T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BAZI ÖZEL EVOLUTION DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİNİN KARŞILAŞTIRILMASI

Zekeriya ÖZKAN

Danışman Yrd. Doç. Dr. Ramazan UYHAN

YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI ISPARTA - 2018 © 2018 [Zekeriya ÖZKAN]

TEZ ONAYI

Zekeriya ÖZKAN tarafından hazırlanan "Bazı Özel Evolution Denklemlerinin Nümerik Çözümlerinin Karşılaştırılması" adlı tez çalışması aşağıdaki jüri üyeleri önünde Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak başarı ile savunulmustur.

Danışman

Yrd. Doç. Dr. Ramazan UYHAN Süleyman Demirel Üniversitesi

Prof. Dr. Bilender PAŞAOĞLU Süleyman Demirel Üniversitesi

Jüri Üyesi

Jüri Üyesi

Doç. Dr. Hüseyin TUNA Mehmet Akif Ersoy Üniversitesi

Enstitü Müdürü

Prof. Dr. Yasin TUNCER

ТААННÜТNAME

Bu tezin akademik ve etik kurallara uygun olarak yazıldığını ve kullanılan tüm literatür bilgilerinin referans gösterilerek tezde yer aldığını beyan ederim.

Zeketiva ÖZKAN

İÇİNDEKİLER

İÇİNDEKİLER
ÖZET
ABSTRACT
ſEŞEKKÜR
SEKİLLER DİZİNİ
ÇİZELGELER DİZİNİ
SİMGELER VE KISALTMALAR DİZİNİ
1. GİRİŞ
1.1. Amaç ve Kapsam
1.2. Kaynak Özetleri
2. TEMEL KAVRAMLAR
2.1. Evolution Denklemleri
2.2. Radyal Baz Fonksiyonları (RBF)
2.3. Yüksek Mertebeden Adi Türevli Diferansiyel Denklemini Birinci
Mertebeden Adi Türevli Diferansiyel Denklem Sistemine Indirgeme
3. KULLANILAN YONTEMLER
3.1. Çizgiler Yöntemi (MOL)
3.2. Ağsız Yöntemler (MM)
3.3. Radyal Baz Fonksiyonları Yardımiyla Agsız Çizgiler Yontemi
(MMOL-RBF)
3.3.1. Birinci mertebeden (1+1) boyutlu kismi turevli diferansiyel
aenkiemier için MMOL-KBF
5.5.2. Dif lifet lief tebeueli (1+1) boyutu Kisili turevii uller alisiyer
2 2 2 İlvinci mortohodon (2 1) houutlu kumi türevli diferenciyol
donklomlor icin MMOL DRE
1 UVCHI AMALAR
4.1 Problem 1
4 1 1 Cizoiler Yöntemi ile Cözüm
4 1 2 Radval Baz Fonksivonları Yardımıvla Ağsız Cizgiler Yöntemi ile
Cözüm
4.2. Problem 2
4.2.1. Cizgiler Yöntemi ile Cözüm
4.2.2. Radval Baz Fonksivonları Yardımıyla Ağsız Cizgiler Yöntemi ile
Cözüm
4.3. Problem 3
4.3.1. Cizgiler Yöntemi ile Cözüm
4.3.2. Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi ile
Cözüm
5. SONUÇ VÉ ÖNERİLER
5.1. Sonuçlar
5.2. Öneriler
KAYNAKLAR
ÖZGEÇMİŞ

ÖZET

Yüksek Lisans Tezi

BAZI ÖZEL EVOLUTION DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİNİN KARŞILATIRILMASI

Zekeriya ÖZKAN

Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı

Danışman: Yrd. Doç. Dr. Ramazan UYHAN

Bilgisayarın hesaplama biliminde etkin ve etkili kullanılması ile birlikte kısmi türevli diferansiyel denklemlerin çözümünü elde etmek için literatürde birçok yöntem tanıtılmıştır. Bu yöntemlerin bazıları analitik yöntem çözümü elde ederken bazıları algoritma tabanlı yaklaşık çözümü veren yöntemlerdir. Bu tez çalışmasında, bazı özel evolution denklemleri çizgiler yöntemi ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi kullanılarak çözülmüştür. Elde edilen sonuçlar üzerinden de bu iki yöntem kıyaslanmıştır.

Anahtar Kelimeler: Çizgiler Yöntemi, Ağsız Yöntemler, Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi, Evolution Denklemleri

2018, 50 sayfa

ABSTRACT

M.Sc. Thesis

COMPARISON OF NUMERICAL SOLUTION OF SOME SPECIAL EVOLUTION EQUATIONS

Zekeriya ÖZKAN

Süleyman Demirel University Graduate School of Natural and Applied Sciences Department of Mathematics

Supervisor: Asst. Prof. Dr. Ramazan UYHAN

Efficient and effective use of computers in computing science, along with part of the literature, many methods to obtain the solution of differantial equations is presented. Some of these methods, while achieving analytical method and some of them algorithm based solution methods that approximate the solution. In this thesis study, some special evolution equations are solved using the method of lines and meshless method of lines using radial basis functions. These two methods are compared on the obtained results.

Keywords: Method of Lines, Meshless Method, Meshless Method Of Lines Using Radial Basis Functions, Evolution Equations

2018, 50 pages

TEŞEKKÜR

Bu araştırma için beni yönlendiren, karşılaştığım zorlukları bilgi ve tecrübesi ile aşmamda yardımcı olan değerli Danışman Hocam Yrd. Doç. Dr. Ramazan UYHAN'a teşekkürlerimi sunarım. Ayrıca tezimin her aşamasında beni yalnız bırakmayan aileme sonsuz sevgi ve saygılarımı sunarım.

> Zekeriya ÖZKAN ISPARTA, 2018

ŞEKİLLER DİZİNİ

	Sayfa
Şekil 3.2.1 Ağsız yöntemler kullanılarak alanı ayrıklaştırma	17

ÇİZELGELER DİZİNİ

		Sayfa
Çizelge 2.2.1. Yaygın olarak kullanılan ra	adyal baz fonksiyonları	11
Çizelge 4.1.1. Sawada Kotera denklemi iç	çin L ₂ hata normu	26
Çizelge 4.1.2. Sawada Kotera denklemi iç	$cin L_{\infty}$ hata normu	26
Çizelge 4.1.3. Sawada Kotera denklemi i	çin zamanda noktasal	
yakınsaklık oranı		27
Çizelge 4.2.1. Burgers denklem sisteminde	u(x,t) için $N = 3, dt = 0.005$	
iken L_∞ hata normu		31
Çizelge 4.2.2. Burgers denklem sisteminde	v(x, t) için $N = 3, dt = 0.005$	
iken L_∞ hata normu		31
Çizelge 4.2.3. Burgers denklem sisteminde	u(x,t) için $N = 3, dt = 0.005$	
iken <i>L</i> ₂ hata normu		32
Çizelge 4.2.4. Burgers denklem sistemino	de $v(x, t)$ için $N = 3, dt = 0.005$	
iken L_2 hata normu		32
Çizelge 4.2.5. $t = 2.5$ 'te $N=3$ iken Burger	's denklem sisteminde $u(x,t)$	
için zamanda noktasal yak	unsaklık oranı	33
Çizelge 4.2.6. $t = 2.5$ 'te $N=3$ iken Burger	's denklem sisteminde $v(x,t)$	
için zamanda noktasal yak	insaklik orani	34
Çizelge 4.2.7. $t = 2.5$ 'te $dt = 0.005$ iken	Burgers denklem sisteminde	0-
u(x,t) için konumda nokt	asal yakinsaklik orani	35
Çızelge 4.2.8. $t = 2.5$ te $dt = 0.005$ iken	Burgers denklem sisteminde	0.6
v(x,t) için konumda nokta	sal yakinsaklik orani	36
Çizelge 4.3.1. Klein-Gordon denklemi içii	$n N = 3$, $dt = 0.001$ iken L_{∞} hata	4.0
normu	N = 2 H = 0.001 the state	40
Çizelge 4.3.2. Klein-Gordon denklemi içli	$h N = 3$, $at = 0.001$ lken L_2 hata	11
normu		41
Uzelge 4.3.3. $t = 0.5$ te $N = 3$ iken Klein	l-Gordon denklemi için zamanda	40
$\frac{1}{1} \frac{1}$	Vlain Cordon donklami isin	42
Use $4.5.4$. $\iota = 0.5$ ie $\iota \iota = 0.001$ iken	kluk oronu	10
konunua noktasai yakinsa	KIIK UI dIII	43

SİMGELER VE KISALTMALAR DİZİNİ

Α	İnterpolasyon matrisi
GA	Gauss merkezcil
IMQ	Ters çoklu kuadratik
MQ	Çoklu kuadratik
MM	Ağsız yöntemler
MOL	Çizgiler yöntemi
MMOL	Ağsız çizgiler yöntemi
MMOL-RBF	Radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi
Ν	Problem alanında seçilen düğüm sayısı
RBF	Radyal baz fonksiyonları
t	Zaman değişkeni
u(x,t)	Analitik çözüm
$u^N(x,t)$	Yaklaşık çözüm
v(x,t)	Analitik çözüm
x	Konum değişkeni
Ψ	Radyal baz fonksiyonları
Ω	Problem alanı

1. GİRİŞ

1.1. Amaç ve Kapsam

Kısmi türevli diferansiyel denklemler, genellikle doğanın temel kurallarının formülasyonunda ve uygulamalı matematik, matematiksel fizik ve mühendislik bilimi problemlerinin matematiksel analizinde ortaya çıkmaktadır. Çoğu zaman bu denklemlerin analitik yöntemlerle çözümü zor hatta imkânsız olmaktadır. Bu yüzden böyle denklemlerin nümerik olarak çözümlerinin bulunması gerekebilir (Debnath, 2005).

Kısmi türevli diferansiyel denklemlerin çözümleri için analitik ve nümerik olarak birçok yöntem tanıtılmıştır. Genelde bu tür denklemlerin nümerik çözümlerine gereksinim duyulmaktadır, bunun nedeni nümerik çözümler bilgisayar ile daha uyumlu olup, farklı algoritmalarla istenilen sonuçlar daha kolay elde edilebilmektedir (Çağlar, 2012).

Lineer olmayan kısmi türevli diferansiyel denklemlerin çözümü için nümerik yöntemlerin çalışılması son yıllarda hem teori hem de uygulama açısından yoğun bir şekilde yapılmıştır. Bilgisayar teknolojisindeki hızlı değişmeyle birlikte nümerik yöntemlerdeki gelişmeler, mühendislik ve başka bilimsel alanlardaki uygulamalarda ortaya çıkan ve önceden çözümü zor olan kısmi türevli diferansiyel denklemlerin çoğunun şimdi çözülebilir olması anlamına gelmektedir (Mitchell vd., 1980).

Sonlu farklar yöntemi, sonlu elemanlar yöntemi, sonlu hacim yöntemi ve sınır eleman yöntemi gibi nümerik yöntemler çeşitli kısmi türevli diferansiyel denklemleri çözmek için kullanılmıştır. Bu yöntemler alanı ağ, ızgara ya da aralarında sabit iletişim sağlayan noktaların kümesine ayrıştırır. Ağ yapısında kullanılan birimlere verilen isim önem taşımamaktadır. Burada önemli olan bu yapıların çözüm sürecine geçilmeden tanımlanıyor olmasıdır. Bu sayede elemanların veya ızgaraların kesişim noktaları olan düğümler arasında bağlantı kurulmakta ve kullanılacak olan sayısal yöntemin formülasyonu gerçekleştirilmektedir.

1

Sonlu farklar yöntemi, genellikle kartezyen koordinatlarda bölgenin düzgün dikdörtgenlere ayrıklaştırılmasıyla elde edilen noktalar üzerinde Taylor seri açılımı ile fark denklemlerinin ifade edilmesine dayanır. Uygulaması son derece basit olmasına rağmen özellikle düzgün olmayan bölgelerin ayrıklaştırılması, bölgenin ve problemin fiziksel şartlarının tanımlanması açısından sonlu elemanlar yöntemi kadar etkin değildir. Sonlu elemanlar yöntemi ve sonlu hacim yöntemi kompleks geometriyle mücadele etmede daha esnektir fakat üç boyutlu problemlerde uygun ağın oluşturulması, ilgili verilerin yapısı ve bilgisayar programlaması oldukça zordur (Demkowicz vd., 1989).

Günümüzde mevcut geliştirilmiş hali ile sonlu elemanlar yöntemi, sonlu farklar yöntemi, sonlu hacim yöntemi gibi ağ tabanlı yöntemler kullanılarak statik, dinamik, lineer ve lineer olmayan pek çok problemin çözümü elde edilebilmektedir. Bu problemlerin çözümünde aşağıda belirtilen sebeplerden dolayı elde edilmek istenen çözümün maliyeti ve doğruluğu önemli ölçüde etkilenmektedir (Liu, 2003):

- Analizlerde genelde zamanın çoğu uygun bir ağ yapısının olușturulmasına harcanmaktadır. Ağ yapısı analiz süresini ve hassasiyetini önemli ölcüde etkilemektedir. Günümüzde sayısal yöntemlerle ilgili araştırma noktalarından bir tanesi bu sürecin mümkün olduğu kadar kısaltılması ve analiz hassasiyetinin arttırılmasıdır. Bu da daha az insan emeği ve daha çok bilgisayar kullanımı anlamına gelmektedir.
- Büyük şekil değişimleri söz konusu olduğunda elemanların çarpılmasından dolayı hesaplanan değerlerdeki doğruluk oldukça düşmektedir.
- Çatlak büyümesi probleminin herhangi bir geometri veya kompleks bir geometri için modellenmesi ve faz dönüşümlerinin uygulanması oldukça zordur.

 Sonlu elemanlar yöntemi sürekli ortam mekaniğine dayandığından, malzeme kırılmasından doğan süreksizliklerde elemanlar arasındaki bağların kopması sebebi ile olumsuzluklar ortaya çıkarmaktadır.

Yukarıda bir bölümü belirtilen hataların ve yetersizliklerin en aza indirilmesi için çözüm sürecinde ortaya çıkabilen süreksizlik bölgelerinde birbiriyle olan temasını kaybeden elemanların temas etmesini sağlamak amacıyla ağ yapısının yeniden oluşturulması gerekmektedir. Ayrıca çözüm sürecinde bağımlı değişken üzerinde dönüşüm yapma ihtiyacı ortaya çıkmaktadır. Bu durum işlem hassasiyetini olumsuz etkilemektedir. Bu yüzden çözüm sürecinde daha esnek ve süreksizliğin söz konusu olduğu problemlerde yeni bir ağ yapısının oluşturulmasına gerek duymayan yöntemlerin geliştirilmesi ihtiyacı ortaya çıkmıştır. Bu sebeple önerilmiş olan ağsız yöntemlerde bu ihtiyaçların çoğu karşılanabilmektedir. Ağsız yöntemlerde geometrinin modellenmesi rastgele dağılmış düğümlerle gerçekleştirildiğinden bu düğümler arasında herhangi bir ilişkinin veya bir bağın kurulmasına ve dolayısıyla çözüm sürecinde yeni bir ağ yapısının oluşturulmasına ihtiyaç yoktur (Çalışkan, 2006).

Çizgiler yöntemi (MOL), kısmi türevli diferansiyel denklemlerin çözümü için iyi bilinen bir başka tekniktir. Bu yöntem, kısmi türevli diferansiyel denklemlerin önemli sınıflarının (eliptik, parabolik ve hiperbolik, lineer ve lineer olmayan, bir, iki ve üç boyutlu gibi) hemen hemen tümüne uygulanabilir. Yöntem aslında öncelikle Alman matematikçi Erich Rothe tarafından 1930'da parabolik tipteki denklemlere uygulanmıştır (Pregla, 2008). Daha sonra fizikteki sınır değer problemlerini çözmek için matematikçiler tarafından geliştirilmiştir (Schiesser, 1991). Doğruluk ve bilgisayar maliyeti bakımından, sonlu farklar yönteminden daha etkili olan çizgiler yöntemi, sonlu farklar yönteminin özel bir şeklidir. Bu yöntemde bağımsız değişken x konum veya t zaman değişkenine göre ayrıklaştırılabilir. x konum değişkenine göre ayrılaştırıldığında t zaman değişkeni, t zaman değişkenine göre ayrıklaştırıldığında ise x konum değişkeni Örneğin; Meyer'in calışmalarında valnız bırakılır. genellikle zaman ayrıklaştırılarak problem sınır değer problemine indirgenir (Meyer, 2015). Bu çalışmada, x ayrıklaştırılarak problem değer başlangıç problemine

3

indirgenmiştir. Ayrıca bilgisayar programlama sırasında oluşan zorluk, standart adi türevli diferansiyel denklem çözücüsü kullanılarak azaltılabilir.

Ağ tabanlı yöntemlerde karşılaşılan zorluklar, araştırmacıları geleneksel ızgara tabanlı nümerik yöntemlere alternatif aramaya zorladı. Böylece ağsız yöntemlerin yeni alanı ortaya çıktı ve ilk ağsız yöntem Yumuşatılmış Parçacık Hidrodinamiği 1977'de Gingold ve Monoghan tarafından gök fiziği problemlerinin simülasyonu için tanıtıldı (Gingold vd., 1977). Kısmi türevli diferansiyel denklemlerin nümerik çözümü için ağsız yöntemler (MM) son 20 yıl içinde çok cezbedici oldu ve kayda değer bir gelişim gösterdi.

Ağsız yöntemlerin (MM) en önemli özelliği ağ gerektirmeksizin dağılmış düğüm ya da parça kullanarak mümkün olan sınır şartların bütün türleri ile integral denklemleri ya da kısmi türevli diferansiyel denklemler için kararlı nümerik çözüm sağlamasıdır.

Ağsız yöntemlerde çözüm bölgesinin modellenmesi ve çözüm aşamasına geçilebilmesi için modelleme aşamasında düğümler kullanılmakta ve düğümler arasında sonlu elemanlar yöntemi ile kıyaslandığında herhangi bir bağın oluşturulmasına ihtiyaç duyulmamaktadır. Bu özellik ağsız yöntemler için ortaktır. Yöntemlerin ağsız olarak adlandırılmasının sebebi de budur.

Bugüne kadar geliştirilen ağsız yöntemlerin geniş bir sınıfı, çok boyutlu kompleks alan içeren kısmi türevli diferansiyel denklemlerin nümerik çözümü için radyal baz fonksiyonları kullanılarak kollokasyon ağsız yöntemine dayanır.

Bu tez çalışmasında çizgiler yöntemine ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemine kısaca değinildi. Bazı özel denklemler kullanılarak bu iki yöntem arasında karşılaştırmalar yapıldı. Bu karşılaştırmalar ışığında problemlerin çözümüne dair yorumlarda bulunuldu.

1.2. Kaynak Özeti

Ali A., Haq F., Hussain I., 2011, A Numerical Meshless Tecnique For The Solution Of Some Burgers' Type Equations, World Applied Sciences Journal, 14(12), 1792-1798. Bu çalışmada, Burgers' denklemlerinin nümerik çözümü için radyal baz fonksiyonları çizgiler yöntemiyle birlikte kullanılarak ağsız bir yöntem sunulmuştur.

Bibi N., 2011, Meshless Method Of Lines For Numerical Solutions Of Nonlinear Time Dependent Partial Differential Equations, PhD Thesis, Ghulam Ishaq Khan Of Engineering Sciences And Technology, Pakistan. Bu doktora tez çalışmasında, zaman bağımlı kısmi türevli diferansiyel denklemlerin nümerik çözümü için radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi sunulmuştur. Aynı zamanda yöntemin yakınsaklığı ve öz değerlerin kararlılığı tartışılmıştır. Yöntemin doğruluğu L_2 ve L_{∞} hata normları ve kütle, momentum ve enerji korunum kanunları ile değerlendirilmiştir.

Bibi N., Tirmizi S.I.A., Haq S., 2011, Meshless Method Of Lines For Numerical Solution Of Kawahara Type Equations, Applied Mathematics, 2, 608-618. Bu çalışmada, radyal baz fonksiyonları ile birlikte çizgiler yöntemi yani ağsız çizgiler yöntemi, Kawahara, modifiye edilmiş Kawahara ve KdV-Kawahara denklemlerinin nümerik çözümü için sunulmuştur. Sonuçlar analitik çözümle kıyaslanmıştır.

Bratsos A.G., 1998, The Solution Of The Boussinesq Equation Using The Method Of Lines, Computer Methods In Applied Mechanics And Engineering, 157, 33-44. Bu çalışmada, lineer olmayan hiperbolik Boussinesq denklemi ile ilişkili başlangıç/sınır değer problemini birinci mertebeden, lineer olmayan, başlangıç değer problemine dönüştüren çizgiler yöntemi kullanılmıştır.

Dereli Y., 2012, Numerical Solutions Of The MRLW Equation Using Meshless Method Of Lines, International Journal Of Nonlinear Science, **13(1), 28-38.** Bu çalışmada, modifiye edilmiş uzun dalga denklemi (MRLW) ağsız çekirdek tabanlı çizgiler yöntemi ile çözülmüştür. L_2 ve L_{∞} hata normları yöntemin performansını değerlendirmek için hesaplanmıştır.

Dereli Y., 2012, The Meshless Kernel-Based Method Of Lines For The Numerical Solution Of The Nonlinear Schrödinger Equation, Engineering Analysis With Boundary Elements, 36, 1416-1423. Bu çalışmada, lineer olmayan Schrödinger denklemi çoklu kuadratik, ters çoklu kuadratik ve gauss merkezcil radyal baz fonksiyonları kullanılarak çekirdek tabanlı çizgiler yöntemi ile çözülmüştür.

Dereli Y., Schaback R., 2013, The Meshless Method Of Lines For Solving The Equal Width Equation, Applied Mathematics And Computation, 219, 5224-5232. Bu çalışmada, lineer olmayan dalga olaylarından meydana gelen Equal width denklemi ağsız çekirdek tabanlı çizgiler yöntemi ile nümerik olarak çözülmüştür.

Haq S., Bibi N., Tirmizi S.I.A., Usman M., 2010, Meshless Method Of Lines For The Numerical Solution Of Generalized Kuramoto-Sivashinsky Equation, Applied Mathematics And Computation, 217, 2404-2413. Bu makalede, genelleştirilmiş Kuramoto-Sivashinsky denkleminin nümerik çözümü ağsız çizgiler yöntemi ile verilmiştir. Konum türevlerine sonlu fark yöntemi ve sonlu eleman yönteminden daha avantajlı olan radyal baz fonksiyonları ile yaklaşılmıştır.

Haq S., Hussain A., Uddin M., 2011, RBFs Meshless Method Of Lines For The Numerical Solution Of Time-Dependent Nonlinear Coupled Partial Differential Equations, Applied Mathematics, 2, 414-423. Bu çalışmada, yazar ağsız çizgiler yöntemini zaman bağımlı lineer olmayan kısmi türevli diferansiyel denklem sistemlerinin nümerik çözümü için sunmuştur. Yöntemin doğruluğu L_2 , L_∞ hata normları ve C_1 , C_2 , C_3 değişkenleriyle değerlendirilmiştir. Haq S., Hussain A., Uddin M., 2012, On The Numerical Solution Of Nonlinear Burgers'-Type Equations Using Meshless Method Of Lines, Applied Mathematics And Computation, 218, 6280-6290. Bu çalışmada, problem alanında ağ inşa etmeyi gerektirmeyen ağsız çizgiler yöntemi radyal baz fonksiyonları ile birlikte Burgers' tipi denklemlerin nümerik çözümü için verilmiştir.

Hussain A., Haq S., Uddin M., 2013, Numerical Solution Of Klein-Gordon And Sine-Gordon Equations By Meshless Method Of Lines, Engineering Analysis With Boundary Elements, 37, 1351-1366. Bu çalışmada, bir boyutlu lineer olmayan Klein Gordon denklemi ile iki boyutlu lineer olmayan Sine-Gordon denklemlerinin radyal baz fonksiyonları kullanılarak ağsız çizgiler yöntemi ile nümerik çözümü araştırılmıştır.

Köroğlu C., 2002, Üstel Matris Fonksiyonları Yardımıyla Amerikan Opsiyon Problemlerinin Çizgiler Yöntemi İle Çözümü, Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir. Bu çalışmada, çizgiler yöntemi kısaca anlatılmış ve üstel matris fonksiyonları yardımıyla yöntemin incelemesi yapılmıştır.

Nguyen V.P., Rabczuk T., Bordas S., Duflot M., 2008, Meshless Methods: A Review And Computer Implementation Aspects, Mathematics And Computers In Simulation, 79, 763-813. Bu çalışmada, ağsız yöntemler genel bakış açısı ile incelenmiştir. Ayrıca ağsız yöntemlerin MATLAB programlaması yapılmıştır.

Pregla R., 2008, Analysis of Electromagnetic Fields and Waves: The Method Of Lines, John Wiley & Sons. Bu kitapta, çizgiler yöntemi mühendisler için detaylıca incelenmiş ve çeşitli problemlere uygulanmıştır.

Sadiku M.N.O, Obiozor C.N., 2000, A Simple Introduction To The Method Of Lines, International Journal Of Electrical Engineering Education, 37(3), **282-296**. Bu çalışmada birkaç örnek yardımı ve MATLAB programıyla çizgiler yöntemi anlatılmıştır.

Schiesser W.E., 1991, The Numerical Method of Lines: Integration Of Partial Differential Equations, Academic Press, San Diego. Bu kitapta, çizgiler yöntemi hem teorik olarak hem de uygulamalı olarak derinlemesine incelenmiştir.

Schiesser W.E., Griffiths G.W., 2009, A Compendium Of Partial Differential Equation Models: Method Of Lines Analysis With Matlab, Cambridge University Press, Cambridge. Bu çalışmada yazarlar çeşitli kısmi türevli diferansiyel denklemlerinin çözümlerini MATLAB programını ile çizgiler yöntemini kullanarak hesaplamışlardır.

Schiesser W.E., Griffiths G.W., 2012, Traveling Wave Analysis Of Partial Differantial Equations, Academis Press, San Diego. Bu çalışmada, çizgiler yöntemi ile gezen dalga analizleri yapılmıştır.

Shen Q., 2009, A Meshless Method Of Lines For The Numerical Solution Of KdV Equation Using Radial Basis Functions, Engineering Analysis With Boundary Elements, 33, 1171-1180. Bu çalışmada, ağsız çizgiler yöntemi Korteweg-de Vries denkleminin nümerik çözümü için verilmiştir. Ayrıca bahsedilen yöntemin geleneksel çizgiler yöntemine göre olan avantajlarından bahsedilmiştir.

2. TEMEL KAVRAMLAR

Uygulamalı matematikte fizik, mühendislik ve uzay bilimlerinde ki birçok problemin modellenerek çözümleri aranmaktadır. Bu modellemelerde çok farklı problemler ortaya çıkmaktadır. Bu problemlerin çözümleri için de farklı türde analitik ve nümerik yöntemler geliştirilmiştir.

Bu bölümde kullanılan yöntemler ve bu yöntemler ile alakalı temel kavramlar tanıtılmıştır. Bu yöntemler arasında literatürdeki en yeni yöntemlerden biri olan çizgiler yöntemi ve kademeli olarak çeşitli bilim adamları tarafından geliştirilerek şimdiki halini almış olan radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi vardır.

2.1. Evolution Denklemleri

Bağımsız değişkenlerinden biri t, zaman olan kısmi türevli diferansiyel denklemlere evolution denklemleri denilmektedir. Birinci mertebeden evolution denklemleri K[u]; u ve u'nun x değişkenine göre türevlerinin tanımlı fonksiyonu olmak üzere:

$$\boldsymbol{u}_t = \boldsymbol{K}[\boldsymbol{u}] \tag{2.1.1}$$

formundadır. Eğer K[u]; u terimine göre lineer ise bu tip denklemlere lineer evolution denklemleri ve K[u]; u terimine göre lineer değil ise bu tip denklemlere lineer olmayan evolution denklemleri denir. Benzer şekilde, ikinci mertebeden evolution denklemleri

$$\boldsymbol{u}_{tt} = \boldsymbol{K}[\boldsymbol{u}] \tag{2.1.2}$$

şeklindedir.

Isı iletimini tanımlayan ısı denklemi ve bir telin titreşimini tanımlayan dalga denklemi evolution denklemlerine en basit iki örnek olarak verilebilir. Lineer olmayan evolution denklemleri sadece matematiğin bazı alanlarında değil aynı zamanda fizik, kimya, biyoloji ve malzeme bilimi gibi bilim dallarında da ortaya çıkan kısmi türevli diferansiyel denklemlerdir. Örneğin Navier-Stokes ve Euler denklemleri akışkanlar mekaniğinde, lineer olmayan reaksiyon-difüzyon denklemleri ısı transferinde ve biyoloji biliminde, lineer olmayan Klein-Gordon denklemi ve lineer olmayan Schrödinger denklemi kuantum mekaniğinde ve Cahn-Hilliard denklemi malzeme biliminde ortaya çıkan lineer olmayan evolution denklemlerinden sadece birkaçıdır (Zheng, 2004).

2.2. Radyal Baz Fonksiyonları (RBF)

Radyal baz fonksiyonları (RBF), nümerik analizde ve istatistikte geniş uygulama alanına sahiptir ve halen matematikçiler için aktif çalışma alanıdır.

Radyal baz fonksiyonları genellikle çok değişkenli fonksiyonlardır ve bu fonksiyonların değerleri orijine olan uzaklığına dayanır. Öyle ki; $\phi(x) = \phi(r) \in \mathbb{R}$, $x \in \mathbb{R}^n$ ve $r \in \mathbb{R}$ dir. Ya da alternatif olarak $\{x_j\}$ kümesinde verilen noktaların uzaklığına dayanır ve $\phi(x - x_j) = \phi(r_j) \in \mathbb{R}$ dir. $\phi(x) = \phi(||x||_2)$ özelliğini sağlayan herhangi bir ϕ fonksiyonu radyal fonksiyondur. $r_j = ||x - x_j||_2$ normu genellikle Öklid normudur (Chen vd., 2014).

Burada bahsedilen radyal baz fonksiyonların hepsi tanımlarında *c* değişkeni içerir. Bu *c* değişkeni şekil parametresi olarak adlandırılır. Bu parametre radyal baz fonksiyonlarının nümerik yöntemlere uygulanmasında kullanıldığı zaman çözüm üzerinde oldukça önemli bir etkiye sahiptir. Bu yüzden *c* şekil parametresinin en uygun değerinin seçilmesi çok önemlidir. Ancak bu şekil parametresinin belirlenmesi hala çalışılan ve henüz çözülememiş bir problemdir (Shen, 2009).

Radyal baz fonksiyonları, çok değişkenli fonksiyonlara tek değişkenli fonksiyonların lineer kombinasyonu ile yaklaşmak için bir araçtır. Bu tipteki yaklaşımların esas avantajı şudur; hiçbir şekilde ağ gerektirmez ve yüksek boyutlular için keyfi geometri ile çalışır. Yaygın olarak kullanılan radyal baz fonksiyonları aşağıdaki çizelgede verilmiştir.

Radyal Baz Fonksiyonları	$\phi(r)$
Çoklu kuadratik (MQ)	$(r^2+c^2)^{1/2}$
Ters çoklu kuadratik (IMQ)	$(r^2+c^2)^{-1/2}$
Gauss merkezcil (GA)	$e^{-c^2r^2}$

Çizelge 2.2.1. Yaygın olarak kullanılan radyal baz fonksiyonları

2.3. Yüksek Mertebeden Adi Türevli Diferansiyel Denklemini Birinci Mertebeden Adi Türevli Diferansiyel Denklem Sistemine İndirgeme

n. mertebeden adi türevli diferansiyel denklem her zaman *n* adet birinci mertebeden adi türevli diferansiyel denklemden oluşan bir sisteme dönüştürülebilir.

$$y^{(n)} = f(y, y', y'', \dots, y^{(n-1)})$$
(2.2.1)

şeklinde **n**. mertebeden adi türevli diferansiyel denklemi verilmiş olsun. Bu denklemi adi türevli diferansiyel denklem sistemine dönüştürmek için

$$y_1 = y$$
 (2.2.2)

$$y_2 = y'_1 = y'$$
 (2.2.3)

$$y_3 = y'_2 = y''$$
 (2.2.4)

$$y_n = y'_{n-1} = y^{(n-1)}$$
(2.2.5)

olarak n tane parametreye ihtiyaç vardır. Bunu yaparken en yüksek mertebeli türev hariç, yeni değişken olarak bilinmeyen fonksiyonlar ve türevleri tanımlanır. Bu yeni değişkenlerin (2.2.1) denkleminde yerine yazılmasıyla

$$y'_n = f(y_1, y_2, y_3, \dots, y_n)$$
 (2.2.6)

şeklinde yeni tanımlanan n adet değişkene bağlı birinci mertebeden bir adi türevli diferansiyel denklem sistemi elde edilir. Bu denklem ile y_1, y_2, \dots, y_{n-1} 'den oluşan grup

$$y'_1 = y_2$$
 (2.2.7)
 $y'_2 = y_3$ (2.2.8)

$$y'_{n} = f(y_{1}, y_{2}, y_{3}, \dots, y_{n})$$
 (2.2.9)

÷

şeklinde birinci mertebeden adi türevli diferansiyel denklem sistemi oluşturulur.

3. KULLANILAN YÖNTEMLER

Evolution denklemlerinin nümerik çözümü için kullanacağımız belli başlı yöntemler bu bölümde ifade edilmiştir.

3.1. Çizgiler Yöntemi (MOL)

Çizgiler yöntemi, bağımsız değişken x konum değişkeni veya t zaman değişkenine bağlı kısmi türevli diferansiyel denklemlerin yerine uygun sonlu fark denklemlerinin yazılması sonucu oluşan adi türevli diferansiyel denklem sisteminin çözülmesiyle sonuca gidilen nümerik çözüm tekniğidir.

Bu çalışmada, evolution denklemleri ele alınacaktır. Bu denklemleri temsil etmesi için aşağıdaki (3.1.1) denklemi göz önüne alınarak çizgiler yöntemi (MOL) açıklanacaktır (Schiesser vd., 2009):

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$
(3.1.1)

Burada u, x ve t'ye bağlı bağımlı değişken, t zamanı temsil eden bağımsız değişken, x konumu temsil eden bağımsız değişken ve D değişkeni sabit sayıdır.

 $\frac{\partial u}{\partial t}$, **u**'nun **t** değişkenine göre kısmi türevidir. (3.1.1) denkleminde **t** değişkenine göre en yüksek mertebeden kısmi türevi birinci mertebeden olduğu için bu denklem **t** değişkenine göre birinci mertebedendir. Aynı şekilde, (3.1.1) denklemi **x** değişkenine göre en yüksek mertebeden kısmi türevi ikinci mertebeden olduğu için bu denklem **x** değişkenine göre ikinci mertebeden dir.

(3.1.1) denkleminin çözümünü düşünmeden önce kısmi türevli diferansiyel denklem probleminin ifadesini tamamlamak için bazı yardımcı şartlar tanımlanması gerekir. Gerekli yardımcı şartların sayısı her bir bağımsız değişkenin türev mertebesine göre belirlenir. (3.1.1) denklemi *t* değişkenine

göre birinci mertebeden olduğu için bir tane şart, x değişkenine göre ikinci mertebeden olduğu için iki tane şart gereklidir.

t, başlangıç değer değişkeni olarak adlandırılır ve bir tane başlangıç şartı gereklidir. x ise sınır değer değişkeni olarak adlandırılır ve iki tane sınır şart gereklidir. Başlangıç değer şartı

$$u(x, t = t_b) = u_0(x), \quad t_b \le t \le t_s$$
 (3.1.2)

şeklinde ve sınır değer şartı

$$u(x = x_b, t) = u_b(t), u(x = x_s, t) = u_s(t), \ x_b \le x \le x_s$$
(3.1.3)

şeklinde tanımlansın. (3.1.1), (3.1.2) ve (3.1.3) denklemleri birlikte kısmi türevli diferansiyel denklem problemini oluştururlar. Bu problemin çizgiler yöntemiyle çözümü aşağıdaki şekilde ifade edilir:

 $x_b \le x \le x_s$ aralığında $x_b = x_1 < x_2 < ... < x_{N-1} < x_N = x_s$ olacak şekilde *N* tane düğüm olsun. x_1 ve x_N sınır düğümler, $x_2, ..., x_{N-1}$ iç düğümlerdir.

Çizgiler yönteminin temel fikri, kısmi türevli diferansiyel denklemlerdeki konum türevlerine sonlu fark eşitlikleri ile yaklaşmaktır. Bu yapıldığı zaman konum türevleri artık konum bağımsız değişkeni ile ifade edilemez. Böylece sadece zaman bağımsız değişkeni kalır. Bir başka deyişle, orijinal kısmi türevli diferansiyel denkleme yaklaşan adi türevli diferansiyel denklem sistemi elde edilir. Esas zorluk kısmi türevli diferansiyel denklemi adi türevli diferansiyel denklem sistemi ile ifade etmektir. Bu yapıldıktan sonra kısmi türevli diferansiyel denklemin nümerik çözümünü hesaplamak için başlangıç değer adi türevli diferansiyel denklem sistemine herhangi bir integrasyon algoritması uygulanabilir. Böylece çizgiler yönteminin en belirgin özelliklerinden biri adi türevli diferansiyel denklem sistemi için mevcut, iyi tanımlanmış nümerik yöntemlerin kullanımıdır. Bu prosedürü yansıtmak için öncelikle (3.1.1) denklemindeki u_{xx} konum türevini cebirsel yaklaşımı ile yer değiştirmek gerekir. Bu durumda

$$u_{xx} \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2}$$
 (3.1.4)

sonlu fark eşitliği kullanılacaktır. Burada *i*, ızgara üzerinde *x*'in konumunu ifade eden indeks, Δx ise ızgara üzerinde *x* ekseni boyunca düğümler arası mesafedir. O zaman, (3.1.1) denkleminin çizgiler yöntemi yaklaşımı

$$\frac{du_i}{dt} = D \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2}, 0 \le i \le N$$
(3.1.5)

şeklindedir. (3.1.5) denklemi sadece bir tane bağımsız t değişkenini içerdiğinden adi türevli diferansiyel denklem sistemidir.

(3.1.1) kısmi türevli diferansiyel denkleminin, (3.1.5) adi türevli diferansiyel denklem sistemine dönüşümü çizgiler yönteminin özüdür. Daha sonra kısmi türevli diferansiyel denklemin çözümünü hesaplamak için adi türevli diferansiyel denklem sisteminin çözümünün bulunması gerekir. (3.1.5) denklem sistemi N tane adi türevli diferansiyel denklem içerdiğinden N tane başlangıç şartı gereklidir. Bu şartlar, ayrıklaştırmadan sonra (3.1.2) denkleminden

$$u(x_i, t = t_b) = u_i(x) = u_0(x_i), \quad 0 \le i \le N$$
 (3.1.6)

olarak elde edilir. Aynı zamanda sınır şartları

$$u_1(t) = u_b(t), \qquad u_N(t) = u_s(t)$$
 (3.1.7)

şeklinde elde edilir. (3.1.5), (3.1.6) ve (3.1.7) denklemleri, verilen kısmi türevli diferansiyel denklemin çizgiler yaklaşımı olarak elde edilir. Bu adi türevli diferansiyel denklem sistemi uygun bir yöntem ile çözülür. Elde edilen adi türevli diferansiyel denklem sisteminin çözümü

$$u_1(t), u_2(t), \dots, u_N(t)$$
 (3.1.8)

şeklindedir ki, bu fonksiyonlar i = 1, 2, ..., Nızgara noktalarında u(x, t)'ye yaklaşır (Griffiths vd., 2012).

Başlangıçta ele alınan kısmi türevli diferansiyel denklem eğer bir başlangıçdeğer problemi ise sonuçta oluşan adi türevli diferansiyel denklem sistemi de bir başlangıç değer problemidir. Eğer problem bir sınır değer problemi ise sonuçta oluşan adi türevli diferansiyel denklem sistemi de sınır değer problemidir (Durmuş, 2015).

3.2. Ağsız Yöntemler (MM)

Ağsız yöntem (MM), tanımlanan alanda ağ kurulmadan sistemin algoritmik denklemlerini kurmaya çalışan bir yöntem olarak tanımlanabilir. Ağsız yöntemler problem bölgesinde tanımlı düğüm noktalarını kullanarak sınır koşullarını uygulayıp problemi çözer. Dağılmış düğümlere alan düğümleri denir ve aralarında ağ oluşturmazlar (Liu vd., 2005). Sonlu elemanlar yönteminde olduğu gibi uygun olan interpolasyonu veya yaklaşık çözümü bulmak için önceden ağ tanımlanması gerekmemektedir.

Kartezyen koordinatlarda u(x, t) fonksiyonu için ağsız yaklaşım

$$u^{N}(x,t) \approx u(x,t) = \sum_{I \in S} \varphi_{I}(x)u_{I}(t)$$
(3.2.1)

şeklinde tanımlanır. Burada $\varphi_I : \Omega \to \mathbb{R}$ şekil fonksiyonları, u_I 'lar I parçasında x_I konumundaki düğüm değerleri, S ise $\varphi_I(x) \neq 0$ olmak üzere I parçasındaki düğümlerin kümesidir. (3.2.1) formu sonlu elemanlar yaklaşımına benzemektedir. Ancak, $u_I \neq u(x_I)$ olduğu için (3.2.1) denklemindeki şekil fonksiyonları sonlu elemanlar yönteminin aksine sadece yaklaşım olup interpolasyon değildir (Nguyen vd., 2008).

Şekil 3.2.1. Ağsız yöntemler kullanılarak alanı ayrıklaştırma

3.3. Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi (MMOL-RBF)

Radyal baz fonksiyonları yardımıyla ağsız çizgiler yönteminin çeşitli tipteki kısmi türevli diferansiyel denklemler için nasıl uygulanacağından bahsedilmiştir.

3.3.1. Birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklemler için MMOL-RBF

Birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklemlere radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemini (MMOL-RBF) uygulamak için u = u(x, t) ve *L* konum türev operatörü olmak üzere

$$\frac{\partial u}{\partial t} + L(u) = 0, x \in \Omega, t \ge 0$$
(3.3.1)

formundaki kısmi türevli diferansiyel denklemleri ele alınsın. Şimdi farz edelim ki; $x_1, x_2, ..., x_N$ düğümleri $\Omega \subset \mathbb{R}$ problem alanındaki merkezin kümesinde seçilen düğümler olsun. Zaman bağımlı kısmi türevli diferansiyel denklemler için radyal baz fonksiyonları yardımıyla ağsız çizgiler yönteminde sunulan fikirler aşağıdadır (Bibi, 2011). $u^N(x, t)$ yaklaşık çözümü

$$u^{N}(x,t) = \sum_{j=1}^{N} \lambda_{j}(t) \Psi(||x-x_{j}||)$$
(3.3.2)

olarak sunulabilir. Burada Ψ bazı radyal baz fonksiyonları, x_j 'ler merkezdeki düğümler ve $\lambda_j(t), j = 1, 2, ..., N$ belirlenecek olan bilinmeyen katsayılardır. Benzer şekilde konum türev operatörü için yaklaşık çözüm

$$L(u^{N}(x,t)) = \sum_{j=1}^{N} \lambda_{j}(t) L\left(\Psi(||x-x_{j}||)\right)$$
(3.3.3)

olarak yazılabilir.

(3.3.2) ve (3.3.3) denklemlerindeki yaklaşımlar matris formunda

$$u^N = A\lambda \tag{3.3.4}$$

ve

$$L(u^N) = B\lambda \tag{3.3.5}$$

olarak yazılabilir. Burada

$$\boldsymbol{u}^{N} = [\boldsymbol{u}_{1}(t), \boldsymbol{u}_{2}(t), \dots, \boldsymbol{u}_{N}(t)]^{T}$$
(3.3.6)

$$L(u^{N}) = [L(u_{1}(t)), L(u_{2}(t)), ..., L(u_{N}(t))]^{T}$$
(3.3.7)

$$\boldsymbol{\lambda} = [\boldsymbol{\lambda}_1(t), \boldsymbol{\lambda}_2(t), \dots, \boldsymbol{\lambda}_N(t)]^T$$
(3.3.8)

şeklinde sütun matrisleri, A ise $A_{i,j} = \Psi(||x_i - x_j||), i, j = 1, ..., N$ şeklinde elemanları olan matris ve B ise $B_{i,j} = L\Psi(||x_i - x_j||)_{x=x_j}, i, j = 1, ..., N$ şeklinde elemanları olan simetrik olmayan matristir.

(3.3.4) ve (3.3.5) denklemleri kullanılarak

$$L(u^{N}) = (BA^{-1})u^{N}$$
(3.3.9)

elde edilir. (3.3.9) denklemi

$$L(\boldsymbol{u}^N) = \boldsymbol{D}\boldsymbol{u}^N \tag{3.3.10}$$

olarak yazılabilir. Burada $D = BA^{-1}$ 'dir.

Radyal baz fonksiyonları yardımıyla konum değişkenine göre ayrıklaştırıldıktan sonra, (3.3.1) kısmi türevli diferansiyel denklemi

$$\frac{du_i}{dt} = Du^N, \quad i = 1, \dots, N \tag{3.3.11}$$

ile verilen adi türevli diferansiyel denklem sistemine dönüşür. (3.3.11) denklem sistemi uygun bir adi türevli diferansiyel denklem çözüm yöntemi yardımıyla çözülür.

3.3.2. Birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklem sistemleri için MMOL-RBF

Birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklem sistemlerine radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemini uygulamak için u = u(x, t), v = v(x, t) ve L konum türev operatörü olmak üzere

$$\begin{cases} \frac{\partial u}{\partial t} + L(v) = \mathbf{0} \\ \frac{\partial v}{\partial t} + L(u) = \mathbf{0} \end{cases}, \quad x \in \Omega, t \ge \mathbf{0} \tag{3.3.12}$$

formundaki kısmi türevli diferansiyel denklem sistemi ele alınsın. Şimdi farz edelim ki; $x_1, x_2, ..., x_N$ düğümleri $\Omega \subset \mathbb{R}$ problem alanındaki merkezin kümesinde seçilen düğümler olsun. $u^N(x,t)$ ve $v^N(x,t)$ yaklaşık çözümleri sırasıyla

$$u^{N}(x,t) = \sum_{j=1}^{N} \lambda_{j}^{1}(t) \Psi(||x-x_{j}||)$$
(3.3.13)

$$v^{N}(x,t) = \sum_{j=1}^{N} \lambda_{j}^{2}(t) \Psi(||x-x_{j}||)$$
(3.3.14)

olarak sunulabilir. Burada, Ψ bazı radyal baz fonksiyonları, x_j 'ler merkezdeki düğümler ve $\lambda_j^1(t)$ ve $\lambda_j^2(t), j = 1, ..., N$ belirlenecek olan bilinmeyen katsayılardır. Benzer şekilde konum türev operatörü için yaklaşık çözüm

$$L(u^{N}(x,t)) = \sum_{j=1}^{N} \lambda_{j}^{1}(t) L\left(\Psi(||x-x_{j}||)\right)$$
(3.3.15)

$$L(v^{N}(x,t)) = \sum_{j=1}^{N} \lambda_{j}^{2}(t) L\left(\Psi(||x-x_{j}||)\right)$$
(3.3.16)

olarak yazılabilir. (3.3.13), (3.3.14), (3.3.15) ve (3.3.16) denklemlerindeki yaklaşımlar sırasıyla matris formunda

$$u^N = A\lambda^1 \tag{3.3.17}$$

$$v^N = A\lambda^2 \tag{3.3.18}$$

$$L(u^N) = B\lambda^1 \tag{3.3.19}$$

$$L(v^N) = B\lambda^2 \tag{3.3.20}$$

olarak yazılabilir. Burada u^N ve $L(u^N)$ sırasıyla (3.3.6) ve (3.3.7) denklemlerinde verilen sütun matrisleri, benzer şekilde v^N ve $L(v^N)$

$$v^{N} = [v_{1}(t), v_{2}(t), \dots, v_{N}(t)]^{T}$$
(3.3.21)

$$L(v^{N}) = [L(v_{1}(t)), L(v_{2}(t)), \dots, L(v_{N}(t))]^{T}$$
(3.3.22)

şeklinde sütun matrisleri, A ise $A_{i,j} = \Psi(||x_i - x_j||), i, j = 1, ..., N$ şeklinde elemanları olan matris, B ise $B_{i,j} = L\Psi(||x_i - x_j||)_{x=x_j}, i, j = 1, ..., N$ şeklinde elemanları olan simetrik olmayan matris ve

$$\lambda^{i} = \left[\lambda_{1}^{i}(t), \lambda_{2}^{i}(t), \dots, \lambda_{N}^{i}(t)\right]^{T}, \qquad i = 1, 2$$
(3.3.23)

şeklinde sütun matrisidir.

(3.3.17), (3.3.18), (3.3.19) ve (3.3.20) denklemleri kullanılarak

$L(u^N) = (BA^{-1})u^N$	(3.3.24)
$L(\boldsymbol{v}^N) = (\boldsymbol{B}\boldsymbol{A}^{-1})\boldsymbol{v}^N$	(3.3.25)

elde ederiz. (3.3.24) ve (3.3.25) denklemleri

$$L(u^{N}) = Du^{N}$$
 (3.3.26)
 $L(v^{N}) = Dv^{N}$ (3.3.27)

olarak yazılabilir. Burada $D = BA^{-1}$ 'dir.

Radyal baz fonksiyonları yardımıyla konum değişkenine göre ayrıklaştırdıktan sonra, (3.3.12) kısmi türevli diferansiyel denklem sistemi

$$\begin{cases} \frac{du_i}{dt} = Dv^N \\ \frac{dv_i}{dt} = Du^N \end{cases}$$
(3.3.28)

ile verilen adi türevli diferansiyel denklem sistemine dönüşür. (3.3.28) adi türevli diferansiyel denklem sistemi uygun bir adi türevli diferansiyel denklem çözüm yöntemi yardımıyla çözülür.

3.3.3. İkinci mertebeden (2+1) boyutlu kısmi türevli diferansiyel denklemler için MMOL-RBF

İkinci mertebeden (2+1) boyutlu kısmi türevli diferansiyel denklemlerine radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemini uygulamak için u = u(x, y, t) ve *L* konum türev operatörü olmak üzere

$$\frac{\partial^2 u}{\partial t^2} + L(u) = \mathbf{0}, (x, y) \in \Omega, t \ge \mathbf{0}$$
(3.3.29)

formundaki kısmi türevli diferansiyel denklemi ele alınsın. Şimdi farz edelim ki; $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$ düğümleri $\Omega \subset \mathbb{R}^2$ problem alanındaki merkezin kümesinde seçilen düğümler olsun.

(3.3.29) kısmi türevli diferansiyel denklemini birinci mertebeden kısmi türevli diferensiyel denklem sistemine indirgemek için $u_t(x, y, t) = v(x, y, t)$ dönüşümü kullanılır. Böylece

$$\begin{cases} u_t = v \\ v_t = -L(u) \end{cases}$$
(3.3.30)

adi kısmi türevli denklem sistemi elde edilir. Daha sonra Bölüm 3.3.2'deki adımlar takip edilir.

4. UYGULAMALAR

Bu bölümde bazı özel evolution denklemlerinin çizgiler yöntemi ve çoklu kuadratik (MQ), ters çoklu kuadratik (IMQ) ve gauss merkezcil (GA) radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi ile çözümleri elde edilip, sayısal değerleri çizelgeler halinde verilmiştir.

Giriş bölümünde de bahsettiğimiz gibi radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi; birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklemlerin, birinci mertebeden (1+1) boyutlu kısmi türevli diferansiyel denklem sistemlerinin ve ikinci mertebeden (2+1) boyutlu kısmi türevli diferansiyel denklemlerin çözümünde kullanılabilir. Bu bölümde öncelikle birinci mertebeden (1+1) boyutlu Sawada Kotera denkleminin, birinci mertebeden (1+1) boyutlu Burgers denklem sisteminin, son olarakta ikinci mertebeden (1+1) boyutlu Klein Gordon denkleminin çözümü yapılmıştır.

Ayrıca metodun performansını değerlendirmek için aşağıdaki hata normları kullanılmıştır:

$$L_{2} = \|u^{N} - u\|_{L_{2}} = \sqrt{h \sum_{i=1}^{N} (u_{i}^{N} - u_{i})^{2}}$$
$$L_{\infty} = \|u^{N} - u\|_{L_{\infty}} = \max_{1 \le i \le N} |u_{i}^{N} - u_{i}|$$

Burada \boldsymbol{u} analitik çözümü, \boldsymbol{u}^N nümerik çözümü temsil eder.

Konumda ve zamanda noktasal yakınsaklık oranlarını hesaplamak için aşağıdaki formüller kullanılmıştır:

$$\frac{\log(\|u_{analitik} - u_{h_i}\| / \|u_{analitik} - u_{h_{i+1}}\|)}{\log(h_i/h_{i+1})}$$
$$\frac{\log(\|u_{analitik} - u_{t_i}\| / \|u_{analitik} - u_{t_{i+1}}\|)}{\log(t_i/t_{i+1})}$$

Burada $u_{analitik}$ analitik çözümü u_{h_i} ve u_{t_i} ise sırasıyla h_i ve t_i adımları ile nümerik çözümü temsil eder.

4.1. Problem 1

$$u_t + \alpha u^2 u_x + \beta u_x u_{xx} + \gamma u u_{xxx} + u_{xxxxx} = 0 \qquad (4.1.1)$$

denklemi ile Sawada Kotera denklemini ele alalım. Burada α , β , γ sıfırdan farklı keyfi sabitler ve u = u(x,t) yeterince türevlenebilen fonksiyondur. $\alpha = 45$, $\beta = \gamma = 15$ ve $-15 \le x \le 15$, $0 \le t \le 1$, N = 11 alarak denklemi klasik çizgiler yöntemini ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemini kullanarak çözelim.

Denklemin analitik çözümü

$$u(x,t) = 2k^2 sech^2(k(x-16k^4t-x_0))$$
(4.1.2)

şeklindedir (Kaya vd., 2003). Burada k ve x_0 keyfi parametrelerdir. Bu çalışmada $k = 0.01, x_0 = 0$ olarak alınmıştır. Başlagınç şartı ise denklem (4.1.2)'den elde edilir.

4.1.1. Çizgiler Yöntemi ile Çözüm

Burada (4.1.1) denkleminin x değişkenini verilen aralıkta N parçaya ayıralım.

$$x_i = i.h$$
 $(i = 1, 2, ..., N)$

olup burada $h = \frac{15 - (-15)}{N}$ ile hesaplanır. (4.1.1) denkleminde u_x , u_{xx} , u_{xxx} ve u_{xxxxx} ifadelerinin yerine sonlu fark yaklaşımlarını yazarsak

$$\frac{du_i}{dt} = f(u_i), \qquad i = 1, 2, ..., N$$
 (4.1.3)

şeklinde *t*'ye bağlı bir adi türevli diferansiyel denklem sistemi oluşur. Oluşan adi türevli diferansiyel denklem sistemi MATLAB paket program aracılığıyla Runge-Kutta yöntemi kullanılarak çözülmüştür (Schiesser vd., 2012). Elde edilen sonuçlar analitik çözümle L_2 ve L_∞ hata normlarına göre kıyaslanarak Çizelge 4.1.1, Çizelge 4.1.2 ve Çizelge 4.1.3'te verilmiştir.

4.1.2. Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi ile Çözüm

Bu denklemin radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi ile çözümü şu şekildedir: öncelikle [-15,15] problem alanında *N* değerine göre eşit aralıklı (uniform) düğüm dağılımı yapılmalıdır. Bu ayrıklaştırma sürecinde yaklaşık çözüm $u^{N}(x, t)$ 'den, yani (3.3.4) denkleminden

$$u^N = A\lambda \tag{4.1.4}$$

yazılabilir. (4.1.1) denklemi x değişkenine göre birinci, ikinci, üçüncü ve beşinci mertebeden türev içerdiği için (3.3.10) denkleminden

$$\boldsymbol{u}_x^N = \boldsymbol{D}_x \boldsymbol{u}^N \tag{4.1.5}$$

$$\boldsymbol{u}_{xx}^{N} = \boldsymbol{D}_{xx}\boldsymbol{u}^{N} \tag{4.1.6}$$

$$\boldsymbol{u}_{xxx}^{N} = \boldsymbol{D}_{xxx} \boldsymbol{u}^{N} \tag{4.1.7}$$

$$\boldsymbol{u}_{\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}}^{N} = \boldsymbol{D}_{\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}\boldsymbol{x}} \boldsymbol{u}^{N} \tag{4.1.8}$$

elde edilir. . Burada $D = BA^{-1}$ 'dir. (4.1.4), (4.1.5), (4.1.6), (4.1.7) ve (4.1.8) denklemleri (4.1.1) denkleminde yerine yazılırsa

$$\frac{du_{i}^{N}}{dt} + a(u_{i}^{N})^{2}(D_{x}u^{N}) + \beta(D_{x}u^{N})(D_{xx}u^{N}) + \gamma(u_{i}^{N})(D_{xxx}u^{N}) + D_{xxxxx}u^{N} = 0$$
(4.1.9)

denklem sistemi elde edilir. Ayrıklaştırma sonrası başlangıç şartı (4.1.2) denkleminden

$$u_i(0) = 2k^2 sech^2(k(x_i - x_0)) , i = 1, ..., N$$
(4.1.10)

olur. Böylece (4.1.1) ve (4.1.2) denklemleriyle ifade edilen kısmi türevli diferansiyel denklem problemi (4.1.9) ve (4.1.10) denklemleriyle ifade edilen adi türevli diferansiyel denklem sistemi problemine indirgenir. Elde edilen adi türevli diferansiyel denklem sisteminin çözümü, dördüncü mertebeden Runge-Kutta yöntemi, ODE45 komutu ile MATLAB paket program aracılığıyla elde edilmiştir (Schiesser vd., 2012). Elde edilen sonuçlar analitik çözümle L_2 ve L_{∞} hata normlarına göre kıyaslanarak Çizelge 4.1.1, Çizelge 4.1.2 ve Çizelge 4.1.3'te verilmiştir.

Yöntem	t = 0.001	t = 0.002	t = 0.01	t = 0.05	t = 0.1
MOL-	3,9581974998	1,5831606685	3,9495584895	6,1919363486	1,2421913912
Klasik	3952×10^{-14}	7293×10 ⁻¹³	5172×10 ⁻¹²	5275×10 ⁻⁹	2962×10 ⁻⁸
MMOL-	5,3311595664	1,0598727531	5,0539128688	2,0165151478	3,1232020864
GA	61482× 10 ⁻⁸	05454×10^{-7}	56254× 10 ⁻⁷	80510×10 ⁻⁶	96560×10 ⁻⁶
MMOL-	2,1303217122	4,2660592357	2,1551272475	1,1392342595	2,4699942294
MQ	12969× 10 ⁻⁹	29185× 10 ⁻⁹	85653×10 ⁻⁸	43211× 10 ⁻⁷	96117× 10 ⁻⁷
MMOL-	2,7244629375	5,4305471394	2,6433956258	1,1617699822	2,0000950067
IMQ	27260× 10 ⁻⁸	01527×10^{-8}	07828× 10 ⁻⁷	72734× 10 ⁻⁶	35073×10 ⁻⁶

Çizelge 4.1.1. Sawada Kotera denklemi için $\boldsymbol{L_2}$ hata normu

Yöntem	t = 0.001	t = 0.002	t = 0.01	t = 0.05	t = 0.1
MOL-	1,2346552134	2,4694628324	1.2353409818	9,7693942243	3,8555565963
Klasik	4649×10 ⁻¹⁰	8934×10 ⁻¹⁰	9410×10 ⁻⁹	7418×10 ⁻¹¹	67256×10 ⁻¹⁰
MMOL-	2,3856574769	4,7428581462	2,2615914730	9,0237674692	1,3976115853
GA	08867× 10 ⁻⁸	30167× 10 ⁻⁸	07121× 10 ⁻⁷	10763×10 ⁻⁷	38859× 10 ⁻⁶
MMOL-	1,0655923663	2,1389398242	1,0780012879	5,6985123045	1,2355125744
MQ	73939× 10 ⁻⁹	7743×10 ⁻⁹	22601×10 ⁻⁸	9670×10 ⁻⁸	64254× 10 ⁻⁷
MMOL-	1,2184168660	2,4286145117	1,1821624621	5,1955933091	8,9446967930
IMQ	97943× 10 ⁻⁸	43768× 10 ⁻⁸	46380×10^{-7}	61116× 10 ⁻⁷	35045×10 ⁻⁷

Çizelge 4.1.2. Sawada Kotera denklemi için L_∞ hata normu

Yöntem	dt	<i>L</i> ₂	L ₂ Oran	L_{∞}	L_{∞} Oran
MOL-	0.0004	3,0902828107	1,99991805	9,6007005542	1,00048009
Klasik		96819×10 ⁻¹⁴	7526170	37670×10 ⁻¹⁴	673645
MMOL-	0.0004	1,4385336855	1,09605584	7,1956352335	1,09606367
MQ		87527× 10 ⁻⁷	9625919	58256× 10 ⁻⁸	2262671
MMOL-	0.0004	1,3881552617	0,80971999	6,2080190571	0,80971999
IMQ		35297× 10 ⁻⁷	5313131	28272× 10 ⁻⁷	5313131
MMOL-	0.0004	2.3454692649	0,67280173	1,0495814658	0,67280173
GA		38425× 10 ⁻⁶	6081384	70597× 10 ⁻⁶	3209720
MOL-	0.0002	3,0902827460	1,99993065	9,6007005542	1,00004803
Klasik		95657×10 ⁻¹⁴	3555113	37670×10 ⁻¹¹	2015435
MMOL-	0.0002	1,3878532813	1,09216840	6,9421269467	1,09217594
MQ		72341× 10 ⁻⁷	4454157	67579× 10 ⁻⁸	1817379
MMOL-	0.0002	1,3516365318	0,81551972	6,0447023320	0,81551972
IMQ		27191× 10 ⁻⁶	6896214	75313× 10 ⁻⁷	6896247
MMOL-	0.0002	2,2938797537	0,68237334	1,0264955119	0,68237334
GA		34842×10 ⁻⁶	5427745	17511× 10 ⁻⁶	2623867
MOL-	0.0001	3,0902827460	1,99992818	9,6007005542	1,00004807
Klasik		95657×10 ⁻¹⁴	6581897	80002×10 ⁻¹¹	1386950
MMOL-	0.0001	1,3878532804	1,09207648	6,9421269420	1,09208402
MQ		27078× 10 ⁻⁷	9807672	39017× 10 ⁻⁸	0401946
MMOL-	0.0001	1,3516365304	0,81565813	6,0447023260	0,81565813
IMQ		83120× 10 ⁻⁶	4644515	64446× 10 ⁻⁷	4644515
MMOL-	0.0001	2,2938797414	0,68260191	1,0264955064	0,68260190
GA		50826× 10 ⁻⁶	2317292	20497× 10 ⁻⁶	9514949
MOL-	0.00005	2,1460435927	1,99999024	8,0005198025	1,00004015
Klasik		06593×10^{-14}	4197298	71813×10 ⁻¹¹	2354496
MMOL-	0.00005	1,3878532805	1,09203060	6,9421269426	1,09203812
MQ		52346× 10 ⁻⁷	2455948	65652× 10 ⁻⁸	9667741
MMOL-	0.00005	1,3516365303	0,81572751	6,0447023256	0,81572751
IMQ		87683×10 ⁻⁶	1264141	37636× 10 ⁻⁷	1264141
MMOL-	0.00005	2,2938797402	0,68271700	1,0264955058	0,68271699
GA		62165× 10 ⁻⁶	2488768	88579×10 ⁻⁶	8687448

Çizelge 4.1.3. Sawada Kotera denklemi için zamanda noktasal yakınsaklık oranı

Sawada Kotera denklemi için L_2 ve L_{∞} hata normları Çizelge 4.1.1 ve Çizelge 4.1.2'de hesaplanmıştır. Ayrıca Çizelge 4.1.3'te ise zamanda noktasal yakınsaklık oranı klasik çizgiler yöntemi için ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi için ayrı hesaplanmıştır. Çizelgelerden şu sonuç

çıkarılmıştır: Klasik çizgiler yöntemi, radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemine göre daha iyi sonuç vermiştir. Çizelge 4.1.3'ten görülür ki: Nsayısının değişimi denklem sonucunda kayda değer bir değişiklik meydana getirmemiştir. Yani küçük N değerleri ile zaman kaybı yaşamadan eş değer doğrulukta sonuçlar elde edilebilir ki bu da yöntemi çekici kılan avantajlardan biridir.

4.2. Problem 2

Akışkanlar mekaniğinde yayılan dalgalar için en basit denklem modeli olan birinci mertebeden, (1+1) boyutlu, lineer olmayan kısmi türevli diferansiyel Burgers denklem sistemi

$$\begin{cases} u_t = u_{xx} - \eta u u_x - \alpha (uv)_x \\ v_t = v_{xx} - \varepsilon v v_x - \beta (uv)_x \end{cases}, \quad x \in (a,b), \quad t \in [0,T]$$

$$(4.2.1)$$

ele alınsın (Mittal vd., 2012). (4.2.1) denklem sisteminin başlangıç şartları

$$u(x,0) = a_0 - 2A\left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh(Ax)$$
(4.2.2)

$$\nu(x,0) = a_0 \left(\frac{2\beta - 1}{2\alpha - 1}\right) - 2A \left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh(Ax)$$
(4.2.3)

olsun. (4.2.1) denklem sisteminin analitik çözümü

$$u(x,t) = a_0 - 2A\left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh\left(A(x - 2At)\right)$$
(4.2.4)

$$\nu(x,t) = a_0 \left(\frac{2\beta - 1}{2\alpha - 1}\right) - 2A \left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh(A(x - 2At))$$

$$(4.2.5)$$

şeklindedir (Mittal vd., 2012). Burada $A = \frac{a_0(4\alpha\beta-1)}{4\alpha-2}$ ve a_0, α, β keyfi sabitlerdir.

4.2.1. Çizgiler Yöntemi ile Çözüm

Burada (4.2.1) denklem sisteminin x değişkenini verilen aralıkta N parçaya ayıralım.

$$x_i = i.h$$
 $(i = 1, 2, ..., N)$

olup burada $h = \frac{10 - (-10)}{N}$ ile hesaplanır. (4.2.1) denkleminde u_x , u_{xx} , v_x ve v_{xx} ifadelerinin yerine sonlu fark yaklaşımlarını yazarsak

$$\begin{cases} \frac{du_i}{dt} = f(u_i) \\ \frac{dv_i}{dt} = g(u_i) \end{cases}, \quad i = 1, 2, \dots, N \tag{4.2.6}$$

şeklinde *t*'ye bağlı bir adi türevli diferansiyel denklem sistemi oluşur. Oluşan adi türevli diferansiyel denklem sistemi MATLAB paket program aracılığıyla Runge-Kutta yöntemi kullanılarak çözülmüştür (Schiesser vd., 2012). Çözüm sırasında $\varepsilon = 2$, $\eta = 1$, $\alpha = \beta = 1$, $a_0 = 0.01$ olarak seçilmiştir. Elde edilen sonuçlar analitik çözümle L_2 ve L_{∞} hata normlarına göre kıyaslanarak Çizelge 4.2.1-Çizelge 4.2.8'de verilmiştir.

4.2.2. Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi ile Çözüm

Bu denklem sisteminin radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi ile çözümü şu şekildedir: öncelikle [-10, 10] problem alanında *N* değerine göre eşit aralıklı (uniform) düğüm dağılımı yapılmalıdır. Bu ayrıklaştırma sürecinde (3.3.17) ve (3.3.18) denklemlerindeki yaklaşık çözüm yaklaşımlardan

$$u^{N} = A\lambda^{1}$$

$$v^{N} = A\lambda^{2}$$

$$(4.2.7)$$

$$(4.2.8)$$

yazılabilir. (4.2.1) denklem sistemi x değişkenine göre birinci ve ikinci mertebeden türev içerdiği için (3.3.26) ve (3.3.27) denklemlerinden

$$\boldsymbol{u}_x^N = \boldsymbol{D}_x \boldsymbol{u}^N \tag{4.2.9}$$

$$\boldsymbol{u}_{xx}^{N} = \boldsymbol{D}_{xx} \boldsymbol{u}^{N} \tag{4.2.10}$$

$$\boldsymbol{v}_x^N = \boldsymbol{D}_x \boldsymbol{v}^N \tag{4.2.11}$$

$$\boldsymbol{v}_{xx}^{N} = \boldsymbol{D}_{xx} \boldsymbol{v}^{N} \tag{4.2.12}$$

elde edilir. Burada $D = BA^{-1}$ 'dir. (4.2.7) – (4.2.12) denklemleri (4.2.1) denklem sisteminde yerine yazılırsa

$$\begin{cases} \frac{du_i^N}{dt} = D_{xx}u^N - \eta u_i^N(D_xu^N) - a\left((D_xu^N)v_i^N + u_i^N(D_xv^N)\right)\\ \frac{dv_i^N}{dt} = D_{xx}v^N - \varepsilon v_i^N(D_xv^N) - \beta\left((D_xu^N)v_i^N + u_i^N(D_xv^N)\right) \end{cases}$$
(4.2.13)

denklem sistemi elde edilir. Ayrıklaştırma sonrası başlangıç şartı (4.2.2) ve (4.2.3) denklemlerinden

$$u_i(0) = a_0 - 2A\left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh(Ax_i)$$
(4.2.14)

$$\nu_i(0) = a_0 \left(\frac{2\beta - 1}{2\alpha - 1}\right) - 2A \left(\frac{2\alpha - 1}{4\alpha\beta - 1}\right) \tanh(Ax_i)$$
(4.2.15)

olarak elde edilir. Böylece (4.2.1), (4.2.2) ve (4.2.3) denklemleriyle ifade edilen kısmi türevli diferansiyel denklem sistemi problemi (4.2.13), (4.2.14) ve (4.2.15) denklemleriyle ifade edilen adi türevli diferansiyel denklem sistemi problemine indirgenir. Elde edilen adi türevli diferansiyel denklem sisteminin çözümü, dördüncü mertebeden Runge-Kutta yöntemi, ODE45 komutu ile MATLAB paket program aracılığıyla elde edilmiştir (Schiesser vd., 2012). Çözüm sırasında $\varepsilon = 2, \eta = 1, \alpha = \beta = 1, a_0 = 0.01$ olarak seçilmiştir. Elde edilen sonuçlar analitik çözümle L_2 ve L_{∞} hata normlarına göre kıyaslanarak Çizelge 4.2.1-Çizelge 4.2.8'de verilmiştir.

Yöntem	<i>t</i> = 1	t = 2	<i>t</i> = 3	t = 4	<i>t</i> = 5
MOL-Klasik	6.4491921	2.3867563	2.3219058	1.9548620	3.8726157
	04326346	29465495	93782838	02642089	35769018
	$\times 10^{-7}$	$\times 10^{-6}$	×10 ⁻⁶	$\times 10^{-6}$	×10 ⁻⁶
$\begin{array}{c} MMOL\text{-}GA\\ c=0.4 \end{array}$	0.0031506	0.0054396	0.0071030	0.0083121	0.0091912
	24685030	53994394	36265090	04924947	73601970
MMOL-MQ $c = 2.8$	0.0050656	0.0123855	0.0229797	0.0383478	0.0607153
	00370656	69712629	39491629	07542032	47196657
MMOL-IMQ $c = 3$	9.3433302 33139418 × 10 ⁻⁴	0.0017840 75737642	0.0017840 75737642	0.0032641 23266647	0.0039090 97072742

Çizelge 4.2.1. Burgers denklem sisteminde u(x,t) için N = 3, dt = 0.005 iken

Yöntem	t = 1	t = 2	<i>t</i> = 3	t = 4	<i>t</i> = 5
MOL-Klasik	2.1825384 76386222 × 10 ⁻⁶	4.7629831 85300015 $\times 10^{-6}$	$7.182304446201863\times 10^{-6}$	9.9482761 11341965 $\times 10^{-6}$	1.1925188 31090411 $\times 10^{-5}$
$\begin{array}{c} MMOL\text{-}GA\\ c=0.4 \end{array}$	0.0031506 24710740	0.0054396 54026620	0.0071030 36295639	0.0083121 04950900	0.0091912 73622803
MMOL-MQ $c = 2.8$	0.0050743 19023034	0.0124160 34457356	0.0230605 62083139	0.0385408 48731659	0.0611534 64053888
MMOL-IMQ $c = 3$	9.3627208 05116964 $\times 10^{-4}$	0.0017874 53422203	0.0025624 86248758	0.0032692 42799959	0.0039146 65909221

 $m{L}_\infty$ hata normu

Çizelge 4.2.2. Burgers denklem sisteminde v(x,t) için $N=3,\,dt=0.005$ iken L_∞ hata normu

Yöntem	t = 1	t = 2	<i>t</i> = 3	t = 4	<i>t</i> = 5
MOL-Klasik	4.4130109 61066593	8.6549324 20429010	1.1983512 88817234	1.1972342 20217529	2.6913307 91736238
	$\times 10^{-6}$	$\times 10^{-6}$	$\times 10^{-7}$	$\times 10^{-7}$	$\times 10^{-7}$
	1.6512208	2.8511072	3.7232574	4.3574220	4.8187736
c = 0.4	12692783	08168503	14137320	84160769	08949198
	X 10	X 10	X 10	X 10	X 10
MMOL-MQ	2.6541757 22144778	6.4772635 03450824	0.0011978	0.0011978	0.0031228
c = 2.8	$ imes 10^{-4}$	$\times 10^{-4}$	71332418	71332418	02219015
	3.9399234	7.6189918	1.1057255	1.4272626	1.7281199
	50723384	29554422	78953580	33291992	15514667
<i>c</i> – 5	$\times 10^{-5}$	$\times 10^{-5}$	$ imes 10^{-4}$	$ imes 10^{-4}$	$ imes 10^{-4}$

Çizelge 4.2.3. Burgers denklem sisteminde u(x,t) için N = 3, dt = 0.005 iken L_2 hata normu

Yöntem	t = 1	t = 2	t = 3	t = 4	t = 5
	4.1982537	9.2983658	1.8273911	1.8210034	2.1928402
MOL-Klasik	21198364	29364510	09362912	72910348	28173940
	$\times 10^{-8}$	$\times 10^{-8}$	$\times 10^{-7}$	$\times 10^{-7}$	$\times 10^{-7}$
	1.6512207	2.8511071	3.7232573	4.3574220	4.8187735
c = 0.4	99224805	91287158	98134318	70565681	98035981
c = 0.4	$\times 10^{-4}$	$ imes 10^{-4}$	$ imes 10^{-4}$	$ imes 10^{-4}$	$ imes 10^{-4}$
	2.6513973	6.4676703	0 0011953	0 0019826	0 0031098
	90706966	44299767	0.0011000	44462205	42461202
c = 2.8	$ imes 10^{-4}$	$ imes 10^{-4}$	64528298	44162205	43461392
MMOL-IMQ	3.9282141	7.5982151	1.1029632	1.4240010	1.7245123
	90749512	14688431	99684399	64857218	65217845
c = 3	$\times 10^{-5}$	$\times 10^{-5}$	$ imes 10^{-4}$	$ imes 10^{-4}$	$\times 10^{-4}$

Çizelge 4.2.4. Burgers denklem sisteminde v(x,t)için $N=3,\,dt=0.005$ iken
 L_2 hata normu

Çizelge 4.2.1 ve Çizelge 4.2.2'de sırasıyla u(x,t) ve v(x,t) için L_{∞} hata normu verilmiştir. Çizelge 4.2.3 ve Çizelge 4.2.4'te sırasıyla u(x,t) ve v(x,t) için L_2 hata normu verilmiştir. Bu çizelgelerden klasik çizgiler yönteminin çok daha iyi sonuç verdiği açıkça görülmektedir.

Yöntem	dt	L ₂	L ₂ Orar	L_{∞}	L_{∞} Oran
MOL		1.1610293	0.9938	1.9873462	1.00901
Klasik	0.005	74019384	528745	31628372	1887562
NIdSIK		$\times 10^{-8}$	85085	$\times 10^{-6}$	771
		1.9187319	0.9927	1.9593716	1.01019
	0.01	23426473	631455	28374219	7103191
		$\times 10^{-7}$	88383	$\times 10^{-6}$	215
		2.2011294	0.9937	1.6253820	1.00907
	0.02	37643290	992673	34842918	8535072
		$\times 10^{-7}$	90484	$\times 10^{-6}$	795
		8.9787647	1.5240	0 0171022	1.53213
NIVIOL-	0.005	80938512	630183	20701709	4490145
IVIQ		$ imes 10^{-4}$	62911	20/91/08	937
		0.0012607	1.5246	0 0171022	1.53274
	0.01	0.0012037	515088	40106021	1271493
		89103872	11011	40100951	928
	0.02	0.0017957	1.5258	0.0171932	0.01719
			215249		3238351
		52915752	57132	36331108	108
MMOL		9.3670588	0.9173	0.0021800	0.88712
	0.005	91015801	702415	33276249	3357081
IIVIQ		$\times 10^{-5}$	73984	33270249	927
		1.3247021	0.9172	0.0021800	0.88701
	0.01	72642385	916593	22277100	8171097
		$\times 10^{-4}$	75865	33277190	207
		1.8734117	0.9171	0 0021800	0.88680
	0.02	77946499	346409	22275720	7999566
		$ imes 10^{-4}$	02511	552/5/59	704
		3.3218696	0.6532	0 0062275	0.65308
	0.005	51209375	925673	62121600	0677115
		$\times 10^{-4}$	76488	03131090	403
		4.6978332	0.6529	0 0062275	0.65278
	0.01	06774185	996147	63258035	7471809
		$\times 10^{-4}$	43821	03230033	341
		6.6437392	0.6524	0 0063375	0.65219
	0.02	22515088	113018	6205513	8651655
		$ imes 10^{-4}$	41183	05055422	398

Çizelge 4.2.5. t = 2.5'te N = 3 iken Burgers denklem sisteminde u(x, t)için zamanda noktasal yakınsaklık oranı

Yöntem	$dt \qquad L_2 \qquad L_2 \ Oran \qquad L_{\infty}$		L_{∞}	L_{∞} Oran	
MOI		1.5242938	1.0086	6.2445172	1.00392
IVIOL-	0.005	47201384	517432	63810183	289663
NIdSIK		$\times 10^{-7}$	25619	$\times 10^{-6}$	7308
		1.9182341	1.0100	6.1182743	1.00445
	0.01	82736472	906852	62817364	849404
		$\times 10^{-7}$	82958	$\times 10^{-6}$	8989
		2.4992834	1.0087	6.0182635	1.00395
	0.02	62915331	258740	41738193	234547
		$\times 10^{-7}$	99431	$\times 10^{-6}$	3977
		8.9629543	1.5225	0.0172420	1.53476
IVIIVIOL-	0.005	66237285	355433	0.01/2438	087155
IVIQ		$\times 10^{-4}$	60843	04088655	6271
		0.0012675	1.5231		1.53537
	0.01	53232585	211913	0.01/2438	265163
			85294	05488791	1229
	0.02	0.0017925 90831428	1.5242	0.0172438 03636490	1.53658
			855259		942000
			47561		0246
	0.005	9.3426056	0.9179	0.0021920	0.88670
		54402990 441839	0.0021839	184572	
IIVIQ		$\times 10^{-5}$	61748	/3050//4	9550
		1.3212439	0.9178	0.0021820	0.88659
	0.01	62753118	660734	0.0021839	632069
		$\times 10^{-4}$	72098	/505/729	2515
		1.8685211	0.9177	0.0021920	0.88638
	0.02	30625173	099967	72056250	547177
		$\times 10^{-4}$	36996	/5050259	9968
		3.3218696	0.6532	0.0062275	0.65308
	0.005	34451461	925714	0.0003375	067307
GA		$\times 10^{-4}$	17287	03103080	3327
		4.6978331	0.6529	0 0063375	0.65278
	0.01	83074906	996187	0.0003375	746776
		$\times 10^{-4}$	85360	03290020	6467
		6.6437391	0.6524	0.0062275	0.65219
	0.02	88999264	113058	0.00033/5	864761
		$\times 10^{-4}$	84264	0308/412	0951

Çizelge 4.2.6. t = 2.5'te N = 3 iken Burgers denklem sisteminde v(x,t)için zamanda noktasal yakınsaklık oranı

Yöntem	N	L ₂	L_2 Oran L_{∞}		L_{∞} Oran	
MOL		1.1827492	0.9938	1.0193746	1.00901	
IVIOL-	3	04857293	528745	27183746	1887562	
NIdSIK		$\times 10^{-7}$	85085	$\times 10^{-6}$	771	
		2.1833029	1.0415	0 0100102	1.09982	
	5	84739193	435790	0.0190195	4112890	
		$\times 10^{-4}$	21367	64/5/462	861	
		9.7462441	1.1581	0 1690002	1.59520	
	7	92384753	370794	0.1003333	7576647	
		$\times 10^{-4}$	39979	85473929	282	
		8.9787647	1.5240	0 0171022	1.53213	
IVIIVIOL-	3	80938512	630183	0.0171932	4490145	
IVIQ		$\times 10^{-4}$	62911	20/91/00	937	
		0.0011022	1.6211	0 0220600	1.65376	
	5	55708716	164078	0.0220600	4906629	
			98288	23221125	607	
	7	0.0015616	1.8292	0 0257005	1.90501	
		46766526	029089	99181146	9143749	
			37618		099	
		9.3670588	0.9173	0 0021800	0.88712	
	3	91015801	702415	33276249	3357081	
liviQ		$\times 10^{-5}$	73984	33270249	927	
	·	6.0813580	0.8830	0.0016406	0.85445	
	5	5	77919889	744265	0.0016406	1773828
		$\times 10^{-5}$	12076	43044722	316	
		4.8977316	0.7991	0 001/185	0.78763	
	7	17848875	717727	40227867	0198534	
		$\times 10^{-5}$	13239	40227807	191	
		3.3218696	0.6532	0 0063375	0.65308	
GA	3	51209375	925673	63131690	0677115	
		$\times 10^{-4}$	76488	03131090	403	
		0.4884623	5.1478	6 9079005	5.14788	
	5	34449960	862193	80875558	6219357	
		57775500	57798	00070000	798	
		0 5293692	5.5383	8 5062812	8.56037	
	7 6	67413934	584126	50261247	8010705	
			97735	50261247	577	

Çizelge 4.2.7. t = 2.5'te dt = 0.005 iken Burgers denklem sisteminde u(x,t) için konumda noktasal yakınsaklık oranı

Yöntem	N	L ₂	L ₂ Oran	L_{∞}	L_{∞} Oran
MOL- Klasik	3	1.0294387 57638202 $\times 10^{-7}$	1.0086 517432 25619	6.1823748 34923845 $\times 10^{-6}$	1.00392 2896637 308
	5	2.1923847 50302034 $\times 10^{-4}$	1.0369 281454 24002	0.0195937 43827458	1.10754 8909433 747
	7	9.1726483 92019384 $\times 10^{-4}$	1.1387 956904 86985	0.1788928 47583937	1.68797 6840106 386
MMOL- MQ	3	8.9629543 66237285 $\times 10^{-4}$	1.5225 355433 60843	0.0172438 04088655	1.53476 0871556 271
	5 0	0.0011026 40189980	1.6212 891092 00173	0.0220654 55320575	1.65353 5627944 337
	7	0.0015639 69009274	1.8333 088010 91869	0.0357371 07863746	1.90544 8144155 140
MMOL- IMQ	10L- 1Q 3	9.3426056 54402990 $\times 10^{-5}$	0.9179 441839 61748	0.0021839 73056774	0.88670 1845729 550
	5	6.0314231 77647237 $\times 10^{-5}$	0.8836 271129 02081	0.0016498 96131082	0.85381 9532247 961
	7	$\begin{array}{r} 4.8383852\\ 52884523\\ \times 10^{-5} \end{array}$	0.7982 650472 65707	0.0014298 79815983	0.78781 2237738 078
MMOL- GA	3	3.3218696 34451461 × 10 ⁻⁴	0.6532 925714 17287	0.0063375 63163680	0.65308 0673073 327
	5	0.4608793 27246154	4.3789 110749 89382	6.5178179 52088993	4.37891 1074989 439
	7	0.4489171 17740010	5.6126 492311 84164	8.1669726 60029026	4.72046 8835326 509

Çizelge 4.2.8. t = 2.5'te dt = 0.005 iken Burgers denklem sisteminde v(x, t) için konumda noktasal yakınsaklık oranı

Çizelge 4.2.5 ve Çizelge 4.2.6'da sırasıyla u(x,t) ve v(x,t) için N değeri sabit iken dt = 0.005, 0.01, 0.02 değerleri için zamanda noktasal yakınsaklık oranları verilmiştir. Bu çizelgelerden şu sonuçlar elde edilmiştir: u(x,t) için klasik çizgiler yöntemi için dt değeri arttıkça L_2 ve L_{∞} **Oran** artar, L_2 **Oran** ve L_{∞} azalır. v(x,t) için ise klasik çizgiler yöntemi için dt değeri arttıkça L_2 , L_2 **Oran** ve L_{∞} **Oran** artar, L_{∞} azalır.

Çizelge 4.2.7 ve Çizelge 4.2.8'de sırasıyla u(x, t) ve v(x, t) için dt değeri sabit iken N = 3, 5, 7 değerleri için konumda noktasal yakınsaklık oranları verilmiştir. Bu çizelgelerden şu sonuçlar elde edilmiştir: u(x, t) için klasik çizgiler yöntemi için N değeri arttıkça L_2 , L_∞ , L_2 **Oran** ve L_∞ **Oran** artar. v(x, t) için ise u(x, t) için elde edilen sonuçlar ile aynı inceleme sonuçları elde edilir.

4.3. Problem 3

Atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kulanılan ikinci mertebeden, (1+1) boyutlu, lineer olmayan kısmi türevli diferansiyel Klein-Gordon denklemi

$$u_{tt} + \alpha u_{xx} + g(u) = f(x, t), \quad (a \le x \le b, 0 < t < T)$$
(4.3.1)

ele alınsın (Shao vd., 2014). (4.3.1) denklemi

$$u(a,t) = p_1(t), u(b,t) = p_2(t), \quad 0 \le t \le T$$
 (4.3.2)

dirichlet sınır şartları ve

$$u(x,0) = \varphi_1(x), u_t(x,0) = \varphi_2(x), \quad a \le x \le b$$
 (4.3.3)

başlangıç şatları ile birlikte ele alınsın. Burada $g(u) = \beta u + \gamma u^k$ ve α, β, γ bilinen katsayılardır.

4.3.1. Çizgiler Yöntemi ile Çözüm

Öncelikle birinci mertebeden adi türevli diferensiyel denklem sistemine indirgemek için $u_t(x, y, t) = v(x, y, t)$ dönüşümü kullanılır. Böylece

$$\begin{cases} u_t = v \\ v_t = f(x,t) - \alpha u_{xx} - g(u) \end{cases}$$
(4.3.4)

şeklinde birinci mertebeden kısmi türevli diferansiyel denklem sistemi elde edilir.

Burada (4.3.1) denkleminin x değişkenini verilen aralıkta N parçaya ayıralım.

$$x_i = i.h \ (i = 1, 2, ..., N)$$

olup burada $h = \frac{10 - (-10)}{N}$ ile hesaplanır. (4.3.4) denkleminde u_{xx} ifadesinin yerine sonlu fark yaklaşımını yazarsak

$$\begin{cases} \frac{du_i}{dt} = f(v_i) \\ \frac{dv_i}{dt} = g(u_i) \end{cases}, \quad i = 1, 2, \dots, N \tag{4.3.5}$$

şeklinde *t*'ye bağlı bir adi türevli diferansiyel denklem sistemi oluşur. Oluşan adi türevli diferansiyel denklem sistemi MATLAB paket program aracılığıyla Runge-Kutta yöntemi kullanılarak çözülmüştür (Schiesser vd., 2012). Çözüm sırasında f(x,t) = 0, $\alpha = -m^2$, $g(u) = nu - lu^3$, m = n = 0.1, l = 1, $\varphi_1(x) = \sqrt{\frac{\alpha}{\beta}} tanh(\kappa x)$, $\varphi_2(x) = -c\sqrt{\frac{\alpha}{\beta}} \kappa sech^2(\kappa x)$, $\kappa = \sqrt{a/(2c^2 - a^2)}$, $\alpha = 0.1$, $\beta = 1$, c = 0.3 olarak alınmıştır. Çözüm [-10,10] problem bölgesinde eşit aralıklı düğüm dağılımıyla gerçekleştirilmiştir. Elde edilen sonuçlar analitik çözümle L_2 ve L_∞ hata normlarına göre kıyaslanarak Çizelge 4.3.1-Çizelge 4.3.4'de verilmiştir.

4.3.2.Radyal Baz Fonksiyonları Yardımıyla Ağsız Çizgiler Yöntemi ile Çözüm

Bu denklemin radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi ile çözümü şu şekiledir: bunun için öncelikle verilen denklemin $u_t(x, y, t) = v(x, y, t)$ dönüşümünü kullanarak

$$\begin{cases} u_t = v \\ v_t = f(x,t) - \alpha u_{xx} - g(u) \end{cases}$$
(4.3.6)

şeklinde birinci mertebeden kısmi türevli diferansiyel denklem sistemine indirgenmesi gerekir. Buna göre başlangıç ve sınır şartları da düzenlenirse

$$u(a,t) = p_1(t), u(b,t) = p_2(t), v(a,t) = p_3(t), v(b,t) = p_4(t), \quad 0 \le t \le T$$

$$(4.3.7)$$

$$u(0) = \varphi_1(x), v(0) = \varphi_2(x), \quad a \le x \le b$$

$$(4.3.8)$$

elde edilir. Böylece verilen problem (4.3.6)-(4.3.8) denklemleri ile ifade edilen birinci mertebeden kısmi türevli diferansiyel denklem sistemi problemine dönüştürüldükten sonra Bölüm 3.3.3'te bahsedilen adımlar takip edilerek

$$\begin{cases} \frac{du_i^N}{dt} = v_i^N \\ \frac{dv_i^N}{dt} = f(x,t) - \alpha(D_{xx}u^N) - g(u) \end{cases}$$

$$(4.3.9)$$

adi türevli diferansiyel denklem sistemine indirgenir. Buna göre başlangıç ve sınır şartları tekrar düzenlenirse

$$u_{1}(t) = p_{1}(t), u_{N}(t) = p_{2}(t), v_{1}(t) = p_{3}(t), v_{N}(t) = p_{4}(t), 0 \le t \le T (4.3.10)$$
$$u_{i}(0) = \varphi_{1}(x_{i}), v_{i}(0) = \varphi_{2}(x_{i}), a \le x \le b$$
(4.3.11)

elde edilir. Böylece verilen problem (4.3.9)-(4.3.11) denklemleri ile ifade edilen adi türevli diferansiyel denklem sistemi problemine dönüştürüldükten sonra, dördüncü mertebeden Runge-Kutta yöntemi, ODE45 komutu ile MATLAB paket program aracılığıyla çözüme ulaşılır. Çözüm sırasında f(x,t) = 0, $\alpha = -m^2$, $g(u) = nu - lu^3$, m = n = 0.1, l = 1, $\varphi_1(x) = \sqrt{\frac{\alpha}{\beta}} tanh(\kappa x)$, $\varphi_2(x) = -c\sqrt{\frac{\alpha}{\beta}} \kappa sech^2(\kappa x)$, $\kappa = \sqrt{a/(2c^2 - a^2)}$, $\alpha = 0.1$, $\beta = 1$, c = 0.3olarak alınmıştır. Çözüm [-10,10] problem bölgesinde eşit aralıklı düğüm dağılımıyla gerçekleştirilmiştir. Buna göre verilen denklemin analitik çözümü

$$u(x,t) = \sqrt{\frac{\alpha}{\beta}} tanh(\kappa(x-ct))$$
(4.3.12)

dir (Shao vd., 2014).

Yöntemin doğruluğunu göstermek için elde edilen nümerik sonuçlar analitik çözümle, klasik çizgiler yöntemi ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi kullanılarak elde edilen nümerik sonuçlar ile kıyaslanmış ve sonuçlar Çizelge 4.3.1-Çizelge 4.3.4'te ifade edilmiştir.

Yöntem	t = 0.2	t = 0.4	t = 0.6	t = 0.8	t = 1
MOL-Klasik	1.9384575 92328475 $\times 10^{-6}$	9.0928475 63829103 $\times 10^{-6}$	3.9375648 29173753 × 10 ⁻⁵	7.1274385 76849392 $\times 10^{-5}$	1.8374583 91039485 $\times 10^{-4}$
MMOL-GA $c = 0.2$	$\begin{array}{c} 1.6251917 \\ 47226529 \\ \times 10^{-4} \end{array}$	6.5327458 58816025 $\times 10^{-4}$	0.0014787 65661119	0.0026477 62147707	0.0041712 95194874
MMOL-MQ $c = 0.78$	$\begin{array}{c} 8.1137409\\ 26141144\\ \times 10^{-5}\end{array}$	3.2524374 15333653 $\times 10^{-4}$	7.3440662 91029017 $\times 10^{-4}$	0.0013121 33026506	0.0020633 94916642
MMOL-IMQ $c = 1$	6.6726972 58919280 $\times 10^{-5}$	2.6780746 23154170 $\times 10^{-4}$	6.0535174 46560908 $\times 10^{-4}$	0.0010824 90879551	0.0017033 87246914

Çizelge 4.3.1. Klein-Gordon denklemi için $N=3,\,dt=0.001$ iken L_∞ hata normu

Yöntem $t = 0.2$		t = 0.4	<i>t</i> = 0.6	t = 0.8	t = 1
MOL-Klasik	6.1029438 54839201 $\times 10^{-10}$	5.7384741 82374009 × 10 ⁻⁹	1.0193846 31184628 $\times 10^{-8}$	4.0193746 19374739 $\times 10^{-8}$	7.9991736 40018361 $\times 10^{-8}$
MMOL-GA $c = 0.2$	5.1393075 55744467 $\times 10^{-6}$	2.0658356 28889141 $\times 10^{-5}$	4.6762676 14782273 $\times 10^{-5}$	8.3729590 89132804 $\times 10^{-5}$	1.3190793 60871907 $\times 10^{-4}$
MMOL-MQ $c = 0.78$	2.5657520 69163186 $\times 10^{-6}$	1.0284805 16193608 $\times 10^{-5}$	2.3222946 00345730 $\times 10^{-5}$	$\begin{array}{r} 4.1490841 \\ 80971056 \\ \times 10^{-5} \end{array}$	6.5245484 29410263 $\times 10^{-5}$
MMOL-IMQ $c = 1$	$\begin{array}{c} 2.1100921 \\ 47494722 \\ \times 10^{-6} \end{array}$	8.4688155 53064283 $\times 10^{-6}$	1.9142902 98669909 $\times 10^{-5}$	3.4231367 25739028 ×10 ⁻⁵	5.3865834 37530776 × 10 ⁻⁵

Çizelge 4.3.2. Klein-Gordon denklemi için N = 3, dt = 0.001 iken L_2 hata

normu

Yöntem	dt	L ₂	L_2 Oran	L_{∞}	L_{∞} Oran
MOL		9.0192384	3.0016	1.8071536	2.98622
VIOL-	0.001	19294857	697257	20193055	6916355
NIdSIK		$\times 10^{-9}$	80404	$\times 10^{-5}$	902
		1.1938475	3.0016	1.8071534	2.98620
	0.002	93019338	761472	81217126	0946567
		$\times 10^{-8}$	67489	$\times 10^{-5}$	991
		1.9183659	3.0016	1.8071530	2.98614
	0.004	12001938	875912	984197340	7337769
		$\times 10^{-8}$	90897	$ imes 10^{-5}$	110
		1.6095638	2.0088	5.0900763	2.00891
	0.001	76414594	750275	86881082	1887490
		$\times 10^{-5}$	48855	$\times 10^{-4}$	615
		2.2762670	2.0088	5.0900763	2.00892
	0.002	64568037	928038	89201448	9700015
		$\times 10^{-5}$	86110	$\times 10^{-4}$	200
		3.2191277	2.0089	5.0900763	2.00896
	0.004	52461253	283697	86299325	5338098
		$\times 10^{-5}$	54471	$\times 10^{-4}$	992
MMOL-		1.3261010	2.0115	4.1934997	2.01154
IMO	0.001	43894733	484046	06234283	8404645
IIVIQ		$\times 10^{-5}$	45722	$\times 10^{-4}$	722
		1.8753900	2.0115	4.1934997	2.01156
	0.002	81708798	677140	07029758	7714032
		$\times 10^{-5}$	32644	$\times 10^{-4}$	616
		2.6522020	2.0116	4.1934997	2.01160
	0.004	87514920	063249	05800186	6324952
		$\times 10^{-5}$	52173	$\times 10^{-4}$	187
MMOI -		3.2371705	2.0151	0.0010236	2.01511
GA	0.001	77220968	123247	83219850	2324781
		$\times 10^{-5}$	81485	03213030	485
		4.5780505	2.0151	0.0010236	2.01513
	0.002	34337557	344280	83219921	4428099
		$\times 10^{-5}$	99836	20110011	836
		6.4743411	2.0151	0.0010236	2.01517
	0.004	53648839	786026	83219725	8602692
		$\times 10^{-5}$	92990	00210720	962

Çizelge 4.3.3. t = 0.5'te N = 3 iken Klein-Gordon denklemi için zamanda noktasal yakınsaklık oranı

	Yöntem	N	L ₂	L ₂ Oran	L_{∞}	L_{∞} Oran
	MOL		9.0293759	3.0016	1.9849302	2.98622
	IVIUL-	3	65321441	697257	1847210×	691635
	KIdsik		$\times 10^{-9}$	80404	10^{-5}	5902
			1.8274950	2.0094	9.0183330	2.01636
		5	21374634	419677	1837431×	537154
			$\times 10^{-6}$	09132	10^{-5}	8785
			0.0012001	1.9410	0 0017464	1.94050
		7	0.0013991	909410	0.0817404	035600
			03730310	06374	78901808	3177
			1.6095638	2.0088	5.0900763	2.00891
	MO	3	76414594	750275	86881082	188749
_	IVIQ		$\times 10^{-5}$	48855	$ imes 10^{-4}$	0615
			1.6152300	2.0088	5.1098076	2.00897
		5	11057723	767853	64958610	482268
			$\times 10^{-5}$	10269	$ imes 10^{-4}$	4692
			1.6306244	2.0088	5.2068093	2.00897
		7	10889766	809469	28416884	4692 2.00897 035943 2999 2.01154
			$\times 10^{-5}$	04604	$\times 10^{-4}$	2999
		3	1.3261010	2.0115	4.1934997	2.01154
4			43894733	484046	06234283	840464
	INIQ		$\times 10^{-5}$	45722	$\times 10^{-4}$	5722
			1.1400348	2.0104	3.8586135	2.01546
		5	73870831	421779	05388631	068176
			$\times 10^{-5}$	07197	$\times 10^{-4}$	4528
			9.8083861	2.0065	0 0036532	2.01560
		7	33794985	721058	0.0030332	843840
			$\times 10^{-5}$	69172	00440134	5953
	MMOI -		3.2371705	2.0151	0.0010236	2.01511
	GΔ	3	77220968	123247	83219850	232478
	07		$\times 10^{-5}$	81485	05219050	1485
			3.5487335	2.0129	0 0011222	2.01291
		5	26727626	170361	08075346	703616
			$\times 10^{-5}$	66543	50075540	6599
			3.8962009	2.0002	0 0012/190	2.01392
		7	04803872	679170	94306655	985202
			$\times 10^{-5}$	47110	94306655	6113

Çizelge 4.3.4. t = 0.5'te dt = 0.001iken Klein-Gordon denklemi için konumda noktasal yakınsaklık oranı

Çizelge 4.3.1 ve Çizelge 4.3.2'de sırasıyla farklı t değerleri için L_{∞} ve L_2 hata normları verilmiştir. Bu çizelgelerde klasik çizgiler yöntemi ile elde edilen sonuçlar doğruluk bakımından radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi ile elde edilen sonuçlardan daha iyidir.

Çizelge 4.3.3'te *N* değeri sabit iken dt = 0.001, 0.002, 0.004 değerleri için zamanda noktasal yakınsaklık oranları verilmiştir. Bu çizelgeden şu sonuç elde edilmiştir: klasik çizgiler yöntemi için dt değeri arttıkça L_2 , L_2 *Oran* artar ve L_{∞} , L_{∞} *Oran* azalır.

Çizelge 4.3.4'te N = 3, 5, 7 değerleri için konumda noktasal yakınsaklık oranları verilmiştir. Bu çizelgelden şu sonuç elde edilmiştir: klasik çizgiler yöntemi için dt değeri sabit iken N değeri arttıkça L_2 ve L_{∞} artar, L_2 *Oran* ve L_{∞} *Oran* azalır.

5. SONUÇ VE ÖNERİLER

5.1. Sonuçlar

Bu çalışmada, klasik çizgiler yöntemi ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi hakkında bilgiler verilerek evolution denklemlerine nasıl uygulanacağını göstermek için uygulamalar yapılmıştır. Elde edilen sonuçlar L_2 ve L_{∞} hata normları ile konumda ve zamanda noktasal yakınsaklık oranı hesaplanarak kıyaslamalar yapılmıştır. Klasik çizgiler yöntemi ve ağsız çizgiler yöntemi sonucunda oluşan adi türevli diferensiyel denklem sistemi Runge-Kutta yöntemi ile MATLAB paket programları aracılığıyla çözülmüştür.

E. Rothe tarafından 1930'da geliştirilen klasik çizgiler yöntemi (Köroğlu, 2002) ile radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi kıyaslandığında avantajlarını şöyle sıralayabiliriz:

- Klasik çizgiler yönteminde türevlere sonlu farklar formülü kullanılarak yaklaşılmıştır. Bu sırada problem çözümü için ağ inşa edilmiştir ki bu çizgiler yönteminin en büyük dezavantajıdır. Çünkü bu süreç oldukça zaman alıcı ve zordur. Yinede klasik çizgiler yöntemi radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemine göre daha hassas sonuç vermiştir.
- 2. Ağsız çizgiler yönteminde ise şekil fonksiyonu olarak çoklu kuadratik fonksiyonu (MQ), ters çoklu kuadratik fonksiyonu (IMQ) ve gauss merkezcil fonksiyonu (GA) kullanılmıştır. Radyal baz fonksiyonları kullanılarak ağsız çizgiler yöntemi ağ tabanı gerektirmeden çözüm üretildiği için daha kolaydır ve bu yöntem başka lineer olmayan problemlere kolaylıkla uygulanabilir. Ancak bu metotta karşımıza çıkan *c* şekil parametresinin belirlenmesi ve *A* interpolason matrisinin terslenemesi yöntemin dezavantajıdır.
- 3. Her iki yöntemde de düşük konum düğüm sayısına rağmen oldukça yüksek derecede doğruluk elde edilmektedir.

4. Yöntemler konum boyutundan bağımsızdır. Yani (N+1) boyutlu kısmi türevli diferansiyel denklemlere yöntem kolaylıkla uygulanabilmektedir.

5.2. Öneriler

Bu çalışmada, klasik çizgiler yöntemi ve radyal baz fonksiyonları yardımıyla ağsız çizgiler yöntemi zaman bağımlı oluşum tipindeki kısmi türevli diferansiyel denklemlere uygulanıp oldukça iyi sonuçlar elde edildiği görülmüştür. İlerleyen çalışmalarda ise hem zaman hem de konum değişkenine bağlı kısmi türevli diferansiyel denklemlere uygulanabilirliği incelenebilir.

Ayrıca çalışmamızda uygulamış olduğumuz yöntemin adi türevli diferansiyel denklem çözme adımında dördüncü mertebeden Runge-Kutta yöntemi kullanılmıştır. Yapılacak yeni çalışmalarda bu yöntemden farklı olarak istenilen adi türevli diferansiyel denklem çözme yöntemi uygulanarak daha iyi bir sonuç elde edilip edilemeyeceği araştırılabilir.

KAYNAKLAR

- Ali A., Haq F., Hussain I., 2011, A Numerical Meshless Tecnique For The Solution Of Some Burgers' Type Equations, World Applied Sciences Journal, 14(12), 1792-1798.
- Bibi N., Tirmizi S.I.A., Haq S., 2011, Meshless Method Of Lines For Numerical Solution Of Kawahara Type Equations, Applied Mathematics, 2, 608-618.
- Bibi N., 2011, Meshless Method Of Lines For Numerical Solutions Of Nonlinear Time Dependent Partial Differential Equations, PhD Thesis, Ghulam Ishaq Khan Of Engineering Sciences And Technology, Pakistan.
- Bratsos A.G., 1998, The Solution Of The Boussinesq Equation Using The Method Of Lines, Computer Methods In Applied Mechanics And Engineering, 157, 33-44.
- Bratsos A.G., 2007, The Solution Of The Two-Dimensional Sine-Gordon Equation Using The Method Of Lines, Journal Of Computational And Applied Mathematics, 206, 251-277.
- Chen W., Fu Z., Chen C.S., 2014, Recent Advances In Radial Basis Function Collocation Methods, Springer, New York.
- Çağlar İ., 2012, Bazı Özel Kısmi Türevli Diferansiyel Denklemlerin Gezen Dalga Çözümleri, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
- Çalışkan S., 2006, Eleman Bağımsız Galerkin Ve Yerel Petrov Galerkin Ağsız Yöntemlerinin Bir Boyutlu Mühendislik Problemlerine Uygulaması, Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
- Debnath L., 2005, Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, Birkhauser Boston.
- Demkowicz L., Oden J.T., Rachowicz W. and Hardy O., 1989, Toward A Universal h-p Adaptive Finite Element Strategy, Part 1: Constrained Approximation And Data Structure, Computers Methods in Applied Mathematics and Engineering, 77(1), 79-112.
- Dereli Y., 2012, The Meshless Kernel-Based Method Of Lines For The Numerical Solution Of The Nonlinear Schrödinger Equation, Engineering Analysis With Boundary Elements, 36, 1416-1423.
- Dereli Y., 2012, Numerical Solutions Of The MRLW Equation Using Meshless Method Of Lines, International Journal Of Nonlinear Science, 13(1), 28-38.

- Dereli Y., Schaback R., 2013, The Meshless Method Of Lines For Solving The Equal Width Equation, Applied MAthematics And Computation, 219, 5224-5232.
- Durmuş F., 2015, Kısmi Türevli Diferansiyel Denklemlerin Nümerik Çözümü İçin Method Of Lines Yöntemi, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
- Gingold R.A. ve Monaghan J.J., 1977, Smoothed Particle Hdrodinamics: Theory And Application To Non-spherical Stars, Monthly Notices Royal Astronomical Society, 181, 375-389.
- Haq S., Bibi N., Tirmizi S.I.A., Usman M., 2010, Meshless Method Of Lines For The Numerical Solution Of Generalized Kuramoto-Sivashinsky Equation, Applied Mathematics And Computation, 217, 2404-2413.
- Haq S., Hussain A., Uddin M., 2011, RBFs Meshless Method Of Lines For The Numerical Solution Of Time-Dependent Nonlinear Coupled Partial Differential Equations, Applied Mathematics, 2, 414-423.
- Haq S., Hussain A., Uddin M., 2012, On The Numerical Solution Of Nonlinear Burgers'-Type Equations Using Meshless Method Of Lines, Applied Mathematics And Computation, 218, 6280-6290.
- Hussain A., Haq S., Uddin M., 2013, Numerical Solution Of Klein-Gordon And Sine-Gordon Equations By Meshless Method Of Lines, Engineering Analysis With Boundary Elements, 37, 1351-1366.
- Kaya D., El-Sayed S.M., 2003, On a Generalized Fifth Order KdV Equations, Physics Letters A., 310, 44-51.
- Köroğlu C., 2002, Üstel Matris Fonksiyonları Yardımıyla Amerikan Opsiyon Probleminin Çizgiler Yöntemi İle Çözümü, Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
- Liu G.R., 2003, Meshfree Methods: Moving Beyond The Finite Element Method, CRC Press.
- Liu G.R., Gu Y.T., 2005, An Introduction To Meshfree Methods And Their Programming, Springer, Netherlands.
- Meyer G.H., 2015, The Time-Discrete Method Of Lines For Options And Bonds A PDE Approach, World Scientific Publishing, Singapore.
- Mitchell A.R., Griffiths D.F., 1980, The Finite Difference Method in Partial Equations, John Wiley & Sons.

- Mittal R.C., Jiwari R., 2012, Differential Quadrature Method for Numerical Solution of Coupled Viscous Burgers' Equations, International Journal For Computational Methods in Engineering Science And Mechanics, 13:2, 88-92.
- Nguyen V.P., Rabczuk T., Bordas S., Duflot M., 2008, Meshless Methods: A Review And Computer Implementation Aspects, Mathematics And Computers In Simulation, 79, 763-813.
- Pregla R., 2008, Analysis of Electromagnetic Fields and Waves: The Method Of Lines, John Wiley & Sons.
- Sadiku M.N.O, Obiozor C.N., 2000, A Simple Introduction To The Method Of Lines, International Journal Of Electrical Engineering Education, 37(3), 282-296.
- Schiesser W.E., 1991, The Numerical Method of Lines: Integration Of Partial Differential Equations, Academic Press, San Diego.
- Schiesser W.E., Griffiths G.W., 2009, A Compendium Of Partial Differential Equation Models: Method Of Lines Analysis With Matlab, Cambridge University Press, Cambridge.
- Schiesser W.E., Griffiths G.W., 2012, Traveling Wave Analysis Of Partial Differential Equations, Academis Press, San Diego.
- Shen Q., 2009, A Meshless Method Of Lines For The Numerical Solution Of KdV Equation Using Radial Basis Functions, Engineering Analysis With Boundary Elements, 33, 1171-1180.
- Shao W., Wu Xionghua W., 2014, The Numeircal Solution Of The Nonlinear Klein-Gordon And Sine Gordon Equations Using The Chebyshev Tau Meshless Method, Computer Physics Communcations, 185, 1399-1409.
- Zheng S., 2004, Nonlinear Evolution Equations, CRC Press, Florida.

ÖZGEÇMİŞ

Adı Soyadı : Zekeriya ÖZKAN

Doğum Yeri ve Yılı : Ayrıtepe, 1976

Medeni Hali : Evli

Yabancı Dili : İngilizce

E-posta : zekeriyaozkan@gmail.com

Eğitim Durumu

Lise	: Konya İmam Hatip Lisesi, 1993
Lisans	: ODTÜ, Fen Edebiyat Fakültesi, Matematik Bölümü, 1998

Mesleki Deneyim

Özel Yeniçağ Dersanesi		1998-1999
Özel Ulus Dersanesi	:	1999-2000
Özel Açı Dersanesi	:	2000-2002
Özel Ulus Dersanesi	:	2002-2013
Şanlıurfa Süleymaniye Kız AİHL	:	2013-2015
Altınekin Akıncılar AİHL	:	2015-2016
Selçuklu Fen Lisesi	:	2016-2017
Selçuklu Konevi AL	:	2017-2017
Cumhuriyet Üniversitesi Gürün MYO	:	2017-