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ABSTRACT
FINITE ELEMENT SOLUTION
OF TEMPERATURE TRANSIENTS
IN POWER CABLES

ANAKOX, Dogan

M.Sc. in E.E

Supervisor: Assoc.Prof.Dr.Arif Ertas
February, 1982

A genersl finite clement program is developed to solve thermal
transient problems related with the buried power cables whose

L ermal transient behgviour is governed by a general second
order martial di"ferential equation. The Tormulation is bhased
orr variational principles and for this purpose the solution
domain is divided into a finite numbers of triangular elements
and the associated functional is formed. A set of-alsebraic
eaualtions are obtained after minimizing the functionals corres-
nonding to the governing field equation. Using another numeri-
cal procedure for the transient part of these algebraic equati-
ons, the nodal teomperaturcs are obtuined in the transient period.
The 1ntesrations appearing in the functionals are performed

by the aid of arca coordinates.

The method is applied both to sinsle and three phase cables

in Tinding their thermal transient behaviour.

Key words : Thermal field, Finite clement
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OZET

GUC KABLOLARINDA
GiCICT SICAKLIKLARIN SONLU
ELEMAN TBEKNIGI ILE COzUMU

ANAKOK, Dogan

Yiiksek Lisans Tezi: Elek. Mih. Boluml
Tez Yoneticisi: Dog¢.Dr. Arif Ertasg
Subat, 1982

Gegici 1s1l davranigl genel bir ikinci derece kismi tirev
denklemine gbre defisen toprafga gomiili glg kablolarinin
1511 gegici rejimlerini ¢dziimleyen genel bir sonlu eleman
programi gelistirildi. Qozlmleme defigim prensibine dayan-
makta ve bu amacgla ¢dzim bdlgesi belirli sayida lggen ele-
manlara boliinmekte ve ilgili islevsel olusturulmaktadar.
Alan denklemine karsilik gelen igslevsellerin en kiigikleg-
tirilmesi ile bir dizi ccbirsel denklem elde edilmektedir.
Tw denklemlerin gegici rejim kismi ile ilgili olarak gelig-
tirilen diTer bir savisal vintem ile, ge¢ici rejim donemin-
deli ditim sicakliklari elde edilmektedir. Iglevsellerde
ver alan timlev islemleri alan koordinatlari yardimi ile .

vapllmaktadirs

Bi yintem tek ve ii¢ fazli yer alty kablolarinin geg¢ici rejim

1811 davraniglarinin bulunmasinda kullanilmaktadir.

Anahtar sdzciikler : Isil alan, sonlu eleman
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CHAPTER I

INTRODJCTION

The story of the finite element method in engineering

begins back in the early 1950's. Attempts were then being
made to apply the matrix methods that were successful with
discrete structures to continuous structures hy subdivi-
ding the structure into a finite number of hypothetical cle-
ments. In 1956 the group formed by Turner at the Loeins Alr-
craft Company described a procedure of this type using seve-
ral features of the finite element method(l). Following this
we observe the rapid development on the application of tne
finite element method in a wide range of problems of sir.ic-
tural enzineering and solid mechanics. In the early days the
method is particularly based on stiffness or so called equlib-

rium procedures.

In recent years the finite element metnod has been applied
widely to non-structural problems, and the formulation is now
mainly hased on variational principles or weighted residual
procedures. A detailed presentation is given in a text by

(WSS

Zienkiewicz(?).

Some of the areas in which the finite element method has been
applied arejaircraft,automotive, building structures,electro-

magnetic fields,heat transfer,statistics etc.

A study as a IM.Sc. thesis is made in METU(3) for the solution
of the electrical field variation in and around of several
insulators used for some h.v. switchgear and also determi-
ning the electrical and thermal field distribution in a co-

axial cabhle.



This work applies the finite element method to the solution

of thermal transient problems. A general finite element prog-
ram is developed to solve thermal transient problems rclated
with the buried power cables whose thermal transient behaviour
is governed by t-e second order partial differential equation,

div(k grad T)+q—C%%::O.

The steps in developing the finite element program are out-
lined generally as follows,

(i) The physical region of the problem is subdivided into
subregions or finite elements.

(ii) Dependent variables are approximated in functional form
over each element and hence over the whole domain. The para-
meters of this approximation as a result become the unknowns
of the problem.

(iii) Substition of the approximations into the governing
parabolic equation yields a set of simultaneous algebraic
equations considering also the relevant boundary conditions.
(iv) Considering the variation of the unknown is linear
within each time interval, step by step solution of these
equations yields the approximate solution to the time depen-
dent problem with the prescribed initial conditions.



2,1 leat conduction nrobhlems

The partial differential equation of heat conduction in solid
nodies is derived by considering the enersy balance on a lip -
erential element of volume ( dx dy dz) of a material subjcct

T‘.\ —~

to a conduction process and shown in Fig.2.l.

24

Conduction
region

— — ———

Ay

Differential element

¥ x

FIGURE 2.1 Differential element in thermal conduction analysis.

The net energy gain in time At across the six faces by con-
duction is added to the encrgy zsneration in time At and the
sum is set eqgual to the change in time At of energy stored in

the mass inside the volume elenment.

ifasic Fou Law of heat conduction reveals that the rate at
which heat is flowing across a given section is proportional
to the temperature gradient measured normal to that section(4).

Thus for thermal fields, the rate of heat flow Q across unit



area is related to the temperaturc aradient 4 by,

¢ =ku (2.1)
where,
U= -grad T (2.2)

and, T is temperature, and k is the coefficient of thermal
conductivity of the solid. The negative sign in equation(2.2)

is required to make the eguation consistent, l.e that heot

Lo

will flow into a region of lower temperatur:
value for § when temperature gradient is negutive. Now, any
volume V, bounded by a closed surface 8, gains heal by con-
duction at a rate of, o
where N1 is the unit vector normal to ds. This causes incraase
of heat inside the solid by the rate of

0

T dv

fvcpb'f | (271)
such that - D nde = aT
’ Js Qunds fy e 5t 4V .
((,’o J
using lLhe divergence theoren, oT B L=
J, 5% dv de1deV (2.6)
. = oT
divQ = - Cps.—t' (:\.7>
using equations (2.1), (2.2) and (2.7), 3T
div (k grad T) = ¢ 3¢ (2.8)
If k is a constant, Equation (2.8) reduces to,
kdiv (grad T) = cp g% (2.9)
If there is heat generation in the wolume,
. a7 (2.10)
kdw(gde)+q=cp5T
where,
t : time (sec)
E E IR "l fl O‘_l
k : thermal conductivity (cal.cm . sec . C )
T : temperature (°C)
: specific heat of the material (cal. gfl.oc-l)
p : density of material (gr.cﬁB)

-

Tiving a posltive



; . . -1 %
Internal heat generation (cal. sec™. cm”

] "L ei?)
) oﬂ—l>

C=pc : heat capacity coefficient (cal., cm” . C

2

2.1.1 Heat conduction in vower cablesg

A transient thermal field analysis is applied to underground
power cahles using equation (2.10) which is a varabolic par-
tial differential ecuation. An underground cable is mainly
comnosed of a cable core (conductor), main insulation, shecath

and sheath insvulation as seen in Fig.2.2.

1. Cable core
2. Main insulation

3. Sheath
L. Sheath insulation

FIGURE 2.2 A typical power cable.

Heat generation in a single cable is mainly caused by tihe
heat dissipation in the power core, dielectric loses through
the insulation, and sheath lasses.

Due to the resistance of the conductor, heat energy is pro-
duced within the conductor by the current passing through 1it,

which 1s equal to,



I°R (datts.cﬁl) (2.11)
where 1 watt= 0.2388346 cal.se
I : current through the conductor (amper)
R : resistance of the conductor (ohm.cm l)

The resistance of any copper conductor of known resistivily

R=p [ 1 +9(T-Taﬂ/—rr§ (5.12)

. - . 2 =1\
p ¢ resistivity of the conductor (ohm.mm .m™)

can be found as,

where

8 : resistance temperature coefficient of the conductor at
On~-1
temperature T (7C™ )
T : teaperature of the conductor (OC

On the other hand internal heat generation in the maln insa-
lation is mainly affected by the electric field intensity and
temperature of the dielectric insulation. Therefore for any
particular finite element,
= f(E_,T 2el7
Te (“e’ e) (2.13)

Taking dielectric permittivity constant, the internal heat
peneration is given by(5,6);

&4€%€ tan & (T) \grmjV] (cal.sec_l.cm
where,
f : frequency (Hz)
relative permittivity
permittivity of free space ( O.885x1612farads. 51)

(L
=3

< @
C

: applied voltage

and where 2nfeofptand(T) is the a.c conductivity of the
dielectric and tané(T) 1is the loss angle beinz a function of
temperature. In this work electric field 1s assumed to be
evenly distributed over all elements of the diclectric region.
The second and third assumptions are made considering both
conductor resistance and loss angle being temperature indeven-

dent.

another heat source in power cables arc shield losses which

are taken into account as constant heat fluxes at the shield



are taken into account as constant heat fluxes at the
shield boundary. isspecially at short circuit conditions

3ome anouulb of currert rasging vhrough the shield causes

i b L

1

a dissipation due to the shield resistance. Consecquently a
heat flux flows from the shield surface towards the sur-
rounding and 1s determined by;
I° R 2 o
k grad T=QZ= g watts /cm (2.15)
S
dhere RS is the shield resistance and r is the radius

of the shield. The consideration given to heat fluxes as
a kind of boundary condition is represented in subsequent

chapters.

2.1.2 Boundary conditions
The most common boundary conditions which are encountered

in a heat conduction problem of power cables are;
(i) the temperature T is specified at the boundary,

al’ n

(1i) the normal sradient 5ﬁ is zero at the boundary,
(1ii) the heat flux Q per unit area at the boundary sur-
face 1s constant,

(iv) the convection loss at the boundary is equal to
o«T—Ta) where T is the ambient‘temperature and A is

the heat transfer coefficient.

“Yhen therce is a constant heat flux per unit area of the
boundary surface or a convection loss at the boundary,
the energy functional will take the form

]

2
= 0r @D @) 1-ae Fhneey- L QT ds + L () 2T,

When both @ and®are zero, the boundary is assumed to be

non-conducting, which means that the normal gradient

Therefore typical boundary conditions which will be dealt
in this study are Dirichlet, Neumann and mixed types res-
ectively.At each part of the boundary, one of these must

-
B
be specified.



2.9 MThe variational [Tinite element method

As mentioned previously, the first step in adepting finite
elament method is to divide the continuum into two or threc
dimensional finite elements, which are separated by straight
or curved lines(two dimensional) or by flat or curved sur-

taces(three dimensional).

The shape, size and distribution of the elements are arbit-
rary. Rectangular, triangular and three dimensional eclenents
could be used cfficiently in various studies. In many cases
only one type of element is used for one problem, but 1. is
also possible to mix elements of different types.For cvamnle
for two dimensional steady state finite element formulation
both triangular and curved-sided elements are in one specific

application(3).

Owing to the suitability of the physical nature of the prob-

lem, the finite element formulation made in this thesis is

in two dimensional form. The region is divided into three

nod=l triangular eleumcnte due toe their simplicity and svcater
t

adaptibility in fitting boundary peometries.

The governing equation for a transient heat conduction prob-

lem as given previously is in the form;

div(k grad T)+q-C%%::O (2.15)

The mathematical formulation of a physical hea conduction

ohlem is completed with the given dirichlet noundary con-

3
]

ditions being prescribed on one part of the boundary and
neumann conditions on the remaining part of the boundary.
jeat flux and convection loss are also taken into account
for some relevant element boundaries for completeness. The
recion R of the problem consists of the domain D and the

boundary S,that is, R=DtS.



Equation(2.16) and the equations related with the diffe-
rent types of boundary conditions are not employed dircetly
but instead the equivalent variational formulation is used.
It can be shown from the calculus of variations(Appendix A)
that the solution T(x,y) satisfying ecuation(2.16) toget-
her with the appropriate boundary conditions is identical

to that function which minimizes the functional,

x =I5 U5 KGR + (G171 (a-C ) Thixdy (2.17)
‘Where T(x,y) are admissable trial functions over the domain
D. For this study, the trial functions T(x,y) are admissable
if they are continuous and have piecewise continuous first
derivatives in the domain D. Moreover, the trial functions
should satisfy the principal boundary conditions. The neumann
boundary conditions, that is, boundary conditions for which
the normal gradient %% is zero at the boundary, are satis-
fied automatically by that function minimizing the Ffuncti-
onal in equation(2.17) as a natural consequence of the vari-
ational procedure. ior this reason neumann boundary condi-

tions are also called as natural boundary conditions.

when there is a constant heat flux per unit area of the
boundary survrface or a convective loss at the boundary, the

the energy functional takes the following form;

2 2 1.2 S o1a
x= S KEDT + () 1-(q-¢ MMaay-f a T d s +La (3 TTNds (2.18)

x) Ty 3t
The last two terms(integrals) in equation(”.13) are taken

along the boundary.
As the next step the two dimensional region for which tne

solution is sought is divided into sufficient number of ele-

ments(three nodal triangular) as represented in Fig.2.5.

As a conseqguence of the division of the region into finite



Yy 4

FIGURE 2.3 Division of region into elements.

elements some definite number of nodes are generated. The
total number of these nodes which are actually the corners
of the triangular elements do not have any obvious relation-

ship with the total number of elements.

The typical triangular element 'e' shown in Fig.2.3 has
three nodes to which node identifiers i,j,and m are assig-
ned in a counter-clockwise manner.The importance of such

an assignment will be explained in subsequent chapters.

The next procedure is to choose a trial function Te(x,y)

for the arbitrary element 'e'. Inside each element the
temperature T may be unigquely specified as a linear function
of the three nodal temperatures Ti, Tj’ Tm' Thus for each
element the following relationship can be written using

matrix notation;

T:l:Ni ) Ny Nn] %; =[N][Te] (2.19)



. (& . . "
Where [T‘] means the listing of the nodal temperatures
for a particular element and Eﬂ] 1s called as shape func-

tions for the particular problem.

o)

N
o

.1 Shape functions

From the last paragraph of the former section it can be
concluded that the value of the dependent variable at any
point within an element is determined uniquely by the
values of the variable at the nodes of the element.All
trial functions satisfying the functional could be rela-
ted with the nodal variables by using suitable shape func-

tions.

The choice of the suitable shape function depends on the
verson who formulates the finite element procedure. But
tnis choice 1s the most important part of the whole pro-
cedure. A good shape function will lead to an element of
hich accuracy and with conﬁerging characteristics, and
conversely a wrongly chosen shape function resulting poor

or non-converging results.

The shape functions of two dimensional elements are given
in terms of scveral polynomials(?), The efficiency of the
chape functions depends on the degree of the polynomial
selected. Lagrange polynomials, hermitian polynomials are
the ewamples of the polynomials used in shape functions.
Certainly the choice of any polynomial is also closely re-
lated with the nature of the problem.

All these mentioned shape functions using polynomlals of
different typcs and orders are concerned with cartesian
(x,y) coordinates and genecrally applicable to rectangular
clements. For general quadrilateral elements with straight

or curved sides, similar functions can be used but in order



to make the solution possible some furbther transformation

to another coordinate system(curvelinear[ﬁ,q]) 13 necessary(%.

2.2.2 Areca coordinates

The cartesian coordinates are not much convenient for
trianpular elements either. Hence, in this work a sopecial
type of coordinate system called area coordinates(or natu-
ral coordinates) arc used instead of the well-known carte-
sian coordinate system. It will be clearly evident as pro-
ceeding further that the usec of the area coordinate systen
enables us to formulate element shape functions and to in-

tegrate the resultant functionals much more casily.

Y

Totalarea ijm=A

WitWi+ Wy =1

A

A.

W.:—i—

I A

A

J W :—m

|

™A

—& x

FIGURE 2.4 A triangle and the area coordinate system.

Referring to Fig.2.4 it is seen that the internal point'p'
will divide the triangle(ijm) into three smaller triangles,
and depending on the position of the point 'p', the area of
each one of the triangles 'pim', 'pij' and 'pmj' can vary
from zero to 'A', which is the area of the triangle 'ijm'.
In other words, the ratios Ai//A’ A¢//A and Am//A will take



up any value helween zero and unity in the same way as a
first order lagrange polynomial.These ratios are called

arca coordinates, and they are defined by,

A,
W.= ——-]-’-: . . . -
i T (al+blx+cly)//3A
Aj
(‘fj :T:(aj+bjx+cjy)/ 2A (2.20)
A

W=

|

m __
._(am+bmx+cmyb/ 2A

=

in which,

al= ijm—xmyj

b.-y.—y‘ (2.21)

2A=det |1 x. y.|= 2x(area of triangle 'ijm')

X5 Vi etc. are the nodal coordinates and aj, bj’ Cj etc.
can be computed through a cyclic permutation of the subs-

cripts.

From equation(2.20) a relation between area coordinates and

cartesian coordinates may be derived in a matrix form;



W; -_;i bi i 1
1

. = s a b- ’,)0?2
Wi |~k j i % X (2.22)
:qu % bm Cm_J _yj

Solving for 1, x, y we obtain the inverse relation;
- o — _— -~ -
1 1 1 1 W
- X . . (2.2

X |=| %5 xJ X LgJ (2.23%)

y Y3 Yj Im Wy

S S —— . — S e

The resultant functions(ﬂi, uﬁ anduu,n are the linear shape
functions relating the nodal variables with the v3dlue of the
dependent variable at any point within the element. In vector

notation the shape function for an element is given as,

o )
N .._.U.)i, UJJ., wm <2QC4>
This shape function is a linear first order relation which
is valid for a simple three nodal triangular element. Ior
higher order guadratic and cubic triangular elements the
related higher order shape functions derived from ared coor-

dinates are given in the (Appendix B) for information.

When element matrices have to be evaluated we will be faced
with integration of quantities defined in terms of area coor-
dinates over the triangular region. The values of these integ-
rals are independent of the shape and the location of the
triangles in the cartesian coordinate system because of the
special properties of the area coordinates chosen.

In general, the element contributions will then involve

. . n r s .
integrals of the form{ébi Wj‘”m dA which can be evaluated

- 14 -



analytically through the relation(?),

t 1 t
I=f & Jda=on TS5 (2425)
Jom (ntr4s+2)!

2e”+%5 Application of finite element method to thermal

transient problenms

m

As previously indicated by the equation(2.19) temperature 1
at any point inside an triangular element may be uniquely
specified as a linear function of the three nodal temper:s-
tures Ti’Tj and Tm. In the same manner the first time deriva-
tives of the temperature T can be specified as a linear func-
tion of the time derivativesrpf fhe nodal temperatures., Thus
aTi
at
NG, N B—aTj - 25

173 m t t

M (2.26)
L0t ] .
Substituting equation(2.26) and equation(2.19) into equation(2.17)

within an element,

QO |w
o+ —

and integrating over an element gives functional (thermal
energy)'xe of the element in terms of the nodal temperatures
T., T, and T .

1 7 m
I'he total thermal energy or the functional X can be expressed

as the sum of the'xc valueg of each slemant.
_ v .8
X = XX 2.27)

For this equation to hold true the temperature T must be con-
tinuous along the element boundaries. This of course has been

ensured by the appropriate selection of shape Tunctions.

The solution of the transient heat conduction problem siven
as a parabolic partial differential equation (2quation 2.16)
reduces to finding the nodal temperatures which minimise the
energy functional(2.27). This can be achieved by minimizing

the functional Xé for each element.



2.2.%3,1 Energy minimization of one element

In the light of area coordinates introduced in previous sections
the temperature T at any point within an element is given asj
T=wi’l‘i+w.T.+me=[NJ[Te] where, N=|E.x)i W, wm] is the shape

73" m J
function, in the same way, 4n 2T 2T d7T, a1°
= =N =

J
st = Viet Tyt T4 eT £

The relations between area coordinates and the coordinates given
previously by equations(2.22) and (2.23) indicates that only two
of the area coordinates are independent. Let these be t»i and uﬁ.
The relation between temperature derivatives with respect to

area coordinates and temperature derivatives with respect to

cartesian coordinates 1is; £ %TT
oX W,
=
oy 0w,
| L)

wWwhere J is the jacobian matrix. The following can easily be

derived from previous relations as;

- - b, .
1y I57m  TnVi_ 1 i
N NG e I
J i “m i J
Since w; and W. are sclected as two independent area coordinates

J
W, can be defined in terms of these coordinates, i.¢j

=1-W.-W, .
wm__l u& : (2.30)
llence the relation between temperature derivatives and nodal
temperatures is found using the equality given by equation(2.30)

and by differentiating equation(2.19),

aaT 0 1 'y

W -

AT 1 -1J Tj ==Edﬁfﬂ (2.31)
oWw. :

| d Tm

- 16 -



Substituting equation(2.31) into equation (2.28) gives,

3

LR PI=p][v] (2.5

wlo} wlu
Girg o

Substituting this equation into equation(?.17), the enersgy

functional takes the form,

T8 =gy Lk (078078 -T(g-Cp)d dA (2.35)

T he superscript 't' in eauation(2.3%%) means the transpose
of the vector DT®.

In order to minimize the functional it is differentiated
with respect to three nodal values of the element(Ti,Tj,Tm).

. . . . e . .
First differentiation of X~ with respect to T, gives,

i e eyt
X : DT e 0T oT
=/ {k?2 DTE- (q-C =)} dA
oy A : Ty et (2.54)

Substituting equation(2.19), (2.26) and (2.32) into equati~
on(”2.3%4) gives,

¢ t

e e e e
0C <y, kA vt gt gvre - AT L g - wtow 31 ) aa .
i i 1 =

In ecuation(”.35%),

(

t
e -
T

Following the same procedure for the differentiation of Ke
with respect to all nodal values Ti, Tj and Tm, the resul-

tant equation will be,
Ba

X%, _ _ totogre 4 enty 076 L nt
[ET;]_ 57‘3‘ "fA{kVJJVT +CNN5t— N-q }dA

L 4 - 17 -



The first term in the integral(”?.%6) is constant over the
area of the element. Substituting the values of V and J
the first term of the integral becomes;

(xvEstav @A)Te =
—1 d_ Ti
bi bi 1 0
k
m |0 ! T
b. C. 0 1
-1 -1 ’ d T
— - L
(2.37)
Using the relations (oi-rcj)::—cm and (bi+bj)=:-bm
equation(2.37) takes the following form;
2 2 .
bi+ci bibj+cicj bibm+cicm Ti
ene X . 2 2
h™T" = I bib3+°icg bj+cj bjbm+cjcm Tj (».33)
2 2
. . Y 4
blbm+clcm bJ>m+cjcm bm+cm Dm

h® in equation(?2.38) is called as the heat conductivity
matrix for one element.

The second term in the integral(2.36) is,

a% ;) a%#;
e 0T, _ t _ 2
[p ][E_t_—] —fACN NdA = C fA wiwj wJ. Wiy dA
| i “5%n “%__ (2.39)



fguation(?.39) contains integrals of the form given in the
equation(?2.25). Using the equality given in equation(?.25)
the integrals of each element of the matrix given in

(2.%39) can easily be taken over the element area.

e
e oT . C A
[PJI:ST_M 1 2
1 1

The matrix [?e] in (2.40) is called as the heat capacity

matrix for one element.
The last integral term in equation(”.36) is,

w. 1
1
e _ t - -~ gA
K* = [y N'qdA = q Jy oy dA =32 11 2.41)
w 1
m

Here the integral is evaluated again using the identity
given by (2:75). Another point is that heat generation
'q' is assumed to be evenly distributed within the element
hence it is taken as a constant over the element area.
[Ke]in equation(?.41) is called as heat generation vector.
#inally, equation(2.%6) after evaluating all integral terms
becomes the following form;

aT®

P0° _pere ype 10 e 242
-5-]: '—t—‘ (C_o‘w‘.)

2.2.%.,2 Assembly of elements
Equation(2.42) is the differentiation of the functional X°
of one element with respect to the nodal values.

The next step is to equate this equation to zero to find the

minimum of the energy functional. According to the variational

- 19 -



approach the finite element solution of the problem is

obtained by finding the nodal temperatures which minimise
. -]

the energy functional XQZEE)(

Therefore the process done for one element is carried out

for all elements. After rearranging, the final set of equ-

ations can be written as,

ax
3 1 (g = [HIT) +PII-IK] =0 (2.4%)

In this equation [H] is the heat conductivity matrix,

[P] the heat capacity matrix, [T] and l:%g] are vectors
containing the nodal temperatures and their time derivati- 1
ves respectively. [KJ is the vector defining the distribu-

’tlon of heat sources and heat sinks over the region under

consideration.

Observation of equation(2.43%) reveals that in order to
proceed with-the transient part of the solution another
umerical approximation procedure is required. When sol-
ving (2.43), -%—',163] is to be substituted by a finite diffe-
rence. There are basically three finite difference avproxi-
mations in dealing with the transient part of the finite
element problem.

These are DLuler, Crank-Nicolson, and pure implicit methods.
In the Euler method the solution is advanced in time by the

relation, T
[Thy =0T a¢t 8t T5gl oat

On the other hand the Crank-Nicolson method moves the solu-

tion ahead in time according to the relation,

3 At
[T =0Ty ap F Ut toar T lade) 7 (2.44)
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And finally pure impnlicit method moves the solubion ahead

aT
at

in time as lollows,

[ T] + At [+ ]

£ =T at £

In this work Crank-Nicholson approximation 1s used since
it provides hetter results, at least upon Zuler's method

as proved hy experlence(S).

The ecuation{2.44) considered with the equation(2.43%)
gives the simultaneous time and space solution for the
transiert heat conduction problem.

The algorithm proposed for this part of the problem is as
follows(9).

At time 't' , substituting equation(2.44) into eguation(2.

following relation is obtailned.

—r (2] [l =[] ¢ Bﬂt_zt—z?;g[T J, v

(2.15)
T higs time substituting equation(”.4%) into equation
(2.45) at time '(t- At)' ;

._‘:.._[P v 9] )['1‘] [D]szt_ [1i1)[TL_At+Q[i(]

(P.46)

Defining;

> ]
[ ] ] jé_ [P] [T]t—At (2.47)
=[q

'ollowing the above procedure first [T] 's are deter-

mined then solving the eguation given below the nodal bem-

- 21 -
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veratures at time 't' is  found if the initial conditions

at t-aAt are given;

*
[M,=2 [7] - [7] oAt
The time step At is chosen appropriately and the continuous

solution of the time dependent problem is obtained at each

time interval.

2.2.%.35 tlathematical consideration of boundary conditions
in the solution of the time dependent problen

As mentioned previously in section(2.1.2) devending to

the type of the problem different types of Boundary condi-
tions should be taken into account when solving the sonecilic
problem. When conside ring boundary conditions the energy
functional of the system takes the mathemalical fora ziven

by (2.18) in which the last two terms related with the bo-

undary conditions are integrated along the element bonnda-

ries.
Y4
m
i
J
S
. X
FIGURE 2.5 Consideration of boundary conditions.
Supnose that for the 2lument indicated in Hig.2.5 all houndary

conditions vepresented by the last two terms of equation(2.13)
are valid for the side 'ij'. In other words for the side ' ij '

both constant heat flux per unit area and convection loss



are considered to he wvalid.

rom the knowledoe ol aren coovrdinates it can be concluded

that u%f=<3 along side ' ij '.

Since wi+ w,jermzl

and Q)n::O

!
w;=1- Wj. can be written.
also letting Luj:: ; where d is the distance heltween

i and j, and s is the distance measured from node 1

The tencroture can be exoregsed as

—_m -, __rp_ =, __§___ /:’) i ¢
T__1i+(Tj Ll)uﬁ*"1+(Tg Ll) 7 (P.48)

Temnerature distribution along the elesment boundary S can
be found by the minimum of the last two terms ol energy
functional given by (2.18). This can be achieved by tuking
the derivatives with respect to nodal temperature varancter
and equating to zero.

o

1

-3

st taking with respect to Ti,

2
o 4 T d . _
ary [ o (o = TTy)ds - g qTds] =

oT aT d a7
«f (Tar - ar; Ta)ds - Uy g7 o (2.49)

Suhstituting ecuation(”?.48) into ecuation(2.49) and setting

|
s
' X3

T _,
-—a.-a—r—?-:\]_—
1
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in the liker-mmer Tor T, mives

i
*xd @, ad od o4 5
5= Uit 5 Ti- T Tg-Up (2.51)

As 1t 1s evident [rom ecuations(2.%0) and (2.51) the coeffi-

bl

]

ients of nodal Temseratuare valnes Ti and Tj must be inser-~

ted into svitable nlaces in eouation(?.%%). Thegse results
are only f'or one elenent houndary.Repeating the process for
all elements which have vrescribed bo.ndary conditions, Lhe
similar results are obtained and all of them are inserted Lo

equation(2.4%) in a systemabic way.

According to the equations(2.50) and (2.51) the coefficients
' od .
— wvhile

h;; and hjj in the [H] matrix are increased by s
< . . , ol d

the terms h, . and h.. is increased by —= .

l:) Jl ' O

On the other hund to the elemnents i1 and j of vector [K] @111

he added(j%i Ta+ké%)-

Dirichlat boundary conditions may be taken into considerati-
on in one of several ways. If dirichlet kind of boundary
conditions are prescribed for one part of the boundary the
insertion of them into appropriate places of the equation
(2.43) may create some problems. Depending upon the method
chosen the symmetric and banded nature of the [H] matrix may
greatly be destroyed. Several methods(?7) are proposed and
one which does not affect the nature of the I matrix is
selected in this study. The method has also some other ad-
vantages over the others such as it reguires very few ope-

rations.

Dirichlet boundary condition is taken into care at the stage

given by the equation(2.47),

(T o] (e

supposing ' A ' is the value given by dirichlet boundary con-

- 2 -



dition, then in this method, the diagonal coefficient corres-

.
ponding to T; is multiplied by a very large number(lol% isg

. . L
selected in this study), and the term Kn 15 replaced by

12
Axh _x107",
nn
The modified equations are shown bhelow;
— —* —'PH* — — ¥
hyy h12' - hln’ - -y T kl
hyq hose o o By e e th Ty Ky
- 12 ) —_ SN 92
hnl hn2' .. hnnxlO . hnN Tn - Axnnnle
1
th hN2 * . . LJ . L] . hI\JN I_.TN I{N

It is obvious that the dirichlet noundary value ' A ' giver

for node n has hcen taken into account in this way,
that is, ths solution of the above set of algebralc equati-

ons gives nearly equal to Tn==AJ
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CHAPTHR III

SOM PRACTICAL ASPECTS OF FINITr whivioNT rwl'HOD

AND PROGRAM DoViELOSMeNT

In chapter II an outline of the t'inite element method and the
detailed formulation of the mathematical equations for sol-
ving a transient heat conduction problem were introduced.
Now, in this chapter some practical aspects of finite analy-
s1is which are to he considered in developing a computer proo-
ram will he represented. A flow chart of the develoned prog-

ram is given at the end of the chapter.

2.1 Modelling of a nroblem.

A two dimensional solution domain in which transient heat
distribution is sought for is divided into finite number of
triangular elements. Associated with each element are three
nodal points, at the corners of the triangle. The triangular
elenents are utilised so that they can be made to fit any
shape of the domain boundary. Boundary is represented wit
sufficient accuracy by a series of short lines.

ys

FIGURE 3.1 A twodimensional circular solution domain
divided into triangular finite elements.

- 26 -



Fach element has common edges with the other ones, but each
edge is allowed to be comnon hetween two neighbouring ele-
ments at most, as indicated in PFig.%.l1. Otherwise, a divi-
sion of the region as shown in I'ig.%.2 is not allowed.

[
y

¥

FIGURE 3.2 An incorrect division.
Element divisions are made appropriately, considering the

different material properties of the different subregions
of the solution dowain.

y 4
! |
!
Iz :
’/
K3 |
[ . }
| f ‘
(a) (b) (c)
Correct division incorrect division

—

FIGURE 3.3 Division of a region with differing material
properties.
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As an example, Fig.3.%-a shows a solution domain composed
of two subregions divided by vertical =zs'axis having two
different heat conductivitics kl and k2
As a result of a division shown in KFig.?%.%-c the sointion
is not possible, since somc of the elements are allocated
partly in one region and partly in the other having diffe-~

rent material properties.

The rig.3.t makes it simple to follow the subseguent steos
when modelling the finite element method. It represents a

two dimensional gs2lution domain of a simple geometry.

(a) (b)

v x

FIGURE 3.4 Element and node numbering.

As the division of the region into finite numher of ele-

ments 1s completed then the number of nodes and elements are

- 28 -



to be determined. The region in ¥ie.%.4 have 9 nodes and 8
elements totally. It is clear that Tor any particular Beo-—
metry other thon the one given in this ficure, there is no
obvious relation between the number of nodes and the numher

of elements.

Table 3.1 relates the node identifiers i, j, m of each cle-

ment to th2 system node numbers.

Node Number

Klement i P 0
1 1 5 4

2 5 1

3 2 6 5

&4 3 6 2

> 4 8 7

6 5 8 4

7 5 9 8

8 6 9 5

Table 3.1 Relationship between node numbers

fols
and element node identifiers
As an investigation on both table 3.1 and Fig.3.4 reveals
that the node identifiers are allocated in a counter-cloc -
wise manner on each element. Such a systematic pattern
prevents an appearance of a negative clement arca which
certainly would cause the mathematical formulation given

in previous chapter to yield wrong results.

The eclements are numbered in a sequential order from bottonm
row up to the next as shown in Fig.3.4. However, this is
not a requirement so that the elements could as well be num-

bered in any other manner as someone wishes.
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5.1.1 Node numbherine and Bandwidth

Node numbering of a finite elcuent is one of the most impor-
tant part of the whole procedure. ¥ig.%.4-a and b shows same
finite element mesh with two different node numbering. The
importance of node numhering comes from the fact that matri-
ces generally met 1n finite element problems have a banded
nature. In the matrices [H] and [Plderived in chanter IT;
the non-zero coefficients are vsually cummulated near the
diagonal, and outside this band all the coefficients are

of zero value. Such matrices are called as banded matrices.
In most of the finite element problems, the nodes are num-
hered sensibly sd that the matrices become banded. This
banded nature of" the matrices offers a great advantase in
programming finite clement problems especially for storage
recguirement of computers. The core requirement is directly
proportional to the halfband-width which is in turn related
to the maximum difference between the nodal numbers of an
element. Therefore when numbering nodes great care must be
exercised so that the differcnce between connecting nodes
can be minimised. Fig.%.5-a and b represents the form of
the system matrix obtained in respect to the two differeunt
numbering schemes introduced in KFig.%.4 -a and b respecti-
vely. The matrix in Fig.%.%-a is a fairly compact one, on
the other hand, by numbering the nodes incorrsctly associ-
ated with the Fig.3./t-b, the matrix is no lonser banded and

almost entire system matrix should be in the solution pro-

CeCSSe

Since the time and the cost of the solution is closely de-
pendent upon the bandwith, a great advantage will be lost
if the nodes are numbered as in Fig.3.4-b. Therefore it is
desirable to number the nodes in such a way that the band-
width is minimized. This purpose can easlily be achieved

for simple geometries, but this may not be the cass
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Figure.%.5 Matrix forms for different node

numbering
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for complex geonelries. Some numhering alsorithms are dove-
loped for complex geonetries using the data of alrcady num~
hered reeion and renumber the nodes so that bandwidth is

minimized(10).

3,1.2 Automatic mesh generation

One of the data input sets of a finite element program is

the listing of x and y coordinates o7 the nodes. But tor
problems with large numbers ol elements, the preparation

of data; including the determination of x and y coordinates
of all nodes, element numbers and node identifiers associa-
ted with each element number, can be tedious and time con-
suming. Ideally; a finite element comoubter program should
generate its own mesh data from a minimum number of geomet-
ric parameters. The amount of input data required is mini-
mum and once the relevant rouitine has been written by this
way the possibility of errors is lurgely eliminated. Altho-
ugh an antomatic mesh generation provides a powerful tool
in handling data preparation for finite element programs

it is not so simple to device algorithms suitable for all
kinds of geometries. In this work an avtomatic mesh genera-
tion subroutine has heen used in one of the spplications of
the finite element program to a problem having rclatively

simple geometry.

The automatic mesh generation scheme is deviced for the
geometry shown in Hig.%4.l in chapter IV. For this purposea
a square mesh with the same number of elements and nodal

points is chosen (Pig.%.6)
first an aleorithm generating this geometry is deviced.

Considering the general case where there are n, points per
horizontal row and ny points per vertical row, the total
numbers of nodes and elements are nxny and 2(nx-l)(ny—l)

resnectively.



4Ny
- - - 7 7 Ii i+1
|
|
|
|
|
|
I
|
|
O/10/6® |
@,/0 /0 |
T2 3 Ny

FIGURE 3.6 A square mesh with right angled triangular
elements. '

Let iX he used to count nodes from left to right in a sno-
cific horizontal row and i_ be used to count such rows fronm
¢! H t ne P W J‘ 2 _. )< i . q'f
the bottom to the top, where 1K 1X\<nX and 1 .Ly\< n,. Since
the order of node numbering is from leit to right as shown
in #ig.3.6 then the numhber of any node can be obtained as

follows,

1:(1y—l)nxflx

The dimensions of the mesh in both x and y directions are

taken as nnity. And the origin of the coordinate gystem is
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assuned to be at the node numbered 1. Coordinates of any

typical node is then

i —1 i =1
x‘. X Y_:._JY.____
1 n, n -1 ! D) ny—l

Where x; and Yi indicates x and y coordinates of the node i.

The numbers of the nodal points at the corners of ench ele-—
ment may be defined by considering the overall mesh to be
divided into a total of (nx—l)(ny—l),small squares, each
one of which is then subdivided into two triangles. This
time letting iX and 1_ being the horizontal and vertical
counters applied to ﬂnare y Where now 1<§ix\ nx—l and

L1 <r1—l. Since the squares are nuambered in an order
fron l@”t to right in a particular horizontal row then the

number of any soecific square will be

nq==(lynl)(nx—l)+lx

Since there are twice as many elements as thore are squares,
then the two elements of each square can be numbered as

2n ~1 =7n
l’lq 2 f

m ].= q

The next step is to number the three nodes of one triansular
element in an anticlockwise manner. Let 1 be the number of
the bottom left hand corner of a square, then the numbering
of the nodas of the two elements associated with any parti-

cular square will be

i,=1 = 1+nX+l R kl__ i+n X
i2=i j2::.i+l s k2=i+nx+l

By this way all the geometrical data associated with a square

mesh composed of right angled triansular elements are obtained.

3 -



As a next step another routine which provides a modification
to the square mesh, resulting in a geometry similar to that
of Fig.4.1 with parallel concentric arcs. To achieve this,
the inner and outer radii of the geometry and a constant
ratio of radial distances between successive rows of nodes
must be given. Let h be the distance between the first two
rows of Fig.4.l an 8 be the ratio of the radial distances

between rows., Let a and b the inner and outer radii resvecti-

vely.

Since there are ny parallel concentric rows,

-2
2 .‘ny

hr (1+5+54... .48 7 )Y =b-a

__gb a) (8-1) .
h n -1 for b;é:l
57 -1

the Y coordinates of the original square mesh can be first

modified as,

vt=
i= )

where iy is the number of the row in which node 1 occurs.
Required curvature is introduced us sing polar coordinates. The

modified position of a typical node i is,
»
r=a3a+y. =1 X.
r=a+y; y  P=Trxy
and final coordinates are

e o .8 .
X;= rSingd and y; =rCos/

By using this algorithm a semi-circular mesh composed of
triangular elements as seen in Fig.4.1 is obtained automatic-
ally, using very few input data. Alltogether the input data
to generate such a mesh requires only inner and outer radii
of the resulting geometry and a constant ratio of radial dis-

tances between circular arcs (or rows).



%2,2 Solution of simultaneous egquations
As 2 the

lation vields a set of linear algebraic equations. Thesc equ-

it has been derived 1in chapter finite elenment for-

ations are of the following form;

Where A=[aij] is the coefficient matrix, X= [XJ.] is the sva-
tem nodal vector of unknowns (nodal temperatures Tor heat

conduction problem) and B==[b£l ig a vector of known values.

There are several techniques for solving linear gystem of

equations classified as either direct or iterative methods.

In finite element methods
depends on the prooerties

handedness,

Or sparseness,

tional operations and storage requirements.

the choice of the technigue mostly
of the matrix A, such as symnuetry,

to reduce the number of computa-

In Lhis work two methods; gaussian elimination and square

root (Cholesky's) methods are used and compared with each

otirer, at the same time the advantage of the properties or

the matrix A

3,241

Gaussian elimination using a full matrix

i3

taken

into account,

Gaussian elimination is the simplest and most frequently

used method of solving a set of simultaneous equations(ll).

To demonstrate the procedure for this method equation(é.l)

is supposed to represent a set of four simultaneous equations.

- %6 -
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the reduckbion or trianonlarisation of [A]‘is carrvied out oy

conoiting
e o
.= 3. . - a. A /\1‘

a. .

i ij is 83’ “ss

> : (5.3)
i = bi <ais/ass)bs

and tie final form atter the cowpletion of all reduction steps

is,

11 "1 %1z P | (T (gl
»* ¥* »
0 84~ 453 85y

[y &4

>
N no =~

>

» *
O 0 335 a54

»
0 0 0 al, %, A

L —1 L
in which asterisks indicate the number of times each co=f{{i~
cient has heen modifiad. Jsing (%.4) backsubstitution nrocoess
is carried on and unknown values of vector [x]is evaluated.
Thig alcorithm is certainly inefficient interms of cors sto-
rage and computer time hecause no advantage hes been taken

of the syumetric and banded nature of the [A] nmatrix.

3,242 Gausasian elinination for a banded nmabtrix

As nreviously mentioned the mabrices zenerally met in finite
clenent oronlans ara gymmetric,banded and positive definite i
mitrices,
a a a\\
\l Ll2 1 s$ & & .
\\\\ EEREN
i~ 2o © PR
TN 8, a
1 S Y
'S \..
T G ST
~
a a Spr~e -
>S5 %se G5V
. . . . bhalf bandwidth <>
™~

] o
N

c O

. . . . . . . . . . . . - . . . . . . . .

Figure.%.7-a Original band matrix
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Figure.3.7-b Rectangular array storane of

upper half of the band.

"ig.%.7 shows an alternative way of storing the elements of
[AJ matrix having a symmetric and banded nature.

Using slightly modified routine extra efficiency is galned

providing comparatively low storage requirement and veduced

execution time. By this way all the zero entries outside

the band will not be operated on.

In gaussian elimination band solving subroutine the equi-

valent equation to equation(3.%) is;

* ¢ — . z ,/ >
8157 94 (aS,(l—S+lL//351)ds,(j+1—s) WD
with the limits,

(s41)< 1 (s+HRY-1)
1< G (HBW=-(i-8))

>
IR
N

where,
HidW = half-bandwidth ofthe matrix

%2.2.3 Saquare root(Cholesky) method
Another scheme which is used for the solution of the finite

element method in this thesis is the sguare root method.
4 brief descrintion of the method is presented below.

In this method the matrix [A] of the equatin(3.1l) is decom-
posed into a lower triangular matrix [L] with positive dia-

gonal elements such that,

A:LLT (%.5)



or alternatively, A could be decomposed into an upper

triangular matrix [U] satistfying,
vrI‘ ATy .-
A=UU" (f’or/’>
Por the tormer decomposition, substition or (3.5) into
(5.1) results in,

T

m
LL " X=8 (3402)

wWhich can be written as the followig sequence of equations,

LC=B (%.2=-a)
LTE=c¢ (3.9-0)
lll * [ ] ® * * L] . O
121 122 L . L] * L] !\)
IJ —_ 151 152 ]_/)5 ) . Y . () (5.-1-0)
-l_nl 1n2 . » * . . . nI_l

The triangular matrix L==[liﬂ needed in this process
can be obtained explicitly from A=]a.. throuch the
i 7 i 2

following relationships;
i-1 y
ZE 2 \1/2 .
lii=(aii_ 1]-.‘]-) 1"‘-1, 3 . . Y 1’1
j=1

1550 i<

Jj=1

1..::—%7. (a. )

e ij” l,jmlim
:Ju m=l
i =1i41,i42, . . , N

J=].’2, . L] L] * , n



in which summation is tnken as zero il the uoper limit is less

than the lower limit.

This scheme is also used taking the advantage of banded
character of[ﬁ]m1trLa. This method has no great advantases
over Gauss cliwmination as storase 1s concerned. But cholesky
decomposition use aignificantly less compurtation time, which

is reflccted in faster and cheapoer solutions.

Repeating amain, the two methods of solving system nmotrix
equation deseribed abhove when they are used as bundod type
result in guicker and cheaver solutions provovtional to the

handwidth reduction.

In finite element applications, a2 serious nroblem 1s the
inadequacy of compnters in relation to the oroblem size.
Therefore even banded type of solution methods might not ne
sufficient in overconing this drawbhack. Some other aldvan:ied
methods are deviced so that the solution of finite element
problems of very lirge size becomes possible.

%3.% Convereence of finite element methods

Several convergence criteria are oroposed for th2 Tinite sle-
ment method annlications. Some or them concern bha conver-
cence of the individual steps involved in the method so to
obtain more accurete results. For example 17 an iterative
method i3 used for the solution of simultaneous nmatrix egu-

ations then the conversence of the equation solver method is
looized for. Dut the more important form of conversence 15
that of the finite element method as a whole. In nll snuch
methods it is assumed that, as the numbhers of elements and
nodal points are increased, the resulting solition anoro-
ximates more closely the true solution to the oroblem(2).

The variational formulation described in (Appendix A) provi-
des a general idea of the conditions required for conver:xence

of the finite element method.

- N0 -
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_ e
X=2X

In equation(3.11) the total value of the functional X of a
steady state heat conduction problem is eauated to the sum
of the resultsof the relevant integrations performed over all

the individual elements.

v

FIGURE 3.8 Two adjacent elements.

Fig.%.8 shows two adjacent elements separated along their
interface by a small gap h. The condition for this inter-

face to make no contribution to X is,

h
2 2
. 1 T 1 oT "
llm/[2 k( gx )+ > k( 57 )- qi] ds=0
0

h—»o
(5.12)

If temperature T 1is continuous across the interface,
its value remains constant over the gap. The first derivati-
ves of T with respect to both x and y are therefore zero and

(%3.12) is satisfied.



Otherwise magnitudes of the derivatives tend to infinity

as h 1s reduced to zero. Consequently it can be said that
for this example the convergence of the whole procedure is
assured if the temperature is continuous along the element

interfaces.,

In general terms the variational formulation provides the
conditions for convergence of finite element methods.

If the functional whose stationary value is sought, involves
derivatives of the unknown function up to the n*h order, the
shape functions employed within the elements should ensure
continuity across element interfaces up to the (n—l)th
Elements and their associated shape functions which satisfy

order.

this recuirement are said to bhe ' conforming ' or ' compatih-
q X ‘

le '(2).

3.4 Truncation error
As it has already been mentioned, it is necessary to use a

large number of elements and hence nodal points to achieve
satisfactory convergence of the finite element problem.

It is so because of the fact that the shape functions provide
only approximate polynomial representations of the true va-
riations. For instance, the temperature variation over an
element given by T=“viTi+“BTj+u%Tm is an approximation
obtained by using shape functions W, , uﬁ and(um which are
first order polynomial representations derived from area

coordinates.

To evaluate the truncation error involved when using finite
element method, lets choose a simple example in which tempe-
rature variable is varying linearly over each element by the

relationship;

T(x,y)==A1+A2x+A5y (3.1%)



k(-aj.bj)

j(ak,- bk)

¥

i{o,0)
FIGURE 3.9 An element whose ith node
at the origin.
Suppose that the temperature variation over an element whose
i'P node at the local origin is sought for(¥ig.3.9). The
coordinates of the nodal points can be expressed in carte-

sian coordinates by the following terms;

8= X, -X bi=y ~Yye
aj==x.—xk bj__yk—yl
a,= X.-X b, =y.-y
K J 1 k Y]

A Taylor series expansion about the origin of the local
coordinates shown in Fig.3.9 for the temperature gives,

2

_a—_ +,Y“%) T+ . . .

1
(x 3%

(2T 3T 1
T__Ti+(x 5= 7 ay)+—--2
. (3.14)
¥sing equation(3.13) and evaluating the derivatives at
the origin,

and —a—T-=A is obtained.

Y
3% A2 37 13



Therefore crror involved in using equation(3.1%) as a trun-

cated form of equation(?.14) at point j for example 1s;

Equation(3.15) reveals that the truncation error is of the
order of the square of the dimcensions of the element.

(i.e ay bk ... etec.) In order to minimize this error the
element size must be reduced.

3+«5 The oprosram

A general program is developed to solve the transient ther-
mal fields of underground cables under different conditions.

Tor the solution of different problems only the data is

needed to change.rig.3.10 shows the flow-chart of the proxrras

"



Read input data
Number of elements,nodes and their coor-
dinates,boundary condltlono, time incre-

ment, tlme limit,

material properties

NELEM
HBW

ol

0
o)

T
S

NELEM = NELEM + 1

L

Retrieve element
node identifiers
i, j, m

L

Retrieve nodal
coordinates

Xl’yl: X2,y2; X59y§

L

Calculate

..C.43 b.,Cc.; b ,C
irvi g° J’ m? “m

b

l

Calculate
area of each element

Calculate
cgeff1c1etq of h P
element matrlces

1

Determine
half-bandwidth HBW

L

Assemble

element matrices 1into
global system matrices
H,P,K and form in rec-
tangular storage array




Is there
convective BC or
constant heat flux
BC

Perform contour integrals
and substitute resultant

terms into global H and K
matrices

A

Is there

dirichlet type
of BC's

Make suitable arrangements
in H and X matrices
to consider dirichlet
type BC's

Y

Set the thermal vector
to ambient temperature

A

Form
(7] 2+ 4 [1] and

(1= 17

[&]=[&] + %< [P]T],

I
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l

Solve

[ )=

Find the temperature at
time t+ At

[0 =201 - [,

checl

“whether the time No

is exceeded?

Yes

Print

the results

STOP

Figure 3,10 Flow-diagram of the transient

thermal field program
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CLAPTER IV
APPLICATIONS

4.1 Introduction
“he demand for electric power in the highly industrialised

countries has been doubling approximately every 10 years(12),
and in some of the developing countries the growth rate has
been even faster. ror example demand growth rate for Turkaey
is given as %~3.5% times for each dccade(1l3).

A4ith this enermous rate which is foreseen also for the coming
future will necessiate a growth for power systems of mreater
capacities with the ability to transmit energy with very low

loss over considerable distances.

Naturally, the size of the generating plant required will
increase as also will the size of the generalors, and it is
clear that the power capahility of transmission circnits

will need to keep pace with the load growth. Althoush a

major part of the increased load will still be carried by
overhead lines, a consistently growing proportion of the
transmission network will consist of underground power

cables, since load centres nearly always coincide with densely
vopulated urban areas. The trend towards an expansion of the
underground svstem will certainly be reinforced by the desire

to pregerve the environment.

The generation and transmission of electric power is based
on the fact that we have at our disposal mabterials such
copper and alimunium which are good conductors of electris
The registive nature of these materials give

i
generation of unwanted heat which must be dissinated by the

surronnding environnont through eloctrical insulation of

poor therm:l conductivity. As a result, the current densitios
1 nt

vhich can be obhlained with copper and aluminium at ambi

oD

tenperatare arve very low, and are of fthe ordspr of 1A mo,
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This fact brings a severe limitation on the usage of under-
ground power cableg for carrying larser power capacities
although the necessity of using power cables at a greater

ol : )

extent increases with the rapid rvate of load growth all

over the world.

Nowadays the techniques for increasing the power rating
of cables are bheing impoved for example artificial cooling
of cables, the usage of polymeric and gas filled cables and

the devolopment in cryogenic cable technology(l4).

Without going into the details of such improvements in
cable technology, the fundemental factors affecting the
current carrying capacities of power cables should be

discussed.

The current-carrying capacity of high voltage cables i1s de-
termined by the ability of the immediate environment ol the

cable to dissipate the heat generated within the cable.

The current-carrying capacity of cables is not dependent

[0}

only on the'crpss—sectional area of the conductors. It i
primarily a matter of heat transfer from the cable core,
where the heat is mainly seneratod, through the cable insn-
lation to the surrounding medium and tho>nce finally to free
air. It is therefore dependent on the various thermal con-
ductivities of the media concerned. kspecially at high vol-
tages the voltage-dependent internal heat generation in the

insulation adds to the heat produced by the conductor.

The three sourees of heat generation are the resistive con-
ductor losses, the dielectric losses and the sheath losses
which for a 400KV 1935 mm2 cable circuit amount in total

to about 130 Wm™l(14). ‘

In a power cablc the maximum vermitted insulation tempera-



ture is often a limitation to its current rating. The full
utilization of the cable material is only possible if tem-
rerature can be calculated for different loading conditi-

OIlS »

Hereunder, some applications of the finite element method
in the solution of thermal field distribution of various

power cables is introduced.

4,2 Simple cable problem

¥or most of the heat conduction problems the analytical so-
lution is cuite difficult and sometimes impossible to obtain
due to the complex geometry of the solution domain. An ex-
tensive representation for analytical methods in conduction
of heat in solid bodies is given in(15). These involve the
derivation of the mathematical solution for the temperature
as a function of space or space time coordinates. The solu-
tion must satisfy the basic governing partial differential
cquation, together with certain initial and boundary condi-
tions suitable for the particular problem. But for very
complex geometries and complicated boundary conditions of

the physical problem concerned, the methods other than analy-
tical ones become prefsrable. These can be grouped as grap-
hical, numerical and experimental methods(1l6). Pinite diffe-
rence and finite element methods are commonly used numerical

nrocedures in handling such problems.

In order to make a comparison between analytical and nume-
rical methods an underground cable problem which has an
analvtical solution is considered. The same problem is also

solved by finite difference method(1l7).

The problem consists of a coaxial cable with inner conduc-
tor radius a=0.60 cm and the outer radius b=15.10 cm. It
ig assumed that the conductor is 1insulated by homogeneous



dielectric material of thermal conductivity

k=0.0022 cal. sec_l.cm-l.oc_l.A constant heat flow

fc==0.018545 cal.sec"l.cm"2 (i.e, corresponding to a cur-

rent of 400 Ampers flowing through a conductor of 0.18% ohm/%m)

is applied from the conductor surface towards the insulation.

The czble surface (r=D>b) is kept at a constant temperature

o} .
of 257C, then the steady-state temperature variation throughout
the insulation is sought using transient-state thermal field

program.

4,2.,1 Analytical solution

Since the steady-state results are reguired, the governing
thermal field equation becomes the laplace's equation for
which the analytical solution is given in (Appendix.C).After

considering the boundary conditions of the constant heat

flux and the fixed temperature on the conductor and the cable
surfaces respectively, the exact solution takes the following

formg

T(r)= 25.0 + -—-E—— fcln(—%—) for adr<b
(4.1)
4,2.2 TPFinite element solution
Because of the symmetry, only hall of the cross section
of the cable is considered in modelling the problem(Fig.4.1).
The region is divided into 96 elements with 6% nodal points.
As seen in Fig.4.1 element division is indicated in one part

of the solution region only for the demonstration of the way
how the mesh is obtained. In solving the problem hoth Gaussian
elimination and cholesky decomposition methods are used as
simultancous matrix equation solvers. The same routines are
adapted to anofther version of storace mode, namely rectan-
gular array storage instead of full matrix storage, which
makes it possible to gain the penefit coming from the

symmetrical and handed nature of the system matrices. The

- 51 -
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FIGURE 4.1

The geometry for simple cable problem
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applications are compared in hoth aspects ol storaze rogquire-
ment and execution time. Tirstly the finite elenent nesa in
Fig.#.1 is obtain=d by hand and the data cards;including
element numbers, nodal polnt numbers, node identifiers
correspending to cach element and also the x, y coordinates
of all 63 nodal points, are prepared and given as prooran
input. Secondlv this vart of the orocedure is accomplishad

by a developed finite element mesh senzration subrontins

providing all geometric data of the problem avtozatically.

Tor all alternative applications the program is ran Corp

a transient tewmperature variation with the time limit of
250 minutes. Since the temperabure variation is initially
very steep, a small time increment of 15 seconds is chosen.
As the time progresses, the tempcerabture variation becomes
slower and larger timc increments of 30 and 60 seconds ars
employed in the time intervals(20 minutes, 50 minutes) and
(50 minutes, 250 minutes) respectively. The prozrams are
run with Interdata 7/%2. The running times with this compu-
ter is comparatively high in comparison with more advanced

machines.

n

#hen Gaussian elimination method with tull matrix storare 1is
utilized the storame requirement is 100K and the running
time of the computer is about 1/2 hour. If Gassian elimi-
nation hand solver rouitine is used this time the storace
area is reiuced by 2/% to a value of 34K with an execution
time of about 8 minutes. With the usace of cholesky decompo-
sition method handed routine required storase is 31K and the
execution time is 4 minutes. Gaussian eliminaftion band sol-
ver routine when used together with an automatic mesh sene-
ration scheme results in 41K memory space and 6 minutes

of execution time. In each of these cases the compilation
time 1s anproximately seven minutes with Fortran 6 compila-

tion. Thisg fisure is reduced below 1 minute when Fortran 7

compilation is used.



The conductor temverature and the temserature of a node in
the ins:laftion at a radial distance of % cm, are plotted
with respect to time in Fig.4.”2.The figure reveals that

at the beginning hoth temneratures rise steceply and then
as time progresses both of them converge to their steady

state values.

In Fig.4.% a radial temperature distribution at time
t =250 minutes is indicated. Temperature is exponentially

decaying in radial direction as it is expected.

Transient results obtained using all possible schemes
described ahove are exactly the same. Table(4.1) makes a
comparison of both analytical and numerical results for

different radial positions.

‘ Radial distance Numerical ;esglt Analyticgl result
Node no (cm) at t =250min(~C) (“C)
1 0.6 39,04 41.31
10 1.35 35425 37,21 |
19 : 3 31.55 53,17 |
28 5 29.21 30.58 _
30 8 27.23 28.21
46 12 25,71 26.16 |
55 15.10 25.00 25,00

TABLE 4.1 Comparison of numerical
and analytical resnlts

Note that the difference hetween both results come from the
fact that the analytical results represents stecady state
temperature distribution over the resion concerned, while
the numerical results are obtained by a transient analysis,
At the end of 250 minutes largest difference between both
results is only 2°C, At this instant conductor temperature

reaches to 59.0400 and there is still a temperature rise of
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0.01°% per minute. During this time (250 minutes) most of
the heat flux, from the conductor surface, is spent to heat
up the cable insulation. Towards the outer surface of insu-
lation, a larger volume has to be heated. ¥or this reason,
the temperature increase at further radial distances is ver:

¢

slow.

: 2
4,3 Heat analysis of a 35 KV, 95 mm~ cable
The maximum continuous permissible temperature of a cable

determines its operation life and reliability. Overhcating

a cable causes a rapid ageing and deteriorates both electri-
cal and thermal parametric values of its insulation. As it
is mentioned previously, heat generation in a cable, 1is
caused by the heat dissipation in the cable core and the

dielectric losses within the insulation.

In this section, a transient heat analysis is carried ont

. 2 . . .
for a 35 KV Siemens 95 mm~ single core cable which 1s manu-
factired and utilized in Turkey, and the results are discussed

in various aspectse.

4,%2,1 Modelling of the problem
Although the power cables are generally buried at a depth of

about 60 cm in practice, the cable in this analysis in con-
sidered to lie at a depth of 15430 cm, since the .thermal
distribution throughout the soil does not change too much
after such a distance away from the cable. The modelling

of the problem for the thermal analysis is indicated in
Fig.4.4. Assuming symmetry only the half of the region is
considered. The cable cross section and the surrounding
soil are divided into appropriate triangular elements. As
Fig.4.4 clearly reveals that the cable cross section is
divided into elements such that the conductor and insulati-
on circular boundaries are replaced by nolygonal boundaries.

This introduces a small error in the representation of the

1
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PROPERTILS OW THE CABLE

Rated voltage o 35 KV

Rated current : 335 A

Permissibhle temperature : 90°¢C

Dielectric constant of insulation(€) P P03 €

Thermal conductivity of insulation(k) :0.0008 cal.sec_l.cm—l.oc_i
Specific heat capacity of insulation(c): 0.55 cal.grﬁlgoc—l

Density of insulation(y ) : 0.94 gr.cm'5

Conductor resistance 10,188 ohm.km

Sheath resistance :1.116 ohm.km"l

Temperature coefficient(9) :0.003%93 0n=1

Cgble radius : 2.05 em

Core insulation thickness : 1.25 cm

Sheath insulation thickness : 0.25 cm

Conductor radius : 0.55 cm

PROPERTIES OF SOIL AND AIR

Thermal conductivity of soil(k) :0.00058 cal.sec_l.cmf1 Oc‘l|
Specific heat capacity of soil(c) : 0.20 cal.g:c'_l.oc”1 j
Density of soil(y ) : 1.20 g;r.cm~5 |

Heat transfer coefficient for still air:0.000125 cal.cm—g.sec"l.oc°l

TABLE- .4,2 Properties of 35 KV Siemens 95 mm2 single
core cable, soil and air.
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4,%,2 Program and the discussion of resuvlts

Twanaient thermal behaviour of the cable and the environment

is comvuted hy the develoned finite element program for diffe-
rent load currents of 200, 250, 300, 350, 400 A's. The ohmic
reaistance of the cable conductor and the dielectric loss thro-
ughout the main insnlation is considered to be temperature
indesendent fTor each loading condition. The data for the resis-
tance of the conductor, heat generation in cable core and the
heat =meneration in the main insulation for different load
currents are calculated in accordance with section 2.1.1 and
1isted in Table(4.3). In calculating the conductor resistance

a reasonable temperature value (indicated in paranthesis in
Tahle 4,%,) is chosen and the resistance found in this way

is taken to be constant throughout the transient period.

Load current Conductor Heat generation Heat generation
resistance in core in dielectric

(4) lO—Bohm/cm ( cal/sec.cm5 ) ( cal/sec.cm3 )
200 0.199(35°C) 0.020 2x1077
250 0.206(45°C) 0.032 L
300 0.212(52.5°C) 0.048 "
350 0.221(65°C) 0.068 "
1400 0.232(80°¢C) 0.093 "

TARLE 4.3 Data for conductor resistance
and heat sources.

Heat reneration in the dielectric is comparatively low at this
voltage level as revealed by the Table(4.3).50 it can be said
that the electrical stress on the insulation causes almost a
necligible effect on the heating of the cable. This result,

of course, arise from the fact that the polyethylene insula-
fion has a low dielectric constant compared with other insu-

lating materials.
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Initially, temperatures of all nodes are taken as 25000 A
small time increment of 15 seconds is used at the heminning
and after certain periods larger time increments of 30 and
60 seconds are applied. These larger time increments taken
at the further steps of the analysis provides a considerab-
le saving in computer time coming Crom the number of itoera-
tions. For each of the load current transient annalysils

15 realised for 6 hours and the transient behaviour of

both the conductor and the cable surface in this time in-

terval are plotted in from Pig.4.5. to 4.9,

It can be observed that the conductor temperatures rise
sharply at the initial times of the transient analysis
(first 15-20 minutes) and thercafter the rate of rise of
the temperature decreases as time progresses, consequently
the temperature may be assummed to attain its steady state
value as more time elapses. Indeed, for each case, the
temperature increase at the end of 6 hour is comparatively
low. For example for 200A load current, in the first 20
minutes the temperature rise of O.2OC/minute is observed,
However the temperature rise within the 6th hour is just
0.007°C/minute. The saome figures obtained for 400A curront

are 9.5°C/minute and 0.035°C/minute respectively.

Yhen cable is loaded with 400A current, at the end of

© hour, cable core ftemperature reaches to 7800 as shown

in Fig.4.9. Since maximum pervrmissible temperature value

for polyhethylene insulation is given as 9000 at steady
state operating conditions it can be concluded that it

will be dangerous for the insulation to load the cable flor
current values higher than 400A. This current value is
higher than the 335A current value, which is given by
Siemens company as rated current for 95 mm power cables(18)
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200 250 300 350 400 T (amp)

FIGURE 4.10 Steady state cable core temperature vs. current.

Fiz.4.10 is a plot of steady stal: core temperatures obtaincd
for different load currents. This plot rcveals that the stoads
state core temperatures vary in a parabolic nature with diffe-
rent core currents. This result is cxpectaed because

fact that the main source of heat generation is I
in the conductor and the steady state temperatures o
conductor chanse in a second order provortion with the lozd

current.

Temperature distributions (at the end of 6 hour) in the canble
and the environmen®t are vlotted in Fig.4.11 and 4.12 for
250A and 350A load currents. Temperature variation with the

distance from the planc of symmetry for 15.3 cm depth below
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soil surface is plotted. From Fig.4.1l1 it can be obhscrved that

he highest temperature is inside the core computed as 43.5 O,
and the sheath and cables surface temperatures ars 57.500 and

56.800 respectively. As we go further away from the

plane temperature in the surrounding medium decreases cxpo-

. ~cO
nentially and converges nearly to 257°C.

The same analysis 1is previously done by finite difference

method and also experimental results are available(19).

A comparison of all these results reveals that there are

no sonnding differences between each of them. In some loading
conditions there appears some little differences in tho or-
der of a few degrees which might arise from the fact that the
initial conditions are selected as 2500 in finite elenent
program where as in experimental work this value differs Tor
each case depending upon the amhient conditions. Another
possible source of error with the finite eleument oprosram co-
mes from the consideration that the conductor resistance is

taken as a temperat ire independent element.

Finally, considerin Fig.4.10 again, it can be sald that

the cable can b»e safely loaded up to 350A which is above

its rated value of 335A. Here, taking into account the given
maximum permissible temperature for polyethylene insnlation
for continuous opcration, a safety interval of temperature

is considered.

4,4 lleat analvsis of a three phasse 275KV cable
The temperature transients in a 275KV oil/paper insnlated

threce buried power cable system is calculatcd when the load

current has a specified variation with time. The problem
and all the relevant data are taken from H.Flataho(20).
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tob.1 Mod=lling

The three cables are placed horizouvtally at 70 cm depth,
with 20 cm centerspace, as shown in Fig.4.1%. The cunle
cross section and the surrounding soil are divided into
triangular elemrents. Total number of elements and nodal
points are 160 and 98 respectively. Assuming symmetry,
only half of the region 1is divided into elements as shown

in Tig.4.13.

Boundary conditions are taken as follows. At the soil
surface a convective houndary condition is considered.
There are 8 elements next to the soil surface, for which
convective boundéry condition is applied at their sides.
A constant heat [lux boundary condition is applied for each
of the cable boundary, evolving from the assumption that so-
me amount of power loss takes place in the cable aluminium
shield. This shield loss for middle cable is set equal 1o
25 percent of the power loss in the conductor. The shield
loss is taken 7 vpercent of the conductor loss for the outer
cables. There are 12 each such element sides constituting
the cable shield boundaries, at which this type of houn-
dary condition is considered. The other boundary surfaces
are considered non conducting, i.e the normal gradient

"

T .
—— 1s equal to zero at these boundary surfaces.

on

3

lain heat generation occurs in the cable conductor and in
. . 2 . .

the cable insulation. IR losses and dielectric losses

(3.5 W/m for each phase) are calculated as stated in chap-

ter II.

The data associated with the cable and the surrounding so-
il is listed in Table(4.4)
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Rated voltage

Material of the insulation
Material of cable conductor
Dielectric constant of insulation
Thermal conductivity of insulation
Heat capacity of insulation
Thermal conductivity of conductor
Heat capacity of conductor
Cpnductor radius

Thickness of insulation

Thickness of aluminium shield
Overall diameter of the cable

The dielectric loss in each phase

Thermal conductivity of backfill material:

Heat capacity of hackfill material
Thermal conductivity of soil

Heat cdpacity of soil

Heat transfer coefficient

The air temperature

275KV
0il/paper
copper
55

0.2 W/n°C

1.6x10° J/m’ ©

202 W/mOC

3. 46x10° J/m°

1l cm

2 cm

0.2 cm

6.4 cm

3.5 W/m

0.8 w/n°C
2x10° 3/m2%C
1 W/n°C

zZ
2x10° J/n’°¢

TABLE 4,4 Data for the 275KV cable and the

environnent.
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4.,4,2 Results and discussions

Temperature transients of the threc phase cable is obtained
when the load current has a prescribed variation with time

as indicated in Fig.4.14.

Al
600 4 565 A
200 +
50 120 180 240 Time (minutes)

FIGURE 4.4 Load current

The temperature distribution at time t=0 is the steady stute
temperature distribution corresponding to a load currentof
400A. Bteady state conditions are assumed to he attained after
running the transient program for a sufficient time with the
cable is loaded with 400A current. At time t=0, the load
current is increased to 565A, which means that the power loss
in each conductor doubles. Ior the period when the load cipr-
rent in zero, the system voltage is a2lso assumed to he
switched off, implying that both sources of heat seneration,
namely, power losses and dielectric losses are zero. After
time t=180 minutes the cable is again loaded with 4004
current. Fig.’hl5 shows the temperature variation at various
parts of the resion when the cyclic load represented by

Fig.#4.14 is applied.
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In ¥ig.4.16 the temperature varistion as a function of distance
from the symmetry plans at different depths below soil sur-

face is plotted (at time t=120 minutes)

A close examination of Fig.4.1l5 reveals that the hishest
temperature is obtained in the middle conductor. This is due
to the fact t-a* it is stuated in the middle of btoth conduc-~
tors and hence its heating is contributed also by these si-
de conductors. Another reason is that the middle cable has
comparatively higher shield losses (25 % of power loss).

On the other hand the temperature variation of the midlile
shield and the soil 20 cm. above center of middle cable are
very small. This. is already expected due to the high thermal

capacities of the insulation and the surrounding soil.

Fig.4.16 reveals that as we go away from the plane of symuetry
the temperature at different denths below soil surface
decreases to lower values finally tendiag to converze am-
hient temperature. The soil surface has a temperature which
varies hetween 2 and BOC above the air tempersture. Since the
value of the.5011 surface heat transfer coefficient is

5 W/m2 OC, thug 10-15 W/mg disaipates through the soil sur-

face over the cables.
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CHAPT=R V
CONCLJSIONS

5.1 Concluding remarks on finite element approuach

The advent of high speed digital computers and the developme
of numerical methods such as finite differcence wmethod and
finite element method provides a great advantase in solving
some encineering problems such as thermal tra nsient probloems
for which analytical solutions can only be obtaincd for re-
latively simple weometries. In such methods, principle of
superposition is aponlied for the fields due to heat sources
and heat sinks, the soil thermal conductivity and thermod
capacity are assumed to be constants, soll surface is assu-
med to e an isothermal(Kennelly hypothesis),radial symmebry
for the cable model is to he considerek(2l). The electrical
resistivity of the conductor 1s constant and equal to the
valine at stealy state conductor temperature. The use of
numerical methods stch as finite element mebhod with an
efficient programming technique allows a progressive remo-

val of some restrictions encountercd in analytical methods.,

One of the higmest headaches in applying the finite diffe-
rence mcethod occurs when either the arrangement of the no-
des or the zeometry is irregular. Finite element method
simplifies many of these problems. Compared to the finite
difference method the finite element method can more easily
handle complicated boundary shapes and discontinuities in
material properties. For example thermal analysis of a 3
phase cahle can easily he achieved by finite =2lement method,
whereas the adoption of finite difference method is morve
difficult in that case. In the finite differeace method the
main concept is the approximation of derivatives by differcn-
ces. In finite element method, however, apnroximation of
ntegral derived in conjuction with the knowledge of calculus

of variation.
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Finite elanent solution aprroaches ﬁo Lhe exact solation as
the number of aodal points is increcased, or in olher words
as the triangles with smaller dimensions are .soed, for
which theoretical basis is introluced in the previoss

chapters.

[
4
§

In finite elemant formnlation triangles arvs chosen
ding the re~ion into elements, since zich clamzabts aree
doing a much hetter joh of aponroxiasting the circular re-

gions (or bHoundaries).

Another important point in Tinlte elemont formulation itz the

requiremnent for the compubter storaie. One >0 thne ~izvest

,__4

headache encountered in finite elenent method is tro storaze
problen and tis3 can easily be overcome by using the symmet-
ical and »anded nabture of the systam matrices. For ianstance
in three cables buried in soil there are 98 nodal points
meaning that there will be 98 equations to solve. The nodal
points have been numbered so that the maximum difference
hetween the three node identifiers i, j and X is 16. This
means that there will bhe at most 16 diagonal lines above
the main diazonal. Since the matrix 1s symmebtrical, we will
have to provide a storage for only 17x98=1666 aatrix comnpo-

nents rather than 93x98=9604 matrix componznts 1f the

entire matrix was stored. The storaze reculrement for solving
finite element equabtions is dominated by the coafficiaznt

)

matrix. The full =wstrix reguires n” coefficiens to bhe storad,
hut this numbar 1s reduced to bn 1f the handed foryw desscrihac

in nrevious chapters is used.

As with any numerical method employing a di~ital conputoer,
a sreat deal of care must be taken to cnsure that Lhe prog-
ram used has heen throughly tested and that the data are

supplied to it in the correct form. Especially the diffi-

culty arises in the preparation of the finite mesh data.



Instead 1t is hetter to arrange finite clement progruns
furnishing the mesh data actomatically by itscll. Althoush
this might not be so easy lfor complicated geomnelrics, whon
it is managed the computer would need to be given very Li-
nited number of data and in this way one possinle sonrce
of error in data preparation will he overcome. Such an
antomatic mesh seneralion zcheme is developed for somicir-

cular regions in the single core simple cable problom.

Another advantage taken by the use of finite element metnod

is obtained for calculating the thermal transients in surled
three phase cable when the load current is a specifisd function
of time, which of course would be a difficult Jjob 1f any one

of the analytical methods adopted.

5,2 Temperature transients in power cables

By the aid of a finite element program developed on the lan-
guage fortran IV and run on Interdat ?/32 in the computer
center of METU Gaziantep Campus, temperabure transients in
huried power cables are analysed. The analysis is made in

two dimensions cartesian coordinates. First a simple cable
problem for which steady state results are analytically
available is analysed. It has been observed that at the end
of 250 minutes, the transient results obtalned by the deve-
loped program reach to almost steady state values. In equati-
on solving both gaussian elimination and chiolesky decomposi-
tion methods are tried and compared with each other. At the
same time for both equation solving schemes rectansular array
storace and full storage modes are utilised and the results
are compared. It is seen that cholesky decomposition scnoeme
emploving the banded nature of the system matrices gives
more efficient results in respcct to the storage requirement

and computer time.

A 35KV single phase Siemens Cable which is manufactured in



Turkey is analysed for different load currents and it i3
found that for load currents above 400A maximum permissibl
temperature of the polvethylene insulation (jO C) has been
passed over. Another fact with this cable is that at thig
voltage level the main heat gsencration is due to the core
losses. Dielectric losses at this voltage level has no

significant role in heat generation.

Pinally a 3 phase 275KV cable is analysed thermally under
varying load conditions. At this voltage level heat genera-
tion due to the oil/paper insulation has a considerabls

effect on overall heating of the cable. In this core somo
anount of shield losses are introduced in the cable ~leminiam
shield and its influence in the heating of the cable is inclu-
ded in addition Lo the power loss and dielectric losses

5% Future work
The most important part of the Cinite element sol . sion to a

problem is the consideration for the storaze recuirement and
computer time. Especially for very complicabed zcometries
which results large number of algebraic equations to be
solved present equation solving techniques might become
ridiculous even if with highly developed digital computers.
For most of the problems the system nmatrices are very sparse
and even inside the band the zero coefficients very often
far outnumber the non zero coefficients. Therefore more
advanced techniques which takes advantace of this pronerty
should be develoned and used especially for encineering orob-

lems of rather complex geometries.
t 1



APPENDIX A
VARIATIONAL FORMULATION

The use of a variational principle provides a powerful tool
in formulating a finite element anulysis. The general variabi-
onal approach to the solution of a finite clecment probloem is
to seek a stationary value (often a ninimom) for a guantity
}(which is defined by an appropriate integration of the
unknowns over the solution domain. Such a quantity )(is
usually referred to as a ' functional '. When such a prin-
ciple is used in a finite element analysis, the variation

of )(is carried out with respect to the values of the
unknowns at the nodes of the mesh. To illustrate, necessary
and sufficient conditions for the functional,

2 2 3T 1.2
x =4 {’]z k[ (%} + (g_;_) 1-(q-C 37)Thdxdy-£ Q T d s + [« (5 T7-T,T)ds
(A1)

will be investigated, wherc last two integrals are taken along
the boundary S enclosing the domain D, and where, the function
T(x,y) is réquired to be continuous with piecewise continuous
first derivatives in D+3.Fig.A.l illustrates bthe solution do-
main with one part of the domain houndary.

by
'S4

77771?: ds

dy

v x
¥ x

X

[ Py
e L

dx

FIGURE A.1 A two dimensional solution domain with some part of
the domain boundary.
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The necessary condition Tor )Lto be ztabionary is Lhal the

variation of X, SX’ vanliaies,

_ [x Tar o, 22 aT M .
/(s.\ 5 Sd(TST—TaST)dS (4.7)

Hoting that
9T« _ 3
(%)= =3x8,
BT D /e
= ™.
5 (2D=-2(sm)
allows eqg.(A.2) .to be written as
d 3T 2 .
1 2 (gT)4 2= 1 a _c 9 Tygu,
8& /< 3% 5% 8T)+ 37 2y Sfl)]uD/(l 'a» 8idD
8'l‘dx /“(T l‘ )8TAS (A.3)

Green's theorem can he written in the form;

2 2
. ) 9 u
(2L 2v, 22 .37 >dD—~/v<“ 254D
4“ X - 2y 3y D ax°  2y°
AAN - AL R :
/SV ( 3‘*’ "C 33’”,}’)"1‘" (A'4’)

vhere n,, n,are the x, y componants of the unlt outward

normal to 3, denoted by n. The functions u=u(x,y) and
v=v(x,y) arc required to be continuo:s in D+3. The first
and second derivatives of the same functions are required

to be piecewise continuous(l0).

Considzsring the T and 8T and their first derivalblves are
continuous green's identity(A.4) can be applied into(A.3)

as follows-

EX= - kV T8TAD —/{(q G .at)S"dD U!——— 8TdS
/s a5 +/!0((T-—Ta)8'l‘d8 (A.5)
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o p ¥
VCT - l.2‘1" - p
ox dy
and
9T __ 9T n o+ T n
an o9x X 9y ¥

Since the domain and surface integral in cq.(A.5) are

independent, it follows that

2 A~ 3T ) amana
and
oT Mo
£ =5+ A(T-T4)-Q) BTdS=0 (A.7)

from the arbitrariness of 8T in D, it follows that equation
? i

A.S) and (A.7) takes the Tollowing forms
O b

k VZT + q=C _'%2 in D (A.8)

)-%: 0 on S (A.9)

EqQ.(A.8) is the governing parabolic differential equation
for a trapsient heat conduction nroblem. & (T-Ta) and ¢ in
eq.(A.Q) are the houndary conditions specified on the

woundary of the solution domain.

Alternatively il T(x,y) is prescribed as T=g on that part

of tre Dboundary denoted By, SO that,
T=g on Sl

and not on the renaining part, denoted 5, where,
N -

S=Sl+52
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Than the variations of T must vanish on Sl; that is
87'=0 on Sl

This time eq.(A.9) being valid on 82

Therefore in order to solve a second order partial dilfferen-
tial ecuation representing any physical problem (in this
case, transient heat conduction) with specified boundary
conditions, one must Tind a trial function T(x,y) which,
when substituted, makes the integrsl equation (A.1)

stationary, and this function will provide the solution.

Por many physical problems, variational principles have Teen
develoved giving rise to a functional whose stationary con-
ditions vield the solution Lo the problem. But for problemns
in which exact variational forms can not be [found, the
Galerkin method or a similar rcesidual method can be util:

i
to arrive at the integral ecuations of the speciflic problom,



APPENDIX B
HIGHER ORDER SHAPE FUNCTIONS DERIVED
FROM AREA COORDINATES

4ith the heln of area coordinates, 1t is nossivle Lo const-

ruct shape functions for diffevent kinds of elements. Table(=.1)
cives a listing of soch functions for linecar, guadratic and

cubic triancsular elcments.

Family of triangular clenents Shape functions in tarmne of arsa

coordinatos

3 Nl—wl
» N 2:\;\/ 2

Linear N, =w
5775
Corner nodes
N —(fw l)wl
2_(2w l)w2
\__2\'_,
N§—< Wy l)w5
Midside nodes
N4:4wl w2
=Hw W

Hg=fpWy

N6: ¥‘W~, l

Quadratic

Corn*r nodes
- - =20
N (5w 1) \pwl Jviq

1- 2
Nyz % <5W -1) (5w,)—2)w9
1
NB: 5 <5W7 1) ()wﬁ_Z)WB

Ede nodes
W] W YWJ -1
2< ') )

Cubic
W w2(3w9—1)

=
|

Ne= —5— W w5()wq 1)
N7— _%— w2W5<)w5—l>
Ng= M%— w3wl(5wa-l)
jg: g w5wl(5wl—l)
Inte n;l node

== /¥ ¥a¥s
TABLE.B.1 Iiigher order shape functions
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APPENDIX C
EXACT SOLUTION OF STEADY STATE TEMPERATURE
DISTRIBUTION IN INSULATED ELECTRIC CABLE

Aséume a cross section of an electric canle as shown in
Fig.C.1l. The temperature change is desighated by dl'. Then
the differential rate of heat flow for L=1(one unit of
length of cable) through the cylindirical concentric sur-

faces may be written(22),

dg = - kA (dT/dr)= -krdf(1l)(d1/dr) (C.1)

a
el
\ r
\1L/
_insulation ~_cable __insulation

FIGURE C.1 Cross section of an insulated
power cable.
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The minus 3ign aeaning ©hat with increasc of r fhe Lamneratnre

3

O

. . . . . .
decrensas ( direchion of 15 from the warmer rezion

O
D

-
-

in the core of cable to cooler

Integrating equation(C.1l) firstwith respect Lo @ from g=0

tc =21, btai
o & , obtain T

1 q
dr m p
" - /O dg = -~ dfT dg

0]

o} -—%—E = - 2T &dT

N
Q
.
1AW

N

then integrate eq.(C.2) with respect to r from v Lo r,=b =nd
T from T(r) to T(b)
' T(»)

hH
q/-—%—rl=-zrrk 4T
- ()

q In(b/r)=2wk { T(r)-1(n))

caliing [ is the heat Clux genorated by cable core

T(r) = T(b)+ -g- fo (1nb/r)

mives tohe temoerotare ol any radial position r.
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