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ABSTRACT

FINITE ELEMENT APPLICATION
IN THE ANALYSIS
OF GROUND-WATER LOWERING
AND
WELL YIELD

KOSGAN, Glilgiin
M.S. in Civil Eng.

Supervisor: Prof.Dr. A. Altay Birand
February 1988, 96 pages

Partial differential equations may be used to describe a
large number of problems .in ground-water hydrology. Only a simplified
subset of general equations can be solved by analytic means, and

these often describe idealized situations that are Timited in application.

Numerical solution of these equations using computers offers a
logical.alternative. Ground-water modelling is needed for numerical

solution.

Ground-water modelling begins with a conceptual understanding
of physical problem. The next step in modelling is translating the
physical system into mathematical terms. These equations, however,
are often simplified, using site-specific assumptions, to form a

variety of equations subsets. An understanding of these equations and
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their associated boundary and initial conditions is necessary before

a modelling problem can be formulated.

In this study, the computer program which is written by the
thesis author is used to analyse.steady-state two dimensional
“ground-water flow in phreatic aquifers as a result of discharging
wells by using finite element method. The analysis is made under

three groups, namely,

(a) Horizontal plane flow analysis
(b) Axisymmetric flow analysis

(c) Vertical plane flow analysis

Also, a detailed example is given for the each type of ana]ysis and
the comparison of analytical and numerical solution in the case of

horizontal plane flow analysis is shown on a given example.

Key words: partial differential equations, ground-water modelling,
steady-state two dimensional ground-water.flow, phreatic

aquifers, finite element method.
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OZET

SONLU ELEMANLAR METODU KULLANILARAK
YERALTI SU SEVIYESININ ACILAN KUYULARLA
DOSORULMESI OZERINE BIR CALISMA

KOSGAN, Giilglin
Yiiksek Lisans Tezi, Ins.Mih.B61umu

Tez Yoneticisi: Prof.Dr. A. Altay Birand
Subat 1988, 96 sahife

Yeralt1 suyu hidrolojisi ile ilgili problemler genellikle
diferansiyel denklemler kullanilarak tanimlanir. Bu ‘denklemlerin,
uygulama alani cok kisitli ve indirgenmis bir bolimi i¢cin analitik

¢oziimler uygulanabilir.

Analitik c¢oziimleri olmayan durumlarin, kompliterier kullanilarak
yapilan nlimerik ¢oziimleri.buyiik kolayliklar saglar.  Nimerik ¢ozimlerde

ise sistemin modellenmesi.bliylik onem tasir.

Modelleme, prob1emin fiziksel ©zelliklerinin ortaya konulmasiyla
baslar; bundan sonraki basamak ise, fiziksel olarak. tanimlanmis modelin,
matematiksel ifadeler kullanilarak gosterilmesidir. -Olusturulan
‘denklemlerin. . , = c¢Ozimleri var..olan ..  denklemlerle
karsilastirilmalart. sonucu  gerekli - .basitlestirmeler yapilir,
ciinkii, denklemlerin ¢bzlilebilmesi. i¢in. tek degiskene bagli lineer

Ozellik tasimasi. gerekir. Formilasyona gecilmeden dnce ise, son
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basamak olarak, elde edilen indirgenmis denklem kiimeleri i¢in sinir

sartlari belirlenmelidir.

Bu tez .calismasinda, ‘hazirlanan kompiiter programiyla, yeralts
suyunun, kuyulardan su gekiimesi sonucu olusan, iki yonli durgun
akimi, sonlu elemanlar metodu kullanilarak iic alt grup halinde

incelenmistir. Bunlar sirasiyla,

(a) Akimin yatay diizlemde incelenmesi
(b) Akimin aksisimetrik diizlemde incelenmesi

(c) Akimin dikey diiztemde incelenmesi

Ayni zamanda, her grup i¢in detayli bir Ornek verilmistir. Bunlara
ek olarakda, yatay diizlemdeki akimin analitik ve nuherik cozumlerinin

karsilastirilmasi bir ornek lzerinde gosterilmistir.

Anahtar kelimeler: diferansiyel denklemler, yeralti suyu modellemesi,

iki yonli durgun yeralti suyu akimi, sonlu

elemanlar metodu.
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NOMENCLATURE

labels of global coordinate system
labels of element coordinate system

permeability of an aquifer

‘rate of flow(wlume of water flowing per unit time)

cross-sectional area of filter
length of filter
hydraulic gradient

piezometric head

specific discharge (volume of water flowing per unit

time through a unit cross-sectional area)
pressure

specific weight of water

elevation head

piezometric head or potential

(grad) operator.or (div) operator

angle between the horizontal and phreatic surface
label of .direction tangent to the phreatic surface
initial elevation of ground-water surface from
impervious bottom.

height of seepage 1ine at the well face

hglight “of water surface in the well

rate of precipitation -

density of water

specific volume storativity
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volume of water which is added.or substracted per unit
time and unit volume

Dirac delta function

transmissivity of aquifer

average constant transmissivity

deviation from average transmissivity

name of a dummy variable

rate of pumping

name of a constant obtained by K/fo

potential value at the boundaries of an aquifer

: label of domain

x and y coordinates of pumping well in analytic solution

: an operator (Kv?)

: eigen value

: label of domain in eigen function description
: name of .a dummy function of X

: name of a dummy function of y

names of constants

: name of a dummy constant

: name.of a dummy constant

: length . of side of a rectangular.domain in x-direction
: length of side of a rectangular domain in y-direction
: Green function

: name of a dummy constant

: functional name

: dummy variable names

: dummy function name
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N(x,y) : linear interpolation function
§ : value of a linear interpolation function
a,b,c : names of constants in the polynomial describing the
potential surface
A : area of a finite element
Y : gtreamline function
U. : generalized displacement at a point i

r : radial distance from a point to a well
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1. INTRODUCTION

Numerical models provide the most general tool for the
analysis of ground-water applications. They are not subject to many
of the restrictive assumptions required for familiar analytical
solutions. In spite of the flexibility of numerical models, their
mathematical basis is actually less sophisticated than that of

analytical methods.

In this thesis, one of the most commonly used rumerical
tecniqueg,which is finite element method is used for a special type
of problem of ground-water lowering with discharging wells. On the
other hand, understanding of this special case leads us to solve

variety of problems on the same field.

To develop a numerical model of physical system (in our case,
an aquifer), it is first necessary to understand how that system
behaves. This understanding takes the form of laws and concepts.
These concepts and laws are then translated into mathematical
expressions, usually partia]vdiffereﬁt%a] equations, with boundary
and initial conditions. In our case boundary conditions became more

essential due to. analysis of flow, independent on time (steady state).

Numerical solution of such a problem involves approximating
continuous (defined at every point) partial differential equations
with a set of discrete equations in space. Thus, the region of
interest are divided in some fashion, resulting in an equation or

set of equations for each subregion.



In the fo]]owing parts of the study, analytical and numerical
solution of the problem, will be discussed, and compared with a

number of examples.

2.1. Ground-water Motion

The following parts are partly summarized from Bear,J.,1972,
otherwise it is stated.

As part of hydrologic cycle, ground-water is always in motion
from regions of natural and artificial replenishment, to those of

natural and artificial discharge.

One of the main characteristics of ground-water motion is
that it occurs at very, sometimes extremely, low velocities. However,
because of the large cross-sectional areas through which this motion
takes place, large quantities of water are transported. The word,
flow, throughout the text will mean saturated flow. In saturated
flow, water completely fills the void space of the considered porous

medium domain.

In an aquifer, flow takes place through a complex network.
However, when dealing with flow in an aquifer, the microscopic flow
patterns inside individual pores are overlooked and some fictitious
average flow which takes place in thé porous medium comprising the

aguifer is considered. .

By doing so, the concept of a continuum is employed.
The reascon for employing the continuum appfoach in flow through a
porous medium is that it is practically impossible to describe in
any exact mathematical manner the complicated geometry of the solid

surfaces that bound the flow domain. Therefore, the values assigned



to a point in the continuum, or macroscopic level of descriptions,
.are averaged ones, taken over the representative elementary volume

centered at that point.

Homogenity and isotropy with respect to seepage of a porous

medium refer to its property named permeability (K).

A porous medium domain is said to be homogeneous if its
permeability is the same at all its points. Otherwise, the domain is
heterogeneous. If, the permeability at a considered point is
independent of.direction, the medium is said to be isotropic at that

point. Otherwise, it is anisotropic.

Zq;
K, L,
K, L,
K2 K3 Ly
K, # Ky m K, # K, L,
N

Figure 2.1. A layered aquifer

K L, Ir K.
3

X, Ly
X L A

! 1 \
£y Ly §
Kl Ll \ B ————— Kh
Ka Ly 4

Figure 2.2. Aquifer composed of alternating layers exhibits

anisotropy with Ky # Ky
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Usually thereare two. types of inhomogeneous aquifer domains.
Type 1, with a gradual change in transmissivity, and Type 2, with

abrupt changes across well-defined surfaces of discontinuity.

Figure 2.1 shows how a layered aquifer (Type 1 inhomogeneity)
may be considered as an inhomogeneous aquifer with a gradual

variation of permeability.

In many cases aquifers are anisotropic. This may happen, for
example, when the sediments comprising the aquifer are such (e.g.,
flat shaped mica particles) that when deposited, the resulting porous
medium has a higher permeability in one direction (usually the
horizontal one, unless later tilting of the formation occurs) than in

other directions.

An inhomogeneous material composed of alternating layers of
different textures (Fig. 2.2) is equivalent in its behaviour to an

homogeneous anisotropic medium.

However, in order for a stratified formation of this kind to
be considered as an equivalent homogeneous anisotropic aquifer, the
thickness of the individual layers must be much smaller than lengths

of interest.

2.1.1. Darcy's Law

In 1856, Henry Darcy investigated the flow of water=in vertical

homogeneous sand filters.



Figure 2.3. Darcy's experiment

Figure 2.3 shows the experimental set up he employed. From
his experiment he concluded that the rate of flow (e.g., volume of
water.per unit time), Q, is (a) proportional to the cross sectional
area A, (b) proportional to (h]-hz), and (c) inversely proportional
to the length L, these conclusions give the famous Darcy formula

(or law)
Q = KA(hy-hy)/L (2.1)

The lengths h] and h2 are measured with respect to some
arbitrary (horizental) datum level. Here, h is the piezometric head
and h]—h2 is the difference in piezometric head across the filter
length L. In the formula (h]-hz)/Lis treated as hydraulic gradient.
Denoting this gradient by I(é (h]-hz)/L) and defining the sﬁecific

discharge, q, as the volume of water flowing per unit time through

-5~



a unit cross-sectional area normal to the direction of flow,

we obtain

q = KI . (2.2)

Figure 2.4. Seepage through an inclined sand filter

Figure 2.4 shows how Darcy's law (2.1) may be extended to

flow through an inclined homogeneous porous medium column

Q=KA(¢;-0,)/L 3 q=K(61-0,)/L=KI 5  ¢=z4p/y (2.3)

where p is pressure and vy is specific weight of water and p/y

is called pressure head.

The sum of the pressure head and the elevation head is the

piezometric head ¢.

The experimentally.derived equation of Darcy's law (2.3) is
Timited to one dimensional flow of a homogeneous incompressible

fluid.



When the flow is three-dimensional, the generalization of

(2.3) is
q = KI = -K grad ¢ (2.4)

q is the specific discharge vector with components qx,qy,qZ in the

directions of the cartesian coordinates, and I =:-grad ¢ =Vd is the

hydraulic gradient, with components Ix=-a¢/ax, Iy= -30/3Yy,

IZ = -3¢/9z. If the medium is homogeneous and isotropic, the

coefficient of permeability K is a constant scalar, and (2.4) may be

written as
q, = KIX = ~K3¢/ ax qy= KIy = =K 3¢/9y (2.5)
q, = KIZ = -K3¢/9z

the vector q is everywhere normal to the equipotential surface

¢= constant.

2.1.2. Dupuit Assumption for a Phreatic Aquifer

In a. phreatic aquifer, water table serves as its upper

boundary.

Both ¢ and q vary from point to point within a phreatic
aquifer. In order to obtain the specific discharge q = q(x,y,z,t)

at every point, piezometric head ¢= ¢(X,y.z,t) should be known.

The Dupuit assumptions are the most powerful tool for treating

unconfined flows.



In most ground-water flows, the slope of the phreatic surface

is very small.

In steady flow, (Fig. 2.5) the phreatic surface is a streamline.
At every point P along this streamline, the specific discharge
is in a direction tangent to the streamline and is given by

Darcy's law
q, = -K d¢/ds = -Kdz/ds = -Ksin® (2.6)

since along the phreatic surface p =0 and $=z. As 6 is very
small, Dupuit suggested that sin8 be replaced by the slope

tang = dh/dx. The assumption of small 6 is equivalent to assuming
that equipotential surfaces are vertical (that is,¢ =¢ (x) rather
than ¢= ¢(x,z)) and the flow is horizontal. Then, the Dupuit

assumptions lead to the specific discharge expressed by
q, = -Kdh/dx K = h(x) ‘ (2.7)

In general, h = h(x,y) and we have

q, = -K3h/ax, qy = -K3h/3y; h=h(x,y) (2.8)

Phrestc surface

Observation well

&§x

S2=6h

jg/i

7777777 TR TTT77 e X

Figure 2.5. The Dupuit assumptions.
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Dupuit assumptions may be considered as a good appréximation
in regions whére © is small and/or the flow is essentially =

horizontal.

The advantage of Dupuit assumptions is that ¢=¢(x,y,z) has
been replaced by h = h(x,y), that-is, z does not appear as an
independent variable. Also, since at a point on the free surface,
p=0 and ¢=h,it is assumed that the vertical line through the point

is also an equipotential 1ine on which ¢=h = const.

The Dupuit assumptions cannot. be applied in regions where the
vertical flow component is not negligible. Such flow conditions
occur as a seepage face is approached (Fig.2.6a) or at a crest
(water divide) in a phreatic aquifer with accretion (Fig.2.6b).
Another example is the region close to the impervious vertical

boundary of Fig. 2.6a.

Vertical flow; horizontal water4able

flow

Figure 2.6. Regions where Dupuit assumptions are not valid.



2.2.Mpthematical Statement of G.W. Problem

The basic laws governing the flow of water in phreatic and
confined aquifers are introduced in the last three sections. It is
apparent that, as in equation (2.4), there is one equation with two
dependent variables: q(x,y,z) and ¢(x,¥,z). This means that one
additional equation is required in order to obtain a complete
description of the flow in an aquifer. The additional basic law is
the conservation of mass, which here takes the form of a continuity

equation.
-div (pq) = pS0 op/at (2.9)

The following treatment for describing the steady flow in

phreatic aquifers is used (Bear, 1972).

Equation (2.9) is the continuity equation which relates the
specific volume storativity So, to the elastic properties of the
medium and the water. It gives the mass of water added to the
storage (or released from it) in a unit volume of porous medium per
unit rise (or decline) of potential ¢. When the flow is steady
(that is, 2¢/3t = 0) and/or when both fluid and.solid matrix are

incompressible (that is, S. = 0 and p = const.), or assumed so(as

0
in an unconfined aquifer), Equation (2.9) reduces to

divg=0 (2.10)

The next step is to introduce an equation of motion (e.g., an

expression fer q) into the continuity equation (2.9). Darcy's law

-10-



gives the motion of ground-water with respect to the solid matrix,

but in (2.9). q is with respect to the fixed coordinate system.

Then, it should be taken account of the fact that here, a consolidating
medium - is considered and also, .it should be accounted that the

movement of the solid matrix with respect to the fixed coordinate

system.

But, for practical purposes, for the derivation of the

following equation, it is assumed that:

(a) The velocity of the solids is so small that q in (2.9) and
(2.10) may be expressed .by Darcy's law (2.4).

(b) K is constant.

(c) S0 and K are unaffected by variations in porosity due to

matrix deformability.
With these assumptions, (2.9) can.be written in terms of ¢.
-div q = div(K.grad¢) = S, ap/at (2.11)

For a homogeneous isotropic medium, (2.11) reduces to

2 2 2
Kv2¢ = K div(grad ¢) = K( ¢ + 0% , 9% )=so %9
, ax? ay? 922 ot

(2.12)

If the flow is steady, (2.12) reduces to the Laplace equation.

vip = 20, 3%, 3% (2.13)
ax? oy? 3z2 ’

-11~-



In the continuity equation (2.9), it is seen that for the
‘considered domain, no sources or/and sinks are inciuded. If sources
and/or sinks are present, they should be represented by an additional
term on the left-hand side of (2.9) expressing the rate at which the
mass of water is added or: substracted.per-unit time and unit volume of

porous medium.

If the sources and/or sinks are considered, (2.12) may be

written as

kv2p + Q=S 20 (2.14)

in (2.14) Q represents sources and/or sinks.

2.3. Fundamentals of Flow Through Porous Medium

Equations (2.11) to (2.14) are partial differential equations
with no information (e.g., the shape of the flow domain) related to

any specific case of flow through a porous medium.

Therefore, each equation has an infinite number of solutions,
corresponding to a particular case of flow through a porous medium

domain.

To obtain one particular solution corresponding to a certain
specific problem of interest, supplementery information is required.
This supplementary information should include the following

specifications:

(a) The geometry of the domain in which the considered flow takes

place.

=12~



(b) Values of all physical coefficients (e.g., K, S, Q).

(c) Initial conditions which correspond the initial state in the

flow domain.

(d) Conditions on the boundaries of the considered flow

domain.

Those requirements are necessary for the analytic solution and
as well as for the numerical solution of the problem of ground-water

flow through a porous medium domain.

In the equations (2.11) to (2.14), the dependent variable is¢
for which a solution is soughtiin the form of ¢ = ¢(x,y,z,t). Hence,

initial and boundary conditions should be specified in terms of ¢.

For the steady flow, baundary conditions become essential.
The various types of boundary conditions encountered in flow through

porous medium domain.

(a) Boundary of prescribed potential: The potential, ¢ , is
prescribed for all points of this boundary. A boundary of this
kind is an equipotential surface. Since the piezometric head is

the same at all points on this surface.

In the theory of partial differential equations, a.problem

with this type of boundary conditions. is called boundary value

probiem.

(b) Boundary of prescribed flux: The flux normal to the boundary is

prescribed for all points.
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A special case of this type of boundary is the impervious

boundary, where the flux normal.to the boundary vanishes every-where.

2.3.1. Steady State Flow in Phreatic Aquifers

The partial djfferentia] equations are so far developed for

the general case of flow thrdugh a porcus medium. These equations

are app]icab]e whenever the flow is three dimensional or two

dimensional in vertical plane. When the flow in the aquifer is

treated as two dimensional flow in horizantal plane, the governing
equations should be modified. To derive the necessary equations, a control
box should be considered . in a phreatic aquifer (Fig. 2.7). A rate of
externally applied flux 6==Q(x,y) positive should be added - when
vertically downward. This flux may be the net effect of natural
replenishment, artifical recharge, and pumping. All these inputs,or
outputs can be introduced as distributed. sources and sinks or as

point ones.

N Y L
WLWFm __*_ /’+t\7\/
et ] el ) L P

7o SRy <<;; a -;;7
T 777777777777 7R 77570 700 ot t:T—:J S
&x

x x—-.s._l.’ X +_-§.
2 2

~Figure 2.7. Flow in a phreatic aquifer
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If the sources and sinks are introduced. as point ones, the

b%féc delta function is used to describe them
Qxy) = ZQx;.¥5) 8 (x=%55 ¥-y;) (2.15)

The balance equation based on the Dupuit assumption of

horizantal flow 1is

8y [Qq(x- %",y)-q;((x > X,y) T+6x [Q}(x,y- &Y)- Q, (x.y + & )]

+Q8x8y=0 (2.16a)

Expressing Q' (n=T.grad ¢) and dividing both sides of (2.15) by sxsy
and letting gx,8y + 0,the equation for an inhomogeneous isotropic

aquifer, in which K = K(x,y),is obtained that

3
ax

9
3y

(K_h gz ) +

ah v, = .
4 (Kh—g )+ Q0 (2.16b)

For a homogeneous aquifer, K constant, it is obtained that

3
oy

ah
3y

p o0

N e =k

(h-y]+Q=0 (2.17)

This is the basic continuity equation for steady state ground-water
flow in a phreatic aquifer with a horizontal base. It is called the

Boussinesq equation.

Equation (2.16b) and (2.17), are non-linear (because of the product
h 3h/3x). The product Kh in (2.16) and in (2.17) represents the
transmissivity, T, of the phreatic aquifer. However, here it may

vary in space, as h = h(x,y).
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In order to have a solution, the methods of linearization can

be applied to (2.16).

= 0 - 0 ...
(i) Assume that T = T + T; T(>> TF)’ is the average constant
transmissivity of phreatic flow and % is a deviation from the

average. Then (2.16) reduces to the linear equation in h.

= 3%h _ _3%hy . & x_ oF
= 0 = .
T * 52 * 0 T=Kh (2.18)

(ii) From (2.17), also the following equation can be written

21,2 21.2 -
CAL H AT R, (2.19)
ax2  oy?

which is linear in h2..

The approximation in the linearization is justified according to the
relatively small changes in h(with respect to the total thickness h)

in most phreatic aquifers. Whenever the situation is different,equations

(2.16) and (2.17) should be used for the = problems.

In equations (2.16) and (2.17), h can be replaced by ¢(measured
from the same datum level as h). Therefore, the general continuity

equation describing the steady flow in porous'medium is reached.

2.4, Methods for Solving Ground-water Flow Problems

In the previous sections, the general continuity equation
of ground-water flow is put and the requirements in order to have

a solution is -shown.
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Then, by the aid of necessary information that is given,equations,
expressing the case (that is the steady ground-water flow in phreatic
aquifers as a result of externally applied flux) which s

interested, are developed.

To obtain h{(x,y) or ¢(x,y), the partial differential equation

should be solved for the . specified initial and boundary

conditions.

In principle, there are three methods for solving this kind

of problems.

(a) Analytical methods
(b) Methods based on the use of models and analogs.

(c) Numerical methods

In order toctoose the method desirable forthe problem, a1l

facts (e.g., time, cost) have to be considered.

2.4.1. Analytical Method

Analytical methods are superior to any of the other ones.
Because, the influence of each parameter can be clearly observed.

For one-dimensional cases, it is easier to derive analytical solutions.

In this part, the analytical solution of the prob]gm of
two-dimensional horizontal steady flow will be shown in_a phreatic

aquifer with the externally applied. flux at a point.
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Step I involves the understanding of the physical system. In place,
a infinitely extending phreatic aquifer, with the horizpntal

impervious layer underlying it, is considered.

The porous medium domain is rectangular, and, thereisa discharging

well at a point in the prescribed domain.

Step II 1is related with expressing the physical system in mathematical
terms, that is, in such a case, it is a partial differential equation

similar to (2.18).

This partial differential equation is classified as an elliptic
partial differential equation in mathematics. It is identical

to the Poisson equation that -has the form(Pinder,G.F.,Gray,W.G.,1977).

(3%2u/3x2) + (8%2u/dy?) = f(x,y)

Classification of a partial differential equation is necessary in
order to choose the way of using theorems effectively in the field of
mathematics. Hence; such a case can be described by the following

equation as

2 2
KL+ 30y o (2.20)
ax2 ay?

in this equation, ¢ 1is related to the piezometric head (measured
from the bottom of the aquifer), f is rate of pumping and, K is the
coefficient of permeability (or hydraulic conductivity). For the
sake of simplicity, K value 1in x-direction and in y-direction is

chogsen as being the same.
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-Step III is related to initial and boundary conditions of the
prescribed physical system. In (2.20) dependent variable is ¢, and
obviously, boundary conditions have to be given : in terms of ¢. In

(Fig. 2.8), two dimensional horizantal flow domain is shown.

b
b
¥ L ——————— ."F(Ka ya)
;
]
1
1
1
o B
£ a <

Figure 2.8. Two dimensional flow domain.

The boundary conditions are:

for x=0 , 0<y<b ; ¢=¢o
for x=a , 0<y<b i ¢ =do
for y=0 , 0<x<a ; ¢ ; do
for y=b , O<x<a ; ¢ do

which describes an infinitely extent aquifer.

Step IV is the solution; in this case the method which is called
FINDING GREEN FUNCTION BY THE METHOD OF EIGEN FUNCTION EXPANSION

is used (Jackson, 1962), as can be seen in the following treatment:

In the equation (2.20), f(= f(xo,yo)) is describing the
source term. If 4t is dealt -~ with a point source or sink, Dirac
delta function should be used, because in this way, a point source

or sink may be included in.description of the source term.
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The pirac delta function has a property that;
é g f(x,y) 8 (x-xo) S (y—yo) dxdy = f(xo,yo)

Therefore, (2.20) can be written as,
-KV24 = - -
Kv2p = fo & (x-xg) & (y-y,) (2.21a)

by dividing the both sides of (2.213)with fos it is obtained that,
Kv2p = 8(x-x)) & (y-y,) (2.21b)

where K is obtained by dividing the original permeability K by

source strength fo.
Let's call that L is a operator as,

L = -kv?

and with the knowledge of eigen functions, where

Lu=2Au , ul=0
r
it can be written as,
-K Uy s -K“uyy = Au (2.22a)

by the method of separation of variables,
u(x,y) = f(x) g (y) (2.22b)

substuting it in (2.22a), it is obtained that,
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-Kf"g - Kfg" = Afg (2.22¢)
by dividing both sides of (2.22c) with fg, it is obtained that,

LA M (2.22d)
f 9

it is known that, on the boundaries of the interested domain u(x.,y)

has a value 0. Therefore it can be written as: ..

u(x,0) = f(x) g(0) = 0 g(0) = 0
u(x,b) = f(x) g(b) = 0 g(b) = 0
u(0,y) = f(0) g(y) = 0 S f(0)=0
u(a,y) = f(a) g(y) = 0 f(a) = 0

in the equation (2.22d), in order to get A value, -kf"/f should

have a constant value, and as well as -Rg"/g.

If the first term is analysed, in which

There is three possibilities for the constant C:

i) ifC=0 s f(x) = Ax + B
(0)
f(a)

] u
o o
= oo
v

i ]

i

o
o
=

u

o

Therefore f(x) = 0, it is a trivial solution.
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Saying C=-n2, n#o
' —Ix - ——E— X
2
f1 -0 f=0 and f(x) =Ae’K 4Be ¥
K
1 1 A 0 A=0
na_ __mb = : B=0

It is trivial also.

iii) IfC> 0
Saying C=n? nto0

! +-7%i f =0 and f(x)= A sin( 7%—x) + B cos(7%— x)

£(0)
f(a)

n
o

B=20

A sin(—12.)

VK

Assuming A # 0, then ;%3~ =nm , n=1,%2....

fl
o

I}
o

Any, n =Mk o923
n
a
n
Therefore, fn(x) = sin( ;2 x) = sin(-07 X), n=1,2,3 (2.23)
a

In a similar way, for g(y), we can find a constant,

Ny = mn;K s m=1,2,3.....
Therefore,
g, (¥) = sin( :” ¥)m=1,2,3... (2.24)
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And finally, the equation for ti _(x,y) is obtained, by substutiting
(2.23) and (2.24) in (2.22b).

= eip (DT ., mm n=1,2,3....
Upp (%¥) = sin (= x) sin(—==y)

m=1,2,3 .... (2.25)
At this stage, it is known that,
Lu = Au =6(x-xo) $ (y-yo) (2.26)
hence, an expression is obtained for the right hand side as,

6(x-x°) § (y-yo) =n°§-°] m§1 am sin(ﬂgx) sin(@bfy) (2.27)

by using the property of Dirac delta function, where,

a b
(f)f S{x=-x ) S (¥-¥, ) s1n( x) s1n(———— y)dxdy =
sin(—= X,) sin( Ll ¥o)
if those integrals are solved,
a a
J sin NT_ x dx =Lf (T-cos Znm X) dx= 2
0 2 0 a 2
b
;osin? T ygy = B
0 b 2
therefore,
ab _ ... nmw ., M
am = sin( X)) sm(T ¥,)
and, T ow Com
sin(—5— X,) sin(—p— ¥,)
am = (2.28)

ab/4
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by substuting (2.28), in (2.27), it is obtained that;

oo 0

% sin(AL A )s1n( )s1n( )s1n( ¥,)
a

4 X
n=1 m=l

S(xX,)8(y¥,) ==

(2.29)

As stated, in equation (2.21b), ¢ represents the piezometric head
(measured from the bottom of the aquifer), but for the use of eigen
function expansion, u(=0) on the boundaries of the interested domain
is defined. So, there is a difference between the datum levels.

In order to eliminate this difference, ¢ in(2.21b) is called as
G(x,y,xo,yo) (which represents the drawdown, measured from the top

of the water table) that is the green function which is looked for.

Hence, (2.21b) becomes,
-KV2 G = §(x-x,) § (y-¥,) (2.30)

in which, G is a variational expression that is equal to the product
of a constant with u__(x,y).

(o]

G(Xs¥sX5Y,)= L2 Z] A, s1n( x) sin(® y) (2.31)

If the L(=-RV?)operator is applied to the G that is defined in
(2.31), the left hand side of equation (2.30)is-obtained. After

putting the:righthand side of (2.30) which is defined as (2.29),

the following equation is obtained,

K n°§°] m_'g] A (- (&ra_wr)zsm( )sm( o)+ (~ )( ™2 s1n( )s1n( Ty)}=
) glm;; aﬁ s1n( X ) sin 1T x) 51n( LIV) (2.32)
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the simplified form of (2.32) is,
~ n ,]T - 4 .
KA - [c: ) ] sin(lT —x o) sin(®= - T yo)  (2.33)

therefore, the constant A~ can be written as,

4 s1n(———x ) s1n( y )
A = (2.34)

nm
b
: KIRDs (@m)]

after, obtaining the constant Anm’ the final equation showing the
G (or, in other words, drawdown) can be written as,
s1n( LIS )s1n( )
G(Xay,xbkyd);§gf‘§. =t sin(2 - BT x)sin(mT, - y)
[( L) + (50 ]

(2.35)

in which, R is equal to K/fo.

~

In order to find the piezometric head values over the domain, the

following form of equation can be written,
O(Xs¥sXsYo) = 0y &~ G(X2¥,X,aY,) (2.36)

by using the equations (2.35) and (2.36),  the exact location of

phreatic surface can be found on a point with:the coordinates

(x,y), as a result of point sink or source located on (xo,yo).

It is even possible to solve aralytically certain steady

state problems in the vertical plane involving a phreatic surface.
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Such a problem is classified as a free boundary problem, and it

requires a deep knowledge in mathematics.

Unfortunately, in most regional studies of practical interest
an analytical solution is not possible, mainly because of the
irregularity of the shape of aquifer boundaries. Also, in most cases,

the considered flow domain is inhomogeneous.

As a consequence, analytical methods are seldom. applied in

the practice of solution of regional problems.

2.4.2. Numerical Methods

Computer based numerical methods are practically the major
elements for solving large scale ground-water problems encountered
in practice. 1In recent years, parallel to the advance in computer
technology, much effort has been devated to the development of the
methodology and techniques for numerical.solution of partial
differential equations that govern the flow of water in aquifers of

various types.

There are mainly two methods of numerical.solution which are

commonly used for ground-water flow problems.

(1) Finite Difference Method.
(2) Finite Element Method.

In the following part, comments will be made on the Finite

Element Method, and the method of application will .be shown on the specific

problem which + 1is interested.
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2.4.2.1. Finite Element Method

This paragraph is partly summarized from Christian, J.T.,
1980. Since Zienkiewicz, Mayer, and Cheung(1966) and Taylor and
Brown(1967) first demonstrated the application of the finite element
method to steady-state flow of incompressible fluids in saturated
porous media, it has been clear that this powerful tool permits one
to solve a very large variety of practical problems. Its popularity
is due to many advantages it offers compared with other solution
procedures. For example, a finite difference procedure yields
solutions at only fixed number of points in the domain of interest,
and. may require additional interpolation for solutions at other
points. Also, the finite difference method becomes cumbersome for
handling irregular boundaries and nonhomogeneities. In contrast,
the FEM recognizes the multidimensional continuity of geologic
masses, and does not require separate interpolation for extension to
other points. The use of separate approximating models for each
finite element permits greater flexibility in taking masses with

extensive nonhomogeneities and complex geometries.

In the finite element method, the objective is to transform
the partial differential equation into an integral equation which
includes derivatives of the first order only. Then the integration
is performed numerically over elements into which the considered

domain is divided.

The method is often presented as an application of the
calculus of variations. The starting point is an integral (= a

functional) (Bear,J., 1972).

I=5fé F(Xs¥sU1,suz, dU1/3%%, dU1/dY, dU2/3X, dup/dy)dxdy (2.37)
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where D nenotes the considered domain, x,y, are two independent
variables and ui = ui(X,y), uz = uz(x,y) are two dependent ones. It is
tried:to make I stationary, i.e., to determine ui. and u; which will
make I.an extremum. This is done by requiring that the variation

(or differential) of I vanishes, i.e., 6I =0.

Hildebrand, 1962 and; Gelfand and Fomin, 1963 have shown that
this requirement holds if the following partial differential

equations are satisfied (Bear,J.,1972).

oF
X duy dy Uy y du,
» F oF

e e Ay . =0 (2.38)
axX au2x oy auzy 8u2

where subscripts x and y denote 'differentiation with respect to x

and y, respectively (uix = Bu]/ X, etc.)

Equations (2-38) are called the Ewler equations associated

with (2.37).

In these equations, Ups Upys Ups u2x’ x and y are treated as | .’
independent variables. These equations are the necessary conditions

for I to be stationary.

The finite element technique is based on the solution of
variational problem in its original form (2.37). Once the differential
equations describing the problem have been formulated, the functional is
sought . for which they are the Euler equations. Then, instead of
solving the differential equation, the minimization problem can be

solved. .
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In our case, satisfying the partial differential equation.

(K, 22y + 2 (Ky %y =g in domain D (2.39)
9X X 3y 3y

that describes steady two-dimensional flow in a nonhomogeneous
anisotropic porous medium (x,y principal directions), can be shown

to be equivalent to minimizing the functional
= 9¢_ 2y 3 \2_ (5
I=— S[R3+ K (=2-) - Q¢ ] dxdy (2.40)
2 X oy

Next, the solution domain, D, is divided into elements. It is
assumed that the value of the dependent variable varies in some manner,
for example linearly, over each element. This means that the value
of the dependent variable at any point within the element is uniquely
determined by the values of the variable at the nodes of the element

and the position of the point under consideration inside the element.

The contribution of each element to the integral (2.37) can be
expressed in terms of the values of the dependent variables at the
nodes of the element and its geometry. By differentiating this
expression with respect to the dependent variable at each node, and
adding up the resulting equations for all the elements in the field,
a set of simultaneous equationsare obtained in which the unknowns are
the values of the dependent variables at the nodes, and the
coefficients are functions of the coordinates of the nodes. The

right-hand side includes the source term.

Boundary conditions are transposed from conditions along sides

of an element to conditions at its nodes.
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The finite element technique uses the following procedure:-

(a) For the partial differential equation which governs the considered

flow, derive the associated variational problem.
(b) Divide the field into elements. .
(c) Formulate the variational functional within an element.

(d) Take derivatives with respect to the dependent variable at all

nodes of the é]ement.
(e) Assemble the equations for all elements.
(f) Express the boundary conditions in terms of nodal values.
(e) Incorporate the boundary conditions into the equations and solve.

(h) The shape and size of the elements is arbitrary. Different
shapes (triangles, rectangles,etc.) can be used simultaneously.
Smaller elements can be chosen in regions where the répid
variations in the properties of the materials, or in the values

of the dependent variables.

The above steps are examplified by considering the flow
described by (2.39) and (2.40) * . 'The flow domain is

divided into elements, for example, triangular element as shown in

Xp~-—--

-

)
'\.?.(
b

Figure 2.9. A'triangular element.

*The following concepts and derivations are written.by using the references
Cheung,Y.K. and Yeo, M.F.,1979; -Brebbia,C.A. and Ferrante,A.Jd.,1986.
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¢ can be approximated by the expression

¢ = I oM (2.41)

where ¢, are the values of ¢ at the point (xk,yk) and Nk are the

linear interpolation functions with the property
N (xgs¥g) = 69 (2.42)

The Tinear interpolation functions are polynomials which are
piecewise continuous over subdomains called finite elements.There is
a correspondence between both the number and location of nodal points
and. the number of primary unknowns per node in a finite element and
the number of terms used in the polynomial approximations of a
dependent variable over an element. In two-dimensional second-order
problems, the correspondence between the number of nodes (which is
equal to the number of terms in the approximating polynomial) and the

degree of the polynomial is not unique. For example, the polynomial

o(X,y) = a + bx + cy (2.43)

contains three (linearly independent) terms, and it is linear in both

x and y. On the other hand, the polynomial
d(x,y) =a + bx + cy + dxy : (2.44)

contains four (linearly independent) terms, but it is also linear in
both x and y. The former requires an element with three nodes (with
one primary unknown per node) as in our case, the latter requires

an element with four nodes.
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In order to derive the linear interpolation functions for
a three-node triangular element. Consider the linear approximation
(2.43). The approximation (2.43) should be rewritten as it satisfies

the conditions

O(Xps ¥y) = ¢k =1,2,3 (2.45)

where (xg»¥,) (k = 1,2,3) are the (global) coordinates of three nodes
of the triangle. The three constants can be determined in equation
(2.43) in terms of ¢, from equation (2.45):

¢1 = ¢(X1.¥1) = a + b Xxi+ c yu
b2

d3 = ¢(X3s¥3)

¢(X2,¥2) =@ + b X2+ C ¥2 (2.46)

a + b X3+ C Y3

{]

In matrix form

Cbl 1 X1 A1 a
d2= |1 X2 Yya2f|b (2.47)
¢s 1 xs3 Yys||c

Note that the nodes are numbered counterclockwise. Solving equation

(2-47) for a, b, and c, we obtain

1
& = =55 [91(X2ys = Xsy2) + ¢2(Xsy1 = X1¥3) + Ps(X1¥2- X2¥,)]

1

Ton [¢1(y2 = Y3)+¢2(Ys =¥1) + 610y -Y,)] (2.48)

o
n

1
—  [01(xs =X2) + ¢2(X1 -X3) + ¢3(x2 -X1)]
2A

O
1]
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where A 1is the area of the triangle,

1 X1 Y1
2A = T X2 Y2
1 X3 Y3

(X2¥3 = Xs¥2) + (Xs¥1 = X1¥s) + (X1y2 - X2¥1) (2.49)

Substituting for a, b, and ¢ from équations (2.48) into equation

(2.43), we obtain

o(x5y) = ¢1 Na(x,y) + $2 Ny(x,y) + P3 Ny(x,y)

N
oy KOk (2.50)

where Ni are the linear interpolation functions for the triangular

element,

1
Nk = EZ_ (a + bkx + cky) k=1,2,3 (2.51)

and for the node 1 (or i), N = 1/2A(a1+b1x-ﬁcly)(=1/2A(ai+biX+ciy))

and the constants ass bi’ and c; are the following

)]
[

i~ Xm T XY

i~ m (2.52)

For example, a» 1is given by setting i =2, j=3 andm=1 in

equation (2.52):

d2= X3¥1 - XiYs



The Tinear interpolation functions Ni are shown in Fig. 2.10.

Also Ni has the property )
Nk(xz’yz) = Gu k.2 =1,2,3
; N 1
x =
k=1 K
3 3
1) N,
, 0 1
1t
2 2

Figure 2.10.

Linear interpolation functions

Equation (2.50) determines a p]ané.surface passing through ¢1, 5¢2

and ¢3. Hence, use of the linear interpolation functions Nk of a

triangle will result in the approximation of the curved surface

¢(x,y) by a planar function

3
f ¢ N (see Fig. 2.11).

A k=1
e Bix,y)
(e)
P (xy)= 28N
ﬂfé ae
Ty
, —7"\\ -,,-§
,"\/ll\\ ' \\{
71 A -
< '/, \>") 7 ‘h Finile element mesh
R SN A the domaia
T~ ~a/ / - O«F e
N AT
AR AN VA

Figure 2:11.' Representation of the curved surface ¢{x,y) by

lTinear interpolation functions of three-node
triangular elements.
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After, deriving the Tinear interpolation functions. The

derivatives in equation (2.40) can be carried out.

k
gg [ 8m] (g =5 | k] {cpe}

aN
20 [——] {93 = r[CkL {9} (2.53)
dy 3y k=

3
{0} = [ ¢ ]k=1
Hence (2.40) may be written as

2L _: bbby dxdy+K), c. 1C4€45C4Cph- lffdxdy
3&;’, —Kx i [b,_i,b_ibj,b ] {¢ }ff xdy [ m‘} ¢
3

2
4A2 (K, [b bibsabiby] + Ky [eg.c4€5.¢56] ) {9} (2.54)

In (2.54), the term corresponding to the source doesn't appear. If

the source term is included, the following equation is obtained

¢ Q; -
—‘i; (Ky [ D32bsbsubiby T+ Ky [eacse; cs¢,] )} g} - [Q; (2.55)
m Qm

where Q values correspond to the point source and/or sink values at
the nodes of the element. If these are inputs to the aquifer they have
a plus sign, otherwise they have a minus sigg. Also, if they act on
the nodes, their values are applied directly, otherwise the source

should be distributed to the nodes of the element by interpolation.
(see Example 2-1).
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Example 2.1 (Ground-water flow or seepage; Reddy, 1984). The
governing differential equation for a homogeneous aquifer with

flow in the xy plane is given by (2.39), which is

_(K

2 2 -
< 2, Ky 2% )4+q=0 in domain D

ox2 ay?

it is apparent that Kx and Ky are the coefficients of permeability
(meters per day) along the x and y directions, ¢ is the piezometric
head, measured from a reference level (usually the bottom of the

aquifer), and § s the rate of pumping ( m3/(day.m3)) .

Consider the problem of finding the lines of constant potential
é in a 3000 m x 1500 m rectangular aquifer D(see Fig. 2.12) bounded
on the long sides by an impermeable material (e.g., 99/3n = 0) and
on the short sides by a constant piezometric head of 200 m(¢o=200 m).
Further, suppose that a river is passing through the aquifer,
infiltrating the aquifer at a rate of 0.24 m3/day per unit length
(meters), and two pumps are located at (1000,670) and (1900,900),
pumping at a rate of 6] = 1200 m3/(day.m3) End 62 = 2400 m3/(day.m3)

respectively.

A mesh of 64 triangular elements and 45 nodes is used to model

the domain (see Fig. 2.13a).

The river forms the interelement boundary between the sets
(33,35,37,39) and (26,28,30,32) as elements are shown in Fig.2.13(a).
Note that meither pump is located at a node. This is done
intentionally for the purpose of illustrating the calculation of the

generalized forces due to a point source within an element. Tt should be
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calculated that the generalized force components due to the distriputed
Tine source (e.g., the river) and the point sources .(e.g., the pumps).
Calculation of the element coefficient matrices should be a routing
task by now; Let us concentrate on the calculation of the generalized

forces from the given information.

I‘ 1000 m ___* Imfer‘ﬂ‘ﬂﬂ»“& Baundar:’, BG/B;O

- (Ll Ll L Ll LLLLLLLLL L L L 4l £t LR LLLLLLLLLLLLLL VIII VIR T ININININTYY]Y)

2

€ ¢ <t = Constant

$ ¢ Pogz  ° \ (1900, 900) weler hesd
o~ .

] 1000, 630) @-200m

River, 0:2% r/(day )

RX= 2. Ky = l-(—o M/dQJ

2000 m =

1
Imparmeable [mmdz.-a, 9 6/63=O

Figure 2.12. Geometry and boundary conditions for the

ground-water flow problem of Example 2.1.

First, consider the line source.The river can be viewed as a
scurce of constant intensity, 0.24 m3/(day.m3). Since the length

of the river is equally divided by nodes 21 through 25 {into four

parts), the contribution of the infiltration of the river can be

computedat each of the nodes 21 through 25 by evaluating .the integrals
(see Fig. 2.13(b)):
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Node 21 (0.24)?1(]) ds
" (1) h (2)
Node 22 s (0.24) ¥t ds + 1 (0.24) ¥y ds
0 0
" (2) " (3)
Node 23 s (0.28) v+ ds + 4 (0.24) ¥y ds  (2.56)
0 0
h . h
Node 24 J (0.24) w2(3) ds + s (0.24) w](4) ds
0 0
h (4)
Node 25 : 7 (0.24) Yo ds
0
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Figure 2.13. Finite-element mesh, and computation of force components
for the ground-water flow.(a) Finite-element mesh of
triangular elements.(b) Computatwn of g]oba] forces due
to infiltration of the river.(c) Computation of global
forces for Pump 1, located inside element 19.
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For constant intensity q, and the linear interpolation functions
¥](s) =1 -s/h and ?2(5) = s/h, the contribution of these

integrals is well known:

h qoh 1 2 2.3
h = — {(1000) + (1500) ¥} q0=0.24
4

(2.57)

Next, the contribution of the point sources is considered.
Since the point sources are located inside an element, the source is
distributed to the nodes of the element by interpolation. For example,

the source at pump 1 (]océted in element 19) gives

6](x,y) = -1200s(x-1000) s (y-670) (2.5¢a)

where §(.) is the Dirac delta function as given by equation (2.15).

We have

di = £ Q(x.y) Nydxdy = -1200 Ni(1000,670) (2.58b)
area

The interpolation functions for element 19 are (in terms of the

coordinates x and y; see Fig. 2.13(c)):

2A

(375)2

A= —%?-(375)2 a1= X5¥3 = XY,

-375(125)

o
N
I
*
w
<
—
x
—
<
w
n

a3= X1¥p = Xp¥q = 375(125)
by= ¥, - Y3 =10 (2.59a)
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b2 = y3 = y_l = 375
b3 = y] yz =_375
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C2=X]-X3=]25
250

x
N
|
b3
]
[i]

Where x =x - 750 and y 375, and therefore,

i
<
]

N, (250,295) = 0.2133 N,(250,295)=0.595 N;(250,295)= 0.1911

(2.59b)

Similar computations can be done for pump 2. Thus, the
known generalized displacements (meters) and the nonzero forces (m3/

(day.m3) are given by

Up = Uy = U3 = Uy = Ug = Upy = Upp = Upg = Upy = Uy = 200.0
Fpy = 54.08 Fpp = Fag = Fpy = 108.17 Fps = 54.08
Fip = 255.6 Fig=299.2  Fig = -716.2  Fog = ~1440.0
Fpg = -410.4 Faq = -549.6

Global forces at nodes 6 through 11, 14 through 17, 19, 20,
26, 27, 30 through 33,.and 35. through 40 are.zero. This completes

the data generation for the finite-element modeling of the problem.

The solution of the equations.(on a computer) for the unknown
Ui(piezometric heads .at the nodes) is shown in Fig. 2.14. The
greatest drawdown (of water) occurs.at node 28, which has the largest

portion of the discharge from pump 2.
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Figure 2.14. Plots of constant piezometric head for the

ground-water flow.

Of course, in a standard finite-element analysis one should
see that any point sources in the pr&b]em are located at a node
point. In such a case, it's pumping rate can be used directly in
the generation of the global force matrix in coincidence with the

node number which it is located.
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3. CASE STUDIES AND COMPARISONS BETWEEN THE NUMERICAL
AND THE ANALYTICAL SOLUTION

In the previous section,the comments are made on the physical
system of a phreatic aquifer, and .the derivations of the partial
differential equations describing the steady flow through the porous

medium domain. are shown.

Also, the finite element method is explained in the last part.
Essentially, the continuous problem is divided into a number of
discrete elements and approximate solutions for the unknown potentials
are found at the nodes of the elements. To reach the solution, we

have to solve the following system of equations(Desai,C.S.,1972).

[CAxn [¢]1xn= [f]]xn (3.1)

[ C] : global coefficient matrix which is obtained from the relations
between the coordinates of the elements, and material

properties.
[¢ ] : unknown potential matrix

['F] : Toad matrix including the boundary conditions of prescribed
potentials, and the source strength values of the

corresponding nodes.

[11] : number of nodes

The physical system of an aquifer is usually simplified for

the numerical analysis. For example, the aquifer bottom is taken as
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approximately horizontal in many cases, also,.for the permeability of
the aquifer,some:assumptions are made to.include the effect of clay

packs etc.

Where the two dimensional flow is considered, the system can be
analyzed horizontally or vertically. So, the following three types of

approaches will be.adequate to handle two dimensional flow.

(a) Horizontal plane flow analysis

(b) Axisymmetric flow analysis.

(c) Vertical plane flow analysis

3.1. Horizdntal Plane Flow Analysis

This type of analysis is desirable for a homogeneous and
isotropic aquifer in which the aquifer properties don't change
along the direction vertical to the analyzed plane, and the saturated

thickness of it is approximated as constant.

It is remembered that, there is an analytical solution
describing the steady flow in such a aquifer (See,Section 2.4.1).
Therefore, the reliability of the numerical soluticn can be illustrated,

by comparing with the analytical solution.
Example 3.1.

A well is pumped from an unconfined aquifer surrounded by a
constant head boundary as shown in Fig.(3.1). The values of aquifer

properties are given in the Figure.
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Figure 3.1.

Definition sketch for Example 3.1.

To take the advantage of symmetry, a quadrant of the flow 1is

analyzed rather than the entire flow field. There is no flow across

the streamliines A

and B, and therefore, the stream lines A and B

can be represented by impermeable boundaries (see Fig. 3.2)(McWhorter,D.

and Sunada, D.XK., 1977).
Y
T Steeam bine A o e ol wall
S Impervious
? opstanrt head
:3 Yceam line % mm  Copsla ea
S —_—

Figure 3.2.

Schematic of boundaries of equivalent domain

for Example 3.1.
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The mesh used for the problem is shown in Fig.(3.3). The end
coordinates of the generating lines, the number of intervals which
the each one is divided, and the weighting factors that adjust the

interval lengths, are given in Table (3.1a).

The aquifer properties, corresponding to the boundary nodes of
the grid (Fig.3.3), are given in Table (3.1b). Equation (2.55) should be
used to develop the matrices in (3.1). For this processes, the
computer program in the Appendix A is used. After the program run is
completed, the potentials or piezometric heads on the nodes of the

flow domain are known.

By using equation (2.35), we can calculate the drawdowns, on
the points of interest, analytically. Figure (3.4) shows the radial
distribution of drawdown due to numerical and analytical solutions,
with the properties of the domain which is given and when the steady

state is reached.

As can be seen, excellent results were obtained. Only, at the
well face and near to it, there is a difference. This occurs due to
Dupuit Assumptions, and the errors involved during numerical solutions.
You can find the detailed explanations on these subjects in the
Discussion and Conclusion part. Another example dealing with this

type of analysis is given in the Appendix B.
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& // 55
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¢ 53 Total ¥ o} element>: 84
3 52.
3
4
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1 V
> I
4 ko] »
8 15 22 29 3643 X
x x m™ R Y "W I
Figure 3.3. Schematic of grid overlay for Example 3.1.
G.L. Nom: I I pud pAva P4 pran prasy prairs
Baginning cood]  (0,0) (500,0) (300,0) (1000,0) | (1100,0) (1200,Q) (1225,0) | (4250,07
End coord. (0,1250) | (500,1250)| (800,1250) | (1000,4250) | (1100,1250) | (1200,1250)} (1225,1250)] (1250,1250)
Nom. of int, [ 6 6 § é 3 6 6
\Ueijkf;r}s fact 1 1 1 1 1 1 4 1
(a)
Impermeable 14 21 28 35 42 49
bovndacries where
2¢/3:j=0 3B/3%x=0 51 52 53 54 55
Constant 1 2 3 4 5 é F
‘-\eael boundac‘l‘e.s
where @& =200m 8 15 22 29 36 43 50

’Pumpfns well

Rate ;375 Ma/da‘j-mz
Location : Node 56

Permeabilities

Kx =40 M/A“,j
Ky = 40 m/day

(b)

Table 3.1. Data for Example 3.1, (a) the mesh data™, (b) the data
about aquifer characteristics.

*The presented data is prepaired according to the needs of the computer

program included in Appendix A.

mesh generation (See, the description of it in Appendix A).
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3.2. Axisymmetric Flow Analysis

With the finite element method, problems of axially symmetric
flow in the (r,z) plane can be solved as easily as problems of plane
flow. The minimized functional corresponding to axisymmetric case

(e.g. flow towards a well) can be written as (Bear, 1972).

1o, 2k, 20)0] dre (3-2)
D ar 3z

Equation (3.2) is identical to equation (2.40) describing the
horizontal plane flow. Ifr axis is assumed as x, and z axis as y,

the coefficient matrix calculation shown by equation (2.55) can be
used, but obviously, the effect of extra term r in (3.2) should be
accouﬁted. This is simple, because by multiplying the coefficient
matrix which is obtained by (2.55), with r, the modified coefficient
matrix that is used to solve axisymmetric flow is obtained. The term

r describes the distance from the point under consideration to the
well. When more than one well acting in the system, the multiple effect
of wells should be accounted on the points which are considered. For
this process, by using the superposition principles,.an equivalent
radius, r_, should be calculated.

e

In order to get a solution, it is apparent that, the boundary

conditions of the flow domain shouldibeddescribed. . In this type of
analysis, a free surface which makes the upper boundary of the

aquifer is involved.
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The condition to.find the free.surface is simply that at any
point on it, the potential head ¢ is equal to the free surface
elevation head H from a reference plane. Therefore, when the steady
flow is considered either axisymmetrically or vertically,the iteration

technique izis  used (Connor and Brebbia,1980).

For this, a top flow line is initially guessed and the flow
domain is divided into elements. After each iteration the values of
¢ at the free surface are compared with the elevation head (in our
case, this process is simply done, by directly comparing the elevation
of generating lines with the potentials obtained at the upper end
nodes of the generating lines), if they are different the mesh is
moved to satisfy the condition ¢ =H. The solution for the free surface

is reasonably accurate after one or two iterations.

For the the iteration technique, the boundary
conditions at the well face is necessary. Since the porous media
stops at the well face, the aquifer not only has a boundary around
its perimeter, but each well is also considered a boundary to
the aquifer. The boundary conditions at wells are treated as constant
or variable specified flux, or constant head, depending on which best
describes the actual physical conditions. The program which is

available in the Appendix A, accept both of them.

Example 3.2

Radial flow towards a well in a layered aquifer is considered.

The well completely penetrates the aquifer (Figure 3.5a). The water
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level in the well is kept constant at 30 m above. the impermeable base

by pumping at a constant rate.

The aquifer consists of two layers, the lower layer has
permeabilities as Kx = Ky = 30 m/day, and the upper layer has

permeabilities as Kx== Ky = 60 m/day. The flow through the aquifer
confined at.the bottom by an impermeable bed, while the top water
surface remains free. The radius of influence of the well was extended
up to 500 m where the ground-water level was taken at 80 m above the

impervious boundary and the flow was. assumed uniform and horizontal.

The problem was analysed by using cylindrical coordinates with

the axisymmetric equation (3.2).

In Fig.(3.5a) the initial guess of phreatic line is shown,
together with the grid overlay. Also, the. generating line elevations

an iteration is shown-in Table 3.2a.

after the 1St iteration and
Throughout the iterations,. the aquifer characteristics, which is

shown in Table 3.2b, is used.

As it is seen » two.iterations are enough to find
the location of phreatic 1ine. Radial distribution of drawdown is

shown in Fig. 3.6.

It was experiencedthat, when the location of phreatic line due
to pumping of one well is considered, both of the boundary conditions

at the well face (e.g., specified flux or.constant head) can be used.

But, if more than one well pumping in the system, one has to make
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Figure 3.5. Grid overlay for Example 3.2,(a) Initial mesh configuration,
(b) Final mesh configuration, that is ¢ =H.

U 1 15 14
Gen Ve ] 1 2 3 4 S '3 E 8 9 10 | M 12 | 1B 6
inckial guess| 8o 8o | 80 | g0

20 80 80 30 | 80 | %0 gso | g0 | 80 20

|0 g0
15 theration] 30 |79.26 [33.58]38.02%3.26 |3 6.93| 7653 [2603

35.64 | 1434 |24.09]33.35| 32.56 | 31.92 | 2159 H-49
709 deratiod 30 [3931]73.62 [38.15]32.52 7% 44 |26.72] 2622 35.65] 34.95[ 3¢ 28 [33.51 | 32,62 # 3 | M- 41| .27

(3)

MRAXNOD =80 MAXLOD=OQ
Raovnd. Coaditivas

MAaxFIXsF |NuMwoe:] | xLoe(2500m
@,-0m £,.%0m Gu80m &:50m Ds350m Dpg=30m Dy230m
(b)

Table 3.2 Data for Example 3.2,(a) The mesh data(b) Data™ about
aquifer characteristics.

xPermeabi]ity values of the layered aquifer are given within a Toop
added to the program.
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sure not to give same.piezometric heads (e.g. in reference to the
same datum level) to the adjacent wells.. Because, the iteration
trend adjusts the generating line heights. between such wells to
the same piezometric head. values. So one ncver.can find the
actual location of phreatic .1ine between such wells. However, by
giving the prescribed flux at those well faces, this.problem can be

eliminated.

3.3. Vertical. Plane Flow Analysis

This type of analysis is used to handle cases in which no
®

approximation is made for.the non-horizontal bottom.

Actually, it is not used .for the problems of flow towards a
well. Because, the solutions of the same system with the axisymmetric
analysis and vertical plane flow analysis are different. But, at the
same time, it was seen that, .it.can give a good idea.. Therefore, if
a system with pumping wells. is not symmetric according
to the radial axes, also not approximated so, this type of analysis is

available.

Again, a free surface in involved like in Section 3.2.
Therefore, the iteration technique can handle such cases. Explanations

about this technique have been made in Section 3.2.
For this analysis, the functional Shown by the equation (2.40)

can be used. Therefore the equation (2.55).is.reachediHjch is used for

the horizontal plane flow analysis, but for this case, the horizontal
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plane, where the equation (2.55) is. derived according to, is considered

as1 a vertical plane with the same notations (e.g. x,y).

Example 3.3

Vertical plane flow in a homogeneous, isotropic aquifer with
two pumping wells is considered. The shape of domain, grid overlay
and pqmp.1ocations together with the datum level is shown in Fig.(3.7.).
Permeabilities of the aquifer are Kx = 35 m/day and Ky:= 40 m/day.
The water levels in the wells are kept constant at 20 m above the
impermeable base by pumping at a constant rate. The flow through the
aquifer is confined at the bottom by an impermeable bed, while the top
water surface remainsfree. The length of the area under consideration

is 640 m.

The problem was analysed by using the coordinate system shown

in Fig.(3.7), together with the functional (2.40).

The generating line elevations throughout the each iteration is
shown in .Table (3.3a). Also the aquifer properties shown in Table

(3.3b) are used in each run.

As it is seen’ , after four iterations, the phreatic
Tine locations are obtained (see Fig.(3.8)). Radial distribution of

drawdowns is shown in Fig.(3.9).

As it was.said , it doesn't describe the actual flow towards
a well. On the other hand, it is very convenient for the variety of
the plane flow problems involving flow.beneath a structure, flow through

an earth dam and flow towards a trench.
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Figure 3.7. Initial grid overlay for Example 3.3.
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(b)

Table 3.3. Data for Example 3.3,(a)The mesh data,(b) The data about
aquifer characteristics.
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4, DISCUSSION and CONCLUSION
The discussions and.conclusions are partly summarized from

Bear,dJ.,1972; Desai,C.S.,1972 and; Faust,C.R. and Mercer,J.W.,1980.

It seems evident that the active pursuit of the finite
element method is a forceful tool in solving the problem at hand.
Nevertheless, the present limitations of the method should .be recognized
and it should be avoided .. for those problems for which the other
methods are more suitable and -economical. A number of finite element
scheme: and subscheme may be available for a class of problems.
Each one might have established its validity with respect to a

subclass of problems.

The choice of the most suitable scheme is governed by a
number of factors. 1In Fig. 4.1 the important factors in this choice
are depicted. Up to now,  the development.of. the finite element solution
is explained for the problems of.the two-dimensional steady flow

in a phreatic aquifer.

In this part, it will be tried to show how one chosses the
appropriate model and which parameters affect the solution in the

1ight of knowledge that has become evident.

Modelling plays a great part in a numerical solution.

Because in this way a set of equations which.are derived, may be

incorporated, to a system in which we are interested.

For general problems involving aquifers having irregular

* boundaries, heterogeneities, or highly variable pumping rates; no ways
of solution other then the numerical solutions exist. - Thus;

the finite element method is handy to handle such.cases. In this

process, a satisfactory model is a must.
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Initially the following two questions should be asked:

(1) What are the study objectives?
(2) How much is known about the aquifer system; that is,

what data are available?

The model used will depend on the study objectives. For example,
the thesis auther has experienced that,if oﬁe is interested in the
drawdown near a well, then a regional model, where the local effects
are lost due to the large spacing between nodes, should not be used.
Instead, a radial flow model with small grid spacing would be

sufficient.

Data preparation for the ground-water model first involves
determining the boundaries of the region to be modelled. The
boundaries may be physical (impermeable or no flow,recharge or
specified flux, and constant head) or merely chosen for convenience

to solve a situation (small subregions of a large aquifer).

Once the boundaries of the aquifer are determined it is
necessary to discretize the region, that is, subdivide it into a
grid. Depending on the numerical procedure used, the grid may have

any shape (herein, triangular subdivisions are used in the problems).

One of the critical steps in applying a ground-water model
is designing the grid. Intuitively it is expected . that the finer
the grid the more accurate the solution. Numerical analysis confirms
this intuition; therefore, fine grids should be used where we want

accurate solutions, and coarse grids can be used where details are not

important.
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The following considerations have to.be taken into account

while designing a grid:

(1) Locate "well" nodes near the physical location of the pumping

well or center of the well field.

(2) Locate boundaries accurately. For distant boundaries the grid
spaces may be expanded, but avoid large spacings next to

small ones.

(3) Nodes should be placed closer together in areas where there are

large spatial changes in transmissivity or hydraulic head.

(4) Align axes of grid with the major directions of anisotropy

as much as possible (that is, orient grid with major trends).

As can be seen in the examples, given in this work, the grid
spacing closer to the wells is finer, because of the considerable

changes in potential near that region.

The &ffect of mesh refinement can be seen in Fig.4.2. 1In the
Figure, it is seen that as the mesh gets finer closer values, to the
analytical. solution have been obtained for the phreatic line. The
discrepancy between the values obtained by the numerical and the
analytical solution near to well face occur.due to Dupuit Assumptions.
This is the main disadvantage of Dupuit's approximation that is fails
to take into account a free seepage surface of the type shown in
Fig. 4.3. 1In other words it is assumed that h==hw for the well
shown in the figure. The error involved in this assumption is

generally small and confined to a short distance from the well.
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Once the grid is designed, it is necessary to specify aquifer
parameters and initial data for the grid. Required program input
data include aquifer properties for each grid node such as the
hydraulic conductivity. Computed results generally consist of
hydraulic heads at each of the grid nodes throughout the aquifer.

For the required input data, see Table 4.1.

I. Pysical Framework
1. Hydrogeologic map showing areal extent
boundaries, and boundary conditions of all aquifers.
2. Topographic map showing surface-water bodies.

3. Water table, bedrock-configuration, and saturated
thickness maps.

4. Transmissivity map showing aquifer and boundaries.

5. Relation of stream and aquifer (hydraulic connection).

II.Stresses on System
1. Type and extent of recharge areas (irrigated areas,
recharge basins, recharge wéﬂs, etc.).
2. Ground-water pumpage.
3. Stream flow.
4, Precipitation.

II1. Other Factors
" 1. Economic information of water supply.

2. Legal and administrative rules.
3. Environmental factors.

4. Planned changes in water and Tand use.

Table 4.1. Data Requirement for a Ground-water Flow Model
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Ground-water modelling allows estimates of:

(a) the effects of boundaries and boundary conditions,

(b) the effects of well locations and spacings, and

(c) the effect of various withdrawal rates.

In addition to these, the feasibility of certain proposed mechanisms
for observed behavior can be tested. Parameters may be changed to
learn what effect they may have on the over-all process. This is
sometimes referred to as a sensitivity analysis, since results from
these runs will indicate what parameters the computed hydraulic heads
are most sensitive to. In Fig. 4.4, the effect of hydraulic

conductivity can be seen.

In order to prevent the misusage of models a general rule
might be to start with the simplest possible model and a course
aquifer description then refine the model and data until the desired
estimation of aquifer performance is obtained. Because ground-water
models deal with the subsurface, there are always unknown factors
that could effect results. It is important to know and understand
the limitations and possible sources of error in numerical models.
A1l numerical models are based on a set of simplifying assumptions,

which Timit their use for certain problems.

To avoid applying an otherwise valid model to an inappropriate
field situation, it is not only important to understand the field
behaviour but also to understand assumptions thatform the basis of
the model. For example, the model results may not be indicative of
the field's behaviour. Errors of this type are considered conceptual

errors.
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In addition to these ilimitations; replacement of the model
differential equations by a set of é]gebraic equations introduces
truncation errors, that is, the exact solution of the algebraic
equations differs somewhat from the solution of the original
differential equations. Also the exact solutions of the algebraic
equations are not obtained due to the round-off error, as a result
of the finite accuracy of computer calculations. Finally, and most
importantly, aquifer description data (e.g. hydraulic conductivity
and the distribution of heads within the aquifer) are seldom known

completely, thus producing data error.

The level of truncation error in computed results may be
estimated by repeating runs or portions of runs with smaller space
increments. Significant sensitivity of computed results to changes
in these increment sizes indicates a significant level of truncation
error and the corresponding need for smaller space increments.
Compared to the other error sources, round-off error js generally

negligible.

Error caused by aquifer description data is difficult to
assess since the true aquifer description is almost never known.
A combination of core analysis and geological studies often give
valuable insight into the nature of. transmissivity and aquifer
geometry. However, much of this information many be very local in
extent and should be regarded carefully when used in a model of

a large area.

Upon meeting modelling criteria, a succesful model study

will not only improve the understanding of the particular hydrologic
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system, but should also provide appropriate prediction and analysis

of the problem under study.

In applying numerical methods (in our case FEM), it is
concerned with three general characteristics of the solution

procedure:
(1) Accuracy.
(2) Efficiency.

(3) Stability.

Accuracy deals with how well the discretized solution
approximates the solution to the continuous problem it represents
(For examnle, reliable results can not beobtained, describing the
flow towards a well, with the vertical plane flow analysis).
Efficiency is a measure of how much computational work and computer
resources are required to obtain a solution. In Fig.(4.5) some of
data-input and computational times related to the corresponding

studies are shown.

Stability addresses the question of whether or not a solution is
possible et all. These definitions are simplified ones, but for

practical purposes, sufficient.

Finallysit can besaidthat; for any given class of problems
the choice of the best approach depends on the processes!being
modelled, the accuracy desired, and the effort that can be expanded

on obtaining a solution.
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Before finishing this chapter, some words may be said for ones
who will be dealt with unsteady-flow. In section (2.2), equations
are derived from the continuity equation together with the equation
describing flow df water by Daréyfs Taw. As.can be seen in section
(2.2), if the time factor is considered. Specific volume storativity,
So, becomes essential. Understqnding the aquifer storativity begins
with understanding the effective.stress concept. .If the vicinity of
a point is considered in an aquifer where water pressure is reduced
by pumping, this results in an increase in the intergranular stress
transmitted by the solid skeleton. of the aquifer. This, in turn
causes the aquifer to be compacted, reducing its porosity. At the
same time, as a result of pressure reduction, the water will expand.
Together, the two effects-the slight expansion of water and the small
reduction in porosity - cause é.certain amount of water to be released
from storage in an aquifer. Based on the above considerations, specific
storativity, So’ can be defjned as. the volume of water released from
storage (or added to i?) in a unit.vélume of. aquifer, per unit change
in the piezometric head. Therefore, in the case of.an unsteady flow
analysis, specific volume storativity, So, should be identified

together with the time factor.

The abové paragraph is summarized from Bear,J.,1972. Detailed
knowledge about unstéady flow can be found in the following references

which are given in this thesis,

Bear, dJ.,1972.

Brebbia, C.A. and Ferrante, A.J, 1986.
Desai, C.S.,1972.

McWhorter, D. and Sunada, D.K.,1977.
Pinder, G.F. and. Gray, W.G.,1977.
Reddy, J.N.,1984.
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APPENDIX A

Finite Element Ground-Water Model
prepaired by the thesis author
This appendix presents a two-dimensional. ground-water model

which may be used for analysis of the areal .distribution and the
vertical plane distribution of heads in ground-water aquifers when
the steady flow is considered. This. model will treat unconfined
ground-water flow probiems. The model is based upon the finite
element. scheme (triangular elements) using the Gauss elimination

procedure for solving the matrix which was described previously by(3.1).
A flow diagram of the model is presented in Fig. A-1. A
complete Tisting ofthe program 1is .given in the last part of this

appendix. The model can use the system of units which is wanted.

Procedure for Analysis

The area to be studied is overlied with a grid system. The
total number of elements selected is dependent on the storage capacity
of the computer being used (in our case, .the personal computer IBM PC,

256 k.byte RAM is used, and it can handle 120 elements as maXimum).

The grid system selected should be oriented to allow for easy
boundary approximation,provide for easy adaptation of hydrologic and
geologic data, and provide for the desired model accuracy. In areas.

where detailed values of water level or piezometric head are desired,
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smaller intervals for grid spacings should be taken. Hydraulically

connected Takes and rivers should be specified. as constant head grids.

Boundary conditions.due to.geologic and hydrolcgic influences
include (1) impermeable or no flow:boundaries, (2) constant head or
hydraulic boundaries. Program KOSGAN automatically considers the
boundaries as impermeable when no data about potential is given. It
is a basic coded, intelligent program in which it asks questfons g

about the required data as it proceeds.

Data Input and Definition of Parameters

Input is by screen as outlined below. Note that, there is no
relation between parameter names and values which are defined for
them (e.g. In Fortran, If a parameter name begins with the letters
I,J,K,L,M,N; it refers to an integer value). Also the questions should be

answered one at a time.

(1) Choose "N"}.if a problem involves horizental plane or
vertical plane flow analysis.

Choose "A", if a problem.involves radial flow towards a well.

(2) Give,
MAXNOD : Max. number of nodes in a domain under.consideration.
MAXFIX : Max. number of nodes where constant heads are defined.
MAXLOD : Max. number of nodes where sources are acted (If there
is no source, then we.can give 0). Wells, rivers,

lakes and precipitation should be included.
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NUMLOC: Max. number of wells.. It is necessary for axisymmetric
flow analysis.
XLOC(I):Distance from origin to the wells

I :Number of wells.

(3) Give,

NY : Number of generating lines(e.g. 1ines crossing to x
axis in designed mesh system).

NX(I) : Number of intervals which we want to divide a generating
line which is seen on the screen.

XF(I) : Starting x-coordinate of a generating line.

YF(I) : Starting y-coordinate of a generating line.

XL(I) : Ending x-coordinate of a generating line.

YL(I) : Ending y-coordinate of a generating line.

CON : The weighting factor which is.< 1, =1 or > 1, the
intervals along a generating 1ine will become progressively

shorter, stay equal, or become progressively Tonger.

(4) Give,
PX : Permeability in X-direction.
PY ¥ Permeability in y-direction,.
(5) Give,

AFIX(I): The matrix including constant heads at. boundaries.

I : Node number corresponding to a boundary node with
constant head.

NFIX(I): Contrcl matrix which is used to understand whether

it is a constant head boundary node or not.
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(6) Give,

SL(NIC) : Matrix including source terms.

NIC : Node number where a source is defined.

(7) ELSTIF(3,3): Element $tiffness matrix.
SS(MAXNOD,MAXNOD): Global stiffness matrix.
COORDS (MAXNOD,2) : Mdtrix storing the coordinates of nodes.
LNODS(MAXNEL,3) : Matrix storing the nodes of each element.

POT (I) : Matrix storing the potential values at the nodes.

It is very easy to run the program, because it will make
necessary reminders as it proceeds, and it will give a chance to

replace wrong inputs with the true ones during data input.

For output, there are two choices, (1) Screen output,

(2) Printer output. One can choose any of them.

If Targer capacity is required, there is a copy of the same

program which is Fortran coded.
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KOSGAN

LIM LNDﬁS(iEU,E),EDGRDS(SG,E),ELSTIF(B,B),SS(SU,EB);SUMl(EG),%L(EU)
DIM NFIWS(20),SL(20), POT (20),AFIHI0) NS (20 YL (20) , HF (20) , YF (20)

DIM NOR(4) , HEL0C(S) JROER

NNDLZ=3
NVARZ=1
N IM=2
cLs
FRINT: FRINT:FRINT:FRINT: FRINT: PRINT: FRINT: FRINT : FRINT: FRINT
FRINT" . THIS PROGRAM IS FREFAIRED"
FRINT
FRINT" FaR TO sOLVEY
FRINT :
FRINT" FROBLEMS *
FRINT .
FRINT" INVOLVING STEADY FLOW IN PHREATIC ARMIIFERS"
FRINT ’

FRINT: FRINT:FRINT:FRINT: FRINT
INFUT "IF YOU WANT TO SEE THE NEST FAGE (Y/N):":As
IF ({(Af="y") ar (AX="Y")) THEN GOTO Z10

STOF
cLS
FRINT " (A) MAKE SURE THAT.THE MESH WHICH YOU FREFPAIRED IS COMPATIEBLE®
FRINT " FOR THE SUBROUTINE AUTOM.EBECAUSE IT AUTOMATICALLY DECIDES"
FRINT ON THE ELEMENT DIVISIONS WITH THE GIVEN DIRECTIONS (IT ASKS"
FRINT * ABOLT THE & OF INTERVALS,END FOINT COORDINATES OF THE GENERATIN
_,.u
°
FRINT ™ LINES AND WEIGHTING FACTOR).IT MAKES GENERATION FROM BOTTOM Too
FRINT " TOF, S0 FLEASE GIVE END COORDINATES LIKE (10,0) TO (15, 120),NOT"
FRINT " (15,1800 TO (10,0)."
FRINT
FRINT " (E) FERMEABILITIES IS ASKED FOR THE ®-DIRECTION AND Y-DIRECTION."
FRINT * THEREFORE, IF THE SITUATION IS DIFFERENT ,YOU SHOULD ADD A °
FRINT FART IN THE BEGINNING OF THE FROGRAM IN ORDER TO STORE PERMEABI
LITY * :
 FRINT ® VALUES FOR EACH NODE TO A MATRIM,AND ALSO YOU HAVE TO CHANGE®
FRINT " RELATEL FARTS IN THE FROGRAM (LIKE DEFINING THIS MATRIM IN *
FRINT " DIMENSION STATEMENT ANL CONVERTING SINGLE VARIAELES Fi AND FY
FRINT » TO MATRIM VARIAELES FH(I) AND FY(I))."
FRINT -
FRINT " () YOU CAN SEE THE DIMENSIONS OF THE MATRICES IN THE DIMENSION®
FRINT " STATEMENTS AT THE BEGINNING OF THE FROGRAM.IF YOU NEED LARGER"
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FRINT ¢ DIMENSIONS PLEASE AFPLY TO GULGUN EOSEAN BECAUSE THERE IS A
FRINT * COREyY OF THE SAME PROGRAM IN FORTRAN CODE AND AVALIABLE IN THEY
FRINT ¥ BLURRDUGEHS SYSTEM IN METL o007

FRINT

INFUTY DO yow WaNT TO CONTINUE (Y/MNYs"saF

IF ((af=vy") OR (AF="v"3) THEN GOTO 470

STOF

cLe .

FRINT " FPLEASE CHOOSE ONE OF THE FOLLOWING , THAT IF YOU DEALIME WITH A "
FRINT * HORIFANTAL OR VERTICAL PLANE FLIOW ANALYSIS CHOOSE (M) IF Yoo
PERINT " DEALING WITH A& AXISYMMETRIC FLOW ANALYSIS , CHOOSE (&Y.

FRINMT

INFUT "NORMAL/AMISYMMETRIC (N/A) 2 "3 CES

CLS

FRINT

INFLUT "MASMOD ( MAX., S OF ELEMENTS IN THE DOMAIM ) 3" MASMNOD

FRINMNT

INPUT "MARFIE  MAxK. S OF NODES WITH CONS. BOUND. HEAD ) "aMASF IS

FRINT

INFUT "MASLOD { Max. S 0F NODES WHERE THERE IS A SOURCE) 3 "gMa=LOD

FRIMT

IF (CCEEC-"a") AND (CESCS>"a"1) THEN GIOTO &30

INFLUT YRNUMLOD ¢ Mox. S 0F NODES WHERE THERE IS & WELL )" pNUMLOC
FRINT

IF ({CEFE<>"a") AND (CEFC>"a")) THEN MNUMLOC=0

IMPUT " DO YOl WANT & CHAMGE IN THIS PART (Y/AN): "3As
IF ({Aas="y") OR {(AfF="y") THEN GOTO 540

CL=

Ma=VAR=MA=NOD+#NVARS

FOR I=1 TO HasvaR

SLeIy=0!

POT (1)=01

NFI={T)=0

FOR J=1 TO Ma=VAR

SS5(I..Ty=01

MEST J

ME=ST I

GOSUE 2210

CLs

FRINT

INFUT "Fu (PERMEABILITY IN =-DIRECTION):":FH

H
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FRINT
INFUT "PY (FPERMEABRILITY IN Y-DLIRECTION):":PY
FRINT
INFUT " 0 YO WaNT & CHANGE IN THIS PART (Y/N):": A%
IF ((aF=rvyry OR (AF="y")) THEN GEOTO 730
oLs
IF (NUMLOC=0) THENM G0OTO 940
FRINT " PLEASE LEHIVE THE DISTANCES FROM THE ORIGIN TO THE WELLS EACH AT A"
FPRINT * TIME."
FRINT
FOR I=1 TO NUMLOC
IMPUT #=L0OC(T) "exL0d(I)
ME=T I
IF (MARFIE=0) THEN G070 1070
CL=E
FEREINT "FLEASE GIVE THE COMSTANT HEADS TO THE CORRESFONDING BOUND. NODES,®
FRINT "FLEASE FAY ATTENSION NOT TO GIVE WROMG VALUES TO THE FOLLOWING"
FRINT "GQUESTIONS BECAUSE THERE IS NO TURM BACE. "
FRIMNT:FRINT:FRINT
FOR =1 TO MAXFIA

FRINT

IMNPUT YNIC (NODE MNUMBER) 2 "apNIC

IMFUT "AFITENICY (CONSTANT HEAD VALUE) : "3 AFIHA (NIC)

NFISNIC) =1

ME=T J

IF (MA=LOD=0) THEN GOTO 11&0

FRIMT: FRIMT: FRIMT

FRINT "NOW YOU WILL GIVE THE SOURCE STRENGTH VALUES PLEASE DON'T FORGET"
FRINT "TO FPUT (=) FOR DISCHARGES ,IN FRONT OF VALUE THAT YOU WILL GIVE."
FRINT:FRINT:FRINT

FOR J=1 TO MASLDD

FRINT ,

INFUT “NIC (NODE NUMBER) @ "sNIC

INFUT "SLINIC) (SOURCE STRENGTH) 8" S0 NI

NEXT J '

CLS
FRINT:FRINT:PRINT: FRINT: PRINT: FRINT: FRINT:FRINT: FRINT:FPRINT 2 FRINT: FRINT
FRIMNT" FLEASE WAIT *

FOR NEL=1 T MA-XNEL
MNICT=LNODS(NEL, 1)
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NICZ=LMODS (NEL, 23
NIE: LNCDS (NEL . 3
=COORDS (NIC1. 1)
Yi—FDDRDS(NIci,E)
HE=COORDE (NICE, 1)
2=CO0RDS (NICE, 29
HA=COORDS (NTZ2, 1)
YIA=COORDS (NIC3,2)

N T

AREA= (HEHYI-MIRYZ-H1% (YEI-YE) +Y1# (HI-M2) ) /2

AL=HI*YI-H3FYZ

L .}.:;ll "'""..
AM=31#Y Z-REHY
EBM=Y1-Y2
CM=H2-41
IF (({CE&<x"a") AND (CE$<H-"A")) THEN GOTO
MULEAT=1

FOR NUM=1 TO NURLOC

ROMNLIPD = (oL 00 CONLIFD — ( (Rl #5203 /30 )

IF (RAONUMY <0 THEM R ONUFD = (-1 ) R (NLIFD
MEST  NLiM

FOR MUM=1 TO NURLOC

o MLCEAT =MULEAT #R (MUM)

NEST NLUIM
FAT=MULEAT™ (1 /MUML O
ELSTIF(1,1)=FH*BI+BI+FPY*CI*CI
ELSTIF (2, 1) =Fx*BI*BI+FY*OT#CT
ELSTIF{Z,2)=FH*BI*RBI+PY®RCII®CY
ELSTIF (3, 1) =Fs*BM*RI+PY+0MECT
ELSTIF (3,2) sPH*BM*BI+FYFCM*CT
ELSTIF (3,3) =FP«+BM*BM+PY* M+ CM
FOR I=1 TO 2

IFl1=Ix1

FOR J=IF1 TO 3
ELSTIF(I. D =ELSTIF(J, I}

NEST J

MEST I
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FOR I=1 TO
FOR J=1 TO
IF ((CEg<»"AY) AND (CEf<>"a")) THEN EAT=1
ELSTIF(I, D =ELSTIF(I,.N) *AT/ (4! *AREA)
NEXT J
NE=T I
FOR I=1 ToO NNODRZ
ISTRST=LNODS (MEL., I
FOR J=1 TO NNODRE
JESTRST=LMODS (NEL . .T)
SS{ISTRST. JSTRET) =SS (ISTRET ., JSTRST) +ELSTIF(I,.D)
NEST I
NEST I
NET NEL
FOoR I=1 TO MAMNOD
IF (NFIXN(I)=0) THEM GOTO 1730
SE(I. ) =58{I, I)+1E+1S
SLAD) =8 (I} +S5 (1, L) #AFTH{T)
NE=®T I
T Mi=MAENDDENVARE

AN

M=l -1
FOR I=1 TO M2

II=I+1

FOR K=II TO Mi
FACT=S55 (K, 1) /55(I, 1)

FOR J=II TO Mi

S5 (K, ) =55 (K, J) ~FACT*S5 (I, .7)
NE=T J

SE(k, I) =01

SL () =SL () -FACT#SL(I)

NEST K

MNEST I

FOR I=1 ToO M1

IT=Mi-T+1

FIVOT=SS(IT.II)

SS(ITI,IT) =01

FOR J=IT TO M1

SLATIY=SL(ID) -SS(II..T0* POT ()
NEST J

PAT (II)=SL(II)/FIVOT
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© FRINT *

N G

NEWT I
oL
M=
FRINT * FOTENTIAL

——— - — - ———

NODE NUMEBER

TO MARNIL

[T}
FOR I=1
M=+ 1
B=pM/ 1S
IF ((B=1)
OsiiR 2140
FRINT USING® B
NEXT I
STOF
END
FRINT :

INFUT "D0O YO WANT TO CONTINUE (Y/N):":Af
IF ((AF<x"Y") AND

OR (B=2) OR (B=3) OR (B=4)

q
gl

OR (B=3)

(AkLx"y")) THEN HOTO 212

12

OR (B=&) OR (B=7) 0OR

(I

LIMNE

FRINT * MNIODE NUMEER "y FOTENTIAL"
F’F\'INT 1 e e s - - —— n ; TH e e o o e - 13
RETURN

ENDr

INFUT "MY {NUMBER OF GENERATING LINES): "@pNY
FRINT: FRINT:FRINT

FRINT

FRINT " (THAT STARTING WITH THE GEMERATIHNG
FRINT "THE GENERATING LINE RIGHT MOST IT."
FRINT: FRINT:FRINT

FOR I=1 TO NY

FRINT

FRINT "FLEASE GIVE THE DATA ARDUT THE GEN.
FRINT “
FRINT
INFUT "NH(I)
INFUT "=F (1)
INFUT "YF(I)
INFLUT "&LA(I)
INFUT "YL(I)
FRINT

INPLT "D Yol WANT A
IF ((AF="Y")
NEST I

OF INTERVALS sNs (I
HeCOORDINATE) 2 "3 HF (I)
Y-COORDINATE) : "3 YR (D
HeDOOREINATE) £ "3 HLAIT)
Y-COORDINATE) : " YLA(T)

(NUMEBER
(BEGIN.
(BEGIN.
(ENI:
(END

CHARNGE ABOUT GEN.
OR (As="y"})) THEN GOITO 2310
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LINE DATA

LIMNE ":I

(Y/N):": A%

{(B=2)) T

"FLEASE GIVE THE DATA ABOUT THE GENERATING LINES FROM LEFT TO RIGHT"
CROSSING THE ORIGIN TOU



cLE
N=0

FOR I=1 TO NY

PRIMT:FRINT

FRINT "NOW THE PROGRAM WILL DIVIDE THE GEN. LINE
FRINT

HI=N=H{I}+1

SiiM1 {1y =01

SUML (2 =11

SidM=11

INFUT "CON (WEITGEHTING FAZTOR )z "z 00N

FRINT

FRINT "=-200RD, T MY -DO0RD. " UNODE NUML M
FIRII\JT | 2 n ; T o e e s e o eoae e n ; Bl e e o e oot e o 1

IF (({N®I-Z2)=-1) OR ({N=I-2)=1)) THEN FOTO 2570
IF ({(M=I-2)=0) THEM GOTO 2&10

FOR k=23 T0O NSI

SUML (K =5UML (F-1) #C0ON

SUM=5U+S0UIM1 (k)

MNEST K

FRINT

m=EnF (D)

Y=YF (1)

FOR J=1 TO N-T

M=N+1

mE L {T) ~mF {10 ) #50UML (3) /SUM+ H
Y= (YL (D) -YF (1)) #5UM1 (T /50UM+Y

FRINT USING "SSS555.55 SSS555.55 S5555% "sMiviN

COORDS (N, 1) =4

COORDS (N, 2) =Y

NE=T I

NEH®T I

FRIMT: FRIMT: FRINT

FRINT “EL.NO": "NODELI": "NODEZY 3 "NODEZ"
FRINT "=-e——- “;”: Mo o e n; Wt s o n; o s e e o 3
N=10

NSLIM=0

NYI=NY-1

FOR I=1 T NYI

NeEI=N={I)
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FIOR =1 TO N

IF (((T N”I)“*i) OF ({(J=N=Iy=1)) THEN GOTO 2E70
IF ((JI~-NHEI)=0) THEMN GOTO ZR40

IF ({NEA{I+1)~NS(D)y=~1) THEN GOTO 22920
IF ((Ns{I+1)~Ne(I))=0) THEN GOTO 2874
IF ((MNe(I+1)-N=(I))=1) THEN GOTO 29&0
NOE (1) =5+ NSUM

MNOD(Z2)=NOD{1)+1

NOD €3 =NOL (2) +NHI+1

MO (4) =NOD (3) -1

HOTO 3130

N (1) =MOL (2)

NOD {2y =NOD (1) +1

MO (4) =0

GEOTO 3130

MIOD (L) = T+NSUM

N (2 =MD (1) +1

MOD (2 =NOD (2) +N=I+1

MOy () =MD (3) -1

N=N+1

FRINT USING" $S555 S555 S5055 SSSSUaNsNOD () s NODZ)Y s NOD (1)
LINODS (ML 1) =NOD (3
LNODS (N, 2 =NOD{2)
LMODS (M, 3 =NOD (1)

N=N+1

FRINT USING" S555 $S555 5555 S5S5"sNaNOD (4 s NOD(3) s NOD (1)
LMODS (N, 1) =NOD (4)
LNODS (N, 2) =NOD {3)
LINODS (M. 3) =NOD (1)
MNOD (1) =NOL (2
MOD (2) =NOD (3 +1
NOD{4) =0
M=+ 1
SESS G055 SSOSY Ny NOD () sNOD(Z) s NOD (1)

FRINT USINu" bat:
LNGDS (N, 1) =sNOD
LNQDS (M, 2) =NOD{2)

LMNODS (M, 3 =NOR (L)

IF ((MNOD(4)=-1) OR (NOD{(4)=1)) THEN S0OTO 3200
IF (NOD(4)=0) THENM GOTO 3250

N=pN+1

o
-
3

E‘ '.‘-:.
3
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L5y

L

CPRINT USING" S555 S555 SS55 SSS5":N3NOD(4) sNOD G g NOD (1)
)

LINODS (N, 2) =NOL (X))
LNODS (N 3 =NOD (1)

- FRINT

MEXT T
NSUM=NSUM+NHT+ 1
NEST I

MAHNEL =N

RETLURN

ENI
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1600 m

APPENDIX B

In this part, an example will be.fntroducted. It involves

areal flow due to multiple well system.Example

Example B.1.

Seventeen wells are pumped from an.unconfined aquifer surrounded

by a constant head boundary as shown.in Fig.B.1.

The values of

aquifer properties are given iquhe Figure.

KX= 4.0 m/daj K)'=20 m/JcJ

- S <
£ 3 &
S ﬁ_L_%%.aa
besp
Lines & = e
of sgmmectry

—

X

o
—>]

*

1600m

Figure B.1.

Cons‘arvé keaJ bomdary
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ZA
\.
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il SRR T N
koim RN ‘-‘:.,: . ,:-

Definition sketch for Example B.1.
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analysed.

To take the advantage of symmetry.a quandrant of flow .is

The grid overlay .is shown in Fig.B.2. The physical data

about the aquifer ia given in Table B.1. . It was known previously,

that along .the stream 1ines (lines of.symmetry), pumping rates

divided accordingly, in this case, ('J.'= 62 = 65 = (')7 =1500/2 m3/day.m
G, =1500/4 m°/day.m

31’5

taken.

The potential distribution (piezometric head distribution) is

shown in a number of graphs (Fig.B.3, Fig.B.4, Fig. B.5, Fig.B.6,

Fig. B.7, Fig. B.8, Fig. B.9).

3

1 2 3 4 s 6 3 8 9 G.L. Num.
(0,07 (256, 68,0) |(43296,0) | (55%.35,0) | (645.11,0) }(306.26,00 | (349.06,0) [(399.03,0) |(800,0) [Begir.tom
(0,300 | (254.68,3007)((:32.96,300)|(553+ 35,800 | (64:5.11,800) | (306-26,800) (4,906,200} (33 9.03,%0)| { 800,800) {End coor.
gl oF 2| o= g2lo+ g1 03 }|8{a>2 2|03 8| 03 8]oxr ]| 3] 0.3 |wn v
—45 —63 —81 6t -39 Y U e Remping rale>
Qz =250 | Quz?50 Q=80 | Q=-2400|Q - as0 | Qur-12001Q7 =350 [L T
MAXNOD= 81 MAXFiX=1? Maxwon-3

7, = @) = D=y~ D5 =D =¢’+=@8‘-ﬂa 2 Bho=Lia= Z:Qs=@—.n.= i e=Bs5=Bec4=F33= GOOm

Table B.1. Physical data for Example B.1.
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Example B.T.
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Grid overlay and areal distributions of potentials of
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