeltmeli değiş tokuş fonksiyonunu aşağıdaki şekilde formüle etti,

$$E_{Beck@8}^{*} = E_{LDA}^{*} - \gamma \int \frac{p^{4/3} x^{2}}{(1+6\gamma s \sinh^{-1} x)} d^{3} \vec{r}$$
(6.12)

burada $x = \rho^{-4/3} | \vec{\nabla} \rho |$, γ ise asal gaz atomlarının bilinen değiş tokuş enerjilerine fit edilerek seçilmiş bir parametredir ve Becke tarafından 0.0042 Hartree olarak bulunmuştur. Becke fonksiyonu yerel (lokal) LDA değiş tokuş fonksiyonuna bir düzeltmedir ve LDA fonksiyonunun eksikliklerinin çoğunu düzeltmektedir [28].

6.1.7. Vosko-Wilk-Nusair fonksiyonu

Korelasyon enerjisi ile ilgili çalışmalar değiş tokuş enerjisi ile karşılaştırdığımızda daha yavaş ilerlemiştir. 1980 yılında Vosko, Wilk ve Nusair (VWN) tekdüze elektron gazının korelasyon enerjisi için bir ifade türetmiştir. Tek düze elektron gazı için parçacık başına düşen VWN korelasyon enerjisi,

$$\boldsymbol{\mathcal{E}}_{VNM}^{C}(\boldsymbol{r}_{S}) = A \left\{ In \frac{x^{2}}{X(x)} + \frac{2b}{Q} \tan^{-1} \frac{Q}{2x+b} - \frac{b x_{0}}{X(x_{0})} \left[\ln \frac{(x-x_{0})}{X(x)} + \frac{2(b+2x_{0})}{Q} \tan^{-1} \frac{Q}{2x+b} \right] \right\} (6.13)$$

ifadeleri ile verilmektedir. Bu ifadedeki sabitlerin değerleri ise, A = 0,0621814, $x_0 = -0,09286$, b = 13,0720, c=-42,7198 olarak verilmektedir.

Tüm sistemin VWN korelasyon enerjisi,

$$E_{VWN}^{C} = \int \vec{\rho(r)} \mathcal{E}_{VWN}^{C} d\vec{r}$$
(6.14)

ifadesi ile verilmektedir. Burada,

$$\frac{4}{3}\pi r_r^3 = \frac{1}{\rho_r} \qquad x = r_s^{1/2} \qquad X(x) = x^2 + bx + c \qquad Q = (4c - b^2) \tag{6.15}$$

VWN korelasyon enerjisi ifadesi atom ve moleküllerde korelasyon enerjisini yaklaşık iki kat fazla vermektedir [24,29].

6.1.8. Lee-Yang-Parr korelasyon fonksiyonu

Lee-Yang-Parr 1988 yılında korelasyon enerjisi için yeni bir ifade türetti. Bu ifade 1989 yılında Miehlich ve arkadaşlarınca daha sade ve hesaplama zamanını azaltacak şekilde sadeleştirildi. LYP korelasyon enerjisinin Miehlich formu Eş. 6.16 ile verilmektedir. LYP korelasyon enerjisi He atomunun verilerinden türetilen 4 tane parametre içermektedir. Atom ve moleküllere uygulandığında korelasyon enerjisini LYP modeli VWN modelinden çok daha iyi vermektedir ancak hala tam olmaktan uzaktır [30, 31].

$$E_{e}^{LYP} = -a \int \frac{4\rho_{\alpha}\rho_{\beta}}{1+g\rho^{-1/3}\rho} - ab \int \rho_{\alpha}\rho_{\beta} \begin{bmatrix} 2^{11/3}C_{F}(\rho_{\alpha}^{8/3}+\rho_{\beta}^{8/3}) + \left(\frac{47}{16}+\frac{7}{18}\delta\right) \\ \left\|\nabla\rho\right\|^{2} - \left(\frac{5}{2}-\frac{1}{18}\delta\right) \\ \left\|\nabla\rho_{\alpha}\right\|^{2} + \left|\nabla\rho_{\beta}\right\|^{2}\right) - \frac{\rho-11}{9} \left[\frac{\rho_{\alpha}}{\rho}\left|\nabla\rho_{\alpha}\right|^{2} + \frac{\rho_{\beta}}{\rho}\left|\nabla\rho_{\beta}\right|^{2}\right] \\ -\frac{2}{3}\rho^{2}\left|\nabla\rho\right|^{2} + \left(\frac{2}{3}\rho^{2}-\rho_{\beta}^{2}\right)\nabla\rho_{\alpha}\right|^{2} \end{bmatrix}$$
(6.16)
$$w = \frac{\exp(-c\rho_{r}^{-1/3})}{1+g\rho_{r}^{-1/3}}\rho_{r}^{-11/3}, \delta = c\rho_{r}^{-1/3} + \frac{g\rho_{r}^{-1/3}}{1+g\rho_{r}^{-1/3}}, C_{F} = \frac{3}{10}(3\pi^{2})^{2/3}$$

a=0,04918, b= 0,2533, g= 0,349

6.1.9. B3LYP karma yoğunluk fonksiyonu teorisi

Dalga mekaniğine dayanan HF teorisinin değiş tokuş enerjisi için iyi sonuç vermemesi ve korelasyon enerjilerini hesaplayamaması ancak kinetik enerji için uygun bir ifade vermesi, saf DFT modellerinin ise değiş tokuş ve korelasyon enerjilerini daha iyi vermesi nedeni ile tam enerji ifadesi için saf HF veya saf DFT modelleri yerine bu modellerin her ikisinin de enerji ifadelerinin toplam elektronik enerji ifadesinde kullanılmaları sonucu karma modeller üretilmiştir. Bu modeller toplam enerji, bağ uzunlukları, iyonizasyon enerjileri v.b. çoğu büyüklükleri saf modellerden daha iyi hesaplamaktadır.

Literatürde sıkça kullanılan enerji fonksiyonlarının bir çoğu aşağıda verilmiştir. Kinetik enerji fonksiyonları: H28, TF27, Değiş tokuş enerjisi fonksiyonları: F30, D30, B88, Korelasyon enerjisi fonksiyonları: LYP, VWN,...

Bir karma model bu enerji ifadelerini birleştirerek yeni bir enerji ifadesi elde edebilir düşüncesi ile Becke değiş tokuş ve korelasyon enerjisi XC için aşağıdaki karma modeli önermiştir,

$$E = \sum_{karma}^{XC} = c_{HF} E_{HF}^{X} + c_{DFT} E_{DFT}^{XC}$$
(6.17)

Burada c'ler sabitlerdir. Becke'nin önerdiği karma modeller BLYP ve B3LYP'dir. Bu karma modellerden en iyi sonuç verenlerinden biri; LYP korelasyon enerjili üç parametreli Becke karma modeli B3LYP'dir. B3LYP modelinde değiş tokuş ve korelasyon enerjisi,

$$E =_{B3LYP}^{XC} = E_{LDA}^{X} + c_0 (E_{HF}^{X} - E_{LDA}^{X}) + c_1 \Delta E_{B88}^{X} + E_{VWN}^{C} + c_2 (E_{LYP}^{C} - E_{VWN}^{C})$$
(6.18)

ifadesi ile verilmektedir. Burada c_0 , c_1 ve c_2 katsayıları deneysel değerlerden türetilmiş sabitlerdir ve değerleri sırası ile 0.2, 0.7, 0.8 dir. Dolayısı ile B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi,

$$E_{B3LYP} = E^{T} + E^{V} + E^{J} + E_{B3LYP}^{XC}$$
(6.19)

olarak elde edilir [32].

6.1.10. Temel Setler ve 6-311 G* Temel Seti

Temel set atomik orbitallerin matematiksel tanımıdır. Bir moleküler orbital; moleküllerin atomlardan oluşması ve aynı cins atomların farklı cins moleküllerde benzer özellikler göstermeleri nedeni ile atomik orbitallerin çizgisel toplamları olarak yazılabilir. Ψ_i moleküler orbitali ile Φ_{μ} atomik orbitallerin arasındaki bağıntı,

$$\Psi_{i} = \sum_{\mu=1}^{n} c_{\mu i} \Phi_{\mu}$$
(6.20)

ifadesi ile verilir. Burada $c_{\mu i}$ moleküler orbital açılım katsayıları ve Φ_{μ} atomik orbitallerini ise temel fonksiyonlar olarak adlandırılır. Temel fonksiyonlar

$$g(\alpha, r) = cx^n y^m z^l e^{-\alpha r^2}$$
(6.21)

şeklinde gaussian-tipi atomik fonksiyonlar şeklinde seçilebilir. Burada α fonksiyonun genişliğini belirleyen bir sabit, c ise α ,l,m ve n ye bağlı bir sabittir.s,p_y ve d_{xy} tipi gaussian fonksiyonlar sırasıyla aşağıda verilmiştir.

$$g_s(\alpha, \vec{r}) = \left(\frac{2\alpha}{\pi}\right)^{3/4} e^{-\alpha r^2}$$
(6.22)

$$g_{y}(\alpha, \vec{r}) = \left(\frac{128\alpha^{5}}{\pi^{3}}\right)^{1/4} y e^{-\alpha r^{2}}$$
 (6.23)

$$g_{xy}(\alpha, \vec{r}) = \left[\frac{2048\alpha^{7}}{\pi^{3}}\right]^{1/4} xy e^{-\alpha r^{2}}$$
(6.24)

Bu ifadeler ilkel gaussianlar olarak adlandırılmaktadırlar. Sınırlandırılmış gaussianlar ise

$$\Phi_{\mu} = \sum_{p} d_{\mu p} g_{p} \tag{6.24}$$

ifadesi ile verilmektedir. Burada $d_{\mu\nu}$ 'ler herhangi bir temel set için sınırlı sayıda sabitlerdir. Bir moleküler orbital veya dalga fonksiyonu ile ilgili hesaplamalarda temel sorun $c_{\mu i}$ lineer açılım katsayısının her bir orbital için hesaplanmasıdır.

$$\Psi_{i} = \sum_{\mu} c_{\mu i} \Phi \mu = \sum_{\mu} c_{\mu i} \left(\sum_{p} d_{\overline{op}} g_{p} \right)$$
(6.25)

Atomik orbitaller için bir çok temel set önerilmiştir.Bunlar:

a) *Minimal temel setler:* Bu setler herhangi bir atom için gerektiği sayıda temel fonksiyon içerir. Örneğin,

H: 1s C: 1s, 2s, 2p_x, 2p_y, 2p_z

b)Split valans temel setleri: Bu setler ise her bir valans (değerlik) orbitali için farklı büyüklükte (α) iki veya daha çok temel fonksiyon içerirler. Örneğin,

H: 1s, 1s¹ C: 1s, 2s, 2s', 2p_x, 2p_y, 2p_z, 2p_x', 2py', 2p_z'

Burada ' işaretli ve işaretsiz orbitallerin büyüklükleri farklıdır.3-21G, 4-21G, 6-31G temel setleri minimal setlerdir. Split valans temel setleri orbitallerin büyüklüğünü değiştirir fakat şeklini değiştirmez.

c) *Polarize temel setler:* Bir atomun taban durumunu tanımlamak için gerekenden daha fazla açısal momentumu orbitallere ekleyerek orbitallerin şeklini de değiştirir. Örneğin polarize temel setler karbon atomları için d fonksiyonlarının da göz önüne alır: $4-21G^{*}(4-21G(d))_{5}$ $6-31G^{*}(6-31G(d))$ gibi. Hidrojen atomunda p orbitalide göz önüne alınmış ise bu durumda temel setler $6-31G^{**}$ (6-31G(d,p)) olarak gösterilir [33].

d)*Yüksek açısal momentum temel seti*:Daha geniş temel setler bir çok sistem için daha pratiktir. Bu tür temel setlerin her atom için daha çok polarize fonksiyonları vardır. Mesela, 6-31 G(2d) temel seti ağır atomlar için bir yerine iki d fonksiyonu eklerken, 6-311 G (3df,3pd) temel seti üç valans seti ekler. Bu temel setler Elektron korelasyonu metodundaki elektron etkileşimlerini tanımlarlar [2,33].

Bizim hesaplamalarımızda kullanılan 6-311 G* temel seti için ifadelerimiz ve sabitler aşağıda verilmiştir.

Hidrojen atomu için s atomik orbitalleri,

$$\Phi_{1s}'(\vec{r}) = \sum_{k=1}^{3} d_k' g_s(\alpha_k', \vec{r})$$
(6.26)

$$\Phi_{1s}^{'}(\vec{r}) = \sum_{k=1}^{\infty} d_k^{'} g_s(\alpha_k^{'}, \vec{r})$$
(6.27)

olarak yazılabilir. Karbon ve azot atomları için s ve p atomik orbitalleri,

$$\Phi_{1s}'(\vec{r}) = \sum_{k=1}^{6} d_{1s,k}g_s(\alpha_{1k}',\vec{r})$$
(6.28)

$$\Phi_{2s}'(\vec{r}) = \sum_{k=1}^{3} d_{2s,k} g_s(\alpha_k, \vec{r})$$
(6.29)

$$\Phi_{2px}'(\vec{r}) = \sum_{k=1}^{3} d_{2p,k}' g_{px}(\alpha_{2k}', \vec{r})$$
(6.30)

$$\Phi_{2s}^{"}(\vec{r}) = \sum_{k=1}^{n} d_{2s,k}^{"} g_{px}(\alpha_{2k},\vec{r})$$
(6.31)

$$\Phi_{2px}^{"}(\vec{r}) = \sum_{k=1}^{\infty} d_{2p,k}^{'} g_{px}(\alpha_{2k},\vec{r})$$
(6.32)

olarak yazılabilir. 5 tane d tipi gaussian fonksiyon vardır;

$$(3z2 - r2, xz, yz, xy, x2 - y2) exp(-\alpha_{d}r2)$$
(6.33)

Karbon ve azot atomları için d orbitali sözde(virtuel) bir orbitaldir ve kısıtlanmamıştır. Yani,

$$\Phi = g_d(\alpha_d) \tag{6.34}$$

ifadesi ile verilmektedir. Φ' ve Φ'' fonksiyonları valans kabuğunun iç ve dış kısımlarına karşılık gelir [29,33].

6.2. Geometrik Optimizasyon

Geometrik optimizasyon hesaplamalar moleküler sistem belirli bir geometride iken yapılır. Moleküllerdeki yapısal değişiklikler molekülün enerjisinde ve diğer bir çok özelliklerinde değişiklikler oluşturur. Molekülün yapısındaki küçük değişiklikler sonucu oluşan enerjinin koordinata bağımlılığı "potansiyel enerji yüzeyi (PES) " olarak tanımlanır. Potansiyel enerji yüzeyi moleküler yapı ile sonuç enerji arasındaki ilişkidir [25]. Bir molekül için potansiyel enerji eğrilerini veya yüzeyini bilirsek denge durumundaki geometriye karşılık gelen minimum enerjili nokta bulunabilir. İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği şekil 6.1'deki gibi verilebilir. Şekilde minimum enerjili nokta E_m ve x_m ile gösterilmektedir. Potansiyelin harmonik kısmı Hooke yasası ile verilir.

$$E = E_m + \frac{1}{2}G(X - X_m)^2$$
(6.35)

Burada G enerjinin konuma (x) göre ikinci türevidir ve kuvvet sabiti olarak adlandırılır. Yani kuvvet sabiti aşağıdaki ifade ile verilir.

Şekil 6.1 İki atomlu bir molekülde elektronik enerjinin atomlar arası mesafeye bağımlılığı [25] Çok boyutlu problemlerde genelleştirilmiş Hooke yasası şöyle yazılabilir,

$$E = E_m + \frac{1}{2}(\underline{x} - \underline{x}^m) + G(\underline{x} - \underline{x}^m)$$
(6.37)

$$E = E_{m} + \frac{1}{2} \left(\begin{bmatrix} x_{1} - x_{1}^{m} \end{bmatrix}, \begin{bmatrix} x_{2} - x_{2}^{m} \end{bmatrix}, \ldots \right) x \begin{bmatrix} G_{11}G_{12}, \ldots, \\ G_{22}, \ldots, \\ \ldots, \\ \ldots, \\ \vdots \end{bmatrix}$$
(6.38)

olarak ifade edilir. Burada $\underline{x} - \underline{x}^m$ yerdeğiştirme vektörü ve G ise elemanlarını köşegen ve köşegen dışı etkileşen kuvvet sabitlerinin oluşturduğu Hessian matrisi adını alır.

$$\begin{bmatrix} \frac{\partial^2 E}{\partial^2 x_1^2} & \frac{\partial^2 E}{\partial x_1 \partial x_2} & \cdots \\ & \frac{\partial^2 E}{\partial x_2^2} & \cdots \\ & \cdots & \cdots \end{bmatrix} = \begin{bmatrix} G_{11} & G_{22} & \cdots \\ & G_{22} & \cdots \\ & & \cdots \end{bmatrix}$$
(6.39)

Moleküler geometri optimizasyonu x_1^m ve x_2^m konumlarına karşılık gelen minimum enerjili noktaları bulmak demektir. Bu ilk aşamada gradyent vektörü g' yi bulmak demektir.

$$\langle g \mid \equiv g = \left[\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}, \dots\right]$$
 (6.40)

İkinci aşamada ise gradyent vektörünün sıfır olduğu noktalan bulmaktır.

$$\langle g | = (0,0,0,....)$$
 (6.41)

Daha öncede belirtildiği gibi gradyent vektörünün sıfır olduğu noktalar minimum enerjili duruma karşılık gelir ve molekülün bu durumdaki geometrisi denge durumu geometrisidir. Bir molekül için potansiyel enerji yüzeyinde bir çok maksimum ve minimumlar Şekil 6.2'de ki gibi görülür.

Potansiyel enerji yüzeyindeki minimumlar sistemin dengede olduğu yerdir. Tek bir molekül için farklı minimumlar farklı yapısal izomerlere karşılık gelir. Sırtlardaki düşük nokta bir yönde yerel minimum, diğer yönden bir maksimumdur. Bu tür noktalara "eyer noktaları, saddle point" adı verilir. Eyer noktaları iki denge yapısı arasındaki geçiş yapısına karşılık gelir.

Şekil 6.2. İki boyutta potansiyel enerji yüzeyi

Geometri optimizasyonları potansiyel yüzeyindeki genellikle enerji minimumları araştırır, moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon aynı zamanda geçiş yapılarını da araştırır. Minimumlara optimizasyona minimizasyon denilir. Minimumlarda ve eyer noktalarında enerjinin birinci türevi yani gradyent sıfırdır. Kuvvet gradyentin negatifidir, bu nedenle bu noktalarda kuvvet de sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g'nin sıfır olduğu noktaya kararlı noktalar denilir. Başarılı geometri optimizasyonlarının tümü kararlı noktaları bulmayı hedefler.Geometri optimizasyonu giriş geometrisindeki moleküler yapıda başlar ve potansiyel enerji yüzeyini dolaşır. Bu noktada enerji ve gradyenti hesaplar ve hangi yöne doğru ne kadar gidileceğine karar verir. Gradyent eğimin dikliğini verdiği kadar, yüzey boyunca mevcut noktadan enerjinin cok hızlı düştüğü noktayı da verir. Enerjinin atomik koordinatlara göre ikinci türevi kuvvet sabitini verir. Optimizasyon algoritmalarının çoğu kuvvet sabitleri matrisi olarak bilinen Hessianı da hesaplar veya tahmin eder. Kuvvet sabitleri bu noktadaki yüzeyin eğriliğini tanımlar ki bir sonraki aşamanın belirlenmesinde ek bilgi verir. Optimizasyon yakınsadığında tamamlanmış olur. Yani hesaplanan geometride g vektörü sıfır ve bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasında ki fark ihmal edilebilir bir değerde ise optimizasyon tamamlanmış olur [25, 34].

6.3. Hesaplama Metodu: Yoğunluk Fonksiyonu Teorisinde Öz Uyumlu Alan Yöntemi (DFT SCF)

Bu bölümde GAUSSIAN 98 paket programında bir molekülün spektroskopik büyüklüklerinin yoğunluk fonksiyonu teorisi DFT çerçevesinde nasıl hesaplandığı açıklanmıştır. Daha önceki bölümlerde kullanılan ifadeler tamamen tekrar veya modifiye edilerek kullanılmıştır. Daha öncede belirtildiği gibi kuantum mekaniksel elektronik enerji ifadeleri şu temel kısımlara ayrılarak yazılabilir;

$$\mathbf{E} = \mathbf{E}^{\mathrm{T}} + \mathbf{E}^{\mathrm{r}} + \mathbf{E}^{\mathrm{J}} + \mathbf{E}^{\mathrm{XC}} \tag{6.42}$$

Burada E^{T} ve E^{V} kinetik ve elektron-çekirdek etkileşim enerjileri, E^{J} ise ρ elektron yoğunluğunun Coulomb öz-etkileşimi ve E^{xc} de ρ yoğunluğunun bir fonksiyonu olarak türetilebilen elektron-elektron itme enerjisinin geri kalan (değiştokuş ve korelasyon) kısmıdır.

Bir moleküler orbital Ψ_i atomik orbitallerin lineer kombinasyonları olarak yazılabileceği daha önce belirtilmişti;

$$\Psi_i = \sum_{\mu} c_{\mu i} \Phi \mu \tag{6.43}$$

Toplam elektron yoğunluğu ise aşağıdaki şekilde verilir;

$$\rho = \sum_{i}^{n} \left| \Psi_{i} \right|^{2} \tag{6.44}$$

Eş. 6.43 ve Eş. 6.44 birleştirilirse elektron yoğunluğunun temel setlere bağlı ifadesi,

$$\rho = \sum_{\mu}^{N} \sum_{\nu}^{N} \sum_{i}^{N} c_{\mu i} c_{\nu i} \phi_{\mu} \phi_{\nu} = \sum_{\mu \nu} P_{\mu \nu} \phi_{\mu} \phi_{\nu}$$
(6.45)

olarak elde edilir. Burada,

$$P_{\mu\nu} = \sum_{i} c_{\mu i} c_{\nu i} \tag{6.46}$$

ile verilmekte olup *yoğunluk matrisi* olarak bilinir. Değiş tokuş ve korelasyon enerjisi ise elektron yoğunluğuna ve elektron yoğunluğunun gradyentine bağlı olarak,

$$E^{XC} = \int f(\vec{\rho(r)}, \nabla \vec{\rho(r)}) d\vec{r}$$
(6.47)

kapalı formunda verilmektedir. Bu enerjiye karşılık gelen değiş tokuş ve korelasyon potansiyeli,

$$V^{XC}(\vec{r}) = \frac{\delta E^{XC}(\vec{r})}{\delta \rho(\vec{r})}$$
(6.48)

ifadesi ile verilmektedir. Standart varyasyonel hesap ise şu sonucu verir;

$$v^{XC} = \frac{\partial f}{\partial \rho} - \frac{d}{dx} \frac{\partial f}{\partial \rho^x} - \frac{d}{dy} \frac{\partial f}{\partial \rho^y} - \frac{d}{dz} \frac{\partial f}{\partial \rho^z}$$
(6.49)

Burada $\rho^x = \partial \rho / \partial x$ kısaltması yapılmıştır. E^{xc} [p] biliniyorsa v^{xc} kolaylıkla elde edilebilir. Kohn-Sham orbitalleri Ψ_i aşağıdaki tek-elektron denklemlerinin çözümünden elde edilebilir;

$$\hat{F}_{KS}\Psi_i = \varepsilon_{i,KS}\Psi_i \tag{6.50}$$

Burada Kohn-Sham operatörü \hat{F}_{KS} olarak bilinir. Eş.6.42'de ki enerji ifadesindeki her bir enerji yerine yazılıp $c_{\mu i}$ bilinmeyen katsayılarına göre minimize edilip düzenlendiğinde aşağıdaki denklem seti elde edilir.

$$\sum_{v}^{N} (F_{\mu v} - \varepsilon_{i} S_{\mu i}) c_{v i} = 0$$
(6.51)

Burada ε_i dolu orbitaller için tek-elektron enerji özdeğerleridir. S_{µi} çakışma matrisi olup aşağıdaki ifade ile verilmektedir;

$$S_{\mu i} = \int \phi_{\mu}(\vec{r})\phi_{\nu}(\vec{r})d\vec{r}$$
 (6.52)

Kohn-Sham operatörü, Fock tipi bir matris olarak,

$$F_{\mu\nu} = H^{core}_{\mu\nu} + J_{\mu\nu} + F^{XC}_{\mu\nu}$$
(6.53)

ifadesi ile verilmektedir. Burada,

$$H_{\mu\nu} = \int \phi_{\mu}(\vec{r}) \left[-\frac{1}{2} \nabla^{2} - \sum_{a} \frac{Z_{a}}{\left| \vec{r} - \vec{R}_{a} \right|} \, \left| \phi_{\nu}(\vec{r}) d\vec{r} \right|$$
(6.54)

J_{uv} Coulomb matrisi olup,

$$J_{\mu\nu} = \sum_{\lambda\sigma}^{N} P_{\lambda\sigma}(\mu\nu|\lambda\sigma) = \iint \phi_{\mu}(\vec{r})\phi_{\nu}(\vec{r}) \frac{1}{\left|\vec{r}-\vec{r}\right|} \phi_{\lambda}(\vec{r})\phi_{\sigma}(\vec{r})d\vec{r}d\vec{r}$$
(6.55)

ifadesi ile verilmektedir. Kohn- sham operatörünün değiş tokuş ve korelasyon kısmı,

$$F_{\mu\nu}^{XC\alpha} = \int \left[\frac{\partial f}{\partial \rho_{\alpha}} \phi_{\mu} \phi_{\nu} + \left[2 \frac{\partial f}{\partial \gamma_{a\alpha}} \nabla \rho_{\alpha} + \frac{\partial f}{\partial \gamma_{a\beta}} \nabla \rho_{\beta} \right] \nabla (\phi_{\mu} \phi_{\nu}) \right]$$
(6.56)

ifadesi ile verilir. Benzer şekilde $F_{\mu\nu}^{XC\alpha}$ de yazılabilir.

Bu ifadeler aşağıda verilen iteratif (ardıl) öz uyumlu alan yöntemi ile çözülür. Sonuçta Eş.6.42 ile Kohn-Sham elektronik enerji ifadesi,

$$E = \sum_{\mu\nu}^{N} P_{\mu\nu} H_{\mu\nu}^{core} + \frac{1}{2} P_{\lambda\sigma} (\mu\nu \| \lambda\sigma) + E^{XC}$$
(6.57)

elde edilir.

Bir molekülün enerjisi ve geometrik parametreleri DFT modelinde SCF yöntemi ile hesaplanır. Bu yöntem ana hatları ile aşağıdaki yolu izler.

i.Yaklaşık bir moleküler orbital ifadesi giriş değeri olarak tahmin edilir. Bu tahmin atomik orbitallerin çizgisel kombinasyonlarına dayanır. (Eş.6.43). Atomik orbital olarak 6-311G* temel seti kullanılır (Çizelge 6.1).

ii.Elektron yoğunluğu bu tahmini moleküler orbitalden hesaplanır ve giriş değeri olarak kabul edilir (Eş.6.44).

iii.Tahmini enerji ifadesi hesaplanır (Eş.6.57).

iv. $S_{\mu i} H^{core}_{\mu \nu}, J_{\mu \nu}, F^{XC}_{\mu \nu}$ hesaplandıktan sonra $F \mu \nu$ hesaplanır (Eş.6.52- Eş.6.56).

v.Eş.6.53 ile ε_i ve c_{ν} hesaplanır. En önemli aşamalardan biri budur.

vi. Hesaplanan $c_{\nu i}$ lerden Ψ_i ler tekrar hesaplanır.

Bu başlangıç değer hesaplamalarından sonra SCF çevrimi tekrar başlar. Yani elektron yoğunluğu ρ , $S_{\mu i}$ $H^{core}_{\mu\nu}$, $J_{\mu\nu}$, $F^{XC}_{\mu\nu}$, ε_i , $c_{\nu i}$, E_e , $\partial E_e/\partial R$ hesaplanır.

Bu işlem hesaplanan bu büyüklüklerin bir önceki değeri ile hesaplanan değeri arasındaki fark kabul edilebilir bir seviyeye inene kadar devam ettirilir. Örnek olarak enerjinin yakınsamasını göz önüne alalım ; hesaplanan enerji değerleri arasındaki fark kabul edilebilir bir toleransta bir birine yakın ise hesaplama işlemi yani SCF iterasyonu durdurulur [2].

6.4. SQM Metodu

Orijinal SQM yönteminde, moleküler geometri doğal iç koordinatlarda elde edilir. Doğal iç koordinatlar gerilme koordinatları olarak bağ değişimlerini, deformasyon koordinatları olarak bağ açılarını ve burulmaları göz önüne alır. Bükülmelerin ve burulmaların uygun çizgisel kombinasyonları grup teorisi yardımı ile belirlenir. Orta büyüklükteki moleküller için doğal iç koordinatlar Pulay ve Fogarasi tarafından önerilmiştir [2,35]. Doğal iç koordinatlar gruplandırılarak her bir grup için ölçekleme faktörleri belirlenmiştir. Kartezyen koordinatlarda hesaplanan kuvvet sabitleri doğal iç koordinatlara çevrilir ve ölçekleme doğal koordinatlardaki kuvvet sabiti matrisinin elemanlarına aşağıdaki şekilde uygulanır. F_{ij}^{teo} herhangi bir model ile (HF,DFT,...) hesaplanmış teorik kuvvet sabiti, F_{ij}^{SQM} ölçeklenmiş kuvvet sabiti olmak üzere aralarındaki ilişki aşağıda verilmiştir;

$$F_{ij}^{SQM} = (s_i s_j)^{1/2} F_{ij}^{teo}$$
(6.60)

Burada s_i ve s_j sırası ile i. ve j. doğal iç koordinatlara karşılık gelen ölçekleme faktörleridir. Özellikle belirtmek gerekir ki ölçeklenmiş kuvvet sabiti matrisi sonuç normal modları yani titreşim frekanslarını ve şiddeti etkiler. Sonuçta elde edilen teorik sonuçların frekans ve şiddet değerleri deneysel sonuçlar ile oldukça uyum halinde olur [2,33].

DFT/B3LYP 6-31 G* modeli için SQM metodu P. Pulay ve G. Rauhut tarafından 1995 yılında geliştirilmiştir [36].

Trans 1,2 bis(4-piridil)etilen (bpe₁) ve 1,2 bis(2-piridil)etilen (bpe₂) molekülünün yapısal parametrelerinin ve titreşimsel kuvvet alanının HF,BLYP,B3LYP ve B3PW91/6-311G* tabanlı SQM metodu ile hesaplanmasında izlenen yol özetlenmiştir.

i) İlk olarak incelenecek molekülün yaklaşık geometrisinin kartezyen koordinatları veri olarak girilir.

için ii) Geometri optimizasyonu yapılır. Geometri optimizasyonu önce hesaplama metodu ve kullanılacak temel set secilir. Geometri optimizasyonu seçilen model çerçevesinde enerjinin birinci analitik türevinden hesaplanır. Enerjinin birinci analitik türevi gradyent vektörü g'yi verir g'nin sıfır olması, moleküler sistemin dengede olması demektir. Bu durumda molekülün yapısı hesaplanır.

iii) Molekülün titreşim frekansları hesaplanır. Geometri optimizasyonu ile elde edilen geometrinin kartezyen koordinatları veri olarak girilir ve hesaplama modeli seçilir. Seçilen modelde enerjinin ikinci analitik türevi hesaplanır, ikinci türev bize kuvvet sabitlerini verir. Kuvvet sabitlerinden titreşim frekansları harmoniklik yaklaşımında hesaplanır. Bu aşamada kartezyen kuvvet sabitleri hesaplanır.

7. SONUÇLAR VE TARTIŞMA

Trans 1,2-bis(4-piridil)etilen ve 1,2-bis(2-piridil)etilen molekülleri biyolojik aktif olan iki ligandır. Bu ligandlar azot uçlu ligandlardır. Azot ise canlı organizmaları oluşturan çeşitli proteinlerin temel elementidir. Canlılar azot bileşiklerine ihtiyaç duyarlar. Bu yüzden azot uçlu bu ligandların ve bunlara benzer diğer ligandların bileşikleri, eczacılıkta, gübre sanayinde ve endüstride çok sık kullanılır.

Bu ligandların benzeri olan başka ligandlarla da bir çok bilim adamı çalışmıştır. Örneğin, Hauser ve Bradles 1,2- di(4-piridil)etilen molekülünü kirli atmosfer içerisinde ozon miktarının belirlenmesinde kullanmıştır [37]. Hauser ve Bradles'in bu çalışmalarında 1,2- di(4-piridil)etilen molekülünü asitle çözmüş ve bu çözelti içerisinde ozon toplamayı başarmıştır. Başka bir örnek ise, 1,2- di(4-piridil)etilen molekülünün benzoik ve melaik asitlerle yapılan bileşiklerinin supramoleküllerin sentezinde kullanılmasıdır[38]. Ayrıca ligand bileşikleri kristal mühendisliği ve organik sentezler arasında yapısal analiz açısından ilişki kurar [39].

Literatür taramasında 1,2-bis(2-piridil)etilen molekülünün serbest haldeki geometrik parametre (bağ açısı, bağ uzunlukları) ve titreşim frekansları değerlerine rastlanmamıştır. Ancak bu molekülün squarik asitle oluşan kristalinin geometrik parametre sonuçlarına Zaman'ın çalışmasında rastlanmıştır[40]. Ayrıca, 1996 yılında Yang; 1,2-bis(2-piridil)etilen molekülünün, infrared spektroskopisi, normal Raman spektroskopisi (SERS) ve yüzey tarama Raman spektroskopisi (SEHRS) çalışmalarını yapmıştır.

Trans 1,2-bis(4-piridil)etilen molekülünün ise DFT çalışmaları ve titreşim analizi ve bu molekül ile yapılan metal halojen bileşiklerine Yang tarafından yapılan çalışmada rastlanmıştır. Fakat, bu çalışmada, trans 1,2-bis(4-piridil)etilen molekülünün infrared titreşim frekans değeri sadece HF/6-31+G setinde hesaplanmıştır [42].

Bu çalışmada ise, trans 1,2- bis(4-piridil)etilen ve 1,2- bis(2-piridil)etilene molekülünün bütün hesaplamaları HF, DFT/BYP3LYP,B3PW91 ile yapılmıştır.

Aynı maddenin Cl,Br ve I halojenli metal bileşikleri hazırlanmış ve titreşim frekansları serbest ligandın titreşim frekanslarıyla karşılaştırılmıştır.

7.1. Trans 1,2- Bis(4-Piridil)Etilen Molekülü İle Yapılan Deneysel Çalışma Sonuçları

Trans 1,2-bis(4-piridil)etilen (bpe₁) molekülünün Mn (bpe₁)Cl₂, Mn (bpe₁)Br₂, Mn (bpe₁)I₂, Fe (bpe₁)Cl₂, Fe(bpe₁)Br₂, Fe(bpe₁)I₂, Co(bpe₁)Cl₂, Co(bpe₁)Br₂, Co(bpe₁)I₂, Ni(bpe₁)Cl₂, Ni(bpe₁)Br₂, Ni(bpe₁)I₂, Cu(bpe₁)Cl₂, Cu(bpe₁)Br₂, Cu(bpe₁)I₂, Zn(bpe₁)Cl₂, Zn(bpe₁)Br₂, Zn(bpe₁)Br₂, Zn(bpe₁)Br₂, Hg(bpe₁)I₂, Cd(bpe₁)Cl₂, Cd(bpe₁)Br₂, Cd(bpe₁)Br₂, Cd(bpe₁)I₂, Hg(bpe₁)Cl₂, Hg(bpe₁)Br₂, Hg(bpe₁)I₂ olmak üzere 24 tane metal halojen bileşiği elde edilmiştir.

Bileşik oluşturmak için, 1mmol metal halojen 10 ml etil alkol içinde çözünmüştür. Bu çözeltiye, etil alkolde çözünmüş 2mmol trans 1,2- bis(4-piridil)etilen eklenmiştir. Karışımlar manyetik karıştırıcılar yardımı ile oda sıcaklığında 5 gün karıştırılmıştır. Oluşan bileşikler filtre kağıdı yardımı ile süzülmüş ve eter ile yıkanarak kurumaya bırakılmıştır. Kuruyan bileşiklerin infrared titreşim spektrumları alınmıştır. EK-1'de bu titreşim spektrumları verilmiştir. Verilen bu spektrumlar Gazi Üniversitesi Kimya Bölümü'nde bulunan 4000-400 cm⁻¹ aralığındaki Mattson 1000 F-TIR spektrometre ile çekilmiştir. Frekanslar polystyrene bantlarla düzeltilmiştir. Örnek diskleri KBr peleti içinde hazırlanmıştır.

Daha sonra bazı bileşiklerin C,H ve N analizleri Tübitak'da Leco CHN-600 model analizör kullanılarak yapılmış ve sonuçlar Çizelge 7.1' de verilmiştir.Bu çizelgede, teorik olarak bir ligand bağlanması durumunda bileşikler için hesaplanan C, H ve N yüzdeleri ile analiz sonuçları karşılaştırılmıştır. Kimyasal analiz sonuçları ile örneklerin bileşik formülleri belirlenmiştir.

Analiz sonuçlarına göre ZnCl₂, ZnBr₂, Znl₂, CuCl₂, CoCl₂, MnCl₂, NiCl₂ ile bir tane ligand molekülü bağlanmıştır.

Trans 1,2 bis(4-piridil)etilen molekülünün metal halojen bileşiklerinin herhangi biri üzerinde x-ışınları tek kristal çalışmaları yapılmamıştır. Ayrıca bu bileşiklerle ilgili magnetik duygunluk ve elektronik spektroskopi çalışması yoktur.

Kinolin [50] ve piridin[51]ile yapılan metal halojen bileşiklerinin olabilecek yapıları x-ışını tek kristal , elektronik spektroskopi ve magnetik duygunluk çalışmalarıyla saptanmıştır. Bu bileşiklerden MCl₂(kinolin)₂ (M=Co,Zn) bileşiklerinin tetrahedral yapıda olduğu bulunmuştur[50]. CoCl₂(kinolin)₂ bileşiğinin renginin mavi olması da tetrahedral yapıyı kanıtlar. Bu çalışmada da elde edilen Co(bpe₁)Cl₂ bileşiğinin rengi de mavidir. Bu yüzden, elde edilen Co(bpe₁)Cl₂ bileşiğinin de tetrahedral yapıda olduğu düşünülmektedir. Elde edilen diğer bileşiklerden Co(bpe₁)Br₂ ve Co(bpe₁)I₂ bileşiğinin infrared spektrumunda gözlenen band yapıları Co(bpe₁)Cl₂ bileşiğinin yapısına benzemektedir. Bu nedenle bu bileşiklerin de tetrahedral olduğu düşünülmektedir.

Ayrıca, $(ns^2np^6(n-1)d^{10})$ yapısındaki Zn^{+2} gibi iyonlar ve kristal alan kararlılık enerjisinin düşük olması nedeniyle başka geometriye yatkınlığı olmayan Co⁺² gibi iyonlar tetrahedral (dört yüzlü) yapıyı tercih eder. Tetrahedral yapı kare düzleme göre daha simetrik ve bağ açılarının daha büyük olduğu bir yapıdır. Bu yüzden Cl⁻, Br⁻ ve I⁻ gibi büyük moleküller olduğunda tetrahedral yapı tercih edilir[10].

	TEORİK HESAPLAMA			ANALİZ SONUCU		
	% C	% H	% N	% C	% H	% N
Zn(bpe ₁)Cl ₂	45,25	3,16	8,89	45,70	2,93	8,80
$Zn(bpe_1)Br_2$	35,57	2,47	6,87	36,16	2,12	6,77
Zn (bpe1) I2	28,75	2,01	5,58	30,02	1,98	5,50
$Cu(bpe_1)Cl_2$	45,51	3,18	8,84	46,33	3,35	8,93
$Co(bpe_1)Cl_2$	46,18	3,22	8,97	47,21	2,96	9,02
Mn(bpe ₁)Cl ₂	46,78	3,27	9,09	46,61	1,11	8,92
Ni(bpe ₁)Cl ₂	46,22	3,23	8,98	48,96	2,86	9,25

Çizelge 7.1. Trans 1,2- bis(4-piridil)etilen molekülünün bazı metal halojen bileşiklerinin analiz sonuçları
Ayrıca, her bileşiğin titreşim spektrumu alınmıştır. Bu spektrumlardan First programı ile okunan titreşim frekans değerleri, serbest ligandın titreşim frekans değerleriyle karşılaştırılmıştır. Bu karşılaştırmalar tablolar halinde Çizelge 7.2-Çizelge 7.8'de verilmiştir. Bu tablolarda; oluşan bileşiklerin titreşim frekans değerlerinin serbest ligandın deneysel titreşim frekans değerlerine göre biraz kaydığı gözlenmiştir. Kayma miktarları bileşiklerin kimyasal yapısına, metale bağlılığına ve halojenlerine göre değişmektedir. Bu kaymalar değerlendirilerek ligand molekülünün metale nasıl bağlandığı bulunabilir.

Tüm tablolar incelendiğinde, metal halojenli bileşiklerin en güçlü piklerinin, serbest haldeki trans 1,2- bis(4-piridil)etilen molekülünün 1594 cm⁻¹ titreşim frekansına karşılık gelen pikler olduğu görülmüştür. Bu titreşim frekansı, piridin ve piridin türevleri ile yapılan bileşiklerin işaretlemeleri ile karşılaştırılmış ve düzlem içi halka gerilmesi olarak işaretlenmiştir. Bütün halojenli bileşiklerde en çok kayma da, 1594 cm⁻¹ pikinde gözlenmiştir. Bu kayma aşağı yönde negatif kaymadır. Diğer kayma miktarları halojene bağlı olarak her bileşiklerin sütunu altında verilmiştir. Buna göre kayma miktarının Cl>Br>I sırasıyla azaldığı görülmektedir. Kayma miktarları ve büyüklük sırası, kaymaların metale bağlılığını göstermektedir. Benzer kaymalar

Cl molekülünün Br ve I'a göre elektronegatifliği yani moleküldeki bağ elektronlarını kendine çekme gücü fazla olduğu için, bu halojen ile yapılan bileşiklerde kayma miktarlarının daha çok olması beklenir.

Ayrıca, Çizelge 7.3 ve Çizelge 7.5'de serbest haldeki trans 1,2- bis(4-piridil)etilen molekülünün 825cm⁻¹ ile 982 cm⁻¹ titreşim frekansları CuCl₂, CuBr₂, Cul₂, MnCl₂, MnBr₂ ve Mnl₂ metal halojen bileşiklerinde iki moda ayrılmıştır. Çünkü, C-H gerilmelerinin yanı sıra C-N gerilmeleri olması titreşim çiftlenmesine neden olmuştur.

Tablolar incelendiğinde, güçlü piklerden olan 531cm⁻¹ frekansında da kaymalar olduğu gözlenmiş ve bu frekans düzlem içi halka bozunma olarak işaretlenmiştir.

Elde edilen bileşiklerin IR spektrumlarının band yapıları karşılaştırıldığında, oluşan piklere göre aynı metalin değişik halojenli bileşiklerinin birbirine benzer yapı gösterdiği anlaşılmıştır. Buna göre Zn (bpe₁)Cl₂, Zn (bpe₁)Br₂ ve Zn (bpe₁)I₂ benzer yapıda, Cu (bpe₁)Cl₂, Cu(bpe₁)Br₂ ve Cu(bpe₁)I₂ benzer yapıda, Co(bpe₁)Cl₂, Cu(bpe₁)Br₂ ve Cu(bpe₁)I₂ benzer yapıda, Co(bpe₁)Cl₂, Co(bpe₁)I₂ benzer yapıda, Mn(bpe₁)Cl₂, Mn(bpe₁)Br₂ ve Mn(bpe₁)I₂ benzer yapıda, Ci(bpe₁)Cl₂, Cd(bpe₁)Br₂ ve Cd(bpe₁)I₂ benzer yapıda, Ni(bpe₁)Cl₂, Ni(bpe₁)Br₂ ve Ni(bpe₁)I₂ benzer yapıda, Fe(bpe₁)Cl₂, Fe(bpe₁)Br₂ ve Fe(bpe₁)I₂ benzer yapıda, Hg(bpe₁)Cl₂, Hg(bpe₁)Br₂ ve Hg(bpe₁)I₂ benzer yapıdadır.

Çizelge 7.2. Trans 1,2- bis(4-piridil)etilen molekülünün Zn(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	ZnCl ₂ L ₁	ZnBr ₂ L ₁	ZnI_2L_1	İşaretleme
424 w	418 w	417 w	421 w	Düzlem dışı halka bükülme
468 w	474 vw	472 w	471 vw	Düzlem içi CC sallanma
531 s	550 m	506 vw	487 vw	Düzlem içi halka bozunma
550 s	570 s	550 s	569 s	Düzlem dışı CN ve CH bükülme
627 vw	589 vw	620 vw	621 vw	Düzlem içi halka bozulma
668 w	668 w	670 w	667 w	Düzlem içi halka bükülme
688 vw	719 w	717 vw	691 vw	Düzlem içi halka bükülme
737 w	741 w	740 w	737 w	Düzlem dışı CH bükülme
825 s	829 vs 843 sp	828 s 843 sp	828 s 844 sp	Düzlem içi halka gerilmesi CH bükülmesi

trans1,2 bis (4 -	ZnCl ₂ L ₁	ZnBr ₂ L ₁	ZnI_2L_1	İşaretleme
870 w	885 vw	886 vw	859 vw	Düzlem dışı CH bükülme
903 vw	897 vw	897 vw	953 s5	Düzlem dışı CH bükülme
982 s	1027 s	1027 s	1025 s	Düzlem dışı CH bükülme
1070 w	1073 m	1070 m	1067m	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1100 vw	1096 vw	1094 vw	Düzlem içi CH bükülmesi
1201 vw	1205 m	1203 m	1201 m	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1229 m	1229 m	1228 m	Düzlem içi halka gerilmesi
1243 w	1255 m	1254 w	1253 m	Düzlem içi halka gerilmesi
1298 vw	1303 m	1302 m	1300 m	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1350 w	1347 vw	1346 m	Düzlem içi CH bükülmesi
1413 m	1430 s	1429 s	1428 s	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1477 m	1476 vw	1475 vw	Düzlem içi halka gerilmesi
1557 m	1560 m	1561 m	1551 m	Düzlem içi halka gerilmesi
1594 vs	1614 vs	1614 vs	1612 vs	Düzlem içi halka gerilmesi
1892 vw	1866 vw	1865 vw	1866 vw	Düzlem içi halka gerilmesi
3023 w	3046 vw	3044 w	3040 w	Düzlem içi Chgerilmesi
3077 vw	3090 vw	3088 vw	3085 w	antisimetrik CH gerilmesi
Toplam kayma	157	83	57	

Çizelge 7.2. (Devam) Trans 1,2- bis(4-piridil)etilen molekülünün Zn(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	$CuCl_2L_1$	CuBr ₂ L ₁ Cul		İşaretleme
424 w	420 w	422 vw	421 vw	Düzlem dışı halka bükülme
468 w	477 vw	475 vw	473 vw	Düzlem içi CC sallanma
531 s				
550 s	549 s	550 s	548 s	Düzlem içi halka bozunma
627 vw	571 s	572 s	570 s	Düzlem dışı CN ve CH bükülme
668 w	670 w	671 w	669 w	Düzlem içi halka bozulma
688 vw	721 vw	723 vw	721 vw	Düzlem içi halka bükülme
737 w	744 w	744 w	742 vw	Düzlem içi halka bükülme
825 s	831 s	832 s	829 vw	Düzlem dışı CH bükülme
870 w	887 vw	897 vw	886 vw	Düzlem içi halka gerilmesi CH bükülmesi
903 vw	966 w	963 vw	959 vw	Düzlem dışı CH bükülme
982 s	984 m	983 m	984 m	Düzlem dışı CH bükülme
70 2 8	1026 m	1026 m	1025 m	Düzlem dışı CH bükülme
1070 w	1074 m	1073 m	1072 m	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1102 vw	1119 vw	1105 vw	Düzlem içi CH bükülmesi
1201 vw	1206 m	1206 m	1204 vw	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1223 w	1224 w	1221 vw	Düzlem içi halka gerilmesi
1243 w	1255 w	1258 w	1256 vw	Düzlem içi halka gerilmesi
1298 vw	1308 vw	1306 vw	1300 vw	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1358 vw	1359 vw	1358 vw	Düzlem içi CH bükülmesi
1413 m	1431 m	1432 m	1429 m	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1506 m	1506 m	1502 m	Düzlem içi halka gerilmesi
1557 m	1558 m	1558 m	1157 m	Düzlem içi halka gerilmesi
1594 vs	1609 vs	1611 vs	1610 vs	Düzlem içi halka gerilmesi
1892 vw	1874 vw	1871 vw	1873 vw	Düzlem içi halka gerilmesi
3023 w	3040 w	3038 vw	3040 vw	Düzlem içi CHgerilmesi
3077 vw	3092 vw	3090 vw	3091 vw	antisimetrik CH gerilmesi

Çizelge 7.3. Trans 1,2- bis(4-piridil)etilen molekülünün Cu(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	CoCl ₂ L ₁	CoBr ₂ L ₁	CoI ₂ L ₁	İşaretleme
424 w	434 vw	422 vw	428 vw	Düzlem dışı halka bükülme
468 w	468 vw	476 vw	471 vw	Düzlem içi CC sallanma
531 s	548 s	548 s	548 s	Düzlem içi halka bozunma
550 s	560 s	560 s	576 m	Düzlem dışı CN ve CH bükülme
627 vw	616 vw	619 vw	658 w	Düzlem içi halka bozulma
668 w	671 vw	671 w	666 w	Düzlem içi halka bükülme
688 vw	688 vw	689 vw	683 vw	Düzlem içi halka bükülme
737 w	744 vw	745 vw	739 w	Düzlem dışı CH bükülme
825 s	827 s	827 s	826 s	Düzlem içi halka gerilmesi CH bükülmesi
870 w	877 vw	884 vw	880 vw	Düzlem dışı CH bükülme
903 vw	898 vw	887 vw	953 m	Düzlem dışı CH bükülme
982 s	1018 s	1016 s	1012 s	Düzlem dışı CH bükülme
1070 w	1077 w	1073 m	1065m	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1099 vw	1100 w	1093 w	Düzlem içi CH bükülmesi
1201 vw	1206 m	1205 m	1201 m	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1220 vw	1221 m	1227 w	Düzlem içi halka gerilmesi
1243 w	1257 m	1256 m	1254 w	Düzlem içi halka gerilmesi
1298 vw	1304 w	1304 vw	1300 vw	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1357 w	1354 vw	1345 w	Düzlem içi CH bükülmesi
1413 m	1428 m	1427 m	1426 s	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1464 w	1473 vw	1457 vw	Düzlem içi halka gerilmesi
1557 m	1554 vw	1558 m	1559 w	Düzlem içi halka gerilmesi
1594 vs	1609 vs	1609 vs	1611 vs	Düzlem içi halka gerilmesi
1892 vw	1890 vw	1890 vw	1828 vw	Düzlem içi halka gerilmesi
3023 w	3040 vw	3038 vw	3041 vw	Düzlem içi CHgerilmesi
3077 vw	3059 vw	3057 vw	3060 vw	antisimetrik CH gerilmesi

Çizelge 7.4. Trans 1,2- bis(4-piridil)etilen molekülünün Co(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	MnCl ₂ L ₁	MnBr ₂ L ₁	MnI ₂ L ₁	İşaretleme
424 w	425 vw	421 vw	422 vw	Düzlem dışı halka bükülme
468 w	474 vw	474 vw	474 vw	Düzlem içi CC sallanma
531 s				
550 s	547 s	547 s	548 s	Düzlem içi halka bozunma
627 vw	628 vw	625 vw	620 vw	Düzlem dışı CN ve CH bükülme
668 w	670 vw	671 vw	671 vw	Düzlem içi halka bozulma
688 vw	689 vw	689 vw	670 vw	Düzlem içi halka bükülme
737 w	753 vw	745 vw	748 vw	Düzlem içi halka bükülme
825 s	829 s	827 s	830 s	Düzlem dışı CH bükülme
870 w	887 vw	875 vw	877 vw	Düzlem içi halka gerilmesi CH bükülmesi
903 vw	898 w	908 vw	868 vw	Düzlem dışı CH bükülme
982 s	983 m	978 m	983 m	Düzlem dışı CH bükülme
	1012 s	1011 s	1012 s	Düzlem dışı CH bükülme
1070 w	1076 w	1074 w	1076 w	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1095 w	1096 w	1095 w	Düzlem içi CH bükülmesi
1201 vw	1207 w	1205 w	1207 w	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1219 w	1221 w	1220 w	Düzlem içi halka gerilmesi
1243 w	1256 w	1256 w	1256 w	Düzlem içi halka gerilmesi
1298 vw	1305 vw	1303 vw	1305 w	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1358 vw	1357 vw	1359 vw	Düzlem içi CH bükülmesi
1413 m	1428 m	1427 m	1428 m	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1505 w	1504 w	1505 w	Düzlem içi halka gerilmesi
1557 m	1559 m	1558 m	1560 m	Düzlem içi halka gerilmesi
1594 vs	1606 vs	1605 vs	1606 vs	Düzlem içi halka gerilmesi
1892 vw	1898 vw	1897 vw	1895 vw	Düzlem içi halka gerilmesi
3023 w	3038 vw	3036 vw	3038 vw	Düzlem içi CHgerilmesi
3077 vw	3084 vw	3100 vw	3079 vw	antisimetrik CH gerilmesi

Çizelge 7.5. Trans 1,2- bis(4-piridil)etilen molekülünün $Mn(bpe_1)X_2$ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	CdCl ₂ L ₁	CdBr ₂ L ₁	CdI ₂ L ₁	İşaretleme	
424 w	423 vw	426 vw	423 vw	Düzlem dışı halka bükülme	
468 w	474 vw	474 vw	473 vw	Düzlem içi CC sallanma	
531 s	547 s	546 s	545 s	Düzlem içi halka bozunma	
550 s	598 vw	591 vw	599 vw	Düzlem dışı CN ve CH bükülme	
627 vw	659 vw	616 vw	620 vw	Düzlem içi halka bozulma	
668 w	671 w	671 w	671 w	Düzlem içi halka bükülme	
688 vw	688 vw	689 vw	689 vw	Düzlem içi halka bükülme	
737 w	744 w	744 w	743 w	Düzlem dışı CH bükülme	
825 s	831 s	829 s	824 s	Düzlem içi halka gerilmesi CH bükülmesi	
870 w	873 w	862 vw	842 vw	Düzlem dışı CH bükülme	
903 vw	893 vw	888 vw	887 vw	Düzlem dışı CH bükülme	
982 s	1012 s	1011 s	1008 s	Düzlem dışı CH bükülme	
1070 w	1075 s	1074 m	1071 m	Düzlem içi halka gerilmesi CH bükülmesi	
1096 w	1094 w	1095 w	1095 w	Düzlem içi CH bükülmesi	
1201 vw	1206 m	1206 m	1205 m	Düzlem içi halka gerilmesi CH bükülmesi	
1220 w	1220 m	1221 m	1220 m	Düzlem içi halka gerilmesi	
1243 w	1255 m	1256 m	1255 m	Düzlem içi halka gerilmesi	
1298 vw	1304 m	1303 m	1300 m	Düzlem içi halka gerilmesi CH bükülmesi	
1358 vw	1357 vw	1356 vw	1353 w	Düzlem içi CH bükülmesi	
1413 m	1386 m	1385 m	1386 vw	Düzlem içi halka gerilmesi CH bükülmesi	
1493 w	1428 s	1427 s	1503 s	Düzlem içi halka gerilmesi	
1557 m	1558 m	1558 m	1557 m	Düzlem içi halka gerilmesi	
1594 vs	1605 vs	1605 vs	1603 vs	Düzlem içi halka gerilmesi	
1892 vw	1868 vw	1898 vw	1893 vw	Düzlem içi halka gerilmesi	
3023 w	3035 w	3032 vw	3031 w	Düzlem içi CHgerilmesi	
3077 vw	3053 vw	3052 vw	3076 vw	antisimetrik CH gerilmesi	

Çizelge 7.6. Trans 1,2- bis(4-piridil)etilen molekülünün Cd(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	HgCl ₂ L ₁	HgBr ₂ L ₁	HgI ₂ L ₁	İşaretleme
424 w	424 vw	423 vw	420 vw	Düzlem dışı halka bükülme
468 w	477 vw	477 vw	470 vw	Düzlem içi CC sallanma
531 s	543 s	548 s 549 s		Düzlem içi halka bozunma
550 s	562 s			
627 vw	653 vw	619 vw	622 vw	Düzlem dışı CN ve CH bükülme
668 w	673 w	669 vw	649 vw	Düzlem içi halka bozulma
688 vw	683 vw		671 vw	Düzlem içi halka bükülme
737 w	743 w	740 w	737 w	Düzlem içi halka bükülme
825 s	836 s	826 s	825 s	Düzlem dışı CH bükülme
870 w	870 vw	863 vw	861 vw	Düzlem içi halka gerilmesi CH bükülmesi
903 vw	966 m	972 m	955 m	Düzlem dışı CH bükülme
982 s	983 m	1006 m	969 m	Düzlem dışı CH bükülme
<i>y</i> 02 8	1015 s		1008 m	Düzlem dışı CH bükülme
1070 w	1073 m	1069 m	1065 m	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1097 vw		1092 vw	Düzlem içi CH bükülmesi
1201 vw	1204 m	1205 vw	1200 m	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1225 w	1221 vw	1223 m	Düzlem içi halka gerilmesi
1243 w	1256 w	1253 w	1252 w	Düzlem içi halka gerilmesi
1298 vw	1306 w	1298 w	1296 w	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1358 w	1349 vw	1344 w	Düzlem içi CH bükülmesi
1413 m	1431 m	1423 m	1423 m	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1501 m	1500 m	1497 m	Düzlem içi halka gerilmesi
1557 m	1556 m	1558 m	1555 m	Düzlem içi halka gerilmesi
1594 vs	1604 vs	1601 vs	1603 vs	Düzlem içi halka gerilmesi
1892 vw	1850 vw	1837 vw	1833 vw	Düzlem içi halka gerilmesi
3023 w	3033 vw	3047 vw	3034 vw	Düzlem içi CHgerilmesi
3077 vw	3056 vw	3057 vw	3055 vw	antisimetrik CH gerilmesi

Çizelge 7.7. Trans 1,2- bis(4-piridil)etilen molekülünün Hg(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	FeCl ₂ L ₁	FeBr ₂ L ₁	FeI ₂ L ₁	İşaretleme
424 w	427 vw	427 vw	423 vw	Düzlem dışı halka bükülme
468 w	475 vw	472 vw	471 vw	Düzlem içi CC sallanma
531 s	513 vw	500 vw	486 vw	Düzlem içi halka bozunma
550 s	545 s	549 s	545 s	Düzlem dışı CN ve CH bükülme
627 vw	626 vw	625 w	614 vw	Düzlem içi halka bozulma
668 w	671 vw			Düzlem içi halka bükülme
688 vw	700 vw			Düzlem içi halka bükülme
737 w	736 vw	746 vw	736 vw	Düzlem dışı CH bükülme
825 s	830 s	831 s	826 s	Düzlem içi halka gerilmesi CH bükülmesi
870 w	882 vw	875 vw	863 m	Düzlem dışı CH bükülme
903 vw	910 vw	978 vw	907 vw	Düzlem dışı CH bükülme
982 s	1014 s	1024 s	1012 s	Düzlem dışı CH bükülme
1070 w	1076 m	1060 vw	1062 vw	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1096 w	1094 vw	1093 vw	Düzlem içi CH bükülmesi
1201 vw	1205 w	1200 w	1199 w	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1225 w	1228 vw	1226 vw	Düzlem içi halka gerilmesi
1243 w	1256 w	1258 w	1251 vw	Düzlem içi halka gerilmesi
1298 vw	1306 w	1301 w	1298 w	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1357 w	1358 w	1354 w	Düzlem içi CH bükülmesi
1413 m	1427 m	1408 m	1404 m	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1475 w	1476 w	1477 w	Düzlem içi halka gerilmesi
1557 m	1562 w	1562 m	1563 m	Düzlem içi halka gerilmesi
1594 vs	1607 vs	1612 vs	1610 vs	Düzlem içi halka gerilmesi
1892 vw	1913 vw	1900 vw	1914 vw	Düzlem içi halka gerilmesi
3023 w	3039 vw	3052 vw	3027 vw	Düzlem içi CHgerilmesi
3077 vw	3057 vw	3088 vw	3072 vw	antisimetrik CH gerilmesi

Çizelge 7.8. Trans 1,2- bis(4-piridil)etilen molekülünün Fe(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

trans1,2 bis (4 - piridil)etilen (KBr)	NiCl ₂ L ₁	NiBr ₂ L ₁	NiI ₂ L ₁	İşaretleme
424 w	427 w	422 vw	422 vw	Düzlem dışı halka bükülme
468 w	471 vw	463 vw	473 vw	Düzlem içi CC sallanma
531 s	493 vw	527 vw	548 s	Düzlem içi halka bozunma
550 s	548 s	557 s	555 s	Düzlem dışı CN ve CH bükülme
627 vw	625 vw	631 w	632 m	Düzlem içi halka bozulma
668 w	670 w	670 w	666 w	Düzlem içi halka bükülme
688 vw	689 vw	696 vw	686 vw	Düzlem içi halka bükülme
737 w	749 vw	742 w	735 vw	Düzlem dışı CH bükülme
825 s	825 s	832 m	828 s	Düzlem içi halka gerilmesi CH bükülmesi
870 w	873 vw	867 vw	865 vw	Düzlem dışı CH bükülme
903 vw	896 vw	905 vw	878 vw	Düzlem dışı CH bükülme
982 s	982 m	976 w	978 m	Düzlem dışı CH bükülme
1070 w	1077 m	1067 m	1065 m	Düzlem içi halka gerilmesi CH bükülmesi
1096 w	1100 vw	1105 vw	1105 vw	Düzlem içi CH bükülmesi
1201 vw	1206 m	1207 m	1202 m	Düzlem içi halka gerilmesi CH bükülmesi
1220 w	1218 w	1221 w	1220 w	Düzlem içi halka gerilmesi
1243 w	1256 w	1255 w	1251 vw	Düzlem içi halka gerilmesi
1298 vw	1303 w	1300 w	1298 w	Düzlem içi halka gerilmesi CH bükülmesi
1358 vw	1355 w	1354 w	1351 vw	Düzlem içi CH bükülmesi
1413 m	1426 m	1385 vw	1425 m	Düzlem içi halka gerilmesi CH bükülmesi
1493 w	1505 m	1492 vw	1505 m	Düzlem içi halka gerilmesi
1557 m	1560 m	1558 w	1556 m	Düzlem içi halka gerilmesi
1594 vs	1610 vs	1614 vs	1610 vs	Düzlem içi halka gerilmesi
1892 vw	1891 vw	1892 vw	1870 vw	Düzlem içi halka gerilmesi
3023 w	3020 vw	3021 vw	3031 vw	Düzlem içi CHgerilmesi
3077 vw	3083 vw	3086 vw	3071 vw	antisimetrik CH gerilmesi

Çizelge 7.9. Trans 1,2- bis(4-piridil)etilen molekülünün Ni(bpe₁)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

7.2. Trans 1,2- Bis(4-Piridil)Etilen Maddesinin Teorik Hesaplama Sonuçları

7.2.1. Geometrik parametrelerin hesaplanması ve sonuçları

Trans 1,2-bis(4-piridil)etilen molekülü 24 atomdan oluşur. Bunlar, 12 karbon, 10 hidrojen ve 2 azot atomudur.

Şekil 7.1. Trans 1,2- bis(4-piridil)etilen molekülünün yapısı ve numaralandırılması

Bu çalışmada öncelikle trans 1,2- bis(4-piridil)etilen molekülünün, Şekil 7.1'de verilen moleküler yapısı bilgisayarda Gaussview[2] programı ile çizilmiştir. Bu şekilde de görüldüğü gibi atomlar tek tek numaralandırılmış hesaplanan değerler bu numaralara göre tablolara yazılmıştır. Daha sonra, Gaussian 98[1] programı ile geometrik optimizasyon yapılarak en düşük enerjili hali bulunmuştur. Gene bu programın HF, DFT/BLYP, B3LYP, B3PW91 fonksiyonları ile geometrik yapı analizi yapılmıştır. Bağ uzunlukları ve bağ açıları hesaplanmıştır. Bu hesaplanan sonuçlar Çizelge 7.10'da verilmiştir.

Literatür çalışmasında, bu molekülün kristal verilerine rastlanmadığı için hesaplama sonucu elde edilen geometrik parametre değerleri, bu maddeye çok yakın olan $(bpe_1H_2)[MnF_4(H_2O)]_2$ molekülünün geometrik parametre (bağ açısı, bağ uzunluğu) değerleriyle[42], trans 1,2-bis(4-piridil)etilen molekülünün squarik asitle elde edilen kristalinin geometrik parametre (bağ açısı, bağ uzunluğu) değerleriyle [41], bis(1,2-di-4-pyridylethaneN,N')Cd tetracyanonickelate molekülünün geometrik parametre (bağ açısı, bağ uzunluğu) değerleriyle ve 1,2-bis(4-piridil)etan molekülünün geometrik parametre (bağ açısı, bağ uzunluğu) değerleriyle [49] karşılaştırılmıştır. Bu karşılaştırmalardan, deneysel geometrik parametre değerlerine en yakın değerlerin B3LYP ve B3PW91 ile hesaplanan geometrik parametre değerleri olduğu görülmüştür.

Tablolar incelendiğinde, en büyük bağ açısı $C_1-C_2-C_{17}$ ve $C_1-C_2-C_7$ numaralarıyla verilen karbon atomları arasındaki açıdır. B3LYP ile 126,66⁰, BLYP ile 126,92⁰ ve B3PW91 ile 126,65⁰ olarak hesaplanmıştır. N₂₀-C₁₅-H₂₁ N₁₀-C₅-H₁₁ ile verilen atomlar arasındaki açı ise hesaplanan en küçük açıdır. Gene B3LYP ile 115,81⁰, BLYP ile 115,63⁰ ve B3PW91 ile 115,82⁰ olarak hesaplanmıştır.

Bağ uzunluklarına bakıldığında, en uzun bağ uzunluğunun C_1 - C_7 atomları arasındaki bağ uzunluğu olduğu görülmüştür. Bu bağ uzunluğunun değeri B3LYP ile 1,468⁰A BLYP ile 1,464 ⁰A ve B3PW91 ile 1,460⁰A olarak hesaplanmıştır. C_6 - H_{12} ve C_{16} - H_{22} atomları arasındaki uzaklık ise en kısa bağ uzunluğudur. B3LYP ile 1,084⁰A BLYP ile 1,091 ⁰A ve B3PW91 ile 1,084⁰A olarak hesaplanmıştır.

Bağ Uzunlukları	X-RAY	HF/63 11G d FREQ	B3LYP/631 1Gd FREQ	BLYP/6311 Gd FREQ	B3PW91/631 1Gd FREQ
C1-C2	1,52 ^b	1,325	1,344	1,357	1,343
С1-Н3		1,075	1,087	1,094	1,088
C1-C7	1,495 ^b 1,465 ^c	1,476	1,464	1,468	1,460
С2-Н4		1,075	1,087	1,094	1,088
C2-C17	$1,496^{b}$ 1,509 ^a 1,470 ^d	1,476	1,464	1,468	1,460
C5-C6	1,378 ^b 1,371 ^c	1,379	1,388	1,397	1,386
C5-N10	1,329 ^b 1,332 ^c	1,322	1,338	1,352	1,335
a[41] b[46] c[47]	d[48]				

Çizelge 7.10. Trans 1,2-bis (4-pyridyl) ethylene için bağ uzunlukları (A°) ve bağ açıları (°)

⁶⁹

Bağ Uzunlukları	X-RAY	HF/63 11G d FREQ	B3LYP/63 11Gd FREQ	BLYP/631 1Gd FREQ	B3PW91/63 11Gd FREQ
C5-H11		1,076	1,087	1,094	1,088
C6-C7	1,375 ^b 1,397 ^c	1,393	1,404	1,416	1,401
C6-H12		1,073	1,084	1,091	1,084
C7-C8	1,378 ^b 1,388 ^c	1,388	1,402	1,414	1,400
C8-C9	1,341 ^b 1,367 ^c	1,385	1,391	1,400	1,389
C8-H13		1,074	1,085	1,093	1,086
C9-N10	1,343 ^b 1,335 ^c	1,316	1,334	1,348	1,33
C9-H14		1,076	1,087	1,094	1,088
C15-C16	1,38 ^b 1,383 ^a 1,369 ^d	1,379	1,388	1,397	1,386
C15-N20	$\begin{array}{c} 1,318^{b} & 1,317^{a} \\ 1,340^{d} \end{array}$	1,322	1,338	1,352	1,335
C15-H21		1,076	1,087	1,094	1,088
C16-C17	1,37 ^b 1,373 ^a 1,400 ^d	1,393	1,404	1,416	1,401
C16-H22		1,073	1,084	1,091	1,084
C17-C18	$1,372^{b}$ $1,382^{a}$ $1,394^{d}$	1,388	1,402	1,414	1,400
C18-C19	${ \begin{array}{c} 1,352^b & 1,364^a \\ 1,378^d \end{array} }$	1,385	1,391	1,400	1,389
С18-Н23		1,074	1,085	1,093	1,086
C19-N20	1,321 ^b 1,323 ^a 1,342 ^d	1,316	1,334	1,348	1,332
С19-Н24		1,076	1,087	1,094	1,088

Çizelge 7.10. (Devam) Trans 1,2-bis (4-pyridyl) ethylene için bağ uzunlukları (A[°]) ve bağ açıları ([°])

a[41] b[46] c[47] d[48]

	X-RAY	HF/6- 311G(d) Freq	BLYP/6- 311G(d) Freq	B3LYP/6- 311G(d) Freq	B3PW91 6- 311G(d) Freq
Bağ Açıları					
C1-C2-H3		119,42	118,76	118,94	118,94
C2-C1-C7		126,35	126,92	126,66	126,66
H3-C1-C7		114,22	114,31	114,38	114,38
C1-C2-H4		119,42	118,76	118,94	118,95
C1-C2-C17	125,34 ^d	126,34	126,92	126,66	126,65
H4-C2-C17		114,22	114,31	114,38	114,38
C6-C5-N10	124,1 ^b	124,11	124,36	124,19	124,20
C6-C5-H11		120	119,99	119,98	119,98
N10-C5-H11		116	115,63	115,81	115,82
C5-C6-C7	120,3 ^b 118,5 ^a	119,06	119,50	119,40	119,41
C5-C6-H12		119,07	119,18	119,17	119,18
C7-C6-H12		121,85	121,30	121,41	121,42
C1-C7-C6	124,9 ^b	124,29	124,46	124,32	124,32
C1-C7-C8	120,0 ^b	119,07	119,43	119,39	119,39
C6-C7-C8	115,1 ^b	116,62	116,10	116,28	116,28
C7-C8-C9	212,5 ^b	119,44	119,88	119,77	119,80
C7-C8-H13		120,87	120,26	120,39	120,40
C9-C8-H13		119,68	119,84	119,82	119,83
C8-C9-N10	124,3 ^b	123,72	123,96	123,81	123,81
C8-C9-H14		120,00	120,17	120,15	120,15
N10-C9-H14		116,27	115,85	116,02	116,03
C5-N10-C9	114,7 ^b	117,02	116,16	116,52	116,53
C16-C15-N20	${ \begin{array}{c} 122,7^b & 124,5^a \\ 120,71^d \end{array} }$	124,11	124,36	124,19	124,20
C16-C15-H21		120	119,99	119,98	119,98
N20-C15-H21		116	115,63	115,81	115,82
C15-C16-C17	${121,2^b 119,2^a \\ 119,41^d}$	119,06	119,50	119,40	119,41
C15-C16-H22		119,07	119,18	119,17	119,18
C17-C16-H22		121,85	121,30	121,41	121,42
C2-C17-C16	121,4 ^b 121,0 ^a 122,51 ^d	124,29	124,46	124,32	124,32
C2-C17-C18	124,0 ^b 121,0 ^a 119,34 ^d	119,07	119,43	119,39	119,40
C16-C17-C18	${114,5^{b} \ 116,7^{a} \ 118,14^{d}}$	116,62	116,10	116,28	116,28
C17-C18-C19	121,6 ^b 119,3 ^a 120,27 ^d	119,45	119,88	119,77	119,20
C17-C18-H23		120,87	120,26	120,39	120,40
C19-C18-H23		120	119,84	119,82	119,83
C18-C19-N20	123,7 ^b 121,0 ^a 119,52 ^d	123,72	123,96	123,81	123,82
С18-С19-Н24		120	120,17	120,15	120,16
N20-C19-CH24		116,27	115,85	116,02	116,03
C15-N20-C19	${{116,2^b}\atop{121,94^d}}{115,3^a}$	117,02	116,16	116,52	116,52

Çizelge 7.10. (Devam) Trans 1,2-bis (4-pyridyl) ethylene için bağ uzunlukları (A°) ve bağ açıları (°)

a[41] b[46] c[47] d[48]

7.2.2. Titreşim frekansı değerlerinin hesaplanması ve sonuçları

Trans 1,2-bis(4-piridil)etilen molekülünün titreşim frekans değerleri de Gaussian 98[1] programının HF,DFT/BLYP, B3LYP,B3PW91 fonksiyonlarının 6-311G* temel seti ile hesaplanmıştır. HF, DFT/BLYP, B3LYP ve B3PW91 ile elde edilen değerler sırasıyla 0,9044,0,9663,0,9975 ve 0,9627 ile çarpılmıştır. Sonuçlar Çizelge 7.11'de verilmiştir.

Teorik olarak hesaplanan değerler, serbest haldeki trans 1,2-bis(4-piridil)etilen molekülünün deneysel titreşim frekans değerleriyle karşılaştırılmıştır. Bu molekülün infrared spektrumu Şekil 7.2'de verilmiştir. Bu spektrum Gazi Üniversitesi Kimya Bölümü'nde bulunan 4000-400 cm⁻¹ aralığındaki Mattson 1000 F-TIR spektrometre ile çekilmiştir. Frekanslar polystyrene bantlarla düzeltilmiştir. Ayrıca hesaplanan titreşim frekanslarından infrared aktif olan değerler, W.Yang'ın çalışmasındaki sonuçlarla [42] ve Raman aktif değerler de, M.K.Nazeeruddin'in çalışmasındaki sonuçlarla [43] karşılaştırılmış ve Çizelge 7.11'de deneysel sonuç olarak yazılmıştır.

Bu molekül C_{2h} nokta grubunda olduğu için E, C_2, σ_h ve i simetri elemanları vardır. i simetri elemanı olmasından dolayı Ramanda gözlenen titreşim frekansları infraredde gözlenemez. İnfrared titreşim modları A_u , B_u ve Raman aktif titreşim modları A_g , B_g ile isimlendirilir.

Trans 1,2-bis(4-piridil)etilen molekülü 24 atomdan oluşur. 66 tane normal titreşim modu vardır. 23 tanesi A_g simetrisinde, 22 tanesi B_u simetrisinde, 10 tanesi B_g simetrisinde ve 11 tanesi A_u simetrisindedir. A_u ve B_u simetrisinde olanlar infrared aktif, A_g ve B_g simetrisinde olanlar ise Raman aktiftir.

Şekil 7.2. Trans 1,2- bis(4-piridil)etilen Molekülünün IR spektrumu (KBr)

Bu molekül için hesaplamalar C_{2h} simetrisinde yapıldığında, negatif titreşim frekans değerleriyle karşılaşılmıştır. Bu da hesaplanan minimum enerji düzeyinin gerçek minimum enerji düzeyi olmadığını gösterir. Fakat simetrisi C_s olacak şekilde düşürüldüğünde tüm titreşim frekans değerlerinin pozitif olduğu görülmüştür.

Hesaplanan sonuçların tümü Çizelge 7.11'de verilmiştir. Bu çizelgede, her titreşim frekansı, kolaylık sağlamak amacıyla, bir sayı ile gösterilmiştir. Sonuçlar incelendiğinde B3LYP ile hesaplanan titreşim frekans değerlerinin deneysel değerlerle daha uyumlu olduğu görülmektedir. Özellikle 5A_u 550 cm⁻¹, 12B_u 1298 cm⁻¹ infrared ve 5Ag 874 cm⁻¹Raman titreşim frekans değerlerinde bu uyum çok iyi gözlenmektedir. 5Au düzlem dışı C-H ve C-N gerilmesi, 12 Bu ve 5Ag düzlem içi halka gerilmesi ve C-H bükülmesi olarak işaretlenmiştir. En güçlü pikler olan 5Bu 723 cm⁻¹ ve $6B_u$ 728 cm⁻¹için HF sonuçları deney sonucuna daha uyumlu görünmektedir, fakat bu uyum diğer piklerde yoktur. Ayrıca B3LYP için 6Au 734 cm⁻¹, 4Bu 664 cm⁻¹ modlarında da çok iyi uyum gözlenmektedir. Bu modların titreşim frekansının deneysel değerleri 737 cm⁻¹, 668 cm⁻¹'dir. Bu modlardan, 6Au düzlem dışı C-H gerilmesi, 4Bu düzlem içi halka bozulması olarak işaretlenmiştir. Hesaplanan titreşim frekans değerleriyle deneysel değerler arasındaki en büyük fark 8Bu ve 13Bu modunda görülmüştür. 8Bu modunun deneysel değeri 1096 cm⁻¹ iken B3LYP ile hesaplanan değer 1077 cm⁻¹, BLYP ile hesaplanan değer 1077 cm⁻¹, B3PW91 ile hesaplanan 1075 cm⁻¹ olarak hesaplanmıştır. Bu mod düzlem içi halka gerilmesi ve C-H bükülmesi olarak işaretlenmiştir. 13Bu modunun deneysel değeri 1358 cm⁻¹ iken B3LYP ile 1339 cm⁻¹, BLYP ile 1346 cm⁻¹, B3PW91 ile 1329 cm⁻¹ olarak hesaplanmıştır. Bu da deney ile teorik hesaplamanın uyumsuzluğu olarak açıklanabilir. Çünkü Gaussview ve Gaussian98 programlarındaki molekül için giriş değerleri gaz fazındaki değerlerdir. Deneysel değerler ise molekülün katı fazında alınmıştır. Bu da az da olsa uyumsuzluğa neden olmaktadır.

Her titreşim frekansının işaretlemeleri tabloda gösterilmiştir. Burada en güçlü pik olan 17 B_u 1594 cm⁻¹ düzlem içi halka gerilmesi olarak işaretlenmiştir. Ayrıca, infrared aktif olan titreşim frekanslarından en güçlü pikler olan 550 cm⁻¹ titreşim frekansının düzlem dışı C-H ve düzlem dışı C-N gerilmesi, 983 cm⁻¹ titreşim frekansının düzlem dışı C-H gerilmesi, 982 cm⁻¹ titreşim frekansının düzlem içi halka gerilmesi ve C-H bükülmesi ve 825 cm⁻¹ titreşim frekansının düzlem içi halka bozulması olarak işaretlenmiştir. Bu işaretlemeler piridin ve piridin türevleri ile yapılan çalışmalardaki işaretlemeler göz önüne alınarak yapılmıştır.

Trans 1,2-bis(4-piridil)etilen molekülünün titreşim frekanslarından 650-800 cm⁻¹ civarında dört tanesi düzlem dışı C-H gerilmesi olarak işaretlenmiştir. Bunlar $6A_u$ 737 cm⁻¹, $8A_u$ 870 cm⁻¹, $9A_u$ 903 cm⁻¹, $11A_u$ 983 cm⁻¹ titreşim frekanslarıdır. Güçlü bir pik olan $3B_u$ 531cm⁻¹ ise düzlem içi C-C sallanması olarak işaretlenmiştir. $3A_g$ 640cm⁻¹, $4A_g$ 669cm⁻¹ düzlem içi halka bozulması, $6A_g$ 995cm⁻¹ düzlem içi nefes alma, 18 A_g 1641cm⁻¹ C-C gerilmesi olarak işaretlenmiştir. Gene güçlü bir pik olan 976 cm⁻¹ düzlem dışı CH gerilmesi olarak işaretlenmiştir.

Trans 1,2-bis(4-piridil)etilen molekülünün titreşim frekanslarından 3000 cm⁻¹ civarında altı tanesi düzlem içi C-H gerilmesi olarak işaretlenmiştir. Bunlar 18 Bu 2959cm⁻¹, 19B_u 3023 cm⁻¹, 20B_u 3077 cm⁻¹, 21A_g 3047 cm⁻¹(B3LYP ile hesaplanan), 22A_g 3070 cm⁻¹(B3LYP ile hesaplanan), 23A_g 3083 cm⁻¹(B3LYP ile hesaplanan) titreşim frekanslarıdır.

Güçlü bir pik olan $3B_u 531 \text{ cm}^{-1}$ ise düzlem içi C-C sallanması olarak işaretlenmiştir. $3A_g 640 \text{ cm}^{-1}$, $4A_g 669 \text{ cm}^{-1}$ düzlem içi halka bozulması, $6A_g 995 \text{ cm}^{-1}$ düzlem içi nefes alma, $18 A_g 1641 \text{ cm}^{-1}$ C-C gerilmesi olarak işaretlenmiştir.

İnfraredde aktif olan titreşim frekanslarının, deneysel değerleri ile teorik hesaplama sonucu elde edilen değerlerini karşılaştırmak için korelasyon grafikleri çizilmiştir Bu grafikler Şekil 7.3, Şekil 7.4'de verilmiştir. Bu grafiklerden de anlaşılacağı gibi, B3LYP ile hesaplanan titreşim frekans değerleri ile deneysel titreşim frekans değerleri daha uyumludur. Bunu da B3LYP için çizilen korelasyon grafiğinde korelasyon katsayısının 1'e daha yakın olmasından anlıyoruz.

Ramanda aktif olan titreşim frekanslarına baktığımızda, en uyumlu değerlerin B3LYP ile hesaplanan değerler olduğu görülmektedir. $6A_g$ 995cm⁻¹, $9A_g$ 1114 cm⁻¹,

 $11A_g 1230 \text{ cm}^{-1}$, $8B_g 866 \text{ cm}^{-1}$ en güçlü pikler olarak hesaplanmıştır. $6A_g$ düzlem içi halka nefes alma, $9A_g$ ve $11A_g$ düzlem içi halka gerilmesi, $8B_g$ düzlem dışı C-H bükülmesi olarak işaretlenmiştir.

Genel olarak; nA_g titreşim frekansı, nB_u ile ve nA_u titreşim frekansı, (n-1) B_g titreşim frekansı ile ikili oluşturur. Çizelge 7.11 incelendiğinde $4B_u 424 \text{ cm}^{-1}$ ve $4A_g 669 \text{ cm}^{-1}$, $6B_u 982 \text{ cm}^{-1}$ ve $6A_g 995 \text{ cm}^{-1}$, $4A_u 550 \text{ cm}^{-1}$ ve $3B_g 396 \text{ cm}^{-1}$ titreşim frekanslarının ikili oluşturdukları görülmektedir. $4B_u$ ve $4A_g$ ve $6B_u$ ve $6A_g$ düzlem içi halka titreşimi, $4A_u$ ve $3B_g$ düzlem dışı halka titreşimi olarak işaretlenmiştir.

Trans 1,2-bis(4-piridil)etilen molekülünün Gaussview programı ile çizilen ve Gaussian 98 programı ile hesaplanan temel titreşim şekillerinden üç tanesi Şekil 7.5'de verilmiştir. Bu şekiller ile titreşim frekanslarının bu çalışmada yapılan işaretlemeleri birbirine çok yakındır. Bu yüzden bu titreşim şekillerinin gerçek titreşim şekillerine çok benzediği düşünülmektedir.

Örneğin, B3LYP ile 820 cm⁻¹ olarak hesaplanan mod serbest ligandın 825 cm⁻¹ titreşim frekansına denk gelmektedir ve düzlem içi halka bozulması olarak işaretlenmiştir. Şekil 7.5.a 'da da şekil halka bozulmasıdır. B3LYP ile 1077 cm⁻¹ olarak hesaplanan mod serbest ligandın 1096cm⁻¹ titreşim frekansına denk gelmektedir ve halka gerilmesi ve CH bükülmesi olarak işaretlenmiştir. Şekil 7.5.b 'de de görüldüğü gibi şekil halka gerilmesi olarak elde edilmiştir. B3LYP ile 1541 cm⁻¹ olarak hesaplanan mod serbest ligandın 1527 cm⁻¹ titreşim frekans düzlem içi halka gerilmesi olarak işaretlenmiştir. Şekil 7.5.c 'de de aynıdır.

0.02 1.39 4.53 0.03 50.13 0.01 77.02 2.02 4.85 6.49.70 5.0.13 1.91 2.99 37.52 1.07	6 56 276 374 734 841 966 841 961 967 74	0.02 1.36 4.25 0.05 34.38 2.22 57.36 1.46 6.12 0.02 32.02	9 56 272 366 545 730 801 835 929 949 961	0.02 136 425 005 3438 222 5736 146 6.13 0.02 3201	-15 56 273 369 544 732 803 839 936 960 962	0.02 134 4.60 0.05 40.79 1.67 65.76 1.76 8.05 039 36.96		424v // 550vs 737v // 870v // 903vv//	555 742 837 863	Diziem dia haka biikilme Diziem dia haka gerilmesi Diziem dia haka gerilme Diziem dia haka gerilme Diziem dia CH+CN gerilmesi Diziem dia CH-gerilmesi Diziem dia CH gerilmesi Diziem dia CH gerilmesi Diziem dia CH gerilmesi
0.02 1.39 4.53 0.03 50.13 0.01 77.02 2.02 4.85 6.49.70 5.0.13 1.91 2.99 37.52 1.07	6 56 374 547 734 806 841 938 961 967 74	0.02 1.36 4.25 0.05 34.38 2.22 57.36 1.46 6.12 0.02 32.02 1.77	9 56 272 366 545 730 801 835 929 949 961 74	0 02 1 36 4 25 0 05 34 38 2 22 57 36 1 46 6 .13 0 02 3 201	-15 56 273 369 544 732 803 839 936 960 962	0 02 1 34 4 60 0 05 4 0.79 1 67 6 5.76 1 76 8 05 0 39 3 6 96		424w 550vs 737w 870w 903vw	555 742 837 863	Diziken day haka bibidine Diziken day haka gerilmesi Diziken day haka gerilme Diziken day haka gerilme Diziken day CH+CN gerilmesi Diziken day CH-gerilmesi Diziken day CH-gerilmesi Diziken day CH-gerilmesi Diziken day CH-gerilmesi
1.39 4.53 0.03 50.13 0.01 77.02 2.02 4.85 6 49.70 5 0.13 1.91 2.99 37.52 1.07	56 276 374 547 734 806 841 938 961 967 74 457	1.36 4.25 0.05 34.38 2.22 57.36 1.46 6.12 0.02 32.02	56 272 366 545 730 801 835 929 949 961 74	136 425 005 3438 222 5736 146 6.13 0.02 3201	56 273 369 544 732 803 839 936 960 962	134 4.60 0.05 40.79 1.67 65.76 1.76 8.05 039 36.96		424w 550vs 737w 870w 903vw	555 742 837 863	Dizizen daylaha gerimesi Dizizen daylaha gerime Dizizen daylaha gerime Dizizen daylaha gerimesi Dizizen day CHgerimesi Dizizen day CHgerimesi Dizizen day CHgerimesi Dizizen day CHgerimesi
4.53 0.03 50.13 0.01 77.02 2.02 4.85 6 49.70 5 0.13 1.91 2.99 37.52 1.07	276 374 547 734 806 841 938 961 967 74 457	4.25 0.05 34.38 2.22 57.36 1.46 6.12 0.02 32.02	272 366 545 730 801 835 929 949 961	4 25 0 05 34 38 2 22 57 36 1 46 6 .13 0 02 3 201	273 369 544 732 803 839 936 960 962	4,60 0.05 40.79 1,67 65.76 1,76 8.05 0.39 36.96		424w 550vs 737w 870w 903vw	5555 742 837 863	Dizikan dapi haka gerina Dizikan dapi haka gerina Dizikan dapi CH+CN gerinasi Dizikan dapi CH gerinasi Dizikan dapi CH gerinasi Dizikan dapi CH gerinasi Dizikan dapi CH gerinasi
0.03 50.13 0.01 77.02 2.02 4.85 6 49.70 5 0.13 1.91 2.99 37.52 1.07	374 547 734 806 841 938 961 967 74 457	0.05 34 38 2.22 57 36 1.46 6.12 0.02 32.02	366 545 730 801 835 929 949 961	0.05 34.38 2.22 57.36 1.46 6.13 0.02 32.01	369 544 732 803 839 936 960 962	0.05 40.79 1.67 65.76 1.76 8.05 0.39 36.96		424v 7 550vs 737v 7 870v 7 903vv 7	555 742 837 863	Diziem dapilaka geriime Diziem dapi CH+CN geriinesi Diziem dapi CH geriinesi Diziem dapi CH geriinesi Diziem dapi CH geriinesi Diziem dapi CH geriinesi
50.13 0.01 77.02 2.02 4.85 8 49.70 5 0.13 1.91 2.99 37.52 1.07	547 734 806 841 938 961 967 74 457	34 38 2.22 57 36 1.46 6.12 0.02 32.02	545 730 801 835 929 949 961	3438 222 5736 146 6.13 0.02 3201	544 732 803 839 936 960 962	40.79 1.67 65.76 1.76 8.05 0.39 36.96		550vs 737vr 870vr 903vvr	555 742 837 863	Dizken dışı CHRCM gərilmesi Dizken dışı CHgerilmesi Dizken dışı CHgerilmesi Dizken dışı CHgerilmesi Dizken dışı CHgerilmesi
0.01 77.02 2.02 4.85 5 49.70 5 0.13 1.91 2.99 37.52 1.07	734 806 841 938 961 967 74 457	2.22 57.36 1.46 6.12 0.02 32.02	730 801 835 929 949 961	2 22 57 36 1 46 6 13 0 02 3 2 01	732 803 839 936 960 962	167 6576 176 805 039 3696		737\ w 870\ w 903\v\w	742 837 863	Dizlem dışı CHgerilmesi Dizlem dışı CHgerilmesi Dizlem dışı CHgerilmesi Dizlem dışı CHgerilmesi
77.02 2.02 4.85 6 49.70 5 0.13 1.91 2.99 37.52 1.07	806 841 938 961 967 74 457	57 36 1.46 6.12 0.02 32.02	801 835 929 949 961 74	5736 146 6.13 0.02 3201	803 839 936 960 962	6576 176 805 039 3696		870w 903ww	837 863	Düzlem dışı CHgerilmesi Düzlem dışı CHgerilmesi Düzlem dışı CHgerilmesi
2.02 4.85 6 49.70 5 0.13 1.91 2.99 37.52 1.07	841 938 961 967 74 457	1.46 6.12 0.02 32.02	835 929 949 961 74	1 46 6 13 0 02 3 2 0 1	839 936 960 962	1.76 8.05 0.39 36.96		870w 903ww	863	Dizlem dışı CHgerilnesi Düzlem dışı CHgerilnesi
4.85 3 49.70 5 0.13 1.91 2.99 37.52 1.07	938 961 967 74 457	6.12 0.02 32.02	929 949 961 74	6.13 0.02 32.01	936 960 962	8.05 0.39 36.96		903007		Düzlen dışı CHgerilnesi
49.70 0.13 1.91 2.99 37.52 1.07	961 967 74 457	0.02 32.02 1.77	949 961 74	0.02 32.01	960 962	039 3696		097 ***		
5 0.13 1.91 2.99 37.52 1.07	967 74 457	32.02	961 74	32.01	962	3696		002 ***		Düzlem dışı CHgerilmesi
1.91 2.99 37 52 1.07	74 457	1.77	74					305 VS	991	Düzlem dışı CHgerilmesi
1.91 2.99 37.52 1.07	74 457	1.77	74							
2.99 37 52 1.07	457		67	1.67	71	1.81				
37.52 1.07	<i></i>	1.91	461	1.61	4.52	1.71		468w	471	Düzlem içi halça sallarma
1.07	520	38.96	529	39.45	521	3939		531s	535	Düzlemiri CC sallarma
	664	1.36	666	131	658	1.42		668w	678	Düzlen içi haka bozulması
21.94	820	21 30	822	21.29	821	20.85		82.5vs	821	Düzlen iti halka bozulnası
18.81	977	16.66	972	1732	975	14.68		98 2vs	983	Düzlem iri halka gerilmesi CHbübülmesi
17.59	1058	2.02	1056	0.99	1057	3.76		1070w		Düzlem içi haka nefes alma
3.15	1077	0.66	1077	0.70	1075	0.38		109.6vr		Düzlem iri kalka gerilmesi CHbükülmesi
2.02	1196	2.00	1203	4.45	1 195	1.65		1201		Düzlem iri CHbükülmesi
5.35	1210	5.59	1215	4 92	1213	8 3 5		1220w	1221	Düzlem içi halka gerilmesi CHbükülmesi
3 16.71	1239	10.40	1242	9.24	1249	7.87		124 3w	1238	Düzlem içi halka gerilmesi CHbübülmesi
5.22	1288	2.84	1290	1.63	1292	2.87		129800	1300	Düzlem iri halka gerilmesi CHbübülmesi
3.42	1339	3.00	1346	3.08	1329	3.20		1358vw	1348	Düzlem içi CHbübülmesi
) 57.87	1406	41.50	1405	36.44	1403	4190		1413m	14 10	Düzlem içi halka gerilmesi CHbükülmesi
5 31.74	1484	11 30	1477	6.62	1484	13.14		1493w	1496	Düzlen iti halka gerilmesi
3 73.19	1541	37.01	1518	28.85	1550	38.46		1527w	1550	Düzlen çi haka gerilmesi
364.61	1584	230.12	1566	202.11	1592	23293		159 4ws	1593	Düzlem içi halka gerilmesi
3 4 3 23	3043	64 37	3052	71.71	3040	63.23		29 59 00		Düzlem içi CHgerilmesi
86.90	3046	75.02	3055	84.45	3043	68.48		3023w		Düzlen içi CHgerilnesi
5 13.55	3049	6.18	3059	10.81	3046	7.85		3077007		Düzlem içi CHgerilmesi
L 59.57	3070	49.65	3080	62.64	3069	13.19				Düzlem içi CHgerilmesi
36.47	3083	30.79	3094	3997	3082	2637				Düzlen içi CHgerilnesi
	10 81 17 59 3.15 2.02 5.35 16.71 5.22 57.87 31.74 31.74 31.74 34.23 36.461 3.55 59.57 36.47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Çizelge 7.11. Trans 1,2 bis (4-pridil) etilen molekülünün teorik ve deneysel titreşim frekans değrlerinin

77

		HF* / 6-311 G(d) Freq.	$\boldsymbol{I}_{\mathrm{ref}}$	B3LYP"/ 6-311 G(d) Freq.	I.a.	BLYP"/ 6-311 G(d) Freq.	$\mathbf{I}_{\mathrm{flux}}$	B3PW9 ⁴ / 6-311 G(d) Freq.	$\mathbf{I}_{2,n}$	Exp. Ra	Exp.Ra ³	İşaretleme
Ag(Ra)												
	1	195	2.99	195	3.75	197	3.74	193	334			Düzem içi halka sallarma
	2	276	1.16	277	2.74	279	2.74	27.5	1.84			Düzlem içi halka sallarma
	3	631	3.18	631	5.51	634	5.52	625	437		640	Düzkın içi haka bozulması
	4	664	17.79	661	20.96	663	21.0	656	19.68		669	Düzlem içi halka bozulması
	5	856	18.74	864	20.46	866	20.46	862	25.90		874	Düzlen içi haka gerilmesi CH bildilmesi
	6	985	148 71	977	352.74	971	352.74	976	228.07		995	Diztem iri balka nefes alma
	7	1056	72 00	1058	17 32	1055	17 32	10.56	1.52			Dürkm ici kalka gerilmeci CH
	,	1050	12.00	1050	17.54	1000	17 24	1050	101			bikilmesi
	8	1067	19.80	1080	5.94	1079	5.94	1077	4.44			Düzlem içi halka gerilmesi
	9	1114	59.77	1178	1176.2	1179	1176.29	1181	977.23			Düzlem içi halka gerilmesi CH
	10	1101	640.40	1010	10550	1011	10 5 50	10.07	07.70		1104	bühülmesi Dürke dalarlar meile di CII
	10	1191	540.42	1210	10559	1211	105.59	1207	27.70		1194	bükülnesi
	11	1219	40.92	1238	243.71	1243	243.71	1260	206.10		1230	Düzlen içi halka gerilmesi
	12	1323	57.66	11309	91.14	1314	91.14	1298	71.76		1316	Düzlen içi CHbükülmesi
	13	1347	208.74	1329	54635	1332	54635	1320	307.07		1348	Düzlem içi halka gerilmesi CH
	14	1414	45.59	1401	94.45	1404	94.45	1399	78.96		14 18	bükülmesi Düzlem içi halka gerilmesi CH
												bükülmesi
	15	1509	60.94	1477	94 29	1471	94 29	1476	122.72		1491	Dizlem içi halka gerilmesi
	16	1579	90.96	1533	270.45	1509	270.45	1543	206.24		15.50	Duziem içi halka gerilmesi
	17	1630	609.89	1580	27 12.25	1558	271225	1587	2809.81		1600	Duziem içi halka gerilmesi
	18	1688	2391.4	1639	24 10.09	1621	24 10.09	1643	74.61		1641	Düzlen içiC1C2 gerilmesi
	19	3018	95.57	3040	71.75	3049	71.75	3038	1971.91			Simetrik CH gerilmesi
	20	3019	256	3043	399.14	3052	399.14	3040	327.59			Düzlem içi CHgerilmesi
	21	3025	122	3047	29837	3056	29837	3044	254.08			Düzlem içi CHgerilmesi
	22	3041	254.2	3070	285.82	3080	285.82	3069	243.55			Düzlem içi CHgerilmesi
	23	3059	184.04	3083	194.78	3094	194.78	3082	162.51			Düzlem içi CHgerilmesi
3g(Ra)		24		~	o. e.e.		0.043	40				
	1	-30	0.42	51	0.00	02	0.741	48	020			Dizien dişi naka gerimesi
	2	203	5.15	203	2.28	203	2.28	201	2.83			CH hikilmaci
	3	396	0.01	375	0.01	367	0.01	370	0.01			Düzlem dışı halka bübülmesi
	4	492	1.78	478	1.96	477	1.96	474	1.69		488	Düzlem dışı CHue CN
												bükülmesi
	5	728	0.08	720	1.38	7 17	1.39	717	80.0		723	Düzlem dışı CHbükülmesi
	6	804	2.21	776	1.08	770	1.08	772	1.02			Düzlem dışı CHbükülmesi
	7	856	3.94	837	5.70	831	5.70	835	4.44		887	Düzlem dışı CHbükülmesi
	8	866	41.22	874	13.27	864	13.27	870	17.96			Düzlem dışı CHbükülmesi
	9	909	7.22	944	5.76	935	5.76	942	4,88			Düzlem dışı CHbükülmesi
	10	984	0.92	962	1.17	949	1.17	960	099			Düzlem dışı CHbükülmesi

Çizelge 7.11.(Devam) Trans 1,2 bis (4-pridil) etilen molekülünün teorik ve deneysel titreşim frekans değrlerinin karşılaştırılması

(a)

Şekil 7.3. Trans 1,2-bis(4-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) HF6311 b)B3LYP6311

(a)

Şekil 7.4. Trans 1,2-bis(4-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) BLYP6311 b)B3PW916311

Şekil 7.5. Trans 1,2-bis(4-piridil)etilen molekülünün temel titreşim şekilleri a)820 cm⁻¹(B3LYP) b)1077 cm⁻¹(B3LYP) c) 1541 cm⁻¹(B3LYP)

7.3. 1,2-Bis(2-Piridil)Etilen Molekülünün Deneysel Çalışma Sonuçları

Bu çalışmada, 1,2- bis(2-piridil)etilen(bpe₂) molekülünün Co(bpe₂)Cl₂, Cu (bpe₂)Cl₂, Cu(bpe₂)I₂, Zn (bpe₂)Cl₂, Zn (bpe₂)Br₂, Zn (bpe₂)I₂, Cd(bpe₂)I₂, Cd(bpe₂)I₂, Hg(bpe₂)Cl₂, Hg(bpe₂)Br₂, Hg(bpe₂)I₂, olmak üzere 13 tane metal halojen bileşiği elde edilmiştir.

Bileşik oluşturmak için, diğer liganda da olduğu gibi, 1mmol metal halojen 10 ml etil alkol içinde çözünmüştür. Bu çözeltiye etil alkolde çözünmüş 2mmol ligand eklenmiştir. Karışımlar magnetik karıştırıcılar yardımı ile oda sıcaklığında beş gün karıştırılmıştır. Oluşan bileşikler filtre kağıdı yardımı ile süzülmüş ve eter ile yıkanarak kurumaya bırakılmıştır. Kuruyan bileşiklerin infrared spektrumları Gazi Üniversitesi Kimya Bölümü'nde bulunan 4000-400 cm⁻¹ aralığındaki polystyrene bantlarla kalibre edilmiş Mattson 1000 F-TIR spektrometresi ile çekilmiştir. Bu spektrumlar EK.2'de verilmiştir.

Daha sonra bazı bileşiklerin C,H ve N analizleri Tübitak'da Leco CHN-600 model analizör kullanılarak yapılmıştır. Kimyasal analiz sonuçları ile örneklerin bileşik yapısı belirlenmiştir. Sonuçlar Çizelge 7.12'de verilmiştir. Örneğin, analiz sonuçlarına göre ZnCl₂, ZnBr₂, Znl₂, CoCl₂ metal tuzları ile bir tane ligand molekülü bağlanmıştır. Bu molekülün de, çalışmadaki diğer molekül gibi, metal halojen bileşiklerinin tetrahedral yapıda olduğu düşünülmektedir.

1,2 bis(2-piridil)etilen molekülünün de metal halojen bileşiklerinin herhangi biri üzerinde x-ışınları tek kristal çalışmaları yapılmamıştır. Ayrıca bu bileşiklerle ilgili magnetik doygunluk ve elektronik spektroskopi çalışması yoktur.

Kinolin [50] ve piridin[51]ile yapılan metal halojen bileşiklerinin olabilecek yapıları x-ışını tek kristal, elektronik spektroskopi ve magnetik doygunluk çalışmalarıyla saptanmıştır. Bu bileşiklerden MCl₂(kinolin)₂ (M=Co,Zn) bileşiklerinin tetrahedral yapıda olduğu bulunmuştur[50]. CoCl₂(kinolin)₂ bileşiğinin renginin mavi olması da tetrahedral yapıyı kanıtlar. Bu çalışmada da elde edilen Co(bpe₂)Cl₂ bileşiğinin rengi

de mavidir. Bu yüzden, elde edilen $Co(bpe_2)Cl_2$ bileşiğinin de tetrahedral yapıda olduğu düşünülmektedir. Elde edilen diğer bileşiklerden $Cd(bpe_2)Cl_2$, $Cd(bpe_2)Br_2$ ve $Cd(bpe_2)I_2$ bileşiklerinin infrared spektrumunda gözlenen band yapıları $Co(bpe_1)Cl_2$ bileşiğinin yapısına benzemektedir. Bu nedenle bu bileşiklerin de tetrahedral olduğu düşünülmektedir.

Bunun yanı sıra, $(ns^2np^6(n-1)d^{10})$ yapısındaki Zn^{+2} gibi iyonlar ve kristal alan kararlılık enerjisinin düşük olması nedeniyle başka geometriye yatkınlığı olmayan Co^{+2} gibi iyonlar tetrahedral (dört yüzlü) yapıyı tercih eder. Tetrahedral yapı kare düzleme göre daha simetrik ve bağ açılarının daha büyük olduğu bir yapıdır. Bu yüzden Cl^- , Br^- ve I^- gibi büyük moleküller olduğunda tetrahedral yapı tercih edilir[10].

	TEO	RİK HESAPLA	АМА	ANALİZ SONUCU			
	% C	% H	% N	% C	% H	% N	
Zn(bpe ₂)Cl ₂	45,24	3,16	8,80	44,70	3,02	8,42	
Zn(bpe ₂)Br ₂	35,37	2,47	6,87	34,55	2,08	6,01	
Zn (bpe ₂) I ₂	28,74	2,04	5,58	27,02	1,98	5,20	
Co(bpe ₂)Cl ₂	46,18	3,22	8,97	44,84	2,53	9,25	

Çizelge 7.12. 1,2-bis(2-piridil)etilen molekülünün bazı metal halojen bileşiklerinin analiz sonuçları

Bu molekül ile yapılan çalışmada da bileşiklerin titreşim frekans değeri serbest ligandın titreşim frekans değerleriyle karşılaştırılmıştır. Bu karşılaştırmalar, Çizelge 7.13-Çizelge 7.16'da verilmiştir. Bu karşılaştırmalar incelendiğinde; oluşan bileşiklerin titreşim frekans değerlerinin, serbest ligandın deneysel titreşim frekans değerlerine göre biraz kaydığı gözlenmiştir. Kayma değerleri bileşiklerin kimyasal yapısına, metale bağlılığına ve halojenlerine göre değişmektedir.

1,2-bis(2-piridil)etilen molekülünde en çok kayma 1582cm⁻¹ pikinde yukarı yönde ve 1467cm⁻¹ pikinde aşağı yönde olmuştur. Kaymaların miktarlarının bazıları, çizelgelerde her bileşiğin sütunu altında verilmiştir. Bu molekülün bileşiklerinin titreşim frekans değerlerindeki kayma miktarları da Cl>Br>I sırasıyla azalmaktadır. Oluşan bileşiklerin titreşim frekansları serbest ligandla karşılaştırılarak işaretlenmiştir. Buna göre, en güçlü pik olan 1582 cm⁻¹ düzlem içi halka gerilmesi, 1467 cm⁻¹ düzlem içi halka gerilmesi ve C-N bükülmesi olarak işaretlenmiştir.

Bu molekül ile yapılan çalışmada da bileşiklerin IR spektrumlarının band yapıları karşılaştırılmış ve aynı metalin değişik halojenlerinin birbirine benzer yapı gösterdiği anlaşılmıştır. Buna göre Zn (bpe₂)Cl₂, Zn (bpe₂)Br₂ ve Zn (bpe₂)I₂ benzer yapıda, Cu (bpe₂)Cl₂, Cu(bpe₂)Br₂ ve Cu(bpe₂)I₂ benzer yapıda, , Hg(bpe₂)Cl₂, Hg(bpe₂)Br₂ ve Hg(bpe₂)I₂ benzer yapıda, Cd(bpe₂)Cl₂, Cd(bpe₂)Br₂ ve Cd(bpe₂)I₂ benzer yapıdadır. Yapılan karşılaştırmalardan Co (bpe₂)Cl₂'ün, Cd(bpe₂)Cl₂, Cd(bpe₂)I₂ ile aynı yapıda olduğu görülmüştür.

Çizelge 7.13. 1,2-bis(2-piridil)etilen Molekülünün Zn(bpe₂)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

1,2 bis (2- piridil)etilen (KBr)	ZnCl ₂ L ₁	ZnBr ₂ L ₁	ZnI ₂ L ₁	İşaretleme
3063w		3063vw	3075vw	Düzlem içi CH gerilmesi
3000w	2972vw	2978vw	2974vw	Düzlem içi CH gerilmesi
2970w				
2924m				Düzlem içi CH gerilmesi
1637m	1638vw	1638w	1638vw	Düzlem içi CH gerilmesi
1619m	1620vw	1618w	1618vw	Düzlem içiHalka gerilmesi
1582vs	1604vs	1600s	1601s	Düzlem içi Halka gerilmesi
1563s	1563m	1560m	1563m	Düzlem içi Halka gerilmesi CH bükülmesi

1,2 bis (2- piridil)etilen (KBr)	$ZnCl_2L_1$	$ZnBr_2L_1$	ZnI_2L_1	İşaretleme
1467s	1485vs	1483vs	1485vs	Düzlem içi Halka gerilmesi CN bükülmesi
1434s	1437s	1441m	1442s	Düzlem içi Halka gerilmesi CH bükülmesi
1387w	1386vw	1386w	1386vw	Düzlem içi Halka gerilmesi CC gerilmesi
1320m	1338m	1333w	1335w	Düzlem içi Halka gerilmesi CH bükülmesi
1294w	1285w	1283w	1284w	Düzlem içi Halka gerilmesi CH bükülmesi
1272vw	1256w	1254vw	1254vw	Düzlem içi CH bükülmesi
1232w	1223m	1223w	1221m	Düzlem içi Halka gerilmesi CH bükülmesi
1196vw	1197vw	1192vw	1199vw	Düzlem içi CH bükülmesi
1179w	1162m		1166m	Düzlem içi CH bükülmesi
1143m				Düzlem içi halka bozulma
1087m	1097m	1096w	1100w	Düzlem içi CH bükülmesi
1048w	1066m	1065w	1065w	Düzlem içi Halka gerilmesi CH bükülmesi
1014vw	1022m	1019m	1019m	Düzlem dışı CH bükülmesi
977s	974w	976vw	970w	Düzlem dışı CH bükülmesi
915vw	915vw		915vw	Düzlem dışı CH bükülmesi
887w	877w	877vw	950w	Düzlem dışı CH bükülmesi
836w	830vw	829w	830w	Düzlem içi Halka gerilmesi CC gerilmesi
790vs	783vs	786s	782s	Düzlem dışı CH bükülmesi
743s	750m	746m	750m	Düzlem dışı CH bükülmesi
624w	622vw	621vw	622vw	Düzlem içi halka bonefes alma
563m	577w	576vw	575vw	Düzlem içi CC sallanma
530m	535m	535m	533m	Düzlem halka bükülmesi
482m	476vw	476vw	478vw	Düzlem dışı CH bükülmesi
446vw	438vw	438vw	441vw	Düzlem dışı CH bükülmesi
431vw	420m	416m	420w	Düzlem dışı CH bükülmesi
405w	405vw	404vw	407vw	Düzlem dışı CH bükülmesi
	27	25	23	

Çizelge 7.13.(Devam) 1,2-bis(2-piridil)etilen Molekülünün Zn(bpe₂)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

1,2 bis (2- piridil)etilen (KBr)	CuCl ₂ L ₂	CuBr ₂ L ₂	CuI ₂ L ₂	İşaretleme
3063w	3071w	3081w		Düzlem içi CH gerilmesi
3059w	3058w	3063w	3053vw	Düzlem içi CH gerilmesi
3031vw	3031vw	3034w	3034w	
3000w	3012w	3013w	2923w	Düzlem içi CH gerilmesi
1637m	1636vw	1637vw	1638w	Düzlem içi CH gerilmesi
1619m	1617vw	1619vw	1620w	Düzlem içiHalka gerilmesi
1582vs	1595m	1596m	1598m	Düzlem içi Halka gerilmesi
1563s	1564m	1565m	1561m	Düzlem içi Halka gerilmesi CH bükülmesi
1467s	1476vs	1476vs	1479vs	Düzlem içi Halka gerilmesi CN bükülmesi
1434s	1432m	1432m	1434s	Düzlem içi Halka gerilmesi CH bükülmesi
1387w	1385w	1385w	1385w	Düzlem içi Halka gerilmesi CC gerilmesi
1320m	1320w	1320w	1329w	Düzlem içi Halka gerilmesi CH bükülmesi
1294w				Düzlem içi Halka gerilmesi CH bükülmesi
1272vw	1279w	1277w	1280vw	Düzlem içi CH bükülmesi
1232w	1250w	1251w	1255vw	Düzlem içi Halka gerilmesi CH bükülmesi
1196vw	1206m	1207m	1187vw	Düzlem içi CH bükülmesi
1179w				Düzlem içi CH bükülmesi
1143m	1158m	1158m	1158m	Düzlem içi halka bozulma
1087m	1097m	1096m	1095w	Düzlem içi CH bükülmesi
1048w	1060w	1060w	1061w	Düzlem içi Halka gerilmesi CH bükülmesi
1014vw	1029w	1029w	1011w	Düzlem dışı CH bükülmesi
977s	968w	970w	992w	Düzlem dışı CH bükülmesi
915vw	930w	937m	897vw	Düzlem dışı CH bükülmesi
887w	878w	881w	878vw	Düzlem dışı CH bükülmesi
836w	812vw	833w	827w	Düzlem içi Halka gerilmesi CC gerilmesi
790vs	787vs	788vs	776m	Düzlem dışı CH bükülmesi
743s	750m	752m	742m	Düzlem dışı CH bükülmesi
601vw	603vw	605vw	605vw	Düzlem içi halka bonefes alma
563m	578w	579w	580vw	Düzlem içi CC sallanma
530m	530m	531m	532w	Düzlem halka bükülmesi
482m	484w	484w	483vw	Düzlem dışı CH bükülmesi
446vw	441w	445w	441vw	Düzlem dışı CH bükülmesi
431vw	419w	419w	418w	Düzlem dışı CH bükülmesi
405w	407 vw	403w	404vw	Düzlem dışı CH bükülmesi

Çizelge 7.14. 1,2-bis(2-piridil)etilen Molekülünün Cu(bpe₂)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

1,2 bis (2- piridil)etilen (KBr)	$HgCl_2L_1$	$HgBr_2L_1$	HgI_2L_1	İşaretleme	
3063w	3084vw	3077vw	3074vw	Düzlem içi CH gerilmesi	
3059w	3061vw	3054vw	3060vw	Düzlem içi CH gerilmesi	
3031vw	3030vw		3032vw		
3000w	2997vw	3012vw	3002vw	Düzlem içi CH gerilmesi	
2971	2987vw	2982vw	2953vw	Düzlem içi CH gerilmesi	
2925	2927vw	2931vw		Düzlem içiHalka gerilmesi	
2853	2856vw			Düzlem içi Halka gerilmesi	
1637m	1637m	1638m	1638m	Düzlem içi Halka gerilmesi CH bükülmesi	
1619m	1620m	1618m	1618m	Düzlem içi Halka gerilmesi CN bükülmesi	
1582vs	1594s	1593s	1593s	Düzlem içi Halka gerilmesi CH bükülmesi	
1563s	1564s	1563m	1561s	Düzlem içi Halka gerilmesi CC gerilmesi	
1467s	1480vs	1478vs	1477vs	Düzlem içi Halka gerilmesi CH bükülmesi	
1434s	1434s	1435s	1433s	Düzlem içi Halka gerilmesi CH bükülmesi	
1387w	1385vw	1385vw	1386vw	Düzlem içi CH bükülmesi	
1320m		1328w	1326w	Düzlem içi Halka gerilmesi CH bükülmesi	
1294w	1277vw	1293vw	1297vw	Düzlem içi CH bükülmesi	
1272vw	1264vw	1279w	1277vw	Düzlem içi CH bükülmesi	
1232w	1218w	1257w	1257vw	Düzlem içi halka bozulma	
1196vw	1201vw	1186vw	1185vw	Düzlem içi CH bükülmesi	
1179w	1156w	1158m	1159m	Düzlem içi Halka gerilmesi CH bükülmesi	
1143m	1133vw	1128vw	1128vw	Düzlem dışı CH bükülmesi	
1087m	1091vw	1092m	1093vw	Düzlem dışı CH bükülmesi	
1048w	1059vw	1059vw	1056w	Düzlem dışı CH bükülmesi	
1014vw	997m	1006m	1007m	Düzlem dışı CH bükülmesi	
977s	963s	962s	959s	Düzlem içi Halka gerilmesi CC gerilmesi	
915vw	908vw	915vw	916vw	Düzlem dışı CH bükülmesi	
887w	889vw	867vw	883vw	Düzlem dışı CH bükülmesi	
836w	837vw	835w	848vw	Düzlem içi halka bonefes alma	
790vs	779vs	780vs	778vs	Düzlem içi CC sallanma	
743s	739s	740s	740s	Düzlem halka bükülmesi	
624w	631w	626w	625w	Düzlem dışı CH bükülmesi	
601vw	598vw	597vw	604vw	Düzlem dışı CH bükülmesi	
563m	576vw	576vw	576vw	Düzlem dışı CH bükülmesi	
530m	534m	533m	533m	Düzlem dışı CH bükülmesi	
482m	488m	493m	494m	Düzlem dışı CH bükülmesi	
446vw	445vw	445vw	446vw	Düzlem dışı CH bükülmesi	
431vw	434vw	428w	427w	Düzlem dışı CH bükülmesi	
405w	405w	405w	419w	Düzlem dışı CH bükülmesi	

Çizelge 7.15. 1,2-bis(2-piridil)etilen Molekülünün Hg(bpe₂)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

1,2 bis (2- piridil)etilen	CdCl ₂ L ₄	CdBr ₂ L ₄	CdI2L1	Col2L1	İsaretleme
(KBr)			0 0-2-1		-3
3063w	3086vw	3065vw		3079vw	Düzlem içi CH gerilmesi
3059w	3068vw			3052w	Düzlem içi CH gerilmesi
3031vw			3041vw	3024vw	
3000w		2967vw		2984vw	Düzlem içi CH gerilmesi
2971		2871vw		2959vw	Düzlem içi CH gerilmesi
2925					Düzlem içiHalka gerilmesi
2853					Düzlem içi Halka gerilmesi
1637m	1637vw	1637w	1650vw	1637vw	Düzlem içi Halka gerilmesi CH bükülmesi
1619m	1600s	1618w	1598s	1617vw	Düzlem içi Halka gerilmesi CN bükülmesi
1582vs				1602vs	Düzlem içi Halka gerilmesi CH bükülmesi
1563s		1563s	1560s	1563s	Düzlem içi Halka gerilmesi CC gerilmesi
1467s	1488vs	1486vs	1476vs	1485vs	Düzlem içi Halka gerilmesi CH bükülmesi
1434s	1439s	1437s	1435vs	1443s	Düzlem içi Halka gerilmesi CH bükülmesi
1387w	1385w	1385w	1387w	1385m	Düzlem içi CH bükülmesi
1320m	1343m	1339m	1331m	1339m	Düzlem içi Halka gerilmesi CH bükülmesi
1294w	1284w	1281vw	1278vw	1289vw	Düzlem içi CH bükülmesi
1272vw	1265vw	1261vw	1255m	1255vw	Düzlem içi CH bükülmesi
1232w	1224w	1220w	1214m		Düzlem içi halka bozulma
1196vw			1187vw	1201vw	Düzlem içi CH bükülmesi
1179w					Düzlem içi Halka gerilmesi CH bükülmesi
1143m	1159m	1158m	1158s	1167m	Düzlem dışı CH bükülmesi
1087m	1093w	1093w	1191m	1101w	Düzlem dışı CH bükülmesi
1048w	1067w	1066w	1062m	1064w	Düzlem dışı CH bükülmesi
1014vw			1013s	1024m	Düzlem dışı CH bükülmesi
977s	953s	1002s	938m	975m	Düzlem içi Halka gerilmesi CC gerilmesi
915vw	833vw	907vw		915vw	Düzlem dışı CH bükülmesi
887w		881vw	881vw		Düzlem dışı CH bükülmesi
836w		831vw	835vw	831vw	Düzlem içi halka bonefes alma
790vs	779vs	779vs	778vs	783vs	Düzlem içi CC sallanma
743s	742s	741s	742s	753m	Düzlem halka bükülmesi
624w	637w	636w	639w	622vw	Düzlem dışı CH bükülmesi
601vw	603vw	598vw		604vw	Düzlem dışı CH bükülmesi
563m	577vw	593vw	572vw	578vw	Düzlem dışı CH bükülmesi
530m	535m	536m	530m	535m	Düzlem dışı CH bükülmesi
482m	498m	494m	495m	470vw	Düzlem dışı CH bükülmesi
446vw		445vw		445vw	Düzlem dışı CH bükülmesi
431vw	423m	420m		422vw	Düzlem dışı CH bükülmesi
405w			409m	409vw	Düzlem dışı CH bükülmesi

Çizelge 7.16. 1,2-bis(2-piridil)etilen Molekülünün Cd(bpe₂)X₂ ve Co(bpe₂)X₂ [X=Cl,Br,I] metal halojen bileşiklerinin titreşim frekansları(cm⁻¹)

7.4. 1,2- Bis(2-Piridil)Etilen Molekülünün Teorik Hesaplama Sonuçları

7.4.1. Geometrik parametrelerin hesaplanması ve sonuçları

1,2-bis(2-piridil)etilen 24 atomdan oluşur. 12 Karbon, 10 hidrojen ve 2 azot atomu vardır. İlk olarak molekülün, moleküler yapısı bilgisayarda Gaussview[2] programı ile çizilmiştir.

Şekil 7.6. 1,2- Bis(2-Piridil)Etilen molekülünün yapısı ve numaralandırılması

1,2- bis(2-piridil)etilen molekülünün yapısı Şekil 7.6'da verilmiştir. Bu şekilde de görüldüğü gibi atomlar tek tek numaralandırılmış hesaplanan değerler bu numaralara göre tablolara yazılmıştır. Daha sonra, Gaussian 98[1] programı ile geometrik optimizasyon yapılarak en düşük enerjili hali bulunmuştur. Gene bu programın HF, DFT/BLYP, B3LYP, B3PW91 fonksiyonları ile geometrik yapı analizi yapılmıştır. Bağ uzunlukları ve bağ açıları hesaplanmıştır. Bu hesaplanan sonuçlar Çizelge 7.17'de verilmiştir.

Literatür çalışmasında bu molekülün kristal verilerine rastlanmamıştır. Bu yüzden, bu çalışmada hesaplanan değerler, Zaman tarafından squarik asitle elde edilen kristalinin geometrik parametre (bağ açısı, bağ uzunluğu) değerleri ile ayrıca (bpe₂H₂)[MnF₄(H₂O)]₂ molekülün X-ışınları ile elde edilen geometrik parametre değerleriyle, bis(1,2-di-4-pyiridiletanN,N')Cd tetracyanonickelate molekülünün geometrik parametre değerleriyle ve 1,2-bis(4-piridil)etan molekülünün hesaplanan geometrik parametre değerleriyle karşılaştırılmıştır. Bu karşılaştırmalardan B3LYP

ve B3PW91 ile hesaplanan değerlerin, deneysel değerlerle çok uyumlu olduğu görülmüştür.

Tablolar incelendiğinde, en büyük bağ açısı C_1 - C_2 - C_{16} ve C_1 - C_2 - C_7 numaralarıyla verilen karbon atomları arasındaki açıdır. B3LYP ile 126,85⁰, BLYP ile 127,09⁰ ve B3PW91 ile 126,77⁰ olarak hesaplanmıştır. N₈-C₉-H₁₃ ve N₁₇-C₁₈-H₂₂ ile verilen atomlar arasındaki açı ise hesaplanan en küçük açıdır. Gene B3LYP ile 115,72°, BLYP ile 115,56⁰ ve B3PW91 ile 115,68⁰ olarak hesaplanmıştır.

Bağ uzunluklarına bakıldığında, en uzun bağ uzunluğunun C_1 - C_7 ve C_2 - C_{16} atomları arasındaki bağ uzunluğu olduğu görülmüştür. Bu bağ uzunluğunun değeri B3LYP ile 1,466[°]A, BLYP ile 1,470 [°]A ve B3PW91 ile 1,462[°]A olarak hesaplanmıştır. C₆- H₁₂ ve C15-H21 atomları arasındaki uzaklık ise en kısa bağ uzunluğudur. B3LYP ile 1,083⁰A, BLYP ile 1,091 ⁰A ve B3PW91 ile 1,084⁰A olarak hesaplanmıştır.

Bağ		HF/63	B3LYP/	BLYP/6	B3PW91/
Uzunluğ	X-ışınları	11G d	6311Gd	311Gd	6311Gd
u		FREQ	FREQ	FREQ	FREQ
C1-C2	1,320 ^b	1,325	1,343	1,356	1,342
C1-H3		1,074	1,086	1,093	1,087
C1-C7	1,495 ^b 1,465 ^c	1,478	1,466	1,470	1,462
C2-H4		1,074	1,086	1,093	1,087
C2-C16	1,496 ^b 1,509 ^a	1,478	1,466	1,470	1,462
	1,470 ^b				
C5-C6	1,378 ^b 1,371 ^c	1,378	1,386	1,396	1,384
C5-C10	1,378 ^b 1,388 ^c	1,385	1,383	1,403	1,391
C5-H11		1,075	1,085	1,092	1,086
C6-C7	1,375 ^b 1,397 ^c	1,394	1,405	1,416	1,402
C6-H12		1,072	1,083	1,091	1,084
C7-N8	1,329 ^b 1,332 ^c	1,324	1,348	1,364	1,344
N8-C9	1,343 ^b 1,335 ^c	1,319	1,332	1,344	1,329
C9-C10	1,369 ^d	1,381	1,392	1,402	1,390
C9-H13		1,076	1,087	1,095	1,088
C10-H23		1,074	1,084	1,091	1,085
C14-C15	1,341 ^b 1,367 ^c	1,377	1,386	1,396	1,384
	1,383 ^a				
C14-C19	1,372 ^b 1,394 ^d	1,385	1,393	1,403	1,391
o[46] b[47] o	[49] d[41]				

Çizelge 7.17. 1,2-bis(2-piridil)etilen molekülünün bağ uzunlukları (A^o) ve bağ açıları (°)

a[46] b[47] c[48] d[41]

		HF/6-	BLYP/6-	B3LYP/6-	B3PW91
	X-ışınları	311G(d)	311G(d)	311G(d)	6-
					311G(d)
Bağ Açıları					
C14-H20		1,075	1,085	1,092	1,086
C15-C16	1,373 ^a 1,400 ^b	1,394	1,405	1,416	1,402
C15-H21		1,072	1,083	1,091	1,084
C16-N17	1,340 ^d	1,324	1,348	1,364	1,344
N17-C18	1,342 ^d	1,319	1,332	1,344	1,329
C18-C19	1.352 ^b 1.378 ^d	1,381	1,392	1,402	1,390
C18-H22		1,076	1,087	1,095	1,088
C19-H24		1,074	1,084	1,091	1,085
C1-C2-H3		121,08	120,66	120,81	120,85
C2-C1-C7		126,55	127,09	126,85	126,77
H3-C1-C7		112,37	112,24	112,33	112,37
C1-C2-H4		121,08	120,66	120,81	120,85
C1-C2-C16	125,34 ^d	126,55	127,09	126,85	126,77
H4-C2-C16		112,37	112,24	112,33	112,37
C6-C5-C10		119,18	119,07	119,06	119,04
C6-C5-H11		120,19	120,26	120,26	120,27
C10-C5-		120,63	120,67	120,38	120,69
H11					
C5-C6-C7		118,83	119,34	119,22	119,16
C5-C6-H12		120,27	120,17	120,24	120,26
C7-C6-H12		120,89	120,49	120,53	120,57
C1-C7-C6	124,9 ^b	123,76	123,95	123,78	123,72
C1-C7-N8		114,49	117,52	114,64	114,58
C6-C7-N8		121,74	121,52	121,57	121,69
C7-N8-C9		118,98	118,14	118,44	118,35
N8-C9-C10		123,63	123,99	123,82	123,89
N8-C9-H13		115,88	115,56	115,72	115,68
C10-C9-		120,48	120,44	120,45	120,43
H13			115.00	115.00	118.04
C5-C10-		117,62	117,92	117,89	117,86
H23		101.66	121.46	121.51	121.51
H23		121,00	121,40	121,31	121,31
C15-C14-		120.70	120.61	120.59	120.62
C19		120,70	120,01	120,00	120,02
C15-C14-	124,5 ^a 120,71 ^d	119,18	119,07	119,06	119,04
H20					
C19-C14-	119,2 ^a	120,18	120,26	120,26	120,27
H20					

Çizelge 7.17. (Devam) 1,2-bis(2-piridil)etilen molekülünün bağ uzunlukları (A°) ve bağ açıları (°)

a[46] b[47] c[48] d[41]

C14-C15-		120,63	120,66	120,67	120,69
C16					
C15-C16-	119,41 ^d	118,83	119,34	119,22	119,16
N17					
C14-C15-		120,27	120,17	120,24	120,26
H21					
C16-C15-		120,89	120,49	120,53	120,57
H21					
C2-C16-	122,51 ^b 121,0 ^a	123,76	123,95	123,78	123,72
C15	119,34 ^d				
C2-C16-	118,14 ^d	114,49	114,52	114,65	114,58
N17					
C15-C16-	122,51 ^d	121,74	121,52	121,57	121,69
N17					
C16-N17-	120,27 ^d	118,98	118,14	118,44	118,34
C18					
N17-C18-		123,63	123,99	123,82	123,89
C19					
N17-C18-		115,88	115,56	115,73	115,68
H22					
C19-C18-	119,52 ^d	120,48	120,44	120,45	120,43
H22					
C14-C19-		117,62	117,93	117,89	117,86
C18					
C14-C19-		121,66	121,46	121,51	121,51
H24					
C18-C19-	121,94 ^d	120,70	120,61	120,59	120,62
H24					

Çizelge 7.17. (Devam) 1,2-bis(2-piridil)etilen molekülünün bağ uzunlukları (A°) ve bağ açıları (°)

a[46] b[47] c[48] d[41]

7.4.2. Titreşim frekans değerlerinin hesaplanması ve sonuçları

1,2-bis(2-piridil)etilen molekülünün titreşim frekans değerleri de Gasuusian 98[1] programının HF,DFT/BLYP, B3LYP,B3PW91 fonksiyonlarının 6-311G* temel seti ile hesaplanmıştır. Sonuçlar Çizelge 7.18'de verilmiştir.

Hesaplanan değerler, serbest haldeki 1,2-bis(2-piridil)etilen molekülünün deneysel titreşim frekans değerleriyle karşılaştırılmıştır. Bu molekülün Şekil 7.7'de verilen infrared spektrumu Gazi Üniversitesi Kimya Bölümü'nde çekilmiştir. 1,2-bis(2-piridil)etilen 24 atomdan oluştuğu için 66 tane normal titreşim modu vardır. 23 tanesi

 A_g simetrisinde, 22 tanesi B_u simetrisinde, 10 tanesi B_g simetrisinde ve 11 tanesi A_u simetrisindedir.

1,2-bis(2-piridil)etilen molekülü C_{2h} nokta grubundadır ve E, C_2,σ_h ve i simetri elemanı vardır. i simetrisi olduğu için infraredde gözlenen titreşim frekansları Ramanda gözlenemez. Sonuçlar incelendiğinde, BLYP, B3LYP, B3PW91 fonksiyonlarının 6-311G* temel seti ile yapılan hesaplamalarda elde edilen değerlerin deneysel değerlere çok yakın olduğu görülmüştür.

Bu sonuçlarda, 3000 cm⁻¹ civarında 10 tane düzlem içi C-H gerilmesi gözlenmektedir. Bunlardan 5 tanesi A_g 'de ve diğer 5 tanesi de B_u 'da gözlenmektedir. Çizelge 7.18 incelendiğinde, $7A_g$ 890 cm⁻¹ ile $7B_u$ 1047 cm⁻¹, $8A_g$ 1064 cm⁻¹ ile 8 B_u 1087 cm⁻¹, $15A_g$ 1480 cm⁻¹ ile $15B_u$ 1468 cm⁻¹ ve $16A_g$ 1594 cm⁻¹ ile $16B_u$ 1562 cm⁻¹ titreşim frekanslarının çok yakın olduğu ve bu titreşim frekanslarının ikili oluşturdukları görülmüştür[45]. Hepsi düzlem içi titreşim frekanslarının 890 cm⁻¹ ve 1047 cm⁻¹ halka gerilmesi ve C-H bükülmesi , 1064 cm⁻¹ halka bükülmesi, 1087 cm⁻¹ ¹C-H bükülmesi, 1480 cm⁻¹ halka gerilmesi, 1468 cm⁻¹ halka gerilmesi ve C-H bükülmesi, 1594 cm⁻¹ halka gerilmesi, 1562 cm⁻¹ halka gerilmesi ve C-H bükülmesi olarak işaretlenmiştir. Aynı durum, $1B_g$ 50 cm⁻¹ ve $2A_u$ 59 cm⁻¹, $2 B_g$ 208 cm⁻¹ ve $3A_u$ 276 cm⁻¹, $7B_g$ 890 cm⁻¹ ve $8A_u$ 894 cm⁻¹, $9B_g$ 992 cm⁻¹ ve $9A_u$ 991 cm⁻¹ titreşim frekansları için de geçerlidir. Bunlar ise düzlem dışı titreşim frekanslarıdır. 50 cm⁻¹ ve 59 cm⁻¹ halka gerilmesi , 208 cm⁻¹ c-H bükülmesi, 894 cm⁻¹ C-H gerilmesi, 992 cm⁻¹C-H bükülmesi ve 991 cm⁻¹ C-H gerilmesi olarak işaretlenmiştir.

Çizelge 7.18'de infraredde aktif olan 790 cm⁻¹, 1468 cm⁻¹ ve 1582 cm⁻¹ titreşim frekanslarının en güçlü pikler olduğu görülür. 790 cm⁻¹ düzlem dışı CH gerilmesi ve halka gerilmesi, 1468 cm⁻¹ düzlem içi halka gerilmesi ve CH bükülmesi, 1582 cm⁻¹ düzlem içi halka gerilmesi olarak işaretlenmiştir.

Teorik hesaplama ile elde edilen değerleri deneysel değerlerle karşılaştırmak için, titreşim frekans değerlerinin infrared aktif modlarının korelasyon grafikleri Şekil 7.8
ve Şekil 7.9'da ki gibi çizildiğinde B3LYP ile hesaplanan değerlerin deneysel değerlerle daha uyumlu olduğu görülmüştür. Çünkü, B3LYP ile hesaplanan değerlerle çizilen grafikte korelasyon katsayısı 1'e en yakındır. Grafikler incelendiğinde, BLYP için çizilen grafiğin korelasyon katsayısı, B3LYP için çizilen grafiğin korelasyon katsayısı, B3LYP için çizilen grafiğin korelasyon katsayısı ile aynı görülmektedir. Fakat hesaplama sonuçları tek tek incelendiğinde B3LYP ile hesaplanan değerlerinin deneysel değerlere daha uyumlu olduğu anlaşılmaktadır.

Raman aktif sonuçlar incelendiğinde ise, 972cm⁻¹, 1201cm⁻¹,1573cm⁻¹, 1640cm⁻¹ ve 885cm⁻¹ titreşim frekansları en güçlü piklerdir. 972cm⁻¹ titreşim frekansı düzlem içi halka nefes alma, 1201cm⁻¹ titreşim frekansı düzlem içi halka gerilmesi ve C-C gerilmesi, 1573cm⁻¹ titreşim frekansı düzlem içi halka gerilmesi, 1640cm⁻¹ titreşim frekansı düzlem içi halka gerilmesi, 1640cm⁻¹ titreşim frekansı düzlem içi bilkülmesi olarak işaretlenmiştir.

1,2-bis(2-piridil)etilen molekülünün Gaussview programı ile çizilen ve Gaussian 98 programı ile hesaplanan temel titreşim şekillerinden üç tanesi Şekil 7.10'da verilmiştir. Bu şekiller ile titreşim frekanslarının bu çalışmada yapılan işaretlemeleri birbirine çok yakındır. Bu yüzden bu titreşim şekillerinin gerçek titreşim şekillerine çok benzediği düşünülmektedir.

Örneğin, B3LYP ile 1035 cm⁻¹ olarak hesaplanan mod serbest ligandın 1047 cm⁻¹ titreşim frekansına denk gelmektedir ve halka gerilmesi olarak işaretlenmiştir. Şekil 7.10 'da da titreşim halka gerilmesidir. B3LYP ile 1458 cm⁻¹ olarak hesaplanan mod serbest ligandın 1468cm⁻¹ titreşim frekansına denk gelmektedir ve halka gerilmesi ve CH bükülmesi olarak işaretlenmiştir. Şekil 7.10 'da da görüldüğü gibi şekil halka gerilmesi olarak elde edilmiştir. B3LYP ile 962 cm⁻¹ olarak hesaplanan mod serbest ligandın 976 cm⁻¹ titreşim frekans düzlem dışı CH gerilmesi olarak işaretlenmiştir. Şekil 7.10 'da da aynıdır.

Şekil 7.7. 1,2- bis(2-piridil)ethilen molekülünün IR spektrumu (KBr)

A.(IR) 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 4 5 10 11 11 12 13 14 15 10 11 11 11 12 13 10 11 11 12 13 10 11 11 11 11 12 13 14 15 10 11 11 11 11 12 13 14 15 10 11 11 11 11 12 13 14 15 10 11 11 11 11 11 12 13 14 15 10 11 11 11 11 12 13 14 15 15 16 10 11 11 12 13 14 15 15 10 11 11 12 13 14 15 15 15 15 15 15 15 15 15 15	12 59 276 416 545 798 894 991 1008 1020 79 460	2,67 3,24 0,83 7,79 20,22 43,79 81,D5 0,87 0,29 10,12 37,79 3,99	27 58 259 403 534 728 782 866 942 962 992	2 36 2 94 0 45 7 08 1 5 81 5 0 76 5 1 93 0 35 0 35 0 95 2 98 3 3 85	32 57 252 400 531 722 777 860 931 951 991	2 17 2 77 0 34 6 71 14 52 4 752 4 752 0 30 0 16 2 54 29 78	26 57 256 399 531 725 780 864 941 961 986	2,40 3,07 0,40 7,04 17,31 55,13 52,79 0,28 0,28 0,02 4,07 35,77	40.5vv 530m 743s 7900vs 887vv 915vv 976s 1014vv	Dünlen dışı halta bülöilme Dünlen dışı halta gerilme Dünlen dışı halta gerilme Dünlen dışı Chitaka gerilmesi Dünlen dışı Chitaka gerilmesi Dünlen dışı Chitaka gerilmesi Dünlen dışı Chitaka gerilmesi Dünlen dışı Chitakin esi Dünlen dışı Chitakin esi Dünlen dışı Chitakin esi Dünlen dışı Chitakin esi
1 2 3 4 5 6 7 8 9 10 11 11 8.(IR) 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 12 13 14 15	12 59 276 416 545 752 798 894 991 1008 1020 79 460	2,67 3,24 0,83 7,79 20,22 43,79 81,05 0,87 0,29 10,12 37,79 3,99	27 58 259 403 534 728 782 866 942 962 992	2 36 2 94 0 45 7 58 1 581 50 76 5 1 93 0 35 0 55 2 98 3 3 85	32 57 252 400 531 722 777 860 931 951 991	2 17 2 77 0 34 6 71 14 6 2 4 7 4 2 4 6 20 0 30 0 16 2 44 29 78	26 57 256 399 531 725 780 864 941 961 986	2,40 3,07 0,40 7,04 17,31 55,13 52,79 0,28 0,02 4,07 35,77	405w 530m 743s 790ws 887w 915w 976s 1014w	Dinken dan balka bilkilme Dinken dan balka gerilme Dinken dan balka gerilme Dinken dan balka gerilme Dinken dan CH stalka gerilmesi Dinken dan CH stalka gerilmesi Dinken dan CH stalka gerilmesi Dinken dan CH stalkasi Dinken dan CH stalkasi
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	59 276 416 545 752 798 894 991 1008 1020 79 460	3,24 0,83 7,79 20,22 43,79 81,05 0,87 0,29 10,12 37,79	58 259 403 534 728 782 866 942 962 992	294 045 1581 5076 5193 035 05 298 3385	57 252 400 531 722 777 860 931 951 991	2 77 0 34 6 71 1 4 62 4 7 42 4 620 0 30 0 30 0 30 0 30 0 30 0 30 0 30 0	57 256 399 531 725 780 864 941 961 986	3 p7 0 40 7 p4 17 31 55 13 52 79 0 28 0 p2 4 p7 3 577	405w 530m 743s 790ws 887w 915w 976s 1014w	Dizien dışı hakta gerilme Dizien dışı hakta gerilme Diziem dışı hakta gerilme Diziem dışı CH shaka gerilmesi Diziem dışı CH gerilmesi Diziem dışı CH gerilmesi Diziem dışı CH gerilmesi Diziem dışı CH gerilmesi Diziem dışı CH gerilmesi Diziem dışı CH gerilmesi
3 4 5 6 7 8 9 10 11 11 8.(DR) 1 2 3 4 5 6 7 8 9 10 11 12 13 8 9 10 11 12 13 14 15	276 416 545 752 798 894 991 1008 1020 79 460	0,83 7,79 20,22 43,79 81,05 0,87 0,29 10,12 37,79	259 403 534 782 866 942 962 992	0 45 7 £8 15 £1 50 £6 51 £9 0 £5 0 £5 2 £98 33 £5	252 400 531 722 777 860 931 951 991	0,34 6,71 14,62 47,42 46,20 0,30 0,30 0,16 2,64 29,78	256 399 531 725 780 864 941 961 986	0,40 7,04 17,31 55,13 52,79 0,28 0,02 4,07 35,77	405w 530m 743s 790w 887w 915w 976s 1014w	Dinken dan baka gerilme Dinken dan baka gerilme Dinken dan CH-thaka gerilmesi Dinken dan CH-thaka gerilmesi Dinken dan CH-gerilmesi Dinken dan CH-gerilmesi Dinken dan CH-gerilmesi Dinken dan CH-gerilmesi
4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	416 545 752 798 894 991 1008 1020 79 460	7,79 20,22 43,79 81,05 0,87 0,29 10,12 37,79 3,99	403 534 728 782 866 942 962 992	7 p8 15 p1 50 76 51 93 0 35 0 p5 2 98 33 p5	400 531 722 777 860 931 951 991	671 1462 4742 4620 030 016 244 2978	399 531 725 780 864 941 961 986	7 p4 1731 55,13 52,79 0,28 0,02 4 p7 35,77	40.5vv 530m 743s 790vs 887w 915vv 915vv 976s 1014vv	Dinken dan laka gerime Dinken dan CH shaka gerime Dinken dan CH shaka gerimesi Dinken dan CH shaka gerimesi Dinken dan CH gerimesi Dinken dan CH gerimesi Dinken dan CH gerimesi Dinken dan CH gerimesi
5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	545 752 798 894 991 1008 1020 79 460	20 22 43 79 81 05 0,87 0,29 10 12 37 79	534 728 782 866 942 962 992	15,21 50,76 51,93 0,35 0,05 2,98 33,25	531 722 777 860 931 951 991	1462 4742 4620 030 016 244 2978	531 725 780 864 941 961 986	1731 5513 5279 028 002 407 3577	530m 743s 790vs 887w 915w 976s 1014w	Dinken dan CH Halan gerilnesi Dinken dan CH Halan gerilnesi Dinken dan CH Halan gerilnesi Dinken dan CH gerilnesi Dinken dan CH gerilnesi Dinken dan CH gerilnesi Dinken dan CH gerilnesi
6 7 8 9 10 11 3 (IR) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	752 798 894 991 1008 1020 79 460	43 79 81 D5 0,87 0,29 10 12 37 79 3,99	728 782 866 942 962 992	50 <i>7</i> 6 5193 0 <i>35</i> 0 <i>05</i> 2 <i>9</i> 8 33 <i>85</i>	722 777 860 931 951 991	4742 4620 030 016 244 2978	725 780 864 941 961 986	55,13 52,79 0,28 0,02 4,07 35,77	743s 790ws 887w 915w 976s 1014w	Dinken dag Cityenin-si Dinken dag Cityenin-si Dinken dag Cityenin-si Dinken dag Cityenin-si Dinken dag Cityenin-si Dinken dag Cityenin-si Dinken dag Cityenin-si
6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	798 894 991 1008 1020 79 460	81 05 0,87 0,29 10 12 37 79	782 866 942 962 992	5193 035 055 298 3385	777 860 931 951 991	4620 030 016 2,44 2978	780 864 941 961 986	5279 028 002 407 3577	790vs 887w 915w 976s 1014w	Dizken das Cirkalia geninesi Dizken das Cirkalia geninesi Dizken das Cirkgeninesi Dizken das Cirgeninesi Dizken das Cirgeninesi
*(DR) 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5	894 991 1008 1020 79 460	0,87 0,29 10,12 37,79	866 942 962 992	035 0p5 298 3385	860 931 951 991	0,30 0,16 2,44 29,78	864 941 961 986	0 28 0 02 4 07 3 5 7 7	887w 915w 976s 1014w	Düzken dag CHgwilnesi Düzken dag CHgwilnesi Düzken dag CHgwilnesi Düzken dag CHgwilnesi
*(UR) 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	991 1008 1020 79 460	0,29 10,12 37,79	942 962 992	0 95 0 95 2 98 33 85	931 951 991	0,30 0,16 2,44 29,78	941 961 986	0 48 0 02 4 07 3 5 7 7	915w 976s 1014w	Diziem dan CHgerinesi Diziem dan CHgerinesi Diziem dan CHgerinesi Diziem dan CHgerinesi
9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1008 1020 79 460	10,12 37,79 3,09	962 962 992	298 33 <i>85</i>	931 951 991	2,44 29,78	961 986	4 D7 3 5 7 7	976s 1014w	Düzlen dışı CHgerilnesi Düzlen dışı CHgerilnesi Düzlen dışı CHgerilnesi
(IR) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1008 1020 79 460	3,09	902 992	33 <i>8</i> 5	991	2978	986	3577	1014w	Düzen dışı Crigennesi Düzen dışı Crigeninesi
11 (JER) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	79 460	3,99	992	5585	991	2978	986	3577	10140	Darziem das UH genines
3 (IR) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	79 460	3,99	22							a more site and an and and and
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	79 460	3,99	22							
2 3 4 5 6 7 8 9 10 11 12 13 14 15	460	242		3 27	77	2.95	75	3.28		Dürlem ici haka callanma
3 4 5 7 8 9 10 11 12 13 14 15	400	7 21	466	5.66	4.70	5 31	461	5.62	4000	Division ici C. C callannaci
5 6 7 8 9 10 11 12 13 14 15	564	20 11	565	21.57	567	2122	561	2254	567m	Diglam ici kalu mfaraha
5 6 7 8 9 10 11 12 13 14 15	621	\$ 26	621	4 29	624	4 10	615	4 17	604m	Digina ici haba handa an
6 7 8 9 10 11 12 13 14 15	021	0.12	020	4,00	0.24	0.16	010	0.02	024	Dislam isi 11 h
7 8 9 10 11 12 13 14 15	021	12 20	020	10.06	0.20	0,10	029	1042	0.50W	Dunini ili Hakagrimesive ucgrimesi.
8 9 10 11 12 13 14 15	984	15 79	975	10,25	971	2 21	972	10,97	1012-	Duziem içi Halka nefes alna
9 10 11 12 13 14 15	1050	0,54	1055	1 00	1055	1,21	1057	1 49	104/m	Dutien ift Haka grimesive CHoustines
10 11 12 13 14 15	1053	09 00	1075	10,10	1076	9 10	1073	11,24	108/m	Duziem içi CHbükümesi
10 11 12 13 14 15	1089	7,05	1142	13.93	1151	lipi	1137	11,41	114.5m	Duziem 171 Haka grimesive CHbukulnes
11 12 13 14 15	1179	1,15	1199	7 00	1 199	4 00	1199	9,59	11900	Duziem 151 Halka grilmesiwe CHbubilmesi
12 13 14 15	1240	1,13	1250	10,78	1257	1702	1256	10,80	12520	Duziem içi Haka grilmesive CHbikilmes:
13 14 15	1259	30,58	1266	1 06	1270	0,55	1281	3 47	1294w	Düzlem içi CHbikülnesive halka bikülnes
14	1324	0,99	1316	2 80	1322	4 08	1310	3 08	1319m	Düzlem içi CHbükülnesive CN grilnesi
15	1444	80 \$8	1424	50,17	1422	4673	1421	47,39	1434s	Düzlem içi Haka gerilmesi CH bikülmesi
	1490	146,63	1458	13407	1448	125,01	1458	138,68	1468vs	Düzlem içi Haka grilmesi CH bikülmesi
16	1597	123\$7	1557	54,54	1540	39,32	1564	5804	1562s	Düzlem içi Haka gerilmesi CH bikülmesi
17	1620	208,18	1579	118,23	1561	9568	1586	123,55	1582vs	Düzlem içi Halka grilnesi
18	3019	52,56	3040	7872	3048	91,58	3038	75,59	2924m	Düzlem içi C-H gerilnesi
19	3028	53 ,14	3063	32,27	3075	32,60	3061	33,30	2970w	Antisinetrik C-H gerinesi
20	3043	29 88	3068	10,79	3079	973	3065	5 \$ 3	3000m	Düzlem içi C-H gerlmesi
21 .		63 79	3084	51,10	3095	6134	3084	41,55	3063m	Düzlem içi C-H gerimesi

Çizelge 7.18. 1,2 bis (2-pridil) ethilen molekülünün teorik ve deneysel titreşim frekans değerlerinin karşılaştırılması

		HF 7 <u>6-311</u> G(d) Freq.	. $\mathbf{I}_{a_{22}}$	E3LVP [*] / 6-311 <u>G(d)</u> Freq.	\mathbf{I}_{Rm}	BLVP ^{*/} 6-311 G(d) Freq.	$\mathbf{I}_{a,n}$	B3PW91 ⁴ / 6-3 11 <u>G(d)</u> Freq.	I _{an}	Exp. Ra	Approxmode descriptions
A(Ra)											
/	1	198	1,50	198	095	199	1,15	196	1.08		Düzlem içi halka salların a
	2	290	0,76	294	0,85	294	1,33	293	0,00		Düzlem içi halka salların a
	3	612	9,90	612	11,68	614	13,89	605	1169		Dizka çilakabozrması
	4	662	11¢9	660	17,05	661	24 D2	654	15,48		Düzkm içi halka bozırması
	5	852	25,27	858	28,29	859	19,42	856	2974		Düzlem içi Halcarefes almave CH bildilmesi
	6	983	151,79	972	325,78	967	47135	970	275,65		Düzlem içi Halcanefes alma
	7	1034	5672	1032	71,86	1031	68,94	1033	8978		– Düzlem içi Halka gerilmesive CHbükülme
	8	1064	58,98	1082	22,03	1082	22,28	1080	23,48		Düzlem içi Halka bibülmesi
	9	1093	2,11	1143	38,36	1153	98 81	1138	4579		Düzlem içi Halka bükülmesive CH bükülmesi
	10	1187	146,06	1201	1176,10	1194	1370,00	1206	1147,27		– Düzlem içi Halca gerilmesive CC gerilmes
	11	1226	335,60	1263	17,53	1265	6371	1270	67,98		– Düzlem içi Halka gerilmesive CC gerilmes
	12	1295	55,13	1278	153,67	1280	426£4	1276	265,45		– Düzlem içi CHbükülmesi.ve CN gerilmesi
	13	1310	420,47	1293	58 <i>2</i> ,706	1297	809,23	1291	348,48		Düzlen içi CHbükülnesi haka gerilmesi
	14	1443	218,76	1420	612,49	1416	825£4	1417	592,06		Düzlem içi Halka gerilmesive CHbükülme
	15	1480	25¢1	1448	111,92	1440	134,32	1448	112,56		Düzlem içi Halka gerilmesi
	16	1594	11,45	1556	47,92	1539	96,44	1563	35,94		Düzlem içi Halka gerilmesi
	17	1621	1333,68	1573	2957,27	1554	34 27,34	1582	3041,47		Düzlem içi Halka gerilmesi
	18	1688	2406,32	1640	2803,35	1620	2680,00	1644	2879,85		Düzlem içi C1C2 gerilmesi
	19	3019	193,42	3041	326,13	3048	379 09	3038	315,01		Smetrik CH gerilinesi
	20	3028	231,04	3057	82,97	3068	72 µ4	3056	7201		Duziem și CHgenimesi.
	21	3040	1773	300.5	109,00	3077	201p5 22620	3003	170,48		Duziem și CHgerimesi
	44 32	2065	423,00	2004	202,04 410.00	2102	54366	2004	431,47 456 57		Dizem și CHarinesi
D (Day)	40	5005	100,09	5091	410,09	5105	J4200	3090	400,07		Dowen di custerniesi
Бака)	1	50	0.78	86	207	04	4 13	84	2.85		Diziem dat kalka serilmesi
	2	208	1295	212	913	212	7 92	209	8.85		Dizem da kakare (Hhibilmesi
	ž	415	0.97	403	146	400	1 76	300	142		Dixlem dişi halka bükülmesi
	4	478	001	463	002	459	0.03	458	001		Düzlem dışı CHve CN bilkülmesi
	Ś	736	0.04	723	018	718	0.33	720	017		Düzkm dısı CH bükülmesi
	6	764	0.72	743	217	740	3.13	739	1.62		Düzkım dısı CH bükülmesi
	7	890	676	864	282	858	2,50	861	3,35		Düzlem dışı CH bükülmesi
	8	913	44,30-	885	23,68	879	18 97	880	22,36		Düzlen dışı CH bükülmesi
	9	992	031	943	087	932	1,37	942	840		Düzlen dışı CH bükülmesi
	10	1011	297	963	161	952	1.42	963	1.65		Düzlem dışı CH bükülmesi

Çizelge 7.18. (Devam) 1,2 bis (2-piridil) ethilen molekülünün teorik ve deneysel titreşim frekans değerlerinin karşılaştırılması

97

(a)

(b)

Şekil 7.8. 1,2-bis(2-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a) HF6311 b)B3LYP6311

(a)

(b)

Şekil 7.9. 1,2-bis(2-piridil)etilen molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri a)BLYP6311 b)B3PW916311

Şekil 7.10. 1,2-bis(2-piridil)etilen molekülünün temel titreşim şekilleri a) 1035 cm⁻¹(B3LYP) b) 1458 cm⁻¹(B3LYP) c) 962 cm⁻¹(B3LYP)

KAYNAKLAR

- M.J. Frisch, G.W Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J.R. Cheeseman V.G Zakrzewski, J.A Montgomery, Jr. R.E Stratmann, J.C. Burant, S. Dapprich, J.M. Milliam, A.D. Daniels , K.N. Kudin, M.C. Strain ,O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Yong, J.L. Anders, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, "GAUSSIAN 98", Revision A.9, *Gaussian Inc.*, Pittsburgh PA, (1998).
- Frisch, A., Nielsen, A.B., Holder, A. J., "Gaussview users manual", *Gaussian Inc*, Pittsburgh, 1-85 (2000).
- 3. Woodward,L.A, "Introduction to the theory and molecular vibration spectroscopy", *Longman*, Oxford, 21-77 (1972).
- 4. Chang, R., "Basic principles of spectroscopy", *Mc Graw-Hill*, Newyork, 2-57 (1983).
- Whiffen ,D,H.,1971,"Spectroscopy, Second Edition", *Longman*, London, 3-61 (1971).
- 6. Nakamoto,K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.", *Wiley*, Newyork, 7-51 (1997).
- 7. BanwellC., "Fundamentals of Molecular Spectroscopy", 3rd edition, *McGrawHill*, London,60-81 (1983).
- 8. Cotton,F.A., "Chemical Aplications of Group Theory", 2nd edition. *Wiley*, London, 27-64 (1971).
- 9. Davies, M., "Infrared Spektroscopy and Molecular Structure", *Elsivier*, London, 57-88 (1963).
- 10. Tunalı, N.K., "Anorganik Kimya", *Gazi Üniversitesi Yayınları*, Ankara, 25-55 (1997).
- 11. Gans, P., "Vibrating Molecules", Chapman and Hall, London, 18-59(1971).
- 12. Atkins, P.W., "Quanta Oxford University", Calerenden Pres, Oxford, (1985).
- 13. Bransden, B.H., Joachim, C.J., "Physics of Atom and Molecules", *Longman*, London, 5-82 (1983).

- 14. Szymanski,H.A., Keiser,W.E., Alpert,N.L., "IR Theory and Practice of IR spectroscopy", *Plenum Pres*, NewYork, 67-88 (1970).
- 15. Wilson, E.B., Decius, J.C., Cross, P.C., "Molecular Vibrations the Theory Infrared and Raman Vibrational Spectra", *McGraw Hill*, NewYork, 2-92 (1995).
- Albert.,N.L., Keiser.,W.E., Szymanski.,H.A., "IR Theory and Practica Of Infrared Spectroscopy, 2nd ed.", *Plenum pres*, NewYork, 57-61 (1970).
- 17. Colthup,N.B., Daly,L.H., Wiberly,S.E., "Introduction to Infrared and Raman Spectroscopy", *Acedemic pres*, NewYork, 41-63 (1984).
- 18. Rao., C., "Chemical Application of Infrared Spectroscopy", *Academic press*, NewYork, 50-85 (1963).
- 19. Yıldız, A., Genç, Ö., Bektaş S., "Enstrümental Analiz", *Hacetepe Üniversitesi Yayınlar*ı, A-64, Ankara, 50-74 (1963)
- 20. Jensen F., "Introduction to Computational Chemistry", *Jhon Wiley and Sons Inc.*, NewYork, 5-67 (1999).
- 21. Pulay P., "Molecular stracture of pyridine", Mol.Phys., 17: 197 (1969).
- Hariharan P.C., Pople J.A., "The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies", *Theoret.Chim.Acta*, 28: 213 (1973).
- 23. Gi Xue, Juenfong, Gaoquan Shi, Yipei Wu, Biao Shuen, "Spectroscopic Studies on The Polymerization of Benzimidazole whit Metallic Copper," *J.Chem.Soc.Perkin Trans*. II (33): 40 (1989).
- 24. Gill, P.M.W., "DFT HF and The Self Consistent Field, Enc. Of Comp. Chemistry", *Jhon Wiley and Sons Ltd.*, NewYork, 80-105 (1999).
- 25. Jensen F., "Introduction to Computational Chemistry", *Jhon Wiley and Sons Ltd.*, NewYork, 55-60 (1999).
- 26. Hohenberg, P., KohnW., "Inhomogeneous electron gas", *Phys. Rev.*, 3:136 (1964).
- 27. Kohn, W., Sham, L.J., "Self Consistent Equations Including Exchange and Correlation affects", *Phys. Rev.*, 9:1113 (1965).
- 28. Becke, A.D., "Density Functional Exchange Energy Approximation whit Correct Asymtotic Behavior", *Physical Rev.*, A (38): 3098 (1988).

- 29. Parr,R.G.,Yang;W., "Density Functional Theory", *Oxford University Pres*,England, 60-101 (1989).
- Lee, C., Yang, W., Parr, R.G., "Development of the colle-salvetti correlation energy formula in to a functional of the electron density", *Phys. Rev.*, B (37):785 (1988).
- Miehlich, B., Savin A., Stoll, H., Preuss. H., "Results obtained whit the correlation energy density functionals of Becke and Lee, Yang and Parr", *Chem. Phys. Lett.*, 157(3): 200 (1989).
- 32. Becke, A.D., "Density functional thermochemistry, III, The role of exact exchange.", *J.Chem.Phys.*, 98: 5648 (1993).
- 33. Levine, I.N., "Quantum Chemistry", Prentice-Hal, USA, 55-85 (1991).
- Pulay, P., "Analytical Derivative Methods in Quantum Chemistry, Ab initio Methods in Quantum Chemistry-11", *Jhon Wiley and Sons Ltd.* NewYork, 27-95 (1987).
- 35. Pulay, P., Fogarasi, G., Pang, F., Bogs, J.E., "Systematic ab initio gradient calculation of molecular geometries, force constants and dipole moment derivatives", *J.Am.Chem.Soc.*, 101: 2550 (1979).
- 36. Rauhut, G., Pulay, P., "Transferable scaling factors for density functional derived vibrational force fields." *J.Phys.Chem*, 99(10): 3094 (1995).
- Özhamam,Z.,Yurdakul,M.,Yurdakul,Ş., "DFT studies and vibrational spectra of trans 1,2-bis(4-pyridyl)ethylene and its Zinc(II)Halide complexes", *Theochem*,761: 113-118 (2006).
- 38. Pourçain, C.B., "The use of novel cyclic monomers in hydrogel synthesis", *J.Matter.Chem.*, 9: 2727 (1999).
- Hauser, T.R, Bradley, D.W., "Specific spectrophotometric determination of ozone in the atomosphere using 1,2-di-(4-pyridiyl)ethylene", *Anal. Chem.*, 38(11):1529 (1966).
- 40. Kurt, M., Yurdakul, M., Yurdakul, Ş., "Molecular structure and vibrational spectra of 4-tert-butylpyridine by density functional theory and ab initio Hartree-Fock calculations", *Journal of Molecular Structure(Theochem)*, 663:127-134 (2003)
- 41. Zaman, M.B., Tomura, M., Yamashita, Y., "Linear hydrogen-bonded molecular tapes in the cocrystals of squaric acid with 4,4'-dipyridylacetylene and 1,2-bis(4-pyridyl)ethylene", *Acta Cryst.*, C57: 621 (2001).
- 42. Yang, W., Hulteen, J., Schatz, G., Duyne, R.P.V, "A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-

pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory", *J.Chem.Phys.*, 104(11): 4313 (1996).

- Nazeeruddin,M.K., Gratzel,M., Kalyanasundaram,K., Girling,R.B., Hester,R.H., "Raman characterization of charge-transfer transitions in ligand-bridged binuclear polypyridyl complexes of ruthenium(II), *J.Chem.Dalton Soc.Trans.*, 10: 323 (1993).
- 44. Yoshida S., "Infrared spectra of benzamide and its derivatives", *Chem.Farm.Bull.*, 11: 628 (1963).
- 45. Özhamam,Z., Yurdakul,M., Yurdakul,Ş., "HF and DFT Studies and Vibrational Spectra of 1,2-bis(2-pyridyl)ethylene and its Zinc(II)Halide Complexes", *Vibrational Spectroscopy*, 43: 335-343 (2007).
- 46. Güneş, B., Soylu, H., Özbey, S., Tufan, Y., "Bis(1,2-di-4-pyridylethane-N:N') cadmium (II) tetracyanonickelate (II) m-xylene solvate", *Acta Cryst.* C52: 2425 (1996).
- Nünez, P., Maroles, J.C.R., Gorrin, D.D.L, Gilli, P., Rodriguez, V.D., Platos, J.G., Barriuso, T., Rordriguez, F., "DFT suties of pyridine", *Dalton Trans* .,5: 273 (2004).
- 48. İde, S., Karacan, N., Tufan, Y., "1,2-bis(4-pyridyl)ethane", *Acta Cryst.*, C51: 2304 (1995).
- 49. Kurt, M., Yurdakul, Ş., "Molecular structure and vibrational spectra of 1,2-bis (4pyridyl) ethane by density functional theory and ab initio Hartree-Fock calculations", *Journal of Molecular Structure*, 654(1-3): 1-9 (2003).
- 50. Ağustoslu,Ş., "Bazı organometalik bileşiklerinin titreşim frekans ve kiplerinin saptanması ve yapı içindeki etkileşimlerinin incelenmesi", Doktora Tezi, *Hacettepe Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, 1-55 (1985).
- 51. Frank, C.W., Rogers L.B., "Infrared spectral study of metal-pyridine, substituted pyridine and quinoline complexes in the 667-150 cm⁻¹ region", *Inorg. Chem.*, 5(4): 615-622 (1966).

EKLER

Şekil 1.1. Mn(bpe1)Br2 bileşiğinin IR spektrumu (KBr)

Şekil 1.2. Mn(bpe₁)Cl₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.3. Mn(bpe₁)l₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.4. Cu(bpe₁)Br₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.5. Cu(bpe1)Cl2 bileşiğinin IR spektrumu (KBr)

Şekil 1.6. Cu(bpe₁)l₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.7. Hg(bpe1)Br2 bileşiğinin IR spektrumu (KBr)

Şekil 1.8. Hg(bpe1)Cl2 bileşiğinin IR spektrumu (KBr)

Şekil 1.9. Hg(bpe1)l2 bileşiğinin IR spektrumu (KBr)

Şekil 1.10. Zn(bpe1)Br2 bileşiğinin IR spektrumu (KBr)

Şekil 1.11. Zn(bpe1)Cl2 bileşiğinin IR spektrumu (KBr)

Şekil 1.12. Zn(bpe₁)l₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.13. Cd(bpe₁)Cl₂ bileşiğinin IR spektrumu (KBr)

Şekil 1.14. Cd(bpe1)Br2 bileşiğinin IR spektrumu (KBr)

Şekil 1.15. Cd(bpe1)I2 bileşiğinin IR spektrumu (KBr)

Şekil 1.16. Co(bpe1)Cl2 bileşiğinin IR spektrumu (KBr)

Şekil 1.17. Co(bpe1)Br2 bileşiğinin IR spektrumu (KBr)

Şekil 1.18. Co(bpe1)I2 bileşiğinin IR spektrumu (KBr)

EK-2. 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.1. Cd(bpe₂)Br₂ bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.2. Cd(bpe2)Cl2 bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.3. Cd(bpe2)I2 bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.4. Co(bpe₂)Cl₂ bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.5. Cu(bpe2)Br2 bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.6. Cu(bpe₂)Cl₂ bileşiğinin IR spektrumu (KBr)

EK-2.(Devam) 1,2 bis(2-piridil)etilen molekülünün metal halojen bileşiklerinin titreşim spektrumları

Şekil 2.7. Cu(bpe₂)I₂ bileşiğinin IR spektrumu (KBr)

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	: ÖZHAMAM, Zehra
Uyruğu	: T.C.
Doğum tarihi ve yeri	: 29.06.1972 Zile/Tokat
Medeni hali	: Evli
Telefon	: 0 (312) 432 39 46
e-mail	: <u>zehraozhamam@hotmail.com</u>

Eğitim
DereceEğitim Birimi
Gazi Üniversitesi /Fizik BölümüMezuniyet tarihi
2002LisansODTÜ/ Fizik Bölümü1995LiseAmasya Lisesi1989

İş Deneyimi

Yıl	Yer	Görev
1996-1998	Kırklareli Anadolu Lisesi	Fizik Öğretmeni
1998-2000	İncesu Anadolu Lisesi	Fizik Öğretmeni
2000-2003	Aliye Yahşi Anadolu Meslek Lisesi	Fizik Öğretmeni
2003-2006	Mamak Anadolu Lisesi	Fizik Öğretmeni
2006-2007	Yavuz Sultan Selim Anadolu Lisesi	Fizik Öğretmeni

Yabancı Dil

İngilizce

Yayınlar

1.Özhamam,Z.,Yurdakul,M.,Yurdakul,Ş.,2006,DFT Studies and Vibrational SpectraofTrans1,2-bis(4-pyridyl)ethyleneanditsZinc(II)HalideComplexes, *Theochem*, 761, 113-118.

2.Özhamam,Z.,Yurdakul,M.,Yurdakul,Ş., HF and DFT Studies and Vibrational Spectra of 1,2-bis(2-pyridyl)ethylene and its Zinc(II)Halide Complexes, *Vibrational Spectroscopy*, 43(2007),335-343.