İÇİNDEKİLER

Sayfa

İÇİNDEKİLER	i
ÖZET	. vi
ABSTRACT	vii
TEŞEKKÜR	viii
SİMGELER DİZİNİ	. ix
ŞEKİLLER DİZİNİ	. xi
1. GİRİŞ	1
2. KAYNAK BİLGİSİ	3
3. METARYAL VE METOD	7
3.1 METARYAL	7
3.1.1. Sistem Tanıtımı	7
3.1.1.1 "T", "П", "L", seri bağlı "T" ve "L", seri bağlı "П" ve "L",	
Uydurma Devreleri ile Tek Transistorlu Temel Kuvvetlendirici	
Devreleri	7
3.1.1.2. Temel Uydurma İki-Kapılıları	11
3.1.1.2.1. Seri Transmisyon Hat İki-Kapılısı	11
3.1.1.2.2. Paralel Transmisyon Hat İki-Kapılısı	11
3.1.1.3. Uydurma Devreleri	12
3.1.1.3.1. Paralel + Seri "L" Devresi	12
3.1.1.3.2. Seri + Paralel "L" Devresi	12
3.1.1.3.3. "T" Devresi	13
3.1.1.3.4. "П" Devresi	14
3.1.1.3.5. Seri Bağlı "L" Ve "L" Tipi (Paralel Ve Seri) Uydurma Devresi	15
3.1.1.3.6. Seri Bağlı Seri + Paralel "L" Devresi	15
3.1.1.3.7. Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri) Tipi Uydurma Devresi	16
3.1.1.3.8. Seri bağlı "∏" ve "L" tipi (Seri ve Paralel) tipi uydurma devresi	17
3.2. Bir Mühendislik Optimizasyon Problemi Olarak Kuvvetlendirici Tasarımı	19
3.3. Mikrodalga Kuvvetlendiricisi Gerçeklenebilir Tasarım Uzayı	20
3.3.1. Mikrodalga Kuvvetlendiricisi Optimizasyonunun İki Temel Problemi	20
3.4. Transistor Performans Ölçü Fonksiyonları	21
3.5. METOD	22
3.5.1. Memetik Algoritma	22
3.5.2. Genetik Algoritma	25
3.5.2.1. Genetik Algoritmaların Uygulama Alanları	26
3.5.2.2. Ana Hatlarıyla Genetik Algoritma	28
3.5.3. Genetik Operatörler	29
3.5.3.1. Seçme İşlemi	29
3.5.3.1.1. Rulet Çarkı Seçmesi	29
3.5.3.1.2. Stochastic Uniform Seçmesi	30
3.5.3.1.3. Arta Kalan Seçmesi	32
3.5.3.1.4. Turnuva Seçmesi	33
3.5.3.2. Çaprazlama İşlemi	35
3.5.3.2.1. Bir Noktalı Çaprazlama	36

3.5.3.2.2. İki Noktalı Çaprazlama	. 36
3.5.3.2.3. Dağılmış Parametreli (Scattered) Çaprazlama	. 37
3.5.3.2.4. Heuristic Çaprazlama	. 37
3.5.3.2.5. Havuz Çaprazlama	. 38
3.5.3.3. Mutasyon İşlemi	. 38
3.5.3.3.1. Ters Çevirme Mutasyonu	. 39
3.5.3.3.2. Ekleme Mutasyonu.	. 39
3.5.3.3.3. Yer Değişikliği Mutasyonu	. 39
3.5.3.3.4. Karşılıklı Değişim Mutasyonu	. 39
3.5.4. Örnek Aratma (Pattern Search) Algoritması	. 40
3.5.5. Adaptif Örnek Aratma Algoritması	. 41
3.5.6. Nelder-Mead Simpleks Algoritması	. 42
3.5.6.1. Sıralama	. 44
3.5.6.2. Yansıma	, 44
3.5.6.3. Genişleme	, 44
3.5.6.3.1. Dış	. 44
3.5.6.3.2. İç	. 45
3.5.6.4. Büzülme	. 45
3.5.6.4.1. Büzmeme Sıralama Kuralı	. 46
3.5.6.5. Memetik Agoritma Örneği	. 48
3.5.6.5.1. Rulet Çarkı İle Seçme	. 50
3.5.6.5.2. Arta Kalan ile Seçme	. 51
3.5.6.5.3. Stochastic Uniform Île Seçme	. 55
3.5.6.5.4. Turnuva Yöntemi İle Seçme	. 58
3.5.6.6. Adaptif Ornek Aratma Algoritması Ile Yerel Arama	. 64
4. BULGULAR	. 66
4.1. NE329S01 Transistoru ile Gerçekleştirilen Kuvvetlendirici Sonuçları	. 66
4.1.1. Kuvvetlendirici Tasarım Uzayı	. 66
4.1.2. Giriş Uydurma Devresi Seri Bağlı "I" ve "L" Tipi (Paralel-Seri)	
Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarimi	. 68
4.1.3. Giriş Seri Bagli "I" Ve "L" Tipi (Paralel Ve Seri), Çikiş Seri Bagli "II"	
Ve "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga	70
A 1 4 Cinia Sani Dožla "T" Va "L" Tini (Danalal Va Sani), Calua Sani Dožla "L"	/0
4.1.4. GIIIŞ SETI Dağlı I ve L TIPI (Paralel ve Seti), Çıkış Seti Dağlı L	
Ve L Tipi (Sell ve Falaler) O'yddillia Devleli Mikiodalga	72
A 1.5 Giris Sari Bačlı "T" Va "I "Tipi (Daralal Va Sari), Cıkış Sari Bačlı "I "	12
Ve "I" Tini (Paralel Ve Seri) Uvdurma Devreli Mikrodalga	
Kuvvetlendirici Tasarımı	74
A 1.6 Cirici Seri Boğlı "T" Ve "I" Tipi (Perelel Ve Seri) Cıkışı "I" Tipi	7
1.1.0. Olişi Selî Dagli T Ve L Tipi (Latalei Ve Selî), Çikişi Tî Tipi Uvdurma Devreli Mikrodalga Kuvvetlendirici Taşarımı	76
417 Girisi Seri Bağlı "T" Ve "L" Tini (Paralel Ve Seri) Cıkışı "T" Tini	10
Uydurma Devreli Mikrodaloa Kuvvetlendirici Tasarımı	78
4 1 8 Girisi Seri Bağlı "T" Ve "L" Tini (Paralel Ve Seri) Cıkışı "L" Tini (Seri	70
Ve Paralel) Uvdurma Devreli Mikrodaloa Kuvvetlendirici Tasarımı	80
4.1.9. Girişi Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri). Cıkışı "L" Tipi	00
(Paralel Ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı.	. 82

4.1.10.	Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı
4.1.11.	Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri Uydurma
	Devreli Mikrodalga Kuvvetlendirici Tasarımı
4.1.12.	Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkış Seri Bağlı "T"
	ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga
	Kuvvetlendirici Devresi
4.1.13.	Giris ve Cıkısı Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel) Uvdurma
	Devreli Mikrodalga Kuvvetlendirici Tasarımı
4.1.14.	Giris Seri Bağlı "I" ve "L" Tipi (Seri ve Paralel). Cıkıs Seri Bağlı "L"
	ve "L" Tipi (Seri ve Paralel) Uvdurma Devreli Mikrodalga
	Kuvvetlendirici Tasarımı
4 1 15	Giris Seri Bağlı "I" ve "L" Tipi (Seri ve Paralel) Cıkıs Seri Bağlı "L"
	ve "L" Tipi (Paralel ve Seri) Uvdurma Devreli Mikrodalga
	Kuvvetlendirici Tasarımı 94
4 1 16	Giris Seri Bağlı "II" ve "L" Tipi (Seri ve Paralel) Cıkısı "II" Tipi
	Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 96
<i>A</i> 1 17	Giris Seri Bağlı "I" ve "I" Tini (Seri ve Paralel) Cıkıs "T" Tini
7.1.1/.	Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 98
1 1 18	Girisi Seri Bağlı " Π " ve "I" Tini (Seri ve Paralel) Cıkışı "I" Tini (Seri
4.1.10.	ve Paralel) Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 100
1 1 10	Ciris Sori Počli "I" vo "I" Tini (Sori vo Porolol). Cikisi "I" Tini
4.1.19.	(Daralel ve Seri) Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 102
1 1 20	Ciria Sari Počli "II" vo "I " Tini (Sari vo Doralal). Cilust Doralal Tini
4.1.20.	Undurma Daurali Mikradalga Kuuyatlandirisi Tasarumi 104
1 1 21	Cirisi Sari Bağlı "I" va "I" Tini (Sari va Daralel), Cıkışı Sari Bağlı "T"
4.1.21.	ve "I" Tini (Paralel ve Seri) Uvdurma Devreli Mikrodalga
	Kuvvetlendirici Tasarımı
1 1 22	Giris Seri Bağlı "I" ve "I" Tini (Seri ve Paralel) Cıkış Seri Bağlı " Π "
7.1.22.	ve "I" Tini (Seri ve Paralel) Ivdurma Devreli Mikrodalga
	Kuvvetlendirici Tasarımı
4 1 23	Giris ve Cıkışı Şeri Bağlı "I" ve "I" Tini (Şeri ve Paralel) Uvdurma
7.1.23.	Devreli Mikrodalga Kuvvetlendirici Tasarımı
4 1 24	Girisi Seri Bağlı "L" ve "L" Tini (Seri ve Paralel) Cıkısı Seri Bağlı "L"
1.1.2 1.	ve "L" Tipi (Paralel ve Seri) Uvdurma Devreli Mikrodalga
	Kuvvetlendirici Tasarımı
4125	Girişi Şeri Bağlı "I" ve "I" Tini (Şeri ve Paralel) Cıkışı " Π " Tini
1.1.20	Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 114
4126	Girisi Seri Bağlı "L" ve "L" Tini (Seri ve Paralel) Cıkısı "T" Tini
1.1.20.	Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 116
4.1.27.	Girisi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel). Cıkısı "L" Tipi (Seri
	Ve Paralel) Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 118
4.1.28.	Girisi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel). Cıkısı "L" Tipi
	(Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı 120
4.1.29.	Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel). Cıkısı Paralel Tipi
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı
	· · · · · · · · · · · · · · · · · · ·

4.1.30.	Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı Paralel Tipi	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	124
4.1.31.	Girişi Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkışı Seri Bağlı "T"	
	ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga	
	Kuvvetlendirici Tasarımı	126
4 1 32	Giris Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Cıkıs Seri Bağlı "∏"	-
1.1.52.	ve "I" Tini (Seri Ve Paralel) IJvdurma Devreli Mikrodalga	
	Kuuvotlandirioi Tasarmi	170
1 1 22	Ciria Sori Doğlı "I" vo "I" Tiri (Daralal va Sori) Cılta Sori Doğlı "I"	120
4.1.33.	Uniș sen bagii L ve L npi (Paralel ve sen), Çikiş sen bagii L	
	ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga	100
	Kuvvetlendirici Tasarimi	130
4.1.34.	Giriş ve Çıkışı Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Uydurma	
	Devreli Mikrodalga Kuvvetlendirici Tasarımı	132
4.1.35.	Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış "∏" Tipi	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	134
4.1.36.	Girişi Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkışı "T" Tipi	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	136
4.1.37.	Giris Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Cıkıs "L" Tipi (Seri	
	ve Paralel) Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	138
4 1 38	Giris Seri Bağlı "L" ve "L" Tini (Paralel ve Seri) Cıkıs "L" Tini	100
1.1.50.	(Paralel ve Seri) Uvdurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	140
1 1 30	Giris Seri Boğlı "I" ve "I" Tini (Paralel ve Seri) Cıkış Paralel	140
4.1.37.	Undurma Davrali Mikradalga Kuwatlandirici Tasarımı	112
4 1 40	Cirria Sari Dažle "I " ria (Daralal va Sari). Cilva Sari Uvdurma	142
4.1.40.	Giriş Seri Bagii L ve L Tipi (Paralel ve Seri), Çikiş Seri Uydurma	1 4 4
	Devreli Mikrodalga Kuvvetlendirici Tasarimi	144
4.1.41.	Girişi "II" Tipi, Çıkışı Seri Bağlı "T" ve "L" Tipi (Paralel ve Seri)	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	146
4.1.42.	Girişi "П" Tipi, Çıkışı Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel)	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	148
4.1.43.	Giriş "II" Tipi, Cıkış Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel)	
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	150
4 1 44	Giris ve Cıkısı " Π " Tipi Uydurma Devreli Mikrodalga Kuyvetlendirici	
	Taşarımı	152
1 1 15	Ciria "∏" Tini va Culta "T" Tini Uvdurma Davrali Mikradalaa	152
4.1.43.	Kumatlandiniai Tasamma	151
1110		154
4.1.46.	Giriş "II" Tipi ve Çıkış "L" Tipi (Seri ve Paralel) Uydurma Devreli	
	Mikrodalga Kuvvetlendirici Tasarımı	156
4.1.47.	Giriş "Π" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Uydurma Devreli	
	Mikrodalga Kuvvetlendirici Tasarımı	158
4.1.48.	Girişi "П" Tipi, Çıkışı Paralel Tipi Uydurma Devreli Mikrodalga	
	Kuvvetlendirici Tasarımı	160
4 1 4 9	Girisi "II" Tipi, Cıkısı Seri Tipi Uydurma Devreli Mikrodalga	
1.1.17.	Kuyvetlendirici Tasarımı	162
4 1 50	Ciris "T" Tipi Cikis Sari Bağlı "T" Va "I "Tipi (Daralal va Sari)	102
4 .1.30.	Undurma Daurali Mikradalga Kunnatlandirisi Tasarimi	161
4 1 7 1	O yuunna Devien Mikiouaiga Kuvvenenunici Tasanini	104
4.1.51.	Giriş 1 Tipi, Çikiş Seri Bagli "I" ve "L" Tipi (Seri ve Paralel)	1 ~ -
	Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarimi	166

4.1.52. Girişi "T" Tipi, Çıkışı Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel)	
Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	. 168
4.1.53. Girişi "T" Tipi, Çıkışı Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri)	
Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı	. 170
4.1.54. Girişi "T" Tipi, Çıkışı "∏" Tipi Uydurma Devreli Mikrodalga	
Kuvvetlendirici Tasarımı	. 172
4.1.55. Giriş ve Çıkışı "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici	
Tasarımı	. 174
4.1.56. Giriş "T" Tipi, Çıkış "L" Tipi (Seri ve Paralel) Uydurma Devreli	
Mikrodalga Kuvvetlendirici Tasarımı	. 176
4.1.57. Giriş "T" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Uydurma Devreli	
Mikrodalga Kuvvetlendirici Tasarımı	. 178
5. TARTIŞMA ve SONUÇ	. 180
6. KAYNAKLAR	. 182
ÖZGEÇMİŞ	. 185
EKLER	. 186
Ek-1 Mikrodalga Kuvvetlendiricisi Hedef Fonksiyonu Programları	. 187
Ek- 2 Memetik Algoritma Optimizasyon Programları	. 229

ÖZET

Memetic Optimizasyon İle Geniş Band Mikrodalga Kuvvetlendirici Tasarımı Ulaş KILIC

Aktif mikrodalga cihazların belirlenmesi ve genişbant mikrodalga yükselteçler tasarımı haberleşme mühendisliği içerisinde ençok ilgilenen konulardır. Özellikle, mikrodalga yükselteç tasarımı içerisinde sistem performansını optimize etmek için birçok karmaşık matematiksel yöntemler kullanılmıştır. Bu yöntemlerde genellikle, bir çalışma bandı boyunca kazanç (G_T) üzerinde yoğunlaşılırken, giriş uyumsuzluğu (Vi), gürültü faktörü (F), çıkış uyumsuzluğu (Vout), gibi diğer performans ölçü kriterleri hesaba alınmaz. Çalışmamızda performans ölçü kriterlerinden F, Vi, G_T arasına uygun noktalar aranmaktadır.

Çalışmamızda data işleme tekniği olarak Memetik algoritma kullanılmaktadır. Memetik algoritma içerisindeki global algoritmalar bölümünde: Genetik algoritma, yerel arama algoritması olarak: Örnek aratma algoritması, Adaptif örnek aratma algoritması ve Nelder-Mead "Simpleks" arama algoritması kullanılmıştır.

Yaptığımız çalışma içerisinde ilk olarak konu ile ilgili daha önce yapılmış olan çalışmalar hakkında bilgi verilmektedir. Daha sonra sistem tanıtımı yapılmakta ve mikrodalga kuvvetlendirici optimizasyonu hakkında bilgi verilmektedir. Materyal ve Metot bölümü içerisinde Optimizasyon yöntemi olarak kullanılan Memetik algoritma ile ilgili bilgiler verilmiştir. Bulgular bölümde, mikrodalga transistoru NE329S01 için oluşturulan belirli tasarım uzaylarında, seçilen değişik devre topolojileri ile çok sayıda kuvvetlendirici tasarımları verilmiştir. Bu tarımda Memetik algoritma kullanılmıştır. Ayrıca tasarım sonuçları, profesyonel mikrodalga simülasyon paketlerinin sonuçları ile karşılaştırılarak doğrulanmıştır.

Anahtar Kelimeler: Mikrodalga Kuvvetlendirici, Transduser Güç Kazancı, Giriş VSWR, Gürültü Faktörü, Memetik Algoritma, Genetik Algoritma, Simleks Algoritma, Örnek Aratma Algoritması, Adaptif Örnek Aratma Algoritması.

ABSTRACT

Desinging Broadband Microwave Amplifier With Memetic Optimizasyon Algorithm

Ulaş KILIÇ

Characterisation of active microwave devices and design of the wideband microwave amplifiers are still among the major interests in the communication engineering. Especially, in designing microwave amplifiers, many sophisticated numerical methods are utilised to optimise the system performance. Generally, the optimisation is focused on the transducer power gain (G_T) over the frequency band of operation without controlling the other performance criteria such as the noise (F), the input VSWR (V_i), and the output VSWR (V_o).

In this study, memetic algorithm is used as the data processing technique. In the part "Global Alghorithms" of "Memetic Alghorithm", Genetic Alghorithm, and as local search Pattern Search, Adapted Pattern Search and Nelder-Mead "Simpleks Alghorithm" are utilized.

In our work, first information about the previous studies at summaniear in our subject is given. Than system identification is made and information about optimisation of microwave apmlifiers is given. In chapter''Material and Method'' Memetic Alghorithm, which is used as an optimisation method, is told. In "Findings" chapter in the design spaces given for the microwave transistor NE329S01, a lot of amplifier designs made choosing different topologies are shown. In this design Memetic Alghorithm is utilised. The findings are also affirmed by comparing with the findings of professional microwave simulation packages.

Key Words: Microwave Amplifier, Transducer Power Gain, Input VSWR, Noise Figure, Memetic Algorithm, Genetic Algorithm, Simplex Algorithm, Pattern Search Algorithm, Adaptive Pattern Search Algorithm.

TEŞEKKÜR

Bu tez çalışmasında, konunun tespitinden itibaren her zaman vakit ayırarak değerli fikirleri ile çalışmalarıma yön veren danışmanım Yrd. Doç. Dr. Yavuz CENGİZ hocama, çalışmaları arasında bana zaman ayıran değerli arkadaşlarım Hilmi YAZICI, Arş.Gör.Serdar GÜNAYDIN, Mehmet Süleyman YILDIRIM, Arş.Gör.Ufuk ÖZKAYA'ya ve emeği geçen herkese teşekkür ederim. Her günümde yanımda olan annem Necla KILIÇ, babam Nizam KILIÇ ve kardeşim Umut KILIÇ'a minnettarım. Umarım, bu çalışma ile bizimde bilim deryasında bir damlamız bulunur.

SİMGELER DİZİNİ

G _T	Çalışma bandı boyunca kazanç
Vi	Giriş uyumsuzluğu
F	Gürültü faktörü
V _{out}	Çıkış uyumsuzluğu
F _{req}	İstenen Gürültü Faktörü
V _{İreq}	İstenen VSWR Değeri
G _{Treq}	İstenen Kazanç Değeri
Z_L	Yük empedansı
Z_S	Kaynak empedansı
β	Faz Kaydırma Sabiti
Z_{0n}	Transmisyon Hattı Empedansı
ℓ_n	Transmisyon Hattı Uzunluğu
A, B, C, D	ABCD Parametrelerinin Gösterimi
V_{DS}, I_D	Transistor Kutuplama Koşulları
DDO	Duran dalga oranı
Гin	Girişteki yansıma katsayısı
$\Gamma_{\rm L}$	Yükteki yansıma katsayısı
u	Dalga hızı
λ	Dalga boyu
f	Dalganın frekansı
PL	Yüke Aktarılan Güç
P _{AVS}	Maksimum Kaynak Gücü
Rs	Kaynak Empedansının Reel Kısmı
R _L	Yük Empedansının Reel Kısmı
X _S	Kaynak Empedansının İmajiner Kısmi
XL	Yük Empedansının İmajiner Kısmı
VSWR	Voltage Standing Wave Ratio
\mathbf{F}_{\min}	Minimum Gürültü Faktörü
ρ	Yansima Parametresi
Z^*s	Kaynak Empedansının Eşleniği
Zopt	Optimum Kaynak Empedansı
Z_0	Çıkış Empedansı
Zi	Giriş Empedansı
X	Aday çözüm
V_k^l	Hız vektörü
P ^g	Küresel olarak en iyi olan birey
r_1, r_2	Duzgun dagilmiş rastsal degerler
X _k	Tekrarlanan değişken
D_k	Goz uzunlugu
ei	Standart birim vektorleri
γ	Daralma Parametresi
σ	Büzülme Parametresi
χ	Genişleme Parametresi

Alt İndisler

in	Giriş değeri
inref	Giriş referans değeri
S	Kaynak
L	Yük
Ν	Gürültü
opt	Optimum
req	İstenilen
k	herhangi bir doğal sayı

ŞEKİLLER DİZİNİ

Şekil 3.1. Giriş ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga
kuvvetlendiricinin iki kapili gösterimi
Şekil 3.2. Giriş seri bağlı "I" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "I" ve "L" tipi (Paralel ve Sari) Livdurma davrali mikrodalga kuyyatlandiriginin iki kapılı göstərimi
Solii 2.2. Girigi gori hočli "I" vo "I" tini (Doralal vo Sori), gilvot gori hočli "I" vo "I" tini (Doralal vo
Seri) uvdurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Sekil 3.4. Girisi Seri Bağlı "L"- "L" Tipi (Paralel-Seri). Cıkışı Seri Bağlı "∏"- "L" Tipi (Seri- Paralel)
Hibrit Mikro Dalga Kuvvetlendiricisi
Sekil 3.5. Giris Ve Cıkısı Seri Bağlı "L"- "L" Tipi (Paralel- Seri) Hibrit Mikro Dalga
Kuvvetlendiricisi
Sekil 3.6. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve
Seri) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Şekil 3.7. Giriş ve çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi9
Şekil 3.8. Giriş " \prod " tipi ve çıkış "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı
gösterimi
Şekil 3.9. Giriş "∏" tipi ve çıkış Paralel tipi uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı
gösterimi
Şekil 3.10. Girişi "T" Tipi, çıkışı " \prod " tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı
gösterimi
Şekil 3.11. "T" tipi uydurma devretli tek transistorlu kuvvetlendirici 10
Şekil 3.12. Seri transmisyon hat iki-kapılısı
Şekil 3.13. Paralel transmisyon hat iki-kapılısı 11
Şekil 3.14. Paralel + Seri "L" uydurma devresi
Şekil 3.15. Seri + Paralel transmisyon hattı
Şekil 3.16. "T" tipi uydurma devresi
Şekil 3.17. "П" tipi uydurma devresi 14
Şekil 3.18. Seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devresi
Şekil 3.19. Seri bağlı "L" tipi (Seri + Paralel) uydurma devresi
Şekil 3.20. Seri bağlı "T" ve "L" tipi (Paralel ve Seri) tipi uydurma devresi
Şekil 3.21. Seri bağlı "∏" ve "L" tipi (Seri ve Paralel) tipi uydurma devresi
Şekil 3.22. Mikrodalga transistorun iki-kapılı modeli
Şekil 3.23. Memetik Algoritma Akış Diyagramı
Şekil 3.24. Genetik Algoritma Akış Diyagramı
Şekil 3.25. Rulet çarkı dağılımının bireylere bağlı olarak gösterimi
Şekil 3.26. Stochastic Uniform dağılımının bireylere bağlı olarak gösterimi
Şekil 3.27. Arta kalan dağılımının bireylere bağlı olarak gösterimi
Şekil 3.28. Çaprazlama işlemi gösterimi
$Sekil 3.29 \text{ n}=2 \text{ için } x_{+} \dots 40$ Səlril 2.20 Vənarma və gənişləmə adımından sonra Nəldər Məəd simmləkələri (Oriinəl
simpleks kesikli gizgi ile gösterilmistir)
Sakil 3 31 Dış küçülme iç küçülme ve büzülmeden sonra Nelder Mead simpleksleri (Orijnal
simpleks kesikli cizgi ile gösterilmistir)
Sekil 3 32 Birevlerin popiilasvon icerisindeki viizdelik dilimlerinin gösterimi 49
Sekil 3 33 Uvgunluk değerlerinin ondalık kışımlarının rulet carkında gösterimi
Sekil 3.34. Birevlerin vüzdelik dilimlerinin ve secilen birevlerin gösterimi
Sekil 4.1 NE329S01 Transistorunun Ic=10 mA. VCE=2 V kutuplaması icin Fmin(f) Değisimi
(Güneş, 2002)
Şekil 4.2. NE329S01 Transistorunun F=0,46dB, Vi=1 G _T max(f) Değişimi (Koşulları: VCE
=2 V; IC= 10 mA Çalışma Band Genişliği : 2 - 18 GHz) (Güneş, 2002)
Şekil 4.3. NE329S01 Transistoru için (0,46 dB,1, 12 dB) uyumlu üçlülerinin sonlandırma
fonksiyonları (Güneş, 2002)
Şekil 4.4. Giriş ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga
kuvvetlendiricinin iki kapılı gösterimi

Şekil 4.5. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga Şekil 4.6. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga Şekil 4.7. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga Sekil 4.8. Giris seri bağlı "T" ve "L" tipi (Paralel ve Seri), cıkıs seri bağlı "II" ve "L" tipi (Seri ve Sekil 4.9. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "Π" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Şekil 4.10.Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "II" ve "L" tipi (Seri ve Şekil 4.11. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "II" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Sekil 4.12. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Şekil 4.13. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Şekil 4.14. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Şekil 4.15. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Sekil 4.16. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Sekil 4.17. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Şekil 4.18. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Şekil 4.19.Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Şekil 4.20. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi Uydurma devreli Şekil 4.21. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli Sekil 4.22. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "[]" tipi uydurma devreli Şekil 4.23. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli Şekil 4.24. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi Uydurma devreli Sekil 4.25. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli Şekil 4.26. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli Şekil 4.27. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli Şekil 4.28. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma Şekil 4.29. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma Şekil 4.30. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış "L" tipi (Seri ve Paralel) uydurma

Şekil 4.31. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma Şekil 4.32. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma Şekil 4.33. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma Sekil 4.34. Giris seri bağlı "T" ve "L" tipi (Paralel ve Seri), cıkısı "L" tipi (Paralel ve Seri) uvdurma Şekil 4.35. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma Şekil 4.36. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek Şekil 4.37. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek Şekil 4.38. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek Şekil 4.39. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek Şekil 4.40. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek Şekil 4.41. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek Şekil 4.42. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek Şekil 4.43. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek Şekil 4.44. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Sekil 4.45. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Şekil 4.46. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Şekil 4.47. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Şekil 4.48. Giriş ve çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga Şekil 4.49. Giriş ve çıkışı seri bağlı "^[]" ve "^[]L" tipi (Seri ve Paralel) uydurma devreli mikrodalga Şekil 4.50. Giriş ve çıkışı seri bağlı "[[]]" ve "[[]L" tipi (Seri ve Paralel) uydurma devreli mikrodalga Şekil 4.51. Giriş ve çıkışı seri bağlı "]" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga Şekil 4.52. Giriş Seri Bağlı "∏" Ve "L" Tipi (Seri Ve Paralel), Çıkış Seri Bağlı "L" Ve "L" Tipi (Seri Şekil 4.53. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak 93 değişimi Şekil 4.54. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Sekil 4.55. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak 93 değişimi Şekil 4.56. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve

Şekil 4.57. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değisimi
Şekil 4.58. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri)uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi
Şekil 4.59. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri)uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Şekil 4.60. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Şekil 4.61. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Şekil 4.62. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi
Şekil 4.63. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Şekil 4.64. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Şekil 4.65. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Şekil 4.66. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi
Şekil 4.67. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Şekil 4.68. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici
Şekil 4.69. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi 101
Şekil 4.70. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 101
Şekil 4.71.Girişi seri bağlı "]]" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 101
Şekil 4.72. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici
Şekil 4.73. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi
Şekil 4.74. Giriş seri bağlı "II" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi
Şekil 4.75. Giriş seri bağlı "II" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 103
Şekil 4.76. Giriş seri bağlı "II" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici
Şekil 4.77. Giriş seri bağlı "II" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi
Şekil 4.78. Giriş seri bağlı "I" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi
Şekil 4.79. Giriş seri bağlı "I" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi
ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Şekil 4.82. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi 107

Şekil 4.83. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Sekil 4 84 Giris seri hağlı "I" ve "I" tini (Seri ve Paralel) çıkış seri hağlı "I" ve "I" tini (Seri ve
Paralel) Uvdurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Sekil 4.85 Girisi seri hağlı "L" ve "L" tini (Seri ve Paralel) çıkışı seri hağlı "T" ve "L" tini (Seri ve
Paralel) uvdurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa hağlı olarak
değişimi
Sakil / 86 Girisi sari bağlı "I" va "I" tini (Sari va Paralal), cıkısı sari bağlı "I" va "I" tini (Sari va
Paralal) uvdurma davrali mikrodalga kuvvatlandiricisinin VSWR frakans dağısimi 100
Solii 4.97 Cirisi sori božl. "I " us "I " tini (Sori ve Derelel), suksu sori božl. " Π " ve "I " tini (Sori ve
Paralal) uvdurma davrali mikrodalga kuvvatlandirigisinin gürültüsünün frakansa hağlı olarak
doğişimi
Soliil 4.99. Cirio vo ostrov sori božli "I" vo "I" tini (Sori vo Derelal) Uvdurmo dovrali mikrodelgo
kuvvetlandiriginin iki kanılı göstərimi
Solil 4 80. Girisi va cikisi sori bağlı "I" va "I" tini (Sori va Daralal) uvdurma davrali mikrodalga
kuvvetlandiricisinin kazancının frakansa bağlı olarak değisimi
Sekil 4 90. Girişi ve çıkışı şeri bağlı "I" ve "I" tini (Seri ve Paralel) uvdurma devreli mikrodalga
kuvvetlendiricisinin VSWR – frekans değisimi
Sekil 4 91 Girişi ve çıkışı şeri bağlı "I" ve "I" tini (Seri ve Paralel) uvdurma devreli mikrodalga
kuvvetlendiricisinin gürültüsünün frekansa hağlı olarak değisimi
Sekil 4 92 Girisi seri hağlı "I" ve "I" tini (Seri ve Paralel) çıkışı seri hağlı "I" ve "I" tini (Paralel
ve Seri) uvdurma devreli mikrodalga kuvvetlendiricinin iki kanılı gösterimi
Sekil 4.93 Girişi seri hağlı "L" ve "L" tini (Seri ve Paralel) çıkışı seri hağlı "L" ve "L" tini (Paralel
ve Seri) uvdurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak
değişimi
Sekil 4.94, Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkışı seri bağlı "L" ve "L" tipi (Paralel
ve Seri) uvdurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değisimi
Sekil 4.95. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı seri bağlı "L" ve "L" tipi (Paralel
ve Seri) uvdurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak
değişimi
Şekil 4.96. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi Uydurma devreli
mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Sekil 4.97. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı "∏" tipi uydurma devreli
mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Sekil 4.98. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı "∏" tipi uvdurma devreli
mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi
Sekil 4.99. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı "∏" tipi uvdurma devreli
mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değisimi
Sekil 4.100. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı "T" tipi uydurma devreli
mikrodalga kuvvetlendiricinin iki kapılı gösterimi
Sekil 4.101. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı "T" tipi uydurma devreli
mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Şekil 4.102. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli
mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi 117
Şekil 4.103. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli
mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi 117
Şekil 4.105. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma
devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi 119
Şekil 4.106. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma
devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 119
Şekil 4.107. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma
devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 119
Şekil 4.108. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri)
uydurma devreli tek transistörlü kuvvetlendirici
Şekil 4.109. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma
devreli tek transistoriu kuvvetlendiricinin kazancinin frekansa bağlı olarak değişimi 121

Şekil 4.110. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 121 Şekil 4.111. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 121 Şekil 4.112. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek Sekil 4.113. Girisi seri bağlı "L" ve "L" tipi (Seri ve Paralel), cıkısı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi...... 123 Sekil 4.114. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 123 Şekil 4.115. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 123 Şekil 4.116. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek Şekil 4.117. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi...... 125 Şekil 4.118. Girişi Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 125 Şekil 4.119. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 125 Şekil 4.120. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi 126 Şekil 4.121. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Sekil 4.122. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi...... 127 Sekil 4.123. Girisi seri bağlı "L" ve "L" tipi (Paralel ve Seri), cıkısı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Şekil 4.124. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi 128 Şekil 4.125. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı " \prod " ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi 129 Şekil 4.126. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR - frekans değişimi.......... 129 Sekil 4.127. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak Sekil 4.128. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi 130 Sekil 4.129. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak Şekil 4.130. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Şekil 4.131. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi 131 Şekil 4.132. Giriş ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga Şekil 4.133. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi 133 Şekil 4.134. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga Şekil 4.135. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi 133

Şekil 4.136. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış "∏" tipi Uydurma devreli mitrodalga kuyyatlandiriginin iki kanılı gösterimi	1
ninkioualga kuvvenenunienini iki kapin gostennin	ł
mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi	5
Şekil 4.138. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuyvetlendiricisinin VSWR – frekans değisimi	5
Salvil 4 120. Cirigi goni hočle "Γ" vo "Γ" tini (Soni vo Donalal), gelege "Π" tini vodverno dovrali	,
şekil 4.159. Girşi seri bağlı L ve L tipi (Seri ve Paralel), çikişi II tipi uydurma devren	-
ninkrodalga kuvvenendiricisinin gurunusunun irekansa dagii olarak degişinin)
şekil 4.140. Girşi seri bağlı L ve L tipi (Paratel ve Seri), çikişi T tipi uydurnia devren	-
mikrodalga kuvvetiendiricinin iki kapili gosterimi)
Şekil 4.141. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çikişi "1" tipi uydurma devreli	_
mikrodalga kuvvetlendiricisinin kazancinin frekansa bagli olarak degişimi	/
Şekil 4.142. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çikişi "I" tipi uydurma devreli	_
mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi	/
Şekil 4.143. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "I" tipi uydurma devreli	_
mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi	1
Şekil 4.144. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış "L" tipi (Seri ve Paralel) uydurma	_
devreli tek transistörlü kuvvetlendirici	3
Şekil 4.145. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma	L
devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi 139)
Şekil 4.146. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma	a
devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 139)
Şekil 4.147. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma	a
devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 139)
Şekil 4.148. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri)	
uydurma devreli tek transistörlü kuvvetlendirici 140)
Şekil 4.149. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri)	
uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi	
	1
Şekil 4.150. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri)	
uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi 141	l
Şekil 4.151. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri)	
uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi	Ĺ
	Ĺ
Şekil 4.152. Giriş seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkış Paralel tipi uydurma devreli tek	
transistörlü kuvvetlendirici 142	2
Şekil 4.153. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek	
transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi 143	3
Şekil 4.154. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek	
transistörlü kuvvetlendiricinin VSWR – frekans değişimi 143	3
Şekil 4.155. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek	
transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi 143	3
Şekil 4.156. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek	
transistörlü kuvvetlendirici	1
Şekil 4.157. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek	
transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi 145	5
Sekil 4.158. Girişi Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek	5
transistörlü kuvvetlendiricinin VSWR – frekans değisimi	5
Şekil 4.159. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek	
transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değisimi	5
Sekil 4.160. Girisi "II" Tipi, cıkısı seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uvdurma devreli	
mikrodalga kuvvetlendiricinin iki kapılı gösterimi	5
Sekil 4 161 Girişi "II" tini cıkışı seri bağlı "I" ve "I" tini (Paralel ve Seri) uvdurma devreli	1
mikrodalga kuvvetlendiricisinin kazancının frekansa hağlı olarak değisimi 147	7
Sekil 1 162 Girisi "Π" tini cikisi seri bağlı "T" ve "I" tini (Daralal va Sari) uvdurma davrali	
mikrodalga kuyyetlendiricisinin VSWR – frekans değişimi	7
14/	6

xviii

Şekil 4.163. Girişi"П" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değisimi	147
Şekil 4.164. Girişi "∏" Tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli	
mikrodalga kuvvetlendiricinin iki kapili gösterimi	148
Şekil 4.165. Girişi "∏" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değisimi	149
Şekil 4.166. Girişi "∏" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli	
mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi	149
Şekil 4.167. Girişi "∏" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuyyatlandirigiginin gürültüşünün frakansa bağlı olarak dağışımı	140
a li la constructionali de la constructional de la construction de la	147
Şekil 4.168. Giriş "II" Tipi, çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi	150
Sekil 4.169. Girisi "Π" tipi, cıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uvdurma devreli	
mikrodaloa kuvvetlendiricisinin kazancının frekansa hağlı olarak değisimi	151
Şekil 4.170. Girişi "Π" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli	
mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi	151
Şekil 4.171. Girişi "П" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi	151
Sekil 4 172 Giris ve cıkışı " Π " tini Uydurma devreli mikrodalga kuyyetlendiricinin iki kapılı	
gösterimi	152
gosterinin.	152
Şekil 4.173. Girişi ve çıkışı "II" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi	153
Sekil 4.174. Girisi ve cıkısı "II" tipi uvdurma devreli mikrodalga kuvvetlendiricisinin VSWR –	
frekans değisimi	153
Sakil 4 175 Cirisi va cikisi "II" tini uvdurma davrali mikrodalga kuvvatlandiricisinin giriiltüsünü	in
jekni 4.175. Oniși ve çikiși 11 ulti uyulmia devien mikiodalga kuvvenendmeisinii girultusulu	152
	155
şekil 4.1/6. Giriş "II" tipi ve çıkış "I" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki ka gösterimi	154
Şekil 4.177. Girişi " \prod " tipi, çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin	
kazancının frekansa bağlı olarak değisimi	155
Sekil 4 178 Girisi "II" tini ukus "II" tini uvdurma devreli mikrodalga kuvvetlendiricisinin VSWF	2_
frekans değişimi	155
Sekil 4.179. Girisi "∏"tipi, cıkısı "T" tipi uvdurma devreli mikrodalga kuvvetlendiricisinin	
oiiriiltiisiiniin frekansa hağlı olarak değisimi	155
Sekil / 180 Giris "I"tini ve cikis "I" tini (Seri ve Paralel) uvdurma devreli tek transistörlü	100
jeki 4.100. Oliš i upi ve viki 1. upi (Sen ve ratale) uydulna devien ek transistoriu	156
	150
Şekil 4.181. Giriş "II" tipi, çikiş "L" tipi (Seri ve Paralel) uydurma devreli tek transistorlu	
kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi	157
Şekil 4.182. Giriş "II" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi	157
Sekil 4 183 Giris "∏" tini cukus "I" tini (Seri ye Paralel) uydurma devreli tek transistörlü	
kuvvetlendiricinin gürültüçünün frekansa hağlı olarak değiçimi	157
Şekil 4.184. Giriş "II" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü	137
kuvvetlendirici	158
Şekil 4.185. Giriş "∏" tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü	
kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi	159
Şekil 4.186. Giriş "∏" tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü	150
$\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{x}_{1} \mathbf{x}_{1} \mathbf$	137
Şekil 4.187. Giriş "II" tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü	1 = 0
kuvvetlendırıcının gürültüsünün frekansa bağlı olarak değişimi	159
Şekil 4.188. Girişi "П" Tipi, çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici	160
Şekil 4.189. Giriş "∏" tipi, çıkışı Paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin kazancının frekansa hağlı olarak değişimi	161
Solil 4 100 Cinig "II" tini odrov por la tini and anna dama li ta tama itala a suba ti i i i	101
Şekii 4.190. Giriş 11 upi, çıkışı paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin VSWR – frekans değişimi	161

0.1.1.4.101	
Şekil 4.191. (Giriş "II" tipi, çıkışı Paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin
gurulti	isunun frekansa bagli olarak degişimi
Şekil 4.192. (Giriş "II" tipi, çıkış Seri tipi uydurma devreli tek transistörlü kuvvetlendirici
Şekil 4.193. (Giriş "]]" tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin
kazano	zının frekansa bağlı olarak değişimi163
Şekil 4.194. (Giriş "∏" tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR
– freka	ans değişimi
Şekil 4.195. (Giriş " \prod " tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin
gürülti	isünün frekansa bağlı olarak değişimi 163
Şekil 4.196. (Giriş "T" Tipi, çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli
mikroo	dalga kuvvetlendiricinin iki kapılı gösterimi164
Şekil 4.197.0	Girişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikroo	lalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi 165
Sekil 4.198. 0	Girişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikroo	lalga kuvvetlendiricisinin VSWR – frekans değişimi
Sekil 4.199.0	Jirişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikroo	lalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Sekil 4.200. 0	Giris "T" Tipi, cıkış seri bağlı "II" ve "L" tipi (Seri ve Paralel) Uvdurma devreli
mikro	lalga kuvvetlendiricinin iki kanılı gösterimi
Sekil 4 201 0	irişi "Τ" tini cıkışı seri hağlı "Π" ve "L" tini (Seri ve Paralel) uvdurma devreli
mikroe	dalga kuvvetlendiricisinin kazancının frekansa hağlı olarak değisimi 167
Sabil 4 202	Girigi "T" tini cıkışı sari bağlı "T" va "I" tini (Sari va Paralel) uvdurma davrali
şekii 4.202. V	Jalga kuyyatlandiricisinin VSWP frakans dağısimi
Saleil 4 202 C	$\frac{10}{10}$
Şekii 4.205.0	delge luvuetlendinisisinin gürültügünün faslanda hačla elerek değişimi (Seri Ve Paralel) uydurma devren
mikroo	Jaiga kuvvettendiricisinin guruttusunun irekansa bagii olarak degişimi
Şekii 4.204. (Jirişi T Tipi, çikişi seri bağlı L ve L tipi (Seri ve Paralei) uydurma devren
mikroo	Jaiga kuvvetiendiricinin iki kapili gosterimi
Şekil 4.205.0	nrişi "I" tipi, çikişi seri bagli "L" ve "L" tipi (Seri ve Paralei) uydurma devreli
mikroo	lalga kuvvetlendiricisinin kazancinin frekansa bagli olarak degişimi
Şekil 4.206.C	hrişi "I" tipi, çikişi seri bagli "L" ve "L" tipi (Seri ve Paralei) uydurma devreli
mikroo	169
Şekil 4.207.C	firişi "I" tipi, çikişi seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli
mikro	laiga kuvvetlendiricisinin gurultusunun frekansa bagli olarak degişimi
Şekil 4.208. 0	Girişi "I" lipi, çikişi seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikro	lalga kuvvetlendiricinin iki kapili gosterimi 1/0
Şekil 4.209.0	firişi "I" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikro	lalga kuvvetlendiricisinin kazancinin frekansa bagli olarak degişimi 1/1
Şekil 4.210.C	firişi "I" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikroo	dalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi
Şekil 4.211.C	firişi "I" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli
mikroo	lalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi
Şekil 4.212. (Girişi "T" Tipi, çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı
gösteri	mi
Şekil 4.213. 0	Girişi "T" çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının
frekan	sa bağlı olarak değişimi 173
Şekil 4.214. (Girişi "T" çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR –
frekan	s değişimi
Şekil 4.215. (Girişi "T" çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün
frekan	sa bağlı olarak değişimi
Sekil 4.216.	Giriş ve çıkışı "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı
gösteri	mi
Şekil 4.217. (Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının
frekan	sa bağlı olarak değişimi
Şekil 4.218. (Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR –
frekan	s değişimi
Şekil 4.219. (Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün
frekan	sa bağlı olarak değişimi
	e e,

Şekil 4.220. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü	
kuvvetlendirici	176
Şekil 4.221. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü	
kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi	177
Şekil 4.222. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü	
kuvvetlendiricinin VSWR – frekans değişimi	177
Şekil 4.223. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü	
kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi	177
Şekil 4.224. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü	
kuvvetlendirici	178
Şekil 4.225. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü	
kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi	179
Şekil 4.226. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü	
kuvvetlendiricinin VSWR – frekans değişimi	179
Şekil 4.227. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü	
kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi	179

ÇİZELGELER DİZİNİ

	Sayfa
Çizelge 3.1 Rulet çarkı örneği değerleri	30
Çizelge 3.2 Sezgisel örneği değerleri	31
Çizelge 3.3 Arta kalan örneği değerleri	32
Çizelge 3.4. Turnuva örneği değerleri	34
Çizelge 3.5 Turnuva örneği ile seçilen birey sayıları	35
Çizelge 3.6 Bireyler, fonksiyon değerleri ve uygunluk değerleri	48
Çizelge 3.7. Bireylerin ebeveyn olarak seçile sayıları	49
Çizelge 3.8. Bireyler, seçme yöntemleri ve çaprazlama yöntemleri içerisinde ki değerleri	61
Çizelge 3.9. Çocukların eklenmesiyle oluşan yeni popülasyonlar ve değerleri	62
Çizelge 3.10. Döngü sonunda ortaya çıkan en iyi bireyler ve değerleri	64
Çizelge 4.1. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon progra	ımı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2 12GHz)	68
Cizelge 4.2. Kuvvetlendiricinin kazanc, gürültü ve giris VSWR sonuclarının simülasyon progra	ımı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	2- 70
Cizelge 4.3 Kuvvetlendiricinin kazanç, gürültü ve giris VSWR sonuclarının simülasyon progra	70
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	uin 2- 70
Cizalga 4.4 Kuyyatlandiriginin kazana, gürültü və giriş VSWP sonyalarının simüləsyon progra	······ 12
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2	2- 74
Cizeles 4.5. Kuuvatlandinisinin lagana, sürültü va sinis VSWD sonvalarının simülesven neosus	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	uiii 2- 76
Cizalga 4.6 Kuyyatlandiriginin kazana, gürültü va giriş VSWP sonyalarının simülasyon progra	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	uin 2- 78
Cizelge 4.7 Kuvvetlendiricinin Kazanc. Gürültü ve VSWR sonuclarının simülasyon programı	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2	2-
Cizelge 4.8 Kuvvetlendiricinin kazanç, gürültü ve giris VSWR sonuclarının simülasyon progra	00
sonuclari ile hirlikte gösterimi. Tasarım Hedef Uzayı: (F. V. G. B)⇔(1,112, 1, 15,86, 2))
soluçian ne olinkte gösterinin. Tasarını neder Ozayı. (r, v_i , O_T , D) \leftrightarrow (1.112, 1, 15.00, 2	- 87
Cizelge 4.9 Kuvvetlendiriginin kazang, gjirijiliji ve giris VSWP sonuclarinin simijlasvon progra	02
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	unn 2-
Cizelge 4 10 Kuyvetlendiricinin kazano, giiriiltii ve giris VSWR sonuclarının simülasyon prog	0 4
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	2- 00
Cizeles 4.11. Kuuvatlen divisinin leazona, sürültü ve sinis VSWD sonvolommus simülesven mess	80
çızeige 4.11. Kuvvetlendiricinin kazanç, gurultu ve giriş vSwR sonuçlarının simulasyon progr sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2 12CH >	rami 2-
I2GHZ)	88
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	ann 2-
Cizelge 4 13 Kuyvetlendiricinin kazanc. giiriiltii ve giris VSWR sonuclarının simülasyon prog	70 ramı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	2- 02
Cizelge 4 14 Kuyvetlendiricinin kazano giiriiltii ve giris VSWP sonuclarının simiilesvon prog	72 ramı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2	2- 04
12υΠΖ)	94

Çizelge 4.15. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.16. Kuvvetlendiricinin kazanc, gürültü ve giris VSWR sonuclarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B) \Leftrightarrow (1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.17 Kuvvetlendiricinin Kazanc Gürültü ve VSWR sonuclarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.18 Kuvvetlendiricinin kazane, gürültü ve giris VSWP sonuclarının simülasvon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.10 Kuyyetlendiricinin kazane, gürültü ve giris VSWP sonuclarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2-
12GHZ)
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2-
Cizalas 4.21 Kuuvatlandininin kazana aimilikii ya zinis VCWD sanyalammu similasyan maamamu
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2-
Cizelge 4.22 Kuvvetlendiricinin kazane, gürültü ve giris VSWP sonuclarının simülasyon programı
sonuçları ile birlikte gösterimi.Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.23 Kuyvetlendiricinin kazanc gürültü ve giris VSWR sonuclarının simülasyon programı
sonucları ile birlikte gösterimi. Tasarım Hedef Uzavı: (F. V. Gr. B)⇔(1.112, 1, 15.86, 2-
12GHz)
Cizelge 4.24. Kuvvetlendiricinin kazanc, gürültü ve giris VSWR sonuclarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.25. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.26. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.27. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2-12GHz)
Çizelge 4.28. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.29. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.30. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.31. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Çizelge 4.32. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı
sonuçları ile birlikte gösterimi.Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)
Cizelge 4.33. Kuvvetlendiricinin kazanc, gürültü ve giris VSWR sonuclarının simülasvon programı
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz).

xxiii

Çizelge 4.34. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz).	4
Çizelge 4.35. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	
Çizelge 4.36. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	8
Çizelge 4.37. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	-0
Çizelge 4.38. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	-2
Çizelge 4.39. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	4
Çizelge 4.40. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2-12GHz)	-6
Çizelge 4.41. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	.8
Çizelge 4.42. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	0
Çizelge 4.43. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	2 2
Çizelge 4.44. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	2
Çizelge 4.45. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	5
Çizelge 4.46. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz).	8
Çizelge 4.47. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	50
Çizelge 4.48. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	52
Çizelge 4.49. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	-
Çizelge 4.50. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V _i , G _T , B)⇔(1.112, 1, 15.86, 2- 12GHz)	6
Çizelge 4.51. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12GHz)	0 0
Gizelge 4.52. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2- 12CUr)	ŏ ٥
120112)	υ

Çizelge 4.53. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-	
12GHz)	12
Çizelge 4.54. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-	
12GHz)	14
Çizelge 4.55. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-	
12GHz)	/6
Çizelge 4.56. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı	
sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-	
12GHz)	78

1. GİRİŞ

mikrodalga eleman karakterizasyonu ve Aktif geniş bandlı mikrodalga kuvvetlendirici tasarımı, haberleşme mühendisliğinin en önemli ilgi alanlarından biri olmaya, günümüzde de devam etmektedir. Özellikle, mikrodalga kuvvetlendirici tasarımında, sistem performansını optimize edebilmek amacı ile birçok modern nümerik yöntem kullanılmaktadır. Bu yöntemlerde genellikle, bir çalışma bandı boyunca kazanç (G_T) üzerinde yoğunlaşılırken, giriş uyumsuzluğu (V_i), gürültü faktörü (F), çıkış uyumsuzluğu (V_{out}), gibi diğer performans ölçü kriterleri, hesaba alınmaz. Diğer taraftan, 'optimizasyon' prosesi, sistemin performans model parametrelerine, yüksek dereceli nonlineer bağımlı bir prosestir. Aslında, bir optimizasyon prosesinde, aktif eleman fiziksel limitleri ve/ya da F₂V_i, G_T performans ölçüleri ara-ilişkileri bilinmeksizin, istenilen F, V_i, G_T değerleri, 'referans' değer takımı olarak verilebilir. Fakat, bu (Freq, Vireq, GTreq) üçlüsünün uyumsuzluğu nedeni ile, optimizasyon prosesi, sık sık başarısızlıkla sonuçlanmaktadır. Bu çalışmanın amacı, bu handikapları yenmektir. Kayıpsız ve resiprok uydurma devreleri ile tek transistorlu bir kuvvetlendiricinin F, Vi, GT performans bileşenleri, devredeki transistorun performans bileşenlerine eşittir; bu uydurma devrelerinin kayıpsızlık ve resiprosite özelliklerinin direkt sonucudur. Kuvvetlendiricide birden fazla aktif eleman kullanılma durumunda, F ve V_i özellikle ön-kat transistoru (FRII Formülü) ve kazanç (G_T) ise her iki transistor tarafından tayin edilmektedir (Collin, 1992). Bu nedenle, çalışmada kuvvetlendirici tasarım aktif bu prosesi, eleman karakterizasyonuna dayandırılmıştır ki bu karakterizasyon teorisi [Z] ve [S]parametreleri ile Güneş (1994) ve Güneş ve Çetiner (1998)'de verilmektedir.

Bu çalışmada, T, П, seri bağlı "L" ve "L" tipi (Paralel ve Seri), seri bağlı "L" ve "L" tipi (Seri ve Paralel), seri bağlı "П" ve "L" tipi (Paralel ve Seri), seri bağlı "T" ve "L" tipi (Paralel ve Seri), seri bağlı "П" ve "L" tipi (Seri ve Paralel) ve seri bağlı "T" ve "L" tipi (Seri ve Paralel) uydurma devreleri ile tek transistorlu kuvvetlendirici devreleri ele alınmıştır ve transistorun potansiyel performans karakteristiklerinin ne kadar iyi gerçekleştirilebilir olduğu devre yapıları ile araştırılmaktadır. Buna göre çalışmanın aşamaları aşağıdaki şekilde sıralanabilir:

İlk aşama, V_{DS} , I_{DS} transistor kutuplama koşulları ve B çalışma bandını, uyumlu $F(\omega_i)$, $V_i(\omega_i)$, $G_T(\omega_i)$ üçlüsünü ve $Z_L(\omega_i)$, $Z_s(\omega_i)$, i = 1,2....N sonlandırma fonksiyonlarını tayin edebilmek için potansiyel performans karakteristiklerini elde etmek;

İkinci aşama F,V_i ve G_T 'yi kuvvetlendirici devre parametrelerinin - ki bu devre parametrelerinin bir kısmı optimizasyon değişkenleridir-fonksiyonu olarak ifade etmek;

Üçüncü aşama, optimizasyon prosesindeki, optimizasyon vektörünü ve objektif (hata) fonksiyonunu tespit etmek;

Son aşama, optimizasyon vektörünü ve neticelenen kuvvetlendirici devresini oluşturabilmek için 'data işleme' tekniği seçip uygulamaktır.

Bu tasarımda Memetik algoritma kullanılmıştır. Çalışmamızda data işleme tekniği olarak Memetik algoritma kullanılmaktadır. Memetik algoritma içerisindeki global algoritmalar bölümünde: Genetik algoritma, yerel arama algoritması olarak: Örnek aratma algoritması, Adaptif örnek aratma algoritması ve Nelder-Mead "Simpleks" arama algoritması kullanılmıştır.

Yaptığımız çalışma içerisinde ilk olarak konu ile ilgili daha önce yapılmış olan çalışmalar hakkında bilgi verilmektedir. Daha sonra sistem tanıtımı yapılmakta ve mikrodalga kuvvetlendirici optimizasyonu hakkında bilgi verilmektedir. Materyal ve Metot bölümü içerisinde Optimizasyon yöntemi olarak kullanılan Memetik algoritma ile ilgili bilgiler verilmiştir. Bulgular bölümde, mikrodalga transistoru NE329S01 için oluşturulan belirli tasarım uzaylarında, seçilen değişik devre topolojileri ile çok sayıda kuvvetlendirici tasarımları verilmiştir. Bu tasarımda Memetik algoritma kullanılmıştır. Ayrıca tasarım sonuçları, profesyonel mikrodalga simülasyon paketlerinin sonuçları ile karşılaştırılarak doğrulanmıştır.

2. KAYNAK BİLGİSİ

Literatürde bulunan mikrodalga kuvvetlendirici tasarımları ya kazancın ya da gürültü faktörünün optimizasyonu üzerinde yoğunlaşmıştır. Burada bahsedilebilecek önemli teknolojik çalışmalar şu şekilde özetlenebilir: Hara vd. 1988 yılında aktif mikrodalga endüktansı tasarlayıp geniş bandlı MMIC kuvvetlendiricisinde kullanmışlardır. Dafalla vd. (2004) yaptıkları çalışma içerisinde maksimum kazancı 15.8 dB, minimum gürültü faktörü 1.7 dB çalışma frekansı 0.9 GHz olan bir mikrodalga yükselteç tasarlamışlar ve uygulamada maksimum kanaç 15.7 dB, minimum gürültü faktörü 1.6 dB değerlerine ulaşmışlardır. Candaş vd. (2004) çalışmalarında mikrodalga transistorü NE329S0l'i L – C elemanlı uydurma devreleri ile V_i= 1 ve F_{req} =0,46 dB lik gürültü faktörü talebi için maksimum kazanç G_T-Profili elde etmişlerdir. Shin vd. (2005) yaptıkları çalışmada 24 GHz de CMOS teknolojisi standartları içerisinde kaynak gerilim ve akımı sırasıyla 1V ve 14 mA olan 24.3 GHz'de minimum gürültü faktörü 3.9 dB ve 24 GHz'de 13.1 dB kazançlı düşük-gürültülü yükselteç tasarlamışlardır.

Mikrodalga kuvvetlendiricilerinin sadece kazancı veya gürültüsü dışında giriş ve çıkış uyumsuzluğu gibi diğer performans ölçüleri de hesaba katarak aynı anda optimize etmeye yönelik çalışmalarda literatürde yer almaktadır. Güneş vd. (1991), çalışmalarında düşük VSWR_{IN}, düşük gürültülü ve maksimum kazançlı bir yükselteç tasarımı için yeni dizayn yöntemi sunmuşlardır. 1995 yılında Tanzi, giriş ve çıkış VSWR sınırlamalarını hesaba katan geniş bandlı düşük gürültülü transistor kuvvetlendirici tasarımı için bir metod teklif etmiş, üç örnek ile bu metodun uygulanabilirliğini göstermiş ve SUPER COMPACT ile devreyi simule etmiştir. Lingli vd. (1998), çalışmalarında 2-18 GHz çalışma frekans aralığında gürültü faktörleri 4.2-6.2 dB, güç kazancı 13.5-18.3 dB, VSWR_{IN} 2.0 den küçük, VSWR_{OUT} 2.5 den küçük ultra-geniş bantlı yükselteci EESOF Şirketinin Touchstone yazılımından yararlanarak simule etmişlerdir.

Bu çalışmalara ek olarak son yıllarda literatürde bahsi geçen konu üzerine çalışmalar şu şekilde özetlenebilir: Abdul Halim vd. (2005) çalışmalarında çok aşamalı mikrodalga yükselteci 4-8 GHz arasında GUI yardımı ile tasarlamışlardır. Balsi vd. (2006) çalışmalarında iki giriş ve çıkışlı mikrodalga yükselteçlerin koşullu kararlılık kriterlerini tartışmış ve yeni varsayımlar ortaya atmışlar ve koşullu kararlılık için yeter ve gerek şartları smith abağında göstermişlerdir. Olivieri vd. (2005) değişik yük empedasları ile mikrodalga yükseltecin kararlılığı için gerekli ve yeterli durumlar üzerine çalışmışlardır.

Ülkemizde yapılan genetik algoritma ile ilgili ilk çalışmalar içerisinde Altıparmak ve Dengiz'in (1998) çalışması gösterilebilir. Bu çalışmada, bir problemin çözümünde GA'ın kullanılması için gerekli adımlar anlatılmış ve literatürde yapılan çalışmalar incelenmiştir. Ayrıca, GA'ın etkinliğini artırmak için probleme özgü bilginin de kullanıldığı karma GA yaklaşımı hakkında bilgi verilmiştir. Kaya (1999), yüksek lisans tezinde Genetik Algoritma ve Genetik Programlamayı ele alıp, operatörleri ve algoritma hazırlanmasını anlatmıştır. Genetik programlamaya geçilirken karşılaşılan güçlükler ve bunlardan kurtulmanın yolları üzerinde çalışmıştır. Kullanılan iyileştirme algoritmalarını vermiş ve bu algoritmaların, problemi çözmede sağladığı avantajlar ve eksik taraflarını vurgulamıştır. Çetin (2002), yapmış olduğu yüksek lisans tezinde Genetik Algoritma tarihçesi hakkında bilgi vermiş, uygulama alanlarından ve bir araştırma algoritması (çözüm tekniği) olarak kullanılma nedenlerinden bahsetmiş ve G.A.'nın özelliklerini özetlemiştir. Karaboğa (2004) konu üzerine yazdığı kitabında ilgili temel kavramları tanıttıktan ve klasik optimizasyon algoritmalarının ana prensiplerini kısaca anlattıktan sonra, sezgisel algoritmalara niçin ihtiyaç duyulduğunu vurgulayarak popüler altı tane yapay zeka optimizasyon algoritmasının standart yapılarını tanıtmıştır. Ayrıca her algoritma ile ilgili bir uygulama sunmuştur.

Algoritmalar ile mikrodalga kuvvetlendiricisi tasarımıyla ilgili çalışmalara örnek olarak Cengiz'in (2004) doktora tezi gösterilebilir. Bu tez çalışmasında Cengiz, kuvvetlendirici optimizasyonu için ilk aşamada potansiyel performans karakteristiklerini inceleyerek hedef uzayı oluşturmuş, optimizasyonun ikinci aşaması olarak probleme uygun çok amaçlı hata (=amaç) fonksiyonunu saptamıştır. Son aşamasında hata fonksiyonunun hedef uzayı içinde global minimumunu bulmak için bir algoritma oluşturmuştur. Bu çalışmada optimizasyon algoritması olarak genetik algoritma ve başlangıç koşullarını rasgele optimize etmiş, Nelder-Mead Simpleks algoritmalarını kullanmıştır. Son olarak optimizasyon sonucu bulunan devre elemanları ile bütün devreyi analiz etmiş ve sonuçları belli başlı iki profesyonel simülasyon paketi ile karşılaştırmış ve makul olarak uygun olduğunu göstermiştir. Bu tez çalışmasına ek olarak Cengiz vd. (2006), çalışmalarında bir kuvvetlendiricisi tasarımını mikrodalga transistor performans mikrodalga karakterizasyonuna dayandırılmış olarak vermişlerdir. Uygun tasarım uzayı, transistorun performans karakteristiklerinden belirlenmiştir. Kuvvetlendirici tasarımında önemli bir soft bilgisayar hesaplama yöntemi olan Genetik Algoritma ile ilk değerleri belirlenmiş "Pattern Search" algoritması ile optimizasyonda kullanılmıştır.

Literatürde memetik algoritma ile mikrodalga kuvvetlendirici tasarımıyla ilgili 3 adet yayın bulunmaktadır. Bunlardan ilki Caorsi vd.(2003)'nin çalışmasıdır. Bu makalede silindirik düzensizliklerin ortaya çıkarılırken elektromanyetik ters saçılmış tabanlı prosedürün değerlendirilmesi için fazsız veri kullanılmış ki bu düzensizlikler eliptik kesitli çok katmanlı sonsuz dielektrik silindirler olarak şematize edilmektedir. Elektromagnetik ters problem bir global optimizasyon problemine dönüstürülmüs deterministlik ve sezgisel konseptleri ihtiva eden etkili bir şekilde çözmüşlerdir. Daha da fazlası geri beslemeli bir analitik prosedürü ileri saçınım hesaplaması için kullanmışlardır. Fazsız giriş bilgisini kullanarak saçılmış elemanları yerleştirme ve geri toplama olasılığı hem yapay üretilmiş dataya hem de bir mikrodalga tomografından elde edilen deneysel bilgilere göre değerlendirmişlerdir. Konu üzerine bir diğer çalışma Pastorino vd. (2004),'nin çalışmasıdır. Bahsi geçen çalışmada elektromanyetik görüntülemede görüntü elde edilmesiyle ilgili 2 algoritma önerilmiştir. İlk yaklaşımları genetik algoritma ile dielektrik konfigürasyonların tomografik görüntülenmesinin bir karışımı şeklindedir. 2. yaklaşımlarında gömülü homojensizlikleri eliptik kesiti çok katmanlı sonsuz dielektrik silindirler olarak sematize etmişlerdir. İleri saçınımın hesaplanması için etkili, tekrarlamalı analitik bir yöntem kullanmışlardır. İçerisindeki alan Mathieu fonksiyonlarının seri çözümleri ile ifade edilen bir maliyet fonksiyonları oluşturmuşlardır. Girişteki saçınınmış bilgiden başlayarak fonksiyonun tekrarlı minimizasyonu Memetik algoritma denilen yeni bir optimizasyon yöntemi uygulamışlardır. Konu üzerine bir farklı çalışmada ise Caorsi vd. (2004), gömülü homojensizliklerin tespiti için kullanılan global yöntemi çok sayıda ışıma durumuna genişletmişlerdir. Mevzu olan homojensizlikler eliptik eksiti çok katmanlı sonsuz dielektrik silindir olarak şematize etmişlerdir. İleri saçınım hesaplaması için tekrarlamalı analitik bir yöntem izlemişlerdir. Mathieu fonksiyonlarının seri çözümleri ile ifade edilen bir maliyet fonksiyonları oluşturmuşlardır. Girişteki saçınınmış bilgiden başlayarak fonksiyonun tekrarlı minimizasyonu Memetik algoritma denilen optimizasyon yöntemi uygulamışlardır. Rakamsal sonuçlarıyla çok ışımalı bir yöntemin kullanılmasının avantajlarını göstermişlerdir.

3. METARYAL VE METOD

3.1 METARYAL

3.1.1 Sistem Tanıtımı

3.1.1.1 "T", "П", "L", seri bağlı "T" ve "L", seri bağlı "П" ve "L", Uydurma Devreleri ile Tek Transistorlu Temel Kuvvetlendirici Devreleri

Bu çalışmada uydurma devreleri fiziksel uzunluk ℓ ve karakteristik empedans Z₀ parametreleri ile karakterize edilebilen seri ve paralel pozisyonunda iki transmisyon hat parçasının "T", "П" ve "L" biçimlerinde konfigür edilmesi ile oluşturulmuştur.

Şekil 3.1. Giriş ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.2. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi.

Şekil 3.3. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.4. Girişi Seri Bağlı "L"- "L" Tipi (Paralel-Seri), Çıkışı Seri Bağlı "∏"- "L" Tipi (Seri- Paralel) Hibrit Mikro Dalga Kuvvetlendiricisi

Şekil 3.5. Giriş Ve Çıkışı Seri Bağlı "L"- "L" Tipi (Paralel- Seri) Hibrit Mikro Dalga Kuvvetlendiricisi

Şekil 3.6. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.7. Giriş ve çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.8. Giriş " Π " tipi ve çıkış "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.9. Giriş "∏" tipi ve çıkış Paralel tipi uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.10. Girişi "T" Tipi, çıkışı " \prod " tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Şekil 3.11. "T" tipi uydurma devretli tek transistorlu kuvvetlendirici

3.1.1.2 Temel Uydurma İki-Kapılıları

3.1.1.2.1 Seri Transmisyon Hat İki-Kapılısı

Seri transmisyon hat iki kapılısı Şekil 3.12'de verilmiş olup zincir parametreleri aşağıdadır. (Collins)

$$\begin{bmatrix} \cos(\beta \ell) & j Z_{01} \sin(\beta \ell) \\ \frac{j \sin(\beta \ell)}{Z_{01}} & \cos(\beta \ell) \end{bmatrix}$$
(3.1)

Şekil 3.12. Seri transmisyon hat iki-kapılısı

3.1.1.2.2 Paralel Transmisyon Hat İki-Kapılısı

Paralel transmisyon hat iki kapılısı, Şekli 3.13'de verilmiş olup zincir parametreleri aşağıdadır (Collins).

Şekil 3.13. Paralel transmisyon hat iki-kapılısı

3.1.1.3 Uydurma Devreleri

3.1.1.3.1 Paralel + Seri "L" Devresi

Paralel+seri "L" devresi, sırasıyla paralel ve seri transmisyon hat iki-kapılılarının kaskad bağlanmaları sonucu oluştuğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.14):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{L} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD}$$
(3.3)

(3.1) ve (3.2) nolu formülleri (3.3) eşitliğinde yerine konularak eleman parametreleri cinsinden "L" devresi zincir parametreleri,

$$\begin{bmatrix} ABCD \end{bmatrix}_{L} = \begin{bmatrix} \cos(\beta \ \ell_{2}) & 0\\ \frac{\sin(\beta \ \ell_{2})}{\tan(\beta \ \ell_{1})Z_{O1}Z_{O2}} & \cos(\beta \ \ell_{2}) \end{bmatrix}$$
(3.4)

olarak bulunur.

Şekil 3.14. Paralel + Seri "L" uydurma devresi

3.1.1.3.2 Seri + Paralel "L" Devresi

Paralel + seri "L" devresi, sırasıyla paralel ve seri transmisyon hat iki-kapılılarının kaskad bağlanmaları sonucu oluştuğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.15):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{T} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD}$$
(3.5)
(3.1) ve (3.2) nolu formülleri (3.5) eşitliğinde yerine konularak eleman parametreleri cinsinden "L" devresi zincir parametreleri,

$$\begin{bmatrix} ABCD \end{bmatrix}_{L} = \begin{bmatrix} \cos(\beta \ \ell_{1}) & 0\\ \frac{\sin(\beta \ \ell_{1})}{\tan(\beta \ \ell_{2})Z_{O1}Z_{O2}} & \cos(\beta \ \ell_{1}) \end{bmatrix}$$
(3.6)

olarak bulunur.

Şekil 3.15. Seri + Paralel transmisyon hattı

3.1.1.3.3 "T" Devresi

"T" devresi seri, paralel, seri hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{T} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD}$$
(3.7)

(3.1) ve (3.2) nolu formülleri (3.7) eşitliğinde yerine konularak eleman parametreleri cinsinden "T" devresi zincir parametreleri,

$$\begin{bmatrix} ABCD \end{bmatrix}_{T} = \begin{bmatrix} \cos(\beta \ \ell_{1}) . \cos(\beta \ \ell_{3}) & 0\\ \frac{j . \sin(\beta \ \ell_{1}) . \sin(\beta \ \ell_{3})}{\tan(\beta \ \ell_{2}) . Z_{o1} Z_{o2} Z_{o3}} & \cos(\beta \ \ell_{1}) . \cos(\beta \ \ell_{3}) \end{bmatrix}$$
(3.8)

olarak bulunabilir.

Şekil 3.16. "T" tipi uydurma devresi

3.1.1.3.4 "П" Devresi

"П" devresi paralel, seri, paralel hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.12):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\Pi} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} (3.9)$$

(3.1) ve (3.2) nolu formülleri (3.9) eşitliğinde yerine konularak eleman parametreleri cinsinden " Π " devresi zincir parametreleri,

$$\left[ABCD\right]_{\Pi} = \begin{bmatrix} \cos(\beta \ \ell_2) & 0\\ j.\sin(\beta \ \ell_2) & \cos(\beta \ \ell_2) \end{bmatrix}$$
(3.10)

olarak bulunabilir.

Şekil 3.17. "П" tipi uydurma devresi

3.1.1.3.5 Seri Bağlı "L" Ve "L" Tipi (Paralel Ve Seri) Uydurma Devresi

Seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devresi paralel, seri, paralel, seri hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.12):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PSPS} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

(3.1) ve (3.2) nolu formülleri (3.11) eşitliğinde yerine konularak eleman parametreleri cinsinden seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devresi zincir parametreleri,

$$[ABCD]_{DB} = \begin{bmatrix} \cos(\beta \ \ell_2) . \cos(\beta \ \ell_4) & 0\\ \frac{\sin(\beta \ \ell_2) . \sin(\beta \ \ell_4)}{\tan(\beta \ \ell_1) . \tan(\beta \ \ell_3) Z_{O1} Z_{O2} Z_{O3} Z_{04}} & \cos(\beta \ \ell_2) . \cos(\beta \ \ell_4) \end{bmatrix}$$
(3.12)

olarak bulunabilir.

Şekil 3.18. Seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devresi

3.1.1.3.6 Seri Bağlı Seri + Paralel "L" Devresi

Devre seri, paralel, hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SPSP} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD}$$
(3.13)

(3.1) ve (3.2) nolu formülleri (3.13) eşitliğinde yerine konularak eleman parametreleri cinsinden Seri Bağlı Seri + Paralel "L" Devresi zincir parametreleri,

$$[ABCD]_{DA} = \begin{bmatrix} \cos(\beta \ \ell_1).\cos(\beta \ \ell_3) & 0\\ \frac{\sin(\beta \ \ell_1).\sin(\beta \ \ell_3)}{\tan(\beta \ \ell_2).\tan(\beta \ \ell_4).Z_{O1}Z_{O2}Z_{O3}Z_{04}} & \cos(\beta \ \ell_1).\cos(\beta \ \ell_3) \end{bmatrix}$$
(3.14)

olarak bulunabilir.

Şekil 3.19. Seri bağlı "L" tipi (Seri + Paralel) uydurma devresi

3.1.1.3.7 Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri) Tipi Uydurma Devresi

Seri bağlı "T" ve "L" tipi (Paralel ve Seri) tipi uydurma devresi seri, paralel, seri, paralel, seri hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.12):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SPSPS} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D$$

(3.1) ve (3.2) nolu formülleri (3.15) eşitliğinde yerine konularak eleman parametreleri cinsinden seri bağlı "T" ve "L" tipi (Paralel ve Seri) tipi uydurma devresi zincir parametreleri,

$$\begin{bmatrix} ABCD_{BA} = \begin{bmatrix} \cos\beta \ \ell_1 \) \cos\beta \ \ell_3 \) \cos\beta \ \ell_5 \) & 0 \\ \frac{j \sin(\beta \ \ell_1 \) \sin(\beta \ \ell_3 \) \sin(\beta \ \ell_5)}{\tan\beta \ \ell_2 \) \tan\beta \ \ell_4 \) Z_{O1} Z_{O2} Z_{O3} Z_{O4} Z_{O5}} & \cos\beta \ \ell_1 \) \cos\beta \ \ell_3 \) \cos\beta \ \ell_5 \ \end{bmatrix}$$
(3.16)

olarak bulunabilir.

Şekil 3.20. Seri bağlı "T" ve "L" tipi (Paralel ve Seri) tipi uydurma devresi

3.1.1.3.8 Seri bağlı "∏" ve "L" tipi (Seri ve Paralel) tipi uydurma devresi

Seri bağlı "∏" ve "L" tipi (Seri ve Paralel) tipi uydurma devresi paralel, seri, paralel, seri, paralel hat iki-kapılılarının kaskad bağlanması sonucu oluşturulduğundan devrenin [ABCD] matrisi aşağıdaki gibi ifade edilebilir (Şekil 3.12):

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PSPSP} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{SD} x \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{PD} x \begin{bmatrix} A & B \\ C & D$$

(3.1) ve (3.2) nolu formülleri (3.17) eşitliğinde yerine konularak eleman parametreleri cinsinden seri bağlı " Π " ve "L" tipi (Seri ve Paralel) tipi uydurma devresi zincir parametreleri,

$$\begin{bmatrix} ABCD_{BB} = \begin{bmatrix} \cos\beta \ell_2 .\cos\beta \ell_4 & 0\\ -j.\sin(\beta \ell_2).\sin\beta \ell_4 & 0\\ \hline \tan\beta \ell_1 .\tan\beta \ell_3 .\tan\beta \ell_5 Z_{O1} Z_{O2} Z_{O3} Z_{04} Z_{05} & \cos\beta \ell_2 .\cos\beta \ell_4 \end{bmatrix} (3.18)$$

olarak bulunur.

Şekil 3.21. Seri bağlı " \prod " ve "L" tipi (Seri ve Paralel) tipi uydurma devresi

3.2 Bir Mühendislik Optimizasyon Problemi Olarak Kuvvetlendirici Tasarımı

Mikrodalgalarda transistörlü kuvvetlendiriciler en çok alçak gürültülü ön kuvvetlendirici veya radar sistemlerinde ara frekans kuvvetlendiricisi olarak kullanılırlar. Ayrıca uydularla haberleşmede, yer sistemlerinde, dijital radyolinklerde, ECM sistemlerinde uygulama alanları vardır. Geniş bandlı izolatör veya elektronik akortlu osilatörlerin çıkış güç katı olarakta kullanılabilirler (Yazgan 1981).

Aktif mikrodalga cihazların belirlenmesi ve genişbant mikrodalga yükselteçler tasarımı haberleşme mühendisliği içerisinde ençok ilgilenen konulardır. Özellikle, mikrodalga yükselteç tasarımı içerisinde sistem performansını optimize etmek için birçok karmaşık matematiksel yöntemler kullanılmıştır. Genellikle, optimizasyonlar diğer performans kriterlerini, örneğin gürültü, VSWR(giriş), VSWR(çıkış), kontrol etmeden frekans bandı üzerinde dönüştürücü güç kazancı üzerine odaklanmıştır (Güneş vd. 2002).

Bir Mühendislik sistemi, verilen belli bir hedef uzayını gerçekleştirecek şekilde tasarlanır. Örneğin, bizim ele aldığımız mikrodalga kuvvetlendiricisinde hedef uzayımız, devremizin verilen belli bir B band genişliği içinde Gürültü Faktörü F, Giriş Yansıtma Katsayısı ρ i ve Kazanç GT'den ibarettir. Her mühendislik sisteminde hedef uzayını gerçekleştirecek tasarım değişkenleri seçilir. Hedef uzayı ile tasarım değişkenleri arasında genellikle bir nonlineer ilişki vardır. Bizim sistemimizde tasarım değişkenleri, uydurma devrelerinde kullanılan transmisyon hatlarının karakteristik empedansları Z_{0n} ve fiziksel uzunlukları ℓ dir ve hedef fonksiyonlarımız F, ρ i, GT ile tasarım değişkenleri Z₀₁, ℓ_1 ' arasında yüksek nonlineer bir ilişki vardır. Hedefi gerçekleştiren "Tasarım" setini bulabilmek için, genellikle Hata ya da Amaç fonksiyonu araç olarak kullanılır. Hata fonksiyondur (Cengiz 2004).

3.3 Mikrodalga Kuvvetlendiricisi Gerçeklenebilir Tasarım Uzayı

3.3.1 Mikrodalga Kuvvetlendiricisi Optimizasyonunun İki Temel Problemi

Bir mühendislik optimizasyon probleminde genellikle iki temel problem ile karşılaşılır: (Cengiz 2004):

i) "Gerçeklenebilir Tasarım Değişkenleri ve Hedefleri" cinsinden "Gerçeklenebilir Tasarım Uzayı"nın tayini;

ii) Optimizasyonu yöneten Hata (Amaç) fonksiyonunun "Gerçeklenebilir Tasarım Uzayı" içinde yer alan "Global Minimumu"nun tayini.

Bu çalışmadaki mikrodalga kuvvetlendiricisi optimizasyonunda "Tasarım Değişkenleri Uzayı", uydurma devrelerinde kullanılan hat fiziksel uzunluk ve karakteristik empedanslarıdır ve $\boldsymbol{\vartheta} = [\ell_1 \ \ell_2 \ \ell_3 \ \ell_4 \ \ell_5 \ \ell_6 \ Z_{o1} \ Z_{o2} \ Z_{o3} \ Z_{o4} \ Z_{o5} \ Z_{o6}]^t$ tasarım (optimizasyon) değişken vektörü şeklinde ifade edilebilir.

Bu çalışmada "Tasarım Hedef Uzayı" olarak dönüştürücü güç kazancı G_T , gürültü faktörü F ve giriş VSWR V_i bileşenlerinden oluşmuştur ve sonucunda çok hedefli bir optimizasyon prosedürü kullanılmaktadır.

Problemde söz konusu olan "Gerçeklenebilir Tasarım" uzayı için "Tasarım Değişkenleri";

i) Transistorun hedef çalışma bandı B,

ii) Devrenin gerçekleştirileceği teknolojinin alt ve üst sınırlamaları ele alınarak belirlenebilir.

Bu çalışmada "Tasarım Hedef" alt-uzayı;

i) Transistor "Performans Karakterizasyonu" (Güneş, 1994) teorisi uygulanması sonucu, (CT, V_{DS} , I_{DS} ve f) çalışma domeninde elde edilen uyumlu (F, V_i , G_T) üçlüleri,

ii) (Z_S, Z_L) sonlandırmaları kullanılarak tayin edilmektedir.

3.4 Transistor Performans Ölçü Fonksiyonları

Bir transistor iki-kapılı performansı genellikle üç temel fonksiyon ile ölçülebilir: Transduser Güç Kazancı G_T, Gürültü faktörü F ve Giriş VSWR fonksiyonu V_i 'dir. Bu fonksiyonlar transistor [Z] parametreleri, kaynak ve yük sonlandırmaları cinsinden aşağıdaki şekilde ifade edilebilir (Collins):

$$G_T = \frac{P_L}{P_{AVS}}$$
(3.19)

$$G_{T} \{R_{s}, X_{s}, R_{L}, X_{L}\} = \frac{4R_{s}R_{L}|Z_{21}|^{2}}{\left|\left(z_{11} + Z_{s}\right)\left(z_{22} + Z_{L}\right) - z_{12}z_{21}\right|^{2}}$$
(3.20)

$$F = \frac{(S / N)_{i}}{(S / N)_{o}} = F\{R_{s}, X_{s}\} = F_{\min} + \frac{R_{N}}{|Z_{opt}|^{2}} \frac{|Z_{s} - Z_{opt}|^{2}}{R_{s}}$$
(3.21)

Giriş VSWR=
$$V_i \{R_s, X_s, R_L, X_L\} = \frac{1 + |\rho_i|^2}{1 - |\rho_i|^2}, \rho_i = \frac{Z_s - Z_i^*}{Z_s + Z_i}$$
 (3.22)

Ayrıca, burada kaynak Z_s ve yük Z_L pasif sonlandırmaları transistorun kararlı çalışmasını sağlayacak şekilde tayin edilmelidir:

$$\operatorname{Re}\{Z_i\} \ge 0, \text{ ve } \operatorname{Re}\{Z_0\} \ge 0 \tag{3.23}$$

Şekil 3.22. Mikrodalga transistorun iki-kapılı modeli

Tayin edilmiş Z_S ve Z_L sonlandırmaları, transistorlu kuvvetlendiricide verilen kaynak Z_g ve alıcı Z_r sonlandırmalarından sırası ile giriş ve çıkış uydurma devreleri ile elde edilirler. Bir kuvvetlendirici devresinde kullanılan uydurma devreleri aynı zamanda kayıpsız olmalı ve transistor için talep edilen çalışma bandını karşılamalıdır. Bu çalışmada uydurma devrelerinde kayıpsız ve resiprok dağılmış parametreli elemanlar -transmisyon hat parçaları- kullanılmıştır. Sonuç olarak kuvvetlendiricinin performansını tamamiyle aktif eleman tayin ettiği söylenilebilir.

3.5 METOD

3.5.1 Memetik Algoritma

Memetik Algoritma'dan ilk olarak 1989 yılında Pablo Moscato "On Evolution Search, Optimizasyon, Genetic Algorithm and Martial Arts" bahsetmiştir. Moscato ve Norman'a göre 'Memetik evrim' genetik algoritma ile yerel komşuluk araması veya tavlama benzetimi gibi yerel geliştirme algoritmalarının bir birleşimi olarak algılanabilir. Böylece, genetik-yerel arama yaklaşımı olarak Memetik algoritmanın özel bir durumu öne sürülebilir (Merz vd.). Memetik Algoritmalar, optimizasyon problemlerinde Heuristic(sezgisel) araştırma için kullanılan popülasyon tabanlı bir yaklaşımdır. Bu algoritmalar bazı problemler için Genetik Algoritmalardan daha hızlıdır. Ek operatörler gibi yerel geliştirme teknikleri kullanan hibrit algoritmalarının tersine; Memetik algoritmalar bütün aday çözümlerin uzayını aramak yerine bütün optimal çözümlerin uzayını aramak için tasarlanmıştır. Bu operatörden durum ise her bir genetik sonra yerel arama yapılarak gerçekleştirilmiştir. Böylece, her nesil içerisinde, bireylerin topluğu yalnız yerel optimumlardan oluşur (Merz vd.). Bazı araştırmacılar bunlara hibrit genetik algoritma gözüyle bakar iken bazıları ise genetik yerel araştırma gözüyle bakmaktadırlar. Genetik Algoritmanın temeli biyolojik evrime dayanırken; Memetik algoritmanın temeli ise kültürel evrime dayanmaktadır.

Örneğin: Bir fikir, parazit gibi düşüncelerinizi etkileyip davranışlarınızı değiştirebilir ve bu fikri arkadaşlarınıza anlatmak isteyebilirsiniz. Böylece virüs gibi bu fikri arkadaşlarınıza da bulaştırırsınız. İşte bunu yapan fikre Meme denir. Meme: Bir

kısım bilginin insanların fikir alış-verişi esnasında tekrardan kendini üretmesidir. Genlerin tersine; Meme'ler belirgin biçimde bir sonraki nesile geçmeden önce onları iletecek kişi tarafından uyarlanabilir (Merz vd.).

Şekil 3.23. Memetik Algoritma Akış Diyagramı

Akış diyagramında ki mavi taralı kısımlar memetik algoritmanın genetik algoritmadan farkı olan kısımlarıdır.

Memetik Algoritmalar ile İlgili Tartışmalar

- 1. Yerel arama ne zaman ve nereye uygulanmalı?
- 2. Popülasyon içerisindeki hangi bireyler yerel arama yöntemiyle geliştirilmeli?
- 3. Yerel arama ne kadar süre devam etmeli?
- 4. Hangi aralıkla yerel arama yapmak bizi optimum çözüme götürür?

Bu soruların yanıtları problemden probleme değişmekte olup, yaptığım çalışmada gördüğüm kadarıyla her operatörden sonra ve programın en sonunda en iyi bireyler etrafında, durdurma kriteri iterasyon olarak, yerel arama yapılmalıdır. Yerel arama yapılacak aralığın her aramada değişmesi bizi daha iyi sonuçlara götürdüğü deneylerimde gözlemledim.

Aşağıdaki bölümlerde genel arama algoritması olarak genetik algoritma, yerel arama algoritmaları olarak adaptif örnek aratma algoritması, örnek aratma algoritması ve Nelder-Mead yöntemleri açıklanmış ve memetik algoritma ile bir örnek çözüm yapılmıştır.

3.5.2 Genetik Algoritma

Çözüm uzayının çok büyük olduğu gerçek hayat problemleri için en iyi çözümün bulunması geliştirilen özel algoritmalarla bile çok uzun zaman almaktadır. Bu nedenle bu tür problemler için en iyiye yakın çözüm veren sezgisel tekniklerin geliştirilmesi önem kazanmaktadır. Sezgisel teknikler, makul zamanda iyi bir çözüme ulaşmak için problemdeki bilgiyi kullanırlar. Ancak, klasik eniyileme tekniklerinin aksine bu yaklaşımlar global en iyiyi bulmayı garanti etmezler. Sezgisel teknikler, "çözüm kurucu" ve "çözüm iyileştirici" olmak üzere iki ayrı sınıfta incelenmektedirler. Çözüm kurucular çeşitli kuralları kullanarak problem için bir çözüm elde ederken çözüm iyileştiriciler, elde edilen bir başlangıç çözümünü bitirme koşulu sağlanıncaya kadar adım adım iyileştirmeye çalışırlar. Bilinen çözüm iyileştirici sezgiseller bir problem için global en iyiyi bulmada çok başarılı değildirler. Son yıllarda çözüm iyileştirici sezgisel teknikler sınıfında bulunan ve global en iyiyi bulmada başarılı olan yeni teknikler geliştirilmiştir. Bu tekniklerden yaygın olarak kullanılanları, Tabu Arama, Genetik Algoritmalar, Sinir Ağları ve Tavlama Benzetimidir (Dengiz ve Altıparmak, 1998).

İlk defa 1960'larda John Holland tarafından ortaya atılan; kendisi, öğrencileri ve meslektaşları tarafından geliştirilen (Louis, 1993) G.A.'lar, mühendislik dünyasında birçok alanda genişçe işlenmiş, deneyleri yapılmış ve uygulanmıştır (Forrest ve Mitehell, 1993). Ayrıca 1975'de G.A.'nın teorik çatısının verildiği John Holland'in "Doğal ve Yapay Sistemlerde Adaptasyon" (Adaptation in Natural and Artificial Systems) isimli kitabı yayımlanmıştır (Louis, 1993). Holland'ın G.A.'sı Basit Genetik Algoritma (B.G.A.) olarak adlandırılmaktadır (Yeniay, 1999). Holland'ın asıl amacı, adaptasyon olgusunu tabiatta meydana geldiği şekliyle resmi olarak incelemek ve özel problemleri çözmek için algoritmalar düzenlemek yerine, doğal adaptasyon mekanizmalarının bilgisayar sistemlerine aktarılabileceği yollar geliştirmekti (Tanrıseven, 2000). Genetik Algoritmalar (GA) stokastik bir arama yöntemidir. Darwin'in "en iyi olan yaşar (survival of the fittest)" prensibine dayalı olarak biyolojik sistemlerin gelişim sürecini simüle eden GA, ilk defa Holland (1975) tarafından önerilmiştir. Sezgisel bir metot olan GA, problem için optimum sonucu bulamayabilir, ancak bilinen metotlar ile çözüm zamanı problemin büyüklüğü ile üstel artan problemlerde optimal çözüme çok yakın çözümler vermektedir. Başlangıçta doğrusal olmayan (non-linear) optimizasyon problemlerine uygulanan GA, sonraları gezgin satıcı, karesel atama, yerleşim, atölye çizelgeleme, ders/sınav programı hazırlanması gibi birleşik optimizasyon problemlerine de başarıyla uygulanmıştır.

Bir GA, mümkün çözümlerin kodlandığı dizilerin bir seti, yığın ile biyolojik özelliği taklit eden operatörlerin bir setinden oluşur. Herhangi bir problemin çözümünde kullanılan basit bir GA, şekil ' deki Genetik Algoritma akış diyagramı ile açıklanabilir.

3.5.2.1 Genetik Algoritmaların Uygulama Alanları

G.A.'lar Bilgisayar Bilimi, Mühendislik, Yöneylem Araştırması, Sosyal Bilimler, Tıp, Matematik vb alanlarda karşılaşılan çeşitli problemlerin çözümünde kullanılmaktadır. G.A.'lar global optimal çözümü bulmayı garanti etmezler, ancak kabul edilebilir hızla, kabul edilebilir ölçüde iyi çözümler bulunmasında genel olarak başarılıdırlar. Belirli problemlerin çözümünde özel teknikler varsa, bunların hem sonucun doğruluğu, hem de hız açısından G.A.'lara göre daha iyi işlemesi olasıdır. G.A.'ların esas alanı, bu tür tekniklerin olmadığı alanlardır. Mevcut tekniklerin iyi işlediği yerlerde bile, bu teknikleri G.A.'lar ile birleştirerek ilerlemeler sağlanmıştır (Cantoni vd., 1999).

Şekil 3.24. Genetik Algoritma Akış Diyagramı

Genetik Algoritma (GA), biyolojik bir sistemin, çevresine adaptasyonunda kullandığı yöntemin örneklenmesidir. Bilgisayarda, bu tür çok parametreli optimum bulma problemlerine ve makine öğrenme problemlerine çözüm modeli olarak alınabilir. Doğal adaptasyondan esinlenen GA' nın basit olarak iskeleti (Kaya, 1999):

- a) Bireyin bulunduğu ortamda hayatta kalmak için, kendi kendisini değiştirerek ortama uygun hale gelmesi,
- b) Bu adaptasyon boyunca, yeni üretilecek nesillere, bu özellikler ile birlikte

mümkün olabilecek daha çok değişim aktarılarak, bireylerin daha çok uyumlu hale getirilmesi olarak özetlenebilir.

Önce başlangıç popülasyonu oluşturulmakta ve sonra tabii seçme işlemi ile birlikte genetik operatörler çaprazlama (crossover) ve mutasyon gelecek jenerasyondaki çözümleri üretmek amacıyla kullanılmaktadır. Kalite veya uygunluk değerlendirme (fitness evaluation) işlemi tekrar üreme olayında uygulanan seçme işlemini gerçekleştirebilmek için her bir bireye uygulanmaktadır. Birbirini takip eden jenerasyonların geliştirilmesi ve değerlendirilmesi çevrimi, optimal bir çözüm bulununcaya kadar devam etmektedir (Karaboğa, 2004).

3.5.2.2 Ana Hatlarıyla Genetik Algoritma

- Başlat: Problemin çözümü için n kromozomlu (değişken sayısı) m adet birey rasgele üretilerek başlangıç popülasyonu oluşturulur veyahut başlangıç popülasyonu belirli bireylerden de oluşturulabilir.
- **2. Uygunluk (Fitness):** Popülasyondaki her bir birey için f(x) hedef fonksiyonu hesaplanır.
- **3. Yeni popülasyon:** Yeni bir popülasyon oluşuncaya kadar aşağıdaki adımlar tekrar edilir:
 - a) Seçme: Hedef fonksiyondaki uygunluk değerine göre popülasyondan seçilen bireyler çaprazlama için eşleşme havuzuna atılırlar.
 - b) Çaprazlama: Eşleşme havuzundan seçilen bireyler kendi aralarında çaprazlama oranı kadar çocuk birey oluşturmak üzere çaprazlanırlar.
 - c) Mutasyon: Popülasyon içerisinden seçilen birey veya bireylerin herhangi bir kromozomu sıfırlanarak yerine yeni bir değer atanır.

d) **Kabul:** İlk popülasyon, çocuklar, mutasyonlu bireyler yeni bir popülasyon meydana getirirler.

4. Değiştirme: Oluşan yeni popülasyon uygunluk değerlerine göre sıralanır ve popülasyon birey sayısı kadarı yeni başlangıç popülasyonu olarak atanır.

- 5. Test: Programı bitirme şartı gerçekleşiyorsa program durdurulur.
- 6. Döngü: Aksi takdirde program 2. adıma geri döner.

3.5.3 Genetik Operatörler

Seçim işlemi ile oluşturulan yeni yığındaki dizilerin bir kısmına uygulanan genetik operatörler, çaprazlama ve mutasyon operatörleridir. Bu operatörler, genetik bilgileri kullanarak yeni yığının yeni dizilerini (mümkün yeni çözümleri) elde ederler. Çaprazlama operatörü, farklı diziler arasında bilgi değişimini sağlayarak yeni çözümleri elde ederken mutasyon operatörü, mevcut dizilerin bir kısmında rastsal değişimi sağlayarak çözüm uzayında yeni noktaları elde etmektedir.

3.5.3.1 Seçme İşlemi

Seçme fonksiyonu yeni jenerasyonun anne ve babasını ölçekleme fonksiyonundan bulunmuş ölçeklenmiş değerlere dayanarak seçer. Bu seçme işleminde istenilen Elit bireyler hiçbir değişikliğe uğratılmadan yeni nesle aktarılabilir ve çaprazlama işlemi geri kalan bireylerde isterse uygulana bilir.

3.5.3.1.1 Rulet Çarkı Seçmesi

Tekrar üretme başlangıcında basit bir yöntem "roulette wheel selection" (rulet tekerleğiyle seçim) 'e göre bireylerin uygunluk değerlerini bir rulet tekerleğinde hazırlar. Rasgele tekerleğin döndürülmesinden sonra, bireyin bir sonraki nesil için seçilmesi, tekerlek üzerinde kapladığı alanla doğrudan bağlantılıdır. Bu yöntem düşük uygunluğa sahip bireylere az da olsa seçilme hakkı verir. Formül olarak izahı (3.24)'deki gibidir:

$$Pseçilen = f_i \div \sum_{i=1}^{N} f_i$$
(3.24)

i: i. Eleman için uygunluk değeri, N: Birey sayısı

	Birey	Değer	$f_i = x^2$	f_i/f_{Toplam}
1.Birey	10101	21	441	0,22
2.Birey	1 1 0 0 1	25	625	0,32
3.Birey	0 0 1 1 1	07	49	0,03
4.Birey	0 0 1 0 1	05	25	0,01
5.Birey	1 0 0 1 1	19	361	0,18
6.Birey	0 1 1 0 0	12	144	0,07
7.Birey	0 1 0 0 1	09	81	0,04
8.Birey	1 0 0 0 0	16	256	0,13
	Toplam		198	32

Cizelge	3.1	Rulet	carkı	örneği	değerleri
QILCISC.	· · ·	1.0100	yann	ornegi	acgement

Şekil 3.25. Rulet çarkı dağılımının bireylere bağlı olarak gösterimi.

3.5.3.1.2 Stochastic Uniform Seçmesi

Bu seçme yönteminde bireyler yine rulet çarkına yerleştirilir. Bu defa Rulet Çarkı birey sayısı kadar eşit parçaya bölünür ve birey sayısı kadar noktaya bayrak yerleştirilir. Rulet çarkı döndürülür. Burada amaç fonksiyonun yerel noktaya takılmasını engellemektir. Yukarıdaki yöntemde çarkın %90 kaplayacak birey fonksiyonu yerel noktada durdurabilir.

				Stokastic
	Birey	Değer	$f_i = x^2$	Uniform'da
				seçilme sayısı
1.Birey	1 0 1 0 1	21	441	2
2.Birey	1 1 0 0 1	25	625	3
3.Birey	0 0 1 1 1	07	49	0
4.Birey	00101	05	25	0
5.Birey	10011	19	361	2
6.Birey	0 1 1 0 0	12	144	0
7.Birey	0 1 0 0 1	09	81	0
8.Birey	1 0 0 0 0	16	256	1

Çizelge 3.2 Sezgisel örneği değerleri

Şekil 3.26. Stochastic Uniform dağılımının bireylere bağlı olarak gösterimi.

3.5.3.1.3 Arta Kalan Seçmesi

Yöntem, beklenen birey sayılarını bilinen biçimde hesaplar ve tamsayılı kısmını bireye atar. Popülasyon genişliğine ulaşılmadıysa, beklenen değerlerin kesirli kısımlarından yararlanılır. Örneğin, beklenen kopya sayısı 1.36 olan bir birey, bir kopyayı kesin olarak, diğer kopyayı ise 0.36 olasılıkla elde eder (Çetin, 2002). Aşağıdaki örnekte ilk durumda 1.bireyden 1 örnek,2.bireyden 2 örnek,5. bireyden 1 örnek ve 8. bireyden 1 örnek havuza gönderilir. Havuzdaki toplam birey sayısının 8 olması gerektiğini kabul edersek, 3 bireye daha ihtiyaç duymaktayız. Bunun için bireylerin uygunluk değerlerinin ondalıklı kısımlarını rulet çarkına tabi tutarız.

	Birey	Değer	$\mathbf{f} - \mathbf{x}^2$	f./f	Arta Kalan'dan
	Direy	Deger	1 ₁ -A	11/ Tortalama	seçilme sayısı
1.Birey	10101	21	441	1,78	2
2.Birey	1 1 0 0 1	25	625	2,52	2
3.Birey	0 0 1 1 1	07	49	<mark>0</mark> ,19	0
4.Birey	00101	05	25	<mark>0</mark> ,10	0
5.Birey	1 0 0 1 1	19	361	1,45	1
6.Birey	0 1 1 0 0	12	144	<mark>0</mark> ,58	1
7.Birey	0 1 0 0 1	09	81	0 ,32	1
8.Birey	10000	16	256	1,03	1

Çizelge 3.3 Arta kalan örneği değerleri

Şekil 3.27. Arta kalan dağılımının bireylere bağlı olarak gösterimi.

3.5.3.1.4 Turnuva Seçmesi

Turnuva seçiminde, popülasyon alt popülasyonlara ayrılır. Burada alt popülasyon sayısı ve alt popülasyondaki birey sayısı tamamen programcının isteğine bağlıdır. Alt popülasyon içerisindeki en iyi bireyler eşleşme havuzuna atılarak turnuva yöntemi sağlanmış olur. 8 adet bireyden rasgele seçimler sonucunda aşağıdaki durumun ortaya çıktığı varsayılmaktadır. Bu yöntemde turnuva alt popülasyon birey sayısı 3,alt popülasyon sayısı 8 olarak alınmıştır.

Turnuva içerisindeki uygunluk değeri en büyük olan bireyler aşağıdaki gibi oluşmuştur.

Çizelge 3.4.	Turnuva	örneği	değerleri
--------------	---------	--------	-----------

Alt	Seçilen	Doğarlar	$\mathbf{f} - \mathbf{y}^2$
popülasyonlar	Bireyler	Degener	Ii-X
	1 0 1 0 1	21	441
1.Alt popülasyon	0 0 1 1 1	07	49
	10011	19	361
	1 1 0 0 1	25	625
2.Alt popülasyon	0 0 1 0 1	05	25
	0 1 1 0 0	12	144
	0 0 1 1 1	07	49
3.Alt popülasyon	1 1 0 0 1	25	625
	10000	16	256
	0 0 1 0 1	05	25
4.Alt popülasyon	0 1 0 0 1	09	81
	0 1 1 0 0	12	144
	1 0 0 1 1	19	361
5.Alt popülasyon	0 1 1 0 0	12	144
	0 1 0 0 1	09	81
	0 1 1 0 0	12	144
6.Alt popülasyon	00101	05	25
	0 1 0 0 1	09	81
	0 1 0 0 1	09	81
7.Alt popülasyon	0 0 1 0 1	05	25
	0 1 0 0 1	07	49
	1 0 0 0 0	16	256
8.Alt popülasyon	0 1 1 0 0	12	144
	0 0 1 0 1	05	25

	Birey	Değer	$f_i = x^2$	Turnuva Yöntemi ile seçilen birey sayısı
1.Birey	10101	21	441	1
2.Birey	1 1 0 0 1	25	625	2
3.Birey	00111	07	49	0
4.Birey	00101	05	25	0
5.Birey	10011	19	361	1
6.Birey	0 1 1 0 0	12	144	2
7.Birey	0 1 0 0 1	09	81	1
8.Birey	10000	16	256	1

Çizelge 3.5 Turnuva örneği ile seçilen birey sayıları

Yukarıdaki seçme yöntemleri vasıtasıyla oluşan eşleşme havuzundan yeni bireyler (çocuklar) üretilmelidir. Bu işleme Çaprazlama adı verilmektedir.

3.5.3.2 Çaprazlama İşlemi

Amaç, ana (parent) kromozom genlerinin yerini değiştirerek çocuk (child) kromozomlar üretmek ve böylece var olan uygunluk değeri yüksek olan kromozomlardan, uygunluk değeri daha yüksek olan kromozomlar elde edilmektedir. Aşağıda bazı çaprazlama yöntemleri verilmiştir.

Şekil 3.28. Çaprazlama işlemi gösterimi

3.5.3.2.1 Bir Noktalı Çaprazlama

Bir noktadan çaprazlama işlemi yapmaktadır. İki bireyin vektörlerini bir noktadan keserek birbirlerinin yerine yerleştirilmesiyle gerçekleştirilmektedir.2 bireyden bir çocuk üretilmektedir.

Bir Noktalı Çaprazlama İşlemine Örnek:

ana = [a b c d e f g h]

baba = [1 2 3 4 5 6 7 8]

çaprazlama noktasını 3 kabul edersek. Yapılan işlem sonrası oluşan çocuk:

cocuk= [a b c 4 5 6 7 8]

Bazı uygulamalarda 2 ebeveynden 2 çocuk üretmek daha yaygın kullanılmaktadır.

3.5.3.2.2 İki Noktalı Çaprazlama

İki noktadan çaprazlama işlemi yapmaktadır. Daha önceden belirlenmiş 2 bireyin üyeleri arasında yer değiştirme sonucunda yeni birey elde edilmektedir. İki Noktalı Çaprazlamaya Örnek Olarak:

ana = [a b c d e f g h]

baba= [1 2 3 4 5 6 7 8]

çaprazlama noktaları (rasgele) = 3,6

cocuk = [a b c 4 5 6 g h]

3.5.3.2.3 Dağılmış Parametreli (Scattered) Çaprazlama

Rasgele ikilik tabanda bir vektör üretilir. Eğer vektör elemanının değeri 1 ise ilk ebeveynden, eğer 0 (sıfır) ise ikinci ebeveynden genler seçilir. Daha sonra bunlardan yeni bir çocuk üretir. Dağılmış Parametreli 'ye örnek olarak:

ana = [a b c d e f g h]

baba = [1 2 3 4 5 6 7 8]

rasgele çaprazlama vektörü = $\begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

cocuk = [a b 3 4 e 6 7 8]

3.5.3.2.4 Heuristic Çaprazlama

Meydana getirilecek olan çocuk anne ve baba arasında kalan çizgide oluşturulur ve değeri iyi olana yakın değerde ancak ondan biraz daha kötüdür.

çocuk = ana + Rasgele * (baba - ana)

ana = 1.8

baba = 15.2

rasgele = 0.8

cocuk = 1.8 + 0.8 * (15.2 - 1.8)

çocuk = 12.52

ana < çocuk < baba

3.5.3.2.5 Havuz Çaprazlama

Bu yöntemde, bireylerin hepsi bir havuz içerisinde yerlerini alır. Değişkenlerin hepsi ayrı bir sütun ile gösterilmektedir. Her sütun için havuzun birey sayısı, rasgele değer ile çarpılarak şanslı birey seçilir. Ve bireyin o sütun değeri çocuğun değeri olarak atanır. Bu yöntem daha çok sınırlı, çok değişkenli optimizasyonların yerel aramalarında tavsiye edilir.

 $E_{s} = [123456; 0, 20, 82, 63, 25, 89, 3; 987101112]$

Seçme vektör $\ddot{u} = [1 \ 3 \ 2 \ 2 \ 1 \ 3]$

Bu örnekte havuzda 3 adet birey 6 değişkenli olarak gözükmektedir. Her değişken için (birey sayısı*rasgele değer) işlemi yapılarak değişkenin değeri belirlenecektir. İlk değişken 1. bireyden, ikinci değişken 3. bireyden, üçüncü değişken 2. bireyden, dördüncü değişken 2. bireyden, 5. değişken 1. bireyden, altıncı değişken 3. bireyden alınarak çocuk üretilmiştir. Yukarıdaki örnekten elde edilen çocuk aşağıda gösterilmiştir.

çocuk = [1 8 2,6 3,2 5 12]

3.5.3.3 Mutasyon İşlemi

G.A.'larda diğer önemli operatör, mutasyondur. Mutasyon doğada olduğu gibi G.A. uygulamalarında da geri planda kalan bir operatördür (Yeniay, 1999). G.A.'ın çalışmasında ikinci dereceden rol oynar. G.A.'da mutasyon operatörü, küçük bir olasılıkla bir dizi içindeki bir veya birkaç değeri rastsal olarak değiştirerek, yığında yeni dizilerin (yani arama uzayında yeni çözüm noktalarının) elde edilmesini sağlar (Goldberg, 1989).

Bu seçenek ile popülasyon belirli bir büyüklüğe geldiği zaman popülasyon içerisindeki herhangi bir bireyin herhangi bir bitinin değiştirilmesi ile gerçekleştirilmektedir. İkilik sayma sisteminde, seçilen herhangi bir bit 1(bir) ise 0(sıfır); 0(sıfır) ise 1(bir) olmaktadır. Onluk sistemde ise mutasyona örnek olarak aşağıdaki yöntemler gösterilebilir.

3.5.3.3.1 Ters Çevirme Mutasyonu

Rasgele iki pozisyon seçilerek yerlerini değiştirerek işlemi gerçekleştirir.

Birey: 7 3 2 9 10 1 6 4 5 8

Mutasyonlu Birey: 7 3 1 10 9 2 6 4 5 8

3.5.3.3.2 Ekleme Mutasyonu

Rasgele bir parça seçilerek o parçayı rasgele bir yere yerleştirir.

Birey: 7 3 2 9 1 6 4 5 8

Mutasyonlu Birey: 7 3 4 2 9 1 6 5 8

3.5.3.3 Yer Değişikliği Mutasyonu

Rasgele bir alt dizi seçilerek rasgele başka bir alt dizi ile yer değiştirir.

Birey: 7 3 2 9 10 1 6 4 5 8

Mutasyonlu Birey: 7 3 6 4 5 2 9 10 1 8

3.5.3.3.4 Karşılıklı Değişim Mutasyonu

Rasgele iki gen seçilir ve yerlerini değiştirir.

Birey: 7 3 2 9 10 1 6 4 5 8

Mutasyonlu Birey: 7 3 5 9 10 1 6 4 2 8

3.5.4 Örnek Aratma (Pattern Search) Algoritması

Örnek Aratma (Pattern search)bir direkt arama yöntemidir. Örnek Aratma algoritması, optimum noktaya yaklaşan bir dizi nokta hesaplar. İzlenen yöntem şudur (Cengiz vd. 2006):

i) Her basamakta algoritma bir önceki basamakta hesaplanan bir noktanın etrafında bir nokta seti hesaplar. Bu noktalar kümesine göz (mesh) denir.

ii) Algoritma mesh olarak adlandırılan kümeyi oluştururken bulunulan noktayı model denilen bir vektörler setinin katsayısıyla çarpar.

iii) Eğer algoritma göz içinde ana fonksiyonu geliştirecek yeni bir nokta bulursa artık o nokta algoritmanın geri kalanında kullanılacak yeni nokta olur.

Bu işlemin matematiksel ifadesi şöyledir: k tekrar sayısında, tekrarlanan değişken

 x_k , IR^n ve adım uzunluğu parametresi(göz) $D_k>0$. e_i , i=1,2...n, standart birim vektörleri ifade etsin. $x_+ = x_k \pm D_k e_i$, i=1,2...n işlemi, $f(x_+)<f(x_k)$ olacak x_+ noktasını bulana kadar aranır. Şekil 4.6, n=2 için x_t 'yi araştırdığımız noktaları göstermektedir. Araştırılan bu noktalar topluluğuna örnek adı verilir. Eğer $f(x_+)<f(x_k)$ olacak herhangi bir nokta bulunmazsa $D_k=D_k*0.5$ yapılır. Bulursak ise $D_k=D_k+1$ ve $x_+=x_k+1$ denir. Eğer daha uzun bir adım ile aramaya devam etmek istenirse başarılı durum için D_k herhangi bir sayı ile(uygulamada 2) çarpılabilir [5].

Şekil 3.29 n=2 için x_+

Örnek: Algoritma tarafından her tekrarda hangi noktaların araştırılacağına karar vermek için kullanılan bir vektörler setidir. Örnek: Eğer problem iki bağımsız değişkenden oluşuyorsa varsayılan vektörler aşağıdaki gibi olur. $v_1 = [1 \ 0]$

 $v_2 = [0 \ 1] \ v_3 = [-1 \ 0] \ v_4 = [0 \ 1]$

Göz: Her basamakta Örnek Aratma algoritması denen bir noktalar topluluğu içerisinde amaç

fonksiyonunu iyileştirecek bir nokta arar. Algoritma gözü oluştururken:

i).Örnek vektörlerini göz boyutu[mesh size] denilen bir skalerle çarpar.

ii).Sonuç vektörlerini bulunulan noktaya yani önceki basamaktaki çözüm noktasına

ekler. Böylece her basamakta algoritma çalışılan gözdeki noktaları amaç fonksiyonunda yerine koyarak hangisinin fonksiyonu iyileştirdiğine karar verir. Varsayılan olarak mesh içinde amaç fonksiyonunu iyileştiren bir nokta bulunduğunda değerlendirme sonlandırılır. Böyle sonlandırılan değerlendirme başarıyla sonlandırılmış olur.

3.5.5 Adaptif Örnek Aratma Algoritması

Algoritmanın temel mantığı: her özellik (değişken) her bireyde iyi değildir, bireylerin güçlü oldukları yanları birleştirerek yeni birey oluşturma esasına dayanmaktadır. Yöntemin avantajı, iyi olduğu düşünülen 2 bireyden ziyade bir topluluk tarafından yeni bireyin oluşturulmasıdır.

Bu yöntem, yerel arama algoritması olarak kullanılmış ve bazı noktalarda örnek aratma algoritmasından esinlenilerek literatüre ilk kez bu tez çalışması ile kazandırılmıştır. Algoritmanın temel mantığı içerisinde farklı olduğu nokta, yeni bireyin oluşmasında bireylerin çaprazlanmasıdır. Genel olarak çaprazlama yöntemleri 2 birey arasında olmakta ve oluşan yeni birey tamamen bu bireylerden meydana getirilmektedir. Bu yöntemin kazandırdığı bakış açısı, oluşacak bireyin sadece 2 bireyden meydana gelmemesidir. Yeni birey birçok bireyden türetilmektedir. Literatürde yapılan eşleşmeler incelenecek olunursa, eşleşme havuzu matrisi içerisinden seçilen 2 satır (birey) farklı yöntemlerle çaprazlanmaktadır. Bu yöntemle matris içerisinde ki sutunlardan (değişkenlerden) seçilme işlemi yapılmaktadır. Bireyin her değişkeni için bireylerin oluşturduğu matrisin sutun bölümlerinden seçilme yapılmaktadır.

Yerel arama algoritması olarak düşünülmüş olan bu algoritma iyi olduğu düşünülen bireyin bütün değişkenleri etrafında belirli aralıkta belirli sayıda örnekleme yaparak yeni bir havuz meydana getirmekte ve oluşan bu havuz içerisinden yukarıdaki yöntem ile yeni bireyler seçilmektedir. Seçilen bireylerin hesaplanan uygunluk değerleri kendilerinin meydana getirilmesine sebep olan iyi bireyin uygunluk değeri ile karşılaştırılmaktadır. Eğer daha uygun bir nokta elde edilmiş ise arama alanı 2 katına çıkarılmakta, aksi halde ise arama alanı yarıya düşürülmektedir. Bu durum başlangıçta belirlenmiş olan arama alanı sınır değerlerine kadar devam etmektedir. Sınır değerlerinin aşılması durumunda ise; sınır değerler arasında yeniden bir değer atanmaktadır. Algoritma bu şekilde belirlenen iterasyon sayısına ulaşınca sona ermektedir.

3.5.6 Nelder-Mead Simpleks Algoritması

Bu metot, Nelder ve Mead tarafından oluşturulan birkaç değişken fonksiyonun yerel minimum noktasını bulmak için kullanılan bir simplex metodudur. İki değişken için, simplex bir üçgen oluşturur ve bu üçgenin üç köşe noktalarındaki fonksiyon değerlerini karşılaştıran örnek araştırma metodudur.

F(x,y) fonksiyon değerinin en büyük olduğu yer olan tepe değeri reddedilir ve yeni bir tepe değer tayin edilir. Böylece yeni bir üçgen oluşturulur ve araştırmaya devam edilir.

Köşe noktalardaki fonksiyon değerinin küçülmesini sağlayan değerleri bulabilmek için, süreç farklı şekiller alabilecek olan bir üçgenler dizisi meydana getirir.

Üçgenin boyutları küçültülür ve minimum noktaların koordinatları bulunur. Algoritma, simplex terimini kullanarak oluşturulmuştur ve bu algoritma N değişkenleri fonksiyonun minimum noktasını buldurur. (N boyutta genelleştirilmiş bir üçgen.). Bu, hesaplamayla oluşturulmuştur ve etkili bir çözümdür.

Nelder-Mead algoritması, $X \in \Re^n$ olmak üzere reel değerli bir fonksiyonun minimizasyonu için gerçekleştirilmiştir. Nelder-Mead metodunda dört adet skaler parametre tanımlanması gerekirü, bunlar: Yansıma katsayısı (ρ), genişleme (χ), daralma (γ) ve büzülmedir (σ).Nelder-Mead tarafından yayımlanan orijinal bildiride bu parametreler şu şekilde tanımlanmıştır: (Cengiz 2004):

$$\rho > 0, \ \chi > 1, \ 0 < \gamma < 1 \ ve \ 0 < \sigma < 1$$
 (3.25)

Yaygın olarak bu parametreler (3.26)'teki gibi seçilmektedir:

$$\rho = 1, \chi = 2, \gamma = 1/2 \text{ ve } \sigma = 1/2$$
 (3.26)

k. iterasyon başladığında n+1 adet uç nokta boyunca bozulmamış bir simpleks Δk oluşturulur. Bu, $X_1^{(k)}, \ldots, X_{n+1}^{(k)}$, şeklinde k. iterasyon sonunda sıralandırılır.

$$f_1^{(k)} \le f_2^{(k)} \le \dots \le f_{n+1}^{(k)}, \tag{3.27}$$

Burada $f_i^{(k)} = f(x_i^{(k)})$ dır.

k. iterasyon, bir sonraki iterasyon için $(\Delta_{k+1} \neq \Delta_k)$ farklı bir simpleks olarak tanımlanan n+1 adet uç noktası takımı üretir. Bu işlemdeki amaç, f fonksiyonunun minimum değerini bulmaktır. $x_1^{(k)}$, en iyi uç veya nokta; $x_{n+1}^{(k)}$, en kötü nokta ve $x_n^{(k)}$ ise bir sonraki en kötü nokta olarak adlandırılır. Benzer şekilde $f_{n+1}^{(k)}$, en kötü fonksiyon değeridir.

1965'teki bildiri, Nelder-Mead algoritmasının yorumunda farklılıklara neden olan bağ kırılması ve eşitsizliğin değişmezliği hakkında pek çok belirsizlikler içerir. Nelder-Mead algoritması olarak adlandırılan metod, iyi tanımlanmış bağ-kırılma kurallarını ve aşağıda verilen ve adım üçteki yansıtılmış ve genişletilmiş noktaların daha iyi olarak kabul edilmesini içerir. Karışıklığı ortadan kaldırmak için k katsayısının ihmal edilmesi, bir tekli generic iterasyon özelliğidir. Her iterasyonun sonucu ya (1) gelecek iterasyonun uç noktalarının oluşturulmasında yer alan x_{n+1} yeni bir tekil tepe noktasıdır ya da eğer bir azalma varsa gelecek iterasyonda simpleksi x_1 ile beraber şekillendiren yeni n noktalarının bir oluşumudur.

Nelder-Mead algoritması aşağıdaki adımlardan oluşur.

3.5.6.1 Sıralama

Bağ-kırılma kanunu kullanılarak n+1 adet uç için fonksiyonun değerleri $f_{(X_1)} \leq f_{(X_2)} \leq \dots \leq f_{(X_{n+1})}$, şeklinde sıralanır.

3.5.6.2 Yansıma

Yansıma noktası x_r (3.28) nolu formülden hesaplanır.

$$x_{r} = \bar{x} + \rho(\bar{x} - x_{n+1}) = (1 + \rho)\bar{x} - \rho x_{n+1}, \qquad (3.28)$$

Burada \overline{x} , șu formül ile ifade edilir: $\overline{x} = \sum_{i=1}^{n} x_i / n$, yani en iyi noktaların merkezidir.

Eğer $f \le f_r < f_n$ ise yansıma noktası x_r istenilen değerdedir ve iterasyon sona erdirilir.

3.5.6.3 Genişleme

Eğer $f_r < f_1$ ise genişleme noktası x_e hesaplanır.

$$x_{e} = \bar{x} + \chi(x_{r} - \bar{x}) = \bar{x} + \rho \chi(\bar{x} - x_{n+1}) = (1 + \rho \chi) \bar{x} - \rho \chi x_{n+1}, \qquad (3.29)$$

Eğer $f_e < f_r$ ise x_e genişleme noktası istenilen değerdedir ve iterasyon sona erdirilir. Küçülme

Eğer $f_r \ge f_n$ ise \overline{x} ile x_{n+1} ve x_r 'in daha iyi olanı arasında bir küçülme işlemi yapmak gerekir.

3.5.6.3.1 Dış

Eğer $f_n \le f_r < f_{n+1}$ ise dış küçülme gerçekleştirilir. Bu işlem için x_c büzülme noktası (3.30)'deki formül ile hesaplanır:

$$x_{c} = \bar{x} + \chi(x_{r} - \bar{x}) = \bar{x} + \gamma \rho(\bar{x} - x_{n+1}) = (1 + \rho \gamma)\bar{x} - \rho \gamma x_{n+1}, \qquad (3.30)$$

Eğer $f_c \leq f_r$ ise x_c 'nin değeri uygun değeri kabul edilir ve iterasyon sona erer. Bir başka ifade ile büzülme işlemine geçilir.

3.5.6.3.2 İç

Eğer $f_r \ge f_{n+1}$ ise iç küçülme yapılmalıdır. Bu amaçla x_{cc} hesaplanır.

$$x_{cc} = \bar{x} - \gamma(\bar{x} - x_{n+1}) = (1 - \gamma)\bar{x} + \gamma x_{n+1},$$
(3.31)

Eğer $f_{cc} < f_{n+1}$ ise iterasyon sona erdirilir ve büzülme işlemine geçilir.

3.5.6.4 Büzülme

Büzülme işlemi için n adet noktada $(v_i = x_1 + \sigma(x_i - x_1), i=2,...,n+1)$ f fonksiyonunun değeri hesaplanır. Bir sonraki iterasyonda simpleksin uç noktaları $x_1, v_2, ..., v_{n+1}$ 'den oluşur.

Standart katsayılar kullanılarak ($\rho=1$, $\chi=2$, $\gamma=1/2$ ve $\sigma=1/2$) iki boyutlu (bir üçgen) bir simpleks

için yansıma, genişleme, küçülme ve büzülmenin etkileri Şekil 3.27 ve 3.28'te görülmektedir. Şekillerden büzülme işlemi hariç yeni bir uç noktanın daima \overline{x} ile x_{n+1} 'i birleştiren doğru üzerinde uzandığına dikkat etmek gerekir. Dahası standart katsayılar ile bir genişleme veya küçülme işleminde simpleksin şeklinin göze çarpan bir değişime uğradığı görülmektedir.

Nelder-Mead'in bildirilerinde fonksiyon değerlerinin eşit olduğu durumlarda noktaların nasıl sıralanacağı açıklanmamıştır. Bu durumda $f(x_1^{(k+1)}) \le f(x_2^{(k+1)}) \le \dots \le f(x_{n+1}^{(k+1)})$ ilişkisi ile yeni uç noktayı belirleyen bir sonraki bağ-kırılma kuralları uygulanır.

Şekil 3.30. Yansıma ve genişleme adımından sonra Nelder-Mead simpleksleri (Orjinal simpleks kesikli çizgi ile gösterilmiştir)

Şekil 3.31 Dış küçülme, iç küçülme ve büzülmeden sonra Nelder-Mead simpleksleri (Orjinal simpleks kesikli çizgi ile gösterilmiştir)

3.5.6.4.1 Büzmeme Sıralama Kuralı

Bir büzülmeme adımı gerçekleştiği zaman en kötü uç nokta olan $x_{n+1}^{(k)}$ noktası, atılır. k. iterasyonda oluşturulan nokta, yeni bir uç nokta olur ve Δ_{k+1} 'in uç noktalarında j+1 pozisyonunu alır.

$$j = \max_{0 \le \ell \le n} \left\{ \ell \left| f(v^{(k)}) < f(x^{(k)}_{\ell+1}) \right\} \right\}$$
(3.32)

Diğer tüm uç noktalar k. iterasyondan nisbi sıralama oluştururlar.

Eğer bir büzülme meydana gelirse, Δ_{k+1} 'dan Δ_k 'ya aktarılan tek uç nokta, $x_1^{(k)}$ noktasıdır. $x_1^{(k)}$ ve bir veya daha fazla yeni noktanın en iyi nokta olarak bağlanması durumunda yalnızca bir adet bağ-çözümü kuralı belirlenir. Eğer $\min\{f(v_i^{(k)}),...,f(v_{n+1}^{(k)})\}=f(x_1^{(k)})$, ise $x_1^{(k+1)}=x_1^{(k)}$ olur. Bunun ötesinde orijinal sıralamanın tanımı için hangi kural kullanılırsa kullanılısın büzülme sonrası uygulanabilir. Bir uç noktanın en küçük indeksi şeklinde k iterasyonunun k^{*} değiştirme indeksi belirlenir.

$$k^* = \min\{i | x_i^{(k)} \neq x_i^{(k+1)}\},\tag{3.33}$$

Eğer $1 < k^* \le n$ ise iterasyon 2. adımda; $k^* = 1$ ise 3. adımda; $1 \le k^* \le n+1$ ise 4. adımda ve $k^* = 1$ veya 2 ise iterasyon 5. adımda sona erdirilir.

3.5.6.5 Memetik Agoritma Örneği

Min

25

 $F(x) = x^2$ fonksiyonunu $0 < x \le 31$ olsun. F(x) 'in maksimizasyonu problemini Memetik algoritma yöntemi ile çözelim. Aşağıdaki örnekte bütün seçme işlemleri ve çaprazlama yöntemleri ayrı ayrı gerçekleştirilecek ve adaptif aratma yöntemi ile yerel arama yapılacaktır. Çözümdeki popülasyon büyüklüğümüz N=8, yığınımızdaki birey sayımız 15 olsun. İlk olarak x sayısının kodlanması işlemi yapılmalıdır. x'in 0 ve 1'lerden oluşan 2 tabanındaki gösterilimi kullanılacaktır. Dolayısıyla x, 5 bit uzunluğunda bir kodla (string) temsil edilecektir. Öyle ki 0: "00000" ve 31: "11111" olacaktır (Cengiz, 2004).

Popülasyon büyüklüğümüz 8 olarak seçilmiştir. Popülasyonu oluşturacak olan bireylerin her biri 5 bit ile gösterilmektedir. Popülasyonu oluşturmak için 40 defa yazı tura atılmış elde edilen sonuçların oluşturduğu bireyler aşağıda gösterilmiştir.

Birey	Değer	$f_i = x^2$	$m_i = f_i / f_{ort}$	$f_i\!/f_{Toplam}$	Derece olarak	$\sum f_i$
10101	21	441	1,78	0,22	79,2 [°]	0,22
11001	25	625	2,52	0,32	115,2°	0,54
00111	07	49	0,19	0,03	10.8 [°]	0,57
00101	05	25	0,10	0,01	3,6°	0,58
10011	19	361	1,46	0,18	64,8 [°]	0,76
01100	12	144	0,58	0,07	25,2°	0,83
01001	09	81	0,32	0,04	14,4°	0,87
10000	16	256	1,03	0,13	46,8 [°]	1,00
Toplam	1982	•				
Ortalama	247,25					
Max	625					

Çizelge 3.6 Bireyler, fonksiyon değerleri ve uygunluk değerleri
Birey 1: 1 0 1 0 1= 21	Birey 5: 1 0 0 1 1= 19
Birey 2: 1 1 0 0 1= 25	Birey 6: 0 1 1 0 0= 12
Birey 3: 0 0 1 1 1= 07	Birey 7: 0 1 0 0 1= 09
Birey 4: 0 0 1 0 1= 05	Birey 8: 1 0 0 0 0= 16

Çizelge 3.7. Bireylerin ebeveyn olarak seçile sayıları

Birey	Rulet Çarkı	Arta Kalan	Stokastic	Turnuva Yöntemi
			Uniform	
10101	2	2	2	1
11001	3	2	3	2
00111	0	1	0	0
00101	0	0	0	0
10011	1	1	2	1
01100	0	1	0	2
01001	1	0	0	1
10000	1	1	1	1

Şekil 3.32. Bireylerin popülasyon içerisindeki yüzdelik dilimlerinin gösterimi

3.5.6.5.1 Rulet Çarkı İle Seçme

Yukarıdaki Rulet 8 defa döndürülmesi sonucunda Tablodaki rulet çarkı kısmı elde edilmiştir.

Tablodan:

8. Birey: 1 0 0 0 0	1 kez gelmiştir.
7. Birey: 0 1 0 0 1	1 kez
5. Birey: 1 0 0 1 1	1 kez
2. Birey: 1 1 0 0 1	3 kez
1. Birey: 1 0 1 0 1	2 kez

Yapılan rasgele eşleştirmeler sonucunda, bu eşleştirilmede aynı bireylerin kendileriyle eşleşmemesine dikkat edilerek, aşağıdaki eşleşmeler elde edilmiştir:

10101	Х	11001	1. Birey X 2. Birey
11001	Х	10011	2. Birey X 5. Birey
11001	Х	$1\ 0\ 0\ 0\ 0$	2. Birey X 8. Birey
01001	Х	10101	7. Birey X 1. Birey

Dağılmış Parametreli Çaprazlama Uygulanırsa

10110 Uygulanacak seri 1: 1. bireyden alınacak; 0: 2. bireyden alınacak

10101	Х	1 1 0 0 1 =1 1 1 0 1 = 29
11001	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 0 \ 0 \ 0 \ 1 = 17$
11001	Х	$1 \ 0 \ 0 \ 0 \ 0 = 1 \ 0 \ 0 \ 0 = 16$
01001	Х	1 0 1 0 1 = 0 0 0 0 1 = 0 1

Tek Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktası = 2)

10101	Х	1 1 0 0 1 =1 0 0 0 1 = 17
11001	Х	1 0 0 1 1 =1 1 0 1 1 = 27
11001	Х	$1 \ 0 \ 0 \ 0 \ 0 = 1 \ 1 \ 0 \ 0 \ 0 = 24$
01001	Х	1 0 1 0 1 = <mark>0 1</mark> 1 0 1 = 13

Çift Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktaları = 2 ve 4)

10101	Х	$1\ 1\ 0\ 0\ 1=1\ 0\ 1\ 0\ 1=21$
11001	Х	1 0 0 1 1 =1 1 0 0 1 = 25
11001	Х	$1 \ 0 \ 0 \ 0 \ 0 = 1 \ 1 \ 0 \ 0 \ 0 = 24$
01001	Х	1 0 1 0 1 =1 1 0 0 1 = 25
Heuristic Ça	aprazlar	na Uygulanırsa (oran = 1,2)
Cocuk = ana	• ⊥ P *	(haha - ana).
çocuk – un	$1 \perp \mathbf{V}$	(baba - alla),
10101	X	$1 \ 1 \ 0 \ 0 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$
10101 11001	X X X	$1 \ 1 \ 0 \ 0 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$ $1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$
çocuk = unk 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1	X X X X	$1 \ 1 \ 0 \ 0 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$ $1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$ $1 \ 0 \ 0 \ 0 \ 0 = 1 \ 1 \ 0 \ 1 \ 1 = 27$

Havuz Çaprazlama Uygulanırsa oluşturulan havuz aşağıdaki gibidir.

1.birey: 1 0 1 0 1; 2.birey: 1 0 1 0 1; 3.birey: 1 1 0 0 1; 4.birey: 1 1 0 0 1;
5.birey: 1 1 0 0 1; 6.birey: 1 0 0 1 1; 7.birey: 0 1 0 0 1; 8.birey: 1 0 0 0 0
Burada oluşturulacak olan çocuğun her bir kromozomu havuz içerisinden rasgele seçilerek elde edilir. Üretilecek çocuklar için:

Çocuk1: 2.birey 5. birey 4.birey 8.birey 7.birey Çocuk2: 5.birey 7. birey 3.birey 1.birey 8.birey Çocuk3: 8.birey 6. birey 7.birey 4.birey 2.birey Çocuk4: 1.birey 3. birey 2.birey 6.birey 4.birey

 $\begin{aligned} & \text{Çocuk1: 1 1 0 0 1 = 25} \\ & \text{Çocuk2: 1 1 0 0 0 = 24} \\ & \text{Çocuk3: 1 0 0 0 1 = 17} \\ & \text{Çocuk4: 1 1 1 1 = 31} \end{aligned}$

3.5.6.5.2 Arta Kalan ile Seçme

Bu yöntem $m_i = f_i / f_{ort}$ formülünden yola çıkmaktadır. Yine asıl amaç olasılığı az olan fonksiyona şans tanıyıp algoritmanın yerel noktalara takılmasını engellemektir. Olasılığı düşük bireylere şans verebilmek için virgülden sonraki kısım düşünülmüştür. Başlangıçta her birey kendi m_i değeri kadar ebeveyn olma şansına

sahiptir. Eğer bu durumda yığın dolmamış ise m_i değerlerinin ondalık kısımları Rulet Çarkına yerleştirilmek suretiyle yığın doldurulmaktadır.

 $m_1 = 1, 78$ $m_2 = 2, 52$ $m_3 = 0, 19$ $m_4 = 0, 10$ $m_5 = 1, 46$ $m_6 = 0, 58$ $m_7 = 0, 32$ $m_8 = 1, 03$

ilk olarak 1. Birey: 1

- 2. Birey: 2
- 5. Birey: 1
- 8. Birey: 1

defa kopyalanacaktır. Geri kalan kısım Rulet Çarkına tabi tutulunca:

Şekil3.33. Uygunluk değerlerinin ondalık kısımlarının rulet çarkında gösterimi

Rulet Çarkından gelen 3 birey şunlar olduğu varsayılmaktadır:

- 1. Birey: 1 Adet
- 3. Birey: 1 Adet
- 6. Birey: 1 Adet

Sonuçta:

- 1. Birey: 2 Adet
- 2. Birey: 2 Adet
- 3. Birey: 1 Adet
- 5. Birey: 1 Adet
- 6. Birey: 1 Adet
- 8. Birey: 1 Adet

1 Birev: 10101 2 kez

alınmıştır. Sonuçta havuzumuzda 1'inci ve 2'inci birey 2 defa kopyalanacak edilecek,3'üncü,5'inci,6'ncı ve 8'inci bireyler 1'er defa kopyalanarak eşleşme havuzu oluşturulacaktır.

Buradaki Anne ve Baba seçimlerinden sonra yapılan eşleştirme sonucunda aşağıdaki eşler elde edilmiştir. Bu eşleşmeler rastsal olmakla birlikte aynı bireylerin kendileri ile eşleşmemesine dikkat edilmektedir.

1. Difey. 1 (101	2 ROL			
2. Birey: 1 1	001	2 kez			
3. Birey: 0 0)111	1 kez			
5. Birey: 1 (011	1 kez			
6. Birey: 0 1	100	1 kez			
8. Birey: 1 (0000	1 kez			
10101	Х	00111	1. Birey	Х	3. Birey
1 1 0 0 1	Х	10011	2. Birey	Х	5. Birey
01100	Х	10101	6. Birey	Х	1. Birey
11001	Х	$1\ 0\ 0\ 0\ 0$	2. Birey	Х	8. Birey

Eşleşme Havuzu Sonuçları yukarıdadır.

Dağılmış Parametreli Çaprazlama Uygulanırsa

10110 Uygulanacak seri 1: 1. bireyden alınacak; 0: 2. bireyden alınacak

10101	Х	0 0 1 1 1 =1 0 1 0 1 = 21
11001	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 0 \ 0 \ 0 \ 1 = 17$
01100	Х	1 0 1 0 1 =0 0 1 0 1 = 05
11001	Х	$1\ 0\ 0\ 0\ 0=1\ 0\ 0\ 0=16$

Tek Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktası = 2)

10101	Х	0 0 1 1 1 =1 0 1 1 1 = 23
11001	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 1 = 27$
01100	Х	1 0 1 0 1 =0 1 1 0 1 = 13
11001	Х	$1\ 0\ 0\ 0\ 0 = 1\ 1\ 0\ 0\ 0 = \ 24$

Çift Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktaları = 2,4)

10101	Х	0 0 1 1 1 =1 0 1 1 1 = 23
11001	Х	1 0 0 1 1 =1 0 0 1 1 = 19
01100	Х	1 0 1 0 1 =0 0 1 0 0 = 04
11001	Х	$1 \ 0 \ 0 \ 0 \ 0 = 1 \ 0 \ 0 \ 0 \ 1 = \ 17$

Heuristic Çaprazlama Uygulanırsa (Oran = 1,2) Çocuk = ana + R * (baba - ana);

10101	Х	0 0 1 1 1 =1 1 0 0 0 = 24
11001	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$
01100	Х	1 0 1 0 1 =1 0 1 1 1 = 23
11001	Х	1 0 0 0 0 =1 0 1 1 1 = 23

Havuz Çaprazlama Uygulanırsa oluşturulan havuz aşağıdaki gibidir.

Burada oluşturulacak olan çocuğun her bir kromozomu havuz içerisinden rasgele seçilerek elde edilir. Üretilecek çocuklar için

Çocuk1: 2.birey 5. birey 4.birey 8.birey 7.birey Çocuk2: 5.birey 7. birey 3.birey 1.birey 8.birey Çocuk3: 8.birey 6. birey 7.birey 4.birey 2.birey Çocuk4: 1.birey 3. birey 2.birey 6.birey 4.birey

 $\begin{aligned} & \text{Çocuk1: } 1 \ 0 \ 0 \ 0 \ 0 = 16 \\ & \text{Çocuk2: } 0 \ 1 \ 0 \ 0 \ 0 = 08 \\ & \text{Çocuk3: } 1 \ 0 \ 1 \ 0 \ 1 = 21 \\ & \text{Çocuk4: } 1 \ 1 \ 1 \ 1 = 31 \end{aligned}$

3.5.6.5.3 Stochastic Uniform İle Seçme

Bu seçme yönteminde rulet çemberi 8 eşit parçaya bölünür. 360⁰/8=45⁰ aralıklarla noktalar yerleştirilir. Noktaların bulundukları açılar şunlardır

- 1. noktanın olduğu yer 1^0 , (1.birey)
- 5. noktanın olduğu yer 181^0 (2.birey)
- 2. noktanın olduğu yer 46° , (1.birey)
- 3. noktanın olduğu yer 91° , (2.birey)
 - iugu yer yr , (2.0ney) 7. noktanni
- 4.noktanın olduğu yer 136⁰ (2.birey)
- 6. noktanın olduğu yer 226° (5.birey)
- 7. noktanın olduğu yer 271° (5.birey)
- 8.noktanın olduğu yer 316^0 (8.birey)

Şekil 3.34. Bireylerin yüzdelik dilimlerinin ve seçilen bireylerin gösterimi

Yukarıdan da anlaşılacağı gibi:

- 1. Birey: 1 0 1 0 12 kez2. Birey: 1 1 0 0 13 kez5. Birey: 1 0 0 1 12 kez
- 8. Birey: 1 0 0 0 0 1 kez

olmak üzere eşleştirme havuzuna atılacaklardır.

Yapılan rasgele eşleştirme sonucunda aşağıdaki sonuçlar elde edilmiştir. Bu eşleştirmede aynı bireylerin kendileriyle eşleşmemeleri esas alınmıştır.

11001	Х	10101	2. Birey X 1. Birey
11001	Х	10011	2. Birey X 5. Birey
$1\ 0\ 0\ 0\ 0$	Х	1 1 0 0 1	8. Birey X 2. Birey
10011	Х	10101	5. Birey X 1. Birey

Dağılmış Parametreli Çaprazlama Uygulanırsa

 $1 \ 0 \ 1 \ 1 \ 0$ Uygulanacak seri 1: 1. bireyden alınacak; 0: 2. bireyden alınacak $1 \ 1 \ 0 \ 0 \ 1$ X $1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 0 \ 0 \ 1 = 17$ $1 \ 1 \ 0 \ 0 \ 1$ X $1 \ 0 \ 0 \ 1 \ 1 = 1 \ 0 \ 0 \ 0 \ 1 = 17$

$1\ 0\ 0\ 0\ 0$	Х	$1\ 1\ 0\ 0\ 1 = 1\ 1\ 0\ 0\ 1 = 25$
10011	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 0 \ 1 \ 1 = 19$

Tek Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktası = 2)

11001	Х	1 0 1 0 1 = 1 1 1 0 1 = 29
11001	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 1 = 27$
$1\ 0\ 0\ 0\ 0$	Х	$1 \ 1 \ 0 \ 0 \ 1 = 1 \ 0 \ 0 \ 0 \ 1 = 17$
10011	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 1 \ 0 \ 1 = 21$

Çift Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktaları = 2,4)

11001	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 1 \ 0 \ 1 = 21$
1 1 0 0 1	Х	1 0 0 1 1 = 1 0 0 1 1 = 19
$1\ 0\ 0\ 0\ 0$	Х	$1 \ 1 \ 0 \ 0 \ 1 = 1 \ 1 \ 0 \ 0 \ 0 = 24$
10011	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 1 \ 0 \ 1 = 21$

Heuristic Çaprazlama Uygulanırsa (Oran = 1,2)

Çocuk = ana + R * (baba - ana);

11001	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$
1 1 0 0 1	Х	$1 \ 0 \ 0 \ 1 \ 1 = 1 \ 1 \ 0 \ 1 \ 0 = 26$
$1\ 0\ 0\ 0\ 0$	Х	1 1 0 0 1 = 1 1 0 1 1 = 27
10011	Х	$1 \ 0 \ 1 \ 0 \ 1 = 1 \ 0 \ 1 \ 0 \ 1 = 21$

Havuz Çaprazlama Uygulanırsa oluşturulan havuz aşağıdaki gibidir.

Burada oluşturulacak olan çocuğun her bir kromozomu havuz içerisinden rasgele seçilerek elde edilir. Üretilecek çocuklar için

3.5.6.5.4 Turnuva Yöntemi İle Seçme

8 adet bireyden rasgele seçimler sonucunda aşağıdaki durumun ortaya çıktığı varsayılmaktadır. Bu yöntemde turnuva popülasyon sayısı 3,turnuva sayısı 4 olarak alınmıştır.

Turnuva içerisindeki uygunluk değeri en büyük olan bireyler aşağıdaki gibi oluşmuştur.

8. Birey	:1	0	0	0	0	1	kez
7. Birey	: 0	1	0	0	1	1	kez
6. Birey	: 0	1	1	0	0	2	kez
5. Birey	: 1	0	0	1	1	1	kez
2. Birey	: 1	1	0	0	1	2	kez
1. Birey	:1	0	1	0	1	1	kez

Yapılan rasgele eşleştirme sonucunda aşağıdaki sonuçlar elde edilmiştir. Bu eşleştirmede aynı bireylerin kendileriyle eşleşmemeleri esas alınmıştır.

1	1 0 0 1	Х	0 1 1 0 0	2. Birey X	6. Birey
1	1 0 0 1	Х	0 1 0 0 1	2. Birey X	7. Birey

0 1 1 0 0	Х	1 0 1 0 1	6. Birey X 1. Birey
$1 \ 0 \ 0 \ 0 \ 0$	Х	1 0 0 1 1	8. Birey X 5. Birey

Dağılmış Parametreli Çaprazlama Uygulanırsa

1 0 1 1 0 Uygulanacak seri 1 : 1. bireyden alınacak 0 : 2. bireyden alınacak

$1 \ 1 \ 0 \ 0 \ 1 \ \mathbf{X} \ 0 \ 1 \ 1 \ 0 \ 0$	$=1 \ 1 \ 0 \ 0 \ = 24$
1 1 0 0 1 X 0 1 0 0 1	= 1 1 0 0 1 = 25
0 1 1 0 0 X 1 0 1 0 1	$= 0 \ 0 \ 1 \ 0 \ 1 = 05$
1 0 0 0 0 X 1 0 0 1 1	$=1 \ 0 \ 0 \ 0 \ 1 \ = 17$

Tek Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktası = 2)

1	1 0	0 1 X 0	1 1 0 0	=1 1 1 0 0	= 28
1	1 0	0 1 X 0	1 0 0 1	=1 1 0 0 1	= 25
0	1 1	0 0 X 1	0 1 0 1	=0 1 1 0 1	= 13
1	0 0	0 0 X 1	0 0 1 1	=1 0 0 1 1	= 19

Çift Noktalı Çaprazlama Uygulanırsa (Çaprazlama Noktaları = 2,4)

$1 \ 1 \ 0 \ 0 \ 1 \ \mathbf{X} \ 0 \ 1 \ 1 \ 0 \ 0$	=1 1 1 0 1 $=$ 29
1 1 0 0 1 X 0 1 0 0 1	= 1 1 0 0 1 = 25
0 1 1 0 0 X 1 0 1 0 1	= 0 0 1 0 0 = 08
1 0 0 0 0 X 1 0 0 1 1	$=1 \ 0 \ 0 \ 1 \ 0 \ = 18$

Heuristic Çaprazlama Uygulanırsa (Oran = 1,2)

Cocuk = ana + R * (baba - ana);

 $1 \ 1 \ 0 \ 0 \ 1 \ X \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ = \ 16$

1 1 0 0 1 X 0 1 0 0 1	= 0 1 1 0 1 = 13
0 1 1 0 0 X 1 0 1 0 1	= 0 1 1 1 1 = 15
1 0 0 0 0 X 1 0 0 1 1	= 1 0 0 0 1 = 17

Havuz Çaprazlama Uygulanırsa oluşturulan havuz aşağıdaki gibidir.

1.birey	:	1	0	1	0	1
2.birey	:	1	1	0	0	1
3.birey	:	1	1	0	0	1
4.birey	:	1	0	0	1	1
5.birey	:	0	1	1	0	0
6.birey	:	0	1	1	0	0
7.birey	:	0	1	0	0	1
8.birey	:	1	0	0	0	0

Burada oluşturulacak olan çocuğun her bir kromozomu havuz içerisinden rasgele seçilerek elde edilir. Üretilecek çocuklar için

Çocuk1 : 2.birey	5. birey	4.birey	8.birey	7.birey
Çocuk2 : 5.birey	7. birey	3.birey	1.birey	8.birey
Çocuk3 : 8.birey	6. birey	7.birey	4.birey	2.birey
Çocuk4 : 1.birey	3. birey	2.birey	6.birey	4.birey

Çocuk1 :	1	1	0 0	1	= 2	25
Çocuk2 :	0	1	0 0	0	= ()8
Çocuk3 :	1	1	0 1	1	= 2	27
Çocuk4 :	1	1	0 0	1	= 2	25

			SEÇME YÖNTEMLERİ								
	Çocuk	Rulet Çarkı	Arta kalan	Stokastik	Turnuva						
			(Reminder)	Uniform							
	Dağılmış	11101 = 29	10101 = 21	10001 = 17	11000 = 24						
	Parametreli	10001 = 17	10001 = 17	10001 = 17	11001 = 25						
	(scattered)	10000 = 16	01101 = 13	11001 = 25	00101 = 05						
		00001 = 01	11000 = 24	10011 = 19	10001 = 17						
	Tek Noktalı	10001 = 17	10111 = 23	11101 = 29	11100 = 28						
		11011 = 27	11011 = 27	11011 = 27	11001 = 25						
		11000 = 24	01101 = 13	10001 = 17	01101 = 13						
		01101 = 13	11000 = 24	10101 = 21	10011 = 19						
٨İ	Çift noktalı	10101 = 21	10111 = 23	10101 = 21	11101 = 29						
LEF		11001 = 25	10011 = 19	10011 = 19	11001 = 25						
ſEM		11000 = 24	00100 = 04	11000 = 24	00100 = 08						
ÖNT		11001 = 25	10001 = 17	10101 = 21	10010 = 18						
AY	Heuristic	11010 = 26	11000 = 24	11010 = 26	10000 = 16						
AM		11010 = 26	11010 = 26	11010 = 26	01101 = 13						
AZI		11011 = 27	10111 = 23	11011 = 27	01111 = 15						
APR		10111 = 23	10111 = 23	10101 = 21	10001 = 17						
C	Havuz	11001 = 25	10000 = 16	11001 = 25	11001 = 25						
		11000 = 24	01000 = 08	10000 = 16	01000 = 08						
		10001 = 17	10101 = 21	10001 = 17	11011 = 27						
		11111 = 31	11111 = 31	11111 = 31	11001 = 25						

Çizelge 3.8. Bireyler, seçme yöntemleri ve çaprazlama yöntemleri içerisinde ki değerleri

Şimdi oluşan çocuklarla, başlangıç popülasyonunu yeni bir popülasyonda birleştirmeliyiz.

		SEÇME YÖNTEMLERİ							
	Yeni	Rulet Çarkı	Arta kalan	Stokastik	Turnuva				
	Popülasyon		(Reminder)	Uniform					
	Dağılmış	10101 = 21	10101 = 21	10101 = 21	10101 = 21				
	Parametreli	11001 = 25	11001 = 25	11001 = 25	11001 = 25				
	(scattered)	00111 = 07	00111 = 07	00111 = 07	00111 = 07				
		00101 = 05	00101 = 05	00101 = 05	00101 = 05				
		10011 = 19	10011 = 19	10011 = 19	10011 = 19				
		01100 = 12	01100 = 12	01100 = 12	01100 = 12				
		01001 = 09	01001 = 09	01001 = 09	01001 = 09				
		10000 = 16	10000 = 16	10000 = 16	10000 = 16				
		11101 = 29	10101 = 21	10001 = 17	11000 = 24				
		10001 = 17	10001 = 17	10001 = 17	11001 = 25				
		10000 = 16	01101 = 13	11001 = 25	00101 = 05				
		00001 = 01	11000 = 24	10011 = 19	10001 = 17				
	Tek Noktalı	10101 = 21	10101 = 21	10101 = 21	10101 = 21				
		11001 = 25	11001 = 25	11001 = 25	11001 = 25				
		00111 = 07	00111 = 07	00111 = 07	00111 = 07				
		00101 = 05	00101 = 05	00101 = 05	00101 = 05				
ų		10011 = 19	10011 = 19	10011 = 19	10011 = 19				
LER		01100 = 12	01100 = 12	01100 = 12	01100 = 12				
CEM		01001 = 09	01001 = 09	01001 = 09	01001 = 09				
ÖNJ		10000 = 16	10000 = 16	10000 = 16	10000 = 16				
ΑY		10001 = 17	10111 = 23	11101 = 29	11100 = 28				
AM		11011 = 27	11011 = 27	11011 = 27	11001 = 25				
AZL		11000 = 24	01101 = 13	10001 = 17	01101 = 13				
APR		01101 = 13	11000 = 24	10101 = 21	10011 = 19				
C/	Çift noktalı	10101 = 21	10101 = 21	10101 = 21	10101 = 21				
		11001 = 25	11001 = 25	11001 = 25	11001 = 25				
		00111 = 07	00111 = 07	00111 = 07	00111 = 07				
		00101 = 05	00101 = 05	00101 = 05	00101 = 05				

Çizelge 3.9. Çocukların eklenmesiyle oluşan yeni popülasyonlar ve değerleri

	10011 = 19	10011 = 19	10011 = 19	10011 = 19
	01100 = 12	01100 = 12	01100 = 12	01100 = 12
	01001 = 09	01001 = 09	01001 = 09	01001 = 09
	10000 = 16	10000 = 16	10000 = 16	10000 = 16
	10101 = 21	10111 = 23	10101 = 21	11101 = 29
	11001 = 25	10011 = 19	10011 = 19	11001 = 25
	11000 = 24	00100 = 04	11000 = 24	00100 = 08
	11001 = 25	10001 = 17	10101 = 21	10010 = 18
Heuristic	10101 = 21	10101 = 21	10101 = 21	10101 = 21
	11001 = 25	11001 = 25	11001 = 25	11001 = 25
	00111 = 07	00111 = 07	00111 = 07	00111 = 07
	00101 = 05	00101 = 05	00101 = 05	00101 = 05
	10011 = 19	10011 = 19	10011 = 19	10011 = 19
	01100 = 12	01100 = 12	01100 = 12	01100 = 12
	01001 = 09	01001 = 09	01001 = 09	01001 = 09
	10000 = 16	10000 = 16	10000 = 16	10000 = 16
	11010 = 26	11000 = 24	11010 = 26	10000 = 16
	11010 = 26	11010 = 26	11010 = 26	01101 = 13
	11011 = 27	10111 = 23	11011 = 27	01111 = 15
	10111 = 23	10111 = 23	10101 = 21	10001 = 17
Havuz	10101 = 21	10101 = 21	10101 = 21	10101 = 21
	11001 = 25	11001 = 25	11001 = 25	11001 = 25
	00111 = 07	00111 = 07	00111 = 07	00111 = 07
	00101 = 05	00101 = 05	00101 = 05	00101 = 05
	10011 = 19	10011 = 19	10011 = 19	10011 = 19
	01100 = 12	01100 = 12	01100 = 12	01100 = 12
	01001 = 09	01001 = 09	01001 = 09	01001 = 09
	10000 = 16	10000 = 16	10000 = 16	10000 = 16
	11001 = 25	10000 = 16	11001 = 25	11001 = 25
	11000 = 24	01000 = 08	10000 = 16	01000 = 08
	10001 = 17	10101 = 21	10001 = 17	11011 = 27
	11111 = 31	11111 = 31	11111 = 31	11001 = 25

Bu popülasyonu elde ettikten sonra popülasyon içerisindeki herhangi bir elemanın herhangi bitini değiştirerek mutasyon işlemini gerçekleştirelim. Yeni oluşmuş olan popülasyonun içerisinden örneğin 4. bireyin 2'inci bitini değiştirelim. Tüm yeni popülasyonlarda sıfır olan bu biti bir yapalım. Mutasyonlu bireyi de popülasyonumuza ekledikten sonra eğer durdurma kriterimiz sağlanmamış ise en iyi birey etrafında yerel arama yöntemlerimizi uygulayalım.

		SEÇME YÖNTEMLERİ								
	En İyi Birey	Rulet Çarkı	Arta kalan	Stokastik	Turnuva					
			(Reminder)	Uniform						
	Dağılmış	11101 = 29	11001 = 25	11001 = 25	11001 = 25					
	Parametreli									
÷	(scattered)									
TEMLER	Tek Noktalı	11011 = 27	11011 = 27	11101 = 29	11100 = 28					
A YÖN	Çift noktalı	11001 = 25	11001 = 25	11001 = 25	11101 = 29					
AZLAM	Heuristic	11011 = 27	11010 = 26	11011 = 27	11001 = 25					
CAPR.	Havuz	11111 = 31	11111 = 31	11111 = 31	11011 = 27					

Çizelge 3.10. Döngü sonunda ortaya çıkan en iyi bireyler ve değerleri

3.5.6.6 Adaptif Örnek Aratma Algoritması İle Yerel Arama

Aratma aralığımız en büyük=4, en küçük=0,25 olduğunu örnek sayımızın 1 varsayalım. Bu şartlar ile örneğin seçme yöntemlerinden rulet çarkı yöntemi, çaprazlama yöntemlerinden çift noktalı çaprazlama yöntemi kullanılarak elde edilen birey etrafında Adaptif örnek aratma algoritmasını uygulayalım.

Aratma aralığımız=1 olduğunu varsayalım. Bu durumda elde ettiğimiz yeni bireylerYeni birinci birey=25+1=26 Yeni ikinci birey=25-1=24 olarak elde ederiz.

Bu değerleri uygunluk fonksiyonunda yerine yazarsak elde edeceğimiz değerler f(26)=676, f(24)=576 değerleri elde edilir.

Yeni birinci bireyin uygunluk değeri iyi bireyimizin değerinden daha iyi olduğundan dolayı aratma aralığımızı 2 ile çarparız. Bu durumda yeni aratma aralığımız 2 olur. Yeni birinci bireyi iyi bireyimizin yerine atarız. Bu durumda elde edilen yeni birinci bireyimiz=26+2=28, yeni ikinci birey=26-2=24 olarak elde ederiz. Yeni bireylerin uvgunluk değerleri: f(28)=784, f(24)=576 olarak bulunur. Yeni birinci bireyimizi en iyi birey olarak tekrardan atarız ve daha uygun bir nokta bulduğumuz için aratma aralığımızı 2 ile genişletiriz. Bu durumda aratma aralığımız 4 olur. Yeni birinci birey=28+4=32, yeni ikinci birey=28-4=24 olarak elde ederiz. Dikkat edilecek olunursa yeni birinci birey sınır değerini aşmış durumdadır. Bu durumda aratma aralığını tekrardan belirlemek zorundayız. Yeni aratma aralığımız 1 olarak atandıktan sonra işlemimize kaldığımız yerden devam etmekteyiz. Bu durumda oluşan yeni birinci birey=28+1=29, yeni ikinci birey=28-1=27 olarak elde ederiz. Bu değerleri tekrardan uygunluk fonksiyonunda yerine yazarsak f(29)=841, f(27)=729 değerleri bulunur. Yeni iyi bireyimiz 29'dur ve daha iyi bir birey bulduğumuzdan dolayı aratma aralığımız 2 ile çarpılmaktadır. Bu durumda oluşan yeni birinci birey=29+2=31, yeni ikinci birey=29-2=27'dir. f(31)=961 ve f(27)=729 değerlerinin bulunması sonucunda algoritma maksimum değere ulaşarak durdurulur.

4. BULGULAR

4.1 NE329S01 Transistoru ile Gerçekleştirilen Kuvvetlendirici Sonuçları

4.1.1 Kuvvetlendirici Tasarım Uzayı

En genel halde hat uzunluğu ℓ ve karakteristik empedansından Z₀ oluşan 12 değişkenli bir tasarım değişken uzayı ile $0.5 \text{cm} \langle \ell \langle 15 \text{cm}, 0.5 \Omega \langle Z_0 \rangle 250 \Omega$ sınırlamaları içinde çalışılmıştır. NE329S01 transistorunun I_c=10 mA, V_{CE}=2 V kutuplaması için F_{min}(f)-f (Şekil 7.18) F_{req}=0.46dB seçilmiş ve Vi=1 sınırlamaları içinde maksimum kazanç G_{Tmax} frekans değişimi Şekil 7.18'de verilmiştir. Buna göre "Tasarım Hedef Uzayı" olarak Şekil 7.19'daki G_{Tmax} –f değişim eğrisinden F_{req}=0.46dB, V_{ireq}=1,G_{Treq} =12dB band genişliği B=2-11GHz belirlenmiştir. Ayrıca bu performans hedeflerini gerçekleyen kaynak Z_s ve yük Z_L sonlandırmaları da Şekil 7.20'de verilmiştir.

Şekil 4.1 NE329S01 Transistorunun Ic=10 mA, V_{CE}=2 V kutuplaması için Fmin(f) Değişimi (Güneş, 2002)

Şekil 4.2. NE329S01 Transistorunun F=0,46dB, Vi=1 $G_Tmax(f)$ Değişimi (Koşulları: VCE =2 V; IC= 10 mA Çalışma Band Genişliği : 2 - 18 GHz) (Güneş, 2002)

a) Kaynak Sonlandırmaları

b) Yük Sonlandırmaları

Şekil 4.3. NE329S01 Transistoru için (0,46 dB,1, 12 dB) uyumlu üçlülerinin sonlandırma fonksiyonları (Güneş, 2002)

4.1.2 Giriş Uydurma Devresi Seri Bağlı "T" ve "L" Tipi (Paralel-Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.4. Giriş ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 10 adet ℓ uzunluğu ve 10 adet Z_0 karakteristik empedansı olmak üzere toplam 20 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.1. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)Kazanç (Oran)Simülasyon SonucuMRin (Oran)Simülasyon SonucuGürültü (Oran)Simülasyon Sonucu215,782915,80,12750,1261,10731,11315,589615,50,10410,1071,12871,12416,877916,70,13770,1371,14951,14516,586216,20,08320,0801,16951,17616,282515,80,10520,0981,20811,20714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,789716,70,09200,0971,12661,121016,789716,70,08020,1061,14041,141216,126715,90,08020,1061,14041,14							
(GHz)(Oran)Sonucu(Oran)Sonucu(Oran)Sonucu215,782915,80,12750,1261,10731,11315,589615,50,10410,1071,12871,12416,877916,70,13770,1371,14951,14516,586216,20,08320,0801,16951,17616,282515,80,10520,0981,20811,20714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,833116,60,11200,1121,12241,121016,789716,70,09200,0971,12661,121116,096115,90,11660,1291,14231,141216,126715,90,08020,1061,14041,14	Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
315,589615,50,10410,1071,12871,12416,877916,70,13770,1371,14951,14516,586216,20,08320,0801,16951,17616,282515,80,10520,0981,20811,20714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,833116,60,11200,1121,12241,121016,789716,70,09200,0971,14231,141216,126715,90,08020,1061,14041,14	2	15,7829	15,8	0,1275	0,126	1,1073	1,11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	15,5896	15,5	0,1041	0,107	1,1287	1,12
516,586216,20,08320,0801,16951,17616,282515,80,10520,0981,20811,20714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,833116,60,11200,1121,12241,121016,789716,70,09200,0971,12661,121116,096115,90,11660,1291,14231,141216,126715,90,08020,1061,14041,14	4	16,8779	16,7	0,1377	0,137	1,1495	1,14
616,282515,80,10520,0981,20811,20714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,833116,60,11200,1121,12241,121016,789716,70,09200,0971,12661,121116,096115,90,11660,1291,14231,141216,126715,90,08020,1061,14041,14	5	16,5862	16,2	0,0832	0,080	1,1695	1,17
714,928114,50,14110,1341,21281,21815,584215,20,11980,1131,17051,17916,833116,60,11200,1121,12241,121016,789716,70,09200,0971,12661,121116,096115,90,11660,1291,14231,141216,126715,90,08020,1061,14041,14	6	16,2825	15,8	0,1052	0,098	1,2081	1,20
8 15,5842 15,2 0,1198 0,113 1,1705 1,17 9 16,8331 16,6 0,1120 0,112 1,1224 1,12 10 16,7897 16,7 0,0920 0,097 1,1266 1,12 11 16,0961 15,9 0,1166 0,129 1,1423 1,14 12 16,1267 15,9 0,0802 0,106 1,1404 1,14	7	14,9281	14,5	0,1411	0,134	1,2128	1,21
9 16,8331 16,6 0,1120 0,112 1,1224 1,12 10 16,7897 16,7 0,0920 0,097 1,1266 1,12 11 16,0961 15,9 0,1166 0,129 1,1423 1,14 12 16,1267 15,9 0,0802 0,106 1,1404 1,14	8	15,5842	15,2	0,1198	0,113	1,1705	1,17
1016,789716,70,09200,0971,12661,121116,096115,90,11660,1291,14231,141216,126715,90,08020,1061,14041,14	9	16,8331	16,6	0,1120	0,112	1,1224	1,12
11 16,0961 15,9 0,1166 0,129 1,1423 1,14 12 16,1267 15,9 0,0802 0,106 1,1404 1,14	10	16,7897	16,7	0,0920	0,097	1,1266	1,12
12 16,1267 15,9 0,0802 0,106 1,1404 1,14	11	16,0961	15,9	0,1166	0,129	1,1423	1,14
	12	16,1267	15,9	0,0802	0,106	1,1404	1,14

 ℓ_1 =0.0904 cm, ℓ_2 =4.1638 cm, ℓ_3 =12.1458 cm, ℓ_4 =0.943819 cm, ℓ_5 =0.3777 cm, ℓ_6 =13.684 cm, ℓ_7 =0.7116 cm, ℓ_8 =13.3581 cm, ℓ_9 =0.9109 cm, ℓ_{10} =3.6332 cm Z₁=12.1333 Ω , Z₂=41.6381 Ω , Z₃=37.4539 Ω , Z₄=84.4096 Ω , Z₅=45.5757 Ω , Z₆=140.374 Ω , Z₇=148.399 Ω , Z₈=38.7079 Ω , Z₉=72.3203 Ω , Z₁₀=62.2602 Ω

Şekil 4.5. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.6. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.7. Girişi ve çıkışı seri bağlı "T" tipi ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.3 Giriş Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri), Çıkış Seri Bağlı "П" Ve "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Devresi

Şekil 4.8. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "П" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 10 adet ℓ uzunluğu ve 10 adet Z₀ karakteristik empedansı olmak üzere toplam 20 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.2. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,1689	16,8	0,1484	0,1420	1,1214	1,12
3	15,0310	14,9	0,0921	0,0716	1,1527	1,14
4	14,7946	14,7	0,1424	0,1330	1,1472	1,14
5	16,1141	16,0	0,0979	0,0910	1,1187	1,11
6	17,5520	17,5	0,0364	0,0162	1,1108	1,11
7	15,9976	16,0	0,0811	0,0661	1,1089	1,11
8	14,9109	14,9	0,0892	0,0752	1,1055	1,10
9	15,4326	15,4	0,0690	0,0562	1,1010	1,10
10	16,4607	16,4	0,0689	0,0685	1,1129	1,10
11	16,3645	16,3	0,0925	0,1040	1,1196	1,11
12	15,3425	15,3	0,0754	0,0922	1,1291	1,12

 ℓ_1 =1.7749 cm, ℓ_2 =0.3461 cm, ℓ_3 =1.3136 cm, ℓ_4 =14.0578 cm, ℓ_5 =13.5026 cm,

 ℓ_{6} =14.2 cm, ℓ_{7} =1.225 cm, ℓ_{8} =0.71 cm, ℓ_{9} =0.9457 cm, ℓ_{10} =0.897 cm, Z_{1} =58.8 Ω ,

 Z_2 =111.261 Ω, Z_3 =43.395 Ω, Z_4 =98.572 Ω, Z_5 =63.5565 Ω, Z_6 =150 Ω, Z_7 =99.4587 Ω, Z_8 =85.5389 Ω, Z_9 =52.8221 Ω, Z_{10} =150 Ω

Şekil 4.9. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "П" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.10.Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "П" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.11. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "Π" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.4 Giriş Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri), Çıkış Seri Bağlı "L" Ve "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.12. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.3. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

r						
Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,6939	16,6	0,1576	0,159	1,1065	1,11
3	15,3760	15,2	0,0940	0,099	1,1257	1,12
4	14,6563	14,5	0,1418	0,140	1,1441	1,14
5	15,5737	15,3	0,0967	0,092	1,1630	1,16
6	17,3939	17,0	0,1322	0,124	1,2030	1,20
7	16,0911	15,8	0,1800	0,173	1,2139	1,21
8	15,3801	15,2	0,1173	0,111	1,1776	1,18
9	15,5428	15,3	0,0714	0,072	1,1295	1,13
10	16,4701	16,1	0,1285	0,138	1,1311	1,13
11	18,5667	18,2	0,1162	0,136	1,1476	1,15
12	18,4634	18,4	0,0503	0,076	1,1566	1,16

 $\label{eq:linear_lin$

Şekil 4.13. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.14. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.15. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.5 Giriş Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri), Çıkış Seri Bağlı "L" Ve "L" Tipi (Paralel Ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.16. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.4. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,9022	16,8	0,1878	0,1200	1,1030	1,09
3	15,9337	15,6	0,0688	0,0793	1,1182	1,11
4	15,9581	15,7	0,1001	0,1130	1,1132	1,10
5	15,4193	15,2	0,0779	0,0811	1,1033	1,10
6	15,3492	15,3	0,0808	0,0434	1,1080	1,10
7	15,8324	15,9	0,1405	0,1080	1,1086	1,10
8	16,9267	16,9	0,1008	0,0710	1,0991	1,09
9	15,9676	15,9	0,0642	0,0430	1,0903	1,09
10	15,0070	15,0	0,0873	0,0700	1,0959	1,09
11	15,8050	15,8	0,1108	0,0977	1,0978	1,09
12	16,0689	16,0	0,0786	0,0795	1,1089	1,10

$$\label{eq:lasson} \begin{split} \ell & 1{=}0.6673 \ \text{cm}, \ \ell & 2{=}0.2369 \ \text{cm}, \ \ell & 3{=}1.1058 \ \text{cm}, \ \ell & 4{=}14.1923 \ \text{cm}, \ \ell & 5{=} \ 3.7478 \ \text{cm}, \\ \ell & 6{=}14.449 \ \text{cm}, \ \ell & 7{=}1.2393 \ \text{cm}, \ \ell & 8{=}0.798 \ \text{cm}, \ \ell & 9{=}2.8164 \ \text{cm}, \ Z_1{=} \ 42.489 \ \Omega, \\ Z_2{=}97.9661 \ \Omega, \ Z_3{=}59.2138\Omega, \ Z_4{=}111.627 \ \Omega, \ Z_5{=}86.3863 \ \Omega, \\ Z_6{=} \ 133.883 \ \Omega, \end{split}$$

 $Z_7 = 80.9991 \ \Omega, Z_8 = 64.297 \ \Omega, Z_9 = 53.4696 \ \Omega$

Şekil 4.17. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.18. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.19.Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

Şekil 4.20. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z₀ karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.:	5. Kuvveue	панистини к	azanç,	gurunu	ve giriş	VSWK	sonuçlarının
simülasyon	programi so	onuçları ile b	oirlikte g	gösterimi	. Tasarım	Hedef U	Jzayı: (F, V _i ,
$G_T, B) \Leftrightarrow (1.$	112, 1, 15.8	6, 2-12GHz)					
Erokona	Vozono	Similaryon	MDir	n Cim	illaguan	Ciiriiltii	Similaryon

VOMD

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	19,0595	18,9	0,2403	0,199	1,1207	1,10
3	16,2187	16,2	0,1413	0,064	1,1530	1,13
4	14,4855	14,4	0,1456	0,130	1,1386	1,12
5	14,5325	14,4	0,0750	0,084	1,1008	1,09
6	15,9565	15,8	0,0743	0,092	1,0862	1,08
7	16,0674	15,9	0,1123	0,122	1,0816	1,08
8	15,6494	15,6	0,0873	0,097	1,0815	1,08
9	15,1457	15,1	0,0589	0,076	1,0810	1,08
10	14,9878	14,9	0,0856	0,103	1,0939	1,09
11	16,7320	16,7	0,0736	0,098	1,1152	1,11
12	19,8352	19,7	0,0625	0,111	1,1506	1,14

 ℓ_1 =1.6847 cm, ℓ_2 =0.3323 cm, ℓ_3 =1.41796 cm, ℓ_4 =13.9801 cm, ℓ_5 =13.5079 cm,

 ℓ_{6} =14.3529 cm, ℓ_{7} =1.34809 cm, ℓ_{8} =0.896733 cm, Z₁=62.0158 Ω , Z₂=123.06 Ω , Z₃=44.022 Ω , Z₄=98.042 Ω , Z₅=61.927 Ω , Z₆=156.435 Ω , Z₇=90.3461 Ω , Z₈= 49.593 Ω

Şekil 4.21. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.22. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.23. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.7 Girişi Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri), Çıkışı "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.24. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.6. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	13,8943	17,5	0,6048	0,451	1,1500	1,11
3	15,1634	15,2	0,1549	0,156	1,1074	1,10
4	13,8686	13,7	0,0626	0,132	1,1141	1,09
5	14,4837	14,5	0,1253	0,132	1,1062	1,10
6	17,1272	16,8	0,1585	0,199	1,1119	1,09
7	17,9503	17,9	0,1742	0,173	1,1419	1,13
8	17,5379	17,5	0,1729	0,175	1,1210	1,11
9	16,4268	16,5	0,1529	0,148	1,1287	1,12
10	15,1640	15,3	0,1256	0,097	1,1319	1,12
11	14,6075	14,8	0,1377	0,089	1,1381	1,13
12	14,9494	15,2	0,1599	0,111	1,1682	1,15

 ℓ_{1} = 7.54662 cm, ℓ_{2} = 7.24722 cm, ℓ_{3} = 6.95971 cm, ℓ_{4} = 7.89779 cm, ℓ_{5} = 7.18601 cm, ℓ_{6} = 13.2316 cm, ℓ_{7} = 0.779828 cm, ℓ_{8} = 1.37966 cm, Z_{1} = 83.6558 Ω , Z_{2} = 56.4338 Ω , Z_{3} = 49.277 Ω , Z_{4} = 99.312 Ω , Z_{5} = 83.8241 Ω , Z_{6} = 70.8827 Ω , Z_{7} = 75.3622 Ω , Z_{8} =100 Ω

Şekil 4.25. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.26. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.27. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.8 Girişi Seri Bağlı "T" Ve "L" Tipi (Paralel Ve Seri), Çıkışı "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.28. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.7. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	14,2471	15,4	0,3170	0,198	1,1052	1,09
3	16,0610	16,0	0,0409	0,144	1,1196	1,11
4	15,9653	16,0	0,0851	0,135	1,1142	1,10
5	15,5778	15,8	0,1240	0,107	1,1184	1,11
6	15,9152	16,3	0,1881	0,150	1,1399	1,13
7	15,3830	15,6	0,1906	0,161	1,1336	1,12
8	15,4201	15,5	0,0610	0,048	1,1012	1,09
9	15,4342	15,4	0,0857	0,085	1,0926	1,09
10	15,2910	15,2	0,1223	0,120	1,1063	1,10
11	15,4444	15,2	0,1026	0,124	1,1086	1,10
12	15,7236	15,4	0,0822	0,128	1,1386	1,12

 ℓ_1 =3.07994 cm, ℓ_2 =0.2646 cm, ℓ_3 =1.09831 cm, ℓ_4 =14.0586 cm, ℓ_5 =13.7019 cm,

 ℓ_{6} =14.1597 cm, ℓ_{7} =0.702246 cm,Z₁=54.6415 Ω , Z₂=83.5086 Ω , Z₃=79.0547 Ω , Z₄=118.794 Ω , Z₅=125.518 Ω , Z₆=75.125 Ω , Z₇=33.7105 Ω

Şekil 4.29. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.30. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.31. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

Şekil 4.32. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.8. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,2703	16,9	0,3991	0,351	1,0999	1,09
3	18,2668	18,2	0,2557	0,123	1,1825	1,16
4	17,1269	16,7	0,2353	0,177	1,2057	1,19
5	15,7866	15,1	0,1991	0,185	1,1778	1,17
6	16,0891	15,4	0,1017	0,107	1,1446	1,14
7	15,7515	15,2	0,0436	0,031	1,1173	1,11
8	14,9622	14,5	0,0487	0,043	1,1054	1,10
9	15,4206	15,0	0,0789	0,090	1,1115	1,11
10	15,9971	15,7	0,1218	0,135	1,1280	1,12
11	16,1769	15,9	0,1201	0,136	1,1376	1,13
12	15,2449	15,1	0,0688	0,076	1,1323	1,12

 ℓ_1 =1.7086cm, ℓ_2 =0.226156 cm, ℓ_3 =1.49942 cm, ℓ_4 =14.0688 cm, ℓ_5 =13.4956 cm, ℓ_6 =14.7735 cm, ℓ_7 =1.49942 cm, Z₁=63.2269 Ω , Z₂=99.018 Ω , Z₃=50.4063 Ω , Z₄=103.203 Ω , Z₅=78.7712 Ω , Z₆=105.958 Ω , Z₇=56.4331 Ω

Şekil 4.33. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.34. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.35. Giriş seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.10 Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.36. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge	4.9.	Kuvve	tlendiricini	n l	kazanç,	gürültü	ve	giriş	VSWR	sonuç	ları	nın
simülasy	yon pr	ogramı	sonuçları	ile	birlikte	gösterimi	. Ta	asarım	Hedef 1	Uzayı:	(F,	V _i ,
G _T , B)⇐	⇒(1.11	2, 1, 15	.86, 2-12G	Hz))							

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,2267	17,0	0,3545	0,186	1,1233	1,10
3	18,8344	17,7	0,0867	0,138	1,1729	1,15
4	18,6788	17,8	0,0849	0,111	1,1658	1,15
5	17,3196	16,9	0,1615	0,114	1,1714	1,16
6	16,8374	16,6	0,2412	0,193	1,2046	1,19
7	16,1880	15,9	0,2372	0,206	1,1896	1,18
8	15,4650	15,0	0,1203	0,132	1,1252	1,12
9	15,4586	15,0	0,0744	0,114	1,0947	1,10
10	15,7514	15,4	0,0516	0,092	1,0991	1,10
11	15,9309	15,6	0,0714	0,121	1,1118	1,11
12	15,2867	15,0	0,0669	0,124	1,1131	1,11

 $\ell_{1}=3.0814 \text{ cm}, \ \ell_{2}=0.3939 \text{ cm}, \ \ell_{3}=1.2249 \text{ cm}, \ \ell_{4}=14.1259 \text{ cm}, \ \ell_{5}=13.6675 \text{ cm}, \\ \ell_{6}=14.7269 \text{ cm}, \ Z_{1}=57.3169 \ \Omega, \ Z_{2}=43.5947 \ \Omega, \ Z_{3}=65.5441 \ \Omega, \ Z_{4}=112.488 \ \Omega \ , \\ Z_{5}=100.863 \ \Omega, \ Z_{6}=77.9643 \ \Omega$

Şekil 4.37. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.38. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.39. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.11 Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.40. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,8898	15,7	0,9089	0,916	1,2164	1,28
3	20,6354	19,8	0,7239	0,738	1,0646	1,07
4	18,9335	18,6	0,4912	0,507	1,0682	1,07
5	16,5184	16,4	0,2408	0,256	1,0870	1,08
6	15,0477	15,0	0,0492	0,052	1,1339	1,13
7	12,8508	12,7	0,0894	0,080	1,1771	1,17
8	12,7620	12,5	0,0910	0,090	1,1805	1,17
9	14,3522	13,9	0,0386	0,071	1,1551	1,14
10	16,6892	16,2	0,0701	0,087	1,1591	1,14
11	18,5801	18,4	0,1959	0,166	1,1556	1,14
12	16,8368	17,5	0,2671	0,205	1,1671	1,14

Çizelge 4.10. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

 ℓ_1 =0.6788 cm, ℓ_2 =0.9628 cm, ℓ_3 =2.0732 cm, ℓ_4 =14.0907 cm, ℓ_5 =13.1484 cm, ℓ_6 =13.5968 cm, Z₁=38.3337 Ω , Z₂=39.8764 Ω , Z₃=71.4928 Ω , Z₄=145.686 Ω , Z₅=81.2317 Ω , Z₆=160 Ω

Şekil 4.41. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.42. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.43. Girişi seri bağlı "T" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.12 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkış Seri Bağlı "T" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Devresi

Şekil 4.44. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 10 adet ℓ uzunluğu ve 10 adet Z₀ karakteristik empedansı olmak üzere toplam 20 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.11. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	17,4482	16,7	0,1272	0,124	1,1107	1,11
3	16,6812	16,0	0,0743	0,074	1,1533	1,15
4	15,7801	15,1	0,1193	0,127	1,1711	1,17
5	15,8716	15,2	0,0877	0,101	1,1652	1,16
6	17,3864	16,6	0,0114	0,031	1,1737	1,17
7	16,7090	15,9	0,0116	0,026	1,1706	1,17
8	16,5610	15,7	0,0638	0,053	1,1544	1,15
9	16,6903	15,8	0,1225	0,113	1,1439	1,14
10	16,6598	15,6	0,1171	0,104	1,1823	1,18
11	16,9112	15,8	0,1343	0,091	1,2333	1,22
12	17,3115	16,5	0,1960	0,106	1,3401	1,32

 ℓ_1 =14.3532 cm, ℓ_2 =0.2277 cm, ℓ_3 =1.01795 cm, ℓ_4 =12.91 cm, ℓ_5 =0.7613 cm,

 $\ell_{6} = 14.7903 \text{cm}, \ell_{7} = 14.2383 \text{cm}, \ell_{8} = 0.4241 \text{cm}, \ell_{9} = 0.6803 \text{cm}, \ell_{10} = 0.7623 \text{cm}, Z_{1} = 52$.6004 Ω , $Z_{2} = 149.947 \Omega$, $Z_{3} = 138.987 \Omega$, $Z_{4} = 51.0372 \Omega$, $Z_{5} = 142.935 \Omega$, $Z_{6} = 91.5647 \Omega$, $Z_{7} = 74.3978 \Omega$, $Z_{8} = 138.238 \Omega$, $Z_{9} = 31.5141 \Omega$, $Z_{10} = 45.7789 \Omega$

Şekil 4.45. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.46. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.47. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.13 Giriş ve Çıkışı Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.48. Giriş ve çıkışı seri bağlı " \prod " ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 10 adet ℓ uzunluğu ve 10 adet Z₀ karakteristik empedansı olmak üzere toplam 20 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge	4.12.	Kuvvetlendiricini	n kazanç	, gürültü	ve giri	ș VSWR	sonuç	ları	nın
simülasy	on pro	ogramı sonuçları il	e birlikte	gösterimi	. Tasarıı	n Hedef	Uzayı: ((F,	V _i ,
$G_T, B) \Leftrightarrow$	(1.112	2, 1, 15.86, 2-12GH	łz)						

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,6494	17,4	0,1796	0,151	1,1188	1,12
3	15,5197	15,3	0,0051	0,034	1,1261	1,12
4	13,9069	13,7	0,1315	0,142	1,1222	1,12
5	16,4434	16,3	0,0970	0,097	1,1161	1,11
6	15,4180	15,3	0,0962	0,090	1,1307	1,13
7	16,8806	16,8	0,1255	0,116	1,1416	1,14
8	16,4958	16,4	0,1018	0,087	1,1354	1,13
9	15,3251	15,2	0,0511	0,032	1,1248	1,12
10	15,9128	15,7	0,0730	0,075	1,1421	1,13
11	15,7583	15,8	0,1477	0,107	1,1567	1,14
12	15,5914	15,6	0,1616	0,097	1,2243	1,19

 ℓ_1 =1.09883 cm, ℓ_2 =15.0 cm, ℓ_3 =14.3352 cm, ℓ_4 =13.8262 cm, ℓ_5 =0.688198 cm,

 ℓ_{6} =13.9015 cm, ℓ_{7} =1.2117 cm, ℓ_{8} =0.8773 cm, ℓ_{9} =7.107 cm, ℓ_{10} =0.979 cm,

$$\begin{split} & Z_1 = 117.91 \ \Omega, \ Z_2 = 150 \ \Omega, \ Z_3 = 39.488 \ \Omega, \ Z_4 = 51.6426 \ \Omega, \ Z_5 = 132.05 \ \Omega, \ Z_6 = 89.3608 \ \Omega, \\ & Z_7 = 103.21 \ \Omega, \ Z_8 = 50.459 \ \Omega, \ Z_9 = 50.1575 \ \Omega, \ Z_{10} = 150 \ \Omega \end{split}$$

Şekil 4.49. Giriş ve çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.50. Giriş ve çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.51. Giriş ve çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.14 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkış Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.52. Giriş Seri Bağlı "∏" Ve "L" Tipi (Seri Ve Paralel), Çıkış Seri Bağlı "L" Ve "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendiricinin İki Kapılı Gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.13. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	18,0583	17,3	0,1387	0,135	1,1098	1,11
3	17,1211	16,4	0,0735	0,072	1,1533	1,15
4	15,8730	15,2	0,1211	0,129	1,1722	1,17
5	15,6121	14,9	0,0905	0,104	1,1668	1,16
6	16,8354	16,0	0,0101	0,030	1,1754	1,17
7	16,0744	15,3	0,0180	0,027	1,1720	1,17
8	16,0847	15,3	0,0680	0,056	1,1552	1,15
9	16,5597	15,7	0,1224	0,111	1,1439	1,14
10	16,8848	16,0	0,1159	0,102	1,1814	1,18
11	17,2134	16,3	0,1396	0,098	1,2314	1,22
12	17,2623	16,6	0,1963	0,114	1,3370	1,32

 $\label{eq:lassestimate} \begin{array}{l} \ell \\ 1 = 14.3526 \ \mathrm{cm}, \ \ell \\ 2 = 0.2275 \ \mathrm{cm}, \ \ell \\ 3 = 1.01834 \ \mathrm{cm}, \ \ell \\ 4 = 12.9105 \ \mathrm{cm}, \ \ell \\ 5 = 0.7609 \ \mathrm{cm}, \\ \ell \\ 6 = 14.7901 \ \mathrm{cm}, \ \ell \\ 7 = 14.2368 \ \mathrm{cm}, \ \ell \\ 8 = 0.4243 \ \mathrm{cm}, \ \ell \\ 9 = 0.6798 \ \mathrm{cm}, \ Z_1 = 52.3706 \ \Omega, \\ Z_2 = 149.152 \ \Omega, \ Z_3 = 139.227 \ \Omega, \ Z_4 = 51.0514 \ \Omega, \ Z_5 = 143.517 \ \Omega, \ Z_6 = 79.8911 \ \Omega, \\ Z_7 = 73.919 \ \Omega, \ Z_8 = 138.165 \ \Omega, \ Z_9 = 33.7705 \ \Omega \end{array}$

Şekil 4.53. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.54. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.55. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.15 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkış Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.56. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.14. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,3509	16,2	0,1328	0,102	1,1013	1,10
3	15,8130	15,5	0,0614	0,075	1,1232	1,12
4	15,9543	15,7	0,0684	0,081	1,1241	1,12
5	15,9793	15,8	0,0217	0019	1,1143	1,11
6	16,2968	16,2	0,0963	0,090	1,1180	1,12
7	15,6654	15,5	0,0873	0,089	1,1137	1,11
8	15,9106	15,7	0,0726	0,074	1,1054	1,11
9	16,2989	16,1	0,0994	0,105	1,1024	1,10
10	16,0539	15,8	0,0742	0,085	1,1339	1,13
11	15,6230	15,5	0,0879	0,074	1,1833	1,17
12	15,9451	16,0	0,1523	0,101	1,2917	1,26

 ℓ 1=1.0896 cm, ℓ 2=14.396 cm, ℓ 3=14.3922 cm, ℓ 4=13.4933 cm, ℓ 5=0.8722 cm, ℓ 6=13.9242 cm, ℓ 7=1.1561 cm, ℓ 8=0.8497 cm, ℓ 9=11.0154 cm, Z₁=149.711 Ω, Z₂=31.5814 Ω, Z₃=39.2081 Ω, Z₄=58.6135 Ω, Z₅=132.789 Ω, Z₆=77.697 Ω, Z₇=104.929 Ω, Z₈=58.8485 Ω, Z₉=52.6984 Ω

Şekil 4.57. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.58. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri)uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.59. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "L" ve "L" tipi (Paralel ve Seri)uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.16 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkışı "∏" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.60. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkışı " Π " tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

$G_T, B) \Leftrightarrow (1.$	$J_{T}, B) \Leftrightarrow (1.112, 1, 15.80, 2-12GHZ)$									
Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon				
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu				
2	16,7918	16,6	0,1275	0,104	1,0990	1,10				
3	15,9287	15,7	0,0616	0,069	1,1247	1,12				
4	15,2148	15,0	0,0751	0,083	1,1279	1,12				
5	15,3016	15,1	0,0403	0,039	1,1182	1,12				
6	16,4849	16,3	0,0954	0,090	1,1215	1,12				
7	16,2748	16,1	0,0874	0,090	1,1166	1,12				
8	16,2237	16,0	0,0598	0,063	1,1077	1,11				
9	16,1048	15,9	0,0756	0,081	1,1055	1,10				
10	15,6822	15,5	0,0506	0,061	1,1404	1,13				
11	15,6140	15,5	0,0808	0,063	1,1944	1,18				
12	16,3601	16,5	0,1630	0,101	1,3143	1,28				

Çizelge 4.15. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

 ℓ _1=1.1013 cm, ℓ _2=14.3779 cm, ℓ _3=14.3945 cm, ℓ _4=13.4885 cm, ℓ _5=0.8754 cm,

 ℓ_{6} =13.9197 cm, ℓ_{7} =1.1578 cm, ℓ_{8} =0.8559 cm, Z₁=143.377 Ω , Z₂= 31.1233 Ω , Z₃=37.8072 Ω , Z₄=57.5717 Ω , Z₅=130.537 Ω , Z₆=74.7803 Ω , Z₇= 102.986 Ω , Z₈=55.7521 Ω

Şekil 4.61. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkışı " Π " tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.62. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkışı " Π " tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.63. Giriş seri bağlı " Π " ve "L" tipi (Seri ve Paralel), çıkışı " Π " tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.17 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkış "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.64. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.16. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,7619	16,5	0,1366	0,118	1,1156	1,12
3	16,0705	15,8	0,0670	0,069	1,1593	1,15
4	15,3220	15,0	0,1078	0,116	1,1793	1,17
5	15,5534	15,3	0,0827	0,088	1,1751	1,17
6	17,0155	16,8	0,0779	0,069	1,1846	1,18
7	16,2946	16,1	0,0859	0,080	1,1774	1,18
8	15,9912	15,9	0,0677	0,062	1,1515	1,15
9	15,7761	15,7	0,0941	0,091	1,1255	1,13
10	15,4452	15,3	0,1053	0,106	1,1334	1,13
11	15,8184	15,6	0,0874	0,087	1,1411	1,14
12	16,5760	16,3	0,0702	0,052	1,1692	1,16

 ℓ_1 =14.411 cm, ℓ_2 =0.1726 cm, ℓ_3 =0.9771 cm, ℓ_4 =13.046 cm, ℓ_5 =0.7366 cm,

 ℓ_{6} =13.7445 cm, ℓ_{7} =14.3029 cm, ℓ_{8} =0.3753 cm,Z₁=57.3048 Ω , Z₂=150 Ω , Z₃=150 Ω , Z₄=51.2022 Ω , Z₅=150 Ω , Z₆=142.24 Ω , Z₇=76.2188 Ω , Z₈=66.2066 Ω

Şekil 4.65. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.66. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.67. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.18 Girişi Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkışı "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.68. Girişi seri bağlı " \prod " ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.17. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	16,6803	16,5	0,1522	0,135	1,1078	1,11
3	16,2547	16,0	0,0747	0,074	1,1476	1,14
4	15,4967	15,2	0,1239	0,132	1,1653	1,16
5	15,5988	15,3	0,0968	0,105	1,1623	1,16
6	16,9493	16,6	0,0574	0,054	1,1739	1,17
7	16,1998	15,9	0,0620	0,059	1,1711	1,17
8	15,9793	15,7	0,0469	0,039	1,1506	1,15
9	15,9223	15,7	0,0886	0,085	1,1298	1,13
10	15,6468	15,4	0,1054	0,105	1,1444	1,14
11	15,8767	15,7	0,1026	0,097	1,1599	1,16
12	16,6348	16,4	0,0995	0,076	1,2016	1,19

 ℓ _1=14.3979 cm, ℓ _2=0.1895 cm, ℓ _3=0.9838 cm, ℓ _4=13.0075 cm, ℓ _5=0.7558 cm,

 ℓ_{6} =13.8421 cm, ℓ_{7} =14.2514 cm, Z₁=56.0186 Ω , Z₂=150 Ω , Z₃=150 Ω , Z₄=53.0461 Ω , Z₅=150 Ω , Z₆=119.566 Ω , Z₇=63.4169 Ω

Şekil 4.69. Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.70. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.71.Girişi seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.19 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkışı "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.72. Giriş seri bağlı " \prod " ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z₀ karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.18. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	18,3964	19,0	0,2949	0,198	1,1076	1,10
3	18,2590	17,6	0,0459	0,136	1,1297	1,12
4	16,4132	16,0	0,0891	0,118	1,1275	1,12
5	15,0505	14,7	0,0948	0,088	1,1150	1,11
6	15,1953	14,9	0,1359	0,130	1,1120	1,11
7	15,0343	14,6	0,1169	0,129	1,1037	1,11
8	15,4374	15,1	0,0283	0,023	1,0919	1,09
9	16,0294	15,7	0,1292	0,115	1,0910	1,09
10	16,5094	16,2	0,1110	0,115	1,1304	1,12
11	16,6974	16,5	0,0527	0,047	1,2120	1,19
12	15,7418	16,1	0,2073	0,137	1,3707	1,32

 ℓ_1 =1.09095cm, ℓ_2 =14.44cm, ℓ_3 =14.4129cm, ℓ_4 =13.5126cm, ℓ_5 =0.8541cm,

 ℓ_{6} =14.1201 cm, ℓ_{7} =0.963327 cm, Z₁=124.683 Ω , Z₂=25.641 Ω , Z₃=24.7689 Ω , Z₄=63.5565 Ω , Z₅=126.248 Ω , Z₆=28.1475 Ω , Z₇=88.7951 Ω

Şekil 4.73. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.74. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.75. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.20 Giriş Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel), Çıkışı Paralel Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.76. Giriş seri bağlı " \prod " ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.19. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

	1					1
Frekans	Kazanc	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
$(\mathbf{C}\mathbf{H}_{7})$	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
(UHZ)	(Orall)	Solucu	(Orall)	Soliucu	(Orall)	Sonucu
2	12,8146	14,1	0,4005	0,232	1,1250	1,12
3	16,2774	15,3	0,0957	0,224	1,1410	1,13
4	17,0727	16,3	0,1121	0,194	1,1360	1,13
5	17,4004	17,0	0,0181	0,048	1,1222	1,12
6	18,0573	17,9	0,1843	0,156	1,1138	1,11
7	17,8286	17,5	0,2522	0,246	1,1021	1,10
8	17,7940	17,4	0,1872	0,195	1,0877	1,09
9	18,6089	18,2	0,1351	0,153	1,0850	1,08
10	19,2066	18,9	0,1029	0,118	1,1098	1,10
11	18,6545	18,6	0,1875	0,167	1,1621	1,14
12	17,1878	17,4	0,2460	0,197	1,2488	1,21

 ℓ _1=1.0869 cm, ℓ _2=14.431 cm, ℓ _3=14.4837 cm, ℓ _4=13.5809 cm, ℓ _5=0.8012 cm, ℓ _6=14.3605 cm, Z_1=131.938 \Omega, Z_2=24.5959 \Omega, Z_3=24.7689 \Omega, Z_4=62.5974 \Omega, Z_5=123.944 \Omega, Z_6=28.3301 \Omega

Şekil 4.77. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.78. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.79. Giriş seri bağlı "∏" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.21 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı Seri Bağlı "T" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.80. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir

Çizelge 4.20. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	19,4298	16,9	0,2185	0,219	1,1336	1,14
3	18,3544	17,8	0,1630	0,176	1,1842	1,18
4	16,6111	14,9	0,0910	0,091	1,1770	1,17
5	15,4142	14,9	0,2113	0,210	1,2257	1,22
6	17,3488	16,1	0,1674	0,162	1,2504	1,24
7	15,1147	14,6	0,1133	0,111	1,2028	1,20
8	17,3429	16,9	0,1362	0,125	1,2141	1,21
9	15,3046	14,8	0,1069	0,099	1,1367	1,14
10	16,9851	17,1	0,1069	0,123	1,1138	1,11
11	16,8143	16,3	0,1105	0,118	1,1289	1,13
12	13,6826	13,9	0,0829	0,083	1,1224	1,12

 $\begin{array}{l} \ell_{1} = 10.0 \ \text{cm}, \ \ell_{2} = 0.7792 \ \text{cm}, \ \ell_{3} = 12.81 \ \text{cm}, \ \ell_{4} = 0.64779 \ \text{cm}, \ell_{5} = 13.8862 \ \text{cm}, \\ \ell_{6} = 7.2017 \ \text{cm}, \ \ell_{7} = 7.8237 \ \text{cm}, \ \ell_{8} = 0.3336 \ \text{cm}, \ \ell_{9} = 0.5851 \ \text{cm}, Z_{1} = 56.6404 \ \Omega, \\ Z_{2} = 35.771 \ \Omega, \ Z_{3} = 40.8964 \ \Omega, \ Z_{4} = 96.6769 \ \Omega, \ Z_{5} = 139.35 \ \Omega, \ Z_{6} = 101.751 \ \Omega, \\ Z_{7} = 58.8035 \ \Omega, \ Z_{8} = 63.3777 \ \Omega, \ Z_{9} = 37.5752 \ \Omega \end{array}$

Şekil 4.81. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.82. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.83. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.22 Giriş Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkış Seri Bağlı "∏" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.84. Giriş seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkış seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z₀ karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.21. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	15,1711	16,8	0,3116	0,251	1,1028	1,09
3	16,2610	15,4	0,0782	0,179	1,1049	1,09
4	15,6372	16,8	0,1182	0,142	1,1074	1,10
5	15,8322	15,6	0,1614	0,153	1,1280	1,12
6	14,8233	16,3	0,2258	0,197	1,1468	1,14
7	17,3081	17,4	0,1571	0,127	1,1359	1,13
8	14,0700	15,3	0,2080	0,174	1,1274	1,12
9	18,1370	18,3	0,1681	0,147	1,1315	1,13
10	15,1165	15,8	0,1451	0,114	1,1278	1,12
11	18,0805	18,0	0,1008	0,108	1,1025	1,10
12	14,5409	14,4	0,1440	0,144	1,1034	1,10

 ℓ_1 =3.532 cm, ℓ_2 =0.606833 cm, ℓ_3 =13.3009 cm, ℓ_4 =0.819502 cm, ℓ_5 =14.6315 cm, ℓ_6 =0.663758 cm, ℓ_7 =7.72097 cm, ℓ_8 =7.34992 cm, ℓ_9 =7.33 cm,Z₁=55.4258 Ω , Z₂=21.244 Ω , Z₃=38.9083 Ω , Z₄=63.8275 Ω ,Z₅=122.245 Ω , Z₆=93.8297 Ω , Z₇=150 Ω , Z₈=88.6323 Ω , Z₉=142.30001 Ω

Şekil 4.85. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.86. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı " Π " ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.87. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.23 Giriş ve Çıkışı Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.88. Giriş ve çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z₀ karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen Freq(ω i);Vireq(ω i); GTreq(ω i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.22. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi.Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	21,1590	18,4	0,2313	0,235	1,1354	1,14
3	16,0205	16,0	0,5420	0,542	1,3610	1,36
4	17,1158	15,2	0,1723	0,175	1,1667	1,16
5	18,1244	18,0	0,2203	0,224	1,1374	1,14
6	17,0868	15,2	0,1426	0,165	1,2145	1,21
7	16,2789	16,2	0,1778	0,183	1,0995	1,10
8	15,5119	13,9	0,1121	0,141	1,2597	1,26
9	14,2789	14,1	0,2073	0,214	1,0934	1,09
10	15,4377	14,3	0,1469	0,106	1,2661	1,26
11	14,0057	13,9	0,0389	0,051	1,1428	1,14
12	14,9830	14,3	0,2747	0,237	1,2601	1,26

 ℓ_1 =0.937466 cm, ℓ_2 =7.11301 cm, ℓ_3 =6.38831 cm, ℓ_4 =0.819956 cm, ℓ_5 =6.9878 cm, ℓ_6 =0.64151 cm, ℓ_7 =7.03448 cm, ℓ_8 =7.3618 cm, Z₁=66.6222 Ω , Z₂=100 Ω , Z₃=48.2412 Ω , Z₄=111.338 Ω , Z₅=100 Ω , Z₆=100 Ω , Z₇=79.2984 Ω , Z₈=103.766 Ω

Şekil 4.89. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.90. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.91. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.24 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.92. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.23. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	18,1430	18,1	0,1700	0,129	1,1028	1,10
3	15,5493	15,2	0,1024	0,127	1,0996	1,10
4	14,1754	13,9	0,1026	0,115	1,0971	1,09
5	14,4287	14,2	0,0219	0,029	1,1023	1,10
6	16,1561	15,9	0,0891	0,079	1,1278	1,13
7	16,3316	16,1	0,1400	0,134	1,1434	1,14
8	16,5016	16,4	0,1147	0,107	1,1326	1,13
9	16,2958	16,2	0,0860	0,078	1,1082	1,11
10	15,5771	15,5	0,0918	0,093	1,1067	1,11
11	15,4817	15,4	0,0964	0,104	1,1183	1,11
12	16,5874	16,5	0,0808	0,099	1,1850	1,17

 ℓ_1 =2.2062 cm, ℓ_2 =14.1597 cm, ℓ_3 =13.5677 cm, ℓ_4 =0.742373cm, ℓ_5 =13.9664 cm, ℓ_6 =1.19786 cm, ℓ_7 =0.86726 cm, ℓ_8 =12.2447 cm,Z₁=38.6623 Ω , Z₂=34.9144 Ω , Z₃=63.751 Ω , Z₄=153.352 Ω , Z₅=79.5868 Ω , Z₆=117.637 Ω , Z₇=93.088 Ω , Z₈=58.9438 Ω

Şekil 4.93. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.94. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.95. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.25 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı "∏" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.96. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.24. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
(0112)	(Ofull)	Bollaca	(Olull)	Solided	(Orun)	bonded
2	17,0760	17,0	0,1785	0,134	1,1098	1,1
3	16,1910	15,9	0,1142	0,138	1,1029	1,1
4	15,3564	15,1	0,1339	0,148	1,0956	1,09
5	15,5472	15,4	0,0604	0,069	1,0962	1,09
6	16,6403	16,5	0,0917	0,082	1,1183	1,12
7	15,8511	15,7	0,1517	0,145	1,1384	1,14
8	15,1821	15,1	0,1456	0,139	1,1404	1,14
9	14,4536	14,3	0,1247	0,114	1,1256	1,12
10	13,3868	13,3	0,1247	0,114	1,1259	1,12
11	13,1106	13,0	0,1118	0,104	1,1159	1,11
12	14,4218	14,3	0,1161	0,111	1,1282	1,12

 ℓ_1 =2.0 cm, ℓ_2 =14.2448 cm, ℓ_3 =13.6206 cm, ℓ_4 =0.762465cm, ℓ_5 =13.9664 cm, ℓ_6 =1.1669 cm, ℓ_7 =0.91770 cm, Z₁=40 Ω , Z₂=40.4013 Ω , Z₃=60.8961 Ω , Z₄=141.013 Ω , Z₅=79.5868 Ω , Z₆=103.085 Ω , Z₇=53.1485 Ω

Şekil 4.97. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.98. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.99. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.26 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.100. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.25. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,7842	15,9	1,000	1,000	1,4267	1,53
3	20,3425	20,4	0,9065	0,906	1,7250	1,72
4	22,3533	22,2	0,3487	0,360	1,1727	1,18
5	19,8058	19,8	0,3230	0,319	1,2487	1,25
6	16,3493	16,4	0,1380	0,146	1,1130	1,11
7	22,8111	22,8	0,1770	0,168	1,1589	1,16
8	19,1011	19,2	0,0781	0,077	1,0989	1,10
9	20,7838	20,6	0,1489	0,159	1,1218	1,12
10	20,5171	20,6	0,1277	0,136	1,0936	1,09
11	13,9951	13,8	0,2081	0,226	1,1518	1,15
12	16,8901	16,9	0,2366	0,241	1,0940	1,09

 ℓ_1 =7.54711 cm, ℓ_2 =7.90027 cm, ℓ_3 =5.87891 cm, ℓ_4 =0.464007 cm, ℓ_5 =1.40071 cm, ℓ_6 =0.658943 cm, ℓ_7 =6.01437 cm, Z₁=59.8791 Ω , Z₂=100 Ω , Z₃=45.1015 Ω , Z₄=100 Ω , Z₅=100 Ω , Z₆=88.383 Ω , Z₇=74.7632 Ω

Şekil 4.101. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.102. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.103. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.27 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.104. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.26. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon
2	16,5310	16,2	0,2019	0,203	1,1104	1,11
3	16,3075	16,0	0,1065	0,103	1,1378	1,13
4	15,3477	15,1	0,1817	0,180	1,1432	1,14
5	15,6627	15,4	0,1135	0,111	1,1432	1,14
6	17,0327	16,7	0,0768	0,070	1,1814	1,18
7	15,9394	15,7	0,1690	0,163	1,2191	1,22
8	15,7339	15,5	0,1692	0,161	1,2114	1,21
9	16,0238	15,8	0,1250	0,115	1,1626	1,16
10	15,8789	15,7	0,1096	0,106	1,1422	1,14
11	16,1035	15,8	0,0956	0,109	1,1336	1,13
12	16,6873	16,4	0,0979	0,126	1,1723	1,17

 ℓ_1 =2.06342 cm, ℓ_2 =0.786491 cm, ℓ_3 =12.7854 cm, ℓ_4 =0.699923 cm, ℓ_5 =13.8473 cm, ℓ_6 =14.2692 cm, Z₁=60.7286 Ω , Z₂=37.1128 Ω , Z₃=44.8735 Ω , Z₄=103.027 Ω , Z₅=118.134 Ω , Z₆=64.8798 Ω

Şekil 4.105. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.106. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.107. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

Şekil 4.108. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.27. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	14,7557	16,5	0,4835	0,339	1,1215	1,10
3	17,7389	16,4	0,1458	0,256	1,1125	1,10
4	16,8507	16,2	0,0778	0,140	1,1133	1,10
5	15,5112	15,2	0,1447	0,120	1,1564	1,14
6	15,7377	15,5	0,2061	0,185	1,1845	1,17
7	16,5344	16,3	0,1335	0,100	1,1428	1,13
8	16,1733	16,0	0,1826	0,163	1,1246	1,12
9	16,5562	16,5	0,2337	0,215	1,1495	1,14
10	17,3546	17,2	0,1362	0,117	1,1412	1,13
11	16,7245	16,5	0,0771	0,093	1,0942	1,09
12	14,6021	14,4	0,1914	0,202	1,0964	1,10

 ℓ_1 =3.54722 cm, ℓ_2 =0.606521 cm, ℓ_3 =13.3009 cm, ℓ_4 =0.819501 cm, ℓ_5 =14.566 cm, ℓ_6 =1.68834 cm, Z₁=61.5597 Ω , Z₂=20.6297 Ω , Z₃=38.9083 Ω , Z₄=64.128 Ω , Z₅=53.8416 Ω , Z₆=58.1869 Ω

Şekil 4.109. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.110. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.111. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.29 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı Paralel Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.112. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistorlu kuvvetlendirici

Bu devrede 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.28. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	10,1568	15,8	0,6771	0,263	1,1605	1,10
3	17,5567	17,1	0,2812	0,122	1,1792	1,14
4	18,4140	16,9	0,1386	0,147	1,1715	1,15
5	17,3390	16,1	0,1267	0,129	1,1559	1,16
6	17,1355	16,3	0,1615	0,093	1,1481	1,16
7	16,1291	15,4	0,1987	0,162	1,1299	1,14
8	15,1161	14,4	0,1030	0,098	1,1003	1,11
9	15,0224	14,5	0,0691	0,029	1,0891	1,10
10	15,1719	14,8	0,1070	0,081	1,0960	1,10
11	15,4607	15,2	0,0982	0,084	1,1146	1,12
12	14,7899	14,6	0,1159	0,106	1,1447	1,14

 ℓ_1 = 14.4588 cm, ℓ_2 = 14.8976 cm, ℓ_3 = 13.8355 cm, ℓ_4 = 0.5601 cm, ℓ_5 = 14.8565 cm, Z_1 = 27.3106 Ω , Z_2 = 131.735 Ω , Z_3 = 51.9474 Ω , Z_4 = 127.84 Ω , Z_5 =150 Ω

Şekil 4.113. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.114. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.115. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.30 Girişi Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel), Çıkışı Paralel Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.116. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 5 adet ℓ uzunluğu ve 5 adet Z_0 karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.29. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	21,7834	24,7	0,8955	0,881	1,4568	1,49
3	18,9898	19,1	0,7873	0,786	1,2228	1,22
4	26,9674	27,8	0,2786	0,220	1,1733	1,16
5	15,6197	15,5	0,4326	0,438	1,0945	1,09
6	15,0447	14,9	0,0489	0,093	1,1690	1,16
7	12,2149	12,3	0,2384	0,230	1,1421	1,13
8	10,4823	10,5	0,0980	0,077	1,2444	1,24
9	11,0107	11,1	0,1084	0,067	1,2364	1,23
10	13,7813	13,9	0,0842	0,083	1,3100	1,30
11	16,1969	16,7	0,2704	0,219	1,4215	1,40
12	16,7751	16,7	0,1414	0,164	1,4433	1,43

 ℓ_1 =7.22934 cm, ℓ_2 =7.19162 cm, ℓ_3 =6.53139 cm, ℓ_4 =0.742915 cm, ℓ_5 =0.814591 cm, Z₁=100 Ω , Z₂=56.1193 Ω , Z₃=42.0304 Ω , Z₄=68.3427 Ω , Z₅=14.2136 Ω

Şekil 4.117. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.118. Girişi Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.119. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.31 Girişi Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkışı Seri Bağlı "T" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.120. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z_0 karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.30. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	19,5754	17,4	0,2330	0,231	1,1419	1,15
3	17,4957	17,1	0,1777	0,190	1,1605	1,15
4	15,6960	14,5	0,1239	0,125	1,1723	1,17
5	16,1535	15,8	0,1263	0,123	1,1777	1,17
6	16,0812	15,5	0,1192	0,112	1,2077	1,20
7	15,5818	15,2	0,1566	0,151	1,2184	1,21
8	15,6843	15,6	0,1274	0,118	1,1882	1,18
9	15,4763	15,0	0,0927	0,086	1,1410	1,14
10	16,0160	16,2	0,0915	0,095	1,1280	1,13
11	16,3568	15,9	0,1340	0,146	1,1247	1,12
12	14,8173	14,9	0,0807	0,082	1,1572	1,16

 $\ell_{1}=0.7876 \quad \text{cm}, \ \ell_{2}=12.5828 \quad \text{cm}, \ \ell_{3}=0.5592 \quad \text{cm}, \ \ell_{4}=0.1977 \quad \text{cm}, \ \ell_{5}=13.8543 \\ \text{cm}, \ \ell_{6}=7.1797 \quad \text{cm}, \ \ell_{7}=7.9093 \quad \text{cm}, \ \ell_{8}=0.730991 \quad \text{cm}, \ \ell_{9}=0.818405 \quad \text{cm}, \ Z_{1}=33.5628 \\ \Omega, \ Z_{2}=37.3668 \quad \Omega, \ Z_{3}=112.199 \quad \Omega, \ Z_{4}=35.2502 \quad \Omega, \ Z_{5}=145.4 \quad \Omega, \ Z_{6}=109.491 \quad \Omega, \\ Z_{7}=57.9765 \quad \Omega, \ Z_{8}=30.5807 \quad \Omega, \ Z_{9}=36.22 \quad \Omega$

Şekil 4.121. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.122. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.123. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.32 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış Seri Bağlı "∏" ve "L" Tipi (Seri Ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.124. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 9 adet ℓ uzunluğu ve 9 adet Z₀ karakteristik empedansı olmak üzere toplam 18 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.31. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,5451	16,0	0,1468	0,124	1,1836	1,19
3	14,6030	14,3	0,0738	0,098	1,1455	1,13
4	16,7423	16,5	0,1138	0,125	1,1174	1,11
5	16,7683	16,6	0,1060	0,110	1,1004	1,10
6	15,8735	15,8	0,0558	0,042	1,1088	1,10
7	15,7579	15,8	0,1261	0,107	1,1194	1,11
8	16,9076	16,9	0,1288	0,113	1,1184	1,11
9	15,9821	16,0	0,1032	0,090	1,1121	1,11
10	15,1968	15,2	0,1126	0,104	1,1226	1,12
11	16,6635	16,6	0,0819	0,077	1,1206	1,12
12	15,5426	15,5	0,0555	0,050	1,1203	1,12

 ℓ_1 =0.636713 cm, ℓ_2 =13.1761 cm, ℓ_3 =0.837288 cm, ℓ_4 =0.0536438 cm, ℓ_5 =14.1302 cm, ℓ_6 =1.23042 cm, ℓ_7 =0.824209 cm, ℓ_8 =1.89 cm, ℓ_9 =0.961339 cm, Z_1 =26.7552 Ω , Z_2 =32.4174 Ω , Z_3 =47.5446 Ω , Z_4 = 35.5252 Ω , Z_5 =149.992 Ω , Z_6 = 85.1713 Ω , Z_7 =37.2558 Ω , Z_8 =51.3344 Ω , Z_9 =150 Ω

Şekil 4.125. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.126. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.127. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.33 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.128. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.32. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi.Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	13,0867	16,4	0,6660	0,530	1,1215	1,10
3	18,2386	18,1	0,4122	0,410	1,2095	1,21
4	15,7769	15,7	0,1525	0,132	1,1258	1,11
5	15,9874	15,8	0,0870	0,091	1,1651	1,16
6	13,8902	14,1	0,1196	0,050	1,1463	1,14
7	13,9117	13,9	0,1489	0,141	1,1928	1,18
8	14,1849	14,6	0,2002	0,177	1,1483	1,15
9	13,5524	13,7	0,2140	0,191	1,1931	1,17
10	17,6134	18,0	0,0575	0,089	1,1167	1,12
11	15,0414	16,0	0,2713	0,158	1,2522	1,20
12	13,1573	13,0	0,1030	0,139	1,0950	1,09

 ℓ_1 =7.0824 cm, ℓ_2 =8.8659 cm, ℓ_3 =7.0369 cm, ℓ_4 =6.3227 cm, ℓ_5 =7.168 cm,

 ℓ_{6} =0.635887 cm, ℓ_{7} =8.49399 cm, ℓ_{8} =7.1617 cm, Z_{1} =39.932449 Ω , Z_{2} =61.7106 Ω , Z_{3} =150.542 Ω , Z_{4} =89.4642 Ω , Z_{5} =86.516 Ω , Z_{6} =42.313 Ω , Z_{7} =37.726 Ω , Z_{8} =100 Ω

Şekil 4.129. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.130. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.131. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.34 Giriş ve Çıkışı Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Uydurma

Şekil 4.132. Giriş ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

OMC

MC

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z₀ karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.33. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,6930	17,6	0,5313	0,482	1,1066	1,09
3	14,5434	14,4	0,3708	0,367	1,2099	1,21
4	18,4742	17,1	0,0838	0,161	1,0914	1,08
5	18,4763	18,3	0,0901	0,087	1,1663	1,16
6	15,7159	14,9	0,1043	0,143	1,1016	1,10
7	16,6624	16,5	0,1541	0,142	1,1988	1,19
8	13,8586	13,4	0,1795	0,197	1,1078	1,11
9	15,5555	15,7	0,2149	0,186	1,2128	1,19
10	14,0250	13,7	0,0775	0,104	1,0961	1,09
11	15,3795	16,4	0,3054	0,191	1,3178	1,24
12	11,9884	11,8	0,1034	0,106	1,0949	1,09

 ℓ_1 =7.04258 cm, ℓ_2 =8.86449 cm, ℓ_3 =7.04695 cm, ℓ_4 =6.3118 cm, ℓ_5 =7.138 cm, ℓ_{6} =7.6849 cm, ℓ_{7} =0.441864 cm, ℓ_{8} = 8.86401 cm, Z_{1} = 46.1909 Ω , Z_{2} = 63.8439 Ω, Z_3 = 150 Ω, Z_4 = 92.2553 Ω, Z_5 = 67.7781 Ω, Z_6 = 84.8717 Ω, Z_7 = 60.3387 Ω, Z_8 = 57.657 Ω

Şekil 4.133. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.134. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.135. Girişi ve çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.35 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış "∏" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.136. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.34. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHZ)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	18,2518	17,8	0,1698	0,173	1,1118	1,12
3	15,7078	15,4	0,0884	0,101	1,1118	1,11
4	14,1146	14,0	0,1264	0,125	1,1074	1,10
5	14,1983	14,1	0,0875	0,079	1,1060	1,10
6	15,8219	15,7	0,0984	0,089	1,1227	1,12
7	16,1213	16,1	0,1674	0,161	1,1297	1,13
8	16,4319	16,4	0,1276	0,124	1,1136	1,11
9	16,0484	15,9	0,0989	0,100	1,0919	1,09
10	14,9375	14,8	0,1219	0,127	1,0873	1,09
11	14,8129	14,7	0,1085	0,118	1,0882	1,09
12	16,3094	16,2	0,0601	0,076	1,1123	1,11

 ℓ_1 =0.818199 cm, ℓ_2 =12.3497 cm, ℓ_3 =0.618454 cm, ℓ_4 =0.468457 cm, ℓ_5 =14.0809 cm, ℓ_6 =1.23220 cm, ℓ_7 =0.854263 cm, Z₁=28.365 Ω , Z₂=33.8071 Ω , Z₃=104.343 Ω , Z₄=42.7115 Ω , Z₅=101.588 Ω , Z₆=90.005527 Ω , Z₇=44.0979 Ω

Şekil 4.137. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.138. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.139. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.36 Girişi Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkışı "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.140. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z₀ karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.35. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,2950	18,5	0,6736	0,620	1,1773	1,17
3	13,5081	13,6	0,6045	0,605	1,2268	1,23
4	16,3957	16,4	0,0665	0,099	1,1112	1,10
5	13,4721	13,5	0,2500	0,246	1,1757	1,17
6	14,2491	14,0	0,1886	0,224	1,1088	1,10
7	14,4024	14,3	0,1486	0,132	1,1992	1,19
8	15,2751	14,8	0,2109	0,240	1,1136	1,11
9	17,5547	17,4	0,1232	0,074	1,2006	1,18
10	17,7934	17,5	0,1972	0,205	1,1045	1,10
11	15,6628	16,6	0,3365	0,227	1,2567	1,20
12	14,2103	14,2	0,2780	0,277	1,1110	1,11

 ℓ_1 =7.0162 cm, ℓ_2 =8.9208 cm, ℓ_3 =7.0325 cm, ℓ_4 =6.2527 cm, ℓ_5 =13.5440 cm, ℓ_6 =0.5774 cm, ℓ_7 =0.5345 cm, Z₁=60.1302 Ω , Z₂= 65.4757 Ω , Z₃= 150 Ω ,

 $Z_4 \!\!= 88.7165 \; \Omega, \, Z_5 \!\!= 101.566 \; \Omega, \, Z_6 \!\!= 99.7112 \; \Omega, \, Z_7 \!\!= 74.6278 \; \Omega$

Şekil 4.141. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.142. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.143. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.37 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.144. Giriş seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.36. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	16,3552	16,2	0,2123	0,185	1,1113	1,11
3	16,3210	16,0	0,0871	0,056	1,1530	1,14
4	15,5331	15,2	0,1433	0,144	1,1735	1,16
5	15,5182	15,2	0,1460	0,150	1,1725	1,16
6	16,9197	16,6	0,1057	0,103	1,1872	1,18
7	16,2292	15,9	0,1023	0,101	1,1861	1,18
8	16,1789	15,9	0,0381	0,048	1,1592	1,15
9	16,2167	15,9	0,0604	0,076	1,1286	1,12
10	15,8055	15,6	0,1130	0,121	1,1298	1,12
11	15,8013	15,6	0,1206	0,127	1,1290	1,12
12	16,2216	16,0	0,1020	0,104	1,1541	1,15

 $\ell_1 = 0.197587 \text{ cm}, \ \ell_2 = 1.04036 \text{ cm}, \ \ell_3 = 14.127 \text{ cm}, \ \ell_4 = 13.6521 \text{ cm}, \ \ell_5 = 13.8775 \text{ cm}, \ \ell_6 = 14.3075 \text{ cm}, \ Z_1 = 142.475 \ \Omega, \ Z_2 = 52.8859 \ \Omega, \ Z_3 = 93.6068 \ \Omega, \ Z_4 = 78.0059 \ \Omega, \ Z_5 = 114.377 \ \Omega, \ Z_6 = 66.5536 \ \Omega$

Şekil 4.145. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.146. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.147. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

Şekil 4.148. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.37. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,8842	18,5	0,4332	0,365	1,1023	1,09
3	18,0134	17,2	0,0805	0,151	1,1151	1,10
4	15,6277	15,0	0,1031	0,161	1,1178	1,11
5	14,5379	14,1	0,1297	0,156	1,1252	1,12
6	16,0042	15,7	0,1147	0,109	1,1421	1,14
7	17,4344	17,3	0,1966	0,179	1,1547	1,15
8	18,7303	18,5	0,1843	0,177	1,1422	1,14
9	19,4523	19,2	0,1090	0,108	1,1218	1,12
10	17,1095	16,8	0,0899	0,085	1,1202	1,12
11	14,1788	14,1	0,1039	0,095	1,1102	1,11
12	12,2812	12,2	0,0898	0,072	1,1015	1,10

 ℓ_1 =14.5458 cm, ℓ_2 =13.5972 cm, ℓ_3 =0.874777 cm, ℓ_4 =0.147176 cm, ℓ_5 = 14.5748 cm, ℓ_6 =1.84716 cm, Z₁=44.023 Ω , Z₂= 49.9949 Ω , Z₃=100 Ω ,

 $Z_4\!\!=\!\!100 \; \Omega, Z_5\!\!=\!\!70.1103 \; \Omega, Z_6\!\!=\!\!69.4123 \; \Omega$

Şekil 4.149. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.150. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.151. Girişi seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkışı "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.39 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış Paralel Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.152. Giriş seri bağlı "L" ve "L" tipi (Seri ve Paralel), çıkış Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.38. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	13,2569	12,9	0,6202	0,603	1,1016	1,10
3	19,7036	18,3	0,2996	0,324	1,1105	1,10
4	20,8132	19,5	0,1092	0,166	1,1125	1,10
5	19,2119	18,2	0,1413	0,164	1,1271	1,12
6	18,7554	18,0	0,1809	0,181	1,1593	1,15
7	17,1113	16,7	0,2524	0,238	1,1939	1,19
8	14,7576	14,4	0,3255	0,316	1,2056	1,20
9	14,6300	14,3	0,3047	0,300	1,1946	1,19
10	15,3490	15,1	0,2261	0,220	1,1763	1,17
11	15,8834	15,7	0,1475	0,136	1,1575	1,16
12	14,9975	15,0	0,1767	0,159	1,1462	1,14

 ℓ_1 = 0.1308 cm, ℓ_2 = 13.2766 cm, ℓ_3 = 0.266103 cm, ℓ_4 = 0.172446cm, ℓ_5 = 14.7803cm, Z_1 = 120.157 Ω , Z_2 = 41.1228 Ω , Z_3 = 203.761 Ω , Z_4 = 50.0584 Ω , Z_5 = 108.499 Ω

Şekil 4.153. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.154. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.155. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.40 Giriş Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri), Çıkış Seri Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.156. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendirici

Bu devrede 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.39. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHZ)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	14,8954	15,1	0,9222	0,921	1,7854	1,92
3	17,8761	18,1	0,7745	0,772	1,5804	1,57
4	18,8431	19,0	0,5197	0,516	1,3937	1,39
5	16,8704	16,9	0,2695	0,265	1,2424	1,24
6	15,4619	15,4	0,1161	0,112	1,1873	1,18
7	13,4087	13,3	0,0624	0,060	1,1602	1,16
8	13,3072	13,1	0,0414	0,045	1,1381	1,14
9	14,6152	14,3	0,1087	0,109	1,1222	1,12
10	16,6286	16,3	0,1602	0,155	1,1342	1,13
11	18,6393	18,4	0,1981	0,185	1,1362	1,13
12	17,3584	17,6	0,2081	0,195	1,1448	1,14
ℓ ₁ =0.7715	74 cm,	l 2=12.5558	3 cm, <i>l</i>	² ₃ =0.620394	cm, ℓ	4=0.228076

cm, ℓ _5=13.7528 cm, Z1=70.7344 $\Omega,$ Z2=36.1011 $\Omega,$ Z3=55.3957 $\Omega,$ Z4=35.9237 $\Omega,$ Z5=142.407 Ω

Şekil 4.157. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.158. Girişi Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.159. Girişi seri bağlı "L" ve "L" tipi (Paralel ve Seri), çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.41 Girişi "П" Tipi, Çıkışı Seri Bağlı "T" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.160. Girişi "Π" Tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.40. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	20,7645	17,6	0,2615	0,263	1,1418	1,15
3	17,3683	16,7	0,2175	0,229	1,1942	1,19
4	17,1994	15,0	0,1488	0,148	1,2353	1,23
5	16,0716	15,4	0,1338	0,134	1,2490	1,24
6	17,4967	16,0	0,2063	0,199	1,2767	1,27
7	15,2702	14,5	0,1860	0,183	1,2679	1,26
8	17,4194	16,8	0,1541	0,137	1,2094	1,21
9	15,3698	14,8	0,1043	0,095	1,1423	1,14
10	16,9883	17,1	0,1407	0,150	1,1202	1,12
11	15,6369	15,3	0,1330	0,149	1,1141	1,11
12	14,0669	14,3	0,0935	0,091	1,1495	1,15

 ℓ_1 =0.7936 cm, ℓ_2 =12.7603 cm, ℓ_3 =0.6700 cm, ℓ_4 =13.8966 cm, ℓ_5 =7.2163 cm,

 ℓ_{6} =7.7776 cm, ℓ_{7} =0.2803 cm, ℓ_{8} =0.4513 cm, Z₁=33.5448 Ω , Z₂=39.9588 Ω , Z₃=95.3 Ω , Z₄=150 Ω , Z₅=105.145 Ω , Z₆=64.9281 Ω , Z₇=72.1117 Ω , Z₈=40.0649 Ω

Şekil 4.161.Girişi "П" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.162. Girişi "П" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.163. Girişi"П" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.42 Girişi "П" Tipi, Çıkışı Seri Bağlı "П" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.164. Girişi " Π " Tipi, çıkışı seri bağlı " Π " ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z₀ karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i);V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,6239	17,3	0,3319	0,254	1,1049	1,09
3	15,0589	14,6	0,1476	0,156	1,1232	1,11
4	17,0081	16,3	0,1919	0,188	1,1267	1,11
5	16,2623	15,9	0,1002	0,097	1,1319	1,12
6	15,8830	15,5	0,2287	0,209	1,1479	1,14
7	17,8816	17,9	0,1828	0,150	1,1572	1,15
8	14,5936	14,4	0,2476	0,230	1,1409	1,13
9	17,5099	17,5	0,1100	0,096	1,1176	1,11
10	16,2629	16,0	0,0579	0,052	1,1057	1,10
11	15,0560	15,0	0,0456	0,057	1,0931	1,09
12	14,8181	14,6	0,1842	0,187	1,0877	1,09

Çizelge 4.41. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

 ℓ_1 =0.6025 cm, ℓ_2 =13.4256 cm, ℓ_3 =0.7011 cm, ℓ_4 =14.625 cm, ℓ_5 =0.7763 cm, ℓ_6 =7.9268 cm, ℓ_7 =7.1525 cm, ℓ_8 =7.9145 cm, Z₁=18.1213 Ω , Z₂=36.7461 Ω , Z₃=66.0775 Ω , Z₄=87.4027 Ω , Z₅=65.1226 Ω , Z₆=137.778 Ω , Z₇=76.9254 Ω , Z₈=150 Ω

Şekil 4.165. Girişi " Π " tipi, çıkışı seri bağlı " Π " ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.166. Girişi " Π " tipi, çıkışı seri bağlı " Π " ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.167. Girişi " Π " tipi, çıkışı seri bağlı " Π " ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.43 Giriş "П" Tipi, Çıkış Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.168. Giriş "П" Tipi, çıkış seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i); V_{ireq}(\omega_i); G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.42. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	5,0497	5,06	1,0000	1,000	2,5757	2,9
3	19,0562	19,1	0,7790	0,779	1,6810	1,68
4	17,1354	17,2	0,4361	0,436	1,3671	1,37
5	15,2002	15,2	0,3106	0,311	1,2109	1,21
6	15,4937	15,5	0,3102	0,311	1,1608	1,16
7	15,5530	15,6	0,3081	0,309	1,1371	1,14
8	15,9683	16,0	0,3138	0,314	1,1295	1,13
9	15,5207	15,5	0,3310	0,331	1,1236	1,12
10	13,7806	13,8	0,3055	0,302	1,1302	1,12
11	12,7125	12,7	0,2348	0,235	1,1176	1,12
12	14,6104	14,7	0,1960	0,197	1,1068	1,11

 ℓ_1 =1.0478 cm, ℓ_2 =0.1108 cm, ℓ_3 =1.1132 cm, ℓ_4 =1.4296 cm, ℓ_5 =0.9140 cm, ℓ_6 =0.7678 cm, ℓ_7 =1.0197 cm, Z₁=96.9402 Ω , Z₂=150 Ω , Z₃=150 Ω , Z₄=150 Ω , Z₅=150 Ω , Z₆=71.6054 Ω , Z₇=131.015 Ω

Şekil 4.169. Girişi "II" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.170. Girişi "П" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.171. Girişi "П" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.44 Giriş ve Çıkışı "∏" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.172. Giriş ve çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z₀ karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen Freq(ω i);Vireq(ω i); GTreq(ω i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.43. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	18,2850	18,0	0,1996	0,189	1,1195	1,12
3	16,0001	15,6	0,0779	0,107	1,1161	1,11
4	14,2479	14,1	0,1503	0,155	1,1068	1,10
5	14,2677	14,1	0,1395	0,135	1,1018	1,10
6	16,2038	16,1	0,0926	0,077	1,1182	1,11
7	16,7739	16,7	0,1486	0,133	1,1350	1,13
8	17,2452	17,2	0,1450	0,134	1,1356	1,13
9	17,0174	16,9	0,1033	0,096	1,1281	1,12
10	15,4462	15,3	0,1085	0,107	1,1415	1,14
11	14,2900	14,2	0,1070	0,110	1,1347	1,13
12	14,6779	14,6	0,0610	0,065	1,1282	1,13

 ℓ_1 =0.6531 cm, ℓ_2 =13.1508 cm, ℓ_3 =0.8815 cm, ℓ_4 =14.0122 cm, ℓ_5 =1.16211 cm, ℓ_6 =0.8396 cm, Z₁=28.0537 Ω , Z₂=37.7898 Ω , Z₃=56.9972 Ω , Z₄=89.6491 Ω , Z₅=87.2104 Ω , Z₆=40.5163 Ω

Şekil 4.173. Girişi ve çıkışı " Π " tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.174. Girişi ve çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.175. Girişi ve çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.45 Giriş "∏" Tipi ve Çıkış "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.176. Giriş " Π " tipi ve çıkış "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Giriş "П" Tipi, Çıkış "T" Tipi Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 6 adet ℓ uzunluğu ve 6 adet Z0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen Freq(ω i);Vireq(ω i); GTreq(ω i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.44. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	8,8717	10,4	0,6637	0,593	1,1440	1,13
3	15,3910	15,7	0,2038	0,178	1,1206	1,11
4	15,9849	16,0	0,0240	0,080	1,1021	1,09
5	15,5892	15,6	0,0955	0,106	1,0957	1,09
6	16,3491	16,4	0,0925	0,079	1,1065	1,10
7	15,7104	15,8	0,1451	0,123	1,1196	1,11
8	15,5033	15,5	0,1362	0,120	1,1219	1,12
9	15,9825	15,9	0,0636	0,052	1,1223	1,12
10	16,0049	15,8	0,0692	0,070	1,1479	1,14
11	15,9702	15,8	0,1133	0,116	1,1582	1,16
12	16,2844	16,1	0,0636	0,066	1,1715	1,17

 ℓ_1 =0.6575 cm, ℓ_2 =13.2058 cm, ℓ_3 =0.9918 cm, ℓ_4 =13.9505 cm, ℓ_5 =0.3906 cm, ℓ_6 =0.685001 cm, Z₁=19.6193 Ω , Z₂=34.3754 Ω , Z₃=47.2035 Ω , Z₄=58.6178 Ω , Z₅=59.98 Ω , Z₆=46.1016 Ω

Şekil 4.177. Girişi " \prod " tipi, çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.178. Girişi "∏"tipi, çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.179. Girişi "∏"tipi, çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.46 Giriş "П"Tipi ve Çıkış "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.180. Giriş "П"tipi ve çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici

Giriş "II" Tipi, Çıkış "L" Tipi (Seri ve Paralel) Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.45. Kuvvetlendiricinin Kazanç, Gürültü ve VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,8429	16,5	0,2389	0,247	1,1166	1,12
3	16,7736	16,5	0,0295	0,014	1,1493	1,14
4	15,5689	15,3	0,1455	0,137	1,1736	1,17
5	15,2549	15,0	0,1818	0,174	1,1860	1,18
6	16,5771	16,3	0,1629	0,155	1,2210	1,21
7	15,8366	15,6	0,1803	0,173	1,2376	1,23
8	16,1429	15,9	0,1220	0,115	1,2102	1,21
9	16,7972	16,6	0,0730	0,065	1,1622	1,16
10	16,9025	16,7	0,1477	0,145	1,1453	1,14
11	17,6372	17,3	0,1730	0,174	1,1226	1,12
12	18,5867	18,3	0,1285	0,142	1,1324	1,13

 ℓ_1 =0.7338 cm, ℓ_2 =12.9086 cm, ℓ_3 =0.81956 cm, ℓ_4 =13.7647 cm, ℓ_5 =14.2065 cm,

 $Z_1 \!=\! 29.5099 \ \Omega, \ Z_2 \!=\! 37.4735 \ \Omega, \ Z_3 \!=\! 69.946 \ \Omega, \\ Z_4 \!=\! 128.106 \ \Omega, \ Z_5 \!=\! 65.4156 \ \Omega$

Şekil 4.181. Giriş "∏" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.182. Giriş "∏" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.183. Giriş "∏" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.47 Giriş "П" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.184. Giriş "Π" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Giriş "II" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i); V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.46. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	14,1249	16,3	0,5256	0,359	1,1225	1,09
3	18,0993	17,3	0,1093	0,141	1,1462	1,12
4	16,9658	16,2	0,0979	0,151	1,1529	1,13
5	15,5724	15,1	0,1691	0,170	1,1608	1,14
6	16,1477	15,9	0,1756	0,139	1,1767	1,16
7	16,0929	16,1	0,2353	0,189	1,1836	1,17
8	15,8606	15,8	0,2229	0,188	1,1602	1,15
9	16,7212	16,5	0,1342	0,107	1,1301	1,12
10	16,6882	16,5	0,0572	0,031	1,1157	1,11
11	15,7486	15,6	0,0615	0,074	1,1051	1,10
12	14,2733	14,1	0,0891	0,112	1,1043	1,10

 ℓ_1 =0.6031 cm, ℓ_2 =13.431 cm, ℓ_3 =0.9086 cm, ℓ_4 =14.6606 cm, ℓ_5 =1.7821 cm,

 $Z_1 \!\!=\!\! 11.8229 \ \Omega, Z_2 \!\!=\!\! 27.4126 \ \Omega, Z_3 \!\!=\!\! 39.006 \ \Omega, Z_4 \!\!=\!\! 69.7208 \ \Omega, Z_5 \!\!=\!\! 57.2181 \ \Omega$

Şekil 4.185. Giriş " Π " tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.186. Giriş "∏" tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.187. Giriş " \prod " tipi, çıkış "L" tipi (paralel ve seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.48 Girişi "П" Tipi, Çıkışı Paralel Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.188. Girişi "Π" Tipi, çıkışı Paralel tipi uydurma devreli tek transistörlü kuvvetlendirici

Giriş "II" Tipi, Çıkış "PP" Tipi (Paralel) Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 4 adet ℓ uzunluğu ve 4 adet Z_0 karakteristik empedansı olmak üzere toplam 8 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.47. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	12,8090	15,0	0,5523	0,390	1,1230	1,09
3	18,5811	17,7	0,1363	0,168	1,1467	1,12
4	18,7966	17,8	0,0619	0,150	1,1533	1,13
5	17,5714	16,9	0,1425	0,158	1,1612	1,14
6	17,6934	17,4	0,1551	0,121	1,1770	1,16
7	16,5693	16,5	0,2271	0,180	1,1839	1,17
8	15,2527	15,1	0,2233	0,187	1,1605	1,15
9	15,6582	15,5	0,1322	0,101	1,1302	1,12
10	16,1047	15,9	0,0682	0,052	1,1157	1,11
11	16,1502	15,9	0,1127	0,129	1,1051	1,10
12	15,3410	15,1	0,1440	0,167	1,1043	1,10
13	14,6034	14,4	0,1417	0,162	1,1094	1,11

 ℓ_1 =0.603172 cm, ℓ_2 =13.431 cm, ℓ_3 =0.9086 cm, ℓ_4 =14.6576 cm, Z₁=11.8175 Ω , Z₂=27.4126 Ω , Z₃=39.006 Ω , Z₄=61.7119 Ω

Şekil 4.189. Giriş "∏" tipi, çıkışı Paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.190. Giriş " \prod " tipi, çıkışı paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.191. Giriş "∏" tipi, çıkışı Paralel tipi uydurma devreli tek transistorlu kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.49 Girişi "П" Tipi, Çıkışı Seri Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.192. Giriş "Π" tipi, çıkış Seri tipi uydurma devreli tek transistörlü kuvvetlendirici

Giriş "II" Tipi, Çıkışı Seri Tipi Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 4 adet ℓ uzunluğu ve 4 adet Z_0 karakteristik empedansı olmak üzere toplam 8 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.48. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans (GHz)	Kazanç (Oran)	Simülasyon Sonucu	MRin (Oran)	Simülasyon Sonucu	Gürültü (Oran)	Simülasyon Sonucu
2	15,5756	15,6	0,9260	0,926	1,7351	1,88
3	17,3059	17,4	0,8077	0,807	1,5931	1,59
4	17,1847	17,3	0,6401	0,639	1,4867	1,48
5	16,1544	16,2	0,4673	0,465	1,3566	1,35
6	15,9807	15,9	0,3225	0,321	1,2881	1,28
7	14,7207	14,6	0,1866	0,186	1,2233	1,22
8	14,7980	14,5	0,0587	0,061	1,1520	1,15
9	15,4572	15,1	0,1846	0,186	1,1029	1,10
10	16,2849	15,8	0,2856	0,289	1,0932	1,09
11	17,7054	17,3	0,2968	0,307	1,0894	1,09
12	17,4779	17,4	0,2105	0,228	1,0961	1,10

 $\ell_1 = 0.851546$ cm, $\ell_2 = 12.8629$ cm, $\ell_3 = 0.424443$ cm, $\ell_4 = 13.7632$ cm,

 $Z_1 \!\!=\!\! 72.4617 \; \Omega, \, Z_2 \!\!=\!\! 41.3128 \; \Omega, \, Z_3 \!\!=\!\! 89.7193 \; \Omega, \, \, Z_4 \!\!=\!\! 130.974 \; \Omega$

Şekil 4.193. Giriş " Π " tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.194. Giriş " \prod " tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.195. Giriş " Π " tipi, çıkışı Seri tipi uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.50 Giriş "T" Tipi, Çıkış Seri Bağlı "T" Ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.196. Giriş "T" Tipi, çıkış seri bağlı "T" ve "L" tipi (Paralel ve Seri) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.49. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	14,8434	14,0	0,7989	0,798	1,5170	1,61
3	18,4137	17,5	0,5477	0,544	1,3517	1,35
4	17,3705	16,9	0,3361	0,332	1,2520	1,25
5	15,5599	15,5	0,2238	0,224	1,1725	1,17
6	15,2739	15,7	0,2059	0,212	1,1441	1,14
7	14,8033	15,5	0,1678	0,181	1,1266	1,12
8	14,8991	15,6	0,1503	0,169	1,1132	1,11
9	14,6455	15,1	0,1437	0,166	1,0996	1,10
10	14,6470	14,8	0,1360	0,153	1,1021	1,10
11	15,6608	15,9	0,1350	0,142	1,0986	1,10
12	14,4693	16,5	0,1010	0,114	1,1053	1,10

 ℓ_{1} = 13.3917 cm, ℓ_{2} =1.10291 cm, ℓ_{3} =1.15025 cm, ℓ_{4} =13.5394 cm, ℓ_{5} =0.999401 cm, ℓ_{6} =12.974 cm, ℓ_{7} =1.03452 cm, ℓ_{8} =2.87341 cm, Z₁=25.8446 Ω , Z₂=150 Ω , Z₃=34.7937 Ω , Z₄=150 Ω , Z₅=44.3567 Ω , Z₆=40 Ω , Z₇=48.2827 Ω , Z₈=108.838 Ω

Şekil 4.197.Girişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.198. Girişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.199.Girişi "T" tipi, çıkışı seri bağlı "T" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.51 Giriş "T" Tipi, Çıkış Seri Bağlı "∏" Ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.200. Giriş "T" Tipi, çıkış seri bağlı "∏" ve "L" tipi (Seri ve Paralel) Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 8 adet ℓ uzunluğu ve 8 adet Z_0 karakteristik empedansı olmak üzere toplam 16 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.50. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, V_i, G_T , B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	16,0254	15,5	0,7821	0,779	1,5446	1,64
3	16,8906	16,5	0,5102	0,509	1,3640	1,36
4	15,1401	14,9	0,2759	0,274	1,2422	1,24
5	14,1652	14,0	0,1548	0,153	1,1502	1,15
6	14,8279	14,6	0,1843	0,186	1,1211	1,12
7	14,9336	14,8	0,1955	0,198	1,1120	1,11
8	15,2642	15,1	0,2078	0,211	1,1151	1,11
9	15,0733	14,9	0,2060	0,209	1,1148	1,11
10	14,2684	14,0	0,1674	0,168	1,1298	1,13
11	14,2345	14,0	0,1059	0,104	1,1334	1,13
12	15,9583	15,7	0,1252	0,104	1,1548	1,15

 ℓ_1 =13.3257 cm, ℓ_2 =1.1188 cm, ℓ_3 =1.1006 cm, ℓ_4 =13.8761 cm, ℓ_5 =1.2611 cm,

 ℓ_{6} =0.854682 cm, ℓ_{7} = 14.4001 cm, ℓ_{8} =0.93241 cm, Z_{1} =27.3836 Ω , Z_{2} =150 Ω , Z_{3} =41.9327 Ω , Z_{4} =150 Ω , Z_{5} =120.451 Ω , Z_{6} =46.5432 Ω , Z_{7} =59.7923 Ω , Z_{8} =98.07 Ω

Şekil 4.201.Girişi "T" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.202. Girişi "T" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.203.Girişi "T" tipi, çıkışı seri bağlı "∏" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.52 Girişi "T" Tipi, Çıkışı Seri Bağlı "L" ve "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.204. Girişi "T" Tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.51. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	17,1406	17,2	0,7981	0,797	1,5675	1,67
3	16,1566	16,3	0,5346	0,533	1,3762	1,37
4	13,8648	13,9	0,3161	0,314	1,2577	1,25
5	13,0762	13,1	0,1803	0,179	1,1666	1,16
6	14,1057	14,0	0,1637	0,166	1,1354	1,13
7	14,6770	14,5	0,1461	0,150	1,1212	1,12
8	16,0303	15,8	0,1560	0,160	1,1156	1,11
9	17,3751	17,2	0,1713	0,175	1,1091	1,11
10	17,0378	17,0	0,1739	0,172	1,1202	1,12
11	15,1150	15,3	0,1893	0,180	1,1219	1,12
12	13,7938	14,0	0,1602	0,147	1,1302	1,13

 ℓ_1 =13.3734 cm, ℓ_2 =1.0319 cm, ℓ_3 =1.09095 cm, ℓ_4 =1.2644 cm, ℓ_5 =0.9997 cm,

 ℓ_{6} =12.31078 cm, ℓ_{7} = 0.679674 cm, Z₁=26.5254 Ω , Z₂=149.997 Ω , Z₃=38.4186 Ω , Z₄=102.767 Ω , Z₅=149.994 Ω , Z₆=71.0252 Ω , Z₇=55.0729 Ω

Şekil 4.205.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.206.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.207.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Seri ve Paralel) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.53 Girişi "T" Tipi, Çıkışı Seri Bağlı "L" ve "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.208. Girişi "T" Tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 7 adet ℓ uzunluğu ve 7 adet Z_0 karakteristik empedansı olmak üzere toplam 14 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.52. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	14,4887	14,0	0,7774	0,773	1,5343	1,63
3	16,5493	16,1	0,4982	0,495	1,3631	1,36
4	15,3634	15,0	0,2603	0,258	1,2521	1,25
5	14,6792	14,3	0,1602	0,158	1,1646	1,16
6	15,6411	15,3	0,1924	0,192	1,1348	1,13
7	15,4957	15,2	0,1755	0,177	1,1214	1,12
8	15,3735	15,2	0,1731	0,177	1,1175	1,12
9	14,8530	14,8	0,1684	0,173	1,1124	1,11
10	14,2569	14,3	0,1512	0,156	1,1247	1,12
11	14,8643	14,9	0,1260	0,134	1,1272	1,12
12	17,2291	17,2	0,1047	0,106	1,1481	1,14

 ℓ_1 =13.3309 cm, ℓ_2 =1.1184 cm, ℓ_3 =1.09607 cm, ℓ_4 =13.8815 cm, ℓ_5 =1.03519 cm,

 ℓ_{6} =0.51658 cm, ℓ_{7} =13.4656 cm, Z₁=27.6402 Ω , Z₂=150 Ω , Z₃=40.3745 Ω ,

 $Z_{4} \!= 99.7488 \; \Omega, Z_{5} \!= \! 91.1388 \; \Omega, Z_{6} \!= 43.1364 \; \Omega, Z_{7} \!= \! 26.793 \; \Omega$

Şekil 4.209.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.210.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.211.Girişi "T" tipi, çıkışı seri bağlı "L" ve "L" tipi (Paralel ve Seri) uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.54 Girişi "T" Tipi, Çıkışı "∏" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.212. Girişi "T" Tipi, çıkışı "∏" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

, , ,		,				
Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	15,8164	15,5	0,7768	0,774	1,5332	1,63
3	15,8735	15,7	0,4901	0,489	1,3533	1,35
4	14,0378	13,9	0,2617	0,260	1,2332	1,23
5	13,3212	13,2	0,1572	0,157	1,1448	1,14
6	14,2180	14,1	0,1985	0,202	1,1184	1,12
7	14,5263	14,4	0,2119	0,216	1,1111	1,11
8	14,7868	14,7	0,2177	0,223	1,1151	1,11
9	14,3548	14,2	0,2036	0,208	1,1139	1,11
10	13,4412	13,3	0,1534	0,157	1,1262	1,12
11	13,6531	13,5	0,0876	0,093	1,1278	1,12
12	16,6022	16,3	0,0709	0,061	1,1477	1,14

Çizelge 4.53. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

 ℓ_1 =13.3292 cm, ℓ_2 =1.1238 cm, ℓ_3 =1.1191 cm, ℓ_4 = 13.864 cm, ℓ_5 =1.2085 cm,

 ℓ_6 =0.865 cm, Z₁=27.386 Ω, Z₂=150 Ω, Z₃=41.757 Ω,Z₄=140.526 Ω, Z₅=104.505 Ω, Z₆=36.3702 Ω

Şekil 4.213. Girişi "T" çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.214. Girişi "T" çıkışı " \prod " tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.215. Girişi "T" çıkışı "∏" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.55 Giriş ve Çıkışı "T" Tipi Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.216. Giriş ve çıkışı "T" tipi Uydurma devreli mikrodalga kuvvetlendiricinin iki kapılı gösterimi

Bu devrede 6 adet ℓ uzunluğu ve 6 adet Z_0 karakteristik empedansı olmak üzere toplam 12 adet optimizasyon değişkeni kullanılmıştır. Elde edilen $F_{req}(\omega_i)$; $V_{ireq}(\omega_i)$; $G_{Treq}(\omega_i)$ değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.54. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	15,0354	15,2	1,0000	1,000	1,9198	2,1
3	19,6277	19,7	0,5037	0,500	1,4326	1,43
4	12,8964	12,9	0,2011	0,197	1,2494	1,25
5	12,7726	12,7	0,1358	0,134	1,1584	1,16
6	16,1117	15,9	0,1909	0,192	1,1382	1,14
7	16,9781	16,7	0,1874	0,190	1,1322	1,13
8	15,4296	15,1	0,1682	0,172	1,1294	1,13
9	14,4491	14,0	0,1295	0,135	1,1222	1,12
10	16,0716	15,6	0,0778	0,078	1,1381	1,13
11	17,4672	17,6	0,1372	0,115	1,1459	1,14
12	13,9047	14,5	0,2053	0,177	1,1643	1,16

 ℓ_1 =13.3068 cm, ℓ_2 =0.9637 cm, ℓ_3 =1.1374 cm, ℓ_4 =1.2747 cm, ℓ_5 =0.9416 cm,

 ℓ_6 =12.3863 cm, Z₁=25.1532 Ω, Z₂=84.1525 Ω, Z₃=37.7264 Ω, Z₄=145.091 Ω, Z₅=150 Ω, Z₆=135.237 Ω

Şekil 4.217. Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin kazancının frekansa bağlı olarak değişimi

Şekil 4.218. Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin VSWR – frekans değişimi

Şekil 4.219. Girişi ve çıkışı "T" tipi uydurma devreli mikrodalga kuvvetlendiricisinin gürültüsünün frekansa bağlı olarak değişimi

4.1.56 Giriş "T" Tipi, Çıkış "L" Tipi (Seri ve Paralel) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.220. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendirici

Giriş "T" Tipi, Çıkış "L" Tipi (Seri ve Paralel) Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i); V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.55. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B) \Leftrightarrow (1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	9,1839	9,12	0,8623	0,862	1,6426	1,76
3	17,6065	17,5	0,5846	0,583	1,3440	1,34
4	17,6018	17,5	0,3602	0,358	1,2355	1,23
5	15,2635	15,2	0,2680	0,266	1,1761	1,17
6	14,1404	14,0	0,2494	0,248	1,1649	1,16
7	12,5492	12,4	0,1782	0,177	1,1579	1,15
8	12,0383	12,0	0,1326	0,132	1,1486	1,15
9	12,3234	12,1	0,1266	0,129	1,1334	1,13
10	13,0627	12,8	0,1245	0,127	1,1452	1,14
11	14,9667	14,5	0,1013	0,105	1,1489	1,14
12	17,9351	17,4	0,1021	0,120	1,1684	1,16

 ℓ_1 =13.2375 cm, ℓ_2 =1.017 cm, ℓ_3 =1.1594 cm, ℓ_4 =13.7842 cm, ℓ_5 =14.0462 cm,

 $Z_1 \!=\! 28.8173 \; \Omega, \; Z_2 \!=\! 99.993 \; \Omega, \; Z_3 \!=\! 39.5418 \; \Omega, \; Z_4 \!=\! 144.248 \; \Omega, \; Z_5 \!=\! 99.1343 \; \Omega$

Şekil 4.221. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.222. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.223. Giriş "T" tipi, çıkış "L" tipi (Seri ve Paralel) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

4.1.57 Giriş "T" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Uydurma Devreli Mikrodalga Kuvvetlendirici Tasarımı

Şekil 4.224. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendirici

Giriş "T" Tipi, Çıkış "L" Tipi (Paralel ve Seri) Hibrid Uydurma Devreleri ile Gerçeklenen Mikrodalga Kuvvetlendiricisi devresinde 5 adet ℓ uzunluğu ve 5 adet Z₀ karakteristik empedansı olmak üzere toplam 10 adet optimizasyon değişkeni kullanılmıştır. Elde edilen F_{req}(ω_i); V_{ireq}(ω_i); G_{Treq}(ω_i) değerleri bir mikrodalga simülasyon programı ile kontrol edilmiş ve tüm sonuçlar birlikte verilmiştir.

Çizelge 4.56. Kuvvetlendiricinin kazanç, gürültü ve giriş VSWR sonuçlarının simülasyon programı sonuçları ile birlikte gösterimi. Tasarım Hedef Uzayı: (F, Vi, GT, B)⇔(1.112, 1, 15.86, 2-12GHz)

Frekans	Kazanç	Simülasyon	MRin	Simülasyon	Gürültü	Simülasyon
(GHz)	(Oran)	Sonucu	(Oran)	Sonucu	(Oran)	Sonucu
2	9,8061	9,45	0,8477	0,851	1,1987	1,23
3	18,4202	18,0	0,5132	0,519	1,1320	1,13
4	18,1919	18,0	0,1999	0,190	1,1264	1,12
5	15,5023	15,3	0,0924	0,065	1,1159	1,11
6	14,5811	14,3	0,1293	0,126	1,1102	1,10
7	13,3062	13,0	0,1566	0,158	1,0945	1,09
8	13,3633	13,1	0,1479	0,149	1,0993	1,10
9	14,4186	14,2	0,1291	0,118	1,1474	1,15
10	15,6390	15,4	0,1230	0,108	1,2734	1,27
11	17,1685	16,9	0,1415	0,152	1,4175	1,40
12	18,0347	17,9	0,0757	0,126	1,5832	1,56

 ℓ_1 =1.66203 cm, ℓ_2 =14.0064 cm, ℓ_3 =14.431 cm, ℓ_4 =13.9471 cm, ℓ_5 =1.11499 cm,

 $Z_1 \!\!=\!\! 105.348 \hspace{0.1cm} \Omega, \hspace{0.1cm} Z_2 \!\!=\!\! 185.005 \hspace{0.1cm} \Omega, \hspace{0.1cm} Z_3 \!\!=\!\! 38.9995 \hspace{0.1cm} \Omega, \hspace{0.1cm} Z_4 \!\!=\!\! 45.7314 \hspace{0.1cm} \Omega, \hspace{0.1cm} Z_5 \!\!=\!\! 123.291 \hspace{0.1cm} \Omega$

Şekil 4.225. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin kazancının frekansa bağlı olarak değişimi

Şekil 4.226. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin VSWR – frekans değişimi

Şekil 4.227. Giriş "T" tipi, çıkış "L" tipi (Paralel ve Seri) uydurma devreli tek transistörlü kuvvetlendiricinin gürültüsünün frekansa bağlı olarak değişimi

5. TARTIŞMA ve SONUÇ

Bu çalışmada, mikrodalga kuvvetlendiricilerinin optimizasyonu temel problemi olan gerçeklenebilir tasarım uzayı problemi çözülmüştür. Tasarım uzayı, iki alt uzaydan ibarettir.

- i) Tasarım değişkenleri uzayı
- ii) Tasarım hedefi uzayı

Bizim sistemimizde tasarım değişkenleri, uydurma devrelerinde kullanılan transmisyon hatlarının karakteristik empedansları Z_0 ve fiziksel uzunlukları ℓ 'dir ve hedef fonksiyonlarımız gürültü faktörü F, giriş yansıtma katsayısı modülü ρ_i ve transduser güç kazancı G_T 'dir. Tasarım değişkenleri Z_{oi} , ℓ_i ile arasında yüksek nonlineer ilişkiler vardır. Bu ilişkiler, sistemin matematik modeli kullanılarak formülüze edilmiştir. Uygulanabilir tasarım değişkenleri uzayı, sistemin gerçekleştirilmesi düşünülen teknolojinin sınırları göz önüne alınarak teşkil edilmiştir. Aynı zamanda uygulanabilir hedef uzayı da aktif elemanın performans data yaprakları kullanılarak oluşturulmuştur. Hedef uzayı, optimizasyonda iki şekilde kullanılmıştır: 1) Uyumlu F(ω), Vi(ω), G_T(ω) üçlüsü B band genişliği 2) Z_S, Z_L sonlandırmaları ve B band genişliği.

Optimizasyonda kullanılan çok amaçlı hata fonksiyonlarının tasarım uzayı içindeki global minimumlar Memetik algoritma ile araştırılmıştır. Memetik algoritma içerisindeki global algoritmalar bölümünde: Genetik algoritma, yerel arama algoritması olarak: Örnek aratma algoritması, Adaptif örnek aratma algoritması ve Nelder-Mead "Simpleks" arama algoritması kullanılmıştır.

Yapılan denemeler sonucunda genetik algoritma özellikleri içerisinde seçme yöntemi olarak arta kalan (Remainder) ile seçme, çaprazlama yöntemlerinden havuz çaprazlama yönteminin istenilen sonucu verdiği gözlenmiştir. Yerel algoritmalar içerisinde ise Adaptif örnek aratma algoritması kullanılmasının daha başarılı olduğu gözlenmiştir.

Çalışmada çok farklı tipte uydurma devreleri kullanılmıştır. Uydurma devrelerindeki eleman sayısının artması, tasarımcılar için elemanların fiziksel boyut olarak daha küçük devreler gerçekleştirebilme olanağını sunmaktadır. Tasarlanan tüm uydurma devre yapılarında istenilen sonuçlara ulaşılmasına rağmen; özellikle Π-tipi konfigürasyonun belirlenen transistorler ve belirlenen çalışma bandları için daha güzel sonuçlar verdiği sonucuna varılmıştır.

Tasarlanan devreler, ileriki çalışmalar ile fiziksel olarak daha küçük boyutlu ve daha küçük empedanslı transmisyon hatları ile gerçekleştirilebilecektir. Çalışma bandı çok geniş tutulduğundan tasarlanan devreler farklı uygulama alanlarında kullanılabilecektir. Bu çalışmada tasarlanan ve simülasyon programları ile doğruluğu onaylanan devreler, pratikteki süreksizlikleri de hesaba katacak şekilde geliştirilip ileriki aşamalarda mikrodalga teknolojilerinden devre yararlanılarak gerçekleştirileceği ümit edilmektedir.

6. KAYNAKLAR

Abdul Halim, N.M., Awang Z., Hasimah Baba N., (2005) Computer-Aided Synthesis of Matching Networks for Multi-Stage Broadband Microwave Amplifiers, Asia-Pacific Conference On Applied Electromagnetics Proceedings, 245-249, Malezya.

Altıparmak, F., ve Dengiz, B., (1998) Genetik Algoritmalar, Gazi Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 523-541Ankara.

Balsi. M., Scotti ,G., Tommasino, P. ve Trifiletti, A. (2006) Discussion and new proofs of the conditional stability criteria for multidevice microwave amplifiers, IEE Proc.-Microw. Antennas Propag., Vol. 153, No. 2, 177-181.

Candaş. B., Güneş. F., (2004) Yiiksek Teknoloji Mikrodalga Transistorleri ve Minimum L – C Elemanli Uydurma Devreleri, IEEE, 379-382

Cantoni, M., Zio, E., Marseguerra, M., (1999). Genetik Algoritmalar ve Optimal İşletme Tasarımı İçin Monte Carlo Modeli, Reliability Engineering And System Safety, 68,29-38.

Caorsi, S., Massa, A., Pastorino, M., Randazzo, A., (2003). Electromagnetic Detection of Dielectric Scatterers Using Phaseless Synthetic and Real Data and the Memetic Algorithm, IEEE Transactions On Geoscience And Remote Sensing, Vol. 41, No. 12, 2745-2753, UK.

Caorsi, S., Massa, A., Pastarino, M., Raffetto, M., ve Randauo, A., (2004), Detecton Of Pec Elliptic Cylinders By A Memetic Algorithm Using Real Data, IEEE Tram. Antennas Propagot., vol. 51. 2878-2884.

Cengiz, Y., (2004). Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Cengiz, Y., Günaydin, S., Güneş, F., (2006) Genetik Algoritma ile Başlangıç Koşulları Belirlenmiş Örnek Arama Algoritması ile Mikrodalga Kuvvetlendirici, Akıllı Sistemlerde Yenilikler ve Uygulamaları Sempozyumu, S. 232-235.

Collin, R.E., (1992) "Foundation For Microwave Engineering" Mcgraw-Hill, 713-798.

Çetin, N., (2002) Yüksek Lisans Tezi, Genetik Algoritma, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Dafalla , Z. I., David, S. R. Ve Abdel Rahman, A. M. (2004) Low Noise Amplifier Design for LEO Satellite Applications, IEEE, 325-326.

Forrest, S., ve Mitehell, M., (1993) What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Machine Learning, Vol. 13, No. 2/3.

Yazgan, B., (1981) Yarı İletken Düzenleri, İstanbul Teknik Üniversitesi Matbaası, İstanbul.

Güneş, M., Güneş, F., (1991) A new Design Method For Maximum Gain Formulation Of A Microwave Amplifier Subject To Noise Figure And Input VSWR, IEEE, 899-902.

Güneş F., Güneş M. Ve Fidan M., (1994) Performance Characterisation Of A Microwave Transistor, IEEE Proc. Circuits Devices System, Vol. 141, No:5.

Güneş, F., ve Tepe, C., (2002) Gain - Bandwidth limitations of Microwave Transistors, Int. Journal of RF and Miconvave Computer – Aided Engineering 483 - 495. volume 12. no:4.

Güneş F., Çetiner B.A., (1998) "Smith Chart Formulation Of Performance Characterisation For A Microwave Transistor", IEEE Proc. Circuits Devices Syst. Vol. 145, No:6.

Goldberg, D.E. (1989) Genetic Algorithms In Search, Optimization And Machine Learning, Addison Wesley, Readin, MA.

Hara, S., Tokumitsu, T., Tanaka, T., Aikawa, M., (1988), "Broad-Band Monolithic Microwave Active Inductor and Its Application to Miniaturized wide-Band Amplifiers", IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 12, 1920-1924.

Holland, J., (1975) Adapation İn Natural And Artifical Systems, University Of Michigan Press, Ann Arbor, Usa.

Karaboğa, D., (2004) Yapay Zeka Optimizasyon Algoritmaları, Atlas Yayın Dağıtım, İstanbul.

Kaya, M., (1999) Yüksek Lisans Tezi, Genetik Algoritma ve Gezgin Satıcı Probleminin Çözümü, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.

Lingli, Y., Kuizhang, D., Quingguo, H., (1998) 2-18 GHz GaAs Monolithic Ultra-Broadband Amplifier, IEEE, 238-241.

Louis, S. J., Rawlins, G. J. E., (1993) Syntactic analysis of convergence in genetic algorithms. In L. Darrel Whitley, editor, Foundations of Genetic Algorithms - 2, pages 141–152. Morgan Kauffman, San Mateo, CA.

Merz, P., Freisleben, B., (1999) A Comparison of Memetic Algorithms, Tabu Search, ans Ant Colonies fort he Quadratic Assignment Problem, IEEE, 2063-2069.

Olivieri, M., Scotti, G., Tommasino, P., Trifiletti, A., (2005) Necessary and Sufficient Conditions for the Stability of Microwave Amplifiers With Variable Termination Impedances, Ieee Transactions On Microwave Theory And Techniques, Vol. 53, No. 8, 2580-2586.

Pastorino, M., Caorsi, S., Massa, A., Randazzo, A., (2004) Reconstruction Algorithms for Electromagnetic Imaging, IEEE Transactions On Instrumentation And Measurement, Vol. 53, No. 3, 692-699.

Shin, S.C., Tsai, M. D., Lui, R. C., Lin, K. Y., Wang, H., (2005) A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18 µm CMOS Technology, IEEE, 448-450.

Tanrıseven, D., (2000) Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Tanzi, N., (1995) "Design of Broad-Band, Low Noise Microwave Transistor Amplifiers with Input and Output VSWR Constraints Using CAD Tolls", IEEE, 1215-1219.

Yeniay, Ö., (1999) A Comparison Of The Performances Between A Genetic Algoritm And The Taguchi Method Over Artifical Problems, Hacettepe Üniversitesi İstatistik Bölümü, Ankara.

ÖZGEÇMİŞ

Adı Soyadı: Ulaş KILIÇ

Doğum Yeri: Sakarya/MERKEZ

Doğum Yılı: 18.03.1981

Medeni Hali: Bekar

Eğitim ve Akademik Durumu:

Lise 1995 – 1998 Antalya Lisesi

Lisans 1998 – 2003 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü

Yabancı Dil: 50 puan (KPDS/2006)

İş Deneyimi:

2003 – 2004 Arçelik/Beko Doğu Garajı Servisi/ Servis Mühendisi

2004 – 2006 Süleyman Demirel Üniversitesi Öğretim Elemanı (Dışarından Görevlendirme)

EKLER

- Mikrodalga Kuvvetlendiricisi Hedef Fonksiyonu Programları Genetik Algoritma Optimizasyon Programları Ek 1
- Ek 2

Ek-1 Mikrodalga Kuvvetlendiricisi Hedef Fonksiyonu Programları

TEZ_NE329S01BPSPSP

function F=tez_NE329S01BPSPSP(l)

- % Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef
- % fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapilmistir.
- % tez_NE329S01BPSPSP fonksiyonu uydurma devresinin 10 adet l degiskenlerini

ve bu

% devrelere iliskin 10 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

```
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
```

```
In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');
```

```
% Kaynak ve Yük Empedansları
```

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

```
% z optimize edilecek hat parçalarının karakteristik empedansları
```

n=12;

z1=l(11);

z2=l(12);

z3=l(13);

- z4=l(14);
- $z_{5}=l(1_{5});$
- z6=l(16);

z7=l(17);

z8=l(18); z9=l(19);

 $z_{10} = l(20);$

l1=l(1);

12=l(2);

13=l(3);

```
l4=l(4);
```

l5=l(5);

l6=l(6);

17=l(7);

18=l(8); 19=l(9);

10=1(0);110=1(10);

% Referans Kazanç Değeri

 $Gref=10^{(Const(10)*0.1)};$

% İlk Değerlerin Tanımlanması

n=12; Gt=zeros(n,1); Gav=zeros(n,1); E1=zeros(2,2); E2=zeros(2,2); E3=zeros(2,2); E4=zeros(2,2);E5=zeros(2,2); E6=zeros(2,2); E7=zeros(2,2);E8=zeros(2,2);E9=zeros(2,2);E10=zeros(2,2);MRin=zeros(n,1)EN=zeros(n,1); GT=zeros(n,1); LT=zeros(n,1); Noise=zeros(n,1); Zs=ones(n,7); Zopt=zeros(n,1); Zout=zeros(n,1); Rout=zeros(n,1); Zm=zeros(n,7);Zi7=zeros(n,1); A = zeros(n, 1): B=zeros(n,1);C = zeros(n,1);D=zeros(n,1); AA=zeros(n,1); BB=zeros(n,1); CC=zeros(n,1);DD=zeros(n,1); EE=zeros(n,1);FF=zeros(n,1); GG=zeros(n,1);HH=zeros(n,1); roi=zeros(n,1); EVi=zeros(n,1); toplam=zeros(n,1); % S Parametrelerinin hesaplanması S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13])); $G_{opt=S(:,5)};$ S = S(:,1:4);% ABCD Parametrelerinin Hesabı A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2)); $C = (1/50) \cdot ((1-S(:,1)) \cdot (1-S(:,4)) - S(:,2) \cdot S(:,3)) \cdot /(2 \cdot S(:,2));$ D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));

% Tranzistörün Eşdeğer Gürültü Direnci Rn =In(:,14).*Const(2); % Minimum Gürültü Faktörü Fmin =10.^(In(:,11).*0.1); % Thetaların Hesabı Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor. % Kazancın Hesaplanması for n=1:12 E1=[cos(Theta(n,1)), i.*z1.*sin(Theta(n,1)); i.*sin(Theta(n,1))./z1, cos(Theta(n,1))]; $E3=[\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))];$ $E5=[\cos(Theta(n,5)),i.*z5.*sin(Theta(n,5));i.*sin(Theta(n,5))./z5,cos(Theta(n,5))];$ E2=[1,0;-i./(z2.*tan(Theta(n,2))),1];E4=[1,0;-i./(z4.*tan(Theta(n,4))),1];E6=[cos(Theta(n,6)), i.*z6.*sin(Theta(n,6)); i.*sin(Theta(n,6))./z6, cos(Theta(n,6))];E8=[cos(Theta(n,8)), i.*z8.*sin(Theta(n,8)); i.*sin(Theta(n,8))./z8, cos(Theta(n,8))]; $E10=[\cos(\text{Theta}(n,10)), i.*z10.*\sin(\text{Theta}(n,10)); i.*\sin(\text{Theta}(n,10))./z10, \cos(\text{Theta}(n,10))]$,10))]; E7=[1,0;-i./(z7.*tan(Theta(n,7))),1];E9=[1,0;-i./(z9.*tan(Theta(n,9))),1];M=E1*E2*E3*E4*E5*[A(n),B(n);C(n),D(n)]*E6*E7*E8*E9*E10; $Gt(n)=4*Rs_const*Rl_const/(abs(M(1,1))*Zl_const+M(1,2)+Zs_const*(M(2,1))*Zl_$ const+M(2,2))).^2) Zin(n) = (M(1,1).*Zl const+M(1,2))./(M(2,1).*Zl const+M(2,2))MRin(n) = abs((Zs const-conj(Zin(n)))/(Zs const+Zin(n))) $Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)$ Rout=real(Zout); $Gav(n) = 4*Rs_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(Zout)+Zs=const*(Zo$ j(Zout)+M(2,2)).^2); end ortgt=sum(Gt(2:11)); ortgt=ortgt/10; ortmrin=sum(MRin(2:11)); ortmrin=ortmrin/40; % Ilk Katin Kaynak Empedansi Zs(:,1)=Zs const*ones(n,1);% Ikinci Katin Kaynak Empedansi $Z_{s}(:,2)=(i.*z1.*sin(Theta(:,1))+cos(Theta(:,1)).*Z_{s}(:,1))./(cos(Theta(:,1))+i.*sin(Theta(:,1)))$ a(:,1)).*Zs(:,1)./z1); % Üçüncü Katin Kaynak Empedansi Zs(:,3)=Zs(:,2)./(1+(-i./(z2.*(tan(Theta(:,2))))).*Zs(:,2));% Dördüncü Katın Kaynak Empedansı $Z_{s}(:,4) = (i.*z3.*sin(Theta(:,3)) + cos(Theta(:,3)).*Z_{s}(:,3))./(cos(Theta(:,3)) + i.*sin(Theta(:,3)))$ a(:,3)).*Zs(:,3)./z3); % Beşinci Katın Kaynak Empedansı Zs(:,5)=Zs(:,4)./(1+(-i./(z4.*(tan(Theta(:,4))))).*Zs(:,4));% Altinci Katın Kaynak Empedansı

 $\label{eq:single_sing$

TEZ_NE329S01ABPSPSP

function F=tez_NE329S01ABPSPSP(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapılmistir.

% tez_NE329S01ABPSPSP fonksiyonu uydurma devresinin 10 adet l degiskenlerini ve bu

% devrelere iliskin 10 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları n=12;

n=12;

- z1=l(11); z2=l(12);
- $z_{2}=l(12);$ $z_{3}=l(13);$
- $z_{4}=l(14);$
- $z_{5} = l(15);$
- z6=l(16);
- z7=l(17);
- z8=l(18);
- z9=l(19);
- z10=l(20);
- l1=l(1);
- l2=l(2);
- 13=l(3);
- l4=l(4);
- 15=1(5);
- l6=l(6); l7=l(7);
- 17 = 1(7); 18 = 1(8);
- 10=1(0);19=1(9);

110=l(10);

% Referans Kazanç Değeri

Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1); E1=zeros(2,2); E2=zeros(2,2);E3=zeros(2,2); E4=zeros(2,2); E5=zeros(2,2);E6=zeros(2,2);E7=zeros(2,2); E8=zeros(2,2); E9=zeros(2,2);E10=zeros(2,2);MRin=zeros(n,1)EN=zeros(n,1); GT=zeros(n,1); LT=zeros(n,1); Noise=zeros(n,1); Zs=ones(n,7); Zopt=zeros(n,1); Zout=zeros(n,1); Rout=zeros(n,1); Zm=zeros(n,7);Zi7=zeros(n,1);A = zeros(n, 1);B=zeros(n,1); C = zeros(n,1): D=zeros(n,1);AA = zeros(n,1);BB=zeros(n,1); CC=zeros(n,1);DD=zeros(n,1); EE=zeros(n,1);FF=zeros(n,1); GG=zeros(n,1); HH=zeros(n,1); roi=zeros(n,1); EVi=zeros(n,1); toplam=zeros(n,1); % S Parametrelerinin hesaplanması S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));G_opt=S(:,5); S = S(:,1:4);% ABCD Parametrelerinin Hesabı A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2)); $C = (1/50) \cdot ((1-S(:,1)) \cdot (1-S(:,4)) - S(:,2) \cdot S(:,3)) \cdot /(2 \cdot S(:,2));$ D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));% Tranzistörün Eşdeğer Gürültü Direnci Rn =In(:,14).*Const(2);
```
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
        E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
        E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
        E5=[1,0;-i./(z5.*tan(Theta(n,5))),1];
        E2=[\cos(\text{Theta}(n,2)), i.*z2.*\sin(\text{Theta}(n,2)); i.*\sin(\text{Theta}(n,2))./z2, \cos(\text{Theta}(n,2))];
        E4=[\cos(\operatorname{Theta}(n,4)), i.*z4.*\sin(\operatorname{Theta}(n,4)); i.*\sin(\operatorname{Theta}(n,4))./z4, \cos(\operatorname{Theta}(n,4))];
        E7 = [\cos(\text{Theta}(n,7)), i.*z7.*\sin(\text{Theta}(n,7)); i.*sin(\text{Theta}(n,7))./z7, \cos(\text{Theta}(n,7))];
        E9=[\cos(Theta(n,9)),i.*z9.*sin(Theta(n,9));i.*sin(Theta(n,9))./z9,\cos(Theta(n,9))];
        E6=[1,0;-i./(z6.*tan(Theta(n,6))),1];
        E8=[1,0;-i./(z8.*tan(Theta(n,8))),1];
       E10=[1,0;-i./(z10.*tan(Theta(n,10))),1];
      M=E1*E2*E3*E4*E5*[A(n),B(n);C(n),D(n)]*E6*E7*E8*E9*E10;
Gt(n) = 4*Rs_const*Rl_const/(abs(M(1,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const+Zs_const*(M(2,1).*Zl_const+Zs_const*(M(2,1).*Zl_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n) = abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Rout=real(Zout);
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zo
i(Zout)+M(2,2)).^{2};
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10;
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs\_const*ones(n,1);
% Ikinci Katin Kaynak Empedansi
Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));
% Üçüncü Katin Kaynak Empedansi
Z_{s}(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Z_{s}(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2)))
a(:,2)).*Zs(:,2)./z2);
% Dördüncü Katın Kaynak Empedansı
Zs(:,4)=Zs(:,3)./(1+(-i./(z3.*(tan(Theta(:,3))))).*Zs(:,3));
% Beşinci Katın Kaynak Empedansı
Z_{s}(:,5)=(i.*z4.*sin(Theta(:,4))+cos(Theta(:,4)).*Z_{s}(:,4))./(cos(Theta(:,4))+i.*sin(Theta(:,4)))
a(:,4)).*Zs(:,4)./z4);
% Altinci Katın Kaynak Empedansı
Zs(:,6)=Zs(:,5)./(1+(-i./(z5.*(tan(Theta(:,5))))).*Zs(:,5));
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G_opt)./(1-G_opt);
Rs6=real(Zs(:,6));
```

Ropt=real(Zopt); % Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı GT=4*Rs6.*Ropt./(abs(Zs(:,6)+conj(Zopt))).^2; LT=1./GT; Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345

TEZ_NE329S01ADPSPS

function F=tez_NE329S01ADPSPS(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapılmistir.

% tez_NE329S01ADPSPS fonksiyonu uydurma devresinin 8 adet l degiskenlerini ve bu

% devrelere iliskin 8 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

n=12;

z1=l(9); z2=l(10);

 $z_{2}=l(10);$ $z_{3}=l(11);$

 $z_{4}=l(12);$

 $z_{5}=l(13);$

z6=l(14);

z7=l(15);

z8=l(16);

11=l(1);

l2=l(2);

13=1(3);

l4=l(4); l5=l(5);

15=1(5);16=1(6);

17 = 1(7);

18=l(8);

% Referans Kazanç Değeri

 $Gref=10^{(Const(10)*0.1)};$

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

```
E4=zeros(2,2);
E5=zeros(2,2);
E6=zeros(2,2);
MRin=zeros(n,1)
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA=zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G_{opt=S(:,5)};
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn =In(:,14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
```

```
E2=[\cos(\text{Theta}(n,2)), i.*z2.*\sin(\text{Theta}(n,2)); i.*\sin(\text{Theta}(n,2))./z2, \cos(\text{Theta}(n,2))];
     E4=[\cos(\text{Theta}(n,4)), i.*z4.*\sin(\text{Theta}(n,4)); i.*\sin(\text{Theta}(n,4))./z4, \cos(\text{Theta}(n,4))];
     E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
     E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
     E5=[cos(Theta(n,5)), i.*z5.*sin(Theta(n,5)); i.*sin(Theta(n,5))./z5, cos(Theta(n,5))];
     E7=[\cos(\text{Theta}(n,7)), i.*z7.*\sin(\text{Theta}(n,7)); i.*\sin(\text{Theta}(n,7))./z7, \cos(\text{Theta}(n,7))];
     E6=[1,0;-i./(z6.*tan(Theta(n,6))),1];
     E8=[1,0;-i./(z8.*tan(Theta(n,8))),1];
    M=E1*E2*E3*E4*[A(n),B(n);C(n),D(n)]*E5*E6*E7*E8;
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n)=abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs \text{ const})/(M(1,1)+M(2,1).*Zs \text{ const})
Rout=real(Zout):
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zo
j(Zout)+M(2,2))).^{2};
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10;
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs\_const*ones(n,1);
% Ikinci Katin Kaynak Empedansi
Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));
% Üçüncü Katin Kaynak Empedansi
Z_{s}(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Z_{s}(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2)))
a(:,2)).*Zs(:,2)./z2);
% Dördüncü Katın Kaynak Empedansı
Zs(:,4)=Zs(:,3)./(1+(-i./(z3.*(tan(Theta(:,3))))).*Zs(:,3));
% Beşinci Katın Kaynak Empedansı
Z_{s}(:,5)=(i.*z4.*sin(Theta(:,4))+cos(Theta(:,4)).*Z_{s}(:,4))./(cos(Theta(:,4))+i.*sin(Theta(:,4)))
a(:,4)).*Zs(:,4)./z4);
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G opt)./(1-G opt);
Rs5=real(Zs(:,5));
Ropt=real(Zopt);
% Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı
GT=4*Rs5.*Ropt./(abs(Zs(:,5)+conj(Zopt))).^2;
LT=1./GT:
Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

TEZ_NE329S01ADSPSP

function F=tez_NE329S01ADSPSP(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapılmistir.

% tez_NE329S01ADSPSP fonksiyonu uydurma devresinin 8 adet l degiskenlerini ve bu

% devrelere iliskin 8 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

n=12;

z1=l(9); z2=l(10);

 $z_{2}=l(10);$ z_{3}=l(11);

 $z_{4}=l(12);$

z5=l(13);

z6=l(14);

z7=l(15);

z8=l(16);

11=l(1);

l2=l(2); l3=l(3);

14=1(4);

15=l(5);

l6=l(6);

l7=l(7);

18=l(8);

% Referans Kazanç Değeri

Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

```
E4=zeros(2,2);
E5=zeros(2,2);
E6=zeros(2,2);
MRin=zeros(n,1)
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA=zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G_{opt=S(:,5)};
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn = In(:, 14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
  E1=[cos(Theta(n,1)),i.*z1.*sin(Theta(n,1));i.*sin(Theta(n,1))./z1,cos(Theta(n,1))];
```

```
E3=[\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))];
        E2=[1,0;-i./(z2.*tan(Theta(n,2))),1];
        E4=[1,0;-i./(z4.*tan(Theta(n,4))),1];
        E5=[1,0;-i./(z5.*tan(Theta(n,5))),1];
        E7=[1,0;-i./(z7.*tan(Theta(n,7))),1];
        E6=[cos(Theta(n,6)), i.*z6.*sin(Theta(n,6)); i.*sin(Theta(n,6))./z6, cos(Theta(n,6))];
        E8=[cos(Theta(n,8)), i.*z8.*sin(Theta(n,8)); i.*sin(Theta(n,8))./z8, cos(Theta(n,8))];
      M=E1*E2*E3*E4*[A(n),B(n);C(n),D(n)]*E5*E6*E7*E8;
Gt(n) = 4*Rs_const*Rl_const/(abs(M(1,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const+Zs_const*(M(2,1).*Zl_const+Zs_const*(M(2,1).*Zl_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n) = abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Rout=real(Zout);
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*
j(Zout)+M(2,2)).^2);
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10;
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs \text{ const*ones}(n,1);
% Ikinci Katin Kaynak Empedansi
Z_{s}(:,2)=(i.*z1.*sin(Theta(:,1))+cos(Theta(:,1)).*Z_{s}(:,1))./(cos(Theta(:,1))+i.*sin(Theta(:,1)))
a(:,1)).*Zs(:,1)./z1);
% Üçüncü Katin Kaynak Empedansi
Zs(:,3)=Zs(:,2)./(1+(-i./(z2.*(tan(Theta(:,2))))).*Zs(:,2));
% Dördüncü Katın Kaynak Empedansı
Z_{s}(:,4) = (i.*z3.*sin(Theta(:,3)) + cos(Theta(:,3)).*Z_{s}(:,3))./(cos(Theta(:,3)) + i.*sin(Theta(:,3)))
a(:,3)).*Zs(:,3)./z3);
% Beşinci Katın Kaynak Empedansı
Zs(:,5)=Zs(:,4)./(1+(-i./(z4.*(tan(Theta(:,4))))).*Zs(:,4));
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G_opt)./(1-G_opt);
Rs5=real(Zs(:.5)):
Ropt=real(Zopt);
% Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı
GT=4*Rs5.*Ropt./(abs(Zs(:,5)+conj(Zopt))).^2;
LT=1./GT:
Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

NE329S01CB∏

function F=tez_NE329S01BT(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGIZ tarafindan degisiklik yapilmistir.

% tez_NE329S01BT fonksiyonu uydurma devresinin 6 adet z empedansini ve bu

% devrelere iliskin ortak l uzunlugunu F hata fonksiyonunu minimize etmek
% suretiyle belirler.

% Programda Kullanılan Tranzistör Parmetreleri NE329S01C Tranzistörüne İlişkindir.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1'); In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

Zs const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

```
% z optimize edilecek hat parçalarının karakteristik empedansları
```

n=12;

z1=l(7); z2=l(8);

 $z_{2}=1(0);$ $z_{3}=1(9);$

 $z_{3}=l(10);$

 $z_{3} = l(10);$ $z_{5} = l(11);$

z6=l(12);

11 = l(1);

l2=l(2);

13=l(3);

14=1(4);

l5=l(5); l6=l(6);

10-1(0)

% Referans Kazanç Değeri

Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

E4=zeros(2,2);

E5=zeros(2,2);

E6=zeros(2,2);

```
MRin=zeros(n,1)
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n,1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA=zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
%
       S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G opt=S(:,5);
S = S(:,1:4);
%
       ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
       Tranzistörün Esdeğer Gürültü Direnci
%
Rn =In(:,14).*Const(2);
%
       Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
%
       Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
%
       Kazancın Hesaplanması
for n=1:12
  E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
  E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
  E4=[1,0;-i./(z4.*tan(Theta(n,4))),1];
  E6=[1,0;-i./(z6.*tan(Theta(n,6))),1];
```

```
E2=[\cos(\text{Theta}(n,2)), i.*z2.*\sin(\text{Theta}(n,2)); i.*\sin(\text{Theta}(n,2))./z2, \cos(\text{Theta}(n,2))];
         E5=[cos(Theta(n,5)), i.*z5.*sin(Theta(n,5)); i.*sin(Theta(n,5))./z5, cos(Theta(n,5))];
        M=E1*E2*E3*[A(n),B(n);C(n),D(n)]*E4*E5*E6;
 Gt(n) = 4*Rs_const*Rl_const/(abs(M(1,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const+Zs_const*(M(2,1).*Zl_const+Zs_const*(M(2,1).*Zl_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs
 const+M(2,2)) ).^2)
 Zin(n) = (M(1,1).*Zl const+M(1,2))./(M(2,1).*Zl const+M(2,2))
 MRin(n)=abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
 Zout = (M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
 Rout=real(Zout);
 Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zo
j(Zout)+M(2,2)).^2);
 end
 ortgt=sum(Gt(2:11));
 ortgt=ortgt/10;
 ortmrin=sum(MRin(2:11));
 ortmrin=ortmrin/40;
                           Ilk Katin Kaynak Empedansi
 %
 Zs(:,1)=Zs \text{ const*ones}(n,1);
%
                           Ikinci Katin Kaynak Empedansi
 Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));
                            Üçüncü Katin Kaynak Empedansi
 %
 Z_{s}(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Z_{s}(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2)))
 a(:,2)).*Zs(:,2)./z2);
                            Dördüncü Katın Kaynak Empedansı
 %
 Z_{s}(:,4)=Z_{s}(:,3)./(1+(-i./(z_{3}.*(tan(Theta(:,3))))).*Z_{s}(:,3));
                           Transistör İçin Optimum Kaynak Empedansı
 Zopt=50*(1+G_opt)./(1-G_opt);
 Rs4=real(Zs(:,4));
 Ropt=real(Zopt);
                           Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç
 %
 Kazancı
 GT=4*Rs4.*Ropt./(abs(Zs(:,4)+conj(Zopt))).^2;
 LT=1./GT;
 Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
 F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

NE329S01CT

function F=tez_NE329S01CT(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGIZ tarafinadn degisiklik yapilmistir.

% tez_NE329S01CT fonksiyonu uydurma devresinin 6 adet l degiskenlerini ve bu

% devrelere iliskin 6 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Programda Kullanılan Tranzistör Parmetreleri NE02135C Tranzistörüne İlişkindir.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

```
% z optimize edilecek hat parçalarının karakteristik empedansları n=12;
```

```
zz1=l(7);
```

z2=l(8);

z3=l(9);

z4=l(10);

z5=l(11);

z6=l(12);

l1=l(1);

l2=l(2);

13=l(3); 14=l(4);

14=1(4); 15=1(5);

15=1(5);16=1(6);

% Referans Kazanç Degeri

```
Gref=10^{(Const(10)*0.1)};
```

% Ilk Degerlerin Tanimlanmasi

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

E4=zeros(2,2);

E5=zeros(2,2);

E6=zeros(2,2);

```
MRin=zeros(n,1);
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n,1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA=zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
%
       S Parametrelerinin hesaplanmasi
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G opt=S(:,5);
S = S(:,1:4);
%
       ABCD Parametrelerinin Hesabi
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
       Tranzistörün Esdeger Gürültü Direnci
%
Rn =In(:,14).*Const(2);
       Minimum Gürültü Faktörü
%
Fmin =10.^(In(:,11).*0.1);
%
       Thetalarin Hesabi
Theta=(2*pi/(3*1e8))*kron(1*1e-2,In(:,2)*1e9);
              1 cm. cinsinden ve frekans GHz cinsinden oldugu için 0.01 ve 1*10^9
%
ile çarpiliyor.
       Kazancin Hesaplanmasi
%
for n=1:n
E1=[cos(Theta(n,1)),i.*z1.*sin(Theta(n,1));i.*sin(Theta(n,1))./z1,cos(Theta(n,1))];
E3 = [\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))];
E4=[\cos(Theta(n,4)), i.*z4.*sin(Theta(n,4)); i.*sin(Theta(n,4))./z4, cos(Theta(n,4))];
```

```
E6=[cos(Theta(n,6)), i.*z6.*sin(Theta(n,K)); i.*sin(Theta(n,6))./z6, cos(Theta(n,6))];
 E2=[1,0;-i./(z2.*tan(Theta(n,2))),1];
 E5=[1,0;-i./(z5.*tan(Theta(n,5))),1];
 M=E1*E2*E3*[A(n),B(n);C(n),D(n)]*E4*E5*E6;
 Gt(n) = 4*Rs\_const*Rl\_const/(abs(M(1,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+M(1,2)+Zs\_const*(M(2,1).*Zl\_const+Zs\_const*(M(2,1).*Zl\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_const+Zs\_cons
 const+M(2,2)) ).^2)
 Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2));
 MRin(n) = abs(Zs_const-conj(Zin(n)))/abs((Zs_const+Zin(n)))
 Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const);
 Rout=real(Zout):
 Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zo
j(Zout)+M(2,2)).^2);
 end
 ortmr=MRin(2)+MRin(3)+MRin(4)+MRin(5)+MRin(6)+MRin(7)+MRin(8)+MRin(
 9)+MRin(10)+MRin(11);
 ortmrin=ortmr/10
 ortgt=Gt(1)+Gt(2)+Gt(3)+Gt(4)+Gt(5)+Gt(6)+Gt(7)+Gt(8)+Gt(9)+Gt(10);
 ortgt=ortgt/10
                                     Ilk Katin Kaynak Empedansi
 %
 Zs(:,1)=Zs\_const*ones(n,1);
                                     Ikinci Katin Kaynak Empedansi
 %
 Zs(:,2)=(i.*z1.*sin(Theta(:,1))+cos(Theta(:,1)).*Zs(:,1))./(cos(Theta(:,1))+i.*sin(Thet
 a(:,1)).*Zs(:,1)./z1);
                                     Üçüncü Katin Kaynak Empedansi
 %
 Zs(:,3)=Zs(:,2)./(1+(-i./(z2.*(tan(Theta(:,2))))).*Zs(:,2));
                                     Dördüncü Katın Kaynak Empedansı
 Z_{s}(:,4) = (i \cdot z_{3} \cdot sin(Theta(:,3)) + cos(Theta(:,3)) \cdot Z_{s}(:,3)) / (cos(Theta(:,3)) + i \cdot sin(Theta(:,3))) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Theta(:,3)) + i \cdot sin(Thet
 a(:,3)).*Zs(:,3)./z3);
                                     Tranzistör İçin Optimum Kaynak Empedansı
 %
 Zopt=50*(1+G_opt)./(1-G_opt);
 Rs4=real(Zs(:,4));
 Ropt=real(Zopt);
                                     Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç
 %
 Kazancı
 GT=4*Rs4.*Ropt./(abs(Zs(:,4)+conj(Zopt))).^2;
 LT=1./GT:
 Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
 F=ortmrin+(exp(0.01*abs(ortgt-Gref)))*0.4
```

TEZ_NE329S01A

function F=tez_NE329S01A(l)

```
% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef
```

```
% fonksiyonunda Yavuz CENGIZ tarafinadn degisiklik yapilmistir.
```

- % tez_NE329S01CP fonksiyonu uydurma devresinin 6 adet l degiskenlerini ve bu
- % devrelere iliskin 6 adet z empedansini F hata fonksiyonunu minimize etmek
- % suretiyle belirler.
- % Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.
- % Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

```
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
```

```
In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');
```

```
% Kaynak ve Yük Empedansları
```

Zs_const=50;

```
Rs_const=real(Zs_const);
```

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

```
n=12;
```

```
z_1 = l(7);
```

```
z2=l(8);
```

z3=l(9);

z4=l(10);

z5=l(11);

z6=l(12);

l1=l(1);

l2=l(2);

13=l(3);

l4=l(4);

l5=l(5);

```
16=1(6);
```

```
% Referans Kazanç Değeri
```

```
Gref=10^(Const(10)*0.1);
```

% İlk Değerlerin Tanımlanması

```
n=12;
```

```
Gt=zeros(n,1);
```

```
Gav=zeros(n,1);
```

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

E4=zeros(2,2);

E5=zeros(2,2);

E6=zeros(2,2);

MRin=zeros(n,1) EN=zeros(n,1);

```
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA = zeros(n, 1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G_{opt=S(:,5)};
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)) \cdot (1-S(:,4)) + S(:,2) \cdot S(:,3)) \cdot / (2 \cdot S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50) \cdot ((1-S(:,1)) \cdot (1-S(:,4)) - S(:,2) \cdot S(:,3)) \cdot ((2\cdot S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn = In(:, 14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
  E1=[cos(Theta(n,1)),i.*z1.*sin(Theta(n,1));i.*sin(Theta(n,1))./z1,cos(Theta(n,1))];
  E3=[\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))];
  E2=[1,0;-i./(z2.*tan(Theta(n,2))),1];
  E4=[1,0;-i./(z4.*tan(Theta(n,4))),1];
  E6=[1,0;-i./(z6.*tan(Theta(n,6))),1];
  E5 = [\cos(Theta(n,5)), i.*z5.*sin(Theta(n,5)); i.*sin(Theta(n,5))./z5, \cos(Theta(n,5))];
```

```
M=E1*E2*E3*[A(n),B(n);C(n),D(n)]*E4*E5*E6;
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n)=abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Rout=real(Zout);
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const+Zs\_const+Zs=const*(Zout)+Zs\_const+Zs=const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+Zs=const+
j(Zout)+M(2,2))).^2);
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10;
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs\_const*ones(n,1);
% Ikinci Katin Kaynak Empedansi
Z_{s}(:,2)=(i.*z1.*sin(Theta(:,1))+cos(Theta(:,1)).*Z_{s}(:,1))./(cos(Theta(:,1))+i.*sin(Theta(:,1)))
a(:,1)).*Zs(:,1)./z1);
% Üçüncü Katin Kaynak Empedansi
Zs(:,3)=Zs(:,2)./(1+(-i./(z2.*(tan(Theta(:,2))))).*Zs(:,2));
% Dördüncü Katın Kaynak Empedansı
Z_{s}(:,4) = (i.*z3.*sin(Theta(:,3)) + cos(Theta(:,3)).*Z_{s}(:,3))./(cos(Theta(:,3)) + i.*sin(Theta(:,3)))
a(:,3)).*Zs(:,3)./z3);
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G opt)./(1-G opt);
Rs4=real(Zs(:,4));
Ropt=real(Zopt);
% Giris Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı
GT=4*Rs4.*Ropt./(abs(Zs(:,4)+conj(Zopt))).^2;
LT=1./GT;
Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

TEZ_NE329S01APP

function F=tez_NE329S01APP(l)

```
% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef
```

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapilmistir.

% tez_NE329S01APP fonksiyonu uydurma devresinin 4 adet l degiskenlerini ve bu

- % devrelere iliskin 4 adet z empedansini F hata fonksiyonunu minimize etmek
- % suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

```
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
```

```
In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');
```

```
% Kaynak ve Yük Empedansları
```

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

```
n=12;
```

z1=l(5);

z2=l(6);

z3=l(7);

z4=l(8);

l1=l(1);

- l2=l(2);
- 13=l(3);

```
l4=l(4);
```

% Referans Kazanç Değeri

Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

```
n=12;
```

```
Gt=zeros(n,1);
```

Gav=zeros(n,1);

```
E1=zeros(2,2);
```

E2=zeros(2,2); E3=zeros(2,2);

```
E4=zeros(2,2);
```

E5=zeros(2,2);

E6=zeros(2,2);

MRin=zeros(n,1)

EN=zeros(n,1);

GT=zeros(n,1);

LT=zeros(n,1);

Noise=zeros(n,1);

Zs=ones(n,7);

```
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA = zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G opt=S(:,5);
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)) \cdot (1-S(:,4)) + S(:,2) \cdot S(:,3)) \cdot / (2 \cdot S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn =In(:,14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
     E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
     E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
     E2=[cos(Theta(n,2)), i.*z2.*sin(Theta(n,2)); i.*sin(Theta(n,2))./z2, cos(Theta(n,2))];
     E4=[1,0;-i./(z4.*tan(Theta(n,4))),1];
    M=E1*E2*E3*[A(n),B(n);C(n),D(n)]*E4;
Gt(n) = 4*Rs_const*Rl_const/(abs(M(1,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const*(M(2,1).*Zl_const+M(1,2)+Zs_const+Zs_const*(M(2,1).*Zl_const+Zs_const*(M(2,1).*Zl_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs_const+Zs
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n)=abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
```

Rout=real(Zout); $Gav(n) = 4*Rs_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+M(1,2)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(M(2,1).*conj(Zout)+Zs_const*(Zout)+Zs=const*(Zo$ $j(Zout)+M(2,2))).^{2};$ end ortgt=sum(Gt(2:11)); ortgt=ortgt/10; ortmrin=sum(MRin(2:11)); ortmrin=ortmrin/40; % Ilk Katin Kaynak Empedansi $Zs(:,1)=Zs_const*ones(n,1);$ % Ikinci Katin Kaynak Empedansi Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));% Üçüncü Katin Kaynak Empedansi Zs(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Zs(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2))).a(:,2)).*Zs(:,2)./z2); % Dördüncü Katın Kaynak Empedansı Zs(:,4)=Zs(:,3)./(1+(-i./(z3.*(tan(Theta(:,3))))).*Zs(:,3));% Transistör İçin Optimum Kaynak Empedansı Zopt=50*(1+G_opt)./(1-G_opt); Rs4=real(Zs(:,4)); Ropt=real(Zopt); % Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı GT=4*Rs4.*Ropt./(abs(Zs(:,4)+conj(Zopt))).^2; LT=1./GT;Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345

TEZ_NE329S01ADPSPS2

function F=tez_NE329S01ADPSPS2(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapılmistir.

% F=tez_NE329S01ADPSPS2 fonksiyonu uydurma devresinin 9 adet l degiskenlerini ve bu

% devrelere iliskin 9 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

n=12;

- $z_1 = l(10);$
- z2=l(11); z3=l(12);
- $z_{3}=l(12);$ z_4=l(13);
- z=1(13);z=1(14);
- $z_{5}=l(1+);$ $z_{6}=l(15);$
- $z_{7}=l(16);$
- z8=l(17);
- z9=l(18);
- 11=l(1);
- 12=l(2);
- 13=l(3);
- l4=l(4);
- l5=l(5);
- l6=l(6);
- l7=l(7);
- 18=l(8);
- 19=l(9);

% Referans Kazanç Değeri Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

```
E2=zeros(2,2);
E3=zeros(2,2);
E4=zeros(2,2);
E5=zeros(2,2);
E6=zeros(2,2);
MRin=zeros(n,1)
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA = zeros(n, 1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G_{opt=S(:,5)};
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50) \cdot ((1-S(:,1)) \cdot (1-S(:,4)) - S(:,2) \cdot S(:,3)) \cdot /(2 \cdot S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn =In(:,14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
```

% Kazancın Hesaplanması

```
for n=1:12
        E2=[\cos(\operatorname{Theta}(n,2)),i.*z2.*\sin(\operatorname{Theta}(n,2));i.*\sin(\operatorname{Theta}(n,2))./z2,\cos(\operatorname{Theta}(n,2))];
        E4=[\cos(\operatorname{Theta}(n,4)), i.*z4.*\sin(\operatorname{Theta}(n,4)); i.*\sin(\operatorname{Theta}(n,4))./z4, \cos(\operatorname{Theta}(n,4))];
        E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
        E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
        E5=[1,0;-i./(z5.*tan(Theta(n,5))),1];
        E7=[1,0;-i./(z7.*tan(Theta(n,7))),1];
        E9=[1,0;-i./(z9.*tan(Theta(n,9))),1];
        E6=[cos(Theta(n,6)), i.*z6.*sin(Theta(n,6)); i.*sin(Theta(n,6))./z6, cos(Theta(n,6))];
        E8=[\cos(Theta(n,8)),i.*z8.*sin(Theta(n,8));i.*sin(Theta(n,8))./z8,\cos(Theta(n,8))];
      M=E1*E2*E3*E4*[A(n),B(n);C(n),D(n)]*E5*E6*E7*E8*E9;
Gt(n)=4*Rs\_const*Rl\_const/(abs(M(1,1),*Zl\_const+M(1,2)+Zs\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*(M(2,1),*Zl\_const*
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl const+M(1,2))./(M(2,1).*Zl const+M(2,2))
MRin(n) = abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Rout=real(Zout);
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(
j(Zout)+M(2,2))).^{2};
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10:
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs \text{ const*ones}(n,1);
% Ikinci Katin Kaynak Empedansi
Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));
% Üçüncü Katin Kaynak Empedansi
Z_{s}(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Z_{s}(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2)))
a(:,2)).*Zs(:,2)./z2);
% Dördüncü Katın Kaynak Empedansı
Z_{s}(:,4)=Z_{s}(:,3)./(1+(-i./(z_{3}.*(tan(Theta(:,3))))).*Z_{s}(:,3));
% Beşinci Katın Kaynak Empedansı
Z_{s}(:,5) = (i.*z4.*sin(Theta(:,4)) + cos(Theta(:,4)).*Z_{s}(:,4))./(cos(Theta(:,4)) + i.*sin(Theta(:,4)))
a(:,4)).*Zs(:,4)./z4);
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G_opt)./(1-G_opt);
Rs5=real(Zs(:,5));
Ropt=real(Zopt);
% Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı
GT=4*Rs5.*Ropt./(abs(Zs(:,5)+conj(Zopt))).^2;
LT=1./GT;
Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

TEZ_NE329S01ADPSPS3

function F=tez_NE329S01ADPSPS3(l)

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan hedef

% fonksiyonunda Yavuz CENGİZ ve Ulaş KILIÇ tarafinadn degisiklik yapılmistir.

% F=tez_NE329S01ADPSPS3 fonksiyonu uydurma devresinin 6 adet l degiskenlerini ve bu

% devrelere iliskin 6 adet z empedansini F hata fonksiyonunu minimize etmek

% suretiyle belirler.

% Tranzistör için Vce=10 V; Ic=20 mA olarak alınmıştır.

% Tüm Değerler Prof.Dr. Filiz GÜNEŞ'in Çalışmalarından Derlenmiştir.

% Giriş Bilgilerinin "bin" klasörü altındakı csv uzantılı dosyalardan okunması

Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');

In = DLMREAD('Dosya_Input.csv',';',0,0,'A1..N12');

% Kaynak ve Yük Empedansları

Zs_const=50;

Rs_const=real(Zs_const);

Zl_const=50;

Rl_const=real(Zl_const);

% Gürültü Faktörü Referans Değeri

Fr=10^(Const(4)*0.1)

% z optimize edilecek hat parçalarının karakteristik empedansları

n=12;

z1=l(9); z2=l(10);

 $z_{2}=l(10);$ $z_{3}=l(11);$

 $z_{3}=l(11);$ $z_{4}=l(12);$

z5=l(13);

z6=l(14);

z7=l(15);

z8=l(16);

11=l(1);

12=l(2);

13=l(3); 14=l(4);

15=1(5);

l6=l(6);

17=l(7);

18=l(8);

% Referans Kazanç Değeri

Gref=10^(Const(10)*0.1);

% İlk Değerlerin Tanımlanması

n=12;

Gt=zeros(n,1);

Gav=zeros(n,1);

E1=zeros(2,2);

E2=zeros(2,2);

E3=zeros(2,2);

```
E4=zeros(2,2);
E5=zeros(2,2);
E6=zeros(2,2);
MRin=zeros(n,1)
EN=zeros(n,1);
GT=zeros(n,1);
LT=zeros(n,1);
Noise=zeros(n,1);
Zs=ones(n,7);
Zopt=zeros(n,1);
Zout=zeros(n,1);
Rout=zeros(n,1);
Zm=zeros(n,7);
Zi7=zeros(n,1);
A = zeros(n, 1);
B=zeros(n,1);
C = zeros(n,1);
D=zeros(n,1);
AA=zeros(n,1);
BB=zeros(n,1);
CC=zeros(n,1);
DD=zeros(n,1);
EE=zeros(n,1);
FF=zeros(n,1);
GG=zeros(n,1);
HH=zeros(n,1);
roi=zeros(n,1);
EVi=zeros(n,1);
toplam=zeros(n,1);
% S Parametrelerinin hesaplanması
S = MATCOMP(In(:,[3:2:9,12]),In(:,[4:2:10,13]));
G_{opt=S(:,5)};
S = S(:,1:4);
% ABCD Parametrelerinin Hesabı
A = ((1+S(:,1)).*(1-S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
B = 50.*((1+S(:,1)).*(1+S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
C = (1/50).*((1-S(:,1)).*(1-S(:,4))-S(:,2).*S(:,3))./(2.*S(:,2));
D = ((1-S(:,1)).*(1+S(:,4))+S(:,2).*S(:,3))./(2.*S(:,2));
% Tranzistörün Eşdeğer Gürültü Direnci
Rn = In(:, 14).*Const(2);
% Minimum Gürültü Faktörü
Fmin =10.^(In(:,11).*0.1);
% Thetaların Hesabı
Theta=(2*pi/(Const(3)))*kron(1*1e-2,In(:,2)*1e9); % 1 cm. cinsinden ve frekans GHz
cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
% Kazancın Hesaplanması
for n=1:12
```

```
E2=[\cos(\text{Theta}(n,2)), i.*z2.*\sin(\text{Theta}(n,2)); i.*\sin(\text{Theta}(n,2))./z2, \cos(\text{Theta}(n,2))];
     E4=[\cos(\text{Theta}(n,4)), i.*z4.*\sin(\text{Theta}(n,4)); i.*\sin(\text{Theta}(n,4))./z4, \cos(\text{Theta}(n,4))];
     E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
     E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
     E5=[1,0;-i./(z5.*tan(Theta(n,5))),1];
     E7=[1,0;-i./(z7.*tan(Theta(n,7))),1];
     E6=[\cos(Theta(n,6)), i.*z6.*sin(Theta(n,6)); i.*sin(Theta(n,6))./z6, cos(Theta(n,6))];
     E8=[cos(Theta(n,8)), i.*z8.*sin(Theta(n,8)); i.*sin(Theta(n,8))./z8, cos(Theta(n,8))];
    M=E1*E2*E3*E4*[A(n),B(n);C(n),D(n)]*E5*E6*E7*E8;
Gt(n)=4*Rs\_const*Rl\_const/(abs(M(1,1))*Zl\_const+M(1,2)+Zs\_const*(M(2,1))*Zl\_
const+M(2,2)) ).^2)
Zin(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2))
MRin(n)=abs((Zs_const-conj(Zin(n)))/(Zs_const+Zin(n)))
Zout=(M(1,2)+M(2,2).*Zs \text{ const})/(M(1,1)+M(2,1).*Zs \text{ const})
Rout=real(Zout):
Gav(n) = 4*Rs\_const*Rout/(abs(M(1,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+M(1,2)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(M(2,1).*conj(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs\_const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zout)+Zs=const*(Zo
j(Zout)+M(2,2))).^{2};
end
ortgt=sum(Gt(2:11));
ortgt=ortgt/10;
ortmrin=sum(MRin(2:11));
ortmrin=ortmrin/40;
% Ilk Katin Kaynak Empedansi
Zs(:,1)=Zs\_const*ones(n,1);
% Ikinci Katin Kaynak Empedansi
Zs(:,2)=Zs(:,1)./(1+(-i./(z1.*(tan(Theta(:,1))))).*Zs(:,1));
% Üçüncü Katin Kaynak Empedansi
Z_{s}(:,3)=(i.*z2.*sin(Theta(:,2))+cos(Theta(:,2)).*Z_{s}(:,2))./(cos(Theta(:,2))+i.*sin(Theta(:,2)))
a(:,2)).*Zs(:,2)./z2);
% Dördüncü Katın Kaynak Empedansı
Zs(:,4)=Zs(:,3)./(1+(-i./(z3.*(tan(Theta(:,3))))).*Zs(:,3));
% Beşinci Katın Kaynak Empedansı
Z_{s}(:,5)=(i.*z4.*sin(Theta(:,4))+cos(Theta(:,4)).*Z_{s}(:,4))./(cos(Theta(:,4))+i.*sin(Theta(:,4)))
a(:,4)).*Zs(:,4)./z4);
% Transistör İçin Optimum Kaynak Empedansı
Zopt=50*(1+G opt)./(1-G opt);
Rs5=real(Zs(:,5));
Ropt=real(Zopt);
% Giriş Uydurma Devresi Pasif Ve Kayıpsız Olduğundaki Transduser Güç Kazancı
GT=4*Rs5.*Ropt./(abs(Zs(:,5)+conj(Zopt))).^2;
LT=1./GT:
Noise=(4*Rn.*Ropt.*(1./GT-1))./((abs(Zopt)).^2)+Fmin
F=ortmrin+(exp(0.1*abs(ortgt-Gref))-1)*0.345
```

IMC_CIST

```
function E = imc_cis(l)
```

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan GT'ye gore
 % iyilestirme icin CIS tarafindan degistirilmistir. (CIS : Can Cevikbas, Ilkay Koseli,

% Serhat Altunc)

% imc_cis(l) fonksiyonu 3 adet uydurma devresinin l degiskenlerini ve bu devrelere

% iliskin 3 adet z empedansini E hata fonksiyonunu en aza indirmek etmek suretiyle

% belirler.

```
Danisman : Prof.Dr. Filiz GÜNES
%
        Giris bilgileri '.csv' uzantili dosyalardan okunur
%
global Zs_In Zoutsc Zinsc Zoutsd gmout gmin GT
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
Zs_In = DLMREAD('Zs_Input.csv', ';',0,0, 'A1..E10');
        Kaynak ve Yük Empedanslari
%
n=10;
Zs_const=50;
Zl const=50;
E1 = zeros(2,2);
E2 = zeros(2,2);
E3 = zeros(2,2);
M = zeros(2,2);
Zoutsc=zeros(n,1);
Zinsc=zeros(n,1);
gmout=zeros(n,1);
gmin=zeros(n,1);
GT=zeros(n,1);
toplam=zeros(n,1);
        z, optimize edilecek hat parçalarinin karakteristik empedanslari
%
z_1 = l(4);
z2=l(5);
z3=l(6);
11=l(1);
l2=l(2);
13=l(3);
Theta = (2*pi/(Const(3)))*kron(1*1e-2,Zs_In(:,1)*1e9); % 1 cm. cinsinden ve frekans
GHz cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
Zoutsd = Zs_In(:,2)+i.*Zs_In(:,3)
for n = 1:10
E1 = [\cos(\text{Theta}(n,1)), i.*z1.*\sin(\text{Theta}(n,1)); i.*\sin(\text{Theta}(n,1))./z1, \cos(\text{Theta}(n,1))];
E3 = [\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))];
E2 = [1,0;-i./(z2.*tan(Theta(n,2))),1];
M = E1 * E2 * E3;
Zoutsc(n) = (M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Zinsc(n) = (M(1,2)+M(1,1).*conj(Zoutsd(n)))/(M(2,2)+M(2,1).*conj(Zoutsd(n)));
```

```
gmout(n) = (Zoutsc(n) - Zoutsd(n))/(Zoutsc(n) + conj(Zoutsd(n)));

gmin(n) = (Zinsc(n) - conj(Zs_const))/(Zinsc(n) + Zs_const);

GT(n)=4*real(Zs_const)*real(Zoutsd(n))/(abs(M(1,1).*conj(Zoutsd(n))+M(1,2)+Zs_const*(M(2,1).*conj(Zoutsd(n))+M(2,2))).^2)

end

% Hata Islevi

Zoutsd_imag).^2)/(Zs_const.^2);

toplam = (1-exp(-1*((1 - GT).^2)));

E = sum(toplam)
```

IMC_CISP

function $E = imc_cis(l)$

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan GT'ye gore
 % iyilestirme icin CIS tarafindan degistirilmistir. (CIS : Can Cevikbas, Ilkay Koseli,

% Serhat Altunc)

% imc_cis(l) fonksiyonu 3 adet uydurma devresinin l degiskenlerini ve bu devrelere

% iliskin 3 adet z empedansini E hata fonksiyonunu en aza indirmek etmek suretiyle

% belirler.

```
Danisman : Prof.Dr. Filiz GÜNES
%
        Giris bilgileri '.csv' uzantili dosyalardan okunur
%
global Zs_In Zoutsc Zinsc Zoutsd gmout gmin GT
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
Zs_In = DLMREAD('Zs_Input.csv', '; ',0,0, 'A1..E10');
       Kaynak ve Yük Empedanslari
%
n=10;
Zs_const=50;
Zl const=50;
E1 = zeros(2,2);
E2 = zeros(2,2);
E3 = zeros(2,2);
M = zeros(2,2);
Zoutsc=zeros(n,1);
Zinsc=zeros(n,1);
gmout=zeros(n,1);
gmin=zeros(n,1);
GT=zeros(n,1);
toplam=zeros(n,1);
       z, optimize edilecek hat parçalarinin karakteristik empedanslari
%
z_1 = l(4);
z2=l(5);
z3=l(6);
11=l(1);
l2=l(2);
13=l(3);
Theta = (2*pi/(Const(3)))*kron(1*1e-2,Zs_In(:,1)*1e9); % 1 cm. cinsinden ve frekans
GHz cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
Zoutsd = Zs_In(:,2)+i.*Zs_In(:,3)
for n = 1:10
E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];
E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];
E2=[\cos(\operatorname{Theta}(n,2)),i.*z2.*\sin(\operatorname{Theta}(n,2));i.*\sin(\operatorname{Theta}(n,2))./z2,\cos(\operatorname{Theta}(n,2))];
M = E1 * E2 * E3:
Zoutsc(n) = (M(1,2)+M(2,2).*Zs_const)/(M(1,1)+M(2,1).*Zs_const)
Zinsc(n) = (M(1,2)+M(1,1).*conj(Zoutsd(n)))/(M(2,2)+M(2,1).*conj(Zoutsd(n)));
```

```
gmout(n) = (Zoutsc(n) - Zoutsd(n))/(Zoutsc(n) + conj(Zoutsd(n)));

gmin(n) = (Zinsc(n) - conj(Zs_const))/(Zinsc(n) + Zs_const);

GT(n)=4*real(Zs_const)*real(Zoutsd(n))/(abs(M(1,1).*conj(Zoutsd(n))+M(1,2)+Zs_const*(M(2,1).*conj(Zoutsd(n))+M(2,2))).^2)

end

% Hata Islevi

Zoutsd_imag).^2)/(Zs_const.^2);

toplam = (1-exp(-1*((1 - GT).^2)));

E = sum(toplam)
```

OMC_CIS

```
function E = omc_cis(1)
```

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan GT'ye gore
 % iyilestirme icin CIS tarafindan degistirilmistir. (CIS : Can Cevikbas, Ilkay Koseli,

% Serhat Altunc)

% OMCCT_W(l) fonksiyonu 3 adet uydurma devresinin l degiskenlerini ve bu

% devrelere

% iliskin 3 adet z empedansini E hata fonksiyonunu en aza indirmek etmek suretiyle

% belirler.

```
% Danisman : Prof.Dr. Filiz GÜNES
```

% Giris bilgileri '.csv' uzantili dosyalardan okunur

global Zl_In Zinlc Zoutlc gmin gmout GT

```
Const = DLMREAD('Dosya_Const.csv',';',0,0,'A1..J1');
```

```
Zl_In = DLMREAD('Zl_Input.csv', '; ',0,0, 'A1..E10');
```

```
% Kaynak ve Yük Empedanslari
```

n=10;

```
Zs_const=50;
```

```
Zl_const=50;
```

```
E1 = zeros(2,2);
```

```
E2 = zeros(2,2);
```

```
E3 = zeros(2,2);
```

```
M = zeros(2,2);
```

```
Zinlc=zeros(n,1);
```

```
Zoutlc=zeros(n,1);
```

```
gmin=zeros(n,1);
```

```
gmout=zeros(n,1);
```

```
GT=zeros(n,1);
```

toplam=zeros(n,1);

```
% z, optimize edilecek hat parçalarinin karakteristik empedanslari
```

```
z1=l(4);
```

```
z2=l(5);
```

```
z3=l(6);
```

```
11=l(1);
```

```
12=l(2);
```

13=l(3);

```
Theta=(2*pi/(Const(3)))*kron(l*1e-2,Zl_In(:,1)*1e9); % 1 cm. cinsinden ve frekans GHz cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor.
```

 $Zinld=Zl_In(:,2)+i.*Zl_In(:,3);$

for n = 1:10

$$\begin{split} E1 = [\cos(\text{Theta}(n,1)), i.*z1.*\sin(\text{Theta}(n,1)); i.*\sin(\text{Theta}(n,1))./z1, \cos(\text{Theta}(n,1))]; \\ E3 = [\cos(\text{Theta}(n,3)), i.*z3.*\sin(\text{Theta}(n,3)); i.*\sin(\text{Theta}(n,3))./z3, \cos(\text{Theta}(n,3))]; \\ E2 = [1,0; -i./(z2.*\tan(\text{Theta}(n,2))), 1]; \\ M = E1 * E2 * E3; \\ Zinlc(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2)); \\ Zurtle(n) = (M(2,2).*xeni(Zinld(n))) (M(1,2)).(M(2,1).*zni(Zinld(n))) (M(1,1)); \\ \end{split}$$

```
gmout(n) = (Zoutlc(n) - conj(Zl_const))/(Zoutlc(n) + Zl_const);

gmin(n) = (Zinlc(n) - Zinld(n))/(Zinlc(n) + conj(Zinld(n)));

GT(n)=4*real(Zinld(n))*real(Zl_const)/(abs(M(1,1).*Zl_const+M(1,2)+conj(Zinld(n )))*(M(2,1).*Zl_const+M(2,2))).^2)

end

% Hata Islevi

imag(Zinld)).^2)./((Zl_const.^2));

toplam = (1-exp(-2*((1 - GT).^2)));

E=sum(toplam)
```

OMC_CİSP

function $E = omc_cisP(l)$

% Programin ilk Ilgar ALIYEV tarafindan hazirlanmis, sonradan tespit edilen hatalar CIS

% tarafindan duzeltilmistir. (CIS : Can Cevikbas, Ilkay Koseli, Serhat Altunc) % OMCCT_W(l) fonksiyonu 3 adet uydurma devresinin l degiskenlerini ve bu devrelere

% iliskin 3 adet z empedansini E hata fonksiyonunu en aza indirmek etmek suretiyle belirler.

% Danisman : Prof.Dr. Filiz GÜNES

% Giris bilgileri '.csv' uzantili dosyalardan okunur global Zl_In Zinlc Zoutlc gmin gmout GT Const = DLMREAD('Dosya Const.csv',';',0,0,'A1..J1'); Zl_In = DLMREAD('Zl_Input.csv',';',0,0,'A1..E10'); % Kaynak ve Yük Empedanslari n=10; Zs const=50; Zl_const=50; E1 = zeros(2,2);E2 = zeros(2.2): E3 = zeros(2,2);M = zeros(2,2);Zinlc=zeros(n,1); Zoutlc=zeros(n,1); gmin=zeros(n,1); gmout=zeros(n,1); GT=zeros(n,1); toplam=zeros(n,1); % z, optimize edilecek hat parçalarinin karakteristik empedanslari $z_{1=l(4)};$ z2=l(5); z3=l(6); 11=l(1);12=1(2);13=l(3); Theta= $(2*pi/(Const(3)))*kron(1*1e-2,Zl_In(:,1)*1e9); \% 1 cm. cinsinden ve frekans$ GHz cinsinden oldugu için 0.01 ve 1*10^9 ile çarpiliyor. $Zinld=Zl_In(:,2)+i.*Zl_In(:,3);$ for n = 1:10E1=[1,0;-i./(z1.*tan(Theta(n,1))),1];E3=[1,0;-i./(z3.*tan(Theta(n,3))),1];E2=[cos(Theta(n,2)),i.*z2.*sin(Theta(n,2));i.*sin(Theta(n,2))./z2,cos(Theta(n,2))];M=E1*E2*E3; $Zinlc(n) = (M(1,1).*Zl_const+M(1,2))./(M(2,1).*Zl_const+M(2,2));$ Zoutlc(n) = (M(2,2).*conj(Zinld(n))+M(1,2))./(M(2,1).*conj(Zinld(n))+M(1,1));gmout(n) = (Zoutlc(n) - conj(Zl const))/(Zoutlc(n) + Zl const);

 $\begin{array}{l} gmin(n) = (Zinlc(n) - Zinld(n))/(Zinlc(n) + conj(Zinld(n)));\\ GT(n) = 4*real(Zinld(n))*real(Zl_const)/(abs(M(1,1).*Zl_const+M(1,2)+conj(Zinld(n)))*(M(2,1).*Zl_const+M(2,2))).^2);\\ end\\ toplam = (1-exp(-2*((1 - GT).^2)));\\ E = sum(toplam); \end{array}$

Dosya_Inp.csv yardımcı data bilgileri (NE329S01)

- 1; 2; 0.955; -25.30; 5.347; 150.00; 0.027; 73.3; 0.546; -21.3; 0.26; 0.93; 14.0; 0.38
- 2; 3; 0.91; -38.50; 5.210; 135.70; 0.039; 64.8; 0.526; -32.0; 0.26; 0.88; 19.6; 0.35 3; 4; 0.853; -51.30; 5.015; 121.70; 0.049; 55.4; 0.498; -41.2; 0.27; 0.80;
- $\begin{array}{c} 3, 4, 0.833, -51.30, 3.013, 121.70, 0.049, 55.4, 0.498, -41.2, 0.27, 0.80, \\ 29.0; 0.33 \end{array}$
- 4; 5; 0.791; -63.50; 4.817; 108.70; 0.056; 47.4; 0.476; -49.0; 0.28; 0.71; 39.6; 0.28
- 5; 6; 0.741; -74.60; 4.688; 96.60; 0.061; 42.0; 0.453; -54.9; 0.29; 0.65; 48.0; 0.25
- 6; 7; 0.657; -85.80; 4.608; 83.20; 0.071; 34.5; 0.422; -66.4; 0.29; 0.58; 56.7; 0.22
- 7; 8; 0.558; -101.30; 4.484; 69.50; 0.076; 29.0; 0.368; -76.0; 0.31; 0.49; 72.0; 0.18
- 8;9; 0.497; -122.70; 4.349; 55.70; 0.084; 21.5; 0.309; -87.3; 0.32; 0.40; 89.4; 0.13
- 9; 10; 0.464; -142.70; 4.183; 42.10; 0.092; 14.9; 0.248; -104.1; 0.33; 0.36; 102.0; 0.11
- 10;11; 0.443; -163.10; 4.025; 28.70; 0.100; 6.2; 0.198; -123.0; 0.33; 0.30; 116.8; 0.09
- 11;12; 0.426; 172.30; 3.848; 15.00; 0.106; -0.5; 0.154;-140.5; 0.35; 0.27; 139.0; 0.08
- 12;13; 0.433; 148.40; 3.627; 1.10; 0.109; -8.3; 0.123; -170.8; 0.38; 0.24; 163.5; 0.06
- 13;14; 0.468; 127.40; 3.396; -12.60; 0.111; -15.0; 0.129; 145.9; 0.43; 0.24; -176.0; 0.07
- 14;15; 0.525; 106.80; 3.149; -25.70; 0.112; -22.7; 0.190; 116.0; 0.48; 0.25; -153.0; 0.07
- 15;16; 0.55; 93.00; 2.895; -38.40; 0.112; -28.5; 0.274; 97.8; 0.57; 0.30; -122.0; 0.10
- 16;17; 0.631; 82.50; 2.618; -51.50; 0.110; -35.0; 0.360; 82.6; 0.66; 0.39; -82.6; 0.16
- 17;17.5;0.661; 76.50; 2.490; -57.40; 0.111; -37.6; 0.388; 77.4; 0.70; 0.43; -68.6; 0.19
- 18;18; 0.685; 71.00; 2.364; -63.60; 0.110; -38.9; 0.414; 72.4; 0.73; 0.47; -58.0; 0.22

2	16.87	-132.83	1.00	1.00
3	14.12	-73.29	1.00	1.00
4	30.97	-97.55	1.00	1.00
5	90.71	-148.77	1.00	1.00
6	124.07	-139.91	1.00	1.00
7	199.05	-84.99	1.00	1.00
8	187.32	-16.18	1.00	1.00
9	151.03	12.81	1.00	1.00
10	103.88	-14.06	1.00	1.00
11	82.37	-12.13	1.00	1.00

ZI_Input.csv yardımcı data bilgileri (NE329S01)

Zs_Input.csv yardımcı data bilgileri (NE329S01)

2	93.99	180.61	1.00	1.00
3	63.52	142.86	1.00	1.00
4	51.04	97.29	1.00	1.00
5	42.91	67.01	1.00	1.00
6	37.57	54.02	1.00	1.00
7	36.57	36.59	1.00	1.00
8	33.57	26.58	1.00	1.00
9	29.43	15.87	1.00	1.00
10	26.92	18.203	1.00	1.00
11	24.89	19.480	1.00	1.00
Ek-2 Memetik Algoritma Optimizasyon Programları

İMC_CİS'İN OPTİMİZE PROGRAMI

function ulas

```
% Bu program Girişi uydurma devresi için tasarlanmıştır.
%
clear all;
clc;
%popülasyonun birey sayısı
bs = 20;
%popülasyonun değişken sayısı
ds = 6;
%bireylerin sınır değerleri
snr = [0.1 0.1 0.1 10 10 10; 15 15 15 15 150 150 150];
%üretilecek olan çocuk sayısı
cocuks = 10;
%Mutasyınlu birey sayısı
mo = 3;
%iterasyon sayısı
its = 20;
%önce radom başlangıc popülasyonu üret:
for i=1:bs
  u = rasgeledeger(snr);
  bpop(i,:)=u;
end
for ite = 1:its
satir = bs;
sutum = ds;
% sonra bu bireylerin uygunluk degerlerini hesapla
bpop=hesapla(bpop);
Et=sum(bpop(:,1));
Eort = Et/satir;
u =1;
for i = 1:satir
  if bpop(i,1) < Eort
     havuz1(u,:)=bpop(i,:);
     u=u+1;
  end
end
t=satir-u+1;
   for i = 1:t
     k=ceil(rand()*satir);
     havuz2(i,:) = bpop(k,:);
   end
```

```
havuz11=ekle(havuz1,havuz2);
havuz11=sadeles(havuz11);
[satir,sutun]=size(havuz11);
for ix=1:cocuks
   % seçilen ana elemanının sırası.
   ana=ceil(rand()*satir);
   % seçilen baba elemanının sırası.
   baba=ceil(rand()*satir);
   % seçimin ne şekilde olacağını belirleyen dizi
   ayx=round(rand(1,sutun));
   for iy=1:sutun
     if ayx(1,iy) == 0
        cocuk1(ix,iy)=havuz11(ana,iy);
     else
        cocuk1(ix,iy)=havuz11(baba,iy);
     end
   end
end
cocuk1=hesapla(cocuk1);
cocuk1=sadeles(cocuk1);
% cocuk etrafında yerel arama yapılıyor.
lokalcocuk2=lokal_pattern(cocuk1,bs,snr);
lokalcocuk=sadeles(lokalcocuk2);
cocuk1=ekle(cocuk1,lokalcocuk);
bpop=sadeles(bpop);
gpop=ekle(bpop,cocuk1);
gpop=hesapla(gpop);
gpop=sadeles(gpop);
[satir,sutun]=size(gpop);
for i = 1:mo
  mutant (i,:)=gpop(i,:);
end
for i = 1:mo
   m=ceil(rand*(sutun));
   mutant(i,m) = snr(1,m) + rand*(snr(2,m)-snr(1,m));
end
gpop=ekle(gpop,mutant);
gpop=hesapla(gpop);
gpop=sadeles(gpop);
% mutasyon sunucunda yerel arama yapılıyor.
arama2=lokal_pattern(gpop,bs,snr);
arama=sadeles(arama2);
gpop=ekle(gpop,arama);
klc(ite,:)=gpop(1,:);
%5 iterasyonda en iyi bireyin değişmemei durumunda yerel noktada
%takılmaması için alınmış bir önlem.
if ite > 5
  if klc(ite,:)==klc((ite-5),:)
```

```
for i=1:satir
         uk = rasgeledeger(snr);
         ybpop(i,:)=uk;
       end
       gpop=ekle(gpop,ybpop);
       gpop=hesapla(gpop);
       gpop=sadeles(gpop);
    else
       gpop=gpop;
    end
  end
  for i=1:bs
     bpop(i,:)=gpop(i,:);
  end
  clc;
  fe(ite,:)=gpop(1,:);
fei1(ite,:)=hesapla(fe(ite,:));
disp('-----'İmc_cis-----')
disp(");
disp(");
disp(");
disp('en iyi bireyi degeriyle goster : ');
disp('------');
fe(ite,:);
fei(ite,:)=hesapla1(fe(ite,:))
disp(");
disp(");
disp(");
disp(");
if its==ite
  disp('-----');
end
sprintf('\ndongu %5.0f .adimda, %5.0f adim kaldi.\n',ite,its-ite)
disp('------');
ploty1(ite)=fei(ite,1);
clear mutant;
clear cocuk1;
clear cocuk2
end
%iterasyon sonucunda en iyi birey etrafında yerel arama yapılıyor.
sonuclar=lokal_pattern(bpop,bs,snr);
sonuclar
% grafik çizimi için.
plotx1=[1:1:its];
plot(plotx1,ploty1,'x-');
return
EKLE
```

```
function m=ekle(m1,m2);
% iki diziyi birbirine ekleyen fonksiyon..
[dx1,dy1]=size(m1);
[dx2,dy2]=size(m2);
if dy1==dy2
  m=m1;
  for ix=1:dx2
     m(ix+dx1,:)=m2(ix,:);
  end
  else
  disp('********iki matrisin boyutu eşit olmalı********');
  m=0;
end
```

return

RASGELEDEGER

```
function d=rasgeledeger(e)
%
e ise fonksiyonun sınır matrisini içermektedir.
```

```
[ax,s]=size(e);
```

```
for ix=1:s
d(ix)=e(1,ix)+rand*(e(2,ix)-e(1,ix));
end
```

HESAPLA

function fxh=hesapla(fxu); % fxf nin sutun sayisi baslangic populasyonun sutun sayisina esit olmali % fxf gelen matris % [satir,sutun]=size(fxu); fhx = zeros (satir,sutun+1); % bireler fonksiyonda yerine yazıldı for i=1:satir fxh(i,1)=imc_cis([fxu(i,:)]); end % bireyler ve degerleri tek bir matriste toplandi for i = 1:satir for j=2:(sutun+1) fxh (i,j)= fxu (i,(j-1)); end end % birey degerine göre matris siralandi fxh = sortrows(fxh); return

SADELES

```
function dx=sadeles(mh)
%
gelen populasyonun başındaki bir sütunu silip gönderir..
%
[xa,ya]=size(mh);
for ix=1:xa
    for iy=1:ya-1
        dx(ix,iy)=mh(ix,iy+1);
    end
end
return
```

ADAPTİF ÖRNEK ARATMA ALGORİTMASI

function ib=lokal_pattern(fxb,bs,snr)

```
fxb2=hesapla(fxb);
t=rand()*3+0.5;
tust=10;
talt=0.0002;
[satir22,sutun]=size(fxb);
satir=bs;
ib2(1,:)=fxb2(1,:);% iyi birey
% deger araligi aralik
disp(' Adaptif patern arama yöntemindesiniz.....');
cember=20;
ysatir=round(satir*0.4);
for cem = 1:cember
  if t > tust
     t=talt+(rand()*(tust-talt));
  end
  if t < talt
     t=talt+(rand()*(tust-talt));
  end
  ib=sadeles(ib2);
  for i = 1:ysatir
     for i = 1:3
       ibu(i,j) = ib(1,j) + (i^{(t/ysatir));\%} iyi birey ust
       if ibu(i,j)>snr(2,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       if ibu(i,j)<snr(1,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       iba(i,j) = abs(ib(1,j) - (i^{*}(t/ysatir)));\% iyi birey alt
       if iba (i,j) < snr(1,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       if iba (i,j) > snr(2,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
     end
     a=5*t;
     for j = 4:6
        ibu(i,j) = ib(1,j) + (i^{*}(a/ysatir));% iyi birey ust
        if ibu(i,j) > snr(2,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
        end
        if ibu(i,j)<snr(1,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
```

```
end
       iba(i,j) = abs(ib(1,j)-(i*(a/ysatir)));\% iyi birey alt
       if iba (i,j) < snr(1,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       if iba (i,j) > snr(2,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
     end
  end
  yib=ekle(ibu,iba);
  yib=hesapla(yib);
 if yib(1,1) > ib2(1,1);
         t = t/2;
 end
  if yib(1,1) < ib2(1,1)
     t=t*2;
     ib2(1,:)=yib(1,:);
  end
end
 disp(' umarim daha iyi sonuç bulmuşsunuzdur.....');
clear ib;
for ix=1:5
  ib(ix,:)=yib(ix,:);
end
return
```

ÖRNEK ARATMA ALGORİTMASI

```
function ib=lokal(fxb,bs,snr)
[satir,sutun]=size(fxb);
satir=bs;
ib(1,:)=fxb(1,:);% iyi birey
% deger araligi aralik
disp('Örnek Aratma Algoritmasındasınız.....');
cember=5;
ysatir=round(satir*0.4);
for cem = 1:cember
  t=rand()*7;
  %disp(' Umarım daha iyi sonuc bulmussunuzdur.....');
  for i = 1:ysatir
     for j = 1:3
       ibu(i,j) = ib(1,j) + (i^{*}(t/ysatir));\% iyi birey ust
       if ibu(i,j)>snr(2,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       if ibu(i,j)<snr(1,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       iba(i,j) = abs(ib(1,j) - (i^{*}(t/ysatir)));\% iyi birey alt
       if iba (i,j) < snr(1,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
       if iba (i,j) > snr(2,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
       end
     end
     a=50;
     for j = 4:6
        ibu(i,j) = ib(1,j) + (i^{*}(a/ysatir));% iyi birey ust
        if ibu(i,j)>snr(2,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
        end
        if ibu(i,j)<snr(1,j)
          ibu(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
        end
        iba(i,j) = abs(ib(1,j)-(i^*(a/ysatir)));\% iyi birey alt
        if iba (i,j) < snr(1,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
        end
        if iba (i,j) > snr(2,j)
          iba(i,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
        end
     end
  end
```

```
yib=ekle(ibu,ib);
yib=ekle(yib,iba);
yib=hesapla(yib);
yib=sadeles(yib);
ib(1,:)=yib(1,:);
end
disp('Yine bekleriz.....');
clear ib;
for ix=1:5
ib(ix,:)=yib(ix,:);
end
return
```

NELDER-MEAD YÖNTEMİ İLE YEREL ARAMA

```
function ib=fminarama(bpop,snr)
% sadelesmis olarak gelmelidir.
clc;
% bu program tek birey etrafında en iyi değeri FminSearch yardımıyla
% aramaktadır.
% Eğer Fminsearchten gelen en iyi bireyin değerleri sınır değerlerini
% aşıyor ise bu değeri tekrardan sınır değerlerine almaktadır.....
ib(1,:)=bpop(1,:);
dongu=5;
for i = 1 : dongu
  [X,FVAL]= fminsearch('imc_cis',[ib(1,:)]);
  birey(i,:)=X(1,:)
  sonuc(i,1)=FVAL(1,1)
  hes(i,1)=imc_cis([ib(1,:)])
  if sonuc(i,1) < hes(i,1)
     ib(1,:)=birey(i,:)
  end
  [a,sutun]=size(ib);
  for j = 1: sutun
     if ib(1,j) < snr(1,j)
       ib(1,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
     end
     if ib(1,j) > snr(2,j)
       ib(1,j)=snr(1,j)+(rand()*(snr(2,j)-snr(1,j)));
     end
  end
end
```