1,3-BİS(4-PİPERİDYL)PROPANE MOLEKÜLÜ VE 1,3-BİS(4-PYRİDYL)PROPANE MOLEKÜLÜNÜN SERBEST VE METAL (II) HALİDE KOMPLEKSLERİNİN TEORİK VE DENEYSEL OLARAK İNCELENMESİ

Yusuf ERDOĞDU

DOKTORA TEZİ FİZİK

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

AĞUSTOS 2008 ANKARA

1,3-BİS(4-PİPERİDYL)PROPANE MOLEKÜLÜ VE 1,3-BİS(4-PYRİDYL)PROPANE MOLEKÜLÜNÜN SERBEST VE METAL (II) HALİDE KOMPLEKSLERİNİN TEORİK VE DENEYSEL OLARAK İNCELENMESİ

Yusuf ERDOĞDU

DOKTORA TEZİ FİZİK

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

> AĞUSTOS 2008 ANKARA

Yusuf ERDOĞDU tarafından hazırlanan 1,3-BİS(4-PİPERİDYL)PROPANE 1,3-BİS(4-PYRİDYL)PROPANE MOLEKÜLÜ VE MOLEKÜLÜNÜN SERBEST VE METAL (II) HALİDE KOMPLEKSLERİNİN TEORİK VE DENEYSEL OLARAK İNCELENMESİ adlı bu tezin Doktora tezi olarak uygun olduğunu onaylarım.

Yrd. Doç Dr. M. Tahir GÜLLÜOĞLU	
Tez Danışmanı, FİZİK Anabilim Dalı	

Bu çalışma, jürimiz tarafından oy birliği ile FİZİK Anabilim Dalında Doktora tezi olarak kabul edilmiştir.

Prof. Dr. Mehmet ZENGİN Fizik, Ankara Üniversitesi	
Yrd. Doç. Dr. M. Tahir GÜLLÜOĞLU Fizik, Ahi Evran Üniversitesi	
Prof. Dr. Şenay YURDAKUL Fizik, Gazi Üniversitesi	
Prof. Dr. Süleyman ÖZÇELİK Fizik, Gazi Üniversitesi	
Doç. Dr. Mustafa KURT Fizik, Ahi Evran Üniversitesi	
	Tarih: 07/08/2008

Bu tez ile G.Ü. Fen Bilimleri Enstitüsü Yönetim Kurulu Doktora derecesini onamıştır.

Prof. Dr. Nermin ERTAN Fen Bilimleri Enstitüsü Müdürü

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada orijinal olmayan her türlü kaynağa eksiksiz atıf yapıldığını bildiririm.

Yusuf ERDOĞDU

1,3-BİS(4-PİPERİDYL)PROPANE MOLEKÜLÜ VE 1,3-BİS(4-PYRİDYL)PROPANE MOLEKÜLÜNÜN SERBEST VE METAL (II) HALİDE KOMPLEKSLERİNİN TEORİK VE DENEYSEL OLARAK İNCELENMESİ (Doktora Tezi)

Yusuf ERDOĞDU

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Ağustos 2008

ÖZET

Bu çalışmada, 1.3 bis(4-piperidil)propan, 1,3 bis(4-piridil)propan moleküllerinin titreşim frekansları ve geometrik parametreleri hesaplandı. Hesaplamalar Gaussian 03W ve GaussView programları kullanılarak HF ve DFT/ B3LYP, BLYP fonksiyonelleri, 6-311G(d,p) ve 6-31G(d) temel setler kullanılarak vapıldı. Hesaplanan titreșim frekansları ve geometrik parametreler deneysel değerler ile karşılaştırıldı.

M(1,3-bis(4-piridil)propan)X₂ (M: Hg ve Zn, X:Cl, Br ve I) ve Zn(4asetilpiridin)₂X₂ (X:Cl, Br ve I) bileşikleri deneysel olarak elde edildi. Elde edilen bileşiklerin infrared spektrumları 400-4000 cm⁻¹ bölgesinde ve Raman spektrumları 5-3500 cm⁻¹ bölgesinde kaydedildi. Hazırlanan bu bileşiklerin C, N ve H elemental analiz sonuçları verildi. Serbest ligand molekülleri ile bileşik yapıdaki ligand molekülünün titreşim frekansları karşılaştırıldı. Bileşiklerin titreşim frekans değerlerinde serbest ligand frekanslarına göre kaymalar belirlendi. Bu kaymaların metale bağlı olarak değiştiği ve ligandın iç titresimleri ile M-N bağı titreşimleri arasındaki mekanik çiftlenimden kaynaklandığı anlaşıldı. $M(1,3-bis(4-piridil)propan)X_2$ (M: Hg ve Zn, X:Cl, Br ve I) ve Zn(4asetilpiridin)₂X₂ (X:Cl, Br ve I) bileşiklerinin titreşim frekansları ve geometrik parametreleri Gaussian 03W ve Gaussview 3.1 paket programları yardımıyla hesaplandı. Hesaplamalar DFT/B3LYP fonksiyonel, LANL2DZ ve SDD temel setler kullanılarak yapıldı. Teorik olarak hesaplanan titreşim frekansları ve geometrik parametreler X-ışınları verileri ile karşılaştırıldı.

Bilim Kodu	:202.1.008
Anahtar Kelimeler	:1,3-bis(4-Piperidil)propan,1,3-bis(4-Piridil)propan,
	4-Asetilpiridin, DFT, Titreşim spektrumu, Gaussian03W
Sayfa Adedi	:157
Tez Yöneticisi	:Yrd. Doç. Dr. M. Tahir GÜLLÜOĞLU

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF 1,3-BIS(4-PIPERIDYL)PROPANE MOLECULE AND THE METAL (II) HALIDE COMPLEXES AND FREE OF 1,3-BIS(4-PYRIDYL)PROPANE MOLECULE (Ph.D. Thesis)

Yusuf ERDOĞDU

GAZİ UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

August 2008

ABSTRACT

In this study, the geometric parameters and the vibrational frequencies of 1,3 bis(4-piperidyl)propane, 1,3 bis(4-pyridyl)propane molecules are calculated by means of HF and DFT/ B3LYP, BLYP functionals and 6-311G(d,p) and 6-31 G(d) basis sets of Gaussian 03W and GaussView programs. Calculated vibrational frequencies and geometric parameters are compared with the experimental values of free ligands.

 $M(1,3 -Bis(4-Pyridyl)Propane)X_2$ (M: Hg and Zn, X:Cl, Br and I) and Zn(4-Acetylpyridine)₂X₂ (X:Cl, Br and I) metal halogen compounds have been prepared. The infrared spectra of all compounds have been recorded between 400-4000 cm⁻¹ region. Raman spectra of all compounds have been recorded between 5-3500 cm⁻¹ region. The results of C, N and H analysis of all the compounds are given. The infrared spectra of the complexes and free ligands are compared. There are some shifts in the IR spectra of metal complexes due to the complex formation. These shifts are metal dependent and explained by the coupling of the internal modes of ligand molecules with the M-N vibration.

The geometric parameters and vibrational frequencies of $M(1,3-bis(4-pyridyl)propane)X_2$ (M: Hg ve Zn, X:Cl, Br ve I) ve Zn(4-acetylpyridine)₂X₂ (X:Cl, Br ve I) through DFT/ B3LYP functional and LANL2DZ and SDD basis sets of Gaussian 03W and Gaussview 3.1 package programs. Calculated vibrational frequencies and geometric parameters are compared with the experimental values of complexes.

Science Code : 202.1.008 Key Words : 1,3-Bis(4-Piperidyl)propane,1,3-Bis(4-Pyridyl)propane, 4-Acetylpyridine, DFT, Vibrational spectra, Gaussian 03W Page Number: 157 Adviser : Asist. Prof. Dr. M. Tahir GÜLLÜOĞLU

TEŞEKKÜR

Çalışmalarım boyunca değerli yardım ve katkılarıyla ben yönlendiren Hocam Yrd. Doç. Dr. M. Tahir GÜLLÜOĞLU'na yine kıymetli tecrübelerinden faydalandığım hocalarım Prof. Dr. Şenay YURDAKUL, Prof. Dr. Mehmet ZENGİN, Prof. Dr. Ergün KASAP ve Doç. Dr. Mustafa KURT ve ayrıca Ahi Evran Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümünde bulunan hocalarıma sonsuz teşekkürlerimi sunarım.

İnfrared spektrumlarının kaydedilmesinde yardımlarını esirgemeyen Gazi Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü uzmanlarından Şükrü KALAYCI'ya, Raman spektrumlarının kaydedilmesi için Orta Doğu Teknik Üniversitesi Merkezi Laboratuarındaki görevlilere teşekkür ederim.

Hayatım boyunca maddi ve manevi desteklerini hiçbir zaman esirgemeyen aileme, eşim Arş. Gör. Makbule ERDOĞDU ve kızım Nejla ERDOĞDU'ya teşekkür ederim.

İÇİNDEKİLER

ÖZET	iv
ABSTRACT	vi
TEŞEKKÜR	viii
İÇİNDEKİLER	ix
ÇİZELGELERİN LİSTESİ	xiii
ŞEKİLLERİN LİSTESİ	XV
SİMGELER VE KISALTMALAR	xix
1. GİRİŞ	1
2. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ	2
2.1. Molekül Titreşimleri	2
2.2. İnfrared Spektroskopisi	6
2.2.1. Klâsik kuram	7
2.2.2. Kuantum kuramı	8
2.3. Raman Spektroskopisi	10
2.3.1. Klâsik kuram	10
2.3.2. Kuantum kuramı	14
2.4. İnfrared ve Raman Aktiflik	15
2.5. Moleküler Simetri	
2.6. Çok Atomlu Moleküllerin Titreşimleri	
2.7. Grup Frekansları	
2.8. Molekül Titreşim Türleri	19
3. BİLGİSAYAR HESAPLAMALI MOLEKÜLER SPEKTROSKOPİSİ	23

Sayfa

3.1. Moleküler Mekanik Metotlar	23
3.2. Elektronik Yapı Metotları	25
3.2.1. Yarı deneysel metotlar	26
3.2.2. Ab initio metotları	26
3.3. Kuantum Mekaniksel Enerji İfadeleri ve Yoğunluk Fonksiyon Teorisi	28
3.3.1. Karma yoğunluk fonksiyon teorisi	29
3.3.2. B3LYP karma yoğunluk fonksiyon teorisi	29
3.4. Geometrik Optimizasyon	30
3.4.1. Minimizasyon yöntemleri	30
3.4.2. Gradyent (Kuvvet) metodu	31
3.5. Hesaplama Yöntemi	34
3.5.1. Yoğunluk fonksiyon teorisinde öz uyumlu alan yöntemi	34
3.6. Normal Koordinat Analizi	36
3.6.1. Wilson GF metodu	36
3.7. Toplam Enerji Dağılımı	40
3.8. SQM Metodu	42
4. İYON VE LİGAND TİTREŞİMLERİ	45
4.1. 1,3-Bis(4-piperidil)propan Molekülünün Temel Titreşimleri ve Simetri Türleri	46
4.2. 1,3-Bis(4-piridil)propan Molekülünün Temel Titreşimleri ve Simetri Türleri	48
4.3. 4-Asetilpiridin Molekülünün Temel Titreşimleri ve Simetri Türleri	51
5. MATERYAL METOT	54
6. DENEYSEL ÇALIŞMA	55

	6.1. Bileşiklerin Hazırlanışı	55
	6.1.1.M(1,3-bis(4-piridil)propan)X ₂ (M: Hg ve Zn, X: Cl, Br ve I) bileşiklerinin hazırlanması	55
	6.1.2. Zn(4-asetilpiridin) ₂ X ₂ (X:Cl, Br ve I) bileşiklerinin hazırlanması	55
	6.2. Bileşiklerin Kimyasal Analizleri	56
	6.3. Kullanılan Teknik ve Çalışılan Düzenekler	56
	6.3.1. İnfrared spektrofotometresi	57
	6.3.2. Fourier transform infrared spektrometresi (FTIR)	59
	6.3.3. Raman spektrometresi	62
7.	SONUÇLAR VE TARTIŞMA	64
	7.1. 1,3-Bis(4-piperidil)propan Molekülü	64
	7.1.1.1,3-Bis(4-piperidil)propan molekülünün frekanslarının işaretlenmesi	69
	7.1.2.1,3-Bis(4-piperidil)propan molekülünün geometrik parametreleri	74
	7.2. 1,3-Bis(4-piridil)propan Molekülü	76
	7.2.1.1,3-Bis(4-piridil)propan molekülünün frekanslarının işaretlenmesi	78
	7.2.2.1,3-Bis(4-piridil)propan molekülünün geometrik parametreleri	86
	7.3. 1,3-Bis(4-Piridil)Propan Molekülünün Metal (II) Halojenür Kompleksleri	89
	7.3.1.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin deneysel olarak incelenmesi	90
	7.3.2.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin teorik olarak incelenmesi	98
	7.3.3.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin geometrik parametreleri	. 107

<u>Sayfa</u>

7.4. 4-Asetilpiridin Molekülünün Çinko (II) Halojenür Kompleksleri 113
7.4.1.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin deneysel olarak incelenmesi
7.4.2.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin teorik olarak incelenmesi
7.4.3.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin geometrik parametreleri
8. GENEL SONUÇLAR 127
KAYNAKLAR 129
EKLER
hesaplanan titreşim frekanslarının karşılaştırılması
titreşim frekanslarının karşılaştırılması
EK 3 1,3-Bis(4-piridil)propan molekulunun civa halojenur komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması
EK 4 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması
EK 5 4-Asetilpiridin molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması
ÖZGEÇMİŞ 156

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 2.1. Elektromanyetik spektrum bölgeleri	3
Çizelge 2.2. İnfrared spektral bölge	6
Çizelge 2.3. Grup Frekansları [12]	19
Çizelge 3.1. Enerji türevlerinden hesaplanabilen fiziksel büyüklükler	27
Çizelge 4.1. C _S nokta grubuna ait karakter tablosu	47
Çizelge 4.2. 1,3-bis(4-piperidil)propan molekülünün bağ gerilme ve açı bükülme titreşimleri	48
Çizelge 4.3. C _{2V} nokta grubunun karakter tablosu	50
Çizelge 4.4. 1,3-Bis(4-piridil)propan molekülünün bağ gerilme ve açı bükülme titreşimleri.	50
Çizelge 4.5. C _S nokta grubuna ait karakter tablosu	52
Çizelge 4.6. 4-Asetilpiridin molekülünün düzlem içi gerilme titreşimleri	53
Çizelge 6.1. M(Bpp)X ₂ (M:Zn, Hg ve X: Cl, Br ve I) komplekslerinin kimyasal analiz sonuçları (Bpp=1,3-bis(4-piridil)propan)	56
Çizelge 6.2. Zn(4-Ap) ₂ X ₂ (X: Cl, Br ve I) komplekslerinin kimyasal analiz sonuçları (4-Ap=4-Asetilpiridin)	56
Çizelge 7.1. 1,3 -Bis(4-piperidil)propan molekülünün konformasyonları ve seçilmiş bazı özellikleri	66
Çizelge 7.2. 1,3-bis(4-piperidil)propan molekülünün taban seviyesindeki geometrik parametreleri	75
Çizelge 7.3. Bpp molekülünün konformasyonlarının bazı moleküler özellikleri	78
Çizelge 7.4. Serbest 1,3-bis(4-piridil)propan molekülünün geometrik parametreleri	87
Çizelge 7.5. 1,3-Bis(4-piridil)propan molekülünün civa halojenür metal komplekslerinin dalgasayıları	92

Çizelge

Çizelge	7.6. 1 k	,3-Bis(4-piridil)propan molekülünün çinko halojenür metal komplekslerinin dalgasayıları	95
Çizelge	7.7.	1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin geometrik parametreleri	. 108
Çizelge	7.8.	1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerinin geometrik parametreleri	. 110
Çizelge	7.9. 4- <i>1</i> da	Asetilpiridin molekülünün metal (II) halojenür komplekslerinin ılgasayıları	. 115
Çizelge	7.10. A	setil grubunun titreşimleri	. 121
Çizelge	7.11	. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin geometrik parametreleri	125

Sayfa

ŞEKİLLERİN LİSTESİ

Şekil	Sayfa
Şekil 2.1. İki atomlu bir molekül için elektronik, titreşim ve dönü geçişleri	5
Şekil 2.2. Raman olayının kuantum mekaniksel gösterimi	15
Şekil 2.3. Moleküler titreşim türleri	22
Şekil 3.1. İki atomlu bir molekülde elektronik enerji grafiği	32
Şekil 3.2. İki boyutta potansiyel enerji yüzeyi	33
Şekil 3.3. Enerjinin yakınsaması ile işlem sayısı arasındaki ilişki	35
Şekil 4.1. 1,3-bis(4-piperidil)propan molekülüne ait geometrik diziliş	46
Şekil 4.2. 1,3-Bis(4-piridil)propan molekülüne ait geometrik diziliş	48
Şekil 4.3. 4-Asetilpiridin molekülüne ait geometrik dizilişi	51
Şekil 6.1. İnfrared spektrometrenin şematik gösterimi	59
Şekil 6.2. Michelson İnterferometresi	62
Şekil 7.1. 1,3-Bis(4-piperidil)propan molekülünün konformasyonları	66
Şekil 7.2. 1,3-bis(4-piperidil)propan molekülünün infrared spektrumu (KBr içinde)	67
Şekil 7.3. 1,3-bis(4-piperidil)propan molekülünün Raman spektrumu	68
Şekil 7.4. Metilen grubunun bazı titreşimleri (B3LYP/6-311 G(d,p))	71
Şekil 7.5. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan IR spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)	72
Şekil 7.6. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan Raman spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)	72
Şekil 7.7. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan IR spektrumları(B3LYP, BLYP ve HF 6-311 G(d,p) temel set)	73

Şekil

xvi

Şekil 7.8. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan Raman spektrumları(B3LYP, BLYP ve HF 6-311 G(d,p) temel set)	73
Şekil 7.9. 1,3-bis(4-piperidil)propan molekülünün taban durumdaki konformasyonu ve atom numaralandırılması	74
Şekil 7.10. 1,3-bis(4-piridil)propan molekülünün konformasyonları	77
Şekil 7.11. 1,3 Bis(4-piridil)propan molekülünün infrared spektrumu (KBr içinde)	80
Şekil 7.12. 1,3 Bis(4-piridil)propan molekülünün Raman spektrumu	81
Şekil 7.13. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün infrared spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)	82
Şekil 7.14. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün Raman spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)	82
Şekil 7.15. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün infrared spektrumları (B3LYP, BLYP ve HF 6-311 G(d,p) temel set)	83
Şekil 7.16. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün Raman spektrumları (B3LYP, BLYP ve HF 6-311 G(d,p) temel set)	83
Şekil 7.17. 1,3-bis(4-piridil)propan molekülünde metilen grubunun titreşimleri	84
Şekil 7.18. 1,3-bis(4-piridil)propan molekülünün taban durumdaki konformasyonu ve atomların numaralandırılması	86
Şekil 7.19. 1,3-bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin yapısı [M(N ₂ C ₁₃ H ₁₄)X ₂ , M: Zn, Hg, X: Cl, Br ve I]	90
Şekil 7.20. 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerini infrared spektrumları (KBr içinde)	93
Şekil 7.21. 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerini Raman spektrumları	94

Şekil

Sayfa

xvii

	2. 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin infrared spektrumları (KBr içinde)	7.22	Şekil
97	 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin Raman spektrumları 	7.23	Şekil
99	1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin simetrik CH ₂ gerilme titreşimi	7.24.	Şekil
100	1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin asimetrik CH ₂ gerilme titreşimi	7.25.	Şekil
100	1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin simetrik CH ₂ gerilme titreşimi	7.26.	Şekil
101	1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin asimetrik CH ₂ gerilme titreşimi	7.27.	Şekil
102	1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin halka gerilme titreşimi	7.28.	Şekil
102	1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin halka gerilme titreşimi	7.29.	Şekil
103	. Teorik olarak hesaplanan Zn(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin infrared spektrumları (B3LYP\LANL2DZ temel set)	7.30.	Şekil
103	. Teorik olarak hesaplanan Zn(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\LANL2DZ temel set)	7.31.	Şekil
104	Teorik olarak hesaplanan Zn(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)	7.32	Şekil
104	. Teorik olarak hesaplanan Zn(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)	7.33.	Şekil
105	. Teorik olarak hesaplanan Hg(Bpp)X ₂ (X:Cl, Br and I) komplekslerinin infrared spektrumları (B3LYP\LANL2DZ temel set)	7.34.	Şekil
105	. Teorik olarak hesaplanan Hg(Bpp)X ₂ (X:Cl, Br and I) komplekslerinin Raman spektrumları (B3LYP\LANL2DZ temel set)	7.35.	Şekil

set).....

Sayfa

Şekil 7.36. Teorik olarak hesaplanan Hg(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin infrared spektrumları (B3LYP\SDD temel set)	106
Şekil 7.37. Teorik olarak hesaplanan Hg(Bpp)X ₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)	106
Şekil 7.38. 1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerindeki atomların numaralandırılması [M(Bpp)X ₂ ; M:Zn ve Hg; X:Cl, Br ve I]	107
Şekil 7.39. 1,3-Bis(4-piridil)propan molekülünün metal komplekslerinin M- X bağ uzunlukları (M: Zn ve Hg; X: Cl, Br ve I)	111
Şekil 7.40. 1,3-Bis(4-piridil)propan molekülünün metal komplekslerinin M- N bağ uzunlukları (M: Zn ve Hg; X: Cl, Br ve I)	112
Şekil 7.41. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin İnfraed spektrumları (KBr içinde)	116
Şekil 7.42. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları	117
Şekil 7.43. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları (B3LYP/SDD)	122
Şekil 7.44. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin infrared spektrumları (B3LYP/SDD)	122
Şekil 7.45. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin infrared spektrumları (B3LYP/LANL2DZ)	123
Şekil 7.46. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları (B3LYP/LANL2DZ)	123
Şekil 7.47. 4-Asetilpiridin molekülünün metal (II) halojenür kompleksleri	124

Şekil

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
В	Dönüşüm matrisi
Ε	Molekülün toplam enerjisi
E ^C	Korelasyon enerjisi
E _{B3LYP}	B3LYP Enerjisi
Ĥ	Hamiltoniyen işlemcisi
$\mathbf{E}^{\mathbf{X}}$	Değiş-tokuş enerjisi
$\mathbf{E}^{\mathbf{J}}$	Korelasyon enerjisi
Ψ	Dalga fonksiyonu
ν	Frekans
v	Gerilme titreșimi
δ	Açı bükülme titreşimi
τ	Burulma
m	orta şiddetli band
w	zayıf band
VW	çok zayıf band
8	Şiddetli band
vs	çok şiddetli band
ρ	Elektron yoğunluğu
Ψ_i	Moleküler orbital
Φ_{i}	Atomik orbital

Kısaltmalar	Açıklama			
B3LYP	LYP korelasyon enerjili 3 parametreleri Becke-			
	Lee-Yang karma metodu			
HF	Hartree-Fock metodu			
DFT	Yoğunluk fonksiyon teorisi			
MM	Moleküler mekanik metotlar			
SCF	Self Consistent Field (Öz uyumlu alan)			
SQM	scaled quantum mechanic			
TED	Total energy distrubution (Toplam energi			
	dağılımı)			
Врр	1,3-bis(4-piridil)propan molekülü			
Вре	1,2-bis(4-piridil)etan			
Tmdp	1,3-bis(4-piperidil)propan molekülü			
4-Ap	4-Asetilpiridin molekülü			

1. GİRİŞ

Bu çalışma iki ana kısımdan oluşmaktadır. İlk kısımda serbest halde bulunan ligand (1,3-bis(4-piperidil)propan ve 1,3-bis(4-piridil)propan) moleküllerinin moleküler yapısı ve titreşim spektrumları tartışıldı. İkinci kısımda ise metal (II) halojenür kompleksleri (1,3-bis(4-piridil)propan ve 4-Asetilpiridin moleküllerinin) deneysel yöntemler ile oluşturuldu. Bu komplekslerin deneysel ve teorik olarak titreşim spektrumları tartışıldı.

Serbest 1,3-bis(4-piperidil) propan ve serbest 1,3-bis(4-piridil)propan moleküllerinin serbest haldeki tüm olası konformasyon durumları bulunarak, bu konformasyonlar içerisinde en kararlı konformasyon belirlendi. Bu konformasyonun geometrik parametreleri ve titreşim frekansları Gaussian 03W paket programı kullanılarak hesaplandı. Hesaplamalar B3LYP, BLYP ve HF metotları ile 6-31 G(d) ve 6-311 G(d,p) temel setler kullanılarak yapıldı. Teorik hesaplamalar sonucu elde edilen titreşim frekansları ve geometrik parametreler deneysel veriler ile karşılaştırıldı.

Çalışmanın ikinci kısmında, M(1,3-bis(4-piridil)propan) X_2 [M =Zn, Hg; X=Cl, Br ve I] ve M(4-Asetilpiridin)₂ X_2 [M =Zn; X=Cl, Br ve I] metal halojen bileşikleri kimyasal yollardan ilk kez elde edildi. Bu bileşiklerin tümünün FT-IR spektrumları 400-4000 cm⁻¹ bölgesinde ve FT-Raman spektrumları 3500-5 cm⁻¹ bölgesinde kaydedildi. Spektrumlar incelenerek, bileşiklerin olabilecek mümkün yapıları tartışıldı. Elde edilen bileşiklerin ve serbest ligand moleküllerinin titreşim frekansları deneysel değerlerle karşılaştırıldı. Ayrıca bileşiklerin C, H, N elemental analiz sonuçları verildi. Bahsedilen komplekslerin teorik çalışmaları ise Gaussian 03 paket programı ile yapıldı. Hesaplamalarda B3LYP hesaplama metodu ile SDD ve LANL2DZ temel setler kullanıldı. Teorik olarak elde edilen titreşim frekansları deneysel yöntemlerle elde edilen frekansları ile karşılaştırıldı.

2. MOLEKÜLER TİTREŞİM SPEKTROSKOPİSİ

2.1. Molekül Titreşimleri

Molekül titreşim spektroskopisi, madde ile elektromanyetik dalganın karşılıklı etkileşimini inceler [1]. Elektromanyetik dalgaların, madde ile etkileşimi sonucu titreşim hareketinde değişme meydana gelir. Bu titreşim hareketleri infrared ve Raman spektroskopisi yöntemleri ile incelenebilir. İnfrared ve Raman spektroskopi yöntemleri ile moleküllerin kimyasal ve fiziksel özellikleri olan bağ kuvvetleri, molekül içi ve moleküller arası kuvvetler, molekülün elektronik dağılımı ile ilgili bilgiler elde edilebilir [2].

Molekül üzerine gönderilen elektromanyetik dalga soğurulduğunda, molekül ile elektromanyetik dalga arasında bir etkileşme ve bu etkileşme sonucunda, molekülün titreşim enerji düzeyleri arasında geçişler meydana gelir. Bu geçişler, soğurulan elektromanyetik dalganın enerjisine bağlı olarak belli spektrum bölgelerine ayrılır. Bu spektrum bölgeleri sırasıyla aşağıda verilmiştir (Çizelge 2.1.) [2].

$$\Delta \mathbf{E} = \mathbf{E}'' - \mathbf{E}' = \mathbf{h} \Delta \mathbf{v} \tag{2.1}$$

- ΔE : İki seviye arasındaki enerji farkı
- E": Üst titreşim seviyesinin enerji
- E': Alt titreşim seviyesinin enerjisi
- $E'' \rightarrow E'$: Işığın yayınım
- $E' \rightarrow E''$: Işığın soğrulması

Çizelge 2.1. Elektromanyetik spektrum bölgeleri

BÖLGE	DALGA BOYU	SPEKTROSKOPİ TÜRÜ
Radyodalgaları	10m-1m	NMR ve NQR
Mikrodalga	1cm-100µm	ESR ve Moleküler dönme
Infrared	100µ-1µm	Moleküler dönme ve titreşim
Görünür ve Morötesi	1µm-10nm	Elektronik geçişler
X-ışınları	10nm-100pm	Elektronik geçişler
γ-ışınları	100pm-	Nükleer geçişler

Radyodalgaları Bölgesi: Elektron veya çekirdeğin spininin işaret değiştirmesinden kaynaklanan enerji değişimlerinin spektrumu Radyodalgaları bölgesindedir. Bu bölge, Nükleer Magnetik Rezonans (NMR) ve Elektron Spin Rezonans (ESR) spektrumlarını içerir.

Mikrodalga Bölgesi: Molekülün dönmesinin incelendiği bölgedir. Dönme enerjileri arasındaki geçişlerin spektrumu, mikrodalga bölgesinde meydana gelir. Bir sistem çiftlenmemiş elektrona sahip ise, sistemin magnetik özelliklerindeki değişmeler bu bölgede incelenir.

İnfrared Bölgesi: Bir molekülün titreşim ve dönme enerji seviyeleri arasındaki geçişler bu bölgede spektrum verir. Bu bölgede bir molekülün titreşim frekansları, İnfrared soğurma ve Raman saçılma spektroskopisi yöntemleri ile incelenir.

Görünür-Morötesi Bölgesi: Bu bölge, atom veya molekülün dış kabuğundaki elektronların çeşitli enerji düzeyleri arasındaki geçişine dayanır. Bundan dolayı bu bölgedeki spektroskopi türü "elektron spektroskopisi" adını alır.

X-ışınları Bölgesi: Bir atom veya molekülün iç kabuktaki elektronlarının geçişleri Xışınları bölgesinde olur. Başka bir deyişle X-ışınları atom veya moleküllerde, iç orbitaldeki elektronların enerji seviyelerinin değişmesini sağlar. Bu bölgedeki spektroskopi türü "X-ışınları spektroskopisi" adını alır. γ -ışınları Bölgesi: Çekirdeğin içindeki enerji seviyeleri arasındaki geçişler bu bölgede incelenir. Geçişler sırasında çekirdek çok kısa süre uyarılmış seviyede kaldıktan sonra temel hale döner. Geçişlerin enerjisi oldukça yüksektir. Bu bölgedeki spektroskopi türü ise "Mössbauer spektroskopisi"dir.

Bir molekülün toplam enerjisi; öteleme enerjisi, nükleer dönme enerjisi, dönme enerjisi, titreşim enerjisi ve elektronik enerjisi olmak üzere beş kısımdan oluşur. Bu enerjilerden öteleme enerjisi, sürekli bir enerji olması sebebiyle dikkate alınmaz. Bu durumda çekirdekler arası etkileşim ise nükleer hamiltoniyene dâhil edilir. Nükleer hamiltoniyen dışında kalan kısım elektronik hamiltoniyen (H_e) olarak adlandırılır ve çekirdeğin etkisinde hareket eden elektronlar ile elektronlar arasındaki etkileşimleri göz önüne alır. Protonun kütlesi, elektronun kütlesinden 1840 kat daha büyüktür, bu nedenle elektronun hareketi, çekirdeğin hareketinden çok daha hızlıdır. Bu durumda çekirdeğin kinetik enerjisi elektronun kinetik enerjisi yanında ihmal edilebilir. Bu *Born-Oppenheimer* yaklaşımı olarak bilinmektedir. *Born-Oppenheimer* yaklaşımı olarak bilinmektedir. Born-Oppenheimer yaklaşımı olarak bilinmektedir. Born-Oppenheimer yaklaşımı olarak bilinmektedir. Born-Oppenheimer yaklaşımı olarak bilinmektedir. Born-Oppenheimer yaklaşımı incelenmelidir. Bu durumda bir molekülün toplam enerjisi, elektronik, titreşim ve dönme geçişlerinden ayrı incelenmelidir. Bu durumda bir molekülün toplam enerjisi, elektronik, titreşim ve dönü enerjileri olmak üzere,

$$E_T = E_{elek} + E_{tit} + E_{dönii} \tag{2.2}$$

şeklinde yazılabilir. Bir moleküldeki toplam enerji değişimi,

$$\Delta E_{toplam} = \Delta E_{elek} + \Delta E_{tit} + \Delta E_{dönii}$$
(2.3)

ifadesi ile belirlenir. Bu ifadede toplam enerjiyi oluşturan elektronik, titreşim ve dönü enerjilerinin birbirlerine göre oranları ise,

$$\Delta E_{\text{elek}} \cong \Delta E_{\text{tit}} \times 10^3 \cong \Delta E_{\text{donu}} \times 10^6 \tag{2.4}$$

şeklinde verilir [3].

Yukarıdaki enerji ifadelerinden her biri, birbirinden farklı deneysel ve teorik metotlar ile incelenmektedir. Molekülün dönme enerji seviyeleri birbirine çok yakın olduğu için düşük frekanslarda oluşur. Genel olarak molekülün saf dönme geçişleri, 1cm - 1µm dalga boyu aralığına düşen Mikrodalga spektroskopisi ve uzak infrared spektrum bölgesinde incelenir. Titreşim enerji seviyesi arasındaki geçişler ise 100µm - 1µm dalga boyu aralığında İnfrared ve Raman spektroskopisi ile incelenir.

Gaz fazındaki örneklerin titreşim enerji geçişleri sırasında, dönme enerjisi de değişebildiğinden titreşim bandları ile üst üste binmiş dönme ince yapısı da gözlenebilir. Görünür veya mor ötesi spektroskopisi ile moleküllerin elektronik geçişleri incelenir. İki atomlu bir molekül için elektronik, titreşim ve dönü geçişleri Şekil 2.1. de verilmiştir.

Şekil 2.1. İki atomlu bir molekül için elektronik, titreşim ve dönü geçişleri

2.2. İnfrared Spektroskopisi

Bu spektroskopi dalında, infrared bölgede tüm frekansları içeren elektromanyetik dalga, numune üzerine gönderilerek geçen (soğurulan) ışık incelenir.

BÖLGE	λ(μm)	$v(cm^{-1})$	v(Hz)
Yakın IR	0,78-2,5	12 800-4000	$3,8x10^{14}$ -1,2x10
Orta IR	2,5-50	4000-200	$1,2x10^{14}$ -6,0x10 ¹²
Uzak IR	50-1000	200-10	$6,0x10^{12}$ -3,0x10 ¹¹

Çizelge 2.2. İnfrared spektral bölge

Molekül v frekanslı bir ışın soğurduğunda, molekülün elektriksel dipol momenti (veya bileşenlerinden en az biri) bu frekansta titreşecektir. Böyle bir titreşim elektromanyetik spektrumunun infrared bölgesine düşer. İnfrared spektroskopisi dalga boyuna bağlı olarak yakın, orta ve uzak infrared bölge olmak üzere üç kısımda incelenir [7]. Bunlar Çizelge 2.2.'de verilmiştir.

Yakın İnfrared: Bu bölgede molekül titreşimlerinin üst ton ve harmonikleri incelenir.

Orta İnfrared: Moleküllerin hemen hemen bütün titreşimlerinin gözlendiği bölgedir. Yani infrared spektroskopisi denince akla bu bölge gelir.

Uzak İnfrared: Moleküllerin saf dönü hareketiyle ilgilidir. Ağır atomların titreşimlerinin incelendiği bölgedir. Mikrodalga bölgesine yakın olduğu için moleküllerin dönme hareketleri de bu bölgede incelenebilir. 200-10 cm⁻¹ arasındadır. Kimyasal spektroskopide nadiren kullanılır. Kristal örgü titreşimlerinin de incelendiği bölge burasıdır.

2.2.1. Klâsik kuram

Klâsik elektrodinamiğe göre, bir sistemin elektrik dipol momentinde bir değişme oluyorsa o sistem radyasyon yayınlayabilir. Değişen bu dipol titreşimlerinin frekansı ile yayınlanan radyasyonun frekansı birbirine eşittir. Soğurma ise, yayınlamanın tam tersi olarak düşünülebilir. Yani bir sistem yayınlayabildiği frekansa eşdeğerde frekanslı bir ışını soğurabilir [4, 5].

Molekülün elektrik dipol momenti $\vec{\mu}$, kartezyen koordinat sisteminde $\vec{\mu}_x, \vec{\mu}_y, \vec{\mu}_z$ şeklinde üç bileşene sahiptir. Bir molekül, üzerine düşen v frekanslı bir ışını soğurduğunda, molekülün $\vec{\mu}$ elektriksel dipol momenti veya bileşenlerinden en az biri, etkileşme sonucunda bu frekansta titreşecektir. Yani genel anlamda, bir molekülün v frekanslı bir ışını soğurabilmesi veya yayabilmesi için, $\vec{\mu}$ elektrik dipol momentinin bu frekansta bir titreşim yapması gereklidir. Molekülün bu titreşimi, spektrumun infrared bölgesine düşer.

Basit harmonik yaklaşımda, moleküler dipol momentin titreşim genliği, bütün Q titreşim koordinatlarının bir fonksiyonudur. Dipol moment, molekülün denge konumu civarında Taylor serisine açılırsa;

$$\vec{\mu} = \vec{\mu}_0 + \sum \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right)_0 Q_k \right\} + \frac{1}{2} \sum_k \left\{ \frac{\partial^2 \vec{\mu}}{\partial Q_k^2} Q_k^2 \right\} + y \ddot{u} k sek der. terimler$$
(2.5)

şeklinde olacaktır. Burada toplamın k üzerinden alınması, dipol momentin, bütün titreşim koordinatları üzerinden olduğunun bir göstergesidir. Küçük genlikli salınımlar için iyi bir yaklaşıkla Q_k 'nın birinci dereceden terimini alıp, daha yüksek mertebeden terimler ihmal edilir ise elektrik dipol momenti,

$$\vec{\mu} = \vec{\mu}_0 + \sum_{k} \left\{ \frac{\partial \vec{\mu}}{\partial Q_k} \right\}_0 Q_k$$
(2.6)

şeklinde yazılabilir.

Klâsik teoriye göre, bir titreşimin aktif olabilmesi için o molekülün elektriksel dipol momentindeki (veya bileşenlerinden en az birindeki) değişimin sıfırdan farklı olması gerekir [8]. Yani dipol moment değişimi için aşağıdaki ifade yazılabilir.

$$\left(\frac{\partial \vec{\mu}_{i}}{\partial Q_{k}}\right)_{0} \neq 0 \quad (i = x, y, z)$$
(2.7)

2.2.2. Kuantum kuramı

Kuantum mekaniğine göre, $\Psi^{(n)}$ ve $\Psi^{(m)}$ dalga fonksiyonları ile belirtilen n ve m gibi iki titreşim enerji düzeyi arasında geçiş olabilmesi için, ışınımın soğurulma şiddetinin bir ölçüsü olan geçiş dipol momentinin veya bileşenlerinden en az birinin sıfırdan farklı olması gerekir. Geçiş dipol momenti,

$$\vec{\mu}_{nm} = \int \psi^{(n)} \vec{\mu} \psi^{(m)} d\tau \neq 0$$
(2.8)

şeklinde yazılabilir. Burada; $\Psi^{(n)}$: n. uyarılmış enerji seviyesindeki molekülün titreşim dalga fonksiyonu; $\Psi^{(m)}$: taban enerji seviyesindeki molekülün titreşim dalga fonksiyonu, d τ hacim elemanı, $\vec{\mu}$ ise elektriksel dipol moment operatörüdür. Eş. 2.6, Eş. 2.8' de yerine konursa

$$\vec{\mu}_{nm} = \mu_0 \int \psi^{(n)} \psi^{(m)} d\tau + \sum \left\{ \left(\frac{\partial \vec{\mu}}{\partial Q_k} \right) \int \psi^{(n)} Q_k \psi^{(m)} d\tau \right\}$$
(2.9)

ifadesi elde edilir. Bu ifadede ilk terimdeki $\Psi^{(n)}$ ve $\Psi^{(m)}$ fonksiyonları ortogonal fonksiyonlar olduklarından (n≠m) bu terim sıfır olur. Taban enerji düzeyinden,

uyarılmış enerji düzeyine geçiş olasılığı, $|\mu_{nm}|^2$ ile orantılıdır. Bu nedenle, infrared spektroskopisinde bir molekülün herhangi bir titreşiminin gözlenebilmesi için, söz konusu titreşim sırasında molekülün elektriksel dipol momentindeki değişiminin sıfırdan farklı olması gerekir.

Genel olarak m. ve n. düzeylere ait toplam dalga fonksiyonları, her bir normal moda ait dalga fonksiyonlarının çarpımları olarak yazılabilir.

$$\psi^{(n)} = \psi_1^{(n)}(Q_1)\psi_2^{(n)}(Q_2)\cdots\psi_k^{(n)}(Q_k) = \prod_k \psi_k^{(n)}$$
(2.10)

$$\psi^{(m)} = \psi_1^{(m)}(Q_1)\psi_2^{(m)}(Q_2)\cdots\psi_k^{(m)}(Q_k) = \prod_k \psi_k^{(m)}$$
(2.11)

Bu eşitlikler kullanılarak Eş. 2.9 tekrar yazılırsa,

$$\int (\pi_{k} \psi^{(n)}{}_{k}) Q(\pi_{k} \psi^{(m)}{}_{k}) d\tau = \int \psi_{1}^{(n)} \psi_{1}^{(m)} dQ_{1} \int \psi_{2}^{(n)} \psi_{2}^{(m)} dQ_{2}$$

$$\cdots \int \psi_{k}^{(n)} \psi_{k}^{(m)} dQ_{k} \int \psi_{k+1}^{(n)} \psi_{k+1}^{(m)} dQ_{k+1}$$
(2.12)

şeklinde olacaktır. Bu ifadenin sıfırdan farklı olması için; a) k modu hariç bütün modların aynı olması, b) k'ıncı mod için n-m=1 olması gerekir.

Sonuç olarak, v_k frekanslı ışının soğurulması olayında sadece k modunun titreşim kuantum sayısı bir birim kadar değişmeli ve diğerlerinin kuantum sayıları değişmemelidir. Yani Eş. 2.12 harmonik yaklaşımla ifade edilmektedir. Sağ taraftaki ilk terimler $\Psi^{(n)}$ ve $\Psi^{(m)}$ ortogonal fonksiyonlar olduğundan sıfırdır. m düzeyinden n düzeyine geçiş olabilmesi için k'lı terimlerin sıfırdan farklı olması gerekmektedir. Bu durum ancak n-m=1 (n=tek, m=çift) olması durumunda mümkündür [1].

2.3. Raman Spektroskopisi

Raman spektroskopisi ile molekülerin titreşimleri incelendiğinden, bu spektroskopi dalı, infrared spektroskopisinin tamamlayıcısıdır. Bu spektroskopi dalında, örnek numune üzerine görünür bölgede monokromatik bir elektromanyetik dalga gönderilerek saçılan ışınım incelenir.

Bir molekül üzerine v₀ frekanslı bir ışık gönderildiğinde, saçılan ışık v₀ frekansından farklıdır. Gelen ve saçılan ışıklar arasındaki fark, elektromanyetik spektrum bölgesinde infrared bölgeye karşılık gelir. Raman spektroskopisi tekniği bu frekans farklarına bağlıdır. Bu sebeple bu spektroskopi türünde de molekülün titreşim hareketleri incelenir. Raman spektroskopisi soğurmayı içermediğinden bu spektroskopi türünde infrared spektroskopisindeki yasaklanan geçişler gözlenebilir. Bu yüzden bu iki titreşim spektroskopisi metodu birbirini tamamlayan karakterdedirler. Ancak bu iki metodun aktiflik şartlarında farklılıklar vardır. İnfrared spektroskopisi molekülün değişen $\vec{\mu}$ dipol momenti ile ilgilidir. Raman spektroskopisinde ise dış elektrik alanın etkisinde molekülde indüklenmiş dipol momentine bağlı olarak kutuplanma yatkınlığına bağlıdır. Bu dipol momenti dış elektrik alanla doğrudan orantılı olarak değişir. Raman spektroskopisinde, infrared spektroskopisi tekniği de olduğu gibi klâsik ve kuantum mekaniksel olarak iki şekilde açıklanabilir.

2.3.1. Klâsik kuram

Klâsik kurama göre, v_0 frekansına sahip ve elektrik alan ifadesi,

$$\mathbf{E} = \mathbf{E}_0 \mathrm{Sin}(2\pi \upsilon_0 \mathbf{t}) \tag{2.13}$$

olan bir elektromanyetik dalga örnek moleküller üzerine gönderildiğinde elektromanyetik dalganın elektrik alanının, molekülün elektron ve çekirdeklerine etki

ettirdiği dış kuvvet sebebiyle moleküller değişime uğrar. Bu nedenle molekül başlangıçta bir elektrik dipol momentine sahip olmasa bile molekül üzerinde bir elektriksel dipol momenti oluşur. Molekül başlangıçta bir elektrik dipol moment varsa bu dipol moment değişime uğrar. Oluşan veya değişen dipol moment ile elektromanyetik dalganın elektrik alanı arasında bir etkileşme oluşur. Dipol moment,

$$\vec{\mu} = \alpha \vec{E} \tag{2.14}$$

ile verilen bir orantı ile değişir. Burada; $\vec{\mu}$: indüklenen elektriksel dipol momentini, \vec{E} : uygulanan elektrik alan vektörünü ve α : katsayısı molekülün kutuplanabilme yatkınlığını (polarizabilitesini) göstermektedir. Bu ifade α kutuplanabilme yatkınlığının dokuz elemanlı simetrik bir tensör olduğunu gösterir. Bundan dolayı genellikle $\vec{\mu}$ vektörü, \vec{E} vektörü ile farklı doğrultudadır. Eş. 2.14 matris formunda aşağıdaki şekilde yazılabilir.

$$\begin{bmatrix} \mu_{x} \\ \mu_{y} \\ \mu_{z} \end{bmatrix} = \begin{bmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{bmatrix} \begin{bmatrix} E_{x} \\ E_{y} \\ E_{z} \end{bmatrix}$$
(2.15)

Böylece indüklenen $\vec{\mu}$ elektriksel dipol momenti, elektromanyetik dalganın titreşen alanının etkisiyle titreşir. Klâsik görüşe göre gönderilen dalga ile aynı frekansta (v₀) bir elektromanyetik dalga yayar. Bu yayılım Rayleigh saçılmasının klâsik açıklamasıdır. Molekülün titreşimi veya dönmesi sonucu kutuplanma yatkınlığı değişiyorsa, dipol moment, hem bu değişimin hem de elektrik alandaki değişiminin etkisiyle titreşecektir. Molekülün polarizabilitesi tüm normal titreşim koordinatlarının genel fonksiyonudur. Bu yüzden α kutuplanma yatkınlığı ilgili koordinatlarda, birinci dereceden daha yüksek olan terimler ihmal edilerek, Taylor serisine açılırsa;

$$\alpha = \alpha_0 + \sum_{k} \left\{ \left(\frac{\partial \alpha}{\partial Q_k} \right) Q_k \right\}$$
(2.16)

şeklinde ifade edilebilir. Burada; α_0 : denge konumu civarındaki kutuplanma yatkınlığı tensörünü, $\left(\frac{\partial \alpha}{\partial Q_k}\right)_0$ ise, k'inci normal mod için titreşim sırasındaki kutuplanma yatkınlığının değişimini gösterir.

Raman spektroskopisinde, molekül görünür bölgede v_0 frekanslı monokromatik bir ışın ile uyarıldığında oluşan indüklenmiş dipol momenti;

$$\vec{\mu} = \alpha \vec{E} = \alpha \vec{E}_0 + \sum_{k} \left\{ \left(\frac{\partial \alpha}{\partial Q_k} \right) Q_k \right\} \vec{E}$$
(2.17)

ifadesi ile verilebilir. İndüklenmiş dipol momentinin x bileşeni ise,

$$\mu_{x} = (\alpha_{xx})_{0} E_{x} + (\alpha_{xy})_{0} E_{y} + (\alpha_{xz})_{0} E_{z} + \left\{ \left[\left(\frac{\partial \alpha_{xx}}{\partial Q_{k}} \right)_{0} E_{x} + \left(\frac{\partial \alpha_{xy}}{\partial Q_{k}} \right)_{0} E_{y} + \left(\frac{\partial \alpha_{xz}}{\partial Q_{k}} \right)_{0} E_{z} \right] Q_{k} \right\}$$

$$(2.18)$$

şeklindedir. Bu ifadenin sağ tarafındaki ilk üç terime bakılırsa, α_0 'ın her bileşeni basit bir sabit olurken, Elektriksel alanın her bileşeni gelen ışının v_0 frekansı ile titreşmektedir. Buna göre dipol momentinin bileşenleri de aynı frekansta titreşecek ve gelen ışının molekül ile etkileşmesi sebebiyle çeşitli titreşimlere karşılık gelen ışınımlar yayınlanacaktır. Yayınlanan ışın, Raman saçılmasını oluştururlar. Eşitliğin sağ tarafındaki terimler tensörün türevinin her bileşeni için $\left(\frac{\partial \alpha}{\partial Q_k}\right)_0$ basit bir sabitidir.

Burada Q_k zamana bağlı faktör olan normal koordinatlardır. Bu durumda, elektrik alan E, v₀ frekansı ile titreşirken, Q_k normal koordinatlar normal titreşim frekansı olan v_{tit} ile titreşir. Yani normal koordinat için aşağıdaki eşitlik yazılabilir.

$$Q_k = Q_0 Sin(2\pi v_{tit} t)$$
(2.19)

Eş. 2.16 ve Eş. 2.19 kullanarak $\vec{\mu}$ elektriksel dipol momenti

$$\vec{\mu} = \left[\alpha_0 + \left(\frac{\partial \alpha}{\partial Q}\right)_0 Q_0 \operatorname{Sin}(2\pi \nu_{\text{tit}} t)\right] E_0 \operatorname{Sin}(2\pi \nu_0 t)$$
(2.20)

olarak yazılır. Eşitlik trigonometrik özdeşlikler kullanılarak,

$$\vec{\mu} = \alpha_0 E_0 Sin(2\pi\nu_0 t) + \frac{1}{2} \left(\frac{\partial \alpha}{\partial Q} \right)_0 E_0 Q_0$$

$$\left[Cos 2\pi(\nu_0 - \nu_{tit}) t - Cos 2\pi(\nu_0 + \nu_{tit}) t \right]$$
(2.21)

elde edilir. Burada ilk terim Rayleigh saçılmasına diğer iki terim ise Raman saçılması olarak bilinen Stokes ve Antistokes saçılmasına karşılık gelir.

Bir titreşim frekansının Raman'da gözlenebilmesi için molekülün titreşimi sırasında kutuplanma yatkınlığının değişmesi gerekir. Yani $\left(\frac{\partial \alpha}{\partial Q}\right)$ türevi sıfırdan farklı olmalıdır. Bu, Raman aktiflik için seçim kuralıdır ve daha genel bir ifade ile şu şekilde verilir:

$$\left(\frac{\partial \alpha_{ij}}{\partial Q_k}\right) \neq 0 \quad (i, j = x, y, x)$$
(2.22)

İnfrared soğurmada olduğu gibi kuantum mekaniksel görüşe göre, $\psi^{(m)}$ ve $\psi^{(n)}$ dalga fonksiyonları ile belirtilen iki titreşim düzeyi arasında Raman geçişi olabilmesi için ışığın saçılma şiddeti ile orantılı olan $\vec{\mu}_{nm}$ geçiş dipol momentinin (veya bileşenlerinden en az birinin) sıfırdan farklı olması gerekir.

$$\int \psi^{(n)} \vec{\mu} \psi^{(m)} d\tau = \vec{E} \int \psi^{(n)} \alpha \psi^{(m)} d\tau$$
$$= \vec{E} \alpha_0 \int \psi^{(n)} \psi^{(m)} d\tau + \vec{E} \sum_k \left\{ \left(\frac{\partial \alpha}{\partial Q_k} \right) \int \psi^{(n)} Q_k \psi^{(m)} d\tau \right\}$$
(2.23)

Dalga fonksiyonlarının ortagonalliğinden dolayı sağ taraftaki ilk integral terimi $\psi^{(n)} = \psi^{(m)}$ olmadığı sürece sıfırdır. Bu ilk terim Rayleigh saçılmasına karşılık gelir. Rayleigh saçılması hiçbir zaman yasaklanmamıştır [1].

2.3.2. Kuantum kuramı

Raman saçılması kuantum mekaniğine göre, elektromanyetik dalga ile moleküller arasındaki çarpışmalar ile açıklanabilir. Başka bir deyişle, v_0 frekanslı elektromanyetik dalganın hv₀ enerjili fotonları örnek moleküller iki tür çarpışma yapabilir. Bunlar esnek ve esnek olmayan çarpışmalardır. Esnek çarpışma sonucu enerji kaybı olmayacağından molekül tarafından saçılan fotonun frekansı yine v_0 olacaktır. Bu tür saçılma Rayleigh saçılmasıdır. Esnek olmayan çarpışmada ise, örnek moleküller ile hv₀ enerjili fotonlar arasında bir enerji alış-verişi olur. Bundan dolayı, kuantum şartlarına uygun olarak örnek moleküllerin enerji düzeyleri değişebilir. Moleküller, taban titreşim enerji seviyesinde iken hv_0 enerjisini alarak, üst kararsız titreşim enerji düzeyine uyarıldığında, çok kısa bir süre içerisinde $h(v_0)$ v_{tit}) enerjili fotonlar yayınlayıp, birinci titreşim düzeyine geçiş yapacaklardır. h(v_0 vtit) frekanslı bu saçılmaya "Stokes saçılması" denir. Birinci uyarılmış titreşim düzeyinde bulunan moleküller durumunda ise, hvo enerjisi olan moleküller daha üst kararsız titreşim enerji düzeylerine uyarılırlar. Uyarılan bu moleküller, $h(v_0+v_{tit})$ enerjili fotonlar yayınlayarak taban titreşim düzeyine geçeceklerdir. (v_0+v_{tit}) frekanslı bu saçılmaya ise "Anti Stokes saçılması" denir. Raman spektrumlarında Stokes saçılmaları Anti Stokes saçılmalarından daha şiddetlidir. Çünkü taban titreşim enerji seviyesindeki molekül sayısı, Boltzmann dağılımına göre oda sıcaklığında, birinci uyarılmış titreşim enerji seviyesindeki molekül sayısından fazladır. Raman olayının kuantum mekaniksel açıklaması Şekil 2.2.'de verilmiştir.

Şekil 2.2. Raman olayının kuantum mekaniksel gösterimi

2.4. İnfrared ve Raman Aktiflik

Kuantum mekaniğine göre bir titreşimin infrared ve Raman'da aktif olabilmesi için; infrared ve Raman metotlarının geçiş dipol momentlerinin verildiği Eş. 2.24 ve Eş. 2.25 ifadelerinin sıfırdan farklı olması gerekir [1].

$$\vec{\mu}_{nm} = \int \psi^{(n)} \vec{\mu} \psi^{(m)} d\tau \qquad (2.24)$$

$$\overline{\mu}_{nm} = \int \psi^{(n)} \alpha \psi^{(m)} d\tau \qquad (2.25)$$

İki düzey arasındaki geçiş olasılığı, her iki teknikte de geçiş dipol momenti ifadesinin karesi $([\vec{\mu}_{nm}]^2)$ ile orantılıdır.
Bir moleküle, sahip olduğu bir simetri işlemi uygulandığında molekül ilk durumuna göre değişmeden kalır. Bundan dolayı Eş. 2.9 ifadesinin ikinci terimine herhangi bir simetri işlemi uygulandığında üçlü çarpım işaret değiştirmemesi gerekir. Eğer üçlü çarpım işaret değiştirirse integral değeri sıfırdır. Taban titreşim dalga fonksiyonu $\{\psi^{(n)}\}$ tüm simetri işlemleri altında değişmez ve tam simetriktir. Üst titreşim dalga fonksiyonu $\{\psi^{(m)}\}$ ise, Q_k ile aynı simetri türündedir. Bir temel geçişin infrared aktif olması için $\vec{\mu}$ dipol moment vektörünün x,y,z bileşenlerinden birinin simetrisi ile normal kiplerinin simetrileri aynı olmalıdır [10]. Aynı şekilde moleküler titreşimlerin Raman'da aktif olabilmesi için ise, α kutuplanma yatkınlığı tensörünün $\alpha_{xx}, \alpha_{yy}, \alpha_{zz}, \alpha_{xy}, \alpha_{xz}, \alpha_{yz}$ bileşenlerinden en az biriyle normal kiplerin simetrileri aynı türden olmalıdır. İnfrared ve Raman aktiflik birbirinden farklı olduğundan, molekülün simetrisine bağlı olarak infrared'de gözlenemeyen bir titreşim frekansı Raman'da gözlenebilir. Bunun tersinin olabildiği gibi, bazı titreşim frekansları her ikisinde de aktif olmayabilir. Eğer bir molekül simetri merkezine sahipse infrared'de gözlenen titreşimler Raman'da gözlenmez. Raman'da gözlenen titreşimler de infrared'de gözlenmez. Bu olaya "karşılıklı dışarlama ilkesi" denilir.

2.5. Moleküler Simetri

Molekülü oluşturan atomların uzaydaki geometrik düzeni molekülün simetrisini oluşturur. Bir molekülün nokta, eksen ve düzlem gibi simetri elemanları bir grup meydana getirir. Simetri işlemleri sonunda molekülün en az bir noktası yer değiştirmemiş olarak kaldığından bu gruplara "nokta grupları" denir. Çok sayıdaki molekül, simetri elemanlarının sayısına ve özelliklerine göre sınırlı sayıdaki gruplar içinde sınıflandırılmışlardır.

Moleküllerin simetri özelliklerinden yararlanılarak karakter tabloları hazırlanmıştır. Grup teorisi kullanılarak, karakter tabloları yardımıyla her bir temel titreşimin indirgenemez gösterimlerden hangisine temel oluşturduğu ve hangi simetri türünde olduğu bulunabilir. Böylelikle simetrisi bilinen bir molekülün 3N-6 tane titreşiminden, hangilerinin infrared aktif olduğu bulunur [9].

2.6. Çok Atomlu Moleküllerin Titreşimleri

N atomlu bir molekülde her atomun konumu x, y ve z yer koordinatları ile verilir. Çok atomlu moleküllerin titreşim hareketi genel olarak oldukça karışıktır. Bir molekülün temel titreşim kipleri (normal mod), bütün atomların aynı fazda ve aynı frekansta yaptıkları titreşim hareketidir. N atomlu bir molekülün 3N tane serbestlik derecesi vardır. Lineer olmayan bir molekül için 3 tane eksen boyunca ötelenme ve 3 eksen etrafında dönme (doğrusal moleküllerde iki) titreşimleri, serbestlik derecesinden çıkarılırsa, 3N-6 tane (molekül lineer ise 3N-5) temel titreşim elde edilir [10]. (Kapalı halka oluşturmayan N atomlu bir molekülün N-1 bağ gerilmesi, 2N-5 açı bükülme (lineer ise 2N-4) titreşimi vardır.) Çok atomlu bir molekülün herhangi bir gözlenen bandına karşılık gelen titreşimi 3N-6 temel titreşimden bir veya birkaçının üst üste binmesi olarak tanımlanabilir.

Boltzmann olasılık dağılımına göre moleküller oda sıcaklığında taban titreşim enerji düzeyinde, çok az bir kısmı da uyarılmış titreşim enerji düzeyinde bulunabilir. Bu nedenle bir molekülün infrared spektrumunda en şiddetli bandlar temel titreşim düzeyinden kaynaklanan ($v=0\rightarrow1$) geçişlerinde gözlenir. Bu geçişlerde gözlenen titreşim frekanslarına "temel titreşim frekansı" denir. Temel titreşim bandları yanında, üst ton, birleşim ve fark bandları ortaya çıkar. Temel titreşim frekansının iki, üç veya daha fazla katlarında (2v, 3v) üst ton geçişleri gözlenir. İki veya daha fazla temel titreşim frekansının toplamı ve farkı olarak ortaya çıkan frekanslarda da birleşim ve fark bandları oluşur. Bu bandların şiddeti, temel titreşim bandlarına göre oldukça zayıftır. Bu titreşimlerin aktif olması için gerekli şart, daha önce ifade ettiğimiz aktiflik şartı ile aynıdır.

Aynı simetri türünde olan bir titreşim ile bir üst ton ve birleşim frekansı birbirine çok yakın ise aralarında bir etkileşme (rezonans) olur. Bu durumda spektrumda şiddetli bir temel titreşim bandı ile zayıf bir üst ton veya birleşim bandı gözleneceği yerde, temel titreşim bandı civarında gerçek değerlerden sapmış iki kat şiddetli bir band gözlenir. Bu olay ilk kez Fermi tarafından gözlendiğinden "Fermi rezonansı" olarak adlandırılır [1].

2.7. Grup Frekansları

Grup frekansı yöntemi, çok atomlu moleküllerin titreşim spektrumlarının yorumlanmasında en çok kullanılan yöntemlerden birisidir. Molekülün bütün atomlarının aynı faz ve frekansta hareket etmesi anlamına gelen temel titreşimlerin genlikleri, titreşim frekanslarının kütle ile ters orantılı olmalarından dolayı birbirinden farklıdır.

Molekül içindeki bir grup, moleküldeki diğer atomlara oranla daha hafif (OH, NH, NH₂, CN₂ gibi) veya daha ağır atomlar içeriyorsa (CCI, CBr, CI gibi), bu tip grupların molekülün geri kalan kısmından bağımsız olarak hareket ettiği kabul edilir. Bunun nedeni bu grupların harmonik titreşim genliğinin (ya da hızının) molekülün diğer atomlara oranla daha büyük veya daha küçük olmasıdır. Yani bir moleküldeki bir grup titreşirken, bunun titreşim potansiyeline katkısı ile molekülün geri kalan kısmında meydana gelen titreşimlerin potansiyele olan katkısı oldukça farklıdır. Bundan dolayı molekülde titreşen grup, molekülün geri kalan kısmından bağımsız titreşiyormuş gibi düşünülebilir.

Harmonik titreşicinin frekansı,

$$\nu = \frac{1}{2\pi} \sqrt{\frac{\mathbf{k}}{\mu}} \tag{2.26}$$

ifadesi ile verilir. Burada; k: kuvvet sabiti, μ : indirgenmiş kütledir. Kuvvet sabitinin büyük olması atomların denge pozisyonunda hareketin zorlaşmasına sebep olacağından, ikili ve üçlü bağların (C=C, C=O, C=N, C=C, C=N gibi) gerilme frekansları tekli bağlardan daha yüksektir. Grup frekanslarının bazıları Çizelge 2.3.'de verilmiştir. Birçok inorganik ve organik grupların frekansları belirli olup bunlar yapı analizinde kullanılır.

Moleküllerin normal titreşimlerini iskelet ve grup titreşimleri olarak iki gruba ayırabiliriz. 1400-700 cm⁻¹ dalga sayısı aralığında çok farklı frekanslarda bandların gözlendiği iskelet titreşim bölgesine, "parmak izi bölgesi" de denir [11].

Grup	Gösterim	Dalga Sayısı (cm ⁻¹)
-O-H gerilme	ν(OH)	3640-3600
-N-H gerilme	v(NH)	3500-3380
-C-H gerilme (Aromatik halkalarda)	v(CH)	3100-3000
-C-H gerilme	v(CH)	3000-2900
-CH ₃ gerilme	ν(CH ₃)	2962±10-2872±5
-CH ₂ gerilme	ν(CH ₂)	2926±10-2853±10
-C≡C gerilme	v(CC)	2260-2100
-C≡N gerilme	v(CN)	2200-2000
- C≡O gerilme	ν(CO)	1800-1600
-NH ₂ bükülme	$\delta(\rm NH_2)$	1600-1540
-CH ₂ bükülme	δ(CH ₂)	1465-1450
-CH ₃ bükülme	δ(CH ₃)	1450-1375
C-CH ₃ ükülme	ρ _r (CH ₃)	1150-850
-C-H düzlem dışı açı bükülme	γ(CH)	650-800

Çizelge 2.3. Grup Frekansları [12]

2.8. Molekül Titreşim Türleri

Bir molekülün herhangi bir frekansta; titreşim hareketinin belirlenmesine "işaretleme" adı verilir. Titreşim hareketinin belirlenmesi çok basit olabileceği gibi, çok karmaşık da olabilir. Karmaşık olan titreşim hareketleri, temel titreşimlere ayrılarak incelenebilir [13]. Bir molekülün herhangi bir titreşim hareketi esnasında yapabileceği temel titreşim hareketleri Şekil 2.3.'te verilmiştir. Bir molekülün yapabileceği temel titreşim hareketleri şunlardır:

• Gerilme Titreşimi (Stretching): Bağın eksen doğrultusunda uzaması veya kısalması hareketidir. Yer değiştirme vektörleri, bağ uzunluğundaki değişmeyi verir. Molekülün bütün bağlarının periyodik olarak uzaması veya kısalması "simetrik gerilme titreşimi"dir. Asimetrik gerilme titreşiminde ise bağlardan biri uzarken diğeri kısalır. Asimetrik gerilme titreşiminin enerjisi, genel olarak simetrik gerilme titreşimin enerjisi, genel olarak simetrik gerilme titreşimin enerjisinden büyüktür. Bağ gerilme titreşimleri v_s, v_{as} ile gösterilir.

• Açı bükülme titreşimleri (Bending): İki bağ arasındaki açının periyodik olarak değişmesi hareketidir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Atomların hareketi ile bir düzlemin (bir simetri düzlemi) yok edilmesi hareketi olarak tanımlanır ve δ ile gösterilir.

Açı bükülme titreşiminin özel şekilleri ise şunlardır:

1. Makaslama (Scissoring): İki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak oluşan değişim hareketidir. Yer değiştirme vektörleri bağa dik doğrultuda ve zıt yöndedir. Bu titreşim hareketi δ_s ile gösterilir.

2. Sallanma (Rocking): Yer değiştirme vektörleri birbirini takip edecek yöndedir. İki bağ arasındaki veya bir bağ ile bir grup atom arasındaki açının yer değiştirmesidir. Bu açı bükülme türünde bağ uzunluğu ve açının değeri değişmez. Bu titreşim hareketi ρ_r ile gösterilir.

3. Dalgalanma (Wagging): Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişim hareketidir. Molekülün tüm atomları denge konumunda bir düzlem içinde bulunurken, bir atomun bu düzleme dik hareket etmesidir. Bu titreşim hareketi w ile gösterilir.

4. Kıvırma (Twisting): Lineer ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesidir. Yer değiştirme vektörleri, bağ doğrultusuna diktir. Burada bağın deformasyonu söz konusu değildir. Bu titreşim hareketi t ile gösterilir.

• Burulma (Torsion): İki düzlem arasındaki açının bir bağ veya açıyı deforme ederek, periyodik olarak değişimi hareketidir. Bu titreşim hareketi τ ile gösterilir.

• Düzlem dışı açı bükülmesi (out of plane bending): Atomların hareketi ile bir düzlemin yok edilmesi hareketidir. Genelde kapalı halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı, "şemsiye titreşimi" olarak bilinir. Bu titreşim hareketi γ ile gösterilir.

Şekil 2.3. Moleküler titreşim türleri

3. BİLGİSAYAR HESAPLAMALI MOLEKÜLER SPEKTROSKOPİSİ

Bilgisayar hesaplamalı moleküler spektroskopi, moleküler yapıyı, kimyasal reaksiyonları ve spektroskopik büyüklükleri hesaplar. Bu hesaplamalarda kullanılan yöntemler Moleküler Mekanik Metotlar ve Elektronik Yapı Teorisi Metotları olmak üzere iki ana gruba ayrılır. Her iki yöntem de benzer hesaplamalar yapar. Bu hesaplamalar, moleküler yapının enerjisinin hesaplanması, geometrik optimizasyon ve titreşim frekanslarının hesaplanması olarak tanımlanabilir.

3.1. Moleküler Mekanik Metotlar

Moleküler mekanik hesaplamalar, moleküler sistemdeki elektronları açık bir şekilde göz önüne almaz. Bir molekül, yaylarla birbirine bağlanmış kütlelerden oluşan bir sisteme benzer tarzda, harmonik kuvvetlerle etkileşen kütleler topluluğu olarak ele alınır. Burada kütleler, elektronların, etrafında küresel olarak dağıldığı atom çekirdeklerini; yaylar ise atomlar arası kimyasal bağları temsil eder.

Atomlar arası etkileşmeler iki kısma ayrılır [14];

- 1. Kimyasal bağlarla bağlanmış atomlar arası etkileşmeler
- a. Gerilme
- b. Açı bükülme
- c. Burulma
- d. Düzlem dışı açı bükülme
- 2. Kimyasal bağlarla birbirine bağlanmamış atomlar arası etkileşmeler
- a. Van der Waals etkileşmeleri
- b. Elektrostatik etkileşmeler

Gerilme etkileşimleri,

$$E_{\text{Gerilme}} = \frac{1}{2}k(r - r_{o})^{2}$$
(3.1)

şeklinde verilmektedir. Burada; k: kuvvet sabiti, r_o: denge durumundaki bağ uzunluğu ve r: gerçek bağ uzunluğudur.

Açı bükülme etkileşimleri,

$$E_{\text{Bukulme}} = \frac{1}{2} k_{\text{o}} (\theta - \theta_{\text{o}})^2$$
(3.2)

şeklinde verilmektedir. Burada; k₀: açı bükülme kuvvet sabiti, θ_0 : denge durumundaki açı değeri, θ : açının gerçek değeridir.

Burulma etkileşimleri,

$$E_{Burulma} = \frac{1}{2} k_{\eta} (1 + \cos(n\eta - \eta_0))$$
(3.3)

şeklinde verilmektedir. k_{η} : kuvvet sabit, η : burulma açısı, η_0 : denge burulma açısı ve n: periyodikliği ifade eder.

Van der Walls etkileşimleri,

$$E_{vdw} = \sum \frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}}$$
(3.4)

şeklinde verilmektedir. Burada; A_{ij} : itici terim, B_{ij} : çekici terim ve r_{ij} : i. ve j. atomlar arasındaki uzaklıktır.

Elektrostatik etkileşme,

$$E_{\text{Elek.}} = \frac{1}{\varepsilon} \frac{Q_1 Q_2}{r}$$
(3.5)

şeklinde verilmektedir. Burada; ϵ : dielektrik sabit, Q_1 ve Q_2 etkileşen atomların yükleri ve r: atomlar arasındaki uzaklıktır.

Moleküldeki bağlar ve açılar birbirine bağımlıdır. Bundan dolayı oluşan bir gerilme, bükülme veya burulma hareketi komşu bağları ve bağ açılarını etkiler. Bu tür çiftleşme ile oluşan etkileşimlerin enerjisi, genelde saf etkileşimlere göre daha küçüktür. Bu tür çiftleşme ile oluşan etkileşmeler; burulma-bükülme, gerilmebükülme gibi etkileşimler örnek olarak verilebilir.

Atomlar arası etkileşimlerin her biri potansiyel enerji ile tanımlanır. Molekülün toplam potansiyel enerjisi, bu etkileşimlere karşılık gelen potansiyel enerjilerin toplamıdır.

$$E_{\text{TOP}} = E_{\text{GER}} + E_{\text{BUK}} + E_{\text{BUR}} + E_{\text{V.D. WAALS}} + E_{\text{ELEK}}$$
(3.6)

3.2. Elektronik Yapı Metotları

Elektronik yapı metotları, klâsik fizik yasaları yerine kuantum mekaniksel yasaları kullanır. Kuantum mekaniksel olarak bir molekülün enerjisi ve diğer büyüklükleri,

$$\hat{H}\Psi = E\Psi \tag{3.7}$$

Schrödinger denklemi ile belirlenir. Bu denklem ile sadece hidrojen atomunun belirli durumlarının tam çözümü mümkündür. Bu nedenle çok atomlu sistemler için farklı yaklaşım metotları kullanılması gerekir. Bu yaklaşımlardan biri elektronik yapı metotlarıdır. Bu metotlar değişik yaklaşık matematiksel metotlar ile karakterize edilir ve yarı deneysel metotlar ve ab initio metotlar olmak üzere ikiye ayrılır.

3.2.1. Yarı deneysel metotlar

Yarı deneysel metotlar kullanılarak yapılan hesaplamalarda molekül için oldukça fazla deneysel veri kullanmaya ihtiyaç vardır. MINDO, AM1 ve PM3 hesaplama metotları yarı deneysel metotlardır.

3.2.2. Ab initio metotları

Ab initio metotları, moleküler mekanik ve yarı deneysel metotların tersine hesaplamalar için ışık hızı, Planck sabiti, elektronların kütlesi gibi temel fizik sabitlerini kullanır. Deneysel değerlere ihtiyaç duymaz [15].

1969 yılında Pulay tarafından klâsik çalışmalar başlatılmıştır [16]. Bu çalışmalar moleküllerin kuvvet alanlarının ve titreşim spektrumlarının kuantum mekaniksel ab initio yöntemler ile hesaplanmasına dayanır. Bu çalışmalar "kuvvet" veya "gradyent" metotları kullanılarak çok atomlu moleküllerin kuvvet alanlarının hesaplanmasında gerçekçi ve iyi sonuç veren bir yaklaşımdır. Pulay'ın bu konuya getirdiği temel katkı, enerjinin nükleer koordinatlarına göre birinci türevinin (potansiyelin gradyenti) ab initio metotlarda analitik olarak elde edilebileceğini göstermiş olmasıdır. Bu yöntem Hartree-Fock metodu için de geliştirilmiştir. 1970 yılından sonra birinci ve ikinci analitik türevleri kullanılarak ab initio metotları ile spektroskopik büyüklükler hesaplanmıştır. Spektroskopik büyüklükler Hartree-Fock (HF), Yoğunluk Fonksiyon Teorisi (DFT), Möller-Plesset teorisi (MP2) gibi yöntemler kullanılarak hesaplanır [17, 18]. Bu yöntem, birinci türevleri hesaplanması sonucunda geometrik optimizasyon yapar. İkinci türevler ise, kuvvet sabitlerini hesaplar. Bu hesaplar kullanılarak titreşim frekansları bulunur. İnfrared ve Raman şiddetlerini bulmak için

dipol momentlerin türevlerinden yararlanılır. Günümüzde kuantum mekaniksel yöntemler kullanılarak yapılan hesaplamalar GAUSSIAN, GAMES, HONDO, Q-CHEM gibi paket programları ile yapılmaktadır. Bu programların tamamı değişik mertebeden analitik türevler kullanmaktadır. Çizelge 3.1.'de enerjinin türevlerinden hangi büyüklüklerin hesaplanabileceği verilmektedir.

$$\ddot{O}zellik \approx \frac{\partial E^{n_{F}+n_{B}+n_{I}+n_{R}}}{\partial F^{n_{F}}\partial B^{n_{B}}\partial I^{n_{I}}\partial R^{n_{R}}}$$
(3.8)

Çizelge 3.1. Enerji türevlerinden hesaplanabilen fiziksel büyüklükler [19].

n _F	n _B	nl	n _R	Özellik
0	0	0	0	Enerji
1	0	0	0	Elektrik Dipol Moment
0	1	0	0	Manyetik Dipol Moment
0	0	0	1	Enerjinin Gradyenti
2	0	0	0	Elektrik Polarizebilite
0	0	0	2	Harmonik titreşim frekansları
1	0	0	1	İnfrared soğurganlık yoğunluğu
3	0	0	0	Birinci elektrik hiperpolarizebilite
0	0	0	3	Titreşim frekanslarına anharmonik düzeltme
2	0	0	1	Raman yoğunluğu
1	0	0	2	Üst ton ve Kombinasyon bandlarının infrared yoğunlukları
4	0	0	0	İkinci elektrik hiperpolarizebilite
2	0	0	2	Üst ton ve Kombinasyon bandlarının Raman yoğunlukları

Burada; E: Toplam enerji, F: Dış Elektrik Alan, B: Dış Manyetik Alan, I: Nükleer Manyetik Moment, R: Atomik koordinatlara karşılık gelir.

3.3. Kuantum Mekaniksel Enerji İfadeleri ve Yoğunluk Fonksiyon Teorisi

Moleküllerin hareketi, kuantum mekaniksel olarak incelendiğinde, çekirdeğin hareketi ve elektronların hareketi olmak üzere iki kısma ayrılır. Çekirdeğin kütlesinin, elektronun kütlesinden çok büyük olması nedeniyle bu iki hareket ayrı ayrı düşünülerek bu ayrım yapılabilir. Bu yaklaşıma *Born-Oppenheimer* yaklaşımı denir [20]. Bir molekülün elektronik enerjisi kuantum mekaniksel olarak kapalı formda,

$$E_{e} = E^{T} + E^{V} + E^{J} + E^{XC}$$
(3.9)

seklinde yazılabilir. Burada; E^{T} elektronların hareketinden kaynaklanan kinetik enerji, E^V cekirdek-elektron cekimi ve cekirdek ciftleri arasındaki itme potansiyel enerjisi, E^J elektron-elektron itme terimi (elektron yoğunluğunun Coulumb özetkilesim olarak da tanımlanır), $E^{XC} = E^X + E^C$ ise değis-tokuş enerjisi (E^X) ve korelasyon enerjisi (E^C) terimlerine karşılık gelir. Bu durum elektron-elektron etkileşmelerinin geri kalan kısmını kapsar. Değiş-Tokuş enerjisi aynı spinli elektronlar arasındaki etkileşim enerjisidir. Kuantum mekaniksel dalga fonksiyonunun anti simetrikliğinden dolayı ortaya çıkar. Korelasyon enerjisi ise farklı spinli elektronlar arasındaki etkileşme enerjisidir. Bu enerjilerin büyüklükleri hakkında bir fikir edinmek için Neon atomunun enerjilerini örnek olarak verelim. Neon atomunun hesaplanmıs enerjileri: $E_e = -129.4 E^T = 129 E^V = -312 E^J = 66 E^C =$ -0,4 E^{X} = -12 atomik birim hartree'dir (1 hartree H=27,192 eV dur) [15].

Hartree-Fock (HF) modelinde enerjinin açık ifadesi moleküler dalga fonksiyonu Ψ 'ye bağımlıdır. Bunun yanı sıra bu modelde korelasyon enerjileri dikkate alınmaz.

Yoğunluk Fonksiyon Teorisi (DFT) enerji ifadesi elektron yoğunluğu p'ya bağlıdır. Yoğunluk fonksiyon teorisinde kullanılan üç temel kavramın tanımı aşağıda verilmiştir. Elektron yoğunluğu ($\rho(\mathbf{r})$): Herhangi bir noktadaki elektronun yoğunluğunu tanımlar.

Homojen elektron gaz modeli: Bir bölgedeki yük dağılımının, sisteme düzgün dağılmış n tane elektron ve sistemi nötralize edecek kadar pozitif yükten oluştuğu varsayımına dayalı idealize edilmiş bir modeldir. DFT modellerinde enerji ifadeleri, elektron dağılımının V hacimli bir küp içerisinde olduğu ve elektron yoğunluğunun $\rho=n/V$ ile verildiği sistemde n, $V\rightarrow\infty$ olduğu varsayımı yapılır. Burada ρ sabit kabul edilmiştir.

Fonksiyonel: Fonksiyonel kavramı, DTF'de sıkça kullanılmaktadır. Fonksiyonel; Bağımsız x değişkenine bağımlı değişkene fonksiyon denir ve f(x) ile gösterilir [15, 21]. Bir F fonksiyonu f(x)'e bağımlı ise bu bağımlılığa fonksiyonel denilir ve F[f] ile gösterilir.

3.3.1. Karma yoğunluk fonksiyon teorisi

Dalga mekaniğine dayanan HF teorisi değiş-tokuş enerjisi için iyi sonuç vermediği gibi korelasyon enerjilerini de hesaplayamaz; fakat kinetik enerji ifadesi için uygun bir ifade verebilir. DFT modelleri ise, değiş tokuş ve korelasyon enerjilerinde daha iyi sonuç verir; fakat kinetik enerji ifadesi için iyi sonuç veremez. Bu nedenle tam enerji ifadelerinin hesabı için saf HF veya saf DFT modelleri yerine, bu modellerin her ikisinin de enerji ifadelerinin toplam elektronik enerji ifadesinde kullanıldığı karma (melez, hibrit) modeller üretilmiştir. Bu modeller toplam enerji, bağ uzunlukları, iyonizasyon enerjileri gibi çoğu büyüklükleri saf modellerden daha iyi hesaplamaktadır [25-30].

3.3.2. B3LYP karma yoğunluk fonksiyon teorisi

Bir karma model yukarda sözü edilen enerji ifadelerini birleştirerek yeni bir enerji ifadesi elde edebilir.

Becke, değiş tokuş fonksiyonu ve korelasyon enerjisi E_{XC} için aşağıdaki karma modeli önermiştir.

$$E_{karma}^{XC} = c_{HF} E_{HF}^{X} + c_{DFT} E_{DFT}^{X}$$
(3.10)

Burada c_{HF} ve c_{DFT}'ler sabitlerdir. Bu karma modeller arasında en iyi sonuç verenler BLYP ve B3LYP karma yoğunluk fonksiyonlarıdır. B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi;

$$E_{B3LYP} = E^{T} + E^{V} + E^{J} + E_{B3LYP}^{XC}$$

$$(3.11)$$

olarak elde edilmiştir [31].

Bu modeller incelendiğinde, değiş-tokuş ve korelasyon enerjileri için ilgili ifadelerin iyi sonuçlar vermesine rağmen tam sonuçlar vermediği görülebilir. Bu enerjiler ile ilgili olarak DFT modelinde atomik ve moleküler sistemler için daha iyi sonuç verecek fonksiyon çalışmaları literatürde yoğun olarak devam etmektedir [15, 23, 24, 84, 85]

3.4. Geometrik Optimizasyon

3.4.1. Minimizasyon yöntemleri

Moleküllerde minimum enerji durumunu ve molekülün geometrisini belirlemek için iyi bir başlangıç geometrisinin elde edilmesi gerekir. Başlangıç geometrisinin doğru tahmin edebilmek için dört temel metot vardır. Bunlar,

- 1. X-ışınları veri tabanları kullanmak
- 2. Literatürde bulunan standart geometriler kullanmak
- 3. İskelet olarak adlandırılan iki boyutlu basit bir yapı çizmek
- 4. Bu iki boyutlu yapıyı üç boyutlu yapıya dönüştürmek.

şeklinde sıralanabilir. Bu şekilde oluşturulan bir başlangıç geometrisi için bir f fonksiyonu tanımlanır. Bu f fonksiyonu x(i) değişkenlerine bağlıdır. Ancak bu değişkenler birbirlerinden bağımsızdır. f fonksiyonunun alabileceği minimum değer,

$$\frac{\partial f}{\partial X_i} = 0 \text{ veya } \frac{\partial^2 f}{\partial X_i^2} > 0 \text{ şartını sağladığı noktalardır.}$$

Minimum enerji değerlerini hesaplamak için iki temel yöntem kullanılır.

Steepest Descent, Gradyent ve Powel yöntemleri: Bu metotlar $\frac{\partial f}{\partial X_i} = 0$ bağıntısını kullandığı için birinci türev metotları olarak bilinir.

Newton- Raphson yöntemi: Bu metot $\frac{\partial^2 f}{\partial X_i^2} > 0$ bağıntısını kullandığı için ikinci türev metodu olarak bilinir [32, 33].

3.4.2. Gradyent (Kuvvet) metodu

Hesaplamalar moleküle ait belirli bir geometriyi oluşturarak başlar. Bir koordinat sisteminde atomlar arasındaki yer değiştirmeler, molekülün enerjisinde ve diğer birçok özelliklerinde değişmelere neden olur. Molekülün yapısındaki değişiklikler sonucunda enerjinin koordinata bağımlı olduğu sonucuna varılır. Bu bağımlılık moleküler yapı ile molekülün enerjisi arasındaki ilişkidir. Bu ilişki "potansiyel enerji yüzeyi" olarak tanımlanır. Bir molekül için önce potansiyel enerji yüzeyi doğru tanımlanır. Bu tanımdan yararlanılarak molekülün denge geometrisine karşılık gelen minimum enerjili noktası hesaplanır. Hesaplamalarda önce aşağıdaki ifadede görülen gradyent vektörü g hesaplanır.

$$\langle \mathbf{g} | = \rho = \left[\frac{\partial \mathbf{E}}{\partial \mathbf{X}_1}, \frac{\partial \mathbf{E}}{\partial \mathbf{X}_2}, \dots \right]$$
 (3.12)

Daha sonra gradyent vektörünün sıfır olduğu noktalar hesaplanır:

$$\left\langle g \right| = \begin{bmatrix} 0, 0 \dots \end{bmatrix} \tag{3.13}$$

Bu geometri, molekülün minimum enerji geometrisi olarak tanımlanır.

Şekil 3.1. İki atomlu bir molekülde elektronik enerji grafiği

İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği Şekil 3.1.'de verilmiştir. Burada minimum enerjili nokta E_m ve minimum enerjiye karşılık gelen koordinat X_m ile gösterilir.

Bir molekülün potansiyel enerji yüzeyi birçok maksimum ve minimum bölgeler içerir. Potansiyel enerji yüzeyindeki minimumlar, sistemin dengede olduğu yerlere karşılık gelir. Bir molekül için birçok farklı minimum durum bulunması, molekülün farklı konfigürasyonlar karşılık gelir. Bu hesaplamalar yapılırken bazen bir sırt bölgesinin bir yönünde yerel bir minimum, diğer yönden bir maksimumuna karşılık gelir. Bu tür noktalar "eyer noktaları" olarak tanımlanır. Bu noktalar iki denge yapısı arasındaki geçişlere karşılık gelir (Şekil 3.2.).

Şekil 3.2. İki boyutta potansiyel enerji yüzeyi

Genel olarak geometrik optimizasyon, potansiyel enerji yüzeyindeki minimumları araştırarak moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon geometrisi hesaplanırken, geçiş yapıları hesaplanabilir. Ancak bu çalışma için minimum optimizasyon geometrisi hesaplanmıştır.

Geometrik optimizasyon, tanımlanan giriş geometrisindeki moleküler yapı ile başlar ve potansiyel enerji yüzeyini dolaşarak devam eder. Dolaştığı noktalardaki enerji ve gradyenti hesap ederek hangi yöne doğru ne kadar gidileceğine karar verilir. Minimumlarında ve eyer noktalarında enerjinin birinci türevi yani gradyenti sıfırdır. Bu noktalarda kuvvet de sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g'nin sıfır olduğu noktalara "kararlı noktalar" denilir.

Enerjinin atomik koordinatlarına göre ikinci türevi kuvvet sabitini verir. Optimizasyon algoritmaları genellikle Hessian matrisi kullanılarak kuvvet sabitleri ve bir noktadaki yüzeyin eğriliğini tanımlar ve böylece bir sonraki aşamanın belirlenmesini sağlar. Bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir derecede ise, optimizasyon tamamlanmış olur [15, 18, 22 34]

3.5. Hesaplama Yöntemi

3.5.1. Yoğunluk fonksiyon teorisinde öz uyumlu alan yöntemi

Bu kısımda Gaussian 03W paket programı kullanılarak yoğunluk fonksiyonu çerçevesinde bir molekülün spektroskopik büyüklüklerinin nasıl hesaplandığı verilmiştir.

Bir molekülün enerjisi ve geometrik parametreleri DFT modelinde SCF yöntemi ile aşağıda belirtilen yol izlenerek hesaplanır.

i. Yaklaşık bir moleküler orbital ifadesi giriş değeri olarak tahmin edilir. Bu tahmin atomik orbitallerin çizgisel kombinasyonlarını esas alır.

ii. Elektron yoğunluğu, tahmin edilen bu moleküler orbitalden hesaplanır ve giriş değeri olarak kabul edilir.

iii. Tahmin edilen enerji ifadeleri hesaplanır.

iv. Önce $S_{\mu\nu} = \int \phi_{\mu}(\vec{r}) \phi_{\nu}(\vec{r}) d\vec{r}$ ifadesi hesaplanır daha sonra da aşağıda verilen $H_{\mu\nu}^{\text{core}}$, $J_{\mu\nu}$, $F_{\mu\nu}^{\text{XC}}$ hesaplanır. Bir sonraki aşamada $F_{\mu\nu}$ değeri hesaplanır.

$$H_{\mu\nu} = \int \phi_{\mu}(\vec{r}) \left(-\frac{1}{2\nabla^2} - \sum \frac{Z_a}{\left| \vec{r} - \vec{R}_a \right|} \right) \phi_{\nu}(\vec{r}) d\vec{r}$$
(3.14)

$$J_{\mu\nu} = \sum P_{\lambda\sigma} \left(\mu\nu | \lambda\sigma \right) = \iint \phi_{\mu}(\vec{r}) \phi_{\nu}(\vec{r}) \frac{1}{|\vec{r} - \vec{r}'|} \phi_{\lambda}(\vec{r}) \phi_{\sigma}(\vec{r}) d\vec{r} d\vec{r}'$$
(3.15)

$$F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + J_{\mu\nu} + F_{\mu\nu}^{\text{XC}}$$
(3.16)

i. Karakteristik denklemden \mathcal{E}_i ve $C_{\nu i}$ hesaplanır.

ii. Hesaplanan C_{μ} 'lerden ψ_i 'ler tekrar hesaplanır.

Yukarıda ifade edilen aşamalardan başlangıç değeri hesaplanır. Bu başlangıç değer hesaplamalarından sonra SCF çevirimi tekrar başlar. Yani elektron yoğunluğu ρ ve $S_{\mu\nu}$, $H^{\text{core}}_{\mu\nu}$, $J_{\mu\nu}$, $F^{\text{XC}}_{\mu\nu}$, ε_i , $c_{\nu i}$, E_e , $\frac{\partial E_e}{\partial R}$ hesaplanır. Bu işlem, hesaplanan bu büyüklüklerin bir önceki değeri ile hesaplanan değeri arasındaki fark esas kabul edilir. Bu fark belli bir değerin altına ininceye kadar devam eder. Örnek olarak enerjinin yakınsamasını göz önüne alalım. Hesaplanan enerji değerleri arasındaki fark kabul edilebilir bir toleransta birbirine yakın ise, hesaplama işlemi yani SCF iterasyonu durdurulur. Enerjinin yakınsaması ile işlem sayısı arasındaki ilişki Şekil 3.3.'de verilmiştir [21, 34]

Şekil 3.3. Enerjinin yakınsaması ile işlem sayısı arasındaki ilişki

3.6. Normal Koordinat Analizi

Normal koordinat analizi kullanılarak moleküllerin titreşim hareketlerini inceleyebiliriz. Bu yöntemde;

- Molekülün nokta grubu belirlenir.
- Normal modların kaç farklı simetri türüne sahip oldukları belirlenir.
- Bu simetri türlerine ait titreşim sayıları belirlenir.
- Molekülün özelliğine göre titreşim türlerinin IR ve Raman aktiflikleri belirlenir.
- Titreşim frekansları hesaplanır. Bu hesaplamada moleküllere ait kuvvet sabitleri Wilson GF metodu kullanılarak hesaplanacaktır.

3.6.1. Wilson GF metodu

İki atomlu bir molekülde, molekülün titreşimi iki atomu birleştiren moleküler bağ boyunca oluşur. Ancak çok atomlu bir molekül için durum oldukça karmaşıktır. Moleküllerin titreşimini incelerken her bir atomun hareketinden kaynaklanan kinetik enerji ve atomlar arası etkileşmelerin sonucu oluşan potansiyel enerjiyi ve potansiyel enerji ifadelerini kullanarak karakteristik denklem elde edilmelidir.

Moleküllerin titreşimlerini incelerken birçok koordinat sistemi kullanılır. Bu titreşim koordinatları; kartezyen koordinatlar, iç koordinatlar, doğal iç koordinatlar ve normal koordinatlardan oluşur. Farklı koordinat sistemleri kullanılmasının nedenleri şunlardır.

- Kinetik enerji kartezyen koordinatlarda yazıldığında titreşim hareketlerini çizmek daha kolaydır.
- Ancak potansiyel enerji kartezyen koordinatlarda ifade edildiğinde çok karmaşık etkileşim terimleri ortaya çıkar. Bu hesaplamaları kartezyen koordinatlarda yapmak neredeyse imkânsızdır. Ancak bu işlemi iç koordinatlarda yapmak oldukça kolaydır. Çünkü iç koordinatlarda molekülün öteleme ve dönme hareketlerini hesaplamaya

gerek kalmaz. Bu hesaplamalardan kurtulmak için iç koordinat kullanmak gerekir. İç koordinat kullanılarak moleküle ait kuvvet sabitleri hesaplanır.

N atomlu molekülün kinetik enerji ifadesi kartezyen koordinatlarda,

$$T = \frac{1}{2} \sum_{N} m_{N} \left[\left(\frac{d\Delta x_{N}}{dt} \right)^{2} + \left(\frac{d\Delta y_{N}}{dt} \right)^{2} + \left(\frac{d\Delta z_{N}}{dt} \right)^{2} \right]$$
(3.17)

olarak yazılabilir. Kütle ağırlıklı genelleştirilmiş koordinatlar,

$$q_1 = \sqrt{m_1} \Delta x_1, q_2 = \sqrt{m_1} \Delta y_1, q_3 = \sqrt{m_1} \Delta z_1$$
 (3.18)

olarak verilir. Kinetik enerji ifadesi,

$$T = \frac{1}{2} \sum_{i}^{3N} q_i^2$$
(3.19)

şeklinde yazılır. Potansiyel enerji ise,

$$V(q_1, q_2, q_3, \cdots q_{3N}) = V_0 + \sum_{i}^{3N} \left(\frac{\partial V}{\partial q_i}\right)_0 + \frac{1}{2} \sum_{i,j}^{3N} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right) q_i q_j + \cdots$$
(3.20)

biçiminde gösterilir. Moleküle ait titreşimlerin hesaplanmasında normal koordinatlar kullanılır. Bir koordinat sisteminde, yer değiştirme koordinatı (q_i), normal koordinat Q şeklinde ifade edilir. Yani,

$$q_k = \sum_i B_{ki} Q_i \tag{3.21}$$

olarak verilir. Bu ifadedeki normal koordinatlar

$$Q_i = Q_i^0 \sin(2\pi v_i t + \phi_i)$$
(3.22)

şeklinde yazılabilir. Burada; v_i : normal titreşimdeki normal koordinatın zaman ile değişimi ve ϕ : faz farkı olarak verilir.

N atomlu bir molekül için 3N tane serbestlik derecesi vardır. Üç eksen boyunca öteleme ve üç eksen etrafında dönme titreşimleri serbestlik derecesinden çıkarılırsa, molekülün 3N-6 temel titreşimi bulunur. Normal titreşimlerin her biri değerinden bağımsız olarak hesaplanır. Bir normal titreşimin nasıl hesaplandığını görelim. Başlangıç şartları $(Q_1^0 \neq 0, Q_2^0 \neq 0, Q_3^0 \neq 0)$ şeklinde alındığında Eş. 3.21 ifadesi;

$$q_{k} = B_{kl}Q_{l} = B_{kl}Q_{1}^{0}\sin(2\pi\nu_{1}t + \phi_{1})$$
(3.23)

$$\mathbf{q}_{k} = \mathbf{A}_{kl} \mathbf{Sin}(2\pi\nu_{1}\mathbf{t} + \phi_{1}) \tag{3.24}$$

şeklinde verilir. Bu titreşim modunda bütün atomlar aynı frekansta ve aynı fazda titreşir. Bu nedenle Eş. 3.21 ifadesi bütün k'lar için geçerlidir.

Bağ uzunluğu, bağlar arasındaki açılar ve bunlardaki değişimler ayrı bir koordinat olarak seçilebilir. Bu koordinatlar "iç koordinatlar" olarak adlandırılır ve R ile gösterilir. İç koordinatların temel ifadesi

şeklinde iki koordinat arasındaki dönüşüm olarak yazılabilir. Burada; B: Dönüşüm matrisi, R: İç koordinat matrisi ve X: Kartezyen koordinat matrisidir.

Wilson; potansiyel ve kinetik enerji ifadelerini Eş. 3.18 ve Eş. 3.20 ifadelerini kullanarak aşağıdaki şekilde vermiştir:

$$2V = R^{t}FR \tag{3.26}$$

$$2T = R_t G^{-1} R' \tag{3.27}$$

Burada, R^t: İç koordinat matrisinin transfozu, R': İç koordinat matrisinin türevi, G: Kinetik enerji matrisi, F: Kuvvet sabiti matrisi olarak tanımlanır.

$$G=B M^{-1} B^{t}$$
(3.29)

 M^{-1} matrisi, moleküldeki i. atomun kütlesi m_i olmak üzere $\mu=1/m_i$ tanımlaması yapıldığında,

$$\mathbf{M}^{-1} = \begin{bmatrix} \mu_{1} & & & & \\ & \mu_{1} & & & \\ & & \mu_{2} & & \\ & & & \mu_{2} & & \\ & & & & \mu_{N} \end{bmatrix}$$
(3.30)

olarak verilmektedir. Elde edilen bu sonuçlardan sonra Lagrange hareket denklemleri iç koordinatlarda,

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\partial T}{\partial R'_{k}} \right) + \frac{\partial V}{\partial R_{k}} = 0$$
(3.31)

olarak yazılır. Karakteristik denklem aşağıdaki gibi tanımlanır.

$$\begin{vmatrix} \sum G_{1t}F_{t1} - \lambda & \sum G_{1t}F_{t2} & \cdots \\ \sum G_{2t}F_{t2} & \sum G_{2t}F_{t2} - \lambda & \cdots \\ \cdots & \cdots & \cdots \end{vmatrix} \equiv |GF - E\lambda| = 0$$
(3.32)

Bu denklem "karakteristik determinant" olarak adlandırılır. Burada, E: Birim matris, G: Kinetik enerji matrisinin tersi, F: Kuvvet sabiti matrisidir. Karakteristik denklemin köklerinden λ hesaplanır. Hesaplanan λ değerinden moleküle ait titreşim dalga sayıları $\overline{\nu}$ hesaplanır [11, 36]

3.7. Toplam Enerji Dağılımı

Molekülün toplam enerji dağılımını kullanarak hesaplanan frekansların hangi titreşim hareketine karşılık geldiği belirlenebilir [37]. Bu kısımda moleküle ait titreşim dalga sayılarının işaretlenmesinin nasıl yapıldığı incelenecektir.

İç koordinatlar (R) ile normal koordinat (Q) arasındaki ilişki,

R=LQ (3.33)

ifadesi ile verilir. Bu ifade açık formda,

$$R_{1} = \ell_{11}Q_{1} + \ell_{12}Q_{2} + \cdots + \ell_{1N}Q_{N}$$

$$R_{2} = \ell_{21}Q_{1} + \ell_{22}Q_{2} + + \ell_{2N}Q_{N}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$R_{i} = \ell_{i1}Q_{1} + \ell_{i2}Q_{2} + + \ell_{iN}Q_{N}$$
(3.34)

şeklinde yazılabilir. Burada Q_N normal koordinat değerleri v_N frekansı ile değiştiğinde R iç koordinatlar, ayrı ayrı R_1, R_2, \dots, R_i frekansı ile değişecektir. Belli

bir frekansa karşılık gelen R_i değerleri genlikleri oranında titreşim frekansı oluşturur. Q_N 'e karşılık gelen bir normal titreşimde, iç koordinatların genliklerinin bağıl oranları,

$$\ell_{1N}:\ell_{2N}:\dots:\ell_{1N} \tag{3.35}$$

ifadesi ile verilir. Birbirleri ile karşılaştırıldığında genliklerinin oranı,

$$GF\ell_{N} = \ell_{N}\lambda_{N} \tag{3.36}$$

şeklindedir. Burada ℓ_N sütun matrisi olup, $\ell_{1N}, \ell_{2N}, \dots, \ell_{iN}$ elemanlarından oluşur ve i'inci iç koordinatların sayısı olarak tanımlanır. Bu sütun matrisi G ve F matrisleri biliniyorsa hesaplanabilir. L sütun matrisi her bir λ için aşağıdaki ifadeden elde edilebilir.

$$GFL=L\Lambda$$
 (3.37)

Burada, A: elemanları λ değerlerini oluşturduğu bir köşegen matrisidir. Buradan ℓ_{ii} 'lerin oranları elde edilir.

Bu ifade normalizasyon koşulu kullanılarak hesaplanır. Çünkü genlik değerleri, gerilme ve bükülme koordinatlarında farklı olması nedeniyle deneysel değerlerle uyumsuzluk göstermemektedir [11, 36].

Pulay ve Török tarafından toplam enerji dağılımının (TED) matris gösterimi şu şekilde karakterize edilmiştir.

$$[\text{TED}]_i^k = L_{ik} L'_{ik} \tag{3.39}$$

Herhangi bir k titreşim modu için $[TED]_i^k$ değerlerinin toplamı bire eşit olmalıdır. Titreşim moduna karşılık gelen işaretleme, toplam enerjisine katkı miktarı olarak tanımlanır. Bu nedenle titreşim frekanslarının işaretlenmesi, toplam enerji dağılımı dikkate alınarak yapılmalıdır. İşaretlemeler çoğu zaman potansiyel enerji dağılımı (PED) kullanılarak da yapılmaktadır. TED ile PED benzer sonuçlar vermesine karşın TED'in daha iyi sonuçlar verdiği kabul edilmektedir [21, 38].

3.8. SQM Metodu

Pulay'ın kuvvet veya gradyent metodu [16]; çok atomlu moleküllerin kuvvet alanlarının ab initio modeller ile hesabında en önemli gelişme olarak bilinir. Bu metotda enerjinin koordinata göre birinci türevinin sıfır olduğu durumda molekülün denge durum geometrisi bulunur. Hartree-Fock modeli için birinci analitik türev Pulay tarafından formüle edilmiştir. Enerjinin koordinata göre ikinci türevi ise kuvvet sabitini verir. Kuvvet sabitinden ise, molekülün titreşim frekansları hesaplanabilir. Çok atomlu moleküllerin kuvvet sabitlerinin ilk sistematik hesaplamaları 1970'li yıllarda yapılmıştır. Özellikle HF modeli ile yapılan hesaplamalar, hesap edilen kuvvet sabitleri ve frekanslarla ilgili olarak sistematik ama %10-15 hatalı sonuçlar vermiştir [39].

Hesaplanan kuvvet sabitlerindeki bu hata miktarı, sonuçta titreşim frekanslarını da etkilemektedir. Ölçülen frekans değerleri ile hesaplanan frekans değerleri arasındaki farkı gidermek amacı ile ölçekleme metodu geliştirilmiştir. Bu alandaki ilk ciddi çalışmalar; etilen ve asetilenin kuvvet alanı çalışmalarında Pulay ve Meyer tarafından 1974'te kullanılan basit ölçeklemelerdir [40]. Bu kuvvet sabitlerinin gerçeğinden büyük hesaplanması sistematik olduğu için hesaplanan değerler sabit ölçekleme faktörleri ile çarpılarak gerilmelerde %10, bükülmelerde %20 azaltılmış hale getirilmiştir. Benzer çalışmalar, aynı dönemlerde farklı gruplarca yapılmıştır [41, 42].

Sistematik bir şekilde model olarak ölçekleme, Pulay tarafından geliştirilmiş ve kullanılmıştır [43]. Pulay HF/4-21 G ve HF/4-21 G* için ölçeklemeyi sistematik hale getirmişler ve bu model HF/4-21 G ve HF/4-21 G* tabanlı SQM modeli olarak adlandırılmıştır.

DFT/B3LYP 6-31 G* modeli için SQM metodu P. Pulay ve G. Rauhut tarafından 1995 yılında geliştirilmiştir [44]. 20 tane basit organik molekül (C, H, N, O...içeren) için geometrik optimizasyon DFT/B3LYP 6-31 G* metodu kullanılarak optimize edilmiş ve hesaplanan geometride bu moleküllere ait 347 tane temel titreşim frekansı yine DFT/B3LYP 6-31 G* kullanılarak hesaplanmış ve deneysel değerlerle karşılaştırılarak ölçekleme faktörleri belirlenmiştir.

Genellikle DFT/B3LYP 6-31G* düzeyindeki bir teori ile yapılan hesaplamada frekanslar deneysel değerlerden ortalama %5 daha büyük hesaplanmaktadır. Parmak izi bölgesinde modelin verdiği frekans değerlerinin deneysel değerlerden farkının RMS değeri \approx 74 cm⁻¹ SQM uygulandıktan sonra ise \approx 13 cm⁻¹ kadardır. Bu sonucun temel nedenleri; anharmoniklik, modelin eksikliği, molekül geometrisinde yapılmış hata miktarı olarak sıralanabilmektedir [44].

Bu hesaplamalarda takip edilen yol işlem sırasına göre aşağıda verilmiştir:

1. İncelenecek molekülün yaklaşık geometrisinin veri olarak girilmesi.

2. Geometri optimizasyonun yapılması: Önce hesaplama metodu ve kullanılacak temel set seçilir. Geometrik optimizasyon, seçilen model çerçevesinde enerjinin birinci analitik türevinden hesaplanır. Enerjinin birinci analitik türevi gradyent vektörü g'yi verir. g'nin sıfır olması moleküler sistemin dengede olması demektir. Bu durumda molekülün yapısı hesaplanır.

3. Molekülün titreşim frekansının hesaplanması: Geometrik optimizasyon ile elde edilen geometri veri olarak girilir ve hesaplama modeli seçilir. Seçilen modelde

enerjinin ikinci analitik türevi hesaplanır. İkinci türev bize kuvvet sabitlerini verir. Kuvvet sabitlerinden de titreşim frekansları, harmonik yaklaşımda, hesaplanır.

4. Titreşim frekansları uygun ölçekleme faktörleri kullanılarak ölçeklenir.

4. İYON VE LİGAND TİTREŞİMLERİ

Bir molekülün simetrisi, atomlarının uzaydaki geometrik dağılımıyla oluşmaktadır. Molekülün simetrisindeki nokta, eksen ve düzlem gibi geometrik elemanlar bir grup oluşturur ve bunlara simetri işlemi uygulanarak moleküle ait nokta grubu bulunur.

Moleküle ait temel titreşim modlarının hangi simetri türlerine ait olduğu ve bu titreşimlerin infrared aktif olup olmadığı; grup teori yardımıyla karakter tabloları kullanılarak bulunabilir. Bunun için aşağıda verilen förmülü kullanılır.

$$n_{i} = \frac{1}{h} \sum_{s} n_{r} \chi(\mathbf{R}) \chi_{i}(\mathbf{R})$$
(4.1)

Burada,

 $n_i = i.$ simetri türündeki titreşim mod sayısı h = grubun derecesi (simetri elemanı sayısı) $n_r = R$ sınıfındaki simetri elemanı sayısı $\chi(R) = R$ simetri elemanına ait indirgenebilir temsilin karakteri $\chi_i(s) = i.$ simetri türündeki R elemanına ait indirgenemez temsilin karakteri'dir.

N tane atomdan oluşan bir molekülde, 3N tane temel titreşim olduğunu, Bu titreşimlerden dönme ve öteleme hareketlerinin molekülün şekline bağlı olarak çıkartıldığını ve molekül doğrusal ise 3N-5, değilse 3N-6 tane temel titreşim sayısı bulunduğunu daha önce belirtmiştik. İndirgeme formülünden bulunan sonuçlarla, moleküle ait temel titreşimlerin toplam sayısı bulunur.

4.1. 1,3-Bis(4-piperidil)propan Molekülünün Temel Titreşimleri ve Simetri Türleri

1,3-Bis(4-piperidil)propan molekülü $C_{13}H_{26}N_2$ kapalı formülüne sahip 41 atomlu bir moleküldür. Açık formülü Şekil 4.1.'de verilmiştir. Temel titreşim modları 3N-6'dan 117 tane temel titreşimi vardır. Bu molekülün simetrisi incelendiğinde E ve σ_h simetri elemanlarına sahip olduğundan C_s nokta grubundadır. Nokta grubu Çizelge 4.1.'de verilmiştir.

Şekil 4.1. 1,3-bis(4-piperidil)propan molekülüne ait geometrik diziliş

$$N(A')=1/2[3.41.1+1.1.3]=63 A'$$
 (4.2)

$$N(A'')=1/2[3.41.1-1.1.3]=60 A''$$
(4.3)

Molekülün temel titreşimlerine karşılık gelen simetri türleri Γ_{3N} =63 A'+60 A'' şeklinde dağılır. Bu titreşimlerden öteleme ve dönme hareketleri çıkartılırsa molekülün temel titreşim modları bulunur.

Dönme ve öteleme hareketleri, Cs nokta grup tablosundan

$$\Gamma_{\text{Dönme}} = 2 \text{ A}' + \text{A}'' \text{ ve } \Gamma_{\text{Öteleme}} = \text{A}' + 2\text{A}''$$
(4.4)

şeklinde belirlenebilir. Bu durumda 1,3-bis(4-piperidil)propan molekülünün temel titreşimleri,

$$\Gamma_{3N} = \Gamma_{\text{Titreşim}} + \Gamma_{\text{Dönü}} + \Gamma_{\text{Öteleme}}$$
(4.5)

ifadesi de kullanılarak,

$$\Gamma_{\text{Titresim}} = 60 \text{A}' + 57 \text{A}'' \tag{4.6}$$

şeklinde belirlenmiş olur.

1,3-Bis(4-piperidil)propan molekülünün A' simetri türünde 60 tane düzlem içi ve A'' simetri türünde ise 57 düzlem dışı titreşim kipleri 60A' (IR, Ra) + 57A''(IR, Ra) şeklinde dağılmıştır. Tüm titreşimin modları Çizelge 4.1.'den görüldüğü gibi hem infrared aktif hem de Raman aktiftir. Çizelge 4.2. de ligand molekülün bağ gerilme ve açı bükülme titreşimlerimlerin dağılımı detaylı olarak verilmiştir.

Çizelge 4.1. C_S nokta grubuna ait karakter tablosu

C _s	Е	$\sigma_{\rm h}$	IR	Raman
A'	1	1	T_x, T_y, R_z	x^{2}, y^{2}, z^{2}, xy
Α″	1	-1	$T_z, R_x R_y$	yz, zx

Titreșim	Е	$\sigma_{\rm h}$	İşaretlemesi
Г(С-Н)	72	0	36a'+36a''
Г(С-С)	36	0	18a'+18a''
Γ(C-N)	12	0	6a'+6a''
Г(N-H)	6	2	4a'+2a''
Г(С-С-Н)	120	0	60a'+60a''
Г(С-С-С)	36	0	18a'+18a''
Г(Н-С-Н)	30	3	18a'+15a''
Г(C-N-H)	12	2	7a'+5a''
Γ(C-N-C)	6	2	4a'+2a''

Çizelge 4.2. 1,3-bis(4-piperidil)propan molekülünün bağ gerilme ve açı bükülme titreşimleri

4.2. 1,3-Bis(4-piridil)propan Molekülünün Temel Titreşimleri ve Simetri Türleri

1,3-Bis(4-piridil)propan molekülünün uzaydaki dizilişi Şekil 4.2.'de verilmiştir. Bu molekülün simetrisi incelendiğinde E, C₂, $\sigma_v(x,z)$ ve $\sigma_v(y,z)$ simetri elemanlarına sahip olduğundan C_{2V} nokta grubundadır. Nokta grubu Çizelge 4.3.'da verilmiştir.

Şekil 4.2. 1,3-Bis(4-piridil)propan molekülüne ait geometrik diziliş

$$N(A_1) = \frac{1}{4} [3.29.1 + 1.1.(-1) + 3.1.1 + 1.1.7] = 24 A_1$$
(4.7)

$$N(A_2) = \frac{1}{4} [3.29.1 + 1.1.(-1) - 3.1.(-1) + 1.7.(-1)] = 19 A_2$$
(4.8)

$$N(B_1) = \frac{1}{4} [3.29.1 + 1.(-1).(-1) + 3.1.1 + 1.7.(-1)] = 21 B_1$$
(4.9)

$$N(B_2) = 1/4[3.29.1+1.(-1).(-1)+3.(-1).1+1.7.1] = 23 B_2$$
(4.10)

Molekülün temel titreşimlerine karşılık gelen simetri türleri $\Gamma_{3N}=24A_1+19A_2+21B_1+23B_2$ şeklinde dağılır. Bu titreşimlerden öteleme ve dönme çıkartılırsa molekülün temel titreşim modları bulunur.

Dönme ve öteleme hareketleri, C_{2V} nokta grup tablosu kullanılarak çıkartılır ise,

$$\Gamma_{\text{Dönme}} = A_1 + B_1 + B_2 \text{ ve } \Gamma_{\text{Öteleme}} = A_2 + B_1 + B_2 \tag{4.11}$$

şeklinde belirlenebilir. Bu durumda 1,3-Bis(4-piridil)propan molekülünün temel titreşimleri,

$$\Gamma_{3N} = \Gamma_{\text{Titresim}} + \Gamma_{\text{Dönü}} + \Gamma_{\text{Öteleme}}$$
(4.12)

ifadesi de kullanılarak,

$$\Gamma_{\text{Titresim}} = 23A_1 + 18A_2 + 19B_1 + 21B_2 \tag{4.13}$$

şeklinde dağılmış olur.

Molekülün A₁ (düzlem içi) simetri türünde 23 tane, A₂ simetri türünde (düzlem dışı) 18 tane, B₁ (düzlem içi) simetri türünde 19 ve B₂ simetri türünde (düzlem dışı) titreşim kipi bulunmaktadır. Buna göre 1,3-bis(4-piridil)propan molekülünün 81 tane temel titreşimi $23A_1+18A_2+19B_1+21B_2$ şeklinde dağılmıştır. Ramanda titreşimlerin tümü aktifken, infrared titreşimlerinin A₁, B₁,ve B₂ titreşim modlarında aktiftir. Çizelge 4.3. 'de C_{2V} nokta grubuna ait karakter tablosu, Çizelge 4.4.'de ligand molekülün bağ gerilme ve açı bükülme titreşimleri verilmiştir.

Çizelge 4.3. C_{2V} nokta grubunun karakter tablosu

C _{2V}	Е	C2	$\sigma_v(xz)$	$\sigma'_{v}(yz)$	IR	Raman
\mathbf{A}_1	1	1	1	1	Z	x ² ,y ² ,z ²
A_2	1	1	-1	-1	R _z	Xy
B_1	1	-1	1	-1	x, R _y	Xz
B_2	1	-1	-1	1	y, R _X	Yz

Çizelge 4.4. 1,3-Bis(4-piridil)propan molekülünün bağ gerilme ve açı bükülme titreşimleri

Titreșim	Е	C ₂	$\sigma_v(xz)$	$\sigma'_{v}\left(yz\right)$	İşaretlemesi
Г(С-Н)	42	-2	2	6	$12A_1 + 8A_2 + 10B_1 + 12B_2$
Г(С-С)	36	0	0	4	$10A_1 + 8A_2 + 8B_1 + 10B_2$
$\Gamma(C-N)$	12	0	0	4	$4A_1 + 2A_2 + 2B_1 + 4B_2$
Г(С-С-Н)	72	-8	8	24	$24A_1 + 8A_2 + 16B_1 + 24B_2$
Г(С-С-С)	36	-4	4	12	$12A_1 + 4A_2 + 8B_1 + 12B_2$
Г(Н-С-Н)	9	-1	1	3	$3A_1 + 1A_2 + 2B_1 + 3B_2$
Γ (C-N-C)	12	0	0	4	$4A_1 + 2A_2 + 2B_1 + 4B_2$

4.3. 4-Asetilpiridin Molekülünün Temel Titreşimleri ve Simetri Türleri

4-Asetilpiridin molekülü C_7H_7NO kapalı formülüne sahip, 16 atomlu bir molekül olup Şekil 4.3.'de verilmiştir. Bu molekülün simetrisi incelendiğinde E ve σ_h simetri elemanlarına sahip olduğundan C_s nokta grubundadır. Nokta grubu çizelge 4.5.'de verilmiştir.

Şekil 4.3. 4-Asetilpiridin molekülüne ait geometrik dizilişi

$$N(A')=1/2[3.16.1+1.1.14]=31 A'$$
 (4.14)

$$N(A'')=1/2[3.16.1-1.1.14]=17 A''$$
(4.15)

Molekülün temel titreşimlerinin simetri türleri dağılımı $\Gamma_{3N}=31$ A' + 17 A'' şeklindedir. Bu titreşimlerden öteleme ve dönme hareketleri çıkartılırsa molekülün temel titreşim modları bulunur.

Dönme ve öteleme hareketleri, Cs nokta grup tablosundan
$$\Gamma_{\text{Dönü}} = 2 \text{ A}' + \text{A}'' \text{ ve } \Gamma_{\text{Öteleme}} = \text{A}' + 2\text{A}''$$
(4.16)

şeklinde belirlenebilir.

 $\Gamma_{3N} = \Gamma_{\text{Titresim}} + \Gamma_{\text{Dönü}} + \Gamma_{\text{Öteleme}}$ (4.17)

titreşimler Γ_{3N} titreşiminden çıkarılır ise,

$$\Gamma_{\text{Titresim}} = 28 \text{ A}' + 14 \text{ A}''$$
(4.18)

şeklinde 42 tane temel titreşimi bulunmuş olur.

4- Asetilpiridin molekülünün A' ve A" simetri türlerine göre 28A' (IR, Ra) + 14A"(IR, Ra) olarak dağılmıştır. Tüm titreşimin modları Çizelge 4.5.'den görüldüğü gibi hem infrared aktif hem de Raman aktiftir. Çizelge 4.6.'da ligand molekülünün bağ gerilme ve açı bükülme titreşimlerimlerinin dağılımı detaylı olarak verilmiştir.

Çizelge 4.5. C_S nokta grubuna ait karakter tablosu

Cs	Е	$\sigma_{\rm h}$	IR	Raman
A'	1	1	T_x, T_y, R_z	x^{2}, y^{2}, z^{2}, xy
Α″	1	-1	$T_z, R_x R_y$	yz, zx

Gerilme Titreşimleri	Е	σ_{h}	İşaretlemesi
Г(С-Н)	21	5	13A'+8A''
Г(С-С)	18	6	12A'+6A''
Γ(C-N)	6	2	4A'+2A''
Г(С=О)	3	1	2A'+1A''
Г(С-С-Н)	27	7	17A'+10A''
Г(С-С-С)	18	6	12A'+6A''
Γ(C-N-C)	6	2	4A'+2A''
Г(С-С=О)	6	2	4A'+2A''

Çizelge 4.6. 4-Asetilpiridin molekülünün düzlem içi gerilme titreşimleri

5. MATERYAL METOT

Bu tez çalışmasında:

İnfrared spektrumları, Gazi Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölüm' ünde bulunan MATTSON 1000 FT-IR spektrometresi ile 4000 - 400 cm⁻¹ aralığında kaydedilmiştir. Raman spektrumları Orta Doğu Teknik Üniversitesi Merkezî Laboratuar' ında bulunan Bruker FRA 106/S FT-Raman spektrometresi ile 3500 - 5 cm⁻¹ aralığında kaydedilmiştir. Elemental analizler, TÜBİTAK Ankara Test ve Analiz Laboratuar' ında bulunan LECO-932 model analizör kullanılarak kaydedilmiştir.

Bu çalışmanın teorik kısmında Gaussian 03W [61] ve Gaussview 3.0 [62] paket programları kullanılmıştır. Serbest haldeki molekülün hesaplamalarında B3LYP BLYP ve HF metotları ile 6-311G (d,p) ile 6-31G (d) temel setleri kulanılmıştır. Metal komplekslerin teorik çalışmalarında B3LYP hesaplama metodu ile LALN2DZ ve SDD temel setleri kullanılarak hesaplamalar yapılmıştır. Toplam enerji dağılımı ise, Paralel Quantum Solution (PQS) programı içerisinde yer alan SQM programı yardımı ile hesaplanmıştır [63].

6. DENEYSEL ÇALIŞMA

Bu bölümde 1,3-bis(4-piridil)propan molekülünün çinko ve civa halojenür kompleksleri ile 4-Asetilpiridin molekülünün çinko halojenür komplekslerinin hazırlanma şekli ve hazırlanan bileşiklerin elemental analiz sonuçları verilmiştir.

6.1. Bileşiklerin Hazırlanışı

6.1.1. M(1,3-bis(4-piridil)propan)X₂ (M: Hg ve Zn, X: Cl, Br ve I) bileşiklerinin hazırlanması

Bu bileşikler,

 $MX_2 + (C_{13}N_2H_{14}) \Rightarrow M(C_{13}N_2H_{14})X_2$ reaksiyonu ile elde edilmiştir. Bunun için 1 mmol 1,3-bis(4-piridil)propan molekülü etil alkol içerisinde çözülerek, üzerine 1 mmol MX_2 (M: Hg ve Zn, X:Cl, Br ve I) tuzlarından biri ilave edilip, bir gün oda sıcaklığında karıştırıldı. Daha sonra karıştırıcı üzerinden alınarak üç defa saf su ve etil alkol ile yıkanarak kurutuldu. Bu şekilde aşağıdaki metal halojenür kompleksleri elde edildi.

$Hg(C_{13}N_2H_{14})Cl_2$	$Hg(C_{13}N_2H_{14})Br_2$	$Hg(C_{13}N_2H_{14})I_2$
$Zn(C_{13}N_2H_{14})Cl_2$	$Zn(C_{13}N_2H_{14})Br_2$	$Zn(C_{13}N_2H_{14})I_2$

6.1.2. Zn(4-asetilpiridin)₂X₂ (X:Cl, Br ve I) bileşiklerinin hazırlanması

Bu bileşikler,

 $ZnX_2 + 2(NC_7H_7O) \Rightarrow Zn(NC_7H_7O)_2X_2$ reaksiyonu ile elde edilmiştir. Bunun için 2 mmol 4-asetilpiridin molekülü etil alkol içerisinde çözülerek, üzerine 1 mmol ZnX_2 (X:Cl, Br ve I) tuzlarından biri ilave edilip, bir gün oda sıcaklığında karıştırıldı. Daha sonra karıştırıcı üzerinden alınarak üç defa saf su ve etil alkol ile yıkanarak kurutuldu. Bu şekilde aşağıdaki metal halojenür kompleksleri elde edildi.

6.2. Bileşiklerin Kimyasal Analizleri

Kimyasal analiz sonuçları, analiz ve maddeden gelen hata sınırları içerisinde örneklerin birim formüllerini doğrulamaktadır.

Çizelge 6.1. M(Bpp)X₂ (M:Zn, Hg ve X: Cl, Br ve I) komplekslerinin kimyasal analiz sonuçları (Bpp=1,3-bis(4-piridil)propan)

Bileşik	C (% Bulunan, %Hesaplanan)	N (% Bulunan, %Hesaplanan)	H (% Bulunan, %Hesaplanan)
Zn(BPP)Cl ₂	47,14/46,67	8,48/8,37	4,80/4,21
Zn(BPP)Br ₂	37,11/37,13	6,66/6,72	3,32/3,35
Zn(BPP)I ₂	30,17/29,78	5,41/5,11	2,72/2,70
Hg(BPP)Cl ₂	33,52/33,23	6,03/5,96	3,53/3,00
Hg(BPP)Br ₂	28,30/27,94	5,13/5,01	3,23/2,52
Hg(BPP)I ₂	23,92/23,53	4,29/4,08	2,16/2,00

Çizelge 6.2. Zn(4-Ap)₂X₂ (X: Cl, Br ve I) komplekslerinin kimyasal analiz sonuçları (4-Ap=4-Asetilpiridin)

Bileşik	C (% Bulunan, %Hesaplanan)	N (% Bulunan, %Hesaplanan)	H (% Bulunan, %Hesaplanan)
$Zn(4-Ap)_2Cl_2$	44,421/45,600	7,326/7,401	3,371/3,727
$Zn(4-Ap)_2Br_2$	35,785/35,971	5,896/5,992	3,757/3,018
$Zn(4-Ap)_2I_2$	29,715/29,950	5,021/4,989	2,741/2,513

6.3. Kullanılan Teknik ve Çalışılan Düzenekler

Elde edilen metal halojenür bileşiklerinin infrared spektrumları, Gazi Üniversitesi Fen Edebiyat Fakültesi Kimya bölümünde bulunan ve ayırma gücü ± 2 cm⁻¹ olan Mattson 1000 FTIR spektrofotometresi ile 4000-400 cm⁻¹ bölgesinde kaydedildi. Raman spektrumları ise Orta Doğu Teknik Üniversitesi'nde bulunan FRA 106/S FT-Raman spektrometresi kullanılarak 3500 - 5 cm⁻¹ bölgesinde kaydedildi.

6.3.1. İnfrared spektrofotometresi

İnfrared spektrometresinin en önemli kısımları ışık kaynağı, monokramatör ve dedektör'dür. Işık kaynağı olarak, elektrik akımı yardımı ile ısıtıldıkları zaman siyah cisim ışıması yapan ve yüksek sıcaklıklarda bozunmayan katılar kullanılır. Bunlardan Nernst Glower adını alan kaynak, en yaygın olarak kullanılanı olup, 2mm çapında ve 20 mm uzunluğunda olan ve 1800 Kelvin'e ısıtılabilen nadir toprak metali (Zirkonyum, Ytterbium, Erbium) oksitlerinin karışımından yapılmıştır. İnfrared kaynağı olarak kullanılan bir başka kaynak Globar'dır. Globar 1600 Kelvin sıcaklığına ısıtılmış 5mm çapında 50 mm uzunluğunda bir silisyum karbür çubuktur. Spektrometrede ışık kaynağı olarak nikel-krom alaşımı olan bir nikron tel de kullanılabilir. Nikron telin yaydığı infared ışınlarının şiddeti Globar ve Nernst Glower kaynaklarına göre daha az olmakla beraber, daha uzun süre kullanılabilmesi, ötekilere oranla önemli bir üstünlüktür. IR bölgesinde kullanılan bir başka ışık kaynağı, 900-1100 cm⁻¹ de ışık yayan CO₂ lazeridir.

İnfrared spektrometrelerinde monokromatörün görevi optik ağlar veya prizmalar kullanarak dalga seçimini yapmaktır. İnfrared bölgenin tümünde iyi bir ayırma elde edebilmek için iki optik ağ birden kullanılmalıdır. Optik ağlar tarafından ayrılan ışınlardan iyi bir spektrum elde etmek için yüksek dereceli ışın tonların ışık yoluna geçmesini önleyen filtreler kullanılır.

İnfrared ışınlarının şiddetinin ölçülmesi, foton dedektörleri veya ısısal dedektörler ile yapılır. Foton dedektörleri, PbS, PbTe, PbSe, InAs, InSb gibi yarıiletken maddelerden yapılmıştır. İnfrared ışınları ile etkileştikleri zaman iletken hale gelerek devrede elektrik akımının geçmesini sağlayan bu dedektörlere "fotoiletken dedektör" adı verilir. Fotoiletken dedektörler, ısısal dedektörlere göre daha hızlı ve daha duyarlıdır. Ancak 10000 cm⁻¹ ile 2000 cm⁻¹ arasındaki yakın infrared bölgesinde kullanılabilirler. Isısal dedektörler, infrared fotonlarının soğurulması sonucu ısınarak elektriksel direnç gibi bazı fiziksel özelliklerini değiştirebilen maddelerden yapılır. Bu biçimde çalışan dedektörlerin en yaygın olarak kullanılanları; termoçiftler, iki değişik

metal levhanın, birbirine veya siyah bir filmle kaplı altın levhaya kaynak yapılmasıyla elde edilir. İki metal levha arasında oluşan potansiyel farkın değeri, bağlantı yerinin üzerine düşen infrared ışınlarının neden olduğu sıcaklık artışı ile doğru orantılı olarak artar ve bu yöntemle spektrum elde edilir. Termoçiftlerle yapılan ışık şiddeti ölçümü yavaş olmakla beraber, yapılan ölçümlerin dalgaboyundan bağımsız olması ve yakın, uzak ve orta infrared bölgelerin tümünde termoçiftlerin kullanılabilmesi çok önemli bir üstünlüktür. Pizoelektrik dedektörler bir kristal ekseni boyunca bir iç elektriksel polarlanma özelliği olan triglisin sülfat, baryum titanat, kurşun zirkonat veya lityum tantalat kristallerinin infrared ışımasını soğurması sonucu bu özelliklerini değiştirmeleri ilkesi ile çalışırlar. Bir başka deyişle, bu tür pizoelektrik malzemeler üzerlerine düşen infrared ışınlarının ısı etkisiyle, sığaları sıcaklıkla değişen bir kapasitör görevi görürler. Diğer dedektörlerden üstünlüğü infrared bölgesinde kullanılan ve sinyal oluşturma süresi en kısa olan ısısal dedektörler olmalarıdır [45].

İnfrared spektrometrelerinde kaynaktan çıkan ışınlar, numunenin üzerinden geçerek maddenin kimyasal yapısına bağlı olarak kaynaktan gelen beyaz ışığı belirli dalga boylarını soğurma prensibi ile çalışır. Kaynaktan çıkan beyaz ışık, aynalar yardımı ile iki özdeş ışına ayrılır. Bu ışınlar, saniyede 15 kez dönen bir ışın demeti yolu kesicisi ile modüle edilirler. Kesici, ön yüzünde ayna bulunan bir daireden oluşur. Bu ışınlar, kesicideki özel bir sistemle, bir defasında referans hücresinden, diğer defasında numuneden geçerek giriş yarığına ulaşırlar. Yarıktan geçen ışın çift kırınım ağlı monokromatöre düşer ve kırınım prensibine göre dalga boylarına ayrılır. Analizin yapılabilmesi için oldukça dar aralıkta ışık gereklidir. Çıkış yarığından ve filtreden geçen tek frekanslı ışın, dedektöre (termoçift) gelir. İnfrared ışınının, ısı ışını olması sebebiyle kullanılan dedektörlerin çoğu duyarlı sıcaklık ölçümüne dayanır. Spektrometre cihazının örnek ve referans ışınlarının şiddetleri arasındaki fark yok olduğunda, dedektörde değişen bir sinyal oluşur. Değişen bir sinyalin yükseltilmesi doğrusal bir sinyalin yükseltilmesinden daha kolay olduğundan, değişen sinyal tercih edilir. Bu sinyal amplifikatör ile yükseltildikten sonra yavaslatici tarağı, örnek ve referans ısınların siddetleri arasındaki fark yok edilinceye kadar özel bir motoru (senkronize motor) hareket ettirir. Ayrıca bu motor,

monokromatörden çıkan tek frekanslı ışına göre spektrum yazıcısını döndüren ikinci bir motor ile uyumlu bir şekilde çalışır. Bu sırada üzerinde spektrum kâğıdı bulunan tambur döndürülür ve kâğıda yazan kalem, tarakla birlikte aşağıya inerek numunenin spektrumunu çizer. Soğurma olmadığı zaman tarak ve kalem aynı anda yukarıya çıkar. Spektrometrenin şematik gösterimi Şekil 6.1.'de verilmiştir.

Şekil 6.1. İnfrared spektrometrenin şematik gösterimi

6.3.2. Fourier transform infrared spektrometresi (FTIR)

Fourier Transform Infrared Spektrofotometresine kısaca FTIR spektrofotometresi denir. Bu teknik hem soğurma hem de salma spektroskopisine uygulanabilir. Salma spektrumu için salma radyasyonunu v frekanslı bir sinüs dalga olarak kabul edelim. Dedektörün çıkışından sinüs dalgayı frekansın bir fonksiyonu olarak elde eden monokromatörler yardımı ile dalga boylarını seçerek ölçümün yapıldığı spektrofotometrelerde herhangi bir anda seçilen dalga boyundaki spektroskopik bilgi toplanır. Bu dalga boyunun dışındaki bölgede bulunan bilgiler de elde edilir. Ancak bu bilğilerden o anda yararlanılamaz. Ancak dalga boyunun bir değerden bir değere değiştirilmesi ile, yani dalga boyu taraması ile tüm dalga boyundaki bilgiler çeşitli zamanlarda toplanır ve böylece frekans ölçekli soğurma spektrumu elde edilir. Spektrometrelerde, bazı özel yöntemler kullanılarak tüm frekanslardaki bilgileri aynı anda elde etmek de mümkündür. Bu tür spektrofotometrelerde monokromatör kullanılmaz ve ışık kaynağından gelen tüm frekansların örnek ile aynı anda etkilesmesi sağlanır böylece tüm frekansları kapsayan bu bilgilerin zamanla değisimi izlenir. Bir başka tanımla, bu tür uygulamada spektrum, taramalı yöntemde olduğu gibi frekans ölçeği yerine zaman ölçeğinde elde edilir. Zaman ölçeğinde elde edilen bilgiler "interferogram" adını alır. İnterferogram, alışılan soğurma spektrumunun Fourier Transformu'dur. Alette bulunan bir bilgisayarda, "ters Fourier Transformu" adını alan bir matematiksel işlemle interferogram, frekans ölçeğindeki bilgilere dönüştürülür. Böylece alışılan türdeki soğurma spektrumu elde edilmiş olur. Bilgisayarın bir başka rolü de zaman ölçeğindeki spektrumu birçok kez elde etmek, bu bilgiyi belleğinde biriktirmek ve böylece toplam sinyalin elektronik gürültüden bağımsız bir şekilde ölçümünü sağlamaktır. Elektronik gürültü sinyali, gelişigüzel bir sinyal olduğu için bu sinyalin birbiri üzerine eklenmesi gürültüyü arttırmaz, gürültü her eklemede kendi kendini telafi eder. Spektrum sinyali gelişigüzel bir sinyal olmadığı için birbiri üzerine eklenir ve gürültüye göre daha belirgin bir biçimde elde edilir. Böylece yöntem, daha duyarlı hale getirilmiş olur.

Fourier Transform'lu spektrofotometrelerde, "Michelson İnterferometresi" adlı bir düzenek (Şekil 6. 2) kullanılır. Işın demeti, bu düzeneğin ortasına yerleştirilen yarı geçirgen bir yüzey yardımıyla şiddetleri birbirine eşit olan iki demete ayrılır. Bu ışınlardan birisi, A ile gösterilen sabit aynaya kadar yol alır ve buradan yansıyarak örneğe ulaşır. Işığın öteki kısmı, belli bir frekansla titreşen ve yerini periyodik olarak değiştiren hareketli bir B aynasından yansıyarak örnekle etkileşir. Böylece örneğe ulaşmadan önce ışığın A aynasından yansıyan demeti sabit bir yol, B aynasından yansıyan demeti ise değişen bir yol almış olur. A ve B aynalarından yansıyarak örneğe ulaşan iki ışın demetinin aldıkları yollar birbirlerine eşit ise, iki ışın arasında yapıcı bir girişim olur ve dalga kuvvetlenir. Bu iki demetin yol farkı $\lambda/2$ ise, yani B aynası ilk konumuna göre $\lambda /4$ kadar öteye gitmişse, aralarında yıkıcı bir girişim olur ve dalga tamamen söner. B aynasının ilk konumundan $\lambda/2$ kadar öteye gitmesi ise, iki ışının yol farkının λ kadar farklı olmasını sağlar ve bu frekansı ile ulaştırır. Bu frekansa interferogram frekansına, f denir. f, infrared ışınının frekansı, v ile orantılıdır. Burada v, hareketli aynanın hızı (cm /s), v ise dalga sayısıdır. 0.01 cm/s ile 10 cm/s arasında bir hızla hareket ettirilen B aynasının her bir konumu için belli bir dalga sayısına sahip infrared ışını, bu eşitliği saptayarak ve yapıcı bir girişim yaparak örneğe ulaşır. Örnek, herhangi bir veya birkaç dalga boyundaki ışığı soğuruyorsa o dalga sayılarındaki ışığın şiddeti azalır. Bu bilgi birbirleriyle örtüşen bir dizi dalga içinde saklı kalır. Ancak ters Fourier işleminden sonra ışığın şiddetinin azaldığı dalga sayısı, yani soğurma spektrumu ortaya çıkar. Tipik bir interferometre için yukarıdaki eşitlikle verilen modülasyon frekansı birkaç yüz hertz olduğundan, Fourier Transform'lu aletlerde hızlı infrared dedektörlerinin kullanılması gerekir. Bu bakımdan Fourier Transform'lu spektrofotometrelerde hızlı sinyal üreten pizoelektrik dedektörler kullanılır. Durumda da yapıcı bir girişim ortaya çıkar ve λ dalga boyundaki ışık kuvvetlenir. Michelson interferometresi ışığı dedektöre $2v\overline{v}$ ile ulaşır. Bu frekansa interferogram frekansı, f denir. f, infrared ışınının frekansı, v ile orantılıdır. Burada v, hareketli aynanın hızı (cm /s), v ise dalga sayısıdır. 0.01 cm/s ile 10 cm/s arasında bir hızla hareket ettirilen B aynasının her bir konumu için belli bir dalga sayısına sahip infrared ışını, bu eşitliği saptayarak ve yapıcı bir girişim yaparak örneğe ulaşır. Örnek, herhangi bir veya birkaç dalga boyundaki ışığı soğuruyorsa o dalga sayılarındaki ışığın şiddeti azalır. Bu bilgi birbirleriyle örtüşen bir dizi dalga içinde saklı kalır. Ancak ters Fourier işleminden sonra ışığın şiddetinin azaldığı dalga sayısı, yani soğurma spektrumu ortaya çıkar. Tipik bir interferometre için yukarıdaki eşitlikle verilen modülasyon frekansı birkaç yüz hertz olduğundan, Fourier Transform'lu aletlerde hızlı infrared dedektörlerinin kullanılması gerekir. Bu bakımdan Fourier Transform'lu spektrofotometrelerde hızlı sinyal üreten pizoelektrik dedektörler kullanılır.

Şekil 6.2. Michelson İnterferometresi

İnterferometrik spektrum ölçümlerinin alışılagelmiş spektroskopik ölçümlere göre önemli üstünlükleri vardır. Herşeyden önce bu tür aletlerde, ışık kaynağından gelen tüm dalga boyları, aynı anda birlikte kullanılmadığı gibi ışık herhangi bir aralıktan da geçirilmez. Bu nedenle interferometrik ölçümlerde hem duyarlık daha fazladır hem de ayırma gücü çok daha büyüktür. Ayrıca ölçüm süresi daha kısa olduğundan sonuçlar daha hızlı olarak üretilir. Tüm spektrum bir saniyeden daha kısa bir sürede elde edilebilir.

6.3.3. Raman spektrometresi

Raman, infrarde spektroskopisinin tamamlayıcısı olup IR'de gözlenmeyen zayıf titreşimler Raman spektrometresiyle gözlenir. Raman spektrometrelerinde kullanılan malzeme açısından sınırlama olmayışı sulu ortamda rahatlıkla çalışılabilmesi, dipol moment değişimine gerek duyulmaksızın yani simetrik gerilmelerin gözlenmesine olanak sağlar. Bu spektrometrelerin UV, görünür ve yakın IR bölgelerinde kullanılabilmesi optik olarak ölçüm kolaylığı sağlar.

Raman cihazı başlıca üç kısımdan oluşur: Işın kaynağı, özel numune kabı ve detektör. Işın kaynağının çok şiddetli olması gerekir. Bunun için düşük basınçlı ve

yüksek akımla civa ark lambaları kullanılır. Numune üzerine düsen ışığın şiddetini daha da arttırmak için civa ark lambası, yay şeklinde yapılır. Böylece numunenin emisyonu artırılır. Bu koşullarda çalışan cihazın fazla ısınmaması için lamba kısmı suyla soğutulur. Son zamanlarda civa ark lambasının yerine daha şiddetli ışın veren Helyum Neon lambası kullanılmaya başlanmıştır. Bu lambanın civa lambasına göre, kullanılan numunenin yaklaşık 0.1 mL olması, daha uzun dalga boylu ışın kullanıldığından numunedeki moleküllerin parçalanmaması ve numunenin floresans ışığı yaymaması gibi avantajları vardır.

7. SONUÇLAR VE TARTIŞMA

7.1. 1,3-Bis(4-piperidil)propan Molekülü

1,3-Bis(4-piperidil)propan molekülü büyük bir yapıya sahip olduğu için dallı (Dendrimer) ve aşırı dallı (Hyperbranched) polimerlerin yapımında kullanılmaktadır. Dallanık ve aşırı dallanık polimerleri yüksek çözünürlük ve düşük viskozite gibi birçok benzer özeliklere sahiptir [46-50]. Aşırı dallanık polimerleri (sulfone-amine) birbirini tekrarlayan bir çok adımda 4,4'-trimethylenedipiperidin ve 1-(2aminoethyl)piperazin kullanılarak hazırlanabilir [51]. 1,3-bis(4-Ayrıca, piperidil)propan polythioamidlerin hazırlanmasında da kullanılır. Kawai ve ark. [52] Willgerodt-Kindler reaksiyonu ile yaptıkları çalışmada, polythioamidleri hazırlamışlardır. Bu çalışmada söz konusu polimerlerin özellikleri ve yapıları aydınlatılmıştır. Ayrıca, Goforth ve ark. [53], beş yeni inorganic-organic tuz sentezlemişler ve bu tuzları yapısal olarak karakterize etmişlerdir. Bu yeni tuzların tek kristallerini Bil₃ ve trimethylenedipiperidin hydrate (TMDP. H₂O) kullanıp termal olarak büyütmüşlerdir [53].

1,3-bis(4-piperidil)propan molekülünün titreşim modlarıyla ilgili ne detaylı ne teorik hesaplama ne de deneysel çalışma yapılmamıştır. 1,3-bis(4-piperidil)propan molekülünün geometrik yapısına ait bir literatür çalışması olmadığı için benzer moleküler yapıları incelenerek olası durumlar araştırıldı. Piperidin ve 4metilpiperidin moleküllerinin geometrik yapısı ve titreşim spektrumları yoğunluk fonksiyon teorisi (DFT) ve hartree-fock (HF) hesaplama yöntemleri ile daha önceki çalışmamızda incelenmişti [54]. 1,3-Bis(4-piperidil)propan molekülününe ait metal (II) halojenür kompleksleri ve metal (II) tetracyanonickelate komplekslerinin titreşim spektroskopisi çalışmaları ise deneysel olarak tarafımızdan hazırlandı [55,56].

1,3-bis(4-piperidil)propan molekülünün geometrik yapısı ve titreşim spektrumu yapmış olduğumuz daha önceki çalışmamızda, teorik olarak DFT yöntemlerle hesaplanmıştır. Bu çalışmada serbest haldeki 1,3-bis(4-piperidil)propan molekülünün taban durumdaki geometrisi, modları ve titreşim frekansları hesaplanmıştır.

Molekülün infrared ve Raman spektrumları kaydedilerek işaretlemeleri ilk defa tarafımızdan tartışılarak literatüre geçirilmiştir.

1,3-bis(4-piperidil)propan molekülünün taban durumunu belirlemek için piperidin molekülünün yapısı, metil grubunun durumu ve ikinci piperidin molekülünün uzaydaki bağlanma durumları incelendi. Piperidin molekülü ile yapmış olduğumuz çalışmamızda ise sandalye konformasyonunun en kararlı durumda olduğu tespit edilmişti [54, 57, 58]. 4-Metilpiperidin'de ise metil grubunun, piperidin halkasına equatorial pozisyonda bağlanması durumunda daha kararlı olduğu belirlenmişti. Ayrıca, 1,3-bis(4-piridil)propan (Bpp) molekülünün serbest halde ve kristal yapılarda molekülün farklı konformasyonları verilmiştir [59, 60]. 1,3-bis(4-piridil)propan molekülünün uzaydaki mümkün yönelim dallanması piridil grubu propan grubuna N-N arası uzaklık ve C-C-C-C dihedral açısına bağlı olarak dört farklı konformasyonlar *Transoid-Transoid (TT), Transoid-Gauche (TG), Gauche-Gauche(GG)* ve *Gauche-Gauche' (GG')* yönelimine sahip olabilmektedir. Bu yönelim şekilleri Şekil 7.1.'de verilmiştir.

Yukarda yapılan tartışmalar sonucunda, 1,3-bis(4-piperidil)propan molekülünde piperidin grupları NH'ın equatorial pozisyonunda sandalye konformasyonunda olduğu söylenebilir. Piperidin grupları 1,3-bis(4-piridil)propan molekülünde olduğu gibi propan grubuna dört farklı konformasyonda bağlanabilir. 1,3-Bis(4-piperidil)propan molekülünün konformasyonları B3LYP/6-311G(d,p) hesaplama metodu kullanılarak optimize edilmiştir. Optimize edilmiş moleküler geometriye ait seçilmiş bazı özellikler ise Çizelge 7.1.'de verilmiştir.

1,3-Bis(4-piperidil)propan molekülünün uzaydaki dağılım şekli minimum enerjili *Transoid-Transoid* (TT) konformasyon yapıda olduğu, hesaplamalar sonucunda bulunmuştur (Çizelge 7.1). Bundan sonraki hesaplamalarımızda 1,3 Bis (4-piperidil)propan molekülünün bu konformasyonu dikkate alınarak hesaplamalar yapılacaktır.

Şekil 7.1. 1,3-Bis(4-piperidil)propan molekülünün konformasyonları

Çizelge 7.1.	1,3 -Bis(4-piperidil)propan	molekülünün	konformasyonları	ve seçilmiş
	bazı özellikleri			

	TT	TG	GG	GG′
Simetri	Cs	C_1	Cs	C ₂
Optimize Enerji (a,u)	-620,714430419	-620,713095441	-620,708747685	-620,711928532
Energy farkı (kcal/mol)	0,00	0,83	1,43	1,56
E _{HOMO} (eV)	-6,019	-6,020	-6,024	-6,027
E _{LUMO} (eV)	1,074	1,018	0,798	0,899
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	7,093	7,038	6,822	6,926
µ _{TOPLAM} (Debye)	1,672	1,1008	1,4819	1,277
$C_3-C_6-C_7-C_8$	176 2259	(2.2(07	80.0014	57 2028
C ₆ -C ₇ -C ₈ -C ₉	176,2358	03,3007	80,0914	57,2938
Dihedral açı (°)	-176,2358	175,9766	-80,0914	-57,2938
N-N uzaklığı (A°)	10,539	10,154	7,87	9,13

Şekil 7.2. 1,3-bis(4-piperidil)propan molekülünün infrared spektrumu (KBr içinde)

RAMAN ŞİDDETİ

Şekil 7.3. 1,3-bis(4-piperidil)propan molekülünün Raman spektrumu

7.1.1.1,3-Bis(4-piperidil)propan molekülünün frekanslarının işaretlenmesi

1,3-bis(4-piperidil)propan molekülünün TT konformasyonu C_s simetrisine sahiptir. 1,3-bis(4-piperidil)propan molekülü 41 atoma sahip ve 117 tane normal titreşim modu vardır. Bu titreşim modlarının simetri türlerine göre dağılımı 60A' + 57A" şeklindedir. Molekülün tüm modlarında infrared ve Raman aktiftir. Teorik olarak hesaplanan frekanslar ile deneysel olarak elde edilen infrared ve Raman spektrumları karşılaştırmalı olarak EK1'de verilmiştir. Molekülün infrared ve Raman spektrumları Şekil 7.2. ve 7.3.'de verilmiştir. Temel titreşim modları toplam enerji dağılımı (TED) hesaplanarak karakterize edilmiştir. Teorik olarak hesaplanan infrared ve Raman spektrumları Şekil 7.5-7.8.'de verilmiştir. Metilen grubunun bazı titreşimleri Şekil 7.4'de verilmiştir.

Deneysel olarak gözlenen frekanslar ile teorik olarak hesaplanan frekanslar arasında karşılaştırma yapmak için, her metot ve temel set için RMS değerleri hesaplanmıştır. Bu RMS değerleri 31,29 (B3LYP/6-311 G(d,p)), 31,99 (BLYP/6-311 G(d,p)), 35,04 (HF/6-311 G(d,p)), 26,50 (B3LYP/6-31 G(d)), 28,01 (BLYP/6-31 G(d)) ve 29,00 (HF/6-31 G(d)) olarak belirlenmiştir. Buna göre B3LYP metodu ile yapılan hesaplamalar BLYP metodu ile yapılan hesaplamalardan deneysel değerlere daha yakın olduğu belirlenmiştir. Bununla birlikte 6-31 G(d) temel seti ile yapılan hesaplamaların 6-311 G(d,p) temel seti ile yapılan hesaplamalardan deneysel değerlere daha yakın olduğu saptanmıştır.

Piperidin grup titreşimleri

NH grubu içeren heterocyclic bileşiklerde NH gerilme titreşimi 3500 cm⁻¹-3200 cm⁻¹ bölgesinde gözlenir [86]. 1,3-bis(4-piperidil)propan molekülünün deneysel olarak NH gerilme titreşimi 3242 cm⁻¹'de gözlenmiştir. Bu titreşim, yapılan teorik hesaplamalarda 3406 cm⁻¹ (6-311 G (d, p)) ve 3366 cm⁻¹ (6-31 G(d)) B3LYP metodu için hesaplanmıştır. Güllüoğlu ve ark. [54] tarafından yapılan çalışmada piperidin ve 4-methylpiperidin moleküllerinin NH gerilme titreşimleri 3340 cm⁻¹ ve 3275cm⁻¹ olarak gözlenmiştir. Serbest haldeki piperidin grubuna metil eklenmesi ile NH

gerilme titreşiminin azaldığı tespit edilmiştir [54]. 1,3-bis(4-piperidil)propan molekülü için NH gerilme titreşimi piperidinin NH gerilme titreşimine göre düşük frekans bölgesine doğru kaydığı belirlenmiştir.

Piperidin grubunun CH gerilme titreşimleri 2980-2900 cm⁻¹ bölgesinde gözlenir [54,64]. 1,3-bis(4-piperidil)propan molekülünde piperidin grubunun CH gerilme titreşimleri 2799-2930 cm⁻¹ (B3LYP/6-311 G (d,p)) bölgesinde hesaplanmıştır. Bu titreşim deneysel olarak 2740-2890 cm⁻¹ bölgesinde gözlenmiştir.

Metilen grup titreşimleri

Metilen grubunun CH₂ gerilme titreşimleri 2925 cm⁻¹ civarında gözlenir [86]. 1,3bis(4-piperidil)propan molekülünde deneysel olarak bu titreşim 2886 cm⁻¹ de gözlenmiştir. Bu titreşim simetrik CH₂ gerilme olarak işaretlenmiştir. Bu pik, teorik olarak 2891 cm⁻¹ [B3LYP/6-311 G(d,p)] ve 2904 cm⁻¹ [BLYP/6-311 G(d,p)] değerlerinde hesaplanmıştır. Metilen grubunun asimetrik gerilme titreşimi ise deneysel olarak 2919 cm⁻¹'de gözlenmiştir. Bu band 2923 cm⁻¹ (B3LYP/6-311 G(d,p)) ve 2934 cm⁻¹ (BLYP/6-311 G(d,p)) olarak hesaplanmıştır. Metilen grubunun bazı titreşimleri Şekil 7.4.'de gösterilmiştir.

Halka gerilme titreşimleri

Piperidin molekülünde CN gerilme titreşimleri 1180-1100 cm⁻¹ bölgesinde gözlenir [54,64]. Hesaplamalarımızda 1,3-bis(4-piperidil)propan molekülünde piperidin grubunun CN gerilme titreşimlerinin yine aynı bölgede olduğu belirlenmiştir. Piperidine molekülünde CC gerilme titreşimleri 1350-760 cm⁻¹ bölgesinde gözlenir [54,64]. Bizim hesaplamalarımızda 1,3-bis(4-piperidil)propan molekülünde piperidin grubunun CC gerilme titreşimleri 1067-1088 cm⁻¹ (B3LYP/6-311 G(d,p)) bölgesinde hesaplanmıştır.

Şekil 7.4. Metilen grubunun bazı titreşimleri (B3LYP/6-311 G(d,p))

Şekil 7.5. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan IR spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)

Şekil 7.6. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan Raman spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)

Şekil 7.7. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan IR spektrumları(B3LYP, BLYP ve HF 6-311 G(d,p) temel set)

Şekil 7.8. Serbest 1,3-bis(4-piperidil)propan molekülünün teorik olarak hesaplanan Raman spektrumları(B3LYP, BLYP ve HF 6-311 G(d,p) temel set)

7.1.2.1,3-Bis(4-piperidil)propan molekülünün geometrik parametreleri

1,3-Bis(4-piperidil)propan molekülünün taban durumundaki atomlarının uzaydaki dizilişi ve numaralandırılması Şekil 7.9.'da verilmiştir. Molekülün taban durumu için optimize edilmiş bağ uzunluk ve bağ açıları Çizelge 7.2.'de verilmiştir.

Literatürde 1,3-bis(4-piperidil)propan molekülünün herhangi bir tek kristal çalışmasına rastlanılmamıştır. Goforth ve ark. (H₂TMDP)₂ Bi₂I₉ kristalini sentezlemişler ve moleküler yapıya ait parametreleri vermişlerdir [53]. Bununla birlikte, Gundersen ve ark. [65] piperidin molekülünün geometrik parametrelerini elektron kırınım yöntemi ile belirlemişlerdir. Bu çalışmada 1,3-bis(4-piperidil)propan molekülünün optimize edilmiş geometrik parametreleri bu iki çalışmadaki veriler ile karşılaştırılmıştır.

Şekil 7.9. 1,3-bis(4-piperidil)propan molekülünün taban durumdaki konformasyonu ve atom numaralandırılması

			B3LYP	B3LYP	BLYP	B3LYP
Parametre	arametre E. D. [65] X-ışınları [53] 6-31		6-311 G (d, p)	6-31 G (d)	6-311 G (d, p)	6-31 G (d)
Bağ uzunlukları						
(A°)						
C ₁ -C ₂	1,530	1,526	1,530	1,532	1,542	1,543
C_1 - N_1	1,469	1,482	1,463	1,463	1,477	1,478
C_1 - H_2	1,098	-	1,093	1,096	1,100	1,104
C_1 - H_3	1,098	-	1,107	1,109	1,114	1,118
C ₂ -C ₃	1,530	1,526	1,540	1,541	1,552	1,553
C ₂ -H ₄	1,098	-	1,095	1,098	1,102	1,105
C ₂ -H ₅	1,098	-	1,096	1,098	1,102	1,105
C ₃ -C ₆	-	1,525	1,537	1,539	1,550	1,551
C ₃ -C ₄	1,530	1,509	1,540	1,541	1,553	1,554
C ₃ -H ₆	-	-	1,100	1,103	1,107	1,110
N ₁ -C ₅	1,469	1,502	1,462	1,463	1,477	1,478
N_1 - H_1	1,015	-	1,013	1,017	1,022	1,027
C6-C7	-	1,534	1,534	1,535	1,546	1,547
C ₄ -H ₇	1,098	-	1,094	1,096	1,100	1,104
C_4 - H_8	1,098	-	1,096	1,098	1,103	1,106
C ₄ -C ₅	1,530	1,495	1,531	1,532	1,542	1,544
C ₅ -H ₉	1,098	-	1,107	1,109	1,114	1,118
C ₅ -H ₁₀	1,098	-	1,093	1,096	1,100	1,104
Bağ açıları (°)						
C ₂ -C ₁ -N ₁	110,5	109,4	109,5	109,5	109,4	109,4
H_2 - C_1 - H_3	110,0	-	107,2	107,1	107,3	107,1
C_1 - C_2 - C_3	109,6	111,5	111,7	111,6	111,7	111,6
H ₄ -C ₂ -H ₅	110,0	-	107,3	107,3	107,3	107,3
C ₂ -C ₃ -C ₆	-	110,4	111,2	111,2	111,3	111,3
C ₂ -C ₃ -C ₄	111,1	108,9	109,4	109,3	109,5	109,3
C ₆ -C ₃ -C ₄	-	114,8	113,2	113,2	113,2	113,3
C_1 - N_1 - C_5	-	111,9	111,8	111,6	111,5	111,3
C_1 - N_1 - H_1	108,4	-	110,1	109,7	109,6	109,2
C_5 - N_1 - H_1	108,4	-	110,1	109,7	109,7	109,2
C_3 - C_6 - C_7	-	117,5	115,2	115,1	115,3	115,2
C6-C7-C6'	-	111,9	112,8	112,7	112,9	112,9
C ₃ -C ₄ -C ₅	109,6	110,6	111,5	111,4	111,5	111,4
H ₇ -C ₄ -H ₈	110,0	-	107,4	107,3	107,4	107,3
N ₁ -C ₅ -C ₄	110,5	110,2	109,7	109,7	109,6	109,6
H_9 - C_5 - H_{10}	110,0	-	107,2	107,1	107,2	107,1

Çizelge 7.2. 1,3-bis(4-piperidil)propan molekülünün taban seviyesindeki geometrik parametreleri

Genellikle C-N-C bağ açısı C-C-C veya N-C-C bağ açısından çok az büyüktür [58]. Gundersen ve ark. [65] piperidin molekülü için C-N-C (110,7°), C-C-C (109,6°) ve N-C-C (110,5°) bağ açılarını elektron saçılma tekniğini kullanarak belirlemişlerdir. Bu hesaplamalarımızda, 1,3-bis(4-piperidil)propan molekülü için C-N-C (111,84°), C-C-C (111,55°, 111,75°) ve N-C-C (109,56°, 109,77°) bağ açıları B3LYP hesaplama metotları ile hesaplanmıştır. Bununla birlikte, C-N bağ uzunluğu C-C bağ uzunluğundan biraz daha kısadır [58]. Gundersen ve ark. [65] tarafından yapılan deneyler ile bu bağ uzunlukları N-C (1,469 A°) ve C-C (1,530 A°) olarak belirlenmiştir. Hesaplamalarımızda N-C (1,462 A°, 1,463 A°) ve C-C (1,530 A°, 1,540 A°) B3LYP hesaplama metodu ile hesaplanmıştır. DFT ile yapılan hesaplamaların, deneysel değerler ile daha uyumlu olduğu belirlenmiştir.

7.2. 1,3-Bis(4-piridil)propan Molekülü

1,3-Bis(4-piridil)propan molekülü oldukça esnek, çift yönlü bifonksiyonel bir ligandtır [66]. İki piridil halkaları arasına [-(CH₂)₃] alifatik zincir eklenmesi sonucu oluşur [67]. Farklı dipiridil ligandları ile değişik geçiş metal iyonları kristallendirilmesi ile ilgili geniş bir literatür mevcuttur [68, 69]. Esnek dipiridil ligandları ile hazırlanan ağlar birçok araştırmacının ilgisinin çekmiştir [68]. Bunun nedeni mümkün olan farklı ligand konformasyonları, sonuç olarak polimerik yapıdaki farklı topolojileride bu ligandların kullanılmasına bağlıdır. Birçok araştırmacı Bpp ve geçiş metalleri ile birçok kristal yapı sentezlemiştir. Bu kristal yapılar bir, iki ve üç boyutlu ağ tasarımının yapımında polimerik yapılar şeklinde tanımlanmıştır. Molekül polimerik bileşiklerin yapımında sıklıkla kullanılır [70].

Kurt ve ark. [71] tarafından 1,2-bis(4-piridil)ethan molekülünün geometrik yapısı ve titreşim spektrumunu kapsayan bir çalışma, 1,3-Bis(4-piridil)propan molekülüne benzerlik gösteren bir çalışmadır. Bu çalışmamızda 1,3-bis(4-piridil)propan molekülünün, geometrik yapısı ve titreşim spektrumunu tartışacağız. Bpp molekülü ile ilgili olarak ne kuantum mekaniksel ne de molekülün titreşim spektrumu ile ilgili her hangi bir çalışma yoktur. Bu nedenle bu çalışmada 1,3-bis(4-piridil)propan

molekülü ile 1,2-bis(4-piridil)ethan molekülünün hem geometrik yapısı hem de titreşim spektrumları karşılaştırmalı olarak verilmiştir. Hesaplamalarımız ab initio (HF) ve yoğunluk fonksiyon teorisi (B3LYP ve BLYP) ile 6-31 G(d) ve 6-311 G(d,p) temel setleri kullanılarak yapılmıştır.

Bpp molekülü (C₃-C₁₁-C₁₄-C₁₇) ve (C₁₁-C₁₄-C₁₇-C₂₀) dihedral açısı ve N-N arasındaki uzaklığa bağlı olarak dört farklı konformasyona sahiptir [59,60]. Bunlar *Transoid*-*Transoid* (TT), *Transoid-Gauche* (TG), *Gauche-Gauche* (GG) ve *Gauche-Gauche'* (GG') konformasyonlarıdır. Bu konformasyonlar ile ilgili bazı özellikler aşağıdaki tabloda verilmiştir. Tablo'da görüldüğü gibi molekülün en kararlı moleküler yapısı *Transoid-Transoid* (TT) konformasyonudur. Bundan sonraki hesaplamalarda molekülün bu konformasyonu dikkate alınacaktır.

TG

Şekil 7.10. 1,3-bis(4-piridil)propan molekülünün konformasyonları

	TT	TG	GG	GG′
Simetri	C_{2v}	C ₁	Cs	C ₂
F()	-613,467461377	-613,466949370	-613,461399530	-613,465974102
Energi (a.u)	-613,318781773	-613,318372859	-613,313177835	-613,317657765
Enorii forla (kool/mol)	0,0	0,321	3,803	0,933
Energi larki (kcal/mol)	0,0	0,256	3,516	0,705
Г	-0,591	-,0564	-0,273	-0,536
E _{HOMO}	-0,277	-0,244	-0,292	-0,225
E _{LUMO}	0,771	0,897	0,813	0,876
	2,114	2,260	2,140	2,237
	1,362	1,461	1,086	1,412
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	2,391	2,504	2,432	2,462
$D_{in} = 1 M_{amagnet} (D)$	2,7156	2,7508	4,7970	2,9050
Dipol Moment (D.)	2,7259	2,7358	4,7913	2,9374
	9,709 [0.1.10.1]*	8,997	5,111 [2.01*	8,134
N-N uzakiigi (A°)	9,710 [9,1-10,1]*	9,007 [8,0-9,2]*	5,053 [5,9]*	8,504 [0,7-8,6]*
Dihedral acı (°)				
	180,0	65,81	75,96	64,92
$C_3 - C_{11} - C_{14} - C_{17}$	180,0	65,501	75,50	63,919
	-180,0	-179,75	-75,96	-64,92
$C_{11} - C_{14} - C_{17} - C_{20}$	-180,0	-179,96	-75,50	-63,91

Çizelge 7.3. Bpp molekülünün konformasyonlarının bazı moleküler özellikleri (B3LYP/6-311 G(d,p)/6-31 G(d))

* 59 numaralı kaynaktan alınmıştır.

7.2.1.1,3-Bis(4-piridil)propan molekülünün frekanslarının işaretlenmesi

Bpp molekülü TT konformasyonunda C_{2V} simetrisine sahiptir. Molekül 29 atoma sahip olup, 81 tane temel titreşimi modu bulunmaktadır. Bu titreşimlerin simetri türlerine göre dağılımı 23A₁+18A₂+19B₁+21B₂ şeklindedir. Molekülün tüm titreşim modlarında Raman aktiftir. Bunun yanında sadece A₁, B₁ ve B₂ simetri türlerinde titreşim modlarında infrared aktiftir. Moleküle ait infrared ve Raman spektrumları Şekil 7. 11-12.'de verilmiştir. Deneysel olarak gözlenen frekanslar ile teorik olarak hesaplanan frekanslar EK2'de karşılaştırmalı olarak verilmiştir. Teorik olarak hesaplanan infrared ve Raman spektrumları Şekil 7.13-16.'da verilmiştir. Temel titreşim modları toplam enerji dağılımı (TED) hesaplanarak karakterize edilmiştir.

Piridil grup titreşimleri

C-H halka gerilme modları yüksek frekans bölgesinde 3000 - 3500 cm⁻¹ aralığında gözlenir [86]. Bu pikler 3073 cm⁻¹, 3051 cm⁻¹ ve 3024 cm⁻¹ (IR spektrumunda) ve 3056 cm⁻¹, 3031 cm⁻¹ (Raman spektrumunda) deneysel olarak gözlenmiştir. Bu

modlar teorik olarak 3030 - 3070 cm⁻¹ aralığında toplam sekiz adet (υ_{74} - υ_{81}) hesaplanmıştır. Bu bölgede B3LYP/6-31 G (d) ile yapılan hesaplamalar diğer metotlar ile yapılan hesaplamalardan daha iyi sonuçlar vermiştir.

Metilen grup titreşimleri

2800 - 3000 cm⁻¹ bölgesinde 5 adet (υ_{68} - υ_{73}) CH₂ gerilme titreşimi gözlenmiştir. İnfrared spektrumunda 2866 - 2992 cm⁻¹ aralığında ve Raman spektrumunda 2859 -2992 cm⁻¹ aralığında tespit edilmiştir. 1,2-Bis(4-piridil)ethan (Bpe)' molekülünün CH₂ asimetrik gerilme titreşimleri 2980 cm⁻¹de gözlenmiştir [71]. 1,3-bis(4piridil)propan molekülünün CH₂ gerilme titreşimleri 2905 cm⁻¹, 2929 cm⁻¹ ve 2944 cm⁻¹ olarak gözlenmiştir. Bu titreşimlerden simetrik gerilme titreşimleri 2917 cm⁻¹ ve 2931 cm⁻¹ ve asimetrik gerilme titreşimleri 2946 cm⁻¹ ve 2977 cm⁻¹ olarak hesaplanmıştır. Simetrik gerilme titreşimleri asimetrik gerilme titreşimlerinde, daha şiddetli olarak hesaplanmıştır.

Halka gerilme titreşimleri

Aromatik halkalarda iskelet gerilme titreşimleri 1400 - 1600 cm⁻¹ aralığında gözlenir. Moleküldeki piridil grubunun CC ve CN gerilme modu (v₆₇) 1605 cm⁻¹ (IR spektrumunda) olarak gözlenmiştir. Bu mod Raman spektrumunda 1606 cm⁻¹ olarak gözlenmiştir. Bu titreşim modu özellikle molekülün metal bağlanma durumlarında önemlidir. Correra ve ark. [68] piridil grubu için bu modu 1602 cm⁻¹ ve 1418 cm⁻¹ olarak gözlemişlerdir. Metal atomunda bağlı olması durumunda bu piki 1616 cm⁻¹ ve 1429 cm⁻¹ olarak gözlemişlerdir. Bu molekül metal atomlarına bağlandığında iskelet gerilme titreşimi yüksek frekans bölgesine kaymaktadır.

Şekil 7.11. 1,3 Bis(4-piridil)propan molekülünün infrared spektrumu (KBr içinde)

Şekil 7.12. 1,3 Bis(4-piridil)propan molekülünün Raman spektrumu

81

Şekil 7.13. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün infrared spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)

Şekil 7.14. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün Raman spektrumları (B3LYP, BLYP ve HF 6-31 G(d) temel set)

Şekil 7.15. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün infrared spektrumları (B3LYP, BLYP ve HF 6-311 G(d,p) temel set)

Şekil 7.16. Teorik olarak hesaplanan 1,3-bis(4-piridil)propan molekülünün Raman spektrumları (B3LYP, BLYP ve HF 6-311 G(d,p) temel set)

Şekil 7.17. 1,3-bis(4-piridil)propan molekülünde metilen grubunun titreşimleri

Şekil 7.17. (Devam) 1,3-bis(4-piridil)propan molekülünde metilen grubunun titreşimleri

7.2.2.1,3-Bis(4-piridil)propan molekülünün geometrik parametreleri

1,3-Bis(4-piridil)propan molekülünün taban durumu için atomların numaralandırılması Şekil 7.18.'de verilmiştir. Molekülün taban durumundaki optimize edilmiş bağ uzunluk ve bağ açıları Çizelge 7.4.'de verilmiştir. Optimize edilmiş geometrik parametreler Zn(Bpp)Cl₂ kompleksinin X-ışınları [72] verileri ve 1,2-bis(4-piridil)ethan molekülünün hesaplanan verileri [71] ve X-ışınları [73] verileri ile Çizelge 7.4.'de karşılaştırmalı olarak verilmiştir.

Şekil 7.18. 1,3-bis(4-piridil)propan molekülünün taban durumdaki konformasyonu ve atomların numaralandırılması

		B3LYP			BLYP			HF			
	6-311	6.21	$1 C(d \mathbf{n})$	6-311	6.21	$1 C(d_{\rm m})$	6-311	6.21	1 C(d m)		
	G(d,p)	0-31	I G(a,p)	G(d,p)	0-31	1 G(a,p)	G(d,p)	0-31	I G(a,p)		
Bağ											
Uzunluğu	Bpp	Bpp	Bpe [71]	Bpp	Bpp	Bpe [71]	Bpp	Bpp	Bpe [71]	Exp [73]	Exp [72]
(A°)											
C ₁ -C ₂	1,392	1,394	1,394	1,401	1,404	1,404	1,383	1,383	1,384	1,383	1,380
C_1 - N_6	1,336	1,339	1,338	1,349	1,352	1,352	1,319	1,320	1,320	1,323	1,338
C_1 - H_7	1,086	1,089		1,0936	1,096		1,076	1,076			0,93
C ₂ -C ₃	1,397	1,399	1,399	1,407	1,410	1,410	1,387	1,388	1,388	1,373	1,391
C_2 - H_8	1,085	1,087		1,092	1,095		1,075	1,075			0,93
C ₃ -C ₄	1,397	1,399	1,399	1,407	1,410	1,410	1,387	1,388	1,388	1,382	1,386
C ₃ -C ₁₁	1,509	1,511	1,511	1,519	1,521	1,520	1,510	1,511	1,511	1,509	1,501
C ₄ -C ₅	1,392	1,394	1,394	1,401	1,404	1,404	1,383	1,383	1,384	1,364	1,374
C ₄ -H ₉	1,085	1,087		1,092	1,095		1,075	1,075			0,93
C ₅ -N ₆	1,336	1,339	1,338	1,349	1,352	1,352	1,319	1,320	1,320	1,323	1,338
C5-H10	1,086	1,089		1,093	1,096		1,076	1,076			0,93
C_{11} - H_{12}	1,095	1,097		1,101	1,105		1,086	1,086			0,97
C_{11} - H_{13}	1,095	1,097		1,101	1,105		1,086	1,086			0,97
C_{11} - C_{14}	1,541	1,542	1,552	1,554	1,555	1,566	1,535	1,535	1,542	1,498	1,525
C_{14} - H_{15}	1,094	1,097		1,101	1,104		1,086	1,086			0,97
C_{14} - H_{16}	1,094	1,097		1,101	1,104		1,086	1,086			0,97
C_{14} - C_{17}	1,541	1,542		1,554	1,555		1,535	1,535		1,498	1,525
C_{17} - H_{18}	1,095	1,097		1,101	1,105		1,086	1,086			0,97
C_{17} - H_{18}	1,095	1,097		1,101	1,105		1,086	1,086			0,97
C_{17} - C_{20}	1,509	1,511	1,511	1,519	1,521	1,520	1,510	1,511	1,511	1,498	1,501
C_{20} - C_{21}	1,397	1,399	1,399	1,407	1,410	1,410	1,387	1,388	1,388	1,373	1,391
C_{20} - C_{22}	1,397	1,399	1,399	1,407	1,410	1,410	1,387	1,388	1,388	1,382	1,386
C_{21} - C_{23}	1,392	1,394	1,394	1,401	1,404	1,404	1,383	1,383	1,384	1,383	1,380
$C_{21} ext{-}H_{24}$	1,085	1,087		1,092	1,095		1,075	1,075			0,93
C_{22} - C_{25}	1,392	1,394	1,394	1,401	1,404	1,404	1,383	1,383	1,384	1,364	1,374
$C_{22} ext{-}H_{26}$	1,085	1,087		1,092	1,095		1,075	1,075			0,93
C_{23} - N_{27}	1,336	1,339	1,338	1,349	1,352	1,352	1,319	1,320	1,320	1,323	1,374
$C_{23} ext{-}H_{28}$	1,086	1,089		1,093	1,096		1,076	1,076			0,93
C_{25} - N_{27}	1,336	1,339	1,338	1,349	1,352	1,352	1,319	1,320	1,320		1,374
C_{25} - H_{29}	1,086	1,089		1,093	1,096		1,076	1,076			0,93
Bağ											
Açısı (°)											
C_2 - C_1 - N_6	123,8	123,9	123,8	123,9	124,0	124,0	123,8	123,7	123,6	124,5	123,1
C_2 - C_1 - H_7	120,1	120,0		120,1	120,0		120,0	120,0			118,4
N_6 - C_1 - H_7	116,0	116,0		115,8	115,8		116,1	116,1			118,4
C_1 - C_2 - C_3	119,4	119,4	119,4	119,5	119,4	119,4	119,1	119,2	119,1	119,2	119,5
C_1 - C_2 - H_8	119,8	119,9		119,8	119,4		119,8	119,8			120,0
C_3 - C_2 - H_8	120,6	120,6		120,6	120,5		120,9	120,9			120,0
C_2 - C_3 - C_4	116,7	116,7	116,8	116,7	116,7	116,7	116,8	116,9	116,9	116,7	116,7

Çizelge 7.4. Serbest 1,3-bis(4-piridil)propan molekülünün geometrik parametreleri
Cq-Cq-Cq. (a)121,6121,6121,6121,6121,6121,6121,5121,5121,5121,6121,6120,7Cq-Cq-C1194119,4119,4119,5119,4119,4119,4119,1119,2119,1119,3120,3Cq-Cq-H1120,6120,6120,6120,6120,6120,7120,8123,8123,7124,7144,7144,7144,7144,7144,7144,7144,7144,7 </th <th></th>												
Cq-Cx-Cr.121,6121,6121,6121,5119,1119,2119,1119,3120,3Cq-Cq-H1006120,6120,6120,6120,9120,9120,9119,8Cq-Cq-H119,8119,9119,8119,9119,8119,8119,8119,8Cq-Cq-H110,8120,0120,0120,0120,0120,0120,0120,0Cq-Cq-H110,0116,0116,5116,5116,5116,5116,1116,1116,1Cq-Cq-H_1109,4109,6109,4109,6109,2109,3109,3109,3Cq-Cq-H_1109,4109,6109,4109,6109,2109,3109,3109,3Cq-Cq-H_1109,1109,6109,4109,6109,2109,3109,3109,3Cq-Cq-H_1109,1109,0109,0109,9109,4109,4109,3109,3109,3Cq-Cq-H_1109,1109,0109,0108,9109,4109,5109,3109,3109,3Cq-Cq-H_1109,1109,0109,0108,9109,4109,5109,3109,3109,3Cq-Cq-H_1109,4109,5109,4109,4109,5109,5109,3109,3Cq-Cq-H_1109,4109,4109,5109,5109,3109,3109,3Cq-Cq-H_1109,4109,4109,5109,5109,3109,3109,3Cq-Cq-H_1109,4109,4109,	C_2 - C_3 - C_{11}	121,6	121,6	121,5	121,6	121,6	121,6	121,5	121,5	121,5	121,0	122,5
C+C-C 19.4 119.4 119.4 119.4 119.4 119.2 119.1 119.3 120.3 C+C-R+H 120.6 120.6 120.6 120.6 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.9 120.8 123.8 123.9 123.8 123.9 123.8 123.9 123.8 123.9 123.8 120.0 120.0 120.0 120.0 120.0 120.9 120.9 120.8 123.8 123.9 124.9 12	$C_4 - C_3 - C_{11}$	121,6	121,6		121,6	121,6		121,5	121,5		122,6	120,7
$C_{\gamma}C_{\gamma}H_{i}$ 120,6120,6120,6120,9120,9120,9119,8119,8 $C_{\gamma}C_{\gamma}H_{i}$ 123,8123,9123,8123,9123,8123,9124,0124,0123,8123,7123,8123,0123,7 $C_{\gamma}C_{\gamma}H_{ii}$ 116,0116,0115,8116,1116,1116,1116,1116,5 $C_{\gamma}C_{\gamma}H_{ii}$ 116,0116,5116,5116,5116,1116,2117,1117,1117,1117,1117,1 $C_{\gamma}C_{11}H_{ii}$ 109,4109,6109,4109,6109,2109,3109,3109,3 $C_{\gamma}C_{11}H_{ii}$ 109,4109,6109,4109,6109,2109,3109,3109,3 $C_{\gamma}C_{11}H_{ii}$ 109,1109,0109,9108,9109,4109,5109,3109,3 $H_{\gamma}C_{11}C_{ii}$ 109,1109,0109,9108,9109,4109,5109,3109,3 $H_{\gamma}C_{11}C_{11}$ 109,1109,0109,9109,4109,5109,5109,3109,3 $L_{\gamma}C_{11}C_{11}$ 109,1109,0109,4109,5109,5109,3109,3109,3 $L_{\gamma}C_{11}C_{11}$ 109,1109,5109,4109,5109,5109,3109,3109,3 $L_{\gamma}C_{11}C_{11}$ 109,1109,0109,4109,5109,5109,3109,3109,3 $L_{\gamma}C_{11}C_{11}$ 109,1109,5109,4109,5109,5109,3119,1119,4 <td>C_3-C_4-C_5</td> <td>119,4</td> <td>119,4</td> <td>119,4</td> <td>119,5</td> <td>119,4</td> <td>119,4</td> <td>119,1</td> <td>119,2</td> <td>119,1</td> <td>119,3</td> <td>120,3</td>	C_3 - C_4 - C_5	119,4	119,4	119,4	119,5	119,4	119,4	119,1	119,2	119,1	119,3	120,3
$ \begin{array}{cccccccccc} Crcc-R, 19.8, 19.9, 19.8, 19.9, 19.8, 19.9, 19.8, 19.9, 19.0,$	C_3 - C_4 - H_9	120,6	120,6		120,6	120,5		120,9	120,9			119,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_5 - C_4 - H_9	119,8	119,9		119,8	119,9		119,8	119,8			119,8
$ \begin{array}{c ccccr-Ha}{l} & loq, l & loq, l & loq, l & lad, l &$	C_4 - C_5 - N_6	123,8	123,9	123,8	123,9	124,0	124,0	123,8	123,7	123,8	125,0	122,7
$\begin{split} \begin{split} & N_{rc} C_{r} H_{in} & 16.0 & 16.0 & 16.5 & 16.5 & 16.3 & 16.1 & 16.1 & 16.1 & 17.1 & 17.1 & 17.1 & 17.3 & 17.3 & 17.3 & 17.3 & 17.3 & 17.3 & 17.4 & 17.4 & 17.4 & 17.4 & 17.4 & 17.4 & 17.5 & 17.3 & 17.3 & 17.5 & 17.4 & 17.4 & 17.4 & 17.4 & 17.4 & 17.4 & 17.5 & 17.5 & 17.4 & $	$C_4\text{-}C_5\text{-}H_{10}$	120,1	120,0		120,1	120,0		120,0	120,0			118,6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$N_6-C_5-H_{10}$	116,0	116,0		115,8	115,8		116,1	116,1			118,6
	C_1 - N_6 - C_5	116,6	116,5	116,5	116,3	116,1	116,2	117,1	117,1	117,1	115,3	117,3
	$C_3-C_{11}-H_{12}$	109,4	109,6		109,4	109,6		109,2	109,3			109,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_3-C_{11}-H_{13}$	109,4	109,6		109,4	109,6		109,2	109,3			109,3
	$C_3 - C_{11} - C_{14}$	112,6	112,5	112,2	112,8	112,6	112,4	112,5	112,4	112,0	112,6	111,5
$H_{12}-C_{11}-C_{14}$ 109,0109,0109,0108,9109,4109,3109,3 $H_{13}-C_{11}-C_{14}$ 109,4109,5109,4109,5109,4109,5109,3109,3 $C_{11}-C_{11}-C_{11}$ 109,4109,5109,4109,5109,5109,5109,3 $C_{11}-C_{11}-C_{11}$ 112,4112,2112,5112,5112,4112,0112,0112,0112,0 $L_{11}-C_{11}-C_{11}$ 104,2106,1106,2106,2106,1109,3109,3 $L_{11}-C_{11}-C_{11}$ 104,2109,5109,4109,5109,5109,3109,3 $L_{11}-C_{11}-C_{11}$ 104,2109,5109,4109,5109,5109,3109,3 $L_{11}-C_{11}-C_{11}$ 109,1109,0109,0108,9109,4109,3109,3109,3 $L_{11}-C_{11}-C_{11}$ 109,1109,0109,0108,9109,4109,3112,6111,5 $L_{11}-C_{11}-C_{11}$ 109,1109,0109,0108,9109,4109,3109,3109,3 $L_{11}-C_{11}-C_{21}$ 112,6112,6112,6112,6112,6112,6112,6112,6 $L_{11}-C_{11}-C_{21}$ 109,4109,6109,2109,3109,3109,3109,3 $L_{11}-C_{11}-C_{22}-C_{22}$ 109,4109,6109,2109,3109,3109,3 $L_{11}-C_{11}-C_{22}-C_{23}$ 109,4109,6109,2109,3109,3109,3 $L_{11}-C_{11$	H_{12} - C_{11} - H_{13}	106,7	106,6		106,7	106,7		106,8	106,7			108,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{12} - C_{11} - C_{14}	109,1	109,0		109,0	108,9		109,4	109,3			109,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{13} - C_{11} - C_{14}	109,1	109,0		109,0	108,9		109,4	109,3			109,3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{11} - C_{14} - H_{15}	109,4	109,5		109,4	109,4		109,5	109,5			109,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{11} - C_{14} - H_{16}	109,4	109,5		109,4	109,4		109,5	109,5			109,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{11} - C_{14} - C_{17}	112,4	112,4	112,2	112,5	112,5	112,4	112,2	112,1	112,0	112,6	111,7
His-Ciq-Cip Cip-Cip-Cip Cip-Cip-Cip-Cip Cip-Cip-Cip-Cip-Cip-Cip-Cip-Cip-Cip-Cip-	H_{15} - C_{14} - H_{16}	106,2	106,1		106,2	106,2		106,4	106,4			107,9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{15} - C_{14} - C_{17}	109,4	109,5		109,4	109,4		109,5	109,5			109,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{16} - C_{14} - C_{17}	109,4	109,5		109,4	109,4		109,5	109,5			109,3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C_{14} - C_{17} - H_{18}	109,1	109,0		109,0	108,9		109,4	109,3			109,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{14} - C_{17} - H_{19}	109,1	109,0		109,0	108,9		109,4	109,3			109,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{14} - C_{17} - C_{20}	112,6	112,5	112,0	112,8	112,6	112,0	112,5	112,4	112,0	112,6	111,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{18} - C_{17} - H_{19}	106,7	106,6		106,7	106,7		106,8	106,7			108,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{18} - C_{17} - C_{20}	109,4	109,6		109,4	109,6		109,2	109,3			109,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_{19} - C_{17} - C_{20}	109,4	109,6		109,4	109,6		109,2	109,3			109,3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{17} - C_{20} - C_{21}	121,6	121,60	119,4	121,6	121,6	119,4	121,5	121,5	119,1	119,2	122,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{17} - C_{20} - C_{22}	121,6	121,6	119,4	121,6	121,6	119,4	121,5	121,5	119,1	119,3	120,7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{21} - C_{20} - C_{22}	116,7	116,7	116,8	116,7	116,7	116,7	116,8	116,9	116,9	116,7	116,7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} - C_{21} - C_{23}	119,4	119,4	119,4	119,5	119,4	119,4	119,1	116,9	119,1	119,2	119,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} - C_{21} - H_{24}	120,6	120,6		120,6	120,5		120,9	120,9			120,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{23} - C_{21} - H_{24}	119,8	119,9		119,8	119,9		119,8	119,8			120,2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} - C_{22} - C_{25}	119,4	119,4	119,4	119,5	119,4	119,4	119,1	119,2	119,1	119,3	120,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{20} - C_{22} - H_{26}	120,6	120,6		120,6	120,5		120,9	120,9			119,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{25} - C_{22} - H_{26}	119,8	119,9		119,8	119,9		119,8	119,8			119,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{21} - C_{23} - N_{27}	123,8	123,9	123,8	123,9	124,0	124,0	123,8	123,7	123,6	124,5	123,1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{21} - C_{23} - H_{28}	120,1	120,0		120,1	120,0		120,0	120,0			118,4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N ₂₇ -C ₂₃ -H ₂₈	116,0	116,0		115,8	115,8		116,1	116,1			118,4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{22} - C_{25} - N_{27}	123,8	123,9	123,8	123,9	124,0	124,0	123,8	123,7	123,8	125,0	122,7
N ₂₇ -C ₂₅ -H ₂₉ 116,0 115,8 115,8 116,1 118,6 C ₂₃ -N ₂₇ -C ₂₅ 116,6 116,5 116,3 116,1 116,1 118,6	C ₂₂ -C ₂₅ -H ₂₉	120,1	120,0		120,1	120,0		120,0	120,0			118,6
$C_{23}\text{-}N_{27}\text{-}C_{25} 116,6 \qquad 116,5 \qquad 116,5 \qquad 116,3 \qquad 116,1 \qquad 116,2 \qquad 117,1 \qquad 117,1 \qquad 117,1 \qquad 115,3 \qquad 117,3 \qquad$	N_{27} - C_{25} - H_{29}	116,0	116,0		115,8	115,8		116,1	116,1			118,6
	C_{23} - N_{27} - C_{25}	116,6	116,5	116,5	116,3	116,1	116,2	117,1	117,1	117,1	115,3	117,3

Çizelge 7.4. (Devam) Serbest 1,3-bis(4-piridil)propan molekülünün geometrik parametreleri

Bpp:1,3-bis(4-piridil)propan; Bpe:1,2-bis(4-piridil)ethan

7.3. 1,3-Bis(4-Piridil)Propan Molekülünün Metal (II) Halojenür Kompleksleri

Bir önceki bölümde, serbest 1,3-bis(4-piridil) propan molekülünün bulunabileceği dört farklı konformasyon tartışılmıştı. Kompleks yapı içinde, molekülün metale bağlanma durumuna bağlı olarak farklı konformasyonda bulunma olasılığı vardır. Bu konformasyon olasılıkları; *Transoid-Transoid* (TT), *Transoid-Gauche* (TG), *Gauche-Gauche* (GG) ve *Gauche-Gauche'* (GG') olarak verilebilir. Çinko ve civa (II) metal komplekslerinde, 1,3-bis(4-piridil) propan molekülü *Transoid-Transoid* (TT) konformasyonununda bağlandığı X-ışınları sonuçlarıyla gösterilmiştir [70, 72, 78].

X-ışınları sonuçları, metal kompleks yapıyı Zn(II) ve Hg(II) atomlarına tek boyutlu zincir oluşturacak şekilde bağlandığını göstermektedir. Komplekslerin X-ışınları çalışmaları ile elde edilen geometrik yapısı Şekil 7.19. [**M(N2C13H14)X2, M: Zn, Hg, X: Cl, Br ve I**]'de gösterilmiştir. Bu komplekslerin birim hücresi $M(N_2C_{13}H_{14})X_2$, M: Zn, Hg; X: Cl, Br ve I kapalı formülüne sahip ve tetrahedral yapıda olduğu belirlenmiştir. Bu yapı için iki farklı kristalografik ayna düzlemi belirlenebilir. Bunlar X_{31} -M₃₀-X₃₂ ve H₁₅-C₁₄-H₁₆ boyunca uzanan düzlemlerdir. Benzer şekilde bu tetrahedral yapı için iki farklı açı tanımlanır. Bu açı değerleri N-M-N ve X-M-X hesaplanması ile bulunur. Hong ve ark. [72] N-Zn-N açısını Zn(Bpp)Cl₂ kompleksi için bu açı 111,75° olarak belirlemişlerdir. Kim ve ark. [70] tarafından Zn(Bpp)Br₂ kompleksi için bu açı 111,50° olarak belirlenmiştir. Bizim hesaplamalarımızda ise bu açı Zn(Bpp)Cl₂ kompleksinde 107,20° (SDD temel seti) ve Zn(Bpp)Br₂ kompleksinde 105,77° (LANL2DZ temel seti) olarak hesaplanmıştır. Hesaplamalarımız

1,3-Bis(4-piridil)propan molekülünün Zn($N_2C_{13}H_{14}$)Cl₂ [72], Zn($N_2C_{13}H_{14}$)Br₂ [70], Zn($N_2C_{13}H_{14}$)I₂ [70] ve Hg($N_2C_{13}H_{14}$)I₂ [78] komplekslerinin X-ışınları çalışmaları vardır. Buna karşın bu komplekslerin titreşim spektrumları ile ilgili deneysel bir çalışmaya rastlanılmamıştır. Bu çalışmada, deneysel olarak hazırlanan bu komplekslerin elemental analizleri, infrared ve Raman spektrumları kaydedilmiştir. Literatürdeki X-ışınları verileri dikkate alınarak komplekslerin geometrik yapıları Gaussview ara yüzey programı yardımı ile üç boyutlu olarak çizilmiştir. B3LYP hesaplama metodu ve SDD ve LANL2DZ temel setleri kullanılarak optimizasyon ve frekans hesabları yapılmıştır.

Şekil 7.19. 1, 3 – bis (4 - piridil) propan molekülünün metal (II) halojenür komplekslerinin yapısı [M(N₂C₁₃H₁₄)X₂, M: Zn, Hg, X: Cl, Br ve I]

7.3.1.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin deneysel olarak incelenmesi

1,3-Bis(4-piridil)propan molekülünün çinko ve civa (II) halojenür komplekslerinin infrared ve Raman spektrumları serbest molekülün spektrumları ile karşılaştırmalı olarak Çizelge 7.5-6.'da verilmiştir. 1,3-Bis(4-piridil)propan molekülünün metal komplekslerinin birçok titreşim modunda serbest ligandın frekanslarına göre yüksek frekans bölgesine kaymalar gözlenmiştir. Bu kayma miktarlarının toplamları Çizelge 7.5-6.'da verilmiştir. Bu frekanslardaki kaymaların toplamı ve bu toplamların büyüklük sıralaması, kaymaların metale bağlılığını ortaya çıkarmaktadır. Toplam kaymalar, ilgili bileşikler için düzenlenen çizelgelerin alt kısmında verilmiştir. Kayma değerleri bileşiklerin kimyasal yapısına, metale bağlılığa ve Cl, Br ve I halojenlerine göre değişmektedir. Benzer kaymalar piridin ve piridin türevlerinin halojen bileşiklerinde de görülmüş; piridin veya piridin türevinin M-N(piridin veya türevi) atomlarının mekanik çiftlenimleri ile açıklanmıştır [74-77]. Metal titreşimleri $M(Bpp)X_{2;}$ (M:Zn ve Hg; X=Cl, Br ve I) bileşiklerine ait olan ve sırasıyla Çizelge 7.5. ve 7.6.'da verilen toplam kaymaların M-N(bağ) bağ gerilmesi ve M-N gerilme frekanslarının aynı sıraya göre arttığı gözlenmektedir. Aynı zamanda izomorf bileşiklerinde kayma değerleri halojene bağlı olup Cl>Br>I sıralamasıyla azalmaktadır. Toplam kayma miktarları 155 cm⁻¹ (Hg(Bpp)Cl₂), 110 cm⁻¹ (Hg(Bpp)Br₂), 72 cm⁻¹ (Hg(Bpp)I₂), 218 cm⁻¹ (Zn(Bpp)Cl₂), 198 cm⁻¹ (Zn(Bpp)Br₂) ve 160 cm⁻¹ (Zn(Bpp)I₂) olarak belirlenmiştir. M-N bağ uzunluğunun artmasıyla M-N gerilme titreşiminin düşük frekans bölgesine kayması gerekmektedir. Hesaplanan M-N bağ uzunluğunda artış I>Br>Cl şeklinde oluşurken, M-N gerilme titreşimindeki artış Cl>Br>I şeklinde oluşmuştur. Bu titreşim deneysel olarak 238 cm⁻¹ (Hg(Bpp)Cl₂), 224 cm⁻¹ (Hg(Bpp)Br₂) 222 cm⁻¹ (Hg(Bpp)I₂), 249 cm⁻¹ (Zn(Bpp)Cl₂), 240 cm⁻¹ (Zn(Bpp)Br₂) 232 cm⁻¹ (Zn(Bpp)I₂) olarak Raman spektrumunda gözlenmiştir.

Ho(B	nn)Cla	Ho(Bi	$n)Br_{2}$	Ho(B	(nn)L	Serbe	st Bnn	İsaretleme
$\frac{\text{IIG}(D)}{\text{IR}(\text{cm}^{-1})}$	$\frac{pp}{Cl_2}$	$IR(cm^{-1})$	$\frac{SP}{RA(cm^{-1})}$	$IR(cm^{-1})$	$\frac{PP}{RA(cm^{-1})}$	$IR(cm^{-1})$	$\frac{RA(cm^{-1})}{R}$	işaretlemle
3057 w	3055 vs	3053 w	3055 vs	3049 w	3050 vs	3051 w	3056 vs	CH Gerilme
3032 w	3028 vw	3029 w	3030 w	3026 w	3026 w	3029 m	3031 w	CH Gerilme
2983 vw	2994 vw	2979 vw	2996 vw	2977 vw	0010 11	2971 vw	2975 vw	Asim CH ₂ Gerilme
2952 vs	2771.000	2946 vs	2949 w	2940 vs	2942 w	2944 vs	2775 111	Asim CH ₂ Gerilme
2926 vs	2922 s	2926 m	2928 vs	2924 m	2924 s	2929 w	2927 w	Sim CH ₂ Gerilme
2859 s	2855 m	2858 s	2851 m	2857 s	2848 m	2866 m	_>_	Sim CH ₂ Gerilme
1611 vs	1611 s	1610 vs	1611 s	1608 vs	1610 m	1605 vs	1606 m	Halka Gerilme
1561 m	1557 m	1561m	1011.0	1560 m	1010 111	1557 m	1557 w	Halka Gerilme
1542 vw		1541 vw		1542 vw		1542 vw		Halka Gerilme
1520 vw		1523 vw		1521 vw		1524 vw		Halka Gerilme
1503 m	1505 m	1501 m		1501 m		1501 m	1509 vw	Halka Gerilme
1475 vw		1475 vw		1475 vw		1475 vw		CH ₂ Makaslama
1456 m		1457 m		1457 m		1456 m		CH ₂ Makaslama
-		1446 w		1447 vw		1441 w	1440 m	CH Bükülme
1429 s	1434 m	1428 s	1437 s	1426 s	1435 m	1416 s	1411 m	CH Bükülme
1397 vw		1391 vw		1386 vw		1376 vw		CH Bükülme
1375 vw		1375 vw		-		1361 vw		CH Bükülme
1352 w	1345 w	1352 w		1350 w		1340 m	1341 m	CH ₂ Dalgalanma
1322 vw	1326 m	1321 vw	1322 s	1327 vw	1318 m	1318 vw	1318 vw	CH Bükülme
-	1280 w	1275 vw		1273 vw				CH ₂ Kıvırma
1255 vw	1247 vw	1258 vw		1256 vw		1252 vw	1253 w	CH ₂ Kıvırma
1219 w		1221 w	1227 vw	1221 w		1227 m		CH Bükülme
1211 s	1216 s	1209 s	1216 s	1210 s	1214 s	1215 m	1218 s	CH Bükülme
1155 vw		-	1150 w	1153 w		1140 w		CH Bükülme
1105 vw		1105 vw		1104 vw		1092 w		CH ₂ Kıvır, CH Bük.
1071 m	1071 m	1070 m	1067 w	1067 m	1067 m	1065 w	1077 w	CH Bükülme
-	1031 w	-	1028 s	1025 vw	1025 s	1021 w	1021 w	CH Bükülme
1013 s	1014 vs	1013 s	1013 m	1010 s	1009 s			CH ₂ Kıvırma
989 vw	990 vw	985 vw		982 vw		991 s	994 s	Nefes alma
969 vw		967 vw		965 vw				CH Bükülme
-		872vw		867 vw				CH Bükülme
857 w	861 m	854 w	857 w	851 w	851 m	855 s	863 m	CH Bükülme
837 w	846 m	837 w		836 w		831 s	826 w	CH ₂ Sallanma
815 s	811 vw	815 s	822 w	812 s	814 w	784 vs	799 vw	CH Bükülme
-	792 w	806 w		805 w				CH Bükülme
749 w	738 w	745 w		741 w		743 w	745 vw	Halka Burulma
671 w	666 s	668 w	664 m	670 w	666 w	670 vw	668 m	Halka Bükülme
613 m	612 w	612 m		608 m	600 w	603 s		Halka Bükülme
-		589 vw		587 vw		577 m		Halka Bükülme
561 vw	539 vw	-		560 vw			-0.4	Halka Bükülme
513 s	512 w	514s		513 s		505 s	506 w	Halka Burulma
441 vw		-		442 vw		101		Halka Burulma
421 vw		421 vw		422 vw		421 vw		Halka Burulma
409 vw	2.52	402 vw	2.50	410 vw	2.42	403 vw	410 vw	Halka Burulma
	353 W		352 w		342 w		346 w	Halka Bükülme
	278 s		253 s		251 s			M-X Gerilme
	238 w		224 w		222 w		001	M-N Gerilme
	207 VW		211 VW		215 VW		221 W	MNC Dil il
	15/ VW		108 VW		1/0 VW		155 VW	M De Der 1
	110 VS		105 vs		109 VS		91 VS	M-Py Burulma
155	89 VS	110		70	89 S		89 S	Toplam Karrie
133		110		12				горіаті каута

Çizelge 7.5. 1,3-Bis(4-piridil)propan molekülünün civa halojenür metal komplekslerinin dalgasayıları

IR: İnfrared spektrumunda gözlenen frekanslar, RA: Raman spektrumunda gözlenen frekanslar, vs: Çok şiddetli, s: Şiddetli, w: Zayıf, vw: Çok zayıf, m: Orta, Ger: Gerilme, Asim.: Asimetrik, Sim.: Simetrik, Bük:Bükülme, M: Metal, X: Halojen, Py.:Piridin grubu

Şekil 7.20. 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerini infrared spektrumları (KBr içinde)

Şekil 7.21. 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerini Raman spektrumları

Zn(BI	PP)Cl ₂	Zn(BI	PP)Br ₂	Zn(BI	PP)I ₂	Bp	p [5]	İşaretleme
IR(cm ⁻¹) I	$RA(cm^{-1})$	$IR(cm^{-1})$	$RA(cm^{-1})$	$IR(cm^{-1})$	$RA(cm^{-1})$	$IR(cm^{-1})$	$RA(cm^{-1})$	
3057 m	3067 vs	3055 m	3063 vs	3057 m	3059 vs	3051 w	3056 vs	CH Gerilme
3040 s	3038 w	3037 s	3036 m	3034 s	3034 s	3029 m	3031 w	CH Gerilme
2989 w	2955 w	2984 w		-		2971 vw	2975 vw	Asim. CH ₂ Ger.
2954 vs		2951 vs	2949 m	2948 vs	2949 s	2944 vs		Asim. CH ₂ Ger.
2933 w	2930 s	2933 w	2920 s	2928 w	2922 m	2929 w	2927 w	Sim. CH ₂ Ger.
2858 s	2859 s	2858 s	2859 s	2858 s	2857 m	2866 m		Sim. CH ₂ Ger.
1619 vs	1621 m	1619 vs	1620 m	1618 vs	1620 s	1605 vs	1606 m	Halka Gerilme
1580 vw		-		1578 vw				Halka Gerilme
1562 m	1557 vw	1562 m		1558 m		1557 m	1557 w	Halka Gerilme
1542 vw		1541 vw		1541 vw		1542 vw		Halka Gerilme
1508 m	1507 vw	1509 m	1509 w	1507 m	1505 m	1501 m	1509 vw	Halka Gerilme
1488 vw		-		-				Halka Gerilme
1474 vw		-		1475 vw		1475 vw		CH ₂ Makaslama
1456 w		1457w		1456w		1456 m		CH ₂ Makaslama
1447 vw		1447 vw		-		1441 w	1440 m	CH Bükülme
1432 s	1432 m	1432 s	1430 m	1431 s		1416 s	1411 m	CH Bükülme
1400 w		1394 w		1391 w		1376 vw		CH Bükülme
1377 vw		1375 vw		-		1361 vw		CH Bükülme
1359 w	1345 vw	1358 w		1361 w		1340 m	1341 m	CH ₂ Dalgalanma
1323 w	1322 m	1320 w	1320 m	1320 w	1318 w	1318 vw	1318 vw	CH Bükülme
1305 vw	1303 vw	1305 vw		1308 vw		1300 vw		CH ₂ Kıvırma
1263 vw	1258 vw	1260 vw	1256 vw	1259 vw	1264 w	1252 vw	1253 w	CH ₂ Kıvırma
1221 m	1218 s	1223 m	1216 s	1224 m	1214 m	1227 m		CH Bükülme
1112 vw		1110 vw		1111 vw	1030 w	1092 w		CH Bükülme
1074 s	1071 w	1072 s		1069 s		1065 w	1077 w	CH Bükülme
1031 s	1035 s	1030 s	1032 s	1028 s	1019 s	1021 w	1021 w	CH Bükülme
988 vw	987 vw	989 vw		984 vw		991 s	994 s	Nefes Alma
970	965 vw	969		967				CH Bükülme
859 m	861 m	857 m	857 m	856 m		855 s	863 m	CH Bükülme
838 vw		839 vw		836 vw		831 s	826 w	CH ₂ Sallanma
824 s	825 m	822 s	824 w	820 s				CH Bükülme
810 w		809 w		809 w		784 s	799 vw	CH Bükülme
744 vw	744 w	744 vw		741 vw		743 w	745 vw	Halka Burulma
733		732		730				Halka Bükülme
671 w	666 w	671 w	666 m	668 w	666 m	670 vw	668 m	Halka Bükülme
621 s	618 vw	620 s		618 s		603 s		Halka Bükülme
593 vw		590 vw		590 vw				Halka Bükülme
519 s	522 vw	517 s		518 s		505 s	506 w	Halka Burulma
421 vw		422 vw		422 vw		421 vw		Halka Burulma
407 vw		410 vw		406 vw		403 vw	410 vw	Halka Burulma
	350w		353 w		350 w		346 w	Halka Bükülme
	284 s		276 s		274 s			M-X Gerilme
	249 w		240 w		232 w			M-N Gerilme
	218 vw		195 vw		186 vw		221 w	CCC Bükülme (Me)
	153 vw		157 vw		155 vw		155 vw	MNC Bükülme
• • •	112 vs	100	103 vs		95 vs		91 vs	M-Py Burulma
218		198		166				Toplam Kayma

Çizelge 7.6. 1,3-Bis(4-piridil)propan molekülünün çinko halojenür metal komplekslerinin dalgasayıları

IR: İnfrared spektrumunda gözlenen frekanslar, RA: Raman spektrumunda gözlenen frekanslar, vs: Çok şiddetli, s: Şiddetli, w: Zayıf, vw: Çok zayıf, m: Orta, Ger: Gerilme, Asim.: Asimetrik, Sim.: Simetrik, M: Metal, X: Halojen, Py.:Piridin grubu

Şekil 7.22. 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin infrared spektrumları (KBr içinde)

Şekil 7.23. 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin Raman spektrumları

7.3.2.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin teorik olarak incelenmesi

1,3-Bis(4-piridil)propan molekülünün metal kompleksleri C_S simetrisine sahiptir. Komplekslerin birim hücresinde 32 atom bulunduğu için 90 titreşim modu bulunmaktadır. Bu titreşim modlarının simetri türlerine göre dağılımı 49 A'+ 41A" şeklindedir. Tüm titreşim modlarında infrared ve Raman aktiftir. Hesaplanan titreşim frekansları ile deneysel veriler karşılaştırmalı olarak Ek 3 ve 4'de verilmiştir. Metal komplekslerin infrared ve Raman spektrumları Şekil 7. 20-23.'de verilmiştir. Toplam enerji dağılımı Scaled Quantum Mechanic (SQM) paket programı kullanılarak yapılmıştır. Yaklaşık mod tasvirleri GaussView ara yüzey programının yardımıyla incelenmiştir.

Deneysel olarak gözlenen frekanslar ile teorik olarak hesaplanan frekanslar arasında karşılaştırma yapmak için her temel set için RMS değerleri hesaplanmıştır. RMS değerleri; Zn(Bpp)Cl₂ 14,82 (SDD), 14,70 (LANLN2DZ), Zn(Bpp)Br₂ 14,14 (SDD), 14,13 (LANLN2DZ) ve Zn(Bpp)I₂ kompleksleri için 12,39 (SDD), 12,54 (LANLN2DZ) olarak belirlenmiştir. Benzer şekilde, Hg(Bpp)Cl₂ kompleksleri için 13,25 (SDD), 13,10 (LANLN2DZ), Hg(Bpp)Br₂ kompleksleri için 13,07 (SDD), 13,11 (LANLN2DZ) ve Hg(Bpp)I₂ kompleksleri için 14,79 (SDD), 14,88 (LANLN2DZ) olarak belirlenmiştir.

Piridil grup titreşimleri

Hetero-aromatik yapılarda C-H gerilme titreşimleri 3200 cm⁻¹ - 3000 cm⁻¹ bölgesinde gözlenir [86]. Bu çalışmada metal komplekslere ait C-H titreşimler 3090-3030 cm⁻¹ (FT-IR) ve 3060-3020 cm⁻¹ (FT-Raman) bölgesinde gözlenmiştir. Serbest molekülün titreşim frekansları ile karşılaştırıldığında metal komplekslerin titreşim frekansları, metale bağlı olarak yüksek frekans bölgesine doğru kaydığı belirlenmiştir.

Metilen grup titreşimleri

Metilen grubunun C-H gerilme titreşimleri aromatik halka yapılarının frekanslarına göre düşük frekans bölgesinde gözlenir [86]. 3011 ve 2925 cm⁻¹ bölgesinde gözlenen titreşimler metilen grubunun CH₂ gerilme titreşimleri olarak işaretlenmiştir. Teorik olarak hesaplanan titreşim frekansları, deneysel değerler ile oldukça iyi bir uyum içerisindedir. Metal komplekslerin infrared ve Raman spektrumları ile serbest molekülün infrared ve Raman spektrumları karşılaştırıldığında, simetrik CH₂ gerilme titreşimi düşük frekans bölgesine doğru kayarken, asimetrik CH₂ gerilme titreşimi yüksek frekans bölgesine doğru kaymaktadır (Şekil 7. 24-27.).

Şekil 7.24. 1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin simetrik CH₂ gerilme titreşimi

Şekil 7.25. 1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin asimetrik CH₂ gerilme titreşimi

Şekil 7.26. 1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin simetrik CH₂ gerilme titreşimi

Şekil 7.27. 1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin asimetrik CH₂ gerilme titreşimi

Halka gerilme titreşimleri

1600-1650 cm⁻¹ spektral bölgesinde halka gerilme titresimleri gözlenir [68]. Bu titreşim modu 1,3-bis(4-piridil)propan molekülünün metal iyonuna bağlanması durumu için önemli bir titreşimdir. Serbest molekülde 1605 cm⁻¹'de gözlenirken, metal iyonuna bağlanması durumunda bu band, 1620 cm⁻¹ civarına doğru kaymaktadır [68]. Çalışmada bu band 1605 cm⁻¹, 1606 cm⁻¹ olarak FT-IR ve FT-Raman spektrumlarında gözlenmiştir. Halka gerilme titreşimi civa komplekslerinin infrared spektrumlarında 1611 cm⁻¹ (Hg(Bpp)Cl₂), 1610 cm⁻¹ (Hg(Bpp)Br₂), 1608 cm^{-1} $(Hg(Bpp)I_2)$ belirlenmiştir. olarak Çinko komplekslerin infrared spektrumlarında ise 1619 cm⁻¹ (Zn(Bpp)Cl₂), 1619 cm⁻¹ (Zn(Bpp)Br₂), 1618 cm⁻¹ (Zn(Bpp)I₂) olarak gözlenmiştir (Şekil 7.28-29.).

Şekil 7.28. 1,3-Bis(4-piridil)propan molekülünün civa komplekslerinin halka gerilme titreşimi

Şekil 7.29. 1,3-Bis(4-piridil)propan molekülünün çinko komplekslerinin halka gerilme titreşimi

Şekil 7.30. Teorik olarak hesaplanan Zn(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin infrared spektrumları (B3LYP\LANL2DZ temel set)

Şekil 7.31. Teorik olarak hesaplanan Zn(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\LANL2DZ temel set)

Şekil 7.32 Teorik olarak hesaplanan Zn(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)

Şekil 7.33. Teorik olarak hesaplanan Zn(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)

Şekil 7.34. Teorik olarak hesaplanan Hg(Bpp)X₂ (X:Cl, Br and I) komplekslerinin infrared spektrumları (B3LYP\LANL2DZ temel set)

Şekil 7.35. Teorik olarak hesaplanan Hg(Bpp)X₂ (X:Cl, Br and I) komplekslerinin Raman spektrumları (B3LYP\LANL2DZ temel set)

Şekil 7.36. Teorik olarak hesaplanan Hg(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin infrared spektrumları (B3LYP\SDD temel set)

Şekil 7.37. Teorik olarak hesaplanan Hg(Bpp)X₂ (X:Cl, Br ve I) komplekslerinin Raman spektrumları (B3LYP\SDD temel set)

7.3.3.1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerinin geometrik parametreleri

1,3-Bis(4-piridil)propan molekülünün taban durumu için metal komplekslerindeki atomların numaralandırılması Şekil 7.37.'de verilmiştir. Komplekslerin taban durumundaki optimize edilmiş bağ uzunluk ve bağ açıları Çizelge 7.7. ve 7.8.'de verilmiştir. Optimize edilmiş geometrik parametreler Zn(Bpp)Cl₂ [72], Zn(Bpp)Br₂ [70] Zn(Bpp)I₂ [70] and Hg(Bpp)I₂ [78] kompleksinin X-ışınları verileri ile Çizelge 7.7-8.'de karşılaştırmalı olarak verilmiştir.

Şekil 7. 38. 1,3-Bis(4-piridil)propan molekülünün metal (II) halojenür komplekslerindeki atomların numaralandırılması [M(Bpp)X₂; M:Zn ve Hg; X:Cl, Br ve I]

		Zn(BPP)Cl	2	Z	n(BPP)Br ₂				
	LANL2DZ	SDD	X-ışınları [72]	LANL2DZ	SDD	X-ışınları [70]	LANL2DZ	SDD	X-ışınları [70]
Bağ Uzunluğu (A°)									
C_1 - C_2	1,399	1,399	1,380	1,399	1,399	1,375	1,399	1,399	1,72
C_1-N_6	1,363	1,362	1,338	1,364	1,363	1,338	1,364	1,363	1,44
C ₁ -H ₇	1,085	1,085	0,93	1,085	1,085	-	1,085	1,085	-
C_2 - C_3	1,413	1,413	1,391	1,413	1,413	1,398	1,413	1,413	1,20
C_2 -H ₈	1,086	1,080	0,93	1,086	1,085	-	1,086	1,086	-
$C_3 - C_4$	1,415	1,415	1,380	1,413	1,415	1,394	1,413	1,415	1,35
$C_3 - C_{11}$	1,314	1,314	1,301	1,314	1,314	1,394	1,314	1,314	1,33
C4-C5 C4-H5	1,399	1,399	0.93	1,399	1,399	1,500	1,399	1,399	1,42
C ₅ -N ₆	1 363	1,000	1 338	1 364	1 363	1 354	1,000	1,000	1.22
$C_{5}-H_{10}$	1.085	1.085	0.93	1.085	1.085	-	1.085	1.085	-
N ₆ -M ₃₂	2,081	2,045	2,048	2,090	2,048	2,049	2,102	2,059	1,97
C ₁₁ -H ₁₂	1,098	1,098	0,97	1,098	1,098	-	1,098	1,098	-
C ₁₁ -H ₁₃	1,098	1,098	0,97	1,098	1,098	-	1,098	1,098	-
C_{11} - C_{14}	1,555	1,555	1,525	1,555	1,555	1,532	1,555	1,555	1,46
C_{14} - H_{15}	1,098	1,098	0,97	1,098	1,098	-	1,098	1,098	-
C_{14} - H_{16}	1,098	1,098	0,97	1,098	1,098	-	1,098	1,098	-
$C_{14}-C_{17}$	1,552	1,552	1,525	1,552	1,552	1,532	1,552	1,552	1,47
$C_{17}-H_{18}$	1,099	1,099	0,97	1,099	1,099	-	1,099	1,099	-
$C_{17}-H_{19}$	1,099	1,099	0,97	1,099	1,099	-	1,09	1,099	-
C_{17} - C_{20}	1,518	1,518	1,301	1,518	1,518	1,500	1,510	1,518	1,58
$C_{20}-C_{21}$	1,411	1,412	1,391	1,411	1,412	1,396	1,410	1,412	1,41
C20-C22	1,411	1,412	1,380	1,411	1,412	1,394	1,411	1,412	1,45
C21-U23	1,407	1,407	0.93	1,407	1,407	-	1,407	1,407	-
C ₂₂ -C ₂₅	1,407	1,407	1.374	1.407	1.407	1.366	1,407	1,407	1.30
C ₂₂ -H ₂₆	1,087	1,087	0,93	1,087	1,087	-	1,087	1,087	-
C ₂₃ -N ₂₇	1,357	1,358	1,374	1,357	1,358	1,338	1,357	1,358	1,32
C23-H28	1,087	1,087	0,93	1,087	1,087	-	1,087	1,087	-
C ₂₅ -N ₂₇	1,357	1,358	1,374	1,357	1,358	1,354	1,357	1,358	1,48
C ₂₅ -H ₂₉	1,087	1,087	0,93	1,087	1,087	-	1,087	1,087	-
X ₃₀ -M ₃₂	2,258	2,203	2,233	2,419	2,336	2,375	2,608	2,527	2,565
X ₃₁ -M ₃₂	2,258	2,203	2,241	2,419	2,336	2,382	2,608	2,527	2,596
Bağ açısı (°)	101.00	101.75	102.16	101 77	121.02	122.4	121.00	121.02	110.0
C_2 - C_1 - N_6	121,66	121,75	123,16	121,//	121,83	123,4	121,90	121,93	110,9
C_2 - C_1 - Π_7	122,20	122,52	118,4	122,00	122,08	-	121,72	121,90	-
Γ_{6} - C_{1} - Γ_{7}	120.08	120.06	110,4	120.10	120.10	1197	120.12	120.12	121.9
$C_1 - C_2 - H_s$	119 19	119 19	120.2	119.15	119 14	-	119 11	119 10	-
$C_{3}-C_{2}-H_{8}$	120.72	120.73	120,2	120.73	120.75	-	120.75	120.76	-
C_2 - C_3 - C_4	117,29	117,23	116,77	117,22	117,16	116,6	117,14	117,10	121,0
$C_2 - C_3 - C_{11}$	121,33	121,36	122,51	121,37	121,40	122,7	121,41	121,43	121,1
$C_4-C_3-C_{11}$	121,33	121,36	120,71	121,37	121,40	120,6	121,41	121,43	117,3
$C_3-C_4-C_5$	120,08	120,06	120,36	120,10	120,10	120,4	120,12	120,12	115,6
$C_3-C_4-C_9$	120,72	120,73	119,8	120,73	120,75	-	120,75	120,76	-
$C_5-C_4-C_9$	119,19	119,19	119,8	119,15	119,14	-	119,11	119,10	-
C_4 - C_5 - N_6	121,66	121,75	122,78	121,77	121,83	122,8	121,90	121,93	135,7
$C_4 - C_5 - H_{10}$	122,20	122,32	118,6	122,00	122,08	-	121,72	121,90	-
$N_6 - C_5 - H_{10}$	110,13	115,92	118,6	116,22	110,08	-	110,30	110,10	-
C_1 -N ₆ - C_5	119,20	119,12	117,52	120.40	110,95	117,2	110,70	110,70	115,4
$C_1 - 1 N_6 - 1 V I_{32}$	120,39	120,43	121,41	120,49	120,52	121,0	120,00	120,00	120.5
$C_{2} = 1_{0} = 1_{132}$	110.04	110.02	100.2	120,77	110.02	141,1	110.02	100.00	127,5
$C_3 - C_{11} - H_{12}$	110,00	110,03	109,5	110,05	110,02	-	110,02	109,99	-
$C_3 - C_{11} - H_{13}$	110,06	110,03	109,3	110,05	110,02	-	110,02	109,99	-
$U_3 - U_{11} - U_{14}$	111,/9	111,82	111,39	111,80	111,92	110,9	111,98	112,02	124,5
$H_{12}-C_{11}-H_{13}$	107,21	107,19	100,0	107,21	107,19	-	107,19	107,18	-
$H_{112}-C_{11}-C_{14}$	108,79	108,81	109,5	108,70	108,77	-	108,73	108,75	-
C_{11} - C_{14} - H_{15}	109.61	109.60	109,3	109.62	109.62	-	109,65	109.64	-
C_{11} - C_{14} - H_{16}	109.61	109.60	109.3	109.62	109.62	-	109.65	109.64	-
$C_{11}-C_{14}-C_{17}$	111,84	111,88	111,78	111,76	111,77	-	111,67	111,70	-

Çizelge 7.7. 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin geometrik parametreleri

H ₁₅ -C ₁₄ -H ₁₆	106,60	106,59	107,9	106,61	106,60	-	106,62	106,61	-
$H_{15}-C_{14}-C_{17}$	109,50	109,49	109,3	109,53	109,53	-	109,55	109,55	-
$H_{16}-C_{14}-C_{17}$	109,50	109,49	109,3	109,53	109,53	-	109,55	109,55	-
C ₁₄ -C ₁₇ -H ₁₈	108,85	108,84	109,3	108,83	108,83	-	108,82	108,81	-
C ₁₄ -C ₁₇ -H ₁₉	108,85	108,84	109,3	108,83	108,83	-	108,82	108,81	-
C_{14} - C_{17} - C_{20}	112,04	112,04	111,59	112,08	112,11	110,9	112,14	112,16	108,3
H ₁₈ -C ₁₇ -H ₁₉	107,02	107,02	108,0	107,01	107,01	-	107,01	107,01	-
H ₁₈ -C ₁₇ -C ₂₀	109,96	109,96	109,3	109,95	109,95	-	109,94	109,94	-
H ₁₉ -C ₁₇ -C ₂₀	109,96	109,96	109,3	109,95	109,95	-	109,94	109,94	-
C_{17} - C_{20} - C_{21}	121,43	121,44	122,51	121,43	121,43	122,7	121,43	121,43	114,2
C_{17} - C_{20} - C_{22}	121,43	121,44	120,71	121,43	121,43	120,6	121,43	121,43	129,7
C_{21} - C_{20} - C_{22}	117,09	117,09	116,77	117,10	117,10	116,6	117,10	117,10	115,8
C_{20} - C_{21} - C_{23}	119,59	119,59	119,59	119,59	119,59	119,7	119,59	119,59	114,6
C20-C21-H24	120,73	120,73	120,2	120,73	120,74	-	120,73	120,74	-
C23-C21-H24	119,66	119,66	120,2	119,66	119,66	-	119,66	119,66	-
C_{20} - C_{22} - C_{25}	119,59	119,59	120,36	119,59	119,59	120,4	119,59	119,59	122,1
C20-C22-H26	120,73	120,73	119,8	120,73	120,74	-	120,73	120,74	-
C25-C22-H26	119,66	119,66	119,8	119,66	119,66	-	119,66	119,66	-
C21-C23-N27	123,25	123,26	123,16	123,25	123,26	123,4	123,25	123,26	122,1
C21-C23-H28	120,83	120,82	118,4	120,83	120,83	-	120,83	120,83	-
N ₂₇ -C ₂₃ -H ₂₈	115,90	115,90	118,4	115,90	115,90	-	115,91	115,90	-
C_{22} - C_{25} - N_{27}	123,25	123,26	122,78	123,25	123,26	122,8	123,25	123,26	
C22-C25-H29	120,83	120,82	118,6	120,83	120,83	-	120,83	120,83	
N ₂₇ -C ₂₅ -H ₂₉	115,90	115,90	118,6	115,90	115,90	-	115,91	115,90	
C ₂₃ -N ₂₇ -C ₂₅	117,18	117,18	117,32	117,18	117,18	117,2	117,19	117,18	108,1
N6-M32-X30	108,13	109,28	104,54	108,97	110,88	104,88	110,48	112,04	107,0
$N_6-M_{32}-X_{31}$	108,13	109,28	105,13	108,97	110,88	105,2	110,48	112,04	107,3
X ₃₀ -M ₃₂ -X ₃₁	143,72	141,42	125,69	142,04	138,22	125,43	139,03	135,91	123,5

Çizelge 7.7. (Devam) 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin geometrik parametreleri

	Hg(BPP)Cl ₂	HgI	3PP)Br ₂	Hg	BPP)I ₂	
	SDD	LÁNL2DZ	SDD	LALN2DZ	SDD	LANL2DZ	X-ışınları [78]
Bağ Uzunluğu							,
(A°)							
C_1-C_2	1,402	1,402	1,402	1,402	1,402	1,402	1,226
C_1-N_6	1,359	1,360	1,359	1,360	1,359	1,360	1,447
C_1 - H_7	1,086	1,086	1,086	1,086	1,086	1,086	-
C_2-C_3	1,413	1,413	1,413	1,413	1,413	1,413	1,413
C ₂ -H ₈	1,086	1,086	1,086	1,086	1,086	1,086	-
C_3-C_4	1,413	1,413	1,413	1,413	1,413	1,413	1,383
$C_3 - C_{11}$	1,515	1,515	1,515	1,515	1,515	1,515	1,393
C_4-C_5	1,402	1,402	1,402	1,402	1,402	1,402	1,236
C ₄ -H ₉	1,086	1,086	1,086	1,086	1,086	1,086	-
C_5-N_6	1,359	1,360	1,359	1,360	1,359	1,360	1,365
C ₅ -H ₁₀	1,086	1,086	1,086	1,086	1,086	1,086	-
$N_6 - M_{32}$	2,454	2,461	2,461	2,479	2,476	2,509	2,434
C ₁₁ -H ₁₂	1,098	1,098	1,098	1,098	1,098	1,098	-
C ₁₁ -H ₁₃	1,098	1,098	1,098	1,098	1,098	1,098	-
C_{11} - C_{14}	1,554	1,554	1,554	1,554	1,554	1,554	1,457
C ₁₄ -H ₁₅	1,098	1,098	1,098	1,098	1,098	1,098	-
C ₁₄ -H ₁₆	1,098	1,098	1,098	1,098	1,098	1,098	-
$C_{14} - C_{17}$	1,552	1,552	1,552	1,552	1,552	1,552	1,661
C ₁₇ -H ₁₈	1.099	1.099	1.099	1.099	1.099	1.099	-
C_{17} -H ₁₉	1,099	1,099	1,099	1,099	1,099	1,099	-
$C_{17} - C_{20}$	1.518	1.518	1.518	1.518	1.518	1.518	1.611
C_{20} - C_{21}	1.412	1.411	1.412	1.411	1.412	1.411	1.525
$C_{20} - C_{22}$	1.412	1.411	1.412	1.411	1.412	1.411	1,446
$C_{20} = C_{22}$	1 407	1 407	1 407	1 407	1 407	1 407	1 636
C21-H24	1 087	1 087	1 087	1,087	1 087	1,087	-
C_{21} C_{24}	1 407	1 407	1 407	1 407	1 407	1 407	1 657
C22 U25	1,087	1,087	1 087	1,107	1,087	1 087	-
C22 N26	1,007	1,007	1 358	1,007	1 358	1 357	1 457
Car-Has	1,087	1,087	1,087	1,087	1,087	1,087	-
Car-Naz	1 358	1,007	1 358	1,007	1 358	1,007	1 266
Cas-Has	1,087	1,087	1,087	1,087	1,007	1,087	1,200
VM	2 /21	2 /03	2 530	2 636	2 713	2 700	2 502
X_{30} - W_{32}	2,421 2 4 2 1	2,493	2,539	2,030	2,713	2,799	2,502
A_{31} - W_{32}	2,421	2,475	2,557	2,050	2,715	2,177	2,302
Bag Açısı (*)	121.00	101.07	121.07	121.07	102.00	100.11	125.0
$C_2 - C_1 - N_6$	121,89	121,87	121,97	121,97	122,06	122,11	125,8
C_2 - C_1 - H_7	121,94	121,91	121,/1	121,70	121,55	121,47	-
$N_6-C_1-H_7$	110,10	116,21	116,30	116,32	116,37	116,41	-
$C_1 - C_2 - C_3$	119,93	119,97	119,96	119,98	119,96	119,97	119,2
C_1 - C_2 - H_8	119,32	119,30	119,27	119,27	119,27	119,27	-
$C_3-C_2-H_8$	120,73	120,72	120,76	120,73	120,76	120,74	-
$C_2 - C_3 - C_4$	117,24	117,27	117,17	117,20	117,13	117,14	96,7
$C_2 - C_3 - C_{11}$	121,36	121,34	121,40	121,38	121,42	121,41	124,9
$C_4 - C_3 - C_{11}$	121,36	121,34	121,40	121,38	121,42	121,41	122,9
$C_3-C_4-C_5$	119,93	119,97	119,96	119,98	119,96	119,97	138,1
$C_3-C_4-C_9$	120,73	120,72	120,76	120,73	120,76	120,74	-
$C_5-C_4-C_9$	119,32	119,30	119,27	119,27	119,27	119,27	-
C_4 - C_5 - N_6	121,89	121,87	121,97	121,97	122,06	122,11	111,6
$C_4 - C_5 - H_{10}$	121,94	121,91	121,71	121,70	121,55	121,47	-
$N_6-C_5-H_{10}$	116,16	116,21	116,30	116,32	116,37	116,41	-
$C_1 - N_6 - C_5$	119,09	119,04	118,93	118,87	118,80	118,66	108,9
$C_1 - N_6 - M_{32}$	120,45	120,47	120,52	120,56	120,59	120,66	120,5
$C_5 - N_6 - M_{32}$	120,45	120,47	120,52	120,56	120,59	120,66	129,5
$C_3-C_{11}-H_{12}$	110,00	110,04	109,97	109,99	109,97	109,97	-
$C_3-C_{11}-H_{13}$	110,00	110,04	109,97	109,99	109,97	109,97	-
$C_3 - C_{11} - C_{14}$	112,08	111,93	112,18	112,10	112,19	112,16	121,2

Çizelge 7.8. 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerinin geometrik parametreleri

H ₁₂ -C ₁₁ -H ₁₃	107,10	107,14	107,10	107,12	107,10	107,11	-
$H_{12}-C_{11}-C_{14}$	108,75	108,77	108,72	108,74	108,72	108,73	-
$H_{13}-C_{11}-C_{14}$	108,75	108,77	108,72	108,74	108,72	108,73	-
C ₁₁ -C ₁₄ -H ₁₅	109,60	109,59	109,62	109,62	109,62	109,63	-
C ₁₁ -C ₁₄ -H ₁₆	109,60	109,59	109,62	109,62	109,62	109,63	-
$C_{11}-C_{14}-C_{17}$	111,81	111,84	111,73	111,73	111,73	111,70	-
$H_{15}-C_{14}-H_{16}$	106,57	106,57	106,58	106,59	106,58	106,58	-
H ₁₅ -C ₁₄ -C ₁₇	109,54	109,53	109,56	109,56	109,56	109,56	-
H ₁₆ -C ₁₄ -C ₁₇	109,54	109,53	109,56	109,56	109,56	109,56	-
C ₁₄ -C ₁₇ -H ₁₈	108,80	108,82	108,78	108,80	108,78	108,79	-
C ₁₄ -C ₁₇ -H ₁₉	108,80	108,82	108,78	108,80	108,78	108,79	-
C_{14} - C_{17} - C_{20}	112,20	112,13	112,25	112,21	112,25	112,23	103,6
H ₁₈ -C ₁₇ -H ₁₉	106,99	107,01	106,99	107,00	106,99	106,99	-
H ₁₈ -C ₁₇ -C ₂₀	109,94	109,95	109,93	109,93	109,93	109,93	-
H ₁₉ -C ₁₇ -C ₂₀	109,94	109,95	109,93	109,93	109,93	109,93	-
C_{17} - C_{20} - C_{21}	121,45	121,45	121,45	121,45	121,45	121,45	119,6
C_{17} - C_{20} - C_{22}	121,45	121,45	121,45	121,45	121,45	121,45	108,5
C_{21} - C_{20} - C_{22}	117,06	117,06	117,07	117,07	117,07	117,07	124,9
C_{20} - C_{21} - C_{23}	119,61	119,61	119,61	119,61	119,61	119,61	104,4
C20-C21-H24	120,71	120,71	120,71	120,71	120,71	120,71	-
C ₂₃ -C ₂₁ -H ₂₄	119,67	119,67	119,67	119,67	119,67	119,67	-
C_{20} - C_{22} - C_{25}	119,61	119,61	119,61	119,61	119,61	119,61	110,6
C ₂₀ -C ₂₂ -H ₂₆	120,71	120,71	120,71	120,71	120,71	120,71	-
C ₂₅ -C ₂₂ -H ₂₆	119,67	119,67	119,67	119,67	119,67	119,67	-
C_{21} - C_{23} - N_{27}	123,27	123,26	123,26	123,26	123,26	123,26	121,4
C_{21} - C_{23} - H_{28}	120,82	120,82	120,82	120,82	120,82	120,82	-
N ₂₇ -C ₂₃ -H ₂₈	115,90	115,90	115,90	115,90	115,90	115,90	-
C_{22} - C_{25} - N_{27}	123,27	123,26	123,26	123,26	123,26	123,26	119,5
C_{22} - C_{25} - H_{29}	120,82	120,82	120,82	120,82	120,82	120,82	-
N ₂₇ -C ₂₅ -H ₂₉	115,90	115,90	115,90	115,90	115,90	115,90	-
C_{23} - N_{27} - C_{25}	117,16	117,16	117,16	117,16	117,16	117,16	121,7
N ₆ -M ₃₂ -X ₃₀	99,002	99,281	100,84	101,21	102,62	102,63	103,0
N ₆ -M ₃₂ -X ₃₁	99,002	99,281	100,84	101,21	102,62	102,63	102,9
X ₃₀ -M ₃₂ -X ₃₁	161,98	161,40	158,30	157,56	154,74	154,71	144,7

Çizelge 7.8. (Devam) 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerinin geometrik parametreleri

Şekil 7.39. 1,3-Bis(4-piridil)propan molekülünün metal komplekslerinin M-X bağ uzunlukları (M: Zn ve Hg; X: Cl, Br ve I)

Şekil 7.39'daki M-X değerleri x-ışını verileri ve hesaplanan veriler birbirleri ile kıyaslandığında birbirlerinden çok yakın değerler bulunmuştur. Bu Zn-X bağ uzunlukları; 2,203 A° (Cl), 2,336 A° (Br) ve 2,527 A° (I) olarak B3LYP/SDD metodunda hesaplanmıştır. Bu bağ uzunluğu deneysel olarak 2,233 A° (Cl), 2,375 A° (Br) ve 2,565 A° (I) olarak gözlenmiştir. Hem teorik hemde deneysel olarak M-X bağ uzunluğu I>Br>Cl şeklinde artmaktadır (Şekil 7.39.). Ayrıca civa kompleklerindeki M-X bağ uzunluğu çinko kompleklerindeki değerlerine nazaran biraz daha büyüktür.

Şekil 7.40. 1,3-Bis(4-piridil)propan molekülünün metal komplekslerinin M-N bağ uzunlukları (M: Zn ve Hg; X: Cl, Br ve I)

M-N bağ uzunluğu 2,045 A° ve 2,509A° arasında değişmektedir. LANL2DZ hesaplama metodu ile yapılan hesaplamalarda, M-N bağ uzunluğu Zn(BPP)Cl₂ (2,081 A°) < Zn(BPP)Br₂ (2,090 A°)< Zn(BPP)I₂ (2,102 A°) ve Hg(BPP)Cl₂ (2,481 A°)< Hg(BPP)Br₂ (2,479 A°)< Hg(BPP)I₂ (2,509 A°) şeklinde değişmektedir. M-N bağ uzunluğu herhangi bir metal için halojene göre I>Br>Cl sırası ile azalmaktadır. Metale göre ise M-N bağ uzunluğu SDD hesaplama metodunda Hg(BPP)Cl₂ (2,454 A°)> Zn(BPP)Cl₂ (2,045 A°) ve Hg(BPP)Br₂ (2,460 A°)> Zn(BPP)Br₂ (2,048 A°) şeklinde değişmektedir. Çinko kompleklerindeki M-N bağ uzunluğu civa

kompleksinde bağ uzunluklarından yaklaşık 0,3 A° (B3LYP/SDD) ve 0,45 A° (B3LYP/LANL2DZ) daha kısa hesaplanmıştır (Şekil 7.39.).

7.4. 4-Asetilpiridin Molekülünün Çinko (II) Halojenür Kompleksleri

4-Asetilpiridin molekülünün ilk detaylı titreşim işaretlemesi Medhi [79] tarafından; 2, 3 ve 4-Asetilpiridin moleküllerinin deneysel titreşim frekansları lazer Raman ve infrared spektrumları 4000-50 cm⁻¹ aralığında kaydedilmiştir. Molekülün metal (II) halojenür kompleksleri ile ilgili çalışma Güllüoğlu ve Yurdakul [80] tarafından yapılmıştır. Bu çalışmada 4-asetilpiridin molekülünün MX₂(4-Ap)₂ (4-Ap: 4-Asetilpiridin; M=Ni, Cd ve Zn; X=Cl; M=Cd; X=I) metal (II) halojenür komplekslerinin titreşim spektrumları tartışılmıştır. Yurdakul ve ark. [81] tarafından yapılan çalışmada, 4-asetilpiridin molekülünün metal (II) tetracyanonickelate komplekslerinin titreşim spektrumları tartışılmıştır. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin yapısal infrared çalışması Cabral [82] tarafından yapılmıştır. Bu çalışmada Co(4-Ap)₂Cl₂ kompleksinin yapısal parametreler verilerek çok az sayıdaki seçme titreşim frekansları tartışılmıştır.

Bu çalışmada, 4-asetilpiridin molekülünün metal (II) halojenür [Zn(NC₇H₇O)₂X₂; X: Cl, Br ve I] kompleksleri deneysel olarak hazırlanmıştır. Hazırlanan bu komplekslerin infrared, Raman spektrumları ve elemental analiz sonuçları verilmiştir. Bu komplekslere ait teorik hesaplamalar B3LYP metodu ile SDD ve LANL2DZ temel setler kullanılarak hesaplanmıştır. Teorik frekanslar ile deneysel frekanslar karşılaştırmalı olarak EK 5'de verilmiştir.

7.4.1.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin deneysel olarak incelenmesi

4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin infrared ve Raman spektrumları serbest molekülün spektrumları ile karşılaştırmalı olarak Çizelge 7.9.'da verilmiştir. 4-Asetilpiridin molekülünün metal komplekslerinin birçok titreşim modunda serbest ligandın frekanslarının bağlandığı metalin iyonizasyon potansiyeline bağlı olarak yüksek frekans bölgesine kaydığı gözlenmiştir. Bu kayma miktarlarının toplamları Çizelge 7.9.'da verilmiştir. Bu frekanslardaki kaymaların toplamı ve bu toplamların büyüklük sıralaması kaymaların metale bağlılığını ortaya çıkarmaktadır. Toplam kayma miktarları, her bileşik için çizelgelerin alt kısmında verilmiştir. Kayma değerlerinin, bileşiğin kimyasal yapısına, bağlanan metale ve Cl, Br ve I halojenlerine göre değiştiği gözlenmiştir. Benzer kaymalar piridin ve piridin türevlerinin halojen bileşiklerinin tümünde gözlenmiştir. Bu kaymalar atomlarının mekanik çiftlenimleri ile açıklanmıştır [74-78]

 $Zn(4-Ap)_2X_{2;}$ (X=Cl, Br ve I) bileşiklerine ait olan sırasıyla Çizelge 7.9.'da verilen toplam kaymaların M-N(bağ) bağ gerilmesi ve M-N gerilme frekanslarının aynı sıraya göre arttığı gözlenmektedir. Aynı zamanda izomorf bileşiklerinde kayma değerleri halojene bağlı olup Cl>Br>I sıralamasıyla azalmaktadır. M-N bağ uzunluğunun artmasıyla M-N gerilme titreşiminin düşük frekans bölgesine kayması gerekmektedir. Yapılan teorik hesaplamalar sonucunda M-N bağ uzunluğunda artış I>Br>Cl şeklinde değiştiği hesaplanmıştır. M-N gerilme titreşimindeki artış Cl>Br>I sırasıyla uyum içindedir. Bu titreşim deneysel olarak 213 cm⁻¹ (Zn(4-Ap)₂Cl₂), 211 cm⁻¹ (Zn(4-Ap)₂Br₂) ve 209 cm⁻¹ (Zn(4-Ap)₂I₂) olarak Raman spektrumunda gözlenmiştir.

İşaretleme	Zn(4-A	$(p)_2Cl_2$	Zn(4-A	$(p)_2Br_2$	Zn(4-4	$(Ap)_2I_2$	Serb	est 4-Asetil	piridin
	IR.	RA.	IR.	RA.	IR.	RA.	IR.*	RA.*	Exp. IR.
CH Gerilme	3091	3077	3090	3071	3088	3075	3082		3079
CH Gerilme	3065		3059		3060	3060	3066	3066	3064
CH Gerilme	3048		3043		3044	3044	3047	3050	3048
Asim.CH ₃ Gerilme	3014	3013	3010		3010	3019	3009	3010	3012
Asim.CH ₃ Gerilme	2990	2986	2979	2986	2974	2984	2972		
Sim. CH ₃ Gerilme	2919	2917	2914	2911	2915	2915	2923	2922	2921
C=O Gerilme	1702	1700	1699		1700	1694	1696	1694	1695
C-C Gerilme	1617	1617	1615	1615	1614	1615	1597	1596	1598
Halka Gerilme	1557	1555	1555		1555	1555	1557	1556	1558
Halka Gerilme	1500	1500	1501	1499	1498	1498	1494	1492	1492
CH3 Makaslama	1421	1422	1422	1420	1419	1419	1410		1409
CH3 Dalgalanma	1367	1366	1363		1365	1363	1362		1363
CH Bükülme	1326	1324	1328	1327	1321	1322	1324	1324	1324
Halka Gerilme	1259	1260	1266		1260	1258	1267	1267	1268
C- CH ₃ Gerilme	1234	1233	1232		1230	1230	1220	1214	1224
CH Bükülme	1107		-		1106		1115	-	1118
CH Bükülme	1092	1091	1088	1088	1089	1089	1083	1084	1083
CH Bükülme	1062	1064	1062	1063	1059	1064	1063	1064	1064
CH ₃ Sallanma	1027	1029	1025	1027	1024	1025	1021		1022
CH ₃ Sallanma	966	961	959	951	962	960	-	962	964
Halka Burulma	879	882	883		883	880	875		879
Halka Burulma	835	838	820		835	836	817		815
Halka Burulma	754	753	750	751	751	753			
Halka Bükülme	737		738		738		736	739	738
Halka Bükülme	665	664	667	664	662	663	664	666	665
-C=O Bükülme	595	595	595		593	593	590	589	588
CCC Bükülme	484	474			480	479	465		468
C=O Bükülme	436	425	435	435	430	429	417		422
Halka Burulma		383				381			
C-CH ₃ Makaslama		337				330			
MX Gerilme		302				305			
MN Gerilme		213		211		209			
Halka Burulma		165				161	158	160	
NMX Bükülme		97				94			
Toplam Kayma	125		79		63				

Çizelge 7.9. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin dalgasayıları

IR: İnfrared spektrumunda gözlenen frekanslar, RA: Raman spektrumunda gözlenen frekanslar, vs: Çok şiddetli, s: Şiddetli, w: Zayıf, vw: Çok zayıf, m: Orta, Asim.: Asimetrik, Sim.: Simetrik, M: Metal, X: Halojen, Py.:Piridin grubu

Şekil 7.41. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin İnfraed spektrumları (KBr içinde)

Şekil 7.42. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları

RAMAN ŞİDDETİ

7.4.2.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin teorik olarak incelenmesi

4-Asetilpiridin molekülünün metal halojenür kompleksleri C₁ simetrisine sahiptir. Kompleks yapının ilkel hücresinde 35 atom bulunduğu için 99 temel titreşim modu bulunmaktadır. Bu titreşim modlarının hepsi infrared ve Raman aktiftir. Hesaplanan titreşim frekansları ile deneysel veriler karşılaştırmalı olarak EK 5'de verilmiştir. Metal komplekslerin deneysel ve hesaplanan infrared ve Raman spektrumları Şekil 7.41-46.'da verilmiştir. Toplam enerji dağılımı Paralell Quantum Solution (SQM) paket programı kullanılarak yapılmıştır. Yaklaşık mod tasvirleri toplam enerji dağılımı ve Gauss-view ara yüzey programının yardımıyla yapılmıştır.

Deneysel olarak gözlenen frekanslar ile teorik olarak hesaplanan frekanslar arasında karşılaştırma yapmak için, her temel set için RMS değerleri hesaplanmıştır. RMS değerleri Zn(4-Ap)₂Cl₂ kompleksleri için 29,51 (SDD), 29,65 (LANLN2DZ), Zn(4-Ap)₂Br₂ kompleksleri için 31,19 (SDD), 31,34 (LANLN2DZ) ve Zn(4-Ap)₂I₂ kompleksleri için 30,03 (SDD), 30,18 (LANLN2DZ) olarak belirlenmiştir. Zn metal komplekslerinin tüm hesaplamaları B3LYP yöntemi ile yapılmıştır.

Piridil grup titreşimleri

Hetero-aromatic yapılarda C-H gerilme titreşimleri 3200 cm⁻¹-3000 cm⁻¹ bölgesinde gözlenir [86]. Bu çalışmada 3060-3130 cm⁻¹ bölgesinde 9 tane (v_{91} - v_{99}) C-H gerilme titreşimi hesaplanmıştır. Bu titreşimler Zn(4-Ap)₂Cl₂ kompleksinde FT-IR 3048 cm⁻¹, 3065 cm⁻¹ ve 3091 cm⁻¹ olarak FT-IR spektrumunda gözlenmiştir. FT-Raman spektrumunda bu pik 3077 cm⁻¹ olarak tespit edilmiştir. Medhi tarafından yapılan çalışmada 4-asetilpiridin molekülünde bu titreşimler 3083 cm⁻¹, 3066 cm⁻¹ ve 3047 cm⁻¹ olarak belirlemiştir [79].

Piridil grubunun CC gerilme titreşimleri 1598 cm⁻¹ olarak gözlenmiştir. Medhi [79] tarafından yapılan çalışmada piridil grubunun CC gerilme titreşimleri 1597 cm⁻¹ olarak işaretlenmiştir. 4-Asetilpiridin molekülünün metal iyonuna bağlanma

durumunda bu pik 1615 cm⁻¹ civarında gözlenmiştir. Bu titreşim 1617 cm⁻¹ (Zn(4-Ap)₂Cl₂), 1615 cm⁻¹ (Zn(4-Ap)₂Br₂) ve 1614 cm⁻¹ (Zn(4-Ap)₂I₂) komplekslerinde bu şekilde gözlenmiştir.

Asetil grup titreşimleri

Asetil grubunun titreşimleri 15 normal mod ile belirlenebilir. Bu titreşimler;

- 2 tane asimetrik gerilme CH₃ titreşimi
- 1 tane simetrik gerilme CH₃ titreşimi
- 2 tane asimetrik CH₃ bükülme titreşimi
- 1 tane simetrik CH₃ bükülme titreşimi
- 2 tane CH₃ sallanma titreşimi
- 1 tane CH₃ burulma titreșimi
- 1 tane C=O gerilme titreșimi
- 2 tane C=O bükülme titreşimi
- 1 tane C-CH₃ gerilme titreşimi ve
- 2 tane C-CH₃ bükülme titreşimi

olarak işaretlenmiştir. Asetil grubunun titreşim modları Çizelge 7.10.'da ayrıntılı olarak verilmiştir.

CH₃ grubu için, 3020 - 2920 cm⁻¹ bölgesine üç tane pik gözlenmesi beklenir. Bu bölgede dört adet (v_{86} - v_{90}) CH₃ gerilme titreşimi hesaplanmıştır. Bu bölgede serbest 4-asetilpiridin molekülü için 3012 cm⁻¹ (asimetrik) ve 2921 cm⁻¹(simetrik) pikler gözlenmiştir. Medhi [79] tarafında yapılan çalışmada 3009 cm⁻¹ (asimetrik), 2972 cm⁻¹ (asimetrik) ve 2923 cm⁻¹ (simetrik) pikleri şeklinde işaretlenmiştir. Zn(4-Ap)₂ Cl₂ kompleksinde bu pikler 3014 cm⁻¹ (asimetrik), 2990 cm⁻¹ (asimetrik) ve 2919 cm⁻¹ (simetrik) olarak gözlenmiştir. Çinko (II) halojenür kompleksinin CH₃ gerilme titreşimleri serbest haldeki 4-asetilpiridin molekülünün titreşimlerinden çok az farklıdır. Asimetrik CH₃ bükülme titreşimleri genellikle 1430 cm⁻¹-1470 cm⁻¹ bölgesinde gözlenir. Yapılan hesaplamalarda bu titreşimler ($v_{77} - v_{74}$) 1436 cm⁻¹ -1448 cm⁻¹ aralığında bulunmuştur. Yaptığımız deneysel çalışmalarda bu titreşim 1421 cm⁻¹ (Zn(4-Ap)₂ Cl₂), 1422 cm⁻¹ (Zn(4-Ap)₂Br₂), 1419 cm⁻¹ (Zn(4-Ap)₂I₂) ve 1409 cm⁻¹ (serbest 4-Asetilpiridin) olarak infrared spektrumunda gözlenmiştir. Diğer taraftan, Simetrik CH₃ bükülme titreşimleri genellikle 1360 cm⁻¹-1400 cm⁻¹ bölgesinde gözlenir. Yaptığımız deneysel çalışmalarda bu titreşim 1367 cm⁻¹ (Zn(4-Ap)₂ Cl₂), 1363 cm⁻¹ (Zn(4-Ap)₂Br₂), 1365 cm⁻¹ (Zn(4-Ap)₂I₂) ve 1363 cm⁻¹ (serbest 4asetilpiridin) olarak infrared spektrumunda gözlenmiştir.

Asetil grubunun C=O gerilme titreşimi Medhi [79] tarafından 1696 cm⁻¹ olarak gözlenmiştir. Bu pik çalışmamızda 1695 cm⁻¹ olarak infrared spektrumunda gözlenmiştir. Bu titreşim çinko (II) halojenür komplekslerinde 1702 cm⁻¹ (Zn(4-Ap)₂Cl₂), 1699 cm⁻¹ (Zn(4-Ap)₂Br₂) and 1700 cm⁻¹ (Zn(4-Ap)₂I₂) olarak belirlenmiştir.

Medhi [79] 4-asetilpiridin molekülünün C-CH₃ titreşimlerini 1253 cm⁻¹ (gerilme), 355 cm⁻¹ (düzlem için açı bükülme) ve 219 cm⁻¹ (düzlem dışı açı bükülme) olarak belirlemişlerdir. Yapılan deneysel çalışmalarda düzlem içi C-CH₃ açı bükülme titreşimi 337 cm⁻¹ (Zn(4-Ap)₂Cl₂) olarak gözlemlenmiştir. C-CH₃ grubunun gerilme ve düzlem dışı açı bükülme titreşimleri hem infrared hemde Raman spektrumunda gözlenememiştir.

		$Zn(4-Ap)_2Cl_2$	$Zn(4-Ap)_2I_2$	$Zn(4-Ap)_2Br_2$	4-Aset	ilpiridin
Titreșim	Mod No	Gözl./Hesap.	Gözl./Hesap.	Gözl./Hesap.	IR	IR ^a
v _{as} (CH ₃)	V ₉₀	3014/3063	3010/3063	3010/3064	3012	3009
$\upsilon_{as}(CH_3)$	v_{89}	2990/3006	2979/3090	2974/3006	-	2972
v _s (CH ₃)	ν_{87}	2919/2931	2913/2931	2915/2931	2921	2923
υ(C=O)	ν_{85}	1702/1608	1699/1608	1700/1609	1695	1696
$\delta_{as}(CH_3)$	v_{74}	1421/1436	1422/1437	1419/1436	1409	1410
$\delta_{as}(CH_3)$		-	-	-	-	
$\delta_{s}(CH_{3})$	v_{71}	1367/1372	1363/1372	1365/1372	1363	1362
υ(C-CH ₃)	v_{65}	/1247	/1248	/1248	-	1253
ρ(CH ₃)	v_{54}	1027/1029	1025/1029	1024/1029	1022	1021
ρ(CH ₃)	v_{46}	966/944	959/945	962/944	964	962*
δ(C=O)	V ₃₅	595/601	595/601	593/600	588	599
δ(C=O)	v_{28}	436/438	435/439	430/438	422	417
ρ(C-CH ₃)	V ₂₅	337/365	/364	330/363	-	355
δ(C-CH ₃)	v_{20}	/229	/211	/201	-	219

Çizelge 7.10. Asetil grubunun titreşimleri

Gözl: Gözlenen, Hesap: Hesaplanan: ^a Medhi ve Ark. tarafından: υ_{as} : Asimetrik gerilme titreşimi, υ_s : Simetrik gerilme titreşimi, δ_{as} : Asimetrik bükülme, δ_s : Simetrik bükülme, ρ : Sallanma.

Şekil 7.43. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları (B3LYP/SDD)

Şekil 7.44. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin infrared spektrumları (B3LYP/SDD)

Şekil 7.45. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin infrared spektrumları (B3LYP/LANL2DZ)

Şekil 7.46. Teorik olarak hesaplanan 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin Raman spektrumları (B3LYP/LANL2DZ)
7.4.3.4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin geometrik parametreleri

4-Asetilpiridin molekülünün çinko (II) halojenür komplekslerinin tetrahedral yapıda olduğunu düşünmekteyiz. Komplekslerdeki atomların numaralandırması Şekil 7.46.'da gösterilmiştir. Yapılan literatür araştırmasında komplekslere ait ne deneysel ne de teorik yapılmış herhangi bir titreşim spektrumu ya da X-ışınları çalışmalarına Bu nedenle, komplekslerin optimize edilmiş rastlanılmamıştır. geometrik parametreleri 4-asetilpiridinium chloride'nin verileri X-ışınları [83] ile karşılaştırılarak Çizelge 7.11.'de verilmiştir.

Şekil 7.47. 4-Asetilpiridin molekülünün metal (II) halojenür kompleksleri

	Zn(4-Ap	$)_2Cl_2$	Zn(4-Ap	$)_2Br_2$	Zn(4-A	$(p)_2I_2$	
Bağ uzunlukları (A°)	LANL2DZ	SDD	LANL2DZ	SDD	LANL2DZ	SDD	X-ışınları [83]
M ₁ -X ₂	2,327	2,273	2,152	2,113	2,165	2,128	
M ₁ -X ₃	2,319	2,266	2,152	2,113	2,165	2,127	
M_1 - N_4	2,142	2,106	2,491	2,400	2,686	2,603	
N ₄ -C ₅	1,363	1,362	1,363	1,363	1,364	1,363	1,326
N ₄ -C ₆	1,359	1,359	1,360	1,359	1,360	1,359	1,324
C ₅ -C ₇	1,400	1,400	1,399	1,399	1,399	1,399	1,361
C ₅ -H ₈	1,085	1,085	1,085	1,084	1,085	1,085	0,930
C ₆ -C ₉	1,403	1,403	1,403	1,403	1,403	1,403	1,368
C ₆ -H ₁₀	1,085	1,085	1,085	1,085	1,085	1,085	0,930
C ₇ -C ₁₁	1,412	1,412	1,412	1,412	1,411	1,412	1,385
C_7-H_{12}	1,084	1,084	1,084	1,084	1,084	1,084	0,930
C ₉ -C ₁₁	1,410	1,410	1,410	1,410	1,409	1,410	1,386
C ₉ -H ₁₃	1,084	1,084	1,084	1,084	1,084	1,084	0,930
C ₁₁ -C ₁₄	1,513	1,513	1,513	1,513	1,513	1,514	1,506
C ₁₄ -C ₁₅	1,517	1,517	1,517	1,517	1,517	1,517	1,482
C ₁₄ -O ₁₆	1,250	1,250	1,250	1,250	1,250	1,250	1,214
C ₁₅ -H ₁₇	1,092	1,092	1,092	1,092	1,092	1,092	0,960
C_{15} - H_{18}	1,098	1,098	1,098	1,098	1,098	1,098	0,960
C_{15} - H_{19}	1,098	1,098	1,098	1,097	1,098	1,098	0,960
Bağ açıları (°)							
$X_2-M_1-X_3$	139,5	136,1	104,5	103,9	101,2	100,6	
X_2 - M_1 - N_4	101,5	102,7	103,1	104,6	104,9	106,1	
X_3 - M_1 - N_4	101,8	102,8	103,1	104,6	104,9	106,1	
$N_4\text{-}M_1\text{-}N'_4$	108,0	107,1	136,1	131,4	131,7	128,0	
M_1 - N_4 - C_5	120,3	120,2	120,2	120,3	120,4	120,2	
M_1 - N_4 - C_6	120,2	120,3	120,4	120,5	120,5	120,7	
C ₅ -N ₄ -C ₆	119,4	119,3	119,1	119,1	118,9	118,9	121,9
N ₄ -C ₅ -C ₇	121,7	121,7	121,8	121,9	121,9	122,0	120,6
N ₄ -C ₅ -H ₈	115,9	115,8	116,1	116,0	116,2	116,1	119,7
C ₇ -C ₅ -H ₈	122,3	122,3	122,0	122,0	121,7	121,8	119,7
N ₄ -C ₆ -C ₉	121,8	121,8	121,9	121,9	122,0	122,0	119,8
N ₄ -C ₆ -H ₁₀	115,9	115,7	116,0	116,0	116,2	116,0	120,1
$C_9-C_6-H_{10}$	122,2	122,3	121,9	122,0	121,7	121,8	120,1
C ₅ -C ₇ -C ₁₁	119,3	119,3	119,4	119,4	119,4	119,4	119,2

Çizelge 7.11. 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin geometrik parametreleri

$C_5-C_7-H_{12}$	120,9	120,9	120,9	120,9	120,9	120,8	120,4
C_{11} - C_7 - H_{12}	119,6	119,6	119,6	119,6	119,6	119,6	120,4
$C_6-C_9-C_{11}$	119,2	119,3	119,3	119,3	119,3	119,3	119,9
C ₆ -C ₉ -H ₁₃	118,9	118,9	118,9	118,9	118,8	118,8	120,1
C_{11} - C_9 - H_{13}	121,7	121,7	121,7	121,7	121,7	121,7	120,1
C ₇ -C ₁₁ -C ₉	118,3	118,2	118,2	118,2	118,2	118,1	118,6
$C_7 - C_{11} - C_{14}$	118,8	118,9	118,8	118,9	118,9	118,9	118,7
C_9 - C_{11} - C_{14}	122,7	122,8	122,8	122,8	122,8	122,9	122,7
C_{11} - C_{14} - C_{15}	119,0	119,0	119,0	119,1	119,0	119,1	119,8
C_{11} - C_{14} - O_{16}	119,4	119,4	119,3	119,3	119,3	119,3	118,2
C_{15} - C_{14} - O_{16}	121,5	121,4	121,5	121,5	121,5	121,5	122,0
C_{14} - C_{15} - H_{17}	109,1	109,1	109,1	109,1	109,1	109,0	109,5
C_{14} - C_{15} - H_{18}	110,9	110,9	110,9	110,9	111,0	111,0	109,5
C_{14} - C_{15} - H_{19}	110,9	110,9	110,9	110,9	110,9	110,9	109,5
H_{17} - C_{15} - H_{18}	109,0	109,0	109,0	108,9	108,9	108,9	109,5
H ₁₇ -C ₁₅ -H ₁₉	109,1	109,1	109,1	109,1	109,1	109,1	109,5
H_{18} - C_{15} - H_{19}	107,5	107,5	107,5	107,5	107,6	107,5	109,5

Çizelge 7. 11. (Devam) 4-Asetilpiridin molekülünün metal (II) halojenür komplekslerinin geometrik parametreleri

8. GENEL SONUÇLAR

Serbest 1,3 bis(4-piperidil)propan, 1,3 bis(4-piridil)propan moleküllerinin titreşim modlarıyla ilgili ne detaylı ne teorik hesaplama ne de deneysel çalışma yapılmamıştır. Öncelikle moleküllerin olası bütün konformasyon durumları belirlendi. Moleküllere ait konformasyonlar B3LYP/6-311G(d,p) hesaplama metodu ile optimize edildi. Optimizasyon hesabı sonucunda en kararlı konformasyon belirlendi. En kararlı konformasyonun titreşim frekansları ve geometrik parametreleri Gaussian 03W paket programı kullanılarak hesaplandı. Hesaplamalarda ab initio (HF) ve yoğunluk fonksiyon teorisi (DFT) ile 6-31 G(d) ve 6-311G(d,p) temel setleri kullanılarak hesaplandı. Teorik olarak elde edilen titreşim frekansları ve geometrik parametreleri deneysel veriler ile karşılaştırıldı. Teorik olarak elde edilen verilerin deneysel veriler ile oldukça uyumlu olduğu belirlenmiştir. Her fonksiyonel ve her temel set arasında istatistiksel olarak karşılaştırma yapmak için deneysel ve teorik parametreleri nRMS değerleri hesaplandı. Hesaplamalar sonucunda B3LYP metodu ile yapılan hesaplamaların diğer metotlar ile yapılan hesaplamalardan daha iyi sonuçlar verdiği tespit edilmiştir.

 $M(1,3-bis(4-piridil)propan)X_2$ (M: Hg ve Zn, X:Cl, Br ve I) ve Zn(4-asetilpiridin)₂X₂ (X:Cl, Br ve I) bileşikleri deneysel olarak elde edildi. Elde edilen bileşiklerin infrared spektrumları 400-4000 cm⁻¹ bölgesinde ve Raman spektrumları 5-3500 cm⁻¹ bölgesinde kaydedildi. Bu bileşiklerin C, H, N analizlerinin sonuçları verildi. Serbest ligand molekülünün (1,3-bis(4-piridil)propan ve 4-asetilpiridin) titreşim frekansları ile bileşik yapılardaki ligand molekülünün titreşim frekansları karşılaştırıldı. Bileşiklerin ligand frekanslarında bileşik oluşumu nedeniyle, serbest ligand moleküllerine göre kaymalar gözlendi. Spektrumların incelenmesi sonucunda bu kaymaların; metale bağlı olarak değiştiği ve ligandın iç titreşimleri ile M-N(ligand) bağı titreşimleri arasındaki mekanik çiftlenimden kaynaklandığı sonucuna varıldı. Benzer kaymalar piridin ve piridin türevlerinin halojen bileşiklerinde de görülmüştür.

1,3-bis(4-piridil)propan molekülünün, Zn(Bpp)Cl₂ [72], Zn(Bpp)Br₂ [70] Zn(Bpp)I₂ [70] and Hg(Bpp)I₂ [78] komplekslerinin x-ışınları verileri mevcuttur. 4-asetilpiridin molekülünün çinko halojenür bileşikleri ile ilgili her hangi bir x-ışını çalışmasına rastlanılmamıştır. Elemental analiz sonuçları, infrared ve Raman spektrumları incelendi. Sonuçta moleküllerin metal atomuna azot uçlarından bağlandığına karar verildi. Bu komplekslere ait teorik hesaplamaları Gaussian 03W paket programı yardımı ile B3LYP hesaplama metodu ile SDD ve LANL2DZ temel setler kullanılarak yapıldı. Teorik olarak elde edilen geometrik parametreler ve titreşim spektrumları deneysel veriler ile karşılaştırıldı. Hesaplama sonuçlarının deneysel değerler ile oldukça uyumlu olduğu belirlendi.

KAYNAKLAR

- 1. Woodward, L. A., "Introduction to the theory and molecular vibration spectroscopy", *Longman*, Oxford, 21-77 (1972).
- Chang, R., "Basic Principles of Spectroscopy", *Mc Graw-Hill*, New York, 1-100 (1971).
- 3. Whiffen, D. H., "Spectroscopy 2nd ed.", *Longman*, London, 50-60 (1971).
- Kurt, M., "Bazı metal(II) benzimidazol bileşiklerinin yapılarının kırmızı altı spektroskopisi yöntemiyle araştırılması ve 1,2-bis(4-pyridyl) ethan molekülünün titreşim spektrumunun teorik olarak incelenmesi ", Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, 30-86 (2003).
- 5. Güllüoğlu, M. T., "Bazı metal (II) bileşiklerin yapılarının titreşimsel spektroskopi ile araştırılması", Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, 50-126 (2000).
- 6. Banwell, C. N., "Fundamentals of Molecular Spectroscopy, 3.ed. ", *Mc.Graw Hill*, London, 60-81 (1983).
- Atkins, P. W., "Quanta" Oxford University Clarenden press, Oxford, 25-70 (1985).
- Bransden, B. H., Joachim, C. J., "Physics of Atom and Molecules", *Longman*, London, 5-82 (1983).
- 9. Cotton, F.A., "Chemical Applications of Group Theory, 2nd ed." *Wiley*, London, 27-64 (1971).
- Wilson, E. B., Decius, J. C. and Cross, P. C., "Molecular Vibrations the Theory of Infrared and Raman Vibrational Spectra", *Mc Graw Hill*, NewYork, 2-92 (1955).
- 11. Nakamoto, K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.", *Wiley*, New York, 7-51 (1997).
- 12. Rao, C., "Chemical Application of Infrared Spectroscopy", *Academic Press Inc.*, NewYork, 50-85 (1963).
- 13. Gans, P., "Vibrating Molecules", Chapman and Hall, London, 18-59 (1971).
- 14. Çelik, İ., Akkurt, M., İde, S., Tutar, A., Çakmak, O., "C₇H₈Br₄ molekülünün konformasyon analizi ve kuantum mekanik yöntemlerle optimizasyonu, elde

edilen elektronik ve yapısal parametrelerin x-ışınları yapı analiz sonuçları ile karşılaştırılması", *Gazi University Journal of Science*, 16(1): 27-35 (2003).

- 15. Jensen, F., "Introduction to Computational Chemistry", *John Wiley and Sons Inc.*, NewYork, 5-67 (1999).
- 16. Pulay, P., "Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules", *Molecular Physic*, 17(2): 197-204 (1969).
- 17. Pople, J. A., Krishan, R., Schlegel, H. B., Binkley, J. S., *International Journal* of *Quantum Chemistry Symposium*, 13: 225 (1979)
- Pulay, P., "Analitical derivative methods in Quantum chemistry, Ab initio methods in Quantum chemistry", by K. P. Lawley 11nd ed., *John Wiley & Sons Ltd*, 118-143 (1987).
- 19. Cramer, C. J., "Essentials of Computational Chemistry", *John Wiley & Sons*, University of Minnesota, 70-98 (2002).
- Atkins, P. W., Freidman, R. S., "Molecular Quantum Mechanics", Oxford University Press, New York, 240-254 (1997).
- 21. Koch, W., Holthausen, M. C., "A Chemist's Guide to Density Functional Theory", *Wiley-VCH*, Amsterdam, 40-90 (2000).
- Bahat, M., "Kinazolin molekülünün kuvvet alanının DFT B3LYP/6-31 G* tabanlı SQM metodu ile hesabı ve bazı Hofmann-tipi komplekslerin titreşimsel spektroskopi ile incelenmesi", Doktora Tezi, *Gazi Üniversitesi Fen Bilimleri Enstitüsü*, Ankara, 8-45 (2000).
- 23. Gill, P. M. W., "DFT, HF and selfconsistent field, Encyclopedia of Computational Chemistry", *John Wiley&Sons Ltd*, New York, 80-105 (1996).
- 24. Parr, R.G., Yang, W., "Density Functional Theory", *Oxford University Press*, England, 60-101 (1989).
- Hohenberg, P., Kohn, W., "Inhomogeneous electron gas", *Physical Review*, 136 (3B): 864-871 (1964).
- Kohn, W., Sham, L. J., "Self Consistent Equations Including Exchange and Correlation affects", *Physical Review*, 140 (4A): 1113 -1138 (1965).
- 27. Becke, A. D., "Density Functional Exchange Energy Approximation with Correct Asymtotic Behavior", *Physical Review A*, 38(6): 3098-3100 (1988).

- Vosko, S. H., Wilk, L., Nusair, M., "Accurate spin dependent electron liquid correlation energies for local spin density calculations: a critical analysis", *Canadian Journal of Physics*, 58(8): 1200-1211 (1980).
- 29. Lee, C., Yang, W., Parr, R. G., "Development of the colle-salvetti correlation energy formula in to a functional of the electron density", *Physical Review*, B 37(2): 785-789 (1988).
- 30. Miehlich, B., Savin A., Stoll, H., Preuss. H., "Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr", *Chemical Physics Letter*, 157(3): 200-206 (1989).
- 31. Becke, A. D., "Density functional thermochemistry III, The role of exact exchange", *Journal of Chemical Physics*, 98(7): 5648-5652 (1993).
- 32. Höltje, H. D., Sippl, W., Rognan, D., Folkers, G., "Molecular Modelling, 2nd ed. ", *Wiley-VCH*, 18-78 (2003).
- 33. Leach, A. E., "Molecular modelling principles and applications", *Paerson Education Limited*, England, 455-501 (2001).
- Csizmadia, G. L., "Computational Adv. Inorganic chem., Molecular Str. And reactivity", Ed. by Ögretir, C., Csizmadia, G.L., NATO ASI series. *Kluwer Academic Publishers*, USA, 15-74 (1981).
- 35. Hehre, W. J., Radom, L., Schleyer, P. V., Pople, J., "Ab initio molecular orbital theory", *Wiley-Interscience*, New York, 55-80 (1986).
- 36. Wilson, E. B., Decius, J. C., Cross, P. C., "Molecular Vibrations the Theory Infrared and Raman Vibrational Spectra", *McGraw Hill*, NewYork, 2-92 (1995).
- Arslan, H., "p-toluidino-p-klorofenilglioksim ligandı ve bazı metal komplekslerinin termel davranışlarının incelenmesi ve normal koordinat analizi", Doktora Tezi, *Niğde Üniversitesi Fen Bilimleri Enstitüsü*, Niğde, 29-32 (1998).
- 38. Keresztury, G., Jalsovszky, G., "An alternative calculation of the vibrational potential energy distribution", *Journal of Molecular Structure*, 10 (2): 304-305 (1971).
- Pulay, P., Fogarasi, G., Pang, F., Bogs, J. E., "Systematic ab initio gradient calculation of molecular geometries, force constants and dipole moment derivatives", *Journal of the American Chemical Society*, 101(10): 2550-2560 (1979).
- 40. Pulay, P., Meyer, W., "Comparasion of the ab initio force constant of ethane, ethylene and acetylene", *Molecular Physics*, 27(2): 473-490 (1974).

- 41. Botschvina, P., Bleicher, W., "Quantum chemical calculations of formyl radicals", *Molecular Physics*, 30(4): 1029-1036 (1975).
- 42. Blom, C. E., Altona, C.," Geometry of the substituted cyclohexane ring : X-ray structure determinations and empirical valence-force calculations", *Molecular Physics*, 31(5): 1377-1391 (1976).
- 43. Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., Vargha, A., "Combinational and Theoretical ab initio and experimental information to obtain reliable harmonic force constants scaled quantum mechanical (SQM) force fields for glyoxal, acrolein, butadiene, formaldehyde and ethylene", *Journal of the American Chemical Society*, 105(24): 7037-7047 (1983).
- 44. Rauhut, G., Pulay, P., "Trasferable scaling factors for density functional derived vibrational force fields", *Journal of Physical Chemistry*, 99(10): 3094 (1995).
- 45. Yıldız, A., Genç, Ö. and Bektaş S., "Enstrümental Analiz", Hacettepe Üniversitesi Yayınları, A-64, Ankara, 50-74 (1963).
- 46. Frechet, J. M. J., Hawker, C. J., Gitsov, I., Leon, J. W., "Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties", *Journal of Macromolecular Science: Pure and Applied Chemistry A*, 33(10): 1399-1425 (1996).
- Malmström, E., Hult, A., "Hyperbranched polymers" Journal of Macromolecular Science-Reviews in Macromolecular Chemistry C, 37(3): 555(1997)
- 48. Kim, Y.H., "Hyperbranched polymers 10 years after" *Journal of Polymer Science: Part A: Polymer Chemistry*, 36(11): 1685-1698 (1998).
- 49. Voit, B., "New developments in hyperbranched polymers" *Journal of Polymer Science: Part A: Polymer Chemistry*, 38(14): 2505-2525 (2000).
- 50. Inoue, K., "Functional dendrimers, hyperbranched and star polymers", *Progress in Polymer Science*, 25(4): 453-571 (2000).
- 51. Gau, C., Yan, D., Tang,W., "Comparison of coply(sulfone-amine)s containing piperazine and 4,4'-Trimethylenedipiperidine units", *Macromolecular Chemistry and Physics*, 202 (15): 3035-3042 (2001).
- Kawai, Y., Kanbara, Hasegawa, T. K., "Preparation of polythioamides from dialdehydes and 4,4'-trimethylenedipiperidine with sulfur by the Willgerodt-Kindler reaction", *Journal of Polymer Science: Part A: Polymer Chemistry*, 37(12): 1737-1740 (1999).

- 53. Goforth, A. M. L., Peterson, M.D., Simith, H. C. L., "Syntheses and crystal structures of several novel alkylammonium iodobismuthate materials containing the 1,3-Bis(4-piperidinium)propane cation", *Journal of Solid State Chemistry*, 178(11): 3529-3540 (2005).
- 54. Güllüoğlu, M. T., Erdoğdu, Y., Yurdakul, Ş., "Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree-Fock calculations" *Journal of Molecular Structure*, 834-836: 540-547 (2007).
- 55. Güllüoğlu, M. T., Yurdakul, Ş., "Infrared Spectroscopic Study on the Hofmann type Complexes and Clathrates: M(4,4- trimethylenedipiperidine)Ni(CN)₄ .G (M=Ni or Co); M(4,4- trimethylenedipiperidine)Ni(CN)₄ .G (M=Ni or Co).G (M=Ni or Co , G=Benzene)", XXVI European Congress on Molecular Spectroscopy, France, 255 (2002).
- 56. Güllüoğlu, M. T., Yurdakul, Ş., "Structural Information on Transition Metal (II) Complexes of 4,4 trimethylenedipiperidine from their Infrared Spectra", XXVI European Congress on Molecular Spectroscopy, France, 254 (2002).
- 57. Carballeria, L., Per'ez-Juste, I., "Influence of calculation level and effect of methylation on axial/equatorial equilibria in piperidines", *Journal of Computational Chemistry*, 19(8): 961-976 (1998).
- Vayner, E., Ball, D. W., "Ab initio and density functional optimized structures, proton affinities, and heats of formation for aziridine, azetidine, pyrrolidine, and piperidine", *Journal of Molecular Structure (Theochem)*, 496(1-3): 175-183 (2000).
- 59. Carlucci, G., Ciani, D., Proserpio, M., Rizzato, S., "New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp", *CrystEngComm*, 4(22): 119-121 (2002).
- 60. Suen, M. C., Tsai, H. A., Wang, J. C., "Synthesis and structures of infinite coordination polymer from 1,3-Bis(4-pyridyl)propane ligand and zinc salts", *Journal of the Chinese Chemical Society*, 53(2): 305-312 (2006).
- 61. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A.,

Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D, Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A., Gaussian 03W (Revision C. 02), *Gaussian, Inc.*, Pittsburgh PA, (2003).

- 62. Firsch, A., Nielsen, A. B., Holder, A. L., "Gaussview Users Manual" *Gaussian Inc.* Pitsburg (2000).
- 63. Pulay, P., Baker, J., Wolinski, K., 2013 Green Acres Road Suite A Fayettevile Arkansas, 72703, USA.
- Gornicka, E., Rode, J. E., Raczynska, E., Dasiewicz, D. B., Dobrowolski, J. C., "Experimental (FT-IR and Raman) and theoretical (DFT) studies on vibrational dynamics in cytisine", *Vibrational Spectroscopy*, 36(1): 105-115 (2004).
- Gundersen, G., Rankin, D. W., "The Gas-phase Molecular Structure of Piperidine Studied by Electron Diffraction", *Acta Chemica Scandinavica -Series A: Physical & Inorganic Chemistry*, 37A: 865-874 (1983).
- 66. Lee, T. W., Lau, J. P. K., Wong, W. T., "Synthesis and characterization of coordination polymers of Zn(II) with 1,3-bis(4-pyridyl)propane and 4,4'-pyridine ligands", *Polyhedron*, 23(6): 999-1002 (2004).
- Plater, M. J., Foreman, M. R. St. J., Gelbrich, T., Coles, S. J., Hursthouse, M. B., "Synthesis and characterisation of infinite co-ordination Networks from flexible dipyridyl ligands and cadmium salts", *Journal of Chemical Society, Dalton Transactions*, 18: 3065-3073(2000).
- Correa, C. C., Diniz, R., Chagas, L. H., Rodrigues, B. L., Yoshida, M. I., Teles, W. M., Machado, F. C., Oliveira, L. F. C., "Transition metal complexes with squarate anion and the pyridyl-donor ligand 1,3-Bis(4-pyridyl)propane (BPP): Synthesis, crystal structure ans spectroscopic investigation", *Polyhedron*, 26(5): 989-995 (2007).
- 69. Gao, E. Q., Xu,,Y.,X., Cheng, A. L., He, M. Y., Yan, C. H., "Copper(II) and cobalt(II) coordination polymers with azido ions and 1,3-bis(4'-pyridyl)propane", *Inorganic Chemistry Communications*, 9(2): 212-215 (2006).
- Kim, Y., Kim, S. J., Choi, S. H., Han, J. H., Nam, S. H., Lee, J. H., Kim, H. J., Kim, C., Kim, D. W., Jang, H. G., "Crystal structures of catalytic activities of Zn(II) compounds containing 1,3-Bis(4-pyridyl)propane", *Inorganica Chimica Acta*, 359(8): 2534-2542 (2006).

- 71. Kurt, M., Yurdakul, Ş., "Molecular structure and vibrational spectra of 1,2-bis(4pyridyl) ethane by density functional theory and ab initio Hartree-Fock calculations", *Journal of Molecular Structure*, 654 (1-3): 1-9 (2003).
- 72. Hong, S. J., Kwak, H., Lee, Y. M., Kim, C., Kim, Y., Kim, S. J., "Crystal structure of one dimensional [ZnCl₂(N₂C₁₃H₁₄)]_n (N₂C₁₃H₁₄=1,3-Bis(4-pyridyl)propane)", *Analytical Sciences X-ray Structure Analysis Online*, 21(11): 203-204 (2005).
- 73. Ide, S., Karacan, N., Tufan, Y., "1,2-Bis(4-pyridyl)ethane", *Acta Crystallographica Section C*, 51: 2304-2305 (1995).
- Akyüz, S., Dempster, A. B., Davies, J. E. D., Holmes, K. T., "Solid-state vibrational spectroscopy. Part V. An infrared and Raman spectroscopic study of metal(II) halide pyridine complexes", *Journal of the Chemical Society Dalton Transactions*, 18: 1746 1749 (1976).
- Akyüz, S., Davies, J. E. D., Holmes, K. T., "Solid-state vibrational spectroscopy : Part VI. An infrared and raman spectroscopic study of transition metal(II) 4methylpyridine complexes", *Journal of Molecular Structure*, 42: 59-69 (1977).
- Yurdakul, Ş., Akyüz, S., Davies, J. E. D., "Fourier Transform Infrared and Raman Spectra of Metal Halide Complexes of 3,5-Lutedine in Relation to Their Structures", *Spectroscopy Letter*, 29(1): 175-183 (1996).
- 77. Suzuki, S., Orville-Thomas, W. J., "Molecular force field of pyridine and its application to pyridine-metal complexes", *Journal of Molecular Structure*, 37(2): 321-327 (1977).
- Niu, Y., Hou, H., Zhu, Y., "Self-Assembly of d¹⁰ Metal Adduct Polymers Bridged by Bipyridyl-Based Ligands", *Journal of Cluster Science*, 14 (4): 483-493 (2003).
- 79. Medhi, K. C., "The vibrational spectra of 2,3,4-Acetylpyridine", *Indian Journal Physics*, A 51: 399-413 (1977)
- 80. Güllüoğlu, M. T., Yurdakul,Ş., "Spectroscopic Studies of Transition Metal (II) Halide 4-acetylpyridine Complexes", *Art*, 50(4): 227-229 (1998).
- Yurdakul, Ş., Güllüoğlu, M. T., Küçükgüldal, D., Taşdelen, M., "Vibrational Spectroscopic Investigation of Metal (II) Tetracyano-nickelate Complexes of 4acetylpyridine and Acridine", *Journal of Molecular Structure*, 408/409: 319 -324 (1997).
- Cabral, F., Cabral, J. O., "Complexes of cobalt(II) and nickel(II) with 3- and 4acetylpyridine", *Journal of the Chemical Society, Dalton Transactions*, 2(11): 2595-2598 (1987).

- 83. Kochel, A., "4-Acetylpyridinium chloride", *Acta Crystallographica Section E*, 61: 926-927 (2005).
- 84. Atkins, P. W., Freidman, R. S., "Molecular Quantum Mechanics", *Oxford University pres*, Oxford, 25-80 (1997).
- 85. Szabo, A., Ostlund, N. S., "Modern Quantum Chemistry", *Dover Publications*, New York, 10-45 (1996).
- Lin-vien, D., Cothup, N. B., Fateley, W. G., Graselli, J. G., "The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules", *Academic Press*, Boston, 20-58 (1991).

EKLER

		B3L	YP/6-311 (j(d,p)	B31	LYP/6-31	G(d)	BLYP/6-311 G(d,p)	BLYP/6-31 G(d)	Dene IR	iysel RA	TED ^e (%)	Yaklaşık Mod tasviri
		Frek ^a ,	IR	Ra	Frek ^b ,	IR	Ra	Frek ^c ,	Frek ^d ,				
ΓΩ	Α"	13	0,010	0,050	14	0,014	0,044	16	16			$\Gamma_{\rm CCCH}(31) + \Gamma_{\rm CCCC}(30)$	Halka Burulma
\mathbf{U}_2	Α	30	0,007	0,040	31	0,009	0,032	29	31			$\Gamma_{\rm cccc}$ (53) + $\Gamma_{\rm cccH}$ (42)	Halka Burulma
U3	Α	47	0,030	0,055	48	0,028	0,033	47	48			δ _{ccc} (50) (Me)	CCC Bükülme (Me)
\mathbf{U}_4	Α"	84	0,619	0,052	84	0,639	0,086	84	85			Γ cccc (34)	Halka Burulma
υ	Α	100	0,014	0,087	101	0,013	0,061	66	102			$\Gamma_{\rm cccc}$ (28)+ $\Gamma_{\rm cccH}$ (22)	Halka Burulma
υ ₆	Α"	130	0,400	0,063	132	0,358	0,049	127	131			$\Gamma_{\rm cccc}(31)+\Gamma_{\rm cccH}(26)+\delta_{\rm ccc}$ (19)	Halka Burulma
U7	Α'	156	0,321	0,267	157	0,342	0,297	157	158			$\Gamma_{cccc}(18)+\Gamma_{cccH}(13)$	Halka Burulma
υ_{s}	Α	184	0,046	3,473	184	0,047	3,110	183	184			υ _{cc} (38)+δ _{ccc} (15) (M)	CC Gerilme (Me)
n ₉	Α"	208	0,479	0,004	207	0,424	0,000	210	211		199 vw	$\delta_{\rm ccc}$ (21) (M)+ $\Gamma_{\rm cccc}$ (11)	CCC Bükülme (Me)
υ_{10}	Α	238	0,458	0,088	240	0,578	0,105	239	242			$\Gamma_{\rm CCCN}$ (18)	Halka Burulma
υ_{11}	Α"	239	0,220	0,152	240	0,231	0,113	239	242		263 vw	Γ _{CCCN} (19)	Halka Burulma
υ_{12}	Α	302	0,080	0,407	301	0,091	0,433	302	302			$\delta_{ m ccc}$ (40)	CCC Bükülme
υ_{13}	Α"	333	4,878	0,121	333	4,905	0,220	335	337			Γ_{CNCH} (21)+ Γ_{CCNC} (17)	Halka Burulma
υ_{14}	Α	341	1,055	0,229	342	0,921	0,225	344	346			$\Gamma_{\text{CHCC}}(18) + \Gamma_{\text{CHCH}}(11)$	Halka Burulma
υ_{15}	Α"	372	3,159	0,449	372	3,258	0,418	373	374			$\delta_{ccc}(12)$	CCC Bükülme
υ_{16}	Α	420	2,840	3,302	420	2,743	2,302	422	423			Kombinasyon	Kombinasyon
υ_{17}	Α"	428	4,269	0,227	428	4,221	0,243	429	431	428 vw		$\Gamma_{\rm CCCH}(25)$	Halka Burulma
υ_{18}	Α"	447	0,557	0,849	445	0,521	0,881	449	449	443 vw	444 m	$\delta_{\rm ccN}(17) + \delta_{\rm ccc}(13)$	CCC, CCN Bükülme
υ_{19}	Α	450	1,520	2,252	448	1,650	2,181	451	451			$\delta_{\rm CCN}(19) + \delta_{\rm CCC}(13)$	CCC, CCN Bükülme
\mathbf{U}_{20}	Α"	477	1,760	1,287	476	1,473	1,223	476	477	479 w	463 m	δccc (27)+υcc (11)	CCC Bükülme
\mathbf{U}_{21}	Α	480	13,78	0,370	480	13,16	0,554	482	484	500 w	492 w	$\Gamma_{\rm cccH}(19)$	Halka Burulma
\mathbf{U}_{22}	Α"	545	29,32	0,755	546	27,08	1,184	548	550	563 vw		$\Gamma_{\rm CCNH}(7)+\Gamma_{\rm CCNH}(8)+\delta_{\rm CCN}(6)+\delta_{\rm CCC}(6)$	6) Halka Burulma
\mathbf{U}_{23}	Α	583	19,45	1,828	582	18,17	1,426	585	586	590 m		$\delta_{ccc}(8)$	CCC Bükülme
\mathbf{U}_{24}	Α	712	5,564	0,867	714	4,557	0,878	714	720	725 w		$\Gamma_{ m HCCH}(57)$	Halka Burulma

EK 1 Serbest 1,3-Bis(4-piperidil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

karşılaştırılması	CC Gerilme	Halka Gerilme
planan titreşim frekanslarının k	$v_{cc}(40)$	$v_{cc}(36) + v_{cN}(17)$
gözlenen ve hesa	751	760
lolekülünün g	742	748
oropan m	1,054	11,57
eridil)]	3,162	77,06
(4-pip	753	766
1,3-Bis	1,180	6,608
Serbest	12,53	89,20
vam) S	750	757
1 (De	"Α	Α

S
23
ц
Ц
1
J.S
Ę
5
ĩ
g
\mathbf{F}
g
Ξ
n
Ц
g
S
ä
B
\mathbf{Y}_{-}
Ū.
Ŀ
Ţ
Я
Ξ
Ś
e
TI I
ti.
Ч
IL
16
11
<u></u>
q
b D
S
Je
4
e
>
-
5
ĭ
5
ĭ
N.
O
01)
U
Ξ.
nür
ünü
lünül
ülünüı
külünüı
lekülünüı
olekülünüı
nolekülünüı
molekülünüı
n molekülünüı
an molekülünüı
oan molekülünü
opan molekülünüı
ropan molekülünüı
propan molekülünüı
l)propan molekülünüı
iil)propan molekülünüı
idil)propan molekülünüı
ridil)propan molekülünüı
eridil)propan molekülünüı
peridil)propan molekülünüı
viperidil)propan molekülünüı
-piperidil)propan molekülünüı
4-piperidil)propan molekülünü
((4-piperidil)propan molekülünü
is(4-piperidil)propan molekülünü
3is(4-piperidil)propan molekülünü
-Bis(4-piperidil)propan molekülünü
3-Bis(4-piperidil)propan molekülünü
,3-Bis(4-piperidil)propan molekülünü
1,3-Bis(4-piperidil)propan molekülünü
tt 1,3-Bis(4-piperidil)propan molekülünür
sst 1,3-Bis(4-piperidil)propan molekülünür
vest 1,3-Bis(4-piperidil)propan molekülünür
rbest 1,3-Bis(4-piperidil)propan molekülünür
erbest 1,3-Bis(4-piperidil)propan molekülünür
Serbest 1,3-Bis(4-piperidil)propan molekülünür
) Serbest 1,3-Bis(4-piperidil)propan molekülünür
1) Serbest 1,3-Bis(4-piperidil)propan molekülünür
m) Serbest 1,3-Bis(4-piperidil)propan molekülünür
am) Serbest 1,3-Bis(4-piperidil)propan molekülünür
vam) Serbest 1,3-Bis(4-piperidil)propan molekülünür
evam) Serbest 1,3-Bis(4-piperidil)propan molekülünür
Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüı
(Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüi
(Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüi
1 (Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüi
K 1 (Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüı
3K 1 (Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünüı

() CC Gerilme	5)+0 _{CN} (17) Halka Gerilme	(13)+u _{cn} (12) Halka Burulma	inasyon Kombinasyon	inasyon Kombinasyon	(21) Ring Breathing	5) CC Str	9)+ $\upsilon_{cc}(27)$ Halka Gerilme	5)+ucc(17) Halka Gerilme	5)+ v _{CN} (12) Halka Gerilme	9) CC Gerilme	0) CC Gerilme	inasyon Kombinasyon) CC Gerilme	8) CC Gerilme	0)+ δ_{CCH} (7)(Me) CC Gerilme, CH ₂ Sallanma (Me)	2) (Me) CC Gerilme (Me,)	2) (Me) CC Gerilme(Me,)	1)+ v_{CN} (15) CC Gerilme	3)+ v_{cc} (14) (Me) CC Gerilme (Pip., Me)) CC Gerilme	6) CC Gerilme	6) CC Gerilme (Pip., Me)	4) CC Gerilme	6) CC Gerilme	2) CN Gerilme	6) CN Gerilme
$v_{cc}(4$	$v_{cc}(3$	$\Gamma_{\rm HCNH}$	Komł	Komł	Γ_{HNCH}	$v_{cc}(1)$	υ _{CN} (Ξ	υ _{CN} (Ξ	$v_{cc}(4$	υ _{cc} (Ξ	n _{cc} (2	Komł	v _{cc} ({	vcc (3	υ _{cc} (]	n _{cc} (2	$v_{cc}(z)$	vcc (3	υ _{cc} (2	υ _{cc} ()	n _{cc} (4	υ _{cc} (2	u _{cc} (j	0 _{cc} (2	υ _{CN} (;	N _{CN} (2
			784 vs		805 m	824 vw	851 w		872 w	917 w						994 w		1048 w	1063 s					1081 w	1102 w	
				798 vw	815 s	826 vw	852 m		871 m	904 w		961 m			972 vw	998 w	1004 vw	1040 w	1059 vw					1080 w	1103 w	1117 w
751	760	769	795	800	805	845	866	867	879	890	947	996	971	972	981	966	1013	1027	1028	1034	1062	1071	1076	1078	1106	1118
742	748	757	787	792	796	836	857	858	872	885	939	958	962	963	974	989	1005	1020	1020	1027	1055	1061	1065	1068	1095	1109
1,054	11,57	4,574	1,369	0,437	11,13	0,473	8,086	1,170	3,289	0,022	0,042	0,902	1,116	1,424	2,145	2,481	0,034	14,42	19,57	3,780	0,864	0,739	2,519	3,974	2,895	4,122
3,162	77,06	58,44	8,657	0,366	34,09	7,504	0,717	0,079	0,307	0,286	2,348	2,189	0,488	3,647	0,211	2,031	1,276	3,268	0,916	0,021	1,913	13,00	2,767	7,993	6,824	28,87
753	766	771	793	797	805	841	867	868	882	891	950	963	967	971	976	1002	1018	1026	1027	1033	1070	1074	1075	1092	1125	1130
1,180	6,608	2,983	2,933	0,194	13,73	0,172	7,936	0,776	2,547	0,018	0,067	0,703	0,495	1,105	1,622	2,478	0,017	12,08	14,82	3,014	0,687	0,795	2,582	3,967	2,677	4,363
12,53	89,20	47,25	6,826	0,218	18,57	3,856	0,045	0,890	0,688	0,260	3,040	2,063	0,332	4,327	0,192	2,088	1,689	2,526	0,345	0,029	1,989	12,32	1,416	8,581	6,043	28,99
750	757	761	789	793	66L	836	863	864	880	890	946	958	962	968	973	666	1016	1024	1024	1032	1067	1070	1070	1088	1119	1126
Α"	Α	Α"	Ά	Α"	Ά	Α"	Ά	Α"	Ά	Α"	Α"	Ά	Α"	Ά	Ά	Ά	Α"	Ά	Α"	Α"	Α"	Α'	Α"	Α'	Α"	Α'
U25	\mathbf{U}_{26}	U27	\mathbf{U}_{28}	U_{29}	\mathbf{U}_{30}	\mathbf{v}_{31}	U ₃₂	0_{33}	U ₃₄	U ₃₅	0_{36}	U ₃₇	v_{38}	0_{39}	U_{40}	\mathbf{U}_{41}	U 42	0_{43}	U44	U45	U46	U 47	\mathbf{U}_{48}	\mathbf{U}_{49}	\mathbf{U}_{50}	U ₅₁

EK 1 (Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

CN Gerilme	Kombinasyon	Kombinasyon	CH ₂ Kıvırma	CH ₂ Kıvırma	CH ₂ Kıvırma	CH ₂ Kıvırma (Me)	CH ₂ Dalgalanma (Me)	CH ₂ Kıvırma	CH ₂ Kıvırma	NCH Bükülme	CH ₂ Kıvırma (Me)	CH ₂ Kıvırma	CH ₂ Kıvırma	CH ₂ Kıvırma	CH ₂ Kıvırma	CCH Bükülme (Me)	CH ₂ Dalgalanma	CH_2 Dalgalanma	CCH Bükülme (Pip., Me)	CCH Bükülme	CH ₂ Dalgalanma	CH ₂ Dalgalanma	CH ₂ Dalgalanma	CH ₂ Dalgalanma	CH ₂ Dalgalanma	CH ₂ Dalgalanma
$0_{CM}(12)$	Kombinasyon	Kombinasyon	δ _{CCH} (8)	$\delta_{\text{CCH}}(6) + \delta_{\text{NCH}}(6)$	δ _{CCH} (13)	δ _{CCH} (11)(M)	$\delta_{\rm CCH}$ (21)+ $\Gamma_{\rm HCCH}$ (9) (Me)	δ _{CCH} (17)	δ _{CCH} (15)	δ _{NCH} (14)	δ _{CCH} (15) (Me)	δ _{CCH} (12)	δ _{CCH} (26)	δ _{CCH} (16)	δ _{CCH} (15)	$\delta_{\rm CCH}$ (14) (Me)	δ _{CCH} (17)	δ _{CCH} (17)	δ_{CCH} (15)(Me) + δ_{CCH} (14) + Γ_{HCCH} (6)	$\delta_{\rm CCH}$ (15)+ $\Gamma_{\rm HCCH}$ (7)+ $\nu_{\rm CC}$ (6)	$\delta_{\rm CCH}$ (15)+ $\Gamma_{\rm HCCH}$ (12)+ $\upsilon_{\rm CC}$ (6)	$\Gamma_{\rm HCCH}$ (9)	$\Gamma_{\rm HCCH}$ (18)	$\Gamma_{\rm HCCH}$ (17)+ $\delta_{\rm CCH}$ (11)	$\delta_{\rm CCH}$ (14)+ $\Gamma_{\rm CNCH}$ (13)	$\delta_{\rm CCH}$ (14)+ $\Gamma_{\rm CNCH}$ (13)
		1146 w	1156 s			1212 w					1273 vs	1287 vw						1314 w						1356 m		
1132 m		1140 s	1159 m	1180 vw	1190 vw	1213 w	1235 vw				1272 m	1289 w						1321 s						1369 m		1415 s
1142	1142	1134	1162	1189	1199	1236	1241	1263	1269	1273	1285	1292	1295	1311	1313	1315	1316	1321	1345	1349	1359	1361	1362	1368	1397	1397
1130	1135	1137	1154	1181	1191	1225	1232	1252	1258	1262	1273	1281	1284	1298	1300	1301	1301	1307	1328	1331	1340	1341	1343	1348	1376	1376
1.904	10,70	4,656	2,644	0,496	9,124	0,262	7,410	5,018	12,21	39,51	0,543	17,49	21,53	5,198	0,951	3,341	5,274	1,259	1,199	0,799	7,567	5,119	4,034	1,043	5,575	1,747
1.999	2,071	6,285	0,991	0,693	1,000	7,825	0,720	0,619	1,202	3,322	2,987	2,056	1,709	0,368	0,802	0,273	58,98	7,718	0,706	0, 199	5,629	2,108	0,085	0,552	24,18	2,250
1138	1139	1141	1160	1184	1196	1229	1234	1257	1264	1269	1278	1285	1288	1303	1307	1312	1315	1317	1339	1347	1357	1361	1364	1370	1393	1393
5.826	1,608	8,304	1,790	0,339	6,165	0,377	4,576	3,914	7,690	25,18	0,585	11,26	12,02	3,405	0,210	2,604	3,561	0,513	1,357	1,488	6,051	2,905	4,948	0,170	1,998	1,238
6.493	2,100	0,531	0,569	0,001	1,059	6,433	0,141	0,662	1,301	3,514	3,399	1,453	1,976	0,193	1,962	1,550	48,34	5,032	0,534	0,008	5,025	4,714	0,214	0,594	10,42	1,149
1134	1135	1137	1155	1180	1192	1223	1229	1251	1258	1263	1272	1279	1282	1296	1300	1302	1306	1308	1328	1335	1345	1348	1350	1356	1379	1379
"A"	Α'	Α	Α"	Α"	Ά	Ά	Α"	Α"	Ά	Α"	Ά	Ά	Α"	Α"	Α'	Α"	Α'	Α"	Α'	Α"	Α'	Α"	Α'	Α"	Α"	Α'
U52	U53	U54	υ_{55}	υ_{56}	\mathbf{U}_{57}	υ_{58}	\mathbf{U}_{59}	υ_{60}	\mathbf{U}_{61}	U_{62}	υ_{63}	\mathbf{U}_{64}	U65	\mathbf{U}_{66}	\mathbf{U}_{67}	υ_{68}	\mathbf{U}_{69}	\mathbf{U}_{70}	\mathbf{U}_{71}	\mathbf{U}_{72}	\mathbf{U}_{73}	\mathbf{U}_{74}	\mathbf{U}_{75}	\mathbf{U}_{76}	\mathbf{U}_{77}	\mathbf{U}_{78}

	ması	
	aştırı	
	karşıl	
	arinin	
	kanslá	
	m fre	
	titreși	
	anan	
	hesap	
·	en ve	
,	özlen	
	nün g	
	ekülü	
	in mo	
	propa	
	eridil)	
•	(4-pip	
	3-Bis(
	est 1,	
i) Serb	
	evam	
	ЕK	

	:												
079	A.	1423	4,/65	3,808	1439	4,861	0,196	14.29	1444			ð _{НСН} (24)	CH ₂ Makaslama
U80	Α"	1423	0,966	2,104	1439	0,658	0,081	1429	1444			δ _{HCH} (25)	CH_2 Makaslama
U ₈₁	Α	1433	1,919	0,150	1446	0,273	14,53	1435	1456			δ _{HCH} (19) (Me)	CH2 Makaslama (Me)
U82	Α"	1435	4,598	0,921	1447	0,000	9,448	1435	1457			$\delta_{\rm HCH}$ (20) + $\Gamma_{\rm HCCH}$ (19) (Me)	CH2 Makaslama (Pip., Me
U ₈₃	Α"	1437	0,000	7,772	1453	0,718	2,983	1440	1465			$\delta_{\rm HCH}$ (19) + $\delta_{\rm HCH}$ (6) (Me)	CH2 Makaslama (Pip., Me
U84	Α	1437	7,887	6,697	1455	0,730	30,59	1442	1466			$\delta_{\rm HCH}$ (17) + $\delta_{\rm HCH}$ (7) (Me)	CH2 Makaslama (Pip., Me
U85	Α	1439	5,001	41,25	1458	7,474	21,39	1445	1469	1435 s	1439 vs	$\delta_{\text{CNH}}(22) + \delta_{\text{HCH}}(15)$	CH ₂ Makaslama
086	Α"	1441	3,618	0,270	1460	3,285	0,518	1448	1472			$\delta_{\text{CNH}}(20) + \delta_{\text{HCH}}(7)$	CH ₂ Makaslama
U87	Α	1449	0,372	9,916	1468	1,802	14,80	1452	1476		1451 vs	$\Gamma_{\rm HCCH}$ (29)+ $\delta_{\rm HCH}$ (27) (Me)	CH ₂ Makaslama (Me)
U ₈₈	Α"	1449	0,059	4,775	1468	0,325	7,092	1452	1476			$\Gamma_{\rm HNCH}$ (21)+ $\delta_{\rm CNH}$ (21)+ $\delta_{\rm HCH}$ (12)	CH_2 Makaslama
089	Α	1458	9,490	1,273	1476	4,690	0,496	1462	1487			$\Gamma_{\rm HNCH}(21)+ \delta_{\rm CNH}(21)+\delta_{\rm HCH}(14)$	CH_2 Makaslama
060	Α"	1459	2,852	8,763	1478	1,593	11,83	1462	1488	1461 vw	1460 vw	δ _{HCH} (28)	CH_2 Makaslama
160	Α	1460	0,552	4,832	1479	0,764	10,13	1467	1491			δ _{HCH} (28)	CH_2 Makaslama
D92	Α"	2790	8,394	6,390	2794	7,632	4,425	2787	2795			υ _{cH} (99)	CH Gerilme
D93	Α	2790	53,36	37,71	2794	48,80	25,91	2787	2795	2743 m	2743 s	υ _{cH} (99)	CH Gerilme
D94	Α"	2796	4,544	9,572	2801	3,659	6,525	2793	2803			υ _{cH} (98)	CH Gerilme
D95	Α	2796	301,5	341,1	2801	272,7	246,6	2794	2803	2814 w	2816 w	υ _{cH} (97)	CH Gerilme
96U	Α"	2869	0,008	0,525	2868	0,003	0,384	2879	2881	2839 s	2839 vs	υ _{cH} (95)	CH Gerilme
760	Α	2869	37,06	189,6	2868	43,56	144,3	2879	2882			υ _{CH} (93)	CH Gerilme
960	Α"	2891	0,044	1,087	2891	0,027	0,896	2904	2908		2886 w	υ _{CH2} (96) (Me)	Sim, CH ₂ Gerilme (Me)
66U	Α	2893	8,913	143,5	2894	14,05	113,6	2906	2911			υ _{CH2} (90) (Me)	Sim, CH ₂ Gerilme (Me)
D100	Α	2903	46,19	41,52	2903	47,81	35,58	2915	2920			v _{CH2} (88) (Me)	Sim, CH ₂ Gerilme (Me)
D101	Α"	2913	3,571	10,12	2916	2,286	9,822	2926	2934			υ _{CH2} (66)+υ _{CH} (22)	Sim, CH ₂ Gerilme
U102	Α'	2913	39,53	41,25	2916	43,41	50,47	2926	2934			υ _{CH2} (92)	Sim, CH ₂ Gerilme
\mathbf{U}_{103}	Α"	2917	23,25	1,925	2921	25,26	3,131	2930	2938			v_{cH2} (81)+ v_{cH} (13) (Me)	Sim, CH ₂ Gerilme
\mathbf{U}_{104}	Α'	2917	66,01	245,6	2921	51,19	180,2	2931	2939			и _{сн2} (87)	Sim, CH ₂ Gerilme

_

A'	2922	34,39	48,49	2924	25,48	51,59	2934	2940			u _{СН2} (79) (Ме)	Sim, CH ₂ Gerilme (Me)
	2923	0,435	2,912	2925	1,299	3,525	2934	2941	2919 vs	2915 m	и _{сн2} (92) (Ме)	Asim, CH ₂ Gerilme (Me)
-	2951	94,27	62,95	2954	116,0	51,65	2962	2970			u _{сн2} (75) (Ме)	Asim, CH ₂ Gerilme (Me)
-	2952	33,71	81,29	2954	36,65	90,36	2962	2970	2934 sh	2938 m	о _{сн2} (90)	Asim, CH ₂ Gerilme
=	2953	44,09	224,9	2956	26,12	6,344	2964	2972			$v_{\text{CH2}}(83) + v_{\text{CH}}(7)$	Asim, CH ₂ Gerilme
- 1	2953	9,071	17,30	2956	24,26	346,3	2964	2972			о _{сн} (94)	CH Gerilme
- ,	2954	14,93	349,0	2957	4,26	147,0	2965	2973			υ _{CH} (88)	CH Gerilme
=	2955	27,12	45,15	2958	7,293	34,21	2966	2975			и _{сн} (96)	CH Gerilme
- ,	2959	180,6	51,00	2962	197,4	46,45	2970	2979			v_{CH2} (66) + v_{CH2} (19) (Me)	Asim, CH ₂ Gerilme (Pip., Me)
=	2962	30,31	35,82	2966	32,51	33,36	2973	2982			υ _{CH2} (92)	Asim, CH ₂ Gerilme
	2968	65,66	89,54	2970	59,35	81,48	2978	2986			$v_{CH2}(62)(Me) + v_{CH}(29)$	Asim, CH ₂ Gerilme (Pip., M)
=	3406	0,503	62, 19	3360	5,423	65,76	3389	3343			$v_{\rm NH}(100)$	NH Gerilme
	3406	0,151	304,7	3360	0,938	301,1	3389	3343	3242 w	3242 w	υ _{NH} (100)	NH Gerilme
	28.98			24,02			27,10	23,43				

EK 1 (Devam) Serbest 1,3-Bis(4-piperidil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

Pip.: Piperidin, Me.: Metilen, sim: Simetrik, Asim: Asimetrik, vs: Çok şiddetli, s: Şiddetli, m: Orta, w: Zayıf, vw: Çok zayıf, v: Gerilme, δ: Açı Bükülme, Γ: Burulma, ^a Ölçekleme Faktörü: 0,9085, ^b Ölçekleme Faktörü: 0,8985, ^c Ölçekleme Faktörü: 0,9668, ^d Ölçekleme Faktörü: 0,9603, ^e Ölçekleme Faktörü: 0,9961, ^f Ölçekleme Faktörü: 0,9919

^g Toplam enerji dağılımı B3LYP/6-311 G(d,p) hesaplama metodu için yapılmıştır. IR: IR şiddeti (KM/Mole) RA: Raman saçılma aktivitesi (A**4/AMU)

EK 2 Serbest 1,3-Bis(4-piridil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

EK 2 (Devam) Serbest 1,3-Bis(4-piridil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

$\Gamma_{\rm HCCH}(50)+\Gamma_{\rm CCCH}(14)$	$\Gamma_{\rm HCCH}(51)+\Gamma_{\rm CCCH}(12)$	$\Gamma_{\rm HCCH}(46)+\Gamma_{\rm CNCH}(23)+\Gamma_{\rm CCCH}(14)$	$\Gamma_{HCCH}(47)+\Gamma_{CNCH}(23)+\Gamma_{CCCH}(14)$	$u_{cN}(26)+u_{cC}(16)+\delta_{cCC}(6)+\delta_{NCC}(6)$	$u_{cN}(26)+u_{cC}(16)+\delta_{cCC}(7)+\delta_{NCC}(7)$	$v_{cc}(89)$	$v_{cc}(55) + \delta_{ccc}(23)$	$\Gamma_{HCCH}(26) + \delta_{CCH}(19) + \Gamma_{HCCC}(18) + \nu_{cc}(13)$	$\delta_{\rm CCH}(30) + \upsilon_{\rm CN}(22)$	$\delta_{\rm CCH}(30) + \upsilon_{\rm CN}(22)$	$v_{cc}(26)+\delta_{ccH}(18)$	$v_{cc}(30)+\delta_{ccH}(25)$	δ _{CCH} (33)	$v_{C-CH2}(30) + \delta_{CCH}(15) + v_{CC}(13)$	$v_{c-cH2}((29) + \delta_{ccH}(18) + v_{cc}(13))$	$\delta_{\rm NCH}(29) + \upsilon_{\rm CN}(18) + \delta_{\rm CCH}(18) + \upsilon_{\rm CC}(15)$	$\delta_{\rm NCH}(21) + \delta_{\rm CCH}(20) + \nu_{\rm CC}(19) + \nu_{\rm CN}(17)$	$v_{cN}(25)+v_{cc}(22)+\delta_{ccH}(17)$	$\delta_{\rm CCH}(35) + \Gamma_{\rm HCCH}(15) + \nu_{\rm CC}(13)$	$v_{cN}(48) + v_{cC}(36)$	$\delta_{\rm CCH}(34) + \upsilon_{\rm CN}(27) + \upsilon_{\rm CC}(13)$	$\delta_{\rm CCH}(62)$	$\delta_{\rm ccH}(48)+\Gamma_{\rm cccH}(13)+\nu_{\rm cc}(7)$	$\delta_{\rm CCH}(55) + \delta_{\rm NCH}(19)$	$\delta_{\rm CCH}(58) + \delta_{\rm NCH}(19)$	$\delta_{\rm CCH}(43)+\Gamma_{\rm HCCH}(19)$	$\delta_{\text{NCH}}(30) + \upsilon_{\text{CC}}(25) + \delta_{\text{CCH}}(12)$	$\delta_{\rm NCH}(29) + \upsilon_{\rm CC}(25) + \delta_{\rm CCH}(12)$	$\Gamma_{ m HCCH}(34)+\delta_{ m HCH}(30)$	$\delta_{HCH}(31)+\Gamma_{HCCH}(27)$	$\delta_{ m HCH}(30)+\Gamma_{ m HCCH}(30)$	$\delta_{\rm CCH}(37)+\delta_{\rm NCH}(17)+\upsilon_{\rm CN}(15)$	$\delta_{\rm CCH}(37)+\delta_{\rm NCH}(17)+\upsilon_{\rm CN}(15)$
				BU	AG						AU						BU	AG					AG			BG	AU	BG		AG	BU		BU
				991vs (992 vs)	1013 vs (1001)						1079s (1072m)						1218 s	1220 w					1300 w			1343 w	1415s (1413 vs)	1415 w		1445w (1451 w)	1456m (1455m)		1496m (1494 m)
				991 s 994 s				1021 w 1021 w	1038 w 1039 vw		1065 w 1077 w	1092 w		1183 w			1215 m 1218 s	1227 m		1235 w	1252 vw 1253 w	1278 vw	1302 vw1299 vw		1318 vw1318 vw	1340 m 1341 m	1416 s 1411 m			1441 w 1440 m		1475 vw	1501 m 1509 vw
930	931	939	939	967	968	679	993	1015	1056	1056	1063	1087	1121	1189	1194	1210	1210	1238	1238	1266	1279	1293	1319	1333	1335	1341	1404	1404	1463	1469	1479	1479	1489
938	940	955	955	970	971	975	066	1007	1054	1054	1059	1081	1115	1185	1190	1203	1204	1222	1233	1245	1265	1286	1308	1325	1326	1326	1394	1394	1445	1452	1465	1465	1470
940	942	955	955	974	975	976	980		1058	1059	1068	1083	1129	1196	1196	1210	1210	1245	1261		1266	1280		1329	1332	1337	1407	1408		1458	1478	1486	1486
2,083	0,559	0,915	1,602	11,144	44,337	4,021	67,341	0,266	1,847	3,449	0,529	0,033	1,437	1,4050	41,445	2,429	12,319	0,459	3,077	9,991	0,984	26,363	51,329	0,019	1,450	10,133	1,212	0,303	48,158	0,410	2,656	0,044	5,823
0,325	0,173	0,000	0,007	5,452	3,615	5,641	0,465	0,094	2,216	0,356	0,000	0,228	0,000	0,974	0,008	4,835	3,795	1,014	0,031	0,000	0,015	0,000	2,483	0,000	0,794	1,404	0,000	35,981	0,079	0,691	2,987	6,748	1,625
938	939	952	952	972	972	992	1003	1012	1056	1056	1063	1083	1112	1190	1195	1207	1208	1230	1233	1259	1273	1287	1318	1327	1328	1346	1403	1404	1454	1459	1477	1483	1483
2,180	0,070	0,326	0,413	12,218	52,781	1,630	64,550	0,004	1,539	3,243	0,386	0,011	0,347	2,290	45,104	2,071	10,253	0,151	2,168	11,046	1,366	15,231	49,634	0,027	0,913	3,905	1,558	0,424	39,502	0,785	2,388	0,001	7,686
0,099	0,069	0,000	0,007	6,067	4,113	6,006	0,485	0,003	3,188	0,641	0,000	0,064	0,000	0,355	0,002	7,165	4,703	0,680	0,716	0,000	0,004	0,000	2,328	0,000	0,444	1,943	0,000	37,064	0,091	0,579	6,499	7,927	1,997
949	951	970	970	978	978	166	1003	1007	1056	1056	1061	1080	1108	1190	1194	1204	1205	1218	1230	1243	1262	1283	1311	1322	1324	1335	1398	1398	1439	1445	1462	1474	1475
982	982	983	984	994	1011	1013	1013	1018	1055	1062	1063	1064	1073	1145	1175	1194	1199	1215	1215	1250	1265	1300	1342	1343	1345	1390	1417	1418	1468	1474	1487	1511	1511
686	989	066	166	666	1008	1023	1023	1024	1046	1058	1066	1066	1073	1141	1173	1198	1203	1216	1216	1250	1265	1302	1343	1344	1344	1388	1418	1419	1462	1469	1482	1511	1512
A1	B2	A2	B1	B2	A1	B2	A1	Bl	B2	A1	A2	Bl	A2	B2	A1	B2	A1	Bl	B2	A2	Bl	A2	A1	A2	Bl	B2	A2	Bl	A1	B2	A1	B2	A1
\mathbf{v}_{30}	v_{31}	U ₃₂	\mathbf{U}_{33}	U ₃₄	U35	U_{36}	U ₃₇	v_{38}	0_{39}	\mathbf{U}_{40}	\mathbf{U}_{41}	U 42	U43	\mathbf{U}_{44}	U45	\mathbf{U}_{46}	U_{47}	\mathbf{U}_{48}	\mathbf{U}_{49}	\mathbf{U}_{50}	\mathbf{U}_{51}	U52	U53	U54	U55	0 ₅₆	U57	v_{58}	U59	\mathbf{v}_{60}	U ₆₁	U_{62}	\mathbf{v}_{63}

EK 2 (Devam) Serbest 1,3-Bis(4-piridil)propan molekülünün gözlenen ve hesaplanan titreşim frekanslarının karşılaştırılması

U ₆₄	A2	1595	1593	1548	0,000	5,495	1554	0,000	6,010	1558	1525	1536				υ _{cc} (45)+ υ _{cn} (30)
U65	B1	1596	1593	1549	36,250	1,329	1555	34,686	1,646	1559	1526	1537	1557 m 1557 w	1558s (1559s)	AU	υ _{cc} (45)+ υ _{cn} (30)
\mathbf{v}_{66}	B2	1633	1630	1583	122,192	8,921	1589	115,19	10,143	1593	1561	1572		1559 w	BG	$v_{cc}(60)$
0 ₆₇	$\mathbf{A1}$	1636	1632	1584	26,639	49,044	1591	24,717	54,552	1595	1562	1574	1605 vs 1606 m	(1607sh/1595vs) 1608 s	BU	v _{cc} (60)
\mathbf{v}_{68}	A1	2879	2879	2920	11,114	217,738	2917	16,254	175,77		2933	2931	2905 w 2902 m			$v_{CH2}(100)$
0 ₆₉	B2	2880	2882	2921	0,510	1,766	2917	0,697	1,727	2936	2934	2931	2929 w 2927 w	2859w	BU	$u_{CH2}(100)$
\mathbf{v}_{70}	A1	2888	2889	2933	61,686	12,142	2931	57,998	4,257	2946	2949	2947	2944 vs	2865w	AG	$u_{CH2}(100)$
U ₇₁	Bl	2900	2903	2946	3,138	118,881	2946	4,326	113,33		2957	2959	2971 vw2975 vw	2933 w	BG	$v_{cH2}(100)$
U ₇₂	A2	2912	2912	2957	0,000	0,027	2955	0,000	0,028	2970	2968	2967				$u_{CH2}(100)$
\mathbf{U}_{73}	B1	2933	2935	2978	44,513	8,188	2977	43,796	4,560	3000	2991	2992	2993 m 2992 vw	2925/2947	AU	$v_{CH2}(100)$
\mathbf{U}_{74}	A2	3011	3017	3038	0,000	208,827	3042	0,000	198,18	3050	3045	3051		3005w	AU	$v_{\rm CH}(90)$
\mathbf{U}_{75}	B1	3011	3017	3038	44,665	78,019	3042	43,103	77,038	3050	3045	3051	3025 m			$v_{\rm CH}(90)$
\mathbf{U}_{76}	B2	3012	3018	3040	28,877	19,423	3043	37,108	15,544	3051	3047	3052	3029 m 3031 w	3030 m	BU	$u_{\rm CH}(100)$
U ₇₇	A1	3012	3018	3040	8,960	134,921	3043	12,619	98,562	3051	3047	3052				$v_{\rm CH}(99)$
\mathbf{U}_{78}	A2	3031	3034	3063	0,000	1,511	3064	0,000	0,219	3072	3071	3074				$v_{\rm CH}(90)$
\mathbf{U}_{79}	B1	3031	3034	3063	72,525	7,170	3064	87,226	4,206	3072	3072	3074	3051 w 3056 vs	3065m	AG	$v_{\rm CH}(90)$
\mathbf{U}_{80}	B2	3034	3038	3065	0,006	20,105	3067	0,415	15,512	3075	3074	3077				$v_{\rm CH}(99)$
υ_{81}	A1	3035	3038	3065	0,676	493,976	3067	0,184	470,87	3075	3074	3077	3073 vw	3067w	AU	$v_{\rm CH}(99)$
ь		29,63	28,61	14,68			14,65				17,80	16,94				

v: Gerilme, δ: Açı Bükülme, Γ: Burulma, vs: Çok şiddetli, s: Şiddetli, m: Orta, w: Zayıf, vw: Çok zayıf, bpp:1,3-bis(4-piridil)propan, bpe: 1,2-Bis(4-piridil)ethan, ^a Ölçekleme Faktörü: 0,9085, ^b Ölçekleme Faktörü: 0,8985, ^e Ölçekleme Faktörü: 0,9668, ^d Ölçekleme Faktörü: 0,9903, ^e Ölçekleme Faktörü: 0,9919

^g Toplam enerji dağılımı B3LYP/6-311 G(d,p) hesaplama metodu için yapılmıştır. IR: IR şiddeti (KM/Mole) RA: Raman saçılma aktivitesi (A**4/AMU)

		TED(%)	$\Gamma_{\rm HCCC}$ (65) + $\Gamma_{\rm XMNC}$ (22) (M)	Γ_{cccc} (56) + Γ_{HCCC} (27) (M)	$\delta_{ccc}(21)(M) + \Gamma_{MNCC}(17) + \Gamma_{cccc}(15)(M)$	$\Gamma_{\rm XMNC}$ (75)+ $\Gamma_{\rm CCCC}$ (14)(M)	δ_{XMN} (38)+ Γ_{CCCC} (18)(M)+ Γ_{HCCC} (15)(M)	δ_{ccc} (19)(M)+ Γ_{XMNC} (27)+ Γ_{MNCC} (11)	δ_{XMN} (57)+ δ_{MNC} (29)	δ_{MNC} (47)+ Γ_{HCCC} (23) (M)+ Γ_{CCCC} (12) (M)	δ_{ccc} (7)(M)+ Γ_{XMNc} (51) (M)+ Γ_{cccc} (15)	$\Gamma_{\rm HCCC}$ (69)(P-M)+ $\Gamma_{\rm CCCC}$ (30)(P-M)	$v_{MN}(26) + v_{MX}(33)$	$v_{MX}(24) + \Gamma_{XMNC}(12) + \Gamma_{MNCC}(11)$	$v_{MX}(11) + \delta_{MNC}(63) + \delta_{XMN}(14)$	$v_{MN}(21) + v_{MX}(39)$	$v_{MN}(16) + v_{cc}(13)(M) + \Gamma_{cccc}(22)$	$v_{MX}(19) + \delta_{CCC} (25)(M)$	U _{MX} (90)	$\delta_{\rm ccc}$ (77)(M)	δ_{ccc} (25)(M))+ Γ_{cccc} (18)	δ_{ccc} (69)(M)+ δ_{MNC} (9)	$\Gamma_{\rm NCCC}(41)+\Gamma_{\rm HCCC}(34)+\Gamma_{\rm NCCH}(14)$	$\Gamma_{\text{NCCC}}(36) + \Gamma_{\text{CCCC}}(17) + \Gamma_{\text{CCCH}}(13) + \Gamma_{\text{NCCH}}(12)$	$v_{c-cH_2}(11) + \delta_{ccc}(11)$	$\Gamma_{\rm cNCC}$ (11)+ $\Gamma_{\rm CNCH}$ (10)	$\delta_{\rm ccc}$ (21)(M)	δ_{CCC} (18)+ δ_{CCC} (16)+ δ_{CNC} (10)	δ_{NCC} (29)+ δ_{CCC} (26)+ δ_{CCH} (16)	$\delta_{\rm NCC}$ (31)+ $\delta_{\rm CCC}$ (26)+ $\delta_{\rm CCH}$ (17)	Γ_{cNCC} (20)+ Γ_{NCCC} (18)	$\Gamma_{\rm cccH}$ (62) (M)	$\Gamma_{\rm NCCC}$ (23)+ $\Gamma_{\rm CNCC}$ (13)
		RA											89 s	109 vs	170 vw	213 vw	222 w		251 s			342 w						600 w		666 w			
PPI_2		IR																						410 vw		513 s	587 vw	608 m		670 w			741 w
Hg (I	SDD^{b}	Frek, ^b	2	11	17	29	33	39	43	52	65	88	90	122	127	132	187	223	241	327	333	336	378	390	501	514	583	596	656	658	740	741	746
	ANL2DZ ^a	Frek, ^a	4	11	14	25	32	34	39	51	61	91	91	118	118	130	170	224	241	327	333	336	378	390	501	514	583	596	656	658	741	742	747
	Γ	RA												105 vs	168 vw	211 vw	224 w		253 s			352 w								664 m			
Br_2		IR																						402 vw		514 s	589 vw	612 w		668 w			745 w
Hg (BPP	SDD^{b}	Frek, ^b	3	13	18	31	34	45	51	54	67	88	90	123	131	173	224	231	241	327	333	336	378	391	502	514	583	596	656	658	740	741	746
	LANL2DZ ^a	Frek, ^a	3	12	15	27	36	39	48	50	62	90	95	123	130	161	211	225	241	327	333	336	378	391	502	515	583	597	655	658	741	741	747
		RA											89 vs	110 vs	157 vw	207 vw	238 w		278 s			353 w				512 w		612 w		666 s			738 w
		IR																						409 vw		513 s		613 m		671 vw			749 w
		I(RA)	3,363	6,437	1,905	2,943	2,670	1,784	0,642	1,392	0,923	0,051	1,039	0,247	0,964	2,597	1,875	32,49	0,095	2,222	0,277	0,011	0,012	0,238	3,334	1,341	0,820	3,260	6,631	8,352	6,602	0,012	0,626
	$\mathrm{SDD}^{\mathrm{p}}$	I(IR)	0,714	0,280	1,268	0,034	0,011	1,525	0,195	23,87	5,126	0,064	1,084	0,538	1,891	5,299	0,128	6,532	0,178	44,30	0,039	0,133	0,004	0,003	29,38	18,71	8,426	20,71	0,033	0,605	0,009	2,408	0,080
$P)Cl_2$		Frek, ^b	6	14	17	33	37	52	54	76	77	87	92	127	131	224	241	276	327	330	333	336	378	391	502	515	583	596	656	658	740	741	747
Hg (BF	1	I(RA)	4,655	5,955	1,808	3,906	2,471	1,508	0,554	1,479	0,587	0,057	1,392	0,340	0,843	2,455	1,998	29,46	1,898	0,096	0,285	0,010	0,011	0,159	3,466	1,291	0,935	3,410	6,581	8,382	6,269	0,012	0,746
	ANL2DZ	I(IR)	0,482	0,534	1,319	0,000	0,029	3,454	0,202	9,787	25,13	0,063	3,621	0,702	2,186	4,919	0,150	7,003	51,75	0,228	0,124	0,235	0,004	0,007	27,50	20,44	9,268	20,29	0,038	0,603	0,003	2,414	0,087
	1	Frek, ^a	10	13	16	36	45	50	53	69	69	89	98	127	130	226	241	262	305	327	334	337	378	393	502	515	583	597	655	658	741	741	747
		Mode	"Α	Α"	A'	Α"	Α"	A'	Α"	Α"	A'	A'	Α	Α"	A'	A'	A'	A'	Α"	Α	Α"	Α"	Α"	Α"	Α	Α	Α	A'	Α"	Α"	A'	Α"	Α
			<u>ر</u>	v_2	v ₃	V 4	v_5	v_6	v_7	v ₈	v_9	v_{10}	V	V ₁₂	V ₁₃	V ₁₄	V ₁₅	v_{16}	v_{17}	v_{18}	v_{19}	v_{20}	V_{21}	V22	v_{23}	V_{24}	V ₂₅	v_{26}	v_{27}	V_{28}	V 29	V ₃₀	V ₃₁

EK 3 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

	_
	~~
	3
	5
	Ц
	H
	Ţ
	ŝ
-	5
	5
	ť,
	5
-	4
	_
	H
	Ξ
	Ξ
	H
-	5
÷	<u>ರ</u>
	õ
	đ
	Ц
	E
•	5
	65
	Ľ
	Ľ
	₽
	5
	Ğ
	5
-	<u> </u>
	N
:	0
	ØQ
	a
	ľ.
	~
	31
	č
	Ч
-	
	p,
	g
	Ś
	P_
-	q
	Ц
•	Η.
	2
-	4
	S
-	\mathbf{x}
	Ð
-	
	Ħ
	Ц
	õ
	$\overline{\mathbf{v}}$
-	
	Ц
	1
	ž
	1
	Ο,
-	1
	g
-	q
	3
	2
	5
	U)
	Ĺ.
	Ħ
:	2
	< 7
:	=
	Ξ
- 7	III
:	unn
:	kului
:	lekului
	olekului
	nolekului
	molekului
	n molekului
	an molekului
	oan molekului
	pan molekului
	ropan molekului
	oropan molekului
)propan molekului
	ul)propan molekului
	dil)propan molekului
	idil)propan molekului
	iridil)propan molekului
	piridil)propan molekului
	-piridil)propan molekului
	4-piridil)propan molekului
	s(4-piridil)propan molekului
	ıs(4-pırıdıl)propan molekuluı
	3is(4-piridil)propan molekului
	-Bis(4-piridil)propan molekului
	5-Bis(4-piridil)propan molekului
	,3-Bis(4-piridil)propan molekului
	1,3-Bis(4-piridil)propan molekului
) 1,3-Bis(4-piridil)propan molekului
	1) 1,3-Bis(4-piridil)propan molekului
	m) 1,3-Bis(4-piridil)propan molekului
	am) 1,3-Bis(4-piridil)propan molekului
	vam) 1,3-Bis(4-piridil)propan molekului
	evam) 1,3-Bis(4-piridil)propan molekului
	Jevam) 1,3-Bis(4-piridil)propan molekului
	(Devam) 1,3-Bis(4-piridil)propan molekului
	(Devam) 1,3-Bis(4-piridil)propan molekului
	3 (Devam) 1,3-Bis(4-piridil)propan molekului
	 3 (Devam) 1,3-Bis(4-piridil)propan molekului
	K 3 (Devam) 1,3-Bis(4-piridil)propan molekului
	EK 3 (Devam) 1,3-Bis(4-piridil)propan molekului

$v_{C,CH2}(26)+v_{CC}(24)+\delta_{CNC}$ (14) $v_{CC}(10)+\Gamma_{C,CC}$ (19)+ $\Gamma_{N,CCM}$ (10)	$v_{cc}(22)(M) + v_{cc}(15) + \Gamma_{cccH}(23)$	$\delta_{\rm CCH}$ (16)+ $\Gamma_{\rm CCCH}$ (37) (M)	$\Gamma_{\rm cccH}$ (35)+ $\Gamma_{\rm NccH}$ (15)	Γ_{cCCH} (44)(P-M)+ Γ_{NCCH} (22) + Γ_{cCCH} (17)	Γ_{cCCH} (34)+ Γ_{cCCH} (22)(P-M)+ Γ_{NCCH} (21)	$v_{cc}(23) + v_{cN}(39) + \delta_{ccc}(14)$	$\Gamma_{\rm HCCH}$ (48)+ $\Gamma_{\rm CCCH}$ (16)	Γ_{CNCH} (18)+ Γ_{HCCH} (48)+ Γ_{CCCH} (22)	$v_{cc}(14) + \Gamma_{HCCH}(34) + \Gamma_{cCCH}(10)$	$v_{cc}(20)+v_{cc}(12)(M)+v_{cN}(25)$	$v_{cc}(59)(M)$	$\Gamma_{HCCC}(20)+\Gamma_{HCCH}(42)+\Gamma_{CNCH}(14)+\Gamma_{MNCH}(14)$	$v_{cc}(58) + \delta_{Hcc}(13)$ (M)	$v_{cc}(14)+\delta_{Hcc}(19) (M)+\Gamma_{Hccc}(16)(Py-M)$	$v_{cN}(27)+\delta_{ccc}(11)+\delta_{Ncc}(12)+\delta_{ccH}(24)$	$v_{cN}(20) + \delta_{cCC}(12) + \delta_{NCC}(14) + \delta_{CCH}(27)$	$v_{cc}(15)+\delta_{ccH}(15)+$	$v_{cc}(21)+\delta_{ccH}(21)+\delta_{ccH}(13)(M)$	$v_{cc}(10) + \delta_{ccH}(21) + \delta_{ccH}(18)(M)$	$v_{cc}(10) + v_{c-CH2}(31) + \delta_{cCH}(25)$	$v_{cc}(18) + v_{cN}(14) + \delta_{ccH}(29) + \delta_{NcH}(23)$	$v_{c-cH_2}(28)+\delta_{ccH}(28)$	$v_{cc}(25) + v_{cN}(10) + \delta_{cCH}(18) + \delta_{NCH}(22)$	$\delta_{\rm CCH}(25)({ m M})$	$\delta_{\rm CCH}(49) (M) + \Gamma_{\rm HCCH}(15) (M)$	$v_{cc}(22) + v_{cN}(37)$	$v_{CN}(13) + \delta_{CCH}(43)(M)$	$v_{cc}(23) + v_{cN}(40) + \delta_{cCH}(23)(M)$	$\delta_{\text{CCH}}(40) + \Gamma_{\text{HCCH}}(22) \text{ (Py-M)}$	$\delta_{\rm CCH}(59) + \delta_{\rm NCH}(18)$	$\delta_{\rm CCH}(41) + \Gamma_{\rm HCCH}(19) (M)$	$\delta_{\rm CCH}(60)+\delta_{\rm NCH}(16)$
	814 w		851 m											1009 s	1025 s		1067 m					1214 s								1318 m		
805 w	812 s	836 w	851 w	867 vw			965 vw			982 vw				1010 s	1025 vw		1067 m	1104 vw	1153 vw			1210 s	1221 w			1256 vw		1273 vw		1327 vw	1350 w	
780 811	835	836	848	884	888	953	963	978	980	981	766	1002	1008	1014	1046	1049	1061	1093	1117	1201	1204	1207	1214	1230	1243	1260	1273	1276	1312	1327	1333	1333
780 811	835	836	848	884	888	953	964	979	980	982	799	1002	1008	1014	1046	1050	1061	1093	1118	1202	1205	1207	1215	1231	1244	1260	1273	1276	1312	1327	1333	1333
	822 w		857 w											1013 m	1028 s		1067 w		1150 w			1216 s	1227 vw							1322 s		
806 w	815 s	837 w	854 w	872 vw			967 vw			985 vw				1013 s			1070 m	1105 w				1209 s	1221 w			1258 vw		1275 vw		1321 vw	1352 w	1375 vw
779 811	835	835	848	884	888	953	963	980	980	982	666	1002	1008	1013	1046	1049	1061	1092	1117	1201	1204	1207	1214	1230	1243	1260	1273	1276	1311	1327	1332	1332
780 812	835	836	849	883	889	953	964	980	981	983	866	1002	1008	1014	1046	1050	1061	1093	1117	1201	1205	1207	1216	1230	1243	1260	1273	1276	1311	1327	1333	1334
792 w	811 vw	846 m	861 m							WV 066				1014 vs	1031 w		1071 m					1216 s				1247 vw		1280 w		1326 m	1345 w	
	815 s	837 w	857 w				969 vw			989 vw				1013 s			1071 m	l 105 vw	l 155 vw			1211 s	l 219 vw			1255 vw				l 322 vw	1352 w	1375 vw
5,431 26.82	7,519	0,932	2,270	0,158	0,135	42,49	11,39	1,015	36,44	3,774	0,313	40,67	67,71	0,052	5,597	1,651	0,309	0,156	1,362	5,808	19,63	43,69	12,31	0,459	4,516	0,924	20,43	10, 13	93,88	0,599	5,140	0,572
29,92 33 69	29,55	0,004	33,72	0,022	0,032	3,075	1,191	0,006	24,62	10,04	0,008	8,138	1,218	0,020	16,61	2,658	0,005	0,792	0,000	1,563	3,259	7,383	24,98	0,750	16,62	0,044	0,064	0,000	4,772	0,425	3,020	0,034
779 811	835	835	848	884	889	953	963	980	981	982	998	1002	1008	1013	1047	1049	1060	1092	1116	1201	1204	1207	1214	1230	1242	1260	1273	1276	1310	1327	1332	1332
5,850 2731	7,831	0,918	2,796	0,136	0,168	42,24	10,40	0,994	24,32	13,46	0,140	38,99	66,19	0,053	5,852	1,584	0,311	0,147	1,408	5,742	22,41	38,01	13,92	0,422	4,442	1,261	16,64	13,61	91,53	0,623	5,051	0,673
29,64 33 18	30,06	0,002	36,55	0,023	0,036	3,033	1,117	0,005	31,78	0,658	0,005	7,646	1,207	0,014	14,20	2,824	0,011	0,729	0,000	1,608	3,207	6,928	24,00	0,751	16,51	0,037	0,078	0,000	4,982	0,414	3,149	0,084
780 812	835	836	850	883	890	953	964	980	983	984	1000	1002	1008	1013	1046	1050	1061	1092	1117	1201	1204	1207	1216	1230	1243	1260	1273	1276	1311	1327	1333	1334
A	A'	Υ	A'	Α"	Α"	A'	A'	Α"	A'	A'	A'	Α"	A'	Α"	A'	A'	Α"	Α"	Α"	A'	A'	A'	A'	Υ	A'	Α"	Α"	Α"	A'	Α"	A'	Α"
V32 V22	. > *	V ₃₅	V ₃₆	v_{37}	V ₃₈	V 39	V_{40}	V_{41}	v_{42}	V ₄₃	۷ 4	V ₄₅	V ₄₆	\mathbf{v}_{47}	V ₄₈	V ₄₉	v_{50}	V ₅₁	V 52	V 53	V 54	V 55	V 56	v_{57}	V ₅₈	V 59	v_{60}	v_{61}	V ₆₂	v_{63}	V ₆₄	V ₆₅

 Ucc(23)+Ucx(6)+ δccn(24)+δxcn(31) Ucc(32)+δccn(36)+δxcn(30) Ucx(12)+δccn(36)+5xcn(30) Ucx(12)+δccn(36)+5xcn(20) Sinch(27)+Finccc(14)(M) Sinch(30)+Finccn(22) (M) Ucc(13)+δccn(48)+5xcn(19) Sinch(30)+Finccn(29) (M) Ucc(13)+δccn(18) M Ucc (49)+Ucn(27) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (100) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99) Ucn (99)<	
1435 1610 2924 2942 2942 3050 3050	
1386 vw 1426 s 1447 vw 1447 vw 1501 m 1501 m 1560 m 1560 w 1560 w 3026 w 3049 w 3049 w	
1387 1453 1458 1458 1458 1458 1539 1559 1559 1559 1559 1559 1559 1559	
1388 1403 1454 1459 1466 1469 1540 1554 1554 1554 1558 1559 1584 1584 1584 1583 3071 3072 3073 3071 3072 3092 3092 3104 3104 3104 3104 3104 3104 3104 3104	
1437 s 1611 s 2928 vs 2996 vw 3030 w 3055 vs	
1391 vw 1428 s 1446 vw 1457 m 1475 vw 1501 m 1511 w 1561 m 1510 vs 2926 m 2926 w 3029 w 3053 w 3053 w	
1387 1466 1453 1458 1458 1466 1468 1478 1539 1539 1569 1569 1584 2929 2937 2929 2937 2929 2937 2937 2937	19
1388 1405 1454 1459 1459 1470 1470 1470 1470 1534 1534 1534 1569 1585 2930 2938 2966 2930 3071 3071 3072 3088 3073 3099 3092 3092 3092 3092 3092 3092 309	törü: 0,99
1434 m 1505 m 1557 m 1611 s 2922 s 2994 vw 3028 vw 3055 vs	kleme Fak
397 vw 1429 s 476 m 542 vw 561 m 611 vs 926 vs 983 vw 1057 w 1057 w	il, ^f Ölçe
0,586 1 0,086 1 0,086 1 0,911 2 5,207 5,361 1 8,930 5,207 5,361 1 8,930 1 149,8 2 8,89 2 8,89 2 1,1880 2 1,1880 2 1,1880 2 1,140,19 1 9,19 1 1,1,20 1 1,1,20 1 1,1,20 1 1,1,20 1 1,1,20 1 1,1,20 1 1,1,20 1 1,20 1 1,20 1 1,20 1 2,55 6 3,040 7 2,040 7 2	rü: 0,996
18,88 31,31 31,31 0,720 0,063 12,22 15,74 99,96 10,89 0,55 56,69 0,942 13,11 13,11 13,11 13,11 13,11 13,83 0,057 56,55 0,942 0,057 15,74 15,74	ne Faktö
1387 1405 1453 1458 1458 1466 1478 1534 1539 1584 1584 1584 1588 1588 3071 3072 3072 3092 3092 3092 3092 3092 3092 3092 309	Ölçeklen
0,571 0,116 3,713 40,22 0,880 6,773 6,955 6,955 6,955 6,955 6,955 6,955 6,955 6,955 6,955 8,852 2,365 90,87 7,035 57,91 18,64 9,480 18,64 18,64 18,64 18,64 118,64	9603, ° (
18,97 32,98 7,479 0,609 0,044 14,46 16,05 8,247 16,70 10,5 76,24 16,70 10,5 76,24 16,70 10,5 76,24 16,70 10,5 76,24 12,63 10,93 55,59 0,055 12,63 1,835 6,7495 12,63 1,835 0,0555 15,19 25,55 0,0555 15,19 25,55 0,0555 15,19 25,55 0,0555 15,419 25,55 0,0555 15,419 25,55 0,050 0,044 16,70 17,40 16,70 16	ktörü: 0,
1388 1466 1454 1459 1469 1469 1540 1559 1559 1585 1585 1585 1585 2930 2938 3004 3071 3072 3099 3092 3092 3092 3092 3093 3072 3093 3072 3093 3072 3093 3072 3093 3072 3093 3072 3072 3072 3072 3072 3072 3072 307	leme Fa
······································	^ı Ölçek
への の の の の の の の の の の の の の	,

EK 3 (Devam) 1,3-Bis(4-piridil)propan molekülünün civa halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

⁸ Toplam enerji dağılımı B3LYP/6-311 G(d,p) hesaplama metodu için yapılmıştır. IR: IR şiddeti (KM/Mole) RA: Raman saçılma aktivitesi (A**4/AMU)

odlarının karşılaştırması	
ı ve gözlenen titreşim m	7n/BDD/I.
) halojenür komplekslerinin hesaplanan	$7_{n}(DDD)D_{r}$
EK 4 1,3-Bis(4-piridil)propan molekülünün çinko	7°(BBB)(Cl

		TED (%)	$\Gamma_{\rm HCCC}$ (89) (M)	Γ_{HCCC} (33) (M)+ Γ_{HCCC} (51) (P-M)	δ_{ccc} (27)(M)+ Γ_{cccc} (15) + Γ_{MNCC} (12)	δ_{XMN} (11)+ Γ_{HCCC} (30)(M) + Γ_{CCCC} (27)(M)	$\Gamma_{\rm XMNC}$ (93)	$\delta_{\rm ccc}$ (19)(M)+ $\Gamma_{\rm MNCH}$ (10)+ $\Gamma_{\rm XMNC}$ (23)	δ_{MNC} (14)+ δ_{XMN} (62)	Γ_{HCCC} (70) + Γ_{CCCC} (30) (M)	$\delta_{\rm XMX}$ (60)+ $\delta_{\rm XMN}$ (30)	$\Gamma_{\rm cccc}$ (14)(P-M) + $\Gamma_{\rm XMNC}$ (56)	$v_{MN}(12)+\delta_{CCC}(10)(M)+\Gamma_{XMNC}(19)$	$v_{MN}(36) + \delta_{CCC}(10)(M)$	δ_{MNC} (61)+ δ_{XMN} (26)	$v_{cc}(12)+v_{MN}(13)+\Gamma_{cccc}(20)(P-M)$	U _{MN} (20)	U _{MX} (99)	δ _{ccc} (77)(P-M)	δ_{ccc} (25)(M)+ Γ_{cccc} (18)	$\delta_{\rm ccc}$ (70)(M)	$\Gamma_{cccc}(18)+\Gamma_{Nccc}(41)+\Gamma_{NccH}(14)+\Gamma_{cccH}(17)$	U _{MX} (99)	$\Gamma_{cccc}(17)+\Gamma_{Nccc}(36)+\Gamma_{NccH}(12)+\Gamma_{cccH}(13)$	$v_{c-c+2}(11) + \delta_{ccc}(11)$	Γ_{cNCC} (11)+ Γ_{cNCH} (10)	$\delta_{\rm ccc}$ (16)(M)	δ_{ccc} (12)(P-M)+ δ_{ccc} (19)+ δ_{cNc} (10)	$\delta_{\text{CCC}}(17) + \delta_{\text{NCC}}(30) + \delta_{\text{CCH}}(17) + \delta_{\text{NCH}}(7)$	$\delta_{\text{ccc}}(17) + \delta_{\text{Ncc}}(32) + \delta_{\text{ccH}}(17)$	$\Gamma_{\rm HCCH}$ (62)(M)	Γ_{cccc} (14)+ Γ_{Nccc} (18)+ Γ_{CNcc} (21)	$\Gamma_{\rm NCCC}$ (18)+ $\Gamma_{\rm CNCC}$ (13)
		RA											95 vs		155 vw	186 vw	232 w	274 m				350 w								666 m			
3PP)I ₂		IR																						406 vw		518 s	590 vw	618 s		668 w		730 w	741 vw
Zn(F	SDD^{b}	Frek, ^b	3	12	16	32	36	48	57	58	88	90	120	147	157	184	243	251	257	327	338	342	377	394	504	518	583	603	657	658	740	741	747
	ANL2DZ ^a	Frek, ^a	3	12	15	32	35	45	54	57	83	91	115	141	149	180	243	244	252	328	338	342	377	393	504	518	583	603	656	658	740	743	748
	Ι	RA											103 vs		157 vw	195 vw	240 w	276 m				353 w								666 m			
$ Br_2 $		IR																						410 vw		517 s	590 vw	620 s		671 w		732 w	744 vw
Zn(BPP)	SDD ^b	Frek, ^b	4	14	17	35	38	51	60	68	88	93	133	160	162	208	245	253	301	327	338	342	377	395 4	505	519	583	604	657	658	740	741	747
	ANL2DZ ^a	Frek, ^a	4	13	17	36	38	49	60	99	87	89	131	157	157	196	244	254	285	328	338	342	378	394	505	519	583	604	656	658	741	742	748
	Ľ	RA											112 vs		153 vw	218 vw	249 w	284 s				350 w				522 vw		618 vw		666 w			744 w
		IR																						WV 70		519 s	93 vw	521 s		71 w		33 vw	44 vw
		RA	,841	,030	,387	,081	,735	899	,638	,048	,122	,885	,054	,085	,472	,036	,993	,470	,094	,279	,081	,012	,057	,199 4(,459	508 5	913 59	501 6	,401	,131 6	,000	577 7	426 74
	DD^{b}	IR	,191 2	,259 7	,325 2	,000 1	,019 2	,963 1	,385 0	,056 0	2,53 1	,858 0	,064 1	,366 2	,443 0	,825 3	,721 0	9,91 9	,133 0	,181 0	,000	,006 0	4,04 2	,620 0	5,70 3	3,73 1	,407 0	0,48 2	,163 7	,671 8	,555 0	,049 6	,223 0
)Cl ₂		rek, ^b	8 1	16 0	21 2	41 0	45 0	57 2	67 0	84 0	93 2	102 6	140 4	169 8	170 0	244 3	251 1	306 2	327 0	338 0	340 0	378 0	393 6	397 0	505 2	519 2	583 9	604 2	656 0	658 0	740 2	740 0	747 0
Zn(BPP		RA I	3,291	6,891	2,246	1,292	2,890	1,713	0,932	0,049	1,008	1,096	1,133	0,684	2,605	3,742	1,284	11,07	0,100	0,405	0,166	1,719	0,011	0,134	3,205	1,299	1,076	2,705	7,265	8,335	5,938	0,010	0,592
	ANL2DZ	IR	1,196	0,302	2,798	0,001	0,027	5,423	0,312	0,056	25,04	14,28	4,120	0,297	10,94	3,095	2,179	31,13	0,093	0,446	0,332	55,18	0,003	0,034	26,19	26,87	9,659	22,33	0,141	0,641	0,101	2,541	0,274
	L/	Frek, ^a	5	16	21	42	47	54	67	85	89	92	137	166	172	244	253	289	327	338	340	371	378	396	505	520	583	605	656	658	741	741	748
		1od	Α"	Α"	A'	Α"	Α"	Ά	Α"	Α"	Α'	A'	A'	Α"	Ά	A'	A'	A'	Α"	Α	Α"	Α"	Α"	Α"	A'	A'	A'	Α'	Α"	Α"	A'	Α"	A'
		V	v 1	V_2	v ₃	v_4	v ₅	v_6	\mathbf{v}_7	v ₈	v_9	v_{10}	V ₁₁	v_{12}	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}	v_{19}	v_{20}	v_{21}	V_{22}	v_{23}	V_{24}	v_{25}	v_{26}	\mathbf{v}_{27}	V_{28}	v_{29}	V_{30}	v_{31}

EK 4 (Devam) 1,3-Bis(4-piridil)propan molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

$\sigma(25) + \nu_{C-CH2}(26) + \delta_{CNC}(14)$	$\Gamma_{CCH}(10) + \Gamma_{CCCH}(19) + \Gamma_{NCCH}(10)$	$(15) + v_{cc}(22)(M) + \Gamma_{cccH}(23)$	$_{\rm H}$ (17)+ $\Gamma_{\rm CCCH}$ (25) (M)	$_{\rm XCH}$ (23)+ $\Gamma_{\rm NCCH}$ (15) + $\Gamma_{\rm CCCH}$ (19)(P-M)	$_{\rm XCH}$ (61)+ $\Gamma_{\rm NCCH}$ (22)+ $\Gamma_{\rm CNCH}$ (16)	$_{\rm XCH}$ (34)+ $\Gamma_{\rm NCCH}$ (21) + $\Gamma_{\rm CCCH}$ (22)(P-M)	$(22) + v_{CN}(38) + \delta_{CCH}(14)$	$_{\rm 3CH}$ (48)+ $\Gamma_{\rm CCCH}$ (17)	$_{\rm VCH}$ (18)+ $\Gamma_{\rm HCCH}$ (48)+ $\Gamma_{\rm CCCH}$ (22)	$(15)+\Gamma_{\rm HCCH}$ (33)+ $\Gamma_{\rm CCCH}$ (10)	$(42)(M) + v_{CN}(14)$	$(28)+v_{CN}(10)$	$CH(42)+\Gamma_{CNCH}(14)+\Gamma_{MNCH}(14)$	$(58)+\delta_{HCC}(10)$ (M)	$(14)+\delta_{HCC}(19)$ (M)+ $\Gamma_{HCCC}(33)$ (Py-M)	$(11)+v_{cN}(29)+\delta_{NCC}(12)+\delta_{CCH}(24)$	$(12)+\delta_{ccc}(12)+\delta_{Ncc}(14)+\delta_{ccH}(27)$	$(21)+\delta_{\rm CCH}(15)({\rm M})$	$(31)+\delta_{\rm CCH}(28)({\rm M})$	$\gamma(10) + \delta_{CCH}(21) + \delta_{CCH}(18)(M)$	$\gamma(10) + v_{C-CH2}(31) + \delta_{CCH}(24)$	$(16) + v_{CN}(14) + \delta_{CCH}(29) + \delta_{NCH}(23)$	$(15)+v_{C-CH2}(28)+\delta_{CCH}(24)$	$(24)+\nu_{CN}(10)+\delta_{CCH}(18)+\delta_{NCH}(23)$	_H (27)(M)	$_{ m H}(47) + \Gamma_{ m HCCH}(15)$ (M)	$(54)+v_{CN}(32)+\delta_{CCH}(10)(M)$	$(7) + v_{CN}(13) + \delta_{CCH}(46)(M)$	$(26)+0_{CN}(44)+\delta_{CCH}(15)(M)$	$_{ m H}(47) + \Gamma_{ m HCCC}(15)$ (M)	$_{\rm H}(59) + \delta_{\rm NCH}(18)$	$_{ m H}(42) + \Gamma_{ m HCCH}(19)$ (M)	$_{\rm H}(60)+\delta_{\rm NCH}(18)$
nco	nco	nco	$\delta_{\rm CC}$	Γο	Γο	Γο	nco	$\Gamma_{\rm H}$	Γα	nco	nco	nco	$\Gamma_{\rm H}$	nco	nco	019 s U _{CC}	nco	nco	nco	nco	nco	nco	nco	nco	$214 \text{ m} \delta_{CC}$	$\delta_{\rm CC}$	264 w U _{CC}	nco	nco	$\delta_{\rm CC}$	318 w δ _{CC}	$\delta_{\rm CC}$	$\delta_{\rm CC}$
	809 w	820 s	36 vw	856 m				w 7.8		84 vw						028 s 1		069 s		11 vw					224 m 12		59 vw 12			08 vw	320 w 13	361 w	
82	14 8	35	36 8	53 8	84	88	53	64 5	80	88 9	96	01	04	600	14	146 1	949	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94	20 11	02	205	803	18	30 1	.43	00 12	14	<i>LL</i>	111 13	1 1	32 1	35
2	~	8	×	òó	8	8		6	6	6	6	10	0 10	9 10	5 10	5 10	9 10	3 10	5 10	0 11	2 12	5 12	8 12	0 12	1 12	4 12	1 12	4 12	1 12	1 13	8 13	3 13	5 13
782	814	836	837	851	883	886	953	964	980	985	966	366	100	100	101	104	104	106	109	112	120	120	120	122	123	124	126	127	128	131	132	133	133
		824 w		857 m											1023 w	1032 s									1216 s		1256 vw				1320 m		
	809 w	822 s	839 vw	857 m	876 w			969 vw		989 vw						1030 s		1072 s		1110 vw					1223 m		1260 vw			1305 vw	1320 w	1358 w	1375 vw
782	813	835	836	854	883	889	953	964	980	989	666	1001	1005	1009	1014	1046	1049	1061	1094	1119	1201	1204	1208	1217	1230	1242	1260	1273	1277	1310	1327	1332	1334
782	814	835	837	852	883	888	953	964	980	987	666	1000	1001	1009	1014	1046	1049	1062	1094	1119	1202	1205	1208	1219	1231	1243	1261	1274	1282	1310	1328	1332	1334
		825 m		861 m				965 vw		987 vw					1025 vw	1035 s		1071 w							1218 s		1258 vw		1276 vw	1303 vw	1322 m	1345 vw	
	810 w	824 s	838 vw	859 vw	878 w			970 vw		988 vw						1031 s		1074 s		1112 vw					1221 m		1263 vw			1305 vw	1323 w	1359 w	1377 vw
3,263	24,03	8,186	0,972	4,968	0,171	0,181	42,78	11,18	1,023	33,81	14,65	89,81	0,140	30,20	0,069	4,445	1,635	0,491	0,270	1,129	4,976	11,70	42,19	14,97	0,575	5,458	0,905	22,17	9,169	96,53	0,609	5,339	0,771
31,47	29,28	30,76	000,0	35,17	0,020	0,031	2,807	1,440	0,005	1,552	12,45	35,91	0,010	9,810	000(0	17,95	2,694	0,114),332	0,066),608	3,452	7,150	30,83),689	17,31	0,024	0,087	0,013	5,410	0,439	3,113	0,054
781	813	835	836 (854	883 (891 (953	963	980 (988	000	1002	1005 (6001	1013 (1046	1049	090	1093 (1118 (1201 (1204	1207	1215	1229 (1241	1260 (1273 (1277 (1308	1327 (1331	1332 (
,767	4,00	,329	,959	,241	,149	,165	2,62	0,67	,003	7,54	1,54	1,84	,116	9,27	,069	,040	,573	,500	,278	,140	,838	8,13	4,34	7,48	,648	,644	,662	3,86	,524	4,71	,612	,259	,804
2,87 3	1,00 2	0,64 8	000 0	5,59 5	020 0	031 0	781 4	395 1	004 1	297 2	127 1	7,51 9	0 600	1,68 2	0 000	5,85 4	826 1	120 0	344 0	055 1	997 3	203 1	317 3	7,21 1	688 0	7,05 5	018 0	104 2	008 7	659 9	437 0	261 5	065 0
82 3.	13 3	35 31	36 0.	53 31	83 0.	89 0.	53 2,	·64 1.	80 0.	88 2.	3.00	002 4	02 0.	010 1	0.14 0.)46 1.)49 2.	J61 0.	.0 .0	118 0.	201 0,	205 3,	207 7,	216 2	230 0;	241 1	260 0;	273 0,	282 0.	309 5.	327 0,	332 3.	332 0.
A' 7	A' 8	A' 8	4" 8	A' 8	4 " 8	4" 8	A' 9	A' 9	4" 9	A' 9	A' 1(A' 1(A " 1(A' 1(A" 1(A' 1(A' 1(A" 1(A" 1(4 " 1	A' 12	A' 12	A' 12	A' 12	4 " 12	A' 12	4 " 12	4 " 12	4 " 12	A' 15	A " 12	A' 13	A " 12
V ₃₂	V ₃₃	V ₃₄ .	V35 4	V ₃₆	V37 1	V ₃₈ 1	V39	V ₄₀	V41 1	V ₄₂ .	V ₄₃ .	V ₄₄	V45 1	V ₄₆	V47 1	V ₄₈	V49	V50 1	V51 1	V52 4	V ₅₃	V ₅₄ .	V ₅₅	V56	V57 1	V ₅₈	V59 1	V ₆₀ 1	V ₆₁ 1	V ₆₂	V63 1	V ₆₄ .	V65 1

	5
	2
	З.
	Ц
	H
	Ę
	\mathbf{S}
	0
	-
	\mathcal{C}
	31
	3
-	-
	Ц
	H
	b
- 5	
	2
	<u>o</u>
	Я
	H
	D
	Ξ
•	5
	Ű.
	Н
•	Ħ
	-
	D
	Ð
	ā
	Ð
-	Ξ.
	N
:	0
	oD
	<u>م</u>
	2
	-
	5
	ä
	5
-	
	q,
	b D
	ŝ
	P
-	q
	Ξ
•	Ξ.
	5
-	1
	S
-	4
	Ð
-	2
	Ħ
	В
	5
	<u></u>
-	<u>K</u> O
-	IT KOI
-	ur koi
-	inur koi
-	enur koi
- :	ojenur koj
	lojenur koi
	alojenur koi
	nalojenur koi
	halojenur koi
	o halojenur koi
	ko halojenur koi
	nko halojenur koi
	inko halojenur koi
	çınko halojenur koı
	i çinko halojenur koi
	in çinko halojenur koi
	nun çinko halojenur koi
	inun çinko halojenur koi
	unun çınko halojenur kol
	ilunun çinko halojenur koi
	kulunun çınko halojenur kol
	ekulunun çınko halojenur kol
	lekulunun çınko halojenur koi
	olekulunun çınko halojenur koi
	nolekulunun çınko halojenur kol
	molekulunun çınko halojenur koi
	i molekulunun çınko halojenur koi
	an molekulunun çınko halojenur kol
	oan molekulunun çınko halojenur kol
	ipan molekulunun çınko halojenur kol
	ropan molekulunun çınko halojenur koi
	oropan molekulunun çınko halojenur kol
	jpropan molekulunun çınko halojenur kol
1	u)propan molekulunun çınko halojenur kol
1.1	111)propan molekulunun çınko halojenur kol
	idil)propan molekulunun çınko halojenur koi
	ridil)propan molekulunun çınko halojenur kol
	viridil)propan molekulunun çinko halojenur koi
	-piridil)propan molekulunun çinko halojenur koi
	4-piridil)propan molekulunun çınko halojenur kol
	(4-piridil)propan molekulunun çinko halojenur koi
	s(4-piridil)propan molekulunun çinko halojenur koi
	sis(4-piridil)propan molekulunun çinko halojenur kol
	Bis(4-piridil)propan molekulunun çınko halojenur kol
	-Bis(4-piridil)propan molekulunun çinko halojenur koi
	<i>3-Bis</i> (4-piridil)propan molekulunun çınko halojenur kon
	l,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	1,3-Bis(4-piridil)propan molekulunun çinko halojenur kol
	i) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	m) 1,5-Bis(4-piridil)propan molekulunun çinko halojenur kol
	am) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	vam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	evam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur kol
	Jevam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	Devam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	(Devam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	4 (Devam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	4 (Devam) 1,3-Bis(4-piridil)propan molekulunun çinko halojenur koi
	K 4 (Devam) 1,5-Bis(4-piridil)propan molekulunun çinko halojenur kol
	5K 4 (Devam) 1,5-Bis(4-piridil)propan molekulunun çinko halojenur kol

υcc(24)+δccH(25)+δ _{NcH} (30) υcc(32)+δ _{ncH} (23)+δ _{NcH} (30)	$v_{con}(12) + \delta_{cch}(34) + \delta_{Nch}(20)$	$\delta_{ m HCH}(26)+\Gamma_{ m HCCH}(38)(M)$	$\delta_{HCH}(30) + \Gamma_{HCCH}(29)$ (M)	$v_{cc}(13)+\delta_{ccH}(48)+\delta_{NcH}(19)$	$\delta_{\rm HCH}(30) + \Gamma_{\rm HCCH}(29)$ (M)	v_{cc} (49)+ v_{cN} (25)	u_{cc} (48)+ $u_{cN}(27)$	$v_{cc}(78)+\delta_{ccH}(15)$	$u_{\rm cc}$ (79)	U _{CH2} (99)	$v_{cH2}(100)$	$v_{ m CH2}$ (100)	v_{cH2} (100)	U _{CH2} (97)	$v_{cH2}(100)$	ν _{CH} (100)	$v_{\rm CH} (100)$	0 _{СН} (99)	о _{сн} (100)	u _{сн} (100)	и _{сн} (99)	о _{СН} (99)	о _{СН} (99)	
						1505 m			1620 s		2922 m	2949 s			3034 s	3059 vs								
1391 w 1431 s		1456 w		1475 vw		1507 m	1541 vw	1558 m	1618 vs		2928 w	2948 vs		,	3034 s	3057 m								
1387 1410	1453	1458	1466	1474	1478	1529	1540	1568	1593	2926	2930	2939	2966	2981	3004	3072	3072	3093	3093	3095	3099	3110	3115	12,39
1388 1410	1454	1459	1467	1474	1479	1532	1540	1569	1594	2926	2931	2940	2967	2982	3005	3071	3072	3092	3092	3094	3099	3109	3114	12,54
1430 m						1509 w			1620 m		2920 s	2949 m			3036 m	3063 vs								
1394 w 1432 s	1447 vw	1457 w				1509 m	1541 vw	1562 m	1619 vs		2933 w	2951 vs		2984 w	3037 s	3055 m								
1387 1410	1453	1458	1466	1473	1478	1529	1540	1568	1594	2926	2930	2938	2966	2981	3004	3072	3072	3093	3095	3096	3099	3112	3118	14, 14
1388 1411	1454	1459	1467	1474	1479	1532	1540	1569	1595	2926	2931	2940	2967	2982	3005	3071	3072	3092	3094	3095	3099	3111	3116	14,13
1432 m						507 vw		557 vw	1621 s		2930 s			2955 w	3038 w	3067 vs								
l400 w 1432 s	447 vw	l456 w		474 vw	488 vw	508 m	542 vw	562 m	619 vs		2933 w	954 vs		2989 w	3040 s	8057 m								
0,585 0,414	4,409 1	41,44	0,450	4,493 1	5,212 1	7,657	7,229 1	31,09	99,88 1	155,8	41,69	39,79 2	86,05	2,205	9,417	88,78	7,149	19,27	63,72	13,60	263,6	3,275	215,8	
19,27 36.38	7,371	0,648	0,433	21,01	16,88	12,56	16,67	69,66	123,8	9,611	1,184	72,76	2,431	0,609	51,47	0,087	12,69	55,13	3,935	0,171	0,933	2,964	16, 39	
1387 1410	1453	1458	1465	1472	1478	1530	1540	1568	1593	2926	2930	2938	2966	2980	3003	3071	3072	3092	3094	3096	3099	3112	3117	14,82
0,575 0.522	3,941	40,43	0,451	5,181	5,403	7,440	7,145	30,91	89,30	150,7	40,62	44,56	85,30	2,569	9,803	89,55	7,158	18,97	62, 30	12,11	263,8	3,389	217,3	
19,30 38.74	7,422	0,620	0,387	20,97	16,64	125,3	9,529	2,202	71,65	2,395	0,806	51,33	0,103	12,23	54,37	3,695	0,207	0,849	2,531	14,70	1,196	0,302	2,798	
1388 1410	1454	1459	1466	1473	1479	1532	1540	1569	1594	2926	2931	2939	2967	2982	3004	3071	3072	3092	3094	3096	3099	3112	3117	14,70
"A "	A	A'	A'	A'	A'	"Α	"Α	A'	A'	A'	A'	A	Α	"Α	Α"	Α"	A'	Α"	"Α	Α	A'	Υ	A'	

^g Toplam enerji dağılımı B3LYP/6-311 G(d,p) hesaplama metodu için yapılmıştır. IR: IR şiddeti (KM/Mole) RA: Raman saçılma aktivitesi (A**4/AMU)

	Zn(4-Af	5)2Cl2					Zn(4-	-Ap) ₂ Br ₂			Zn(4	Ap) ₂ I ₂					
Г	ANL2DZ					LANL2DZ	SDD			LANL2D2	Z SDD			4	Acetylpyridin	le	
Frek	IR	RA	Frek	IR	RA,	Frek	Frek	IR	RA,	Frek	Frek	IR	RA,	IR M	RA M	В	TED (%)
v ₁ 11	0,352	3,916	11			11	11			7	2						$\Gamma_{\text{CNMX}}(45) + \Gamma_{\text{CNCN}}(31)$
v ₂ 15	1,338	4,231	12			16	12			11	13						$\delta_{NMN}(38)+\Gamma_{CNMX}(19)+\Gamma_{CCNM}(19)$
v ₃ 22	2,891	7,407	21			23	22			18	20						$\Gamma_{\rm CNCM}(58)+\Gamma_{\rm CNMX}(10)$
v4 47	5,522	0,588	47			43	44			38	39						$\Gamma_{\rm CCNM}(34)+\Gamma_{\rm HCNM}(16)$
v ₅ 54	4,137	1,296	54			48	48			40	41						$\Gamma_{cccc}(41)$ + $\Gamma_{occc}(26)$ + $\delta_{CNM}(14)(Ap)$
v ₆ 58	3,339	0,579	56			48	49			42	45						$\Gamma_{cccc}(46)+\Gamma_{occc}(42)(Ap)$
v ₇ 66	0,650	0,552	66			59	58			49	53						$\Gamma_{cnMX}(63)+\delta_{cnM}(15)+\Gamma_{cccc}(20)(Ap)$
v ₈ 68	0,609	0,899	68			09	62			56	56						$\delta_{\rm XMN}(42) + \delta_{\rm CNM}(38)$
v ₉ 71	8,939	0,791	76			63	99			59	61						$\delta_{\rm NMN}(27) + \Gamma_{\rm cccc}(14)({\rm Ap})$
v ₁₀ 95	12,83	0,768	66			81	84			77	81						$\Gamma_{\text{CNMX}}(45)+\delta_{\text{XMX}}(29)$
v ₁₁ 105	: 27,54	0,091	107		76	85	89			79	83		94				$\delta_{XMN}(39) + \Gamma_{CNMX}(38)$
v ₁₂ 116	0,538	0,418	119			109	112			105	109						$\delta_{\text{CNM}}(34) + \delta_{\text{XMN}}(31) + \delta_{\text{CCC}}(17)(\text{Ap})$
v ₁₃ 143	1,227	0,933	145			128	133			117	122						$v_{MN}(19)+\delta_{CCC}(19)+\delta_{CNM}(12)$
v_{14} 150	0,044	0,594	148			141	140			117	123						U _{MN} (49)
v_{15} 150	0,313	0,037	151			157	156			157	153						$\Gamma_{ m Hcco}(45)+\Gamma_{ m cccH}(45)$
v ₁₆ 154	5,655	0,940	152			158	156			157	155						$\Gamma_{ m Hcco}(45)+\Gamma_{ m cccH}(44)$
v ₁₇ 176	11,46	0,021	170		165	171	165			164	158		161	158	160		$\Gamma_{\rm cccc}(21)+\Gamma_{\rm CNcc}(15)+\Gamma_{\rm CCNM}(10)$
v_{18} 199	36,23	0,214	198		213	179	191		211	165	167		209				U _{MN} (64)
v ₁₉ 208	8,142	5,295	210			197	198			195	196						$\delta_{NMN}(12)+\Gamma_{CCCH}(22)(Ap)+\Gamma_{CCNM}(15)$
v_{20} 229	6,988	0,276	230			211	212			201	207						$\delta_{ccc}(57)+\delta_{cco}(11)(Ap)+\delta_{cNM}(24)$
v ₂₁ 237	4,246	0,109	240			223	228			211	213						$\delta_{ccc}(47)+\delta_{cco}(10)(Ap)+\delta_{cNM}(30)$
v ₂₂ 261	25,54	5,953	276			228	229			226	228						υ _{MX} (100)
v ₂₃ 326	48,71	0,973	341		302	261	268			243	248		305				U _{MX} (99)

EK 5 4-Acetylpiridin molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

4,23	ŝ	4,972	364			364	363			362	361						δccc(27)+δcco(25)(Ap) vcc(19)(Py-Ap)
1,909 2,490	2,490		364		337	364	363			363	362		330				$\delta_{ccc}(25)+\delta_{ccc}(26)(Ap) \upsilon_{cc}(19)(Py-Ap)$
0,133 0,359	0,359		391			390	390			389	389						$\Gamma_{\rm cccn}(43)$
0,390 0,354	0,354		393		383	392	393			391	392		381				$\Gamma_{\rm cccn}(42)$
5,062 0,987	0,987		438	436	425	439	438	435		438	438	430	429	417		422	$\Gamma_{cccc}(23)+\Gamma_{occc}(10)(Ap)$
12,46 0,276	0,276		443			444	444			444	444						$\Gamma_{cccc}(18)+\Gamma_{occc}(10)(Ap)$
0,116 1,799	1,799		457			457	456			456	456						$\delta_{ccc}(36)+\delta_{cco}(16)(Ap) \nu_{cc}(10)(Py-A_{I})$
2,656 2,097	2,097		457	484	474	458	457			457	457	480	479	465		468	$\delta_{ccc}(36)+\delta_{cco}(16)(Ap) \upsilon_{cc}(10)(Py-A_{F})$
55,11 3,186	3,186		571			571	571			570	570						$\delta_{ccc}(28)+\delta_{cco}(22)+\upsilon_{cc}(17)(Ap)$
29,13 1,877	1,877		572			572	571			571	571						$\delta_{cco}(28)+\delta_{ccc}(22)+\upsilon_{cc}(17)(Ap)$
14,44 0,713	0,713		598			22	598			598	598						$\Gamma_{occc}(12)+\Gamma_{cccH}(11)(Ap)$
31,80 0,788	0,788		600	595	595	601	601	595		600	600	593	593	590	589	588	$\Gamma_{occc}(12)+\Gamma_{cccH}(11)(Ap)$
0,553 12,18	12,18		653			653	654			653	654						$\delta_{ccN}(30) + \delta_{ccc}(28)$
1,264 4,460	4,460		655	665	664	655	655	667	664	655	655	662	663	664	999	665	$\delta_{ccN}(30) + \delta_{ccc}(28)$
13,43 6,618	6,618		730	737		732	730	738		732	730	738		736	739	738	$v_{cc}(32)+v_{cc}(15)(Ap)+\delta_{cNc}(16)$
7,293 26,48	26,48		731			732	731			732	731						$v_{cc}(32)+v_{cc}(15)(Ap)+\delta_{cNc}(16)$
0,015 1,373	1,373		741			742	740			741	740						$\Gamma_{ccnc}(17)+\Gamma_{cccn}(17)+\Gamma_{cccc}(16)$
1,045 0,296	0,296		743	754	753	744	742	750	751	743	742	751	753				$\Gamma_{ccNc}(18)+\Gamma_{cccN}(18)+\Gamma_{cccc}(16)$
38,94 0,233	0,233		849	835	838	848	848	820		846	847	835	836	817		815	$\Gamma_{\rm HCCC}(38) + \Gamma_{\rm HCCN}(13)$
79,11 0,406	0,406		852			851	852			849	850						$\Gamma_{\rm HCCC}(44)+\Gamma_{\rm HCCN}(14)$
1,927 0,013	0,013		897	879	882	896	896	883		894	895	883	880	875		879	$\Gamma_{HCCC}(50)+\Gamma_{HCCN}(19)+\Gamma_{HCNM}(10)$
4,870 0,131	0,131		668			899	899			897	868						$\Gamma_{\rm HCCC}(51){+}\Gamma_{\rm HCCN}(20){+}\Gamma_{\rm HCNM}(10)$
16,96 0,509	0,509		944	996	961	945	944	959	951	944	944	962	960	,	962	964	$v_{cc}(33)+\delta_{ccH}(32)(Ap)$
9,860 3,130	3,130		944			945	944			945	944						$v_{cc}(33)+\delta_{ccH}(32)(Ap)$
41,21 16,64	16,64		166			066	066			988	987						$v_{cN}(27) + v_{cC}(15)$
14,90 60,25	60,25		992			166	166			686	989						$v_{cN}(28) + v_{cC}(16)$

EK 5 (Devam) 4-Acetylpiridin molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

$\Gamma_{\rm HCCH}(37)$	$\Gamma_{ m HCCH}(41)+\Gamma_{ m HCNM}(10)$	$\Gamma_{\rm HCCH}(44)$	$\Gamma_{\rm HCCH}(40)$	$\delta_{ccH}(51)+\Gamma_{occH}(15)(Ap)$	$\delta_{\rm CCH}(50)+\Gamma_{\rm OCCH}(15)({\rm Ap})$	$v_{cN}(23)+\delta_{cCH}(23)+\delta_{cCc}(14)+\delta_{cCN}(15)$	$v_{cc}(24) + \delta_{ccH}(23) + \delta_{ccc}(13) + \delta_{ccN}(14)$	$v_{cc} (20) + \delta_{ccH} (15) (Ap) + v_{cc} (10) (Ap)$	$v_{cc}(20)+\delta_{ccH}(15)(Ap)+v_{cc}(10)(Ap)$	$\delta_{\rm cch}(33) + \upsilon_{\rm cc}(29)$	$\delta_{\rm cch}(33) + \upsilon_{\rm cc}(29)$	$\delta_{\text{CCH}}(30) + \delta_{\text{NCH}}(23) + \upsilon_{\text{CN}}(16)$	$\delta_{\rm CCH}(44)+\delta_{\rm NCH}(22)+\upsilon_{\rm CN}(17)$	$v_{cc}(49)(Ap)$	$v_{c-AP}(32)+v_{cc}(15)(Ap)$	$v_{cc}(41)+v_{cN}(54)$	$v_{cc}(40) + v_{cN}(53)$	$\delta_{\rm NCH}(8) + \delta_{\rm CCH}(68)$	$\delta_{\rm CCH}(67)$	$\delta_{HCH}(45)+\delta_{CCH}(40)$ (Ap)	$\delta_{HCH}(45)+\delta_{CCH}(41)$ (Ap)	$\delta_{\text{NCH}}(35) + \upsilon_{\text{CC}}(26) + \delta_{\text{CCH}}(16)$	$\delta_{\rm NCH}(35) + \upsilon_{\rm CC}(25) + \delta_{\rm CCH}(16)$	$\delta_{\text{HCH}}(55) + \Gamma_{\text{HCCC}}(10) + \Gamma_{\text{HCCO}}(10)(\text{Ap})$	$\delta_{HCH}(56)+\Gamma_{HCCC}(10)+\Gamma_{HCCO}(10)(Ap)$
				1022		1064				1083	1118			1224			1268		1324		1363			1409	
						1064				1084				1214			1267		1324						
				1021		1063				1083	1115			1220			1267		1324		1362			1410	
				1025		1064				1089			1216	1230			1258		1322		1363			1419	
				1024		1059				1089	1106			1230			1260		1321		1365			1419	
993	995	1007	1010	1029	1029	1042	1043	1073	1073	1090	1092	1209	1211	1244	1247	1253	1254	1317	1319	1372	1372	1399	1400	1436	1436
066	992	1003	1006	1029	1029	1042	1043	1074	1074	1089	1092	1209	1212	1245	1248	1256	1257	1317	1319	1372	1372	1399	1401	1436	1436
				1027		1063				1088			1217						1327					1420	
				1025		1062				1088				1232			1266		1328		1363			1422	
994	966	1008	1011	1030	1030	1043	1044	1073	1073	1089	1092	1208	1211	1244	1247	1254	1254	1317	1318	1372	1372	1399	1400	1436	1436
992	994	1005	1008	1029	1030	1043	1044	1073	1074	1089	1092	1209	1212	1245	1248	1257	1257	1317	1319	1372	1372	1400	1401	1437	1437
				1029		1064				1091			1216	1233			1260		1324		1366			1422	
				1027		1062				1092	1107			1234			1259		1326		1367			1421	
994	966	1008	1010	1029	1030	1043	1044	1072	1073	1088	1090	1207	1210	1244	1246	1254	1255	1315	1317	1371	1371	1399	1400	1436	1436
2,587	4,087	0,014	0,737	1, 146	3,853	2,667	11,53	9,149	21,20	0,058	0,243	1,062	10,51	48,88	98,53	7,749	5,392	4,357	3,360	0,862	5,740	1,285	2,819	2,267	12,85
4,149	0,271	0,179	0,562	0,940	0,587	22,86	8,128	1,839	2,928	0,085	0,042	6,313	2,199	337,4	138,8	10,95	10,53	6,712	5,064	29,25	66,56	9,978	95,11	23,96	26,39
993	966	1007	1009	1029	1029	1043	1044	1073	1073	1088	1090	1207	1210	1244	1247	1257	1258	1316	1318	1372	1372	1399	1401	1436	1436
v_{50}	v_{51}	V ₅₂	V ₅₃	V ₅₄	V55	V ₅₆	v_{57}	V ₅₈	V ₅₉	v_{60}	V ₆₁	v_{62}	V ₆₃	v_{64}	v_{65}	V ₆₆	v_{67}	V ₆₈	v_{69}	\mathbf{v}_{70}	v_{71}	\mathbf{v}_{72}	V ₇₃	\mathbf{v}_{74}	v_{75}

EK 5 (Devam) 4-Acetylpiridin molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

							1449	1448						$\delta_{HCH}(56)+\Gamma_{HCCC}(11)+\Gamma_{HCCC}$
07, 20,40 1448			1449	1448			1449	1448						$\delta_{HCH}(57)+\Gamma_{HCCC}(11)(Ap)$
00 0,439 1464			1466	1466			1467	1467						$\delta_{\text{CCH}}(38) + \delta_{\text{NCH}}(19)$
42 6,258 1466			1468	1468			1469	1468						$\delta_{\rm NCH}(20) + \delta_{\rm CCH}(38)$
00 13,18 1527	1500	1500	1528	1527	1501	1499	1528	1527	1498	1498	1494	1492	1492	υ _{CC} (36)+υ _{CN} (36)
23 11,28 1529	1557	1555	1530	1529	1555		1530	1528	1555	1555	1557	1556	1558	υ _{cc} (36)+υ _{cN} (36)
44 104,1 1587			1589	1587			1588	1587						v_{cc} (50)
51 168,4 1587	1617	1617	1589	1588	1615	1615	1589	1587	1614	1615	1597	1596	1598	v_{cc} (50)
90 22,40 1608			1608	1609			1608	1609						$v_{c0}(74)$
),2 57,02 1609	1702	1700	1608	1609	1699		1609	1609	1700	1694	1696	1694	1695	$v_{c0}(74)$
47 45,92 2931			2931	2931			2931	2931						о _{СН3} (100) (Ap)
23 215,8 2931	2919	2917	2931	2931	2913	2911	2931	2931	2915	2915	2923	2922	2921	и _{сн2} (100) (Ap)
53 27,47 3005			3006	3005			3006	3005						о _{СН2} (100) (Ap)
70 52,86 3005	2990	2986	3006	3005	2979	2986	3006	3005	2974	2984	2972			о _{снз} (100) (Ар)
32 98,02 3062	3014	3013	3063	3062	3010		3064	3063	3010	3019	3009	3010	3012	о _{СН3} (100) (Ap)
25 81,72 3062			3063	3062			3064	3063						о _{СН} (97)
82 63,07 3100	3048		3098	3101	3043		3094	3097	3044	3044	3047	3050	3048	$v_{CH}(96)$
56 41,37 3101			3098	3101			3095	3098						v_{CH} (96)
38 38,75 3106			3105	3107			3102	3102						$v_{CH}(96)$
39, 39,60 3107			3105	3108			3103	3105						υ _{СН} (99)
36 21,59 3123			3124	3123			3124	3122						$v_{CH}(98)$
21 64,81 3123	3065	·	3124	3124	3059		3124	3123	3060	3060	3066	3066	3064	u _{сн} (97)
33 21,53 3128			3128	3128			3128	3127						о _{сн} (96)
24 283,7 3129	3091	3077	3128	3129	3090	3071	3128	3128	3088	3075	3082		3079	и _{сн} (96)

EK 5 (Devam) 4-Acetylpiridin molekülünün çinko halojenür komplekslerinin hesaplanan ve gözlenen titreşim modlarının karşılaştırması

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	: ERDOĞDU, Yusuf
Uyruğu	: T.C.
Doğum tarihi ve yeri	: 11.03.1979 Kırşehir
Medeni hali	: Evli
Telefon	: 0 (386) 252 80 50
Faks	: 0 (386) 252 80 50
e-mail	: yusuferdogdu@gmail.com

Eğitim

Derece	Eğitim Birimi	Mezuniyet tarihi
Yüksek lisans	Gazi Üniversitesi /Fizik Bölümü	2002
Lisans	Selçuk Üniversitesi/ Fizik Bölümü	2000
Lise	Cumhuriyet Lisesi	1996

İş Deneyimi

Yıl	Yer	Görev
2002-2006	Gazi Üniversitesi	Araştırma Görevlisi
2006	Ahi Evran Üniversitesi	Araştırma Görevlisi

Yabancı Dil

İngilizce

Yayınlar

1. Yusuf Erdoğdu, M. Tahir Güllüoğlu ve Şenay Yurdakul, Molecular Structure and Vibrational Spectra of 1,3-Bis(4-Piperidyl)Propane by Quantum Chemical Calculations, Journal of Molecular Structure, Baskıda.

2. Yusuf Erdoğdu, M. Tahir Güllüoğlu ve Mustafa Kurt, Molecular Structure and Vibrational Spectra of 1,3-Bis(4-Pyridyl)Propane by Quantum Chemical Calculations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Baskıda.

Hobiler

Bilgisayar teknolojileri, Futbol