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ABSTRACT
SWITCHING TRANSIENTS

IN

UNDERGROUND POWER CABLES

Sahin,H.Nebi
M.S. in Electrical Engineering

Supervisor : Asst.Prof.Dr.Ugur UNVER

1986

In this thesis, transient overvoltages due to cir -
cult breaker operations in underground power cables are
investigated, Special attention is given to the sequen -~
tial switching transients in crosg- bonded cables,

Solution method combined the use of the modified
Fourier ftransform and the modal analysis.

The method of solution takes into account frequency
dependence of series impedance and shunt admittance
parameters, The effects of various system parameters, such
as, cable length, source impedance, shunt compensation
and pole closure angles on the transient performance of

the underground cable systems are investigated,

Key Words : Switching transient, modified Fourier

transform, Modal analysis, Cross - bonded cable
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OZET

YERALTI ENERJI KABLOLARINDA MEYDANA GELEN

MANEVRA ASIRI GERILIMLERI

SAHIN, H.Nebi
Yiksek Lisans Tezi, Elektrik Mihendisligi Bolimi

Tez Yoneticisi : Yrd.Dog.Dr. Ugur UNVER

1986

Bu tezde, yeralti enerji kablolaraina bir ugtan enerji
verildigi sirada meydana gelen asiri gerilimler incelenmig-
tir. Ozellikle kesici kutuplarinin farkli zamanlarda ka-
panmasi sonucu, kilify ¢gapraz bagli kablolarda meydana ge-
len agiri gerilimler lizerinde durulmustur,

Cozlm metodu olarak tadil edilmis Fourier transform
metodu modal analiz ile birlikte kullanilmistir,

Cozim metodu, sistemin frekansa bagli seri empedans
ve gont admitans parametrelerini gdzonine almaktadir. Kab-
lo wzwnlugu, kaynak empedansi, kompanzasyon reaktdrleri
ve kapama anindakl faz agisi gibi degigik sistem paramet-
relerinin kabloda meydana gelen agirl gerilimi nasil etki~-

ledigi incelenmigtir.,

Anahtar Kelimeler : Manevra agiri gerilimi, tadil edilmis
Fourier transform, Modal analiz,

Capraz-bagli kablo
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HMOMENCLATURE

Two-port admittance matrix parablsters

Source voltage
Supply frequency

undamental frequency which is related to

the observation time

Conductance of sheath earthing resistor,
G L

T
&

Column matrix of the currents at position i

i.e.

Sending-end and receiving-end current column
matrices, respectively. (Double suffix
notation is used to denote individual phases)

Instantaneous current

Source inductance

Length of a transmission system
Cross-bonded cable major section length

Meximum number of the odd frequency

harmonics

The matrix product. Y

Transpose of P

Voltage eigenvector matrix

Cable sheath earthing-resistors
Observation timeror timeAintervai
time

Unit matrix

Init step function

Peak voltace

Column matrix of the phase voltapes at
position i.(Double suffix notation is wused

to denote individual phases) .

X



u

o)

¢

ve

.o

.o

ve

s

o

.

ve

.

.o

Intermediate voltage column matrix

Sending-end and receiving-end voltaze column
matrices, respectively

llodal voltage vector

Instantaneous voltage

Instantaneous source voltage

Source reactance

Leceiving-end admittance matrix

Sending-end admittance matrix

Source admittance matrix

Source admittance

Series impedance and shunt admittance matrices

per unit length

Characteristic iwmpedance and admittance

matrices, respectively

Source impedance

Shift constant or attenuation constant
Bigenvalue matrix of 7Y 1
Diagonal propagation constant matrix H K:=/\2
Permittivity

Permittivity of free space

Pruncation frequency

Permeability

Fermeability of free space

Propagation coefficient matrix per unit
length ;Y=p ">

Resistivity
Angular displacement of supply valtage

Sigma factor

Xi
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Complex angular frequency
fundamental angular frequency

Supply angular frequency ; W
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1.1 General

For the reliable operation of power system networks
the maximum voltages appeared within the system have %o

e determined. If the calculations and dsterminations of

q

the maxinum transient overvoltazges can be done aft design

i

stage, precautions can be taxen either to avoid the over-
voltages or to minimize their effects. The systen
insulation level is also chosen according to the maximum
overvoltages appearing within the system. Insulation
level should be sufficiently high to withstand to the
maximun overvoltages developed in the system. Basides
that, thsre are strong econonmic reasons to keep the
insulation level as low ag possible,

If the power system is subjected to sudden distur-
bances, transient overvoltages are induced in the con -
ductors. OBudden changes in voltage and current may be

the result of a lightning stroke, a fault or switching

of a part of the system., Effect of lightning on magnitude
of overvolbages decreases as the operating voltage level
increases, However, switching overvoltages are directly
related %o the system voltages. As the system voltage

increases, switching overvoltage also increases.
Although a number of methods for calculating
switching transients exist, some are more accurate than

the others. The traditional method was the use of tran-

sient network analyser (TNA) type of analog coumputer.
1
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‘This method provides facilities for forming a scale model
of the system being studied, using lumped values of
inductance, capacitance and resistance. The other method
called by Bewley Lattice diagram method is a form of the
travelling wave methods. The voltage existing at any
point on the line at time + may be obtained by using

the travelling waves which have arrived at the point prior
to time t, using reflection and refraction coefficients

in the lattice diagram method [ l].

One of the most important factor in the choice of
calculation method is the frequency dependence of the
power system parameters. Waen a switching operation
takes place, the elements of a power system are subjected
to a wide range of frequencies from 50 Hz +to the region
of 100 kHz [141, Over such a wide range, the values of
system parameters are not constant, but vary with frequency.
Therefore the calculation method should be capable of
representing both lumped and distributed parameters,

The Fourier transform method overcomes the difficulties
by deriving the time response from a transformation of
frequency spectrum of;;he network since calculations are
carried out in frequency domain in this method. This permits
the direct computation over any time interval for the points
of interest on the network.

The spreading of urban areas, and the increasing power
demand within +them lead to the use of relatively long
cable circuits operating at high veltage levels., Under
steady - state operating conditions, currents are induced
in underground cable sheaths. In order to reduce the induced
currents, sheaths are transposed at some points throughout

the cable, Discontinuities of sheaths result in sheath

2



overvoltages., Therefore both the core insulation and the
sheath insulation must be capable of withstanding

overvoltages induced in the core and sheath,

1.2 Review of The Previous Studies

Bickford and Doepel LZAJ presented two methods for
the calculation of switching transients. One method based
on a lumped parameter representation of the system with
the use of (TNA) type of analog computer and the second one
based on the latticq diagram solution of the transmission
line wave equations,

Steady state analysis of cable systems were carried
out by Adamson, Taha and Wedepohl [3 ]in detail. In their
study, sheath voltages and losses in both crossbonded and
solidly bonded systems were calculated at power frequencies.

Wedspohl and Wilcox [4} developed a mathematical
model suitable for the analysis of fravelling wave pheno-
mana in underground power transmission systems. They took
into account frequency dependent characteristics of cable
parameters, using modified Fourier transform method in
conjunction with the theory of natural modes,

Wadepohl and Indulkar [5 ]presented a mathematical
model of a single major section of a non - homogeneous
crossbonded cable. They used the Fourier transform method
and obtained the transient response at any point along a
short crossbonded system. Computation time in this method
was found to be directly proportional to the number of major
sections in the system. Therefore this method was suggested
to be not suitable for long crossbonded cable systems.

Dangl:6] developed a model to represent a long

crossbonded cable, He extended the rotation matrix method

3



presented by Indulkar [7A] + In Dang's model, each minor
section was considered to be consisting of lumped param-
eters, so that, any major section would be approximated

by an equivalent homogeneous section. Hence, the problem
of the cascading a large number of such ma.jor sections

was found to be independent of the number of ma jor sections
involved. ,

Wilcox and Lawler [8M]presented a realistic mathemat-~
ical model of & crossbonded cable system teking into account
skin effect in the conductors and metallic sheaths and
mutual coupling between individual cables. The method may
be applied both to the long andyshort cable systems.

~ Wedepohl and Indulkar [ 9J developed a method for
computation of transient overvoltages in long crossbonded
cable systems utilizing Fourier Transform techniques, In
this method, by the application of the chain matrix theory
to the crossbonded cable systems, the amount of computa-
tional labor becomes independent of the number of major
sections. The component sub - matrices of the chain
matrix are obtained from the admittance sub - matrices.

Nagaoka and Ametani [10] calculated the transient
overvoltages on a crossbonded cable and compared the cal-
culated results with the field test results. They also
presented accurate and approximate methods of calculating
transients on a crossbonded cable. In their study, the
approximate method of calculation shows satisfactory
results with much smaller computation time if the number

of major sections is large.



1.3 Scope of the Present Work

As far as the switching transient studies are con -
cerned, previous studies are mainly devoted to single plmse
energisation or three phase simultaneous energisation
of cable systems., However, in practice, the exact
simultaneous energisation, i.e. all the breaker poles
closing simuwltaneously is impossible due to the time
delays in closing or prearcing conditions.

The studies related to sequential switching
overvoltages in underground power cables using modified
Fourier transform method are not mentioned in the litera-
ture,

In the present work, switching transients in under-
ground power cables are studied using the modified
Fourier transfommethod in conjunction with the theory
of natural modes. The method has been verified to be quite
suitable for the solution of sequential switching trans -
ients in underground power cables, Effects of cable length,
source impedance, shunt compensation and pole closure

angles on the switching overvoltages are studied,



CHAPTER 2

STEADY STATE ANALYSIS OF CABLE SYSTEMS

In order to study transient overvoltages by the
modified Fourier transform method, the steady state solu-
tions of volvages and currents are required.

Th= steady state solution described in the follow-
ing sections is based on the modal analysis. A complete
steady state solution may be obtained from the nodal

matrix equations by making use of the boundary conditions.

2.1 lMulticonductor Equations

The transmission equations for a homogeneous

multiconductor system are generally given in the form;

Dvix,t)
=z (x). i(x,t) (2.1 )
X
Oilx,t)
=y (x). v(x,t) (2.2 )
PaPs

The solutions of the above equations give the voltage
vector v(x,t) and the current.vector i(x,t) at any posi-
tion x at time t., z(x) and y(x) are the series inmpedance
and shunt admittance matrices per unit length, respect -
ively.

Transforming equations (2,1 ) and ( 2.,2) into

frequency domain gives

= -7 I (2.3 )




df

=-1Y (2, 4
dx

where V and [ are vectors of dimension n, representing
the voltages and currents at a distance x along the cable
system containing n metallic conductors. Z and Y are
system series impedance and shunt admittance matrices of
dimensions nxn.

Differentian of equations (2,3 ) and ( 2.4) with

regpect to x yields

XY

d-y

=217 (2.5 )
dx2
a°1

= Y371 (2.6 )
2
dx

So, system voltage and current steady state equations are

expressed as

2

A%y
= P ’Y ( 2:'7)
dx2
4’1
? ~J
dx™
where P=2Y ( 2.9)



It is difficult to solve the multiphase problems
because of the second order rates of change of voltage
and current in each phase.

The modal method is based on a linear transformation
of voltage and subsequent manipulations, so that second
order differential relations only involve the diagonal
matrices. Hence the solutions of the differential
equations can easily be carried out.

By means of a linear transformation,the actual

voltage nmatrix V is transformed to modal voltage vector

y(m)

~

g o o pm)
=97 (2.11)

Substituting equation (2,11)in equation (2.7 ) yields

2 (m)
d= ¥ _p o~ y(m)
QP oy | (2.12)
X
rearranging
2 (m)
d ‘Y = (:‘—l ) (m)
& P QY (2.13)
a 2
X

If the transformation matrix (§) is chosen in such a way

that Q_l P Q is a diagonal matrix, i.e,
ctra=A (2.14)

where



>
o
O

o
>’
hS]

. (2.15)

1)
v e v

|nxn

and Ny, Ny, ..........7\n are eigenvalues of the matrix
P.

Transforming the matrix P into a diagonal form is a
well known process in matrix theory. The transformation
matrix ¢ is formed from the eigenvectors corresponding
to each eigenvalue of the characteristic equation of

matrix P, The dimension of the transformation matrix

Q is (nxn) and it is nonsingular.

Equation (2.13) may be written in matrix form as;

2 v, () ] N, 0 .eee. o [y (™)
b3 % ‘
il R I R 2 [ e
d12 . - : - .
94 -( ) : . :
m
Vn | 0 7\n VHCm)J

where Yn(m) is the nth conductor modal voltage.



2
4 (2e17)
. (m B : .
PR SR i<dy..o.n
Defining
1/2
Xl ='>\l =O(+ Jﬂ

th

where 7\i : the 1" element of the diagonal matrix

‘Xi : the propagation constant for the it(l mode
. . .th
oA : the attenuation constant of the i mode

/3 : the velocity factor of the itn mode

The velocity, of the 1 mode, v = 2Tf /p
The solution of equation (2,17 ) for the 3 th

element has the form;

7, G0 = e (<YW ) Ky ¢ e (Y,0ks  (2.18)

where x is the distance measured from sending—end,kl and
kg are arbitrary scalar constants.

Since there are n values for7\i, there exist n
modes and the total solution includes n such equations

which may be written in matrix form as
y<m) = exp (-%x) K, +exp (¥x) K, (2+19)

where Ki and K2 are arbitrary column matrices of order n
and exp (F ¥x) are diagonal matrices.
To turn back to the phase quantities, equation (2,12

is used again, in matrix notation

10



1

V(x) = qexp (=¥x) Q77 {, +Q exp (XX)Q{,"I'\[P (2,20

~

where Y. and ¥ are column matrices of incident and

reflected waves. If we define a matrix NU, such as

W=y ¥ 51 (2.21)

then, the equation (2,20) can be written in the following

formy
v (%) = exp (-Yx) U, + exp (YWx) T (2.22)

The solution of the system steady state currents can
be readily obtained from equation (2.22) by using the

system first order differential equation,

- dv
gt (2.23)
dx
So that, matrix notation of the system steady state
currents takes the form j
D=, [ expby) Up - exe (W) 4] (2.24)
: -1
where Y = Z27°Y (2.25)

YO is identified as characteristic admittance nma -

trix of the transmission system.

Incident and reflected wave column matrices, Y, and
V. maybe eliminated from the equations (2,22 ) and
{2,24) by applying boundary conditions.

11



2.2 Application of Boundary Conditions

The relationship between the sending and receiving
ends of a two-port network can be derived from equations
(2,22) and (2.24). Vg and gs are sending-end voltage
and current vectors, respectively. Substituting ys and
I in equations (2.22) and (2.24) at x = O, v, and yr

~

may be found as

1 -1
3 = - i
itz ( Is + 1o s )
(2.26))
; 1 =1
J = = (V -
Ir 2 <Js Io gs )
where Y;l = Zo’ characteristic impedance.

Substitution of equation (2,26) into equations

(2,22) and (2,24) gives,

A — 7 T RY ~ _]_-_ - -7
Te =5 (IS + Dy $s> exp (=Wx) + 3 <£s Z, ES) exp ny)
(2."27)
o1 ; iy L 7 - X
) (Yogs t ‘Es) exp <_\’b'{> 2 ( YO "\[S AI»S> exp CW\Q

If we substituté nyperbolic functions in place of

exponential functions, the equations (2.27) give

li

¥ coth (Yx) Vo - Y cosech (Yx) V.
(2.28)

= - Y cosech (WY x) Vg + T, coth <V}K>,yx

If the receiving-end . voltages and currents are

concerned the system equations becomne

12



U
=
1
o
<<

2

= ‘ (2.29)

!
=
=

2]
=]

where = ¥ coth (V1)

0

A

B = Y cosech (Y1)
I §

Y o= T G¥R

Ty and Y are characteristic admittance and propagation
coefficient matrices, respectively.

Equation (2.29) yields a complete steady state
solution for the transmission system under consideration
in terms of the underground cable basic constants.

The hypernbolic functions used in the two-pert
equation (2.29) are formulated in terms of exponentials
bo avoid overflow,

The orders of A and B matrices depend on the orders
of series impedance matrix 7, and shunt admittance

matrix Y of the transmission systemn.

Characteristic admittance matrix YO is expressed
as
\ v L Ay l~=1
IO = fy/ =Y Q¥ ]
(2.30)
Y Z2
where V=P =(zY)
¥ is a diagonal matrix, formed by the eigenvalues of
Y.

Substituting equation (2,30) into the nodal para-

meters in the equation (2,29) gives

13



A=Y coth (Y1) - %) coth (¥1). ¢t
(2.31)

B = Y_ cosech (Y1) - yu¥~! cosech(¥1). g1

Equation (2.31) is easily used to determine nodal
parameters in the computer study.

If a three phase load with an impedance matrix ZL
is connected at the receiving-end, voltages and currents

concerning 7 may be written as

L

v (2.32)

|
I, =2, ¥ YR

~R T b

L
where Yl is admittance matrix and £I is column vector

J J
representing the currents flowing through the impedance

VA Lf we combine equations (2.32) and (2,31), the system

L*

equation becomes,

I A ~B v '
S VS (2,33)
Ip -8 Ay, Yg

2.3 Cross-Bonded Cable System

Most of the underground power cables used in high~
voltagé system are cross-bonded. In cross-bonded cable
systems sheath currents under steady-state operating
conditions are reduced by transposing the sheaths at
joint points. Such a cable system is made up of a num -
ber of major sections each of which comprises three
minor sections as shown in Fig,2.1.

14



Se- L ~===C N ~C-==Z
i N \// S‘
¥ Y, c
= S —— \ ———-=--3435 - 2
h A 2
/\ 7\
A A C
e - J T T === A A W 35.-3
3
sheath
core earthing
: sheath = resistance =
Fig.2.1 Hajor section of a cross-bonded cable.

The series impedance and shunt admittance matrices

for each ninor section are evaluated from the parameters

A

of the systens, as shown in Apvendix A.

For a crossbonded cable containing any number of
major sections, series impedance and shunt admittance
matrices nave been formed using Dang's. approach {6 ]
which takes the advantage of the fact that mino>r section
lenghts are electrically short as fé8r as the observation
time is concerned. That is, the length of a
minor section is much shorter than the wavelength of the
highest harﬁonic component used in representing a
transient wave alOng a cross-bonded cable. Hence each
minor section can be revresented by lumped parameter
networks and each major section can be approximated by
an equivalent homogeneous section which is formed by
compounding three such minor sections. Dang’ snows that,
the problem of cascading a large number of such major

sections is thenindependent of the number of sections

15



involved. The method is relatively simple to compute,
and results in a considerable saving in computer time
due to the fact that all but two of the eigenvalues of
the homogeneous matrix product ZY can be obtained by
inspection, the remaining two being the roots of a simply
derived gquadratic equation.

According to the sheath earthing conditions two-port

nodal matrix equation of a crossbonded cable system is

obtained.

24341 Sheaths Earthed Through Resistors

If the sheath earthing resistors used at major mect-
ims ends, system becomes nonhomogeneous even though each
major section is homecgeneous. If the sheath earthing
resistor ¥ is represented by two parallel connected

resistors, both ends of the major sections will have two

recsistors with the resistonce 2K or conductance G/2, as

illustrated in Figo 2424

lst major section 2nd major section
A M
’ Y N
Cl o O~ . —O— 5
F‘““\\ [___—\\ /'__-_— T T\ f“"""\\ [ 77 -
I / \ !
\ \
,____\{1 \____\II\_-_- ____\1\____\/\__“ L
I )\ A i\
Cy I\ Iy N Iy Iy .

AN Y S WP R SRR [ WU B VP R S
¢ 3 3¢ s 3 3o ¢f 3¢
2 2 2 2 2 2

77 L

I'ip.2.2 Kepresentation of two adjacent major sec-

tions 16



Thus, all the system consists of n homogeneous major
sections which can be compounded to form a two-port

matrix equation of the system.

Since cable sheaths are solidly interconnected at the
ends of each major section, three sheaths cen be reduced to a
single one., Hence, series impedance and shunt admittence
matrices of the system have orders of 4x4, consequently the

order of A and B matrices also becomes 4x4, as can be

seen in Appendix B.

Two-port matrix equation of each major gection

becomes
r 7 r b o
51 A+ YG -B Xl
= (2.34)
I -B A+Y \s
.”21 L @J 5 ”4
vihere
[0 0o o o]
YG: 0 0 O O
0 0 0O 0
0 0 0 G/QJ

Subscripts 1, and 2 refer to sending-end and receiving -
end of a major section, respectively. Currents entering
the major section at either end are considerad as posi -~
tive. G is the contact conductance of sheath earthing

resistor. Also, in equation (2.34)

17



>
i

Y coth (lym 1 )

o
|

YO cosech (V& lm)

7 and lm are propagation coefficient matrix and

the length of the major section, respectively; Yo is

major section characteristic admittance matrix.
Two-port matrix equation of the cable system con-

sisting of n major sections can be written as

A4 -B )
IvS’ *n fG “n lS
= (2.35)
- A +)
EE Bn An IG Xﬁ
whers
;S’ zs, and ER’ XR are sending and receivinz ends

column vectors of the cable systen, An and Bn are square

matrices of order 4 and given by
. 1
A =Y _ coth (nyﬁ 1, )
1
- v 1
B_ = Y _ cosech (n’yﬁ lm)

] ]
where Yb andfyél are modified characteristic admittance
and propagation coefficient matrices which takes into
account the sheat earthing resistors; n 1is the number of

major sections [ll] °

2.%.2 Sheaths Solidlvy Farthed

A possible simplification that can be introduced 1is
based on the assumption that the sheaths at tne major
gection terminals are solidly earthed. This would cause

the voltage of the equivalent sheath to be zero, so that,

18



the row and column corresponding to cable sheath may be
eliminated from matrix equations. The reduction of
series impedance and shunt admittance matrices of cable

is given in details in Appendix B.

Two-port matrix equation of each major section of

the system may now be written as

%1 A -B Xl
= (2.36)
Lol |-B A 1o
wheare gl’ 31 and L., V, are sending-end and receiving-end

column vectors of a major section respectively,

A

v ¥ ]
¥, coth (ym 1, )

B = ¥ cosech CV% 1, )

propagation coefficient matrix

-

where, Yl =

Y : characteristic admittance matrix

—

major section length

If a cross-bonded cable system consists of n major
section, two-port matrix equation of the overall system

becomes

(2.37)

i

;R ~B A XR

where An and Bn are natrices of order % and given by

19



A =Y coth (n‘V& lm)
B, = Y cosech (n’y& lm)

where, n 1is the number of major sections in cascade.

2,4 lMathematical Formulations of System Voltages

In the mathematical formulation of the system volt-
ages, sources are represented by their Norton equivalents

as shown in Fig.2.3.

24,1 Case 1 : Cable Sheaths FEarthed Through Resistors

If the shedths are earthed through resistors at the
ends of each major section,the impedance and admittance
matrices as well as the matrices A and B will have
orders of 4 x 4.

Assume a crossbonded cable system consisting of n
major sections. For the evaluvation of intermediate volt-
ages, the overall cable is seperated into two homogeneous
parts, one having k major sections in cascade, and the
other having m major sections in cascadeé, the total
being n, as shown in Fig.2.4. In the figure, possible
connections of shunt reactors as well as the Norton
equivalent circuit of the source are also shown.

Consider an intermediate point x, at which voltage
and current vectors are Yﬁ and ;x’ respectively.

The injected current, gx at x 1s zero. The nodal
equation of the cable neglecting the end terminations

may be written as

20



Fig.2.3
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Representation of Source

a) General representation of a source
b) Single-phase representation
(i) Thevenin equivalent of the scurce
(ii) Norton equivalent of the source
¢c) Norton equivalent of the source

(Three~phase representation)
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1, BN By 0 [y,
0 = "Bk Ak+Am *Igm ’Y‘{ (2;38 )
%/{ 0 -Pm Am+yf} J Y/.LJ

! !
where Ay = Y coth (kyhlm)

kK o ,
A= Y; coth (mW%Rm)
B, :’y;(xmech (k%hm)
B = Yé cosach (mw&lm)
lm = cable major sectior length
yx = y2 = N3 = Jjunction node voltage Vector
Vi y@ and }1, ;4 are as shown in Fig.2.4.

YG is the admittance matrix corresponding to the

earthing resistance and is given by

r -y
0 0 0 0
o) 0 0 0
YCr
g 0. 0 O 0
LO 0 0 l/h%

2 .

Y, in the nodal equation (2,38) may be expressed

Vo= (A 4 Am)‘l (B Ty + BV, ) (2,39)

r

where Zl and X4 are voltage vectors which are equal to

the sending-~end and receiving-end voltage vectors, ys

23



and XB respectively. Then, the intermediate voltage

vector Zx is expressed in terms of the VS and VP‘
la M

When V. is eliminated from equation (2.38),.

~vX

the nodal matrix equation of the cable shown in Fig.2.4

becomes
A : -B3 ;
51 A+ 1,3 Ln A\{l
= (2.40)
;4 —Bn Ah +YG ,{4
/ )
o 1 = ] ( A
where A T, coth \nlﬂgm)
1 _ ! -;’
By = [O cosech (ny%}m)
Y. is the same as in the eqguation (2.38)

G

n = total number of major sections
Tncluding the admittance matrices of the shunt reactors
and of the source, and taking the receiving-end currents

%o be zero, (receiving-end unterminated) equation (2,40)

becomes,
I A +Y 47 +Y R v
5 h 6 s s *n ~S
= (20 4]- )
O By Mot r

where yg and yR are sending-end and receiving-end voltage
vectors of the order 4xl. ZS is the sending-end current vec-
tor of the order 4x1l, in which the cwrrent corresponding %o
the sheath is zerc.ly and YR are sending-end and receiving-

end snunt reactor admittance matrices, respectively., Y
N 78S

ig the source admittance matrix. gy Ty and Yggq are all

At
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diagonal matrices of the order of #4x4, The last diazonal
elements corresponding to tae sheath for the three of
these admittance matrices are all zero.

The voltage vectors V, and XF are obtained by solv- .

S

ing thne equation (2.41°) as follows

, NS R |

3 = -]

Jg = Ch =807 BT T (2.42)
- - -1

Vo = DB (4 -BDTH B ) Ig (2.43)

where A = An+‘.{G + YS + YSS
B = By

gy + Yo o+ Yo

<
il

o
1

and the intermediate voltage V‘c may ve written as

T ""l
\/’ﬂ{ = (Ak + Am) <Bk 7

i .
& I * Bylp) (2444 )

where A

(2.38)

t

Thus, ys and ER
sending-end current vector ;S. The intermediate voltage

Am; B and Bm are the same as given in equation

k’ k

are expressed in terms of the

Vk ig expressed in terms of the sending-end and receiving-

end voltages.

2.4,2 Case 2 : Cable Sheaths Solidly Earthed

If the gheaths of the crossbonded cable are solidly
earthed at the both ends of each major section,series
impedance and shunt admittance matrices become square matrices

of order 3, Thus ftwo port nodal paramefers A and B will

25



have orders of 3x3, In this case, nodal matrix equation
of the system has the same form as that of equation (2.41),

and may be written as,

is Mo Is ss 0 By s
o -B, A +1g YR_

wnere ES ’ yS’ and XR are colum vectors of order 3x1;
An’ and Bn are the square matrices of the order of 3x3
and are the same as given in equation (2.37). YS’ YSS’

and YR are the diagonal matrices of the order of 3x3.

Steady state response of the crossbonded cables, at
gsending-end, and receiving-end as well as at any point
along the cable are obtained in a similar way as given
equations (2.42), (2.43) and (2.44), respectively., In this
case, 1n the expression of intermediate voltage XX’ the

nodal parameters are expressed as

Ay = Y, coth (k“y& lm)
Am = Y coth (m’@é lm)
Bk = Yo cosech(k'yﬁlm)
Bm =Y, cosech(m’y&lm)

Transient response of cable systems at sending-end,
receiving-end and intermediate point are obtained making
use of these equations while applying the modified Fourier

transform method,



CHAPTER %

n

when a switeching operation takes place, the element

2
<,

of the power system are gsubjected to voltases and currents

having a wide range of frequencies. The frequency depen-

ot

[

dence of the paramefers of the system can bs accomodated

fourier transform,

833
[
c
O
]
<t
5
0]

by the nse of methods bas

b

fundamentally, the method reguires the calculation of the
response of the system over a range of freguencies and

the vse of the inverse Fourier transform to transform the
response fron the frequency domain into the time domain.
in the nethod of Fourier analysis, the waveform is split
into an infinite number of frequenciss Aiffering from each
other by an infinitesimal step length. However it is not

possible to have an infinite number of frequencies and

numerical work. A finite

j
[t

infinitesinal step length
step length is thus chosen with a finite upper frequency

limit.

%5.1 Modified Fourier Transforn

After the steady-state response of the transmission
systen is formulated Fourier transform tecanique is used
for the transient solution. The following is a summarised

theory:

F (w) = £(t) exp (~jwt) dt (3.1)
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and

+0Q - jo
1
£ (t) = ~——— Flw) exp (Jjwt) dw (%.2)
2
2 00 ol

~
pi

In equations (3.1) and (3.2) ¢ (t) is the time-
dependent function, F (w) is the Fourier transform of it andd
is a constant which is used to stabilize the integrand
and, consequently to increase the computatlional efficiency
of the numerical solution. In many cases, the poles of
the transform p(w) lie close to the real axis. This
causes the integrand to peak over a series of small iater-
vals close to the poles. The 1integration is stabilized
oy choosing a line of integration displaced from the real
axis by the shiff factor o .,

Defining a complex frequency w=w - J% | the

inverse modifisd transform can be evpressed by

+00 ~ j&
1 . . .
£f(t) = = Z(w =jA ) exp [j {w —jd~)t] dw
2T
=0 - Jk
or
+ 0O = A
e‘{p (d\t) L ] i
£(8) = 7 (w =jk) exp (Jw t) dw  (3.3)
2T i

In a real physical system, the function f{(t) is

purely real and we have

i

Peal T(w) Real T (-w)

(Bo4)

Inag F(w) =-TImac ¥ (-w)
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2iving the semi-infinite form of the Fourier I[nversion

integral as

- ) ) N o 1 . _
£(t)= §JQ§5EQ-R8 F (w =jo.exp (Jw t). dw - (3.5) -

2,2 Mumerical Form of tahe liodified rourier T4

L
AV
]
Ul
=ty
o]
H
£

Fourier Inversion integral (eqn.3.%) is evaluated
by numerical methods in computer. TFor this purpose a
finite frequency step length W is reqguired to define

}
W= onw s
O

Thus
=<
exp(A t)
f(t) = ———eee Real § 7 o(nw ~ijX).exp(inw_t).w .

It is necessary to choose an upper limit frequency
{2, for the numerical integration. This frequency is called
truncation frequency. Because of this finite urper limit
for frequency harmonics, a certain amount of escillations
nown as Gibo's Phenomena takes place,

Gibb"s escillations are reduced by introducing a

welghting factor ¢ into the Fourier trensform,i.e.

sin (TTw/L{L)
(T w /)

However,it increases the rise time,
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This factor decreases as the frequency increases.
Therefore, it has little effect on low frequencies ovut
damps out the hicher frequencies.

step ler

[

The finit

@

Zth W, cAauses the waveform to

¥,

<
(6]
k3

repeat at interval:

L

= 21T/wo. If the parameters are

calculated at anid-step length rather than on one side of
the interval, the accuracy is increased for the same nua-
ber of steps. If we take the step length 220, calcula -

tion are performed at mid-steps (2n ~1) W Thus, the

transforms are calculated at the odd harmonics effectively.
Then the numerical form may be expressed, using the

trapezoidal rule as ;

N
2
f(t)= TYO exp@t) Real g-F [(En—l)wo—jOQ}exp [j(anl) wgﬂ
n=1
(5.8)

where n is the number of odd frequency harmonics,N 1is
the maximum number of odd frequency harmonics. In this case,
frequency upper limit becomes ZN.WO, and sigma factor 1is

given by
sin [H (2n - 1) / ENJ (%.9)
S

T(on - 1) / 2N

for the numerical solution, first of all observ -
ation time T, is chosen. Then the step length 2w  and
the shift factor  are determined accordingly.

The step lengtn 2wo causes the waveform to repeat

at intervals-
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The relation between the step lenzth and the observation

time is
m Tr
IS
W
0
T
[OIE T N T R 3 o q - 1 o .f_< O e -
Gibb's oscillations dm't appear for t & , tence the
2
fundanental frecuency £ may he chosen to satisgfv the
1 ) &

' 0]

relation

(3.10)

“hen a fundanental frequency is chosen to correspond
to twice the observation timatiziwo 15 quite adeqguate

The greater the truncation frequency used, the more
accurate the response in time domain could be obtained.
However, it causes more computation time. Therefore an

eptimum truncation frequency is to be chosen.

2.5 Three Phasgse Simultaneous Enersigation

The closure of switch is simulated by the applica-
tion, at the switch terminals, of a Yoltage equal and
opposite to the existing voltage across the switch, before
closure, Tne regultant voltase which appears across tae
switch after the closure, will be zero.

In general, the energisation voltases are sinusoidal

Ty = Voo, cOS (wst+6i + @i) , i=1,2,3 (%.11)
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where-@-,-eé,'eg are the phase displacements of the
supplied voltages belng 00,1209 and 240°for a balanced
‘three phase system.@l, $2, ¢5 are the pole closure angles,
and Wg is the angular freguency of the supply voltage.
Fourier transform of these voltages will have

the following form,

j W
cos(@i+®i)' e
W s -V]

Vsi<w> = Vm

w .
~v_ sin (&; + ¢;) e i=1,2,3% (%.12)

w -W
S

Y

For practical purposes infinite bus-bar source ahas

been simulated by a voltare source behind a very small

. X -0
resistance of the order cof 10

ohms. A generator 1s
sinulated by a voltage source benind an inductance or
behind and inductance and resistance.

In calculations, Thevenin eguivalent of the sovrce

representation is converted to liorton equivalent &S in
Fige2.3. In that case, the injected currents to the circuit

breaker poles are;

~ _‘ - -~ po= -
Isl Ysl O O Esl
Igo| = | © Teg O B0 (3.12)
T 0 O Y - E
s3 sS7 3
0] 4 1]
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where Isl’ IS2 and Is5 are sending-end injected currents.
Ysl’ Ys2 and YSB are the shunt admittances which correspond
to the sourge impedances of of the first, second and the third
vhases, respectively. E_,, E and = are the source volta-
sl s 83
Zes of each phase.
Sending-end currents are calculated at each frequency

step using equation (3.13), and they are substituted

in the steady-state equations (2.38), and (2.39) to find

the sending-end and receiving-end voltases corresponding

to the frequency considerad, These calculations are
repeated for each frequency step up to the truncation
frequency with the chosen step length. After the frequency
response of the system is obtained, time response is found
using the numerical form of the inverse Fourier transform

given by equation (3.8).

3.4 Three Phase Cequential Energisation

2.4,1 Intreduction

/
In the analysis of switching surges on polyphase
transmission systems, sequential pole closure probvlenm
should be taken into account, In practice, sinultaneons

pole closure of circuit breakers cannot be achieved.

A digital computer solution of the sequential tran-
sient problem inveolves a change in the system matrix with

time., Therefore, the problem to be analysed becomes

nonlinear. In the thesis, Fourier transform modal analysis
method is extended to the solution of nonlinear problems

arising from sequential pole closure when the system is
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energized from an infinite busbar,

3.,4.,2 Application of Piecewise Fourier Transform

Method

In evaluating the transient response of the
multiconductor transmission system, the response of the
system £(t) in the time domain is obtained at discrete
time intervals to. In the sequential pole closure
problem the Fourier transform F(w) corresponding to f(t)
is essentially found,

If time function f(t) is divided into N strips,
so that the strip width is small enough, the variation
is approximated by a straight line. By using this form
of approximation, it is possible to build up the Fourier
transform of f(t) by summing the transform of such
strips. )

Wedeponl and MNohamed [12] expressed the Fourier
transform of the induced voltages as described in

Appendix D,

The modified Fourier transform of the voltages im-
posed on the system as a result of first pole closure is
easily obtained. Therefore, in the case of three phase
gequential pole closure, the calculation of the system
response 1s performed for the first pole closure, as 1if
it is a single phase energisation. After a short fime
period from the first pole closure, the second pole
closes and the third one follows. During the interval
between the firgst pole and the second pole closure, a
certain amount of energy transfer takes place between
energized conductor and the other two conductors. When
the second pole of the circuit breaker closes, the
corresponding phase conductor acquires the instantaneous

value of the supply voltage and remains unchanged for the
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rest of the observation time., Meanwhile, the third conductor
is sbtill open, and acquires a new induced voltage until the
third pole comes into operation. As soon as the third pole
closes, the voltage on the third phase, then, corresponds

to the supply voltage.

If we take T, as the closure time of the second pole,

1

and T2 as the closure time of the third pole and when the
system is energized from an infinite busbar the steps of the

transient solution can be described as follows.

Closure time of the first pole is taken as zero; system .
regponse is computed exactly the same as single phase
energisation problem till time Tl' Second pole closes at
time Tl' The new boundary conditions at the sending end
are known on the first two conductors, and the third one
is open circuit. System input matrix will be changed
accordingly and the response is computed. For the solution
to be valid from time zero, the modified Fourier transform
of the voltage on the second conductor during the time
interval O <t‘<’l‘l should be computed. Then the voltage
on the second conductor is expressed in frequency domain
using Plecewise Fourier Transform as mentioned in Appendix
D and added to the modified Fourier transform of the supply

voltage of the same conductor for the time interval t-<Tl.

Time response of the cable conductors 1s computed over
the time interval Tl<<t<<T2 taking into account the effects
of energized conductors 1 and 2. Induced voltage on the
third conductor is computed. Piecewise Fourier transform
is derived numerically and added to the modified Fourier
transform of the supply voltage for the same conductor

for time t<’l‘2.
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The flowchart of the computer program related to
gequential pole closure when the system is energized

from an infinite busbar is shown in Fig.3.l.
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Cglculate pystem responses and j
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Y
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ys(2) for o<t <Tl
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O
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?
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for 0 <t <Ty for 0<t <1, SToP
Second pole cloged [Egird pole closed
t t

Tig.3.1 TFlowchart for sequential pole closure problem
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CHAPTER 4

SYSTEM STUDIES

‘The basic system studied is the crossbonded cable of
275 kV and sheaths are solidly interconnected and bonded
to earth at major section-ends. Configuration of the
single-core power cables is shown in Fig.4.l. The data
related to the individual phase cables is given in Table
4,1,

Total length of the cable is 27432 meters end the
number of major sections is 20. Earth is assumed to be
homogeneous with a resistivity of 20 ohm-meters. The

receiving end of the cable is open-circuited.

The modal parameters of the crossbonded cable is
shown in Table 4.2. The order in which the elements of the
characteristic impedance matrix arise, and also the order
in which the voltage and current eigenvectors arise, refer
to middle, rignt-hand and left hand side conductors, res-—
vectively,

In the following sections, computer results of the
transient voltageé along the cable system due to simultaneous
and sequential smitch closures are presented. Effects of
cable length, source impedance, shunt compensation and
sequential pole closure on the magnitude of transient vol-
tages are studied., Maximum frequency harmonic, NFma and

X
maximum time step, NTmat are given in each figure in the

4

system studies below,
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Fig.t.1 Configuration af

( distances are in metres).
TABLE 4.1 CARBLE DATA
Conductor radius = 1,989 c¢n
Sheath inner radius = 3,5%%6 cn
Sneath outer radius = 3,7C3 cn
Cable outer radius = 4,115 cn
. . . —~ - (3 1
Eesistivity of core = 1.72%x10 Ohm~-m,
. , a -8
Resistivity of sheath = 3.58x10 Chm-n.
Kelative permittivity
of core insulation = 3,72
Kelative permittivity
of sheath insulation = 2.33
Relative permeability
of the core and sheatby = 1.0
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TABLE 4.2 MODAL PARAMETEERS Oy THE 275 XV CROSS-BONDAD CARLE

Frequeacy = S50 Hz, Earth resistivity = 20 Ohm-n.

Major Section Charactiristic Impedance lMatrix u (Oﬂﬂ/i@“}

28,11 /-11.44 6.70 / -125,01 .70 / =125.01
6.70/-125,01 38,11 / —-11.44 6.70 / ~125,01
6.70/-125.01 6,70 / ~125,01 28,11 / =11.44

<7

vlajor Section Characteristic Admittance Matrix O

(FMilli tho / deg)

24,92 / 13,60 4.64 / 89,85 4,64 / 89,84
4,04 / 89.86 24,92 / 13,60 Lot/ 89,86
4.o4 / 89.86 4,64 / 89,86 24,92 / 13,50
tlode Eigenvectors Jelocity Attenuation
No. Joltace Current km/sec db/kn
1.000 / 0.00 0.500 / Q.00
1 0.000 / 0.00 0.000 / 0.00 69415 0.00197

1.000 / 180.00 0.500 / 180,00

0.500 / 180.00 0.%33 / 180.00
2 1.000 / 0.00 0.667 / 0.00 69415 0.00197
0.590 / 180.00 0.333 / 180.00

1.000 / 0.0Q 0.33% / 0.00
% 1.000 / 0.00 0.333 / 0.00 96407  0.01758
1.000 / 0.00 0.33% / 0.00
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4,1 Single Phase Energisation

In case of single phase unit step energisation,
transient response is obtained for the observation time
of 1 mili-second and harmonic responses are evaluated

for 250 frequency harmonic values.

The cable is energized from the first conductor with
a l.p.u. step voltage. There is no compensation and no

trapped charges on the cable.

Wave propagation along the cable may be explained
taking into account the receiving-end conditions. Since
the receiving-end of the cable is open-circuited, the
voltage waves, upon arrival, are doubled and a voltage
of 2.142 p.u. is produced at the receiving-end . Fig.4.2
(a) and (b) show the waveform of the sending-end and
receiving-end voltages, respectively, when the system is

energized from an infinite bus-bar.

At the sending-end, bthe induced voltages on the
unenergized conductors acquire negative values first. The
ratio of magnitudes of induced voltages to unit step
voltage is found as -0.180 p.u., from Fig.4.2 (a) before
the reflected waves arrive at the sending-end. This
complies with the ratio of the cable mutual-to-self surge

impedances(i.e,)=.176 at 50 Hz as can be calculated from

Table 4.2,

At the receiving-end, the induced voltages on the
unenergized conductors acquire positive values first,

and then acquire negative values as shown in Fige4.2 (D)
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Sending-end voltages, obtained initially, as can be

seen in Fig.4.2(a) may be written in vector form as

1.000
-0.200
The medal voltage vector X(m) is determined as
1 0 "l‘w r 1.000 ‘ ' 0.60 |
2 2 ¢
(m)_ oty |2 2 | [—0.200 | = |-0.40
AN £~ e R
3 3 3 | i ]

. -1 . . .
where @ is the inverse eigenvector matrix as given 1in
Appendix ¢. Thus, the sending-end voltgges may be shown to

be made up of the following components,

_ i 1
2
Vg = Q vi™ _o60| 0| -0.40 1 | + 0.20
-1 -1 1
\ L J L 2 4 L
mode 1 mode 2 mode 3

where Q is the eigenvector matrix (modal transformation
matrix) as given in Appendix C. Modes 1 and & are
differential modes between the cable cores, and mode 3 is the
core-to-skeath coaxial mode. Mode 3 has the highest velo-
city as can be seen from Table 4.2. Therefore 1t arrives

at the receiving-end first. Velocities of modes 1 and é

are the gsme and they arrive at the receiving-end in 395
micro-second. This calculated travel time complies with

that of the unit step response of the cable shown in

Fig.4.2.(b) in which upon the arrival of differential modes
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to the receiving-end, the voltage at this end rises

abruptly to 1.760 p.u.

If a sinusoidld voltage is applied to first phase, the
voltage waveforms obtained at the sending-end and
receiving-end within 2¢ ms, taking the number of the
frequency harmonics as 150 , are as shown in Fig.4.3 (c)
and (d). Maximum overvoltage at the receiving-end of the
first conductor is 2.073 DeU. When the calculations are
carried out for the maximum frequency harmonics of 50 with
100 maximum time steps,for the observation time of 20 ms,

the voltage waveforms obtained at the sending-end and

receiving-end are as shown in Figs.4.3(a) and (b) respectively.

4.2 Three-phase Energisation

4,2,1 Effect of Cable Length

Effect of cable length on the magnitude of switching
transient overvoltages has been studied in the case of
three-phase simultaneous energisation from an infinite
bus-bar. In the system, the length of each major sectian
is taken to be 1371.6 meters., Studies have been carried
out on different cables which consist of 15,20,25 and 30

major sections.

Receiving-end voltage waveforms obtained for

different cable lengths are shown in Fig.4.4(a), (b),(c),
(d)e Variation of the maximum receiving-end voltage with
the cable length is tabulated in Table 4.3. As can be seen
from the table, the magnitude of the maximum receiving-end
voltage for the first phase decreases with the increase inl
cable length while the the mégnitudes of the second and third
phase receiving-end voltagesincrease with the increase in _
cable length,
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TABLE 4.3 REIATION BETWEEN MAXIMUM OVERVOLTAGE AND
THE CABLE LENGTH

umber of
major Cable length Maximum magnitude of the receiving
sections 1(m) -end voltages (p.u, )
phase 1 phase 2 phase 3

15 20574 1.982 1.442 1.352

20 27432 1.980 1.474 1.377

25 34290 1.973 1.525 1.376

30 41148 1.961 1.547 1.428

4,2,2 Switching Surges Along the Crossbonded Cable

Figs.4.5 (a),(b) and (c) show variation of switeching
overvoltages at the lOth and 15th major sections and at
the receiving-end of the cable, The variation of the
overvoltage magnitude along the cable can be explained by
travelling wave phenomena., At the receiving-end, voliage
waves are reflected by the reflection coefficient of (+1)
and doubled . Modes with different velocities cancel each
other at some intermediate points of the cable since two
of them may travel towards the receiving-end while the
other one(mode 3) is travelling towards the sending-end.
The amount of cancellation is not constant since mode 3 is

highly dependent upon the frequency.

As can be seen from the results, the magnitude of
overvoltages increases gradually as the intermediate point

of interest moves away from the gsending-enda
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oscillations decreases,
go into resonance

voltage approaches the supply frequency.

4,2,3 Effect

of Source Impedance

As source inductane increases, the frequency of

Therefore the system tends to

as the dominant frequency of the system

This causes higher

voltages at both sending-end and receiving-end of the cable

as can be seen from Figs.4.6, 4.7,4.8,4.9.

Variation of

the maximum overvoltage at the sending and receiving ends

within 20 ms with the source inductanee is tabulated in

Table 4.4. As can be seen from Figs.4.8 and 4.9 that,system
tends to go into resonance when source inductance is 0,24 H

and 0,48 H, respectively.

TABLE 4.4 VARIATION OF MAXIMUM MAGNITUDES OF OVERVOLTAGES

WITH THE SOURCE INDUCTANCEL

Source
Inductance Maximum Sending-end VoltageMaximum Receiving-end
(Henry) (peuo) Voltage (p.u.)

phase 1 | phase 2 phase 3 [phase 1| phase 2 | phase 3
0.016 1.566 1.280 1.275 1.904 1.455 1.447
0,048 1.864 1.492 1.435 2,017 1.577 1.518
0.24 2+535 1.812 1.940 2.587 | 1.845 1.974
0048 30582 ) 20986 3.049 30625 3.021 3.084

If energisation is done from an infinite bus-bar,
inductance is zero and the sending-end voltages are the
same as the source voltages., When the source inductance
is introduced to the system, sending-end voltages exceed
the source voltage due to the reflection of travelling

waves at the source inductance.
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¥or the inductive source, the voltage waves rise
exponentially with a time constant which is directly
proportional to the source inductance. The corrosponding
frequency of oscillations which are superimposed on the power
frequency component decreases with the increasing induc=
tance values. For example, the frequency of oscillations
for 0.016 henry source is approximately 330 Hzj; however
it -is 220 Hz for 0.048 henry source, 150 Hz for 0.24
henry source and 60 Hz for 0.48 henry source as can be

seen from Figs.4.6, 4.7. 43, and 4.9.

4,2.,4 Effect of Shunt Comvpensation

Shunt reactor compensation is used in general to

reduce the magnitudes of the switching surges.

Shunt compensation is employed here to minimize the
overvoltages when the dominant frequency of the system
approaches the supply frequency. Application of shunt
compensation is found to be efficient. When the shunt
reactors are used at sending-end and at both ends of the
crossbonded cable,respectively, magnitude of overvoltages

at both ends are observed to be reduced.

In system studies, the effect of shunt compensation
on the magnitude of the transient overvoltages, is
studied under three-phase simultaneous energisation from
a source of 0,48 henry. Maximum overvoltage magnitude
without shunt compensationis 3.625 pe.u. within 20 ms, as
can be seen from Fig.4.9. This overvoltage magnitude at
the receiving-end decreases to values of 1.768 p.u. and
1,150 p.u. when 1.2 henry (200 MVar) shunt compensation
ig employed at the sending-end end at both ends of the

cable, respectively. The related voltage waveforms CAan
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be seen from Figs,4.10 and 4,11. When 2.4 henry (100 iVar)
shunt compensation is considered at the sending-end, the
maximum overvoltage magnitude comes out to be 1.171 po.u.

at the receiving-end, as shown in Fig.4.12, If we uge 2.4
henry shunt ccmpensation at both ends of the cable, the
megnitude of the maximum overvoltage becomes 0.653 v.u.

at the receiving-end as shown in Fig.4.13., Further increase
in the inductance of the shunt reactor decreases the magni-

tude of the maximum overvoltage in the system.,

4.2.5 Effect of Seauential Pole Closure

In the studies of sequential energisation of the cable
system from an infinite bus-bar, first phase breaker pole
closes first, then the second and third one follow., Until
the second pole closes, voltages are induced in the second
and third conductor, Immediately, after the closure of the
second pole, the voltage appearing on that conductor at the
sending-end is the supply voltage. The effect of the second
pole closure on the third conductor is taken into account.
When the third pole closes, the voltage appearing on the
corresponding conductor at the sending-end becomes the supply

voltage,

In the studies, closure times of the second and third

conductors have been chosen for two different conditions :
(a) To close all the poles when corresponding phase voltages
are at the peak values. Closure times are 3.2 and 6.6 ms
for the second and third poles, respectively.
(b) To close the second and third poles when the corrosponding
paase voltages pass throush zero. Jlosure bimes apre 8.4 angd
11.6 ms for the second and third poles, respectively.

If the voltage responses are obtained for each of these

conditions with the system fed from an infinite busbar, it is
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found that in case of (b) smaller overvoltages arise at
the sending-end and at the receiving-end as shown in Figs.
.4.14(a),(b) and 4.15(a),(b). In case of pole closing
instants 3.2 and 6.6 ms, the receiving-end maximum
overvoltage reaches 2,38 n.u.within 20 ms with 150frequen-
cy harmonics. This magnitude is higher than the maximum
receiving-end overvoltage (1.980 p.u.) obtained in
simwltaneous energisafion within 20 ms withl50 maximum
frequency harmonics as shown in Table 4,3Fig.4.15(b) shows
smaller overvoltages occur when the second and third poles

close at the instant when the corresponding voltages are

passing through zero.

In the single-phase energisation, the voltages at
the sending-end and at the receiving-end are the same as
those of %he sequential energisation £ill the time of second

pole closure as shown in Figs.4.3(c),(d) and 4,14(a), (b).
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CHAPTER 5

CONCLUSIONS

Throughout this work switching overvoltages in
wmderground power cables are dealt with by the use of the
modified Fourier transform method in conjuction with modal

theory. Cable parameters are highly frequency dependent.
By the choice of Fourier transform method frequency depen-

dence of the cable parameters, skin effect, and earth-
return path can be easily taken into account.The accuracy
in the transient voltages is achieved by the proper choice

of truncation frequency and the time step length.

A digitial computer program is developed by the author
to handle the sequential pole closure problem as well as
the simultaneous energisation in the switching over-

voltage calculations,

Computer results show that; cable length, source
impedance, shunt compensation and sequential pole closure
angle affect the maximum magnitude of the switching over-
voltages. Maximum receiving-end voltage magnitude
inereases with the cable length. Source impedance has
a considerably high effect on the shape and magnitude of
the transient voltage. As the source inductance increases,
both the receiving-end and sending-end maximum voltage
magnitudes increase. To minimize the adverse effect of
the source impedance on the transient voltages, shunt reac-
tor compensation can be used either at the sending-end or
at both sending and receiving ends. When the dominaﬁt
frequency of the system approaches the supply frequency
shunt compensation is found to be effective to minimize

the overvoltages.
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In the case of sequential pole closure, nonlinear
problem arises due to the change of system matrices with
time. This nonlinear problem is solved uUsing the
piecewise Fourier transform method.

Sequential switching overvoltages are slightly higher
than the simultaneous switching transients at receiving
ends in the case of all the pole closures take place at
their peak values. However, if the phase voltages across
the breaker contacts are zero at the instant of closing
breaker poles, itransient overvoltages are considerably

reduced.

Computation time in the modified Fourier transform
method is long due to the eigenvalue and eigenvector
calculations for a wide range of frequencies, If there is
symmetry within the system conductors, the computation time
is considerably saved making use of the symme$ry conditions.
Computation time, also, depends on the number of the
frequency harmonics and time steps used in the calculation

of the voltage responses. For 150frequency harmonics and
200 time steps, execution time is 115seconds in three-
phase simultaneous energilsation and 240 seconds in three-
pnnse sequential energisation. If the number of frequency
harmonics and time steps are chosen as 50 and 100,
respectively, execution time becomes 33 seconds in three-

phase simultaneous energisation.

In this study, sheath-bonding resistance of the
crossbonded cable gystem is assumed to be zero and three-
phase sequential energisation is from an infinite busbar,

. Transient analysis of the crossbonded cable system with |
i the sheath-earthing resistance and sequential energisation

| from an inductive source may be the subject of future

? studies.
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APPERIDIC A

ST TN LY EITV AN AN atrroaTm PRITMT AT TN T T a
SERIES IrPsDANCH AMD SdU0D ADMTIOTAOCSE HMATRICES

0Q Y A . P -
A.1 Rasic Cable Parameters

,
Fig.aA.1
e Sheth
core
- ___ sheath
. insulation
R JJ core
Insulation
Fig.\.1 Cross-section of the ons-core cable
'Pl %esistivity of innsr conductor,
‘pg Iesistivity of sheath,
P kesistivity of earth return path,
el_ Permittivity of conductor dielectric,
€5 Fermittivity of saneath dielectric.

-

for the ceries impedance com -

3
&)
O
[6)
“
2
Q
ct
)]
e}
H
—
ot
t,._l
O
]
b

ponents are obtained by using Bessel Tunctions, sincs
conducting paths depend on the freguency. However,
simplified solutions are available which are applicable

over a wide range of frequencies, [13]

(i) The internal impedsance of ke conduckbor is quite
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accurately siven by the ewpression

n 0.356 P
5 = A . Coth (0.777 m ry) + :

2Tr mr

v

bt

where n

1
( J ‘r.’/t(/f)l )ZS

In particular, for very high frecuency, where W/Vfﬁﬁ>l
the above fornmula reduces to the familiar skin
effect formula Zc = }1 m/ETTrl, and at very low freguency
{or for d.c.) at which m/4/fa<3<l, the above gives the
standard evpression Z :,Pl/TTrl2.
(ii) The magnetic flux in the conducktor dielesctric
gives rise to the conductor-sheath nutual impedance,

o

which 1is given by the expression

J W o_u

= —— o ( .
sc 5T lobe “To / T )

]

(1ii) The inner surface sheath impedance is approx-

imately given by the expression

o ™
—_— .Coth [ m (r5 - r2)] -

SL i .
27Tr2

Pz
BTTrg(r5+r2)

3
n

1
where m = (J W/4/‘P2 )2
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(iv) Due to the current flow in the sneatnh, a
voltage is induced in the sheafth~earth path giving rise
to the mutual impedance hetween inner and outer sheath

surfaces. This impedance is given by the expression

(v) The outer surface sheath impedance is given by

the approximate expression

Po P

., = =i« COth [ m(r, - °, )J + =
S0 2Tr, 5 - 2Mr, (o +r.
5 3 572

(vi) The flux in the sheath dielectric causes a
mutual impedance between the sheath and eartn and is given
by the formula

- ('! w Al 5/
7o = .1oge Ch/r5>
2T

(vii) The earth return path has an impedance which
may be represented by the following

Jd WA

Z = e ~[6.4905 - log. p + k q - j(l'ﬂ'~ k q)}
© oI © 4 |
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1
where q = (t/ p e

7 = frequency (iz)
D = q 4
.l = distance beftresn cabhles

e

k = 0,0013245 ( b + ¢ )

) = denth of iaducing cable (b <Q)

5

®

C = devth of induced cable (c<0)

K - I
4 . < !

’ s 1 3¢ ,_____/\/\/\____._,_
2 i 3neath %

D 1
I? Zn\. 4 ZSO 2 Zm

13 58 ZE o j\/‘\/\

INSNENETII NS NN Ly 2,470,425 7,,

N\

; ¥ 3 3 7 g P Vo B 314
siz. 4.2 Caple iapedances and equivalsnt circul

impedance par unit length is given by the najtrix

i

o
Ui

©3

ry _-
i -
- - 7
= =12 222
) . 54 e 7 . 7 ! ly D 7
wnere 4 = (i + 4 + 4 + 7 + 7 - L
aer 11 “c sc 3 se e T
fd 7 [ r
7 4+ e
- d ! £J
1.2 30 se 7
Gy = 4w 4 v 7
S 530 5 o



A.3% Shunt Adnittance

Zvaluation of the shunt admittancs matriz is guite
straight forward, The three conducting paths form
aquipotential surfaces and nay be represented as shown

below.

- - - - - ¢
_]__ core
€ T Yes
sheath
- L
£ YSe

TIHTIMTETETETESIR, earth

ig.A.3 Conmponent admitfances of the cable.

L5
3

loss 1is neglected, then the con-

@]

If the dielectri
ductor-sheatn and sheata-ecarth shunt admittances are

i s . ) I
readily given ty fhe evpressions

j w 2T &

) 1
Yes =
losge (rg/rl)
jow 2Tl 62
¥ =
se log, (R/rB)

If again, the earth is taken as reference, the shunt

9

adnittance matrix per unit length is ziven by

c s
© Los - Leg
¢ S
s -7 3 +Y{
cs cs 32
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3

The corresponding impedance matriv has thae fornm

‘1 1 2 2 ) 5
1 %211 Zio %33 4y3 Zys Zyg
[ 7 Is 4 ™~
1] f12 Zpp P13 b1z Zyg g
Y21 13 Tzt Bip Bys o Igs
< r fyd
So | %13 213 L1p Pop Pyg Zqg
("! 4 7
°3 | 215 235 Zyg Zys 2y Dqp
S5 i 215 L15 DByg Iy Dyp “22 |
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APPELDIZ B

cEDUCTION OF SYSTEM MATFIORS

Ceries Impedance and shunt admittance matrices nay
be reduced taking the sheath earthing conditions into

(]

account.,

#hen the sheaths are solidly interconnected and
earthed througn resistors at both ends of the najor section,
terminal voltages of the three sheaths become egual. Hence
the sheaths may be represented by an equivalent
sheath, The equivalent sheath has the same voltage with
the actual sheaths, but has a current gqual to the sum of
the three sheath currents. Hence bthe onder of series
impedence and shunt admittance natrices of the major
section is reduced from 6x6 to 4xi4,

‘he reduced matrices ¥ and Z have the following

Forna,
61 02 32 S
r o 0 .
( Y
Cl Yéc *ecs
= V. Y( -(
Y Co ) ce 0 ICS
I 3 -
8 | - ~Y -t 3
w “es cs cs 2o
. -t
and
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1 2 3
c, 11 %12 P12 T
” r >
Col 12 211 P10 Py
7
~ 4 7 7
C3l 212 Zip Ay Dy
Sl P f1e P Puu
wnere Isg = Yos +Yse

v

/[
\ L

v 220, ) /3

L4 e
Admittances and impedances shown above are mentioned in

Appendix A.

B.2 Sheaths Solidly Earthed

When the sheath earthing resistances are assumed to
be zero,a possible simplification can also be introduced
by eliminating the rows and colums corresponding to the
sheath in the series impedance and shunt admittance matrices
to eliminate the rows and colwms corresponding to the
sheaths from the admittance matrices, boundary conditions
are employed, so that reduced equivalent admittance mat-
rices can be obtained. However, to eliminate sheaths from
the impedance matrices, first the rows and columns corre-
sponding to the sheaths are removed from the inverted
impedance matrix and then the reduced matrix is re-inverted.
After the elimination of sheaths from the series impedance
matrix of a cable, given in Appendix A, the reduced impedance

matrix may be given as
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-1 T
Z Z

R C 3¢ 383 8¢

Using this equation the impedance elements corresponding

to the sheaths must be placed at the extreme rows and

columms in the original impedance matrix., In this case

impedance npatrix is given by,

' : ) ' 1
- 7, - 7
~1 11 -12 12
¥ 1 1
—~ n 7 7 f.’
& = © “12 “11 <12
1 1
e 7 7 7
% “12 “12 11
- L J
Whel'e [l 4—’? / - rg_-
bl = Eadi Loy
211 11 14/ fun
1 2 £
7 - 7 /S 7
212 = 44> S 4 fan

ced to glve

- -
) ' O /)
(Jl les
] = . 0 T Q
£ 2 c3
; Y
05 0 0 cs
N o}
In tais case, the product matrix P = 727 1s given bty
3 ! 1 Z 1 b
7
211 412 12
1 ! - t
[rd rr '
Po= tes | “12 411 12
t 1 J
Z Z Z
12 12 11
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APFENDIX C

DETEEATHATION OF BIGENVALUES AND

T T AR T AT AT O —h O ST T syave s T ANATYT A YO TR AC
BIGuVsCT0oRs OF ST IDTEICAL CEOSS-BONDED CARLE SYSTENS

)

In the sys

ct
[¢]

m studied, it is necessary to dsternine
eigenvalues and eigenvectors of the natrix product 27,
where Z and Y are series impedance and shunt adaittance
matrices, respectively, The eigenvalues of the matrix

P = ZY can be obtained bheing the roots of the character-

istic equation,

where U 18 fthe unift metrix naving the same order as F.
If P i3 a matrix of order n, then this determinant yields

th : . : , . . R
an n order polynonmial in wnich are the eigenvalues of

P. The eigenvector Qj corresponding to the eigenvalue?\i

can be evaluated from
rm 7\ Yo _
.L - . U Xy, * - O
N 1 / 64

The eigenvectors, thus found, form eigenvector
] k] 7 =
natrix ¢ of order n ¥x n.
The orders of series impedance and shunt admittance
matrices depend on the sheath earthing conditions as
shown in Appendix B. Therefore, when evaluating the

eligenvectors of the cross-bonded cable systens, sheath

eartaning conditions should be taken into account.
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C.1 Factorization Method for Systems with 0dd Symmetry{?l]

In systems with odd symmetry, there exists an odad
number of conductors, such that the o0dd conductor lies
on a reference plane perpendicular to the ground plane
and the other conductors are arranged in pairs at the
same vertical distances from the ground end at equal
horizontal distances on either side of the reference
plane. Flat and trefoil arrangements of single- circuit
cable systems, for example,are systems heving odd symmetry
among their conductors. TFor such a system, the matrix

P t{eakes the general form

- -
Pa Pb Pc
P= Pb Pa Pc
’Pd Pd Pe~

where P and P, are square matrices of order (n-m)/2,

n being the order of P matrix and m being the number

of odd conductors lying on the reference plane; PC is

a column matrix of order (n-m)/2 x mg Pd is a row matrix

of order m x (n-m)/2, and P, is of orderm xm .

. . R, R
Transformation matrices X and X will be

introduced so that

- ¢
Pa Pb
1 0 P + Pb PC
K L = Pl=
0 2Pd ng

. . -1 . .
The matrices K and K may be given as
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Ul Ul 0 . . U --Ul 0
K= |- 7 . - -
U Ul 0{; K = 3 Ul 0
0 0 U2 0 2U2
where U, and U, are unit matrices of orders (n-m)/2.
and m, respectively. The matrices P and Pl have the same

eigenvalues, and hence
N0 = AU)= ~L (p- AU
det (P = AU) = det (Pl - AU)= det(K ~(P- AU)X

The equation may be written as

-

Pa - Pb —7\Ul 0 0
det (E- ND)=det 5 _™ P
et (1“1 )=de 0 P_+P Uy s
- NU
- 0 2P, P, U,
- N\
] P+ P Uy P,
= det(P_ - P, -AU, ).det
a b 1 P P -AU
d e 2

From the fheory of matrix functions, the following equation

can be written

det (Pa - B —7\Ul) = 0
Pa + Pb --.7\Ul PC
det = 0
-
epd Pe U2~

Thus, the solution of an nth order polynomial has
been reduced to the solutions of two polynomials, each having
orders of (n-m)/2. The eigenvalues of these equations can

be evaluated using root-squaring method.
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The eigenvector matrix of F
§
KX

Q!

fin

where Q! , Q@ and Q]
(=%
orders of (n-m)/2, (n-m)/2 and m, respectively.

eigenvector matrix of P

or

N
M

1

0
0

0

%

% |

isnf the form

b
are eigenvector submatrices having

can be readily given as

Ul Ul 0
--xU:L Ul
0 0
[ At
Q a
== -Q!
8
0

~ r 0
C‘a

o1
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C.2 Sheatns Farthed Through Hesistors

earthed thrcough resistors

wnen the sheaths are solidly intercannectad and

at the major section termina=-

tions, the order of the r matrix is reduced, and may be

exp

g

ressed as

3
H‘
]

)

41

1o Pio
P11 Ppp
Pio Py
Pu1 P

!

=

14

P

14

P

44 |

Defining the transformation matrix K and its

X

i

b

1
.....2.. l
1 1
1 \
-5 1
0 0
S P K is
i.e.
11
.

O

L]

’

and K~ =

D
2
102
> 3
i 1

2
0 0

defined, [15] and nhas block

0

0

84

0

11 &

. -1
inverse X Tas

1]
5 9
3 0
3 o

0 1
diagonal

14

P
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which gives the eigen values directly as

N A, = Pppo- P

and the remaining 2 values being those of the (222)

matrix

Pyt 2 Fpp Py
5Py L

The modal matrix of Pl will have the form

1 0 0 0 ]
) 1 ) 0
’ll =
0 0 1 1
e 0 s N4
where
5 Pyq - (Pyq + 2Py, -7\4)
K = s and y = =
Py - ?\5 PM

Now the mcdal matrix of the original matrix is obtained

from

r b

1
1 -5 1l 1
@) 1 1 1

KIQZ = ]
-1 —xé 1 ]
| O 0 4 T ]




and its inverse is given by
r
1 1 .
= 0 -5 0
1 2 1
5 3 "3 0
=1
&y =
J 7 N -1
3(y-x) 3 (y-x) 3 (y-x) (7-%)
- - - 1
3(y-x) % (y=-x) 3 (y=-x) (y—K)J

C.3 Cheats

sarthed Solidly

Tor this special case, the eigenvalues can be found

by inspection,

Thus the three associated provagation con-

constants are evaluated from the equation
det (P - ki U) = O
N .
to glve . ;
! = 1 = Z. Z )
o =k, = T (21 = 2py
and . = Y (T 422
3 cc 11 12
$ i . . N
y & Z are given in Appendix B.
neduced impedance and admittance matrices nzave fthe

orders 3x3. The modal natrix of P = ZY and its inverse
is given by

1 T 1 0 X

1 -5 1 5 ‘ 5

1 1 2 -1

« =1 0 1 1 0 = ) 5 5

-1 1 1 1

] 1 - = =

- 2 5 5 p)




AFPENDIZ D

=4

PIECZ I8 FOURIER TRANSHOLIM O IEREGULAX TIME FURCTIONS

In seguvential pole closure analysis, during the
time interval between the first and second pole closure,
a certain amount of energy transfer takes place between
the energized conductor{s) of the syvstem and the other
floating conductor(s) , the coupled conductor(s) hus
acquire voltages., These voltaces are celcuvlated numeri-
cally in time domsin and to find their lourier
transforms, piecewice analysis is used,[IZ] .

Consider an irregular time function f(t) which is
divided into K strips of width t_ and f(t) is assumed
to vary linearly over such a strip, as shown in figure

(D.l.2a.)

The Fourier transform of the function beunded by
the points (n~1) % e et e 1L cen
I ( ) 0 n-1 n “o “

be found if this 1s decomposed into a series of step and

ramp functions whose transforms are readily obtsined.

Fig. (D.1.v.) gives a possible decomposition with two

step and two ramp functions. The macnitudes of gsteps
are f and - and the slopeg of the ramgs are Ar / t

nel n = = n G

and -~ Zlfn/ to .

Fourier transform of the unit step function is

1/ Cdw)

The transform contribution from all strips of £ (t) due
to all steps is given by
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7 () = ———l—-—-—— { r, - by [etw (-Ji?-»/to)]}

C
b

where fo is the value of f(%t) when t+ = 0 and fN is the

value of f(%, at t =N to’ ¥ being the number of strips.

(n-t, Nt
a
fn_]
ramp!t step!
-—slope=%f“—
nt, 9
(h-1)t sopa i
° slopa= i
E ]
\ramp 2
fa step 2
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The traznsform of a ramp function with slope m is
m/ ( jw)© , then the transform contribution of all ramps

cen be written as |

! N Af,
Folw) = = = z — ¢ exp [nj (n-1) v tJ
B & t
‘ n =1 ©
- evp (- Jnwt, )

the complete . transform of £ (%) is
PG = E () Ey ()

Assuming the function starts and finishes at zero,
the transform of the irregular time function f(t) will

have the form given velow,

2
FoGw) o= - (W) £+ Iy

1 [evf:‘p (-ﬂ;'sN“'--'tCQ] +

-1

; (fn'l -2f + £ 4 ) [exp (=3inw ty ﬂ
s + . _
n =1

In the calculation of power svstem transients due
to switching operations, a modified form of Fourier
trsnsform is vsed, and this is accomplished by replacing

(v,) with (w-J ob.
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