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SUMMARY 
 
 

In this thesis, the propagation of TEM waves along a coaxial waveguide 

involving single step discontinuity on the outer wall and the inner wall is investigated 

in order to understand the nature and the effect of the area expansion on the 

scattering phenomenon. These two problems are independently analyzed by applying 

Wiener-Hopf and Mode-Matching techniques, both of which are considered to be 

rigorous analyses. First, each problem is examined by Wiener-Hopf technique. By 

applying Fourier integral transformation to Helmholtz equation and then taking into 

account the boundary conditions and the continuity relations in related transform 

domain, a modified Wiener-Hopf equation of the second type is obtained for each 

problem. The solution of each Wiener-Hopf equation is determined in terms of an 

infinite number of unknown coefficients, which satisfy an infinite set of linear 

algebraic equations. These systems are solved numerically and the related explicit 

statements are derived. Then, the Mode-Matching technique is applied to the 

problems. This method gives two infinite sets of equations for each geometry, and 

this pair of equations is solved simultaneously. Later, by using the explicit statements 

for each geometry and each technique, a computer program is coded in MATLAB, 

and the computational results are presented graphically for the related problems. The 

graphs show the effect of area ratio on the scattering coefficients in the case of TEM 

mode. The computational results are also examined considering the rate of 

convergence. It is observed that the Wiener-Hopf technique provides a better 

convergence than the Mode-Matching technique. At the final chapter of the thesis, all 

numerical results are evaluated in terms of each problem, and the Wiener-Hopf and 

Mode-Matching techniques are compared in terms of accuracy, computation time, 

and applicability in more complex problems. 
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ÖZET 
 
 

Bu çalışmada, önce dış duvarında ve ardından da iç duvarında basamak 

süreksizliği bulunan bir koaksiyel dalga kılavuzunda TEM dalgaların yayılımı 

incelenmiştir. Bu iki probleme, kesin çözüm yöntemi oldukları kabul edilen Wiener-

Hopf ve Mod-Uydurma teknikleri ayrı ayrı uygulanmıştır.  Her bir problem, 

öncelikle, Wiener-Hopf tekniği ile analiz edilmiş, bu doğrultuda Helmholtz 

denklemine Fourier dönüşümü uygulanmış, ardından sınır ve süreklilik koşulları aynı 

tanım alanında işleme sokularak her problem için 2. türden birer Modifiye Wiener-

Hopf denklemi elde edilmiştir. Bu denklemlerin çözümü, sonsuz sayıda lineer 

cebirsel denklem sistemini sağlayan, sonsuz sayıda bilinmeyen katsayılar sistemi 

cinsinden elde edilmiştir. Bu sistemler sayısal olarak çözülmüş ve her sisteme ilişkin 

açık ifadeler türetilmiştir. Ardından, ilişkin problemlere Mod-Uydurma tekniği 

uygulanmıştır. Tekniğe özgü formülasyonun ardından, her problem için bir çift 

sonsuz denklemler sistemi elde edilmiş ve bu denklem çiftleri eşzamanlı olarak 

çözülmüştür. Analitik çalışmanın ardından, uygulanan iki tekniğin sonucunda her 

problem için elde edilen ifadeler kullanılarak, MATLAB programlama dilinde 

programlar yazılmış, problemler nümerik olarak çözülmüş ve sonuçlar üretilen 

grafikler ile sunulmuştur. Bu grafiklerden kimileri duvarlar arasındaki alan 

genişlemesinin her iki yöntemle elde edilen saçılma katsayılarına olan etkilerini 

ortaya koyarken, kimileri de kullanılan yöntemlerin yakınsaklık davranışlarını 

betimlemektedir. Bu bakımdan Wiener-Hopf tekniğinin, Mod-Uydurma tekniğinden 

çok daha hızlı yakınsadığı gözlenmiştir. Son bölümde, hesaplamalı sonuçlar her bir 

problem açısından değerlendirilmiş ve Wiener-Hopf ve Mod-Uydurma teknikleri 

doğruluk, hesaplama üstünlüğü ve karmaşık problemlerde uygulanabilirlik 

açılarından karşılaştırılmıştır. 
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1. INTRODUCTION

Waveguides are composite structures containing not only uniform or nonuniform

regions, but also discontinuity regions [1] and electromagnetic wave propagation in

waveguides has been an interesting topic and subject to various engineering problems,

such as microwave and transmission line measurement techniques, filters, connectors,

and matching devices. A typical example is with the low-frequency electromagnetic

modelling of a power cable measurement setup [2], where there are many scattering

mechanisms, such as different inner and outer radii of two connected coaxial cables,

different dielectric media, etc. Among these mechanisms, scattering by step discon-

tinuities in coaxial waveguides has been drawing interest since many decades, and

considering the literature, there can be several different types of discontinuities. For

instance, single step in one conductor is one of the most common problem which is

referred to the abrupt step on the inner or outer conductor wall of a coaxial waveguide.

A double step in both conductor walls occurs frequently in engineering applications as

well similar to the previous type, and it can be characterized by a junction region of

two connected coaxial cables which have different inner and outer radii. On the other

hand, a longitudinal discontinuity, i.e., a gap on the inner conductor wall of a coaxial

cable is related to a finite gap problem.

Step type discontinuity in a coaxial cable was first studied by Whinnery et al. in

1944 where they obtained an equivalent circuit by placing an admittance at the plane

of discontinuity in the case of TM waves [3]. In 1965, Green analyzed different con-

figurations of step discontinuity in coaxial waveguides numerically by use of finite

difference technique [4]. Here, Green studied the finite gap discontinuity on the inner

conductor wall and obtained a π-type equivalent circuit in static case for the representa-

tion of the gap. In 1998, Eom et al. obtained analytical series solution for scattering on

the problem of a coaxial line terminated by a gap using the Fourier transform and the

Mode-Matching technique [5]. In the same year, Mongiardo et al. analyzed the step

type problem with generalized network formulation by the use of Green's function [6].

Yu et al. applied a nonuniform Finite Difference Time Domain (NUFDTD) technique

to study cascaded circularly symmetric discontinuities on waveguides in 2001 [7]. In

2004, Obrzut et al. analyzed a coaxial line terminated by a gap numerically by the use
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of the commercial simulator HFSS [8]. Finally, in 2006, Fallahi and Rashed-Mohassel

considered the dyadic Green's function approach using the principle of scattering su-

perposition for the problem where there is a step discontinuity on the inner wall [9].

Waveguide discontinuities with axial symmetry were successfully studied in time do-

main methods as well as in [10]-[12].

This thesis investigates the TEM wave propagation along a coaxial waveguides

involving single step discontinuity on the outer and inner wall. These two problems are

separately analyzed by applying both Wiener-Hopf and Mode-Matching techniques in

order to understand the nature and the effect of the area expansion on the scattering

phenomenon.

In chapter 2, first, the Wiener-Hopf technique is applied to the problem of step

discontinuity on the outer wall by considering direct Fourier transform of the Helmholtz

equation, boundary conditions, and continuity relations, and then a unique type of

Wiener-Hopf equation is determined following a similar procedure mentioned in [13]-

[17]. This is a modified Wiener-Hopf equation (MWHE) of the second type and it

involves a certain kernel function characterizing the nature of the step discontinuity on

the outer wall. The modified Wiener-Hopf equation is solved in terms of an infinite

number of unknown coefficients, which satisfy an infinite set of linear algebraic equa-

tions, and then the scattering coefficients are obtained at the end of the analysis. The

solution of this Wiener-Hopf equation has an importance in some engineering applica-

tions such as microwave filters and power-line measurements mentioned in [2]. The

same problem is then analyzed by applying theMode-Matching technique, as described

in [16]. Mode-Matching technique is a well-known method for formulating boundary-

value problems in guided-wave theory and it has been widely used in previous studies

involving step discontinuities at waveguides in general [17]-[19] and at coaxial waveg-

uides when the discontinuities exist both on inner and outer walls [20]-[21]. Following

a similar procedure as described in [21], the scattering coefficients are determined at

the last part of this chapter.

In chapter 3, the problem of step discontinuity on the inner wall is analyzed by

applying both Wiener-Hopf and Mode-Matching techniques, following the same pro-

cedure as discussed in the previous chapter.

After determining the analytical results, a computer code is developed in MAT-
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LAB for each problem and each technique. Chapter 4 deals with the numerical re-

sults involving the scattering parameters in the case of TEM mode. This chapter also

presents the comparison of the Wiener-Hopf and Mode-Matching techniques computa-

tionally as well in terms of the accuracy and the speed of convergence, which has not

been done before in the literature to the best of the author's knowledge. The related

graphs in this chapter show that the Wiener-Hopf technique has a faster convergence

than theMode-Matching technique. Contrary to theWiener-Hopf technique, theMode-

Matching technique does not take into account the edge condition, this lack causes the

Mode-Matching technique converge slow.

This study is stronglymotivated by engineering applications, in particular, power-

linemeasurementsmentioned in [2], and in chapter 5, all numerical results are evaluated

in terms of practical applications. The comparison of the Wiener-Hopf and the Mode-

Matching techniques provides an understanding for future studies involving more com-

plex geometries.

Time dependence exp(−iωt), with ω being the angular frequency is assumed

and suppressed throughout the analysis. Conductor walls in both problems are perfect

electric conductor (PEC) and the geometries don't involve any physical discontinuities.
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2. STEP DISCONTINUITY ON THEOUTERWALL

2.1. Wiener-Hopf Analysis

2.1.1. Formulation of the problem

Consider a semi-infinite coaxial cylindrical waveguide whose inner and outer

cylindrical walls are located at ρ = a for z ∈ (−∞, 0) and ρ = b for z ∈ (−∞, 0)

is connected to another semi-infinite coaxial cylindrical waveguide whose inner and

outer cylindrical walls are located at ρ = a for z ∈ (−∞,∞) and ρ = d for z ∈ (0,∞)

as illustrated in Figure 2.1.

Figure 2.1: Geometry of the problem.

Let the incident TEMmode (with only a ϕ-component of the magnetic field and a

ρ-component of the electric field being nonzero) propagating in the positive z direction

be given by

H i
ϕ (ρ, z) = ui (ρ, z) =

eikz

ρ
(2.1)

where k is the propagation constant, which is assumed to have a small imaginary part

corresponding to slightly lossy medium. The lossless case can then be obtained by

letting Im (k) → 0 at the end of the analysis. In virtue of the axial symmetry of the
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problem, all the field components may be expressed in terms of Hϕ (ρ, z) = u (ρ, z) as

follows:

Eρ =
1
iωϵ

∂

∂z
u (ρ, z) and Ez = − 1

iωϵ
1
ρ
∂

∂ρ
[ρu (ρ, z)] (2.2)

where the other components of the fields are zero. For the sake of analytical conve-

nience, the total field uT (ρ, z) can be expressed as

uT (ρ, z) =

 ui (ρ, z) + u1 (ρ, z) , a < ρ < b

u2 (ρ, z)H (z) , b < ρ < d
(2.3)

with H (z) being the Heaviside step function and where u1 (ρ, z) and u2 (ρ, z) are the

scattered fields which satisfy the Helmholtz equation

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

∂2

∂z2
+

(
k2 − 1

ρ2

)]
uj (ρ, z) = 0 , j = 1, 2 (2.4)

for j = 1, 2 in their domains of validity with the boundary conditions

u1 (a, z) + a
∂

∂ρ
u1 (a, z) = 0 , z ∈ (−∞,∞) (2.5)

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0 , z ∈ (−∞, 0) (2.6)

u2 (d, z) + d
∂

∂ρ
u2 (d, z) = 0 , z ∈ (0,∞) (2.7)

∂u2 (ρ, 0)
∂z

= 0 , ρ ∈ (b, d) (2.8)

which are derived from the fact that the tangential components of the electric field must

be zero on the walls of the waveguide, and the continuity relations at ρ = b:

5



u1 (b, z) + b
∂

∂ρ
u1 (b, z) = u2 (b, z) + b

∂

∂ρ
u2 (b, z) (2.9)

u1 (b, z) +
eikz

b
= u2 (b, z) (2.10)

for z ∈ (0,∞), denoting that the tangential components of the electric fields and mag-

netic fields are continuous in the given region. Note that the incident field is a ho-

mogeneous solution of 2.4 satisfying boundary conditions 2.5 and 2.8. To ensure the

uniqueness of the mixed boundary-value problem defined by the Helmholtz equation

and the conditions 2.5-2.8, one has to take into account the radiation and edge condi-

tions as well [16]. These statements are

(
∂u
∂r

− iku
)

= O
(
r−1/2

)
, r → b (2.11)

and

Hϕ = O
(
z2/3

)
Ez = O

(
z−1/3

)
, z → 0 , ρ = b, d (2.12)

respectively. The Fourier transform of the Helmholtz equation satisfied by u1 (ρ, z)

with respect to z, in the range of z ∈ (−∞,∞) gives

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
F (ρ, α) = 0 (2.13)

Here

K (α) =
√
k2 − α2 (2.14)

is the square-root function defined in the complex α-plane, cut along α = k to α =

k+ i∞ and α = −k to α = −k− i∞, such that K (0) = k as seen in Figure 2.2 and this

choice of branch will be assumed for all square-root functions throughout the thesis.
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Figure 2.2: Complex α-plane.

The Fourier transform is defined by

F (ρ, α) = F− (ρ, α) + F+ (ρ, α) (2.15)

where

F± (ρ, α) = ±
∫ ±∞

0
u1 (ρ, z) eiαzdz. (2.16)

Notice that F+ (ρ, α) and F− (ρ, α) are unknown functions, which are regular in the

half-planes Im (α) > Im (−k) and Im (α) < Im (k), respectively. The general solution

of 2.13 is determined as described in [24]:

F (ρ, α) = A (α) J1 (Kρ) + B (α)Y1 (Kρ) (2.17)

Here J1 (Kρ) and Y1 (Kρ) are the usual Bessel functions of the first and second kinds,

respectively. On the other hand, unknown A (α) and B (α) spectral coefficients are

determined by use of the boundary conditions 2.5 and 2.6 which are satisfied on the

perfect electric conductor (PEC) walls of the coaxial waveguide. First, applying the

Fourier transform to the boundary condition 2.5 yields

∫ ∞

−∞
u1 (a, z) eiαzdz+ a

∂

∂ρ

∫ ∞

−∞
u1 (a, z) eiαzdz = 0 (2.18)
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F (a, α) + aF ′ (a, α) = 0 (2.19)

where the prime denotes the first-order derivative with respect to ρ. Substituting 2.17

into 2.19:

A (α) J1 (Ka) + B (α)Y1 (Ka)

+ a{A (αKa)− 1
Ka

J1 (Ka)] + B (α)K[Y0 (Ka)−
1
Ka

Y1 (Ka)]} = 0 (2.20)

A (α) J0 (Ka) + B (α)Y0 (Ka) = 0 (2.21)

B (α) = −A (α)
J0 (Ka)
Y0 (Ka)

(2.22)

Substituting 2.22 into 2.17, one gets the following equation.

F (ρ, α) =
A (α)
Y0 (Ka)

[J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)] (2.23)

Secondly, applying the Fourier transform to the boundary condition 2.6 yields

∫ 0

−∞
u1 (b, z) eiαzdz+ b

∂

∂ρ

∫ 0

−∞
u1 (b, z) eiαzdz = 0 (2.24)

F− (b, α) + bF ′
− (b, α) = 0 (2.25)

On the other hand, it can be written that

F (b, α) + bF ′ (b, α) = F− (b, α) + bF ′
− (b, α) + F+ (b, α) + bF ′

+ (b, α) (2.26)

Substituting 2.25 into 2.26, one can obtain the following statement:
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F (b, α) + bF ′ (b, α) = F+ (b, α) + bF ′
+ (b, α) (2.27)

In addition, substituting 2.23 into 2.27 for ρ = b yields

A (α) =
[
F+ (b, α) + bF ′

+ (b, α)
]
Y0 (Ka)

Kb [J0 (Kb)Y0 (Ka)− J0 (Ka)Y0 (Kb)]
(2.28)

Hence, equation 2.23 becomes

F (ρ, α) = P+ (α)
[J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]

Kb [J0 (Kb)Y0 (Ka)− J0 (Ka)Y0 (Kb)]
(2.29)

where P+ (α) stands for

P+ (α) = F+ (b, α) + bF ′
+ (b, α) (2.30)

Similarly, the scattered field u2 (ρ, z) satisfies the Helmholtz equation, in the region

described by ρ ∈ (b, d), z ∈ (0,∞), whose Fourier transform with respect to z yields

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
G+ (ρ, α) = −iαf (ρ) (2.31)

where the boundary condition 2.8 is taken into account. G+ (ρ, α), which is regular in

the half-plane Im (α) > Im (−k), and f (ρ) stands for

G+ (ρ, α) =
∫ ∞

0
u2 (r, z) eiαzdα (2.32)

and

f (ρ) = u2 (ρ, 0) (2.33)

respectively. The general solution of this nonhomogeneous differential equation is the

9



sum of a particular solution of the nonhomogeneous equation and the general solution

of the related homogeneous equation.

G+ (ρ, α) = G p
+ (ρ, α) + G h

+ (ρ, α) (2.34)

In equation 2.34 G p
+ (ρ, α) and G h

+ (ρ, α) represent the particular and homogeneous

solutions, respectively. A particular solution of 2.31 can be expressed in terms of

G p
+ (ρ, α) = −iα

∫ d

b
f(t)G (t, ρ, α) tdt (2.35)

following the procedure described in [25]. In equation 2.35,G (ρ, t, α) is the Green's

function related to this differential equation and it satisfies the Helmholtz equation.

[
1
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

(
K2 (α)− 1

ρ2

)]
G (ρ, t, α) =

δ (ρ− t)
t

(2.36)

for ρ, t ∈ (b, d)with the associated continuity relations and boundary conditions which

are given as follows.

G (t+ 0, t, α)− G (t− 0, t, α) = 0 (2.37)

∂

∂ρ
G (t+ 0, t, α)− ∂

∂ρ
G (t− 0, t, α) =

1
t

(2.38)

G (b, t, α) + b
∂

∂ρ
G (b, t, α) = 0 (2.39)

G (d, t, α) + d
∂

∂ρ
G (d, t, α) = 0 (2.40)

Note that the continuity relations 2.37 and 2.38 are written in the region described by

ρ ∈ (b, d), z ∈ (0,∞).
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The general solution of this Green's function in 2.36 is in the form of

G (ρ, t, α) =

 A (α) J1 (Kρ) + B (α)Y1 (Kρ) , b < ρ < t

C (α) J1 (Kρ) + D (α)Y1 (Kρ) , t < ρ < d
(2.41)

where A (α), B (α), C (α) and D (α) are the unknown spectral coefficients. Taking into

account the conditions given in 2.37-2.40, the Green's function is determined as

G (ρ, t, α) =
Q (ρ, t, α)
M (b, d, α)

(2.42)

with

Q (ρ, t, α) =
π
2

 L (t, d, α)L (ρ, b, α) , b < ρ < t

L (t, b, α)L (ρ, d, α) , t < ρ < d
(2.43)

and

M (ρ1, ρ2, α) = J0 (Kρ1)Y0 (Kρ2)− J0 (Kρ2)Y0 (Kρ1) (2.44)

In 2.43, L (ρ1, ρ2, α) stands for

L (ρ1, ρ2, α) = J1 (Kρ1)Y0 (Kρ2)− J0 (Kρ2)Y1 (Kρ1) (2.45)

Substituting 2.42 into 2.35 allows one to get a particular solution.

G p
+ (ρ, α) = − 1

M (b, d, α)
(iα)

∫ d

b
f(t)Q (t, ρ, α) tdt (2.46)

On the other hand, the homogeneous solution G h
+ (ρ, α) is determined as the following

statement.

G h
+ (ρ, α) = C (α) J1 (Kρ) + D (α)Y1 (Kρ) (2.47)
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where C (α) and D (α) are the unknown spectral coefficients. The Fourier transform of

the boundary condition 2.7 yields

G h
+ (ρ, α) =

C (α)
Y0 (Kd)

[J1 (Kρ)Y0 (Kd)− J0 (Kd)Y1 (Kρ)] (2.48)

As mentioned before, the general solution G+ (ρ, α) is the sum of a particular solution

G p
+ (ρ, α) and the homogeneous solution G h

+ (ρ, α). Therefore,

G+ (ρ, α) =
C (α)
Y0 (Kd)

[J1 (Kρ)Y0 (Kd)− J0 (Kd)Y1 (Kρ)]

− 1
M (b, d, α)

(iα)
∫ d

b
f(t)Q (t, ρ, α) tdt (2.49)

For the sake of the analytical convenience, C̃ (α) coefficient can be defined as follows:

C̃ (α) =
C (α)M (b, d, α)

Y0 (Kd)
(2.50)

Rearranging 2.49 yields

G+ (ρ, α) =
1

M (b, d, α)
{
C̃ (α) [J1 (Kρ)Y0 (Kd)− J0 (Kd)Y1 (Kρ)]

−iα
∫ d

b
f (t)Q (t, ρ, α) tdt

}
(2.51)

The Fourier transform of the continuity relation 2.9 allows one to write,

F+ (b, α) + bF ′
+ (b, α) = G+ (b, α) + bG ′

+ (b, α) (2.52)

Substituting 2.51 into 2.52 yields

C̃ (α) =
P+ (α)
Kb

(2.53)
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Note that P+ (α) in 2.53 equals:

P+ (α) = F+ (b, α) + bF ′
+ (b, α) (2.54)

and 2.51 becomes

G+ (ρ, α) =
1

K2bM (b, d, α)
{P+ (α)K [J1 (Kρ)Y0 (Kd)− J0 (Kd)Y1 (Kρ)]

−iαb
∫ d

b
f (t)K2Q (t, ρ, α) tdt

}
(2.55)

Although the left-hand side of 2.55 at ρ = b is a regular function of in the upper half-

plane, the regularity of the right-hand side is violated by the presence of simple poles

occurring at the zeros of K2M (b, d, α) lying in the upper half of the complex α−plane,

namely, at α = γm's (m = 0, 1, 2, ...). These poles can be eliminated by imposing that

their residues are zero. This gives

[
P+ (α)K [J1 (Kρ)Y0 (Kd)− J0 (Kd)Y1 (Kρ)]

− iαb
∫ d

b
f (t)K2Q (t, ρ, α) tdt

]
ρ=b,α=γm

= 0 (2.56)

becomes,

P+ (Γm) Γm [J1 (Γmb)Y0 (Γmd)− J0 (Γmd)Y1 (Γmb)]

= iγmb
∫ d

b
f (t) Γ2mQ (t, b, γm) tdt (2.57)

where

Q (t, b, γm) =
π
2
L (b, b, γm) L (t, d, γm) , ρ = b (2.58)

The function L (b, b, γm) in 2.57 can be written in terms of its Wronskian as in 2.59.
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L (b, b, γm) = J1 (Γmb)Y0 (Γmb)− J0 (Γmb)Y1 (Γmb) =
2

πΓmb
(2.59)

Substituting 2.58 and 2.59 into 2.57 yields

P+ (γm)
πΓm

2iγm
[J1 (Γmb)Y0 (Γmd)− J0 (Γmd)Y1 (Γmb)]

=

∫ d

b
f (t)

π
2
ΓmL (t, d, γm) tdt (2.60)

Since f (t) is a absolutely integrable function which satisfies the Dini's criterion, it can

be expanded into the Fourier-Bessel series as follows:

f (t) =
∞∑
m=0

fmφm (2.61)

with

φm =
π
2
ΓmL (t, d, γm) , m = 1, 2, ... (2.62)

where fm and φm are the normalized Bessel coefficients and the related set of orthogonal

functions, respectively. This series expansion allows one to write

fm =
1
ν2m

∫ d

b
f (t)

π
2
ΓmL (t, d, γm) tdt (2.63)

in which ν2m is the norm of the related series expansion determined by making use of

the orthogonality integral given by:

ν2m =

∫ d

b

π
2
KL (t, d, α)

π
2
ΓmL (t, d, γm) tdt

∣∣∣∣
α=γm

(2.64)

Equation 2.64 is evaluated as:
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ν2m =
Y2
0 (Γmb)− Y2

0 (Γmd)
2Y2

0 (Γmb)
(2.65)

On the other hand, rearranging 2.60 according to 2.63 yields

ν2mfm = P+ (γm)
πΓm

2iγm
[J1 (Γmb)Y0 (Γmd)− J0 (Γmd)Y1 (Γmb)] (2.66)

Note that fm Bessel coefficients are determined by substituting 2.65 into 2.66.

fm =
2

iγmb
Y0 (Γmd)Y0 (Γmb)[
Y2
0 (Γmb)− Y2

0 (Γmd)
]P+ (γm) , m = 1, 2, ... (2.67)

and

f0 =
P+ (k)

ikb log (d/b)
(2.68)

with fm given by 2.63 and

f0 =
1

log (d/b)

∫ d

b
f (t) dt (2.69)

As mentioned before, f (ρ) can be represented as its Fourier-Bessel series. Owing to

2.67-2.69,

f (ρ) =
f0
ρ
+

∞∑
m=1

fm
{π
2
ΓmL (ρ, d, γm)

}
(2.70)

f (ρ) =
f0
ρ
+

∞∑
m=1

fm
{π
2
Γm [J1 (Γmρ)Y0 (Γmd)− J0 (Γmd)Y1 (Γmρ)]

}
(2.71)

The Fourier transform of the continuity relation 2.10 allows one to write

F+ (b, α)− 1
ib(α + k)

= G+ (b, α) (2.72)
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Substituting 2.55 into 2.69 yields

P+ (α)
K [J1 (Kb)Y0 (Kd)− J0 (Kd)Y1 (Kb)]

K2bM (b, d, α)

− iαb
K2bM (b, d, α)

∫ d

b
f (t)K2Q (t, b, α) tdt = F+ (b, α) (2.73)

Making use of 2.15 and 2.29, 2.70 can be written as follows:

P+ (α)
K2

[KJ1 (Kb)Y0 (Kd)− J0 (Kd)Y1 (Kb)
J0 (Kb)Y0 (Kd)− J0 (Kd)Y0 (Kb)

+
KJ1 (Kb)Y0 (Ka)− J0 (Ka)Y1 (Kb)
J0 (Ka)Y0 (Kb)− J0 (Kb)Y0 (Ka)

]
+ bF− (b, α)

=
i

(α + k)
+

iαb
M (b, d, α)

∫ d

b
f (t)K2Q (t, b, α) tdt (2.74)

and then,

N (α)
(k2 − α2)

P+ (α) + bP− (α) =
i

(α + k)
+

iαb
M (b, d, α)

∫ d

b
f (t)Q (t, b, α) tdt (2.75)

with

N (α) =
2
πb

M (a, d, α)
M (b, d, α)M (a, b, α)

(2.76)

and

P− (α) = F− (b, α) (2.77)

On the other hand, by use of 2.71, the last term of the right hand side of 2.75 is evaluated

as follows:

I =
∫ d

b
f (t)Q (t, b, α) tdt =

M (b, d, α)
Kb

[
f0
K
− K

∞∑
m=1

fm
(α2 − γ2m)

Y0 (Γmd)
Y0 (Γmb)

]
(2.78)
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Incorporating 2.78 into 2.75, we obtain

N (α)
(k2 − α2)

P+ (α) + bF− (b, α) =
i

(α + k)
+

iαf0
(k2 − α2)

− i
∞∑
m=1

αfm
(α2 − γ2m)

Y0 (Γmd)
Y0 (Γmb)

(2.79)

Equation 2.79 is nothing but the modified Wiener-Hopf equation of the second type to

be solved. Note that N (α) is the kernel function of the Wiener-Hopf equation which

characterizes the nature of the step discontinuity on the outer wall of a coaxial waveg-

uide.

2.1.2. The solution of MWHE

According to the classical Wiener-Hopf procedure, the kernel function N (α) is

factorized into N+ (α) and N− (α) as follows:

N (α) = N+ (α)N− (α) (2.80)

in which N+ (α) and N− (α) are regular and nonzero usual split functions in the half-

planes Im (α) > Im (−k) and Im (α) < Im (k), respectively. Following the procedure,

N± (α) are to be as

N± (α) =
√

2
πb

M± (a, d, α)
M± (b, d, α)M± (a, b, α)

(2.81)

where M± (ρ1, ρ2, α) stands for the factorization of M (ρ1, ρ2, α) which is done by

following the procedure described in [26]. Then, equation 2.79 becomes

N+ (α)
(k+ α)

P+ (α) +
(k− α)
N− (α)

bF− (b, α) =
i

(k+ α)
(k− α)
N− (α)

+
iαf0

(k+ α)
1

N− (α)

− i
∞∑
m=1

αfm
(α2 − γ2m)

Y0 (Γmd)
Y0 (Γmb)

(k− α)
N− (α)

(2.82)
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Determining of unknownP± (α) (note that P− (α) = F− (α)) requires that the function

in the right hand side of 2.82 should be represented in the form of the sum of two regular

functions on regionsB+ andB−. Note thatB+ andB− demonstrate the regions described

by Im (α) > Im (−k) and Im (α) < Im (k), respectively. To remove the singularities

in the right hand side of 2.82, the decomposition procedure is applied to the related

equation by use of the Cauchy Residues Theorem.

N+ (α)
(k+ α)

P+ (α) +
(k− α)
N− (α)

bF− (b, α) = ± 1
2πi

∫
L±

i
(k+ τ)

(k− τ)
N− (τ)

1
τ − α

dτ

± 1
2πi

∫
L±

iτf0
(k+ τ)

1
N− (τ)

1
τ − α

dτ

± 1
2πi

∫
L±

i
∞∑
m=1

−τfm
(τ2 − γ2m)

Y0 (Γmd)
Y0 (Γmb)

(k− τ)
N− (τ)

1
τ − α

dτ (2.83)

Following the integration, 2.83 becomes,

N+ (α)
(k+ α)

P+ (α)− i
(k+ α)

2k
N+ (k)

+
if0

(k+ α)
k

N+ (k)

+ i
∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ γm)
2N+ (γm)

=
if0

(k+ α)

[
α

N− (α)
+

k
N+ (k)

]

− (k− α)
N− (α)

bF− (b, α) +
i

(k+ α)

[
(k− α)
N− (α)

− 2k
N+ (k)

]

− i
∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

[
α (k− α)

(α − γm)N− (α)
− (k+ γm)
2N+ (γm)

]
(2.84)

The left hand side of 2.84 is the sum of terms which are regular on region B+, while

the right hand side is the sum of terms which are regular on region B−. 2.84 can be

separated to two different equations symbolized byW+ (α) andW− (α).

W+ (α) =
i

(k+ α)
2k

N+ (k)
− if0

(k+ α)
k

N+ (k)

− i
∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ γm)
2N+ (γm)

− N+ (α)
(k+ α)

P+ (α)

, α ∈ B+ (2.85)
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and

W− (α) =
i

(k+ α)

[
(k− α)
N− (α)

− 2k
N+ (k)

]
+

if0
(k+ α)

[
α

N− (α)
+

k
N+ (k)

]

− i
∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

[
α (k− α)

(α − γm)N− (α)
− (k+ γm)
2N+ (γm)

]

− (k− α)
N− (α)

bF− (b, α) , α ∈ B− (2.86)

which each of them is regular (analytic) on the related domains.

At this point, the reader can clearly see that the equality of W+ (α) = W− (α)

is valid on the intersection region B described by B+∩B−. Then, it can be said that,

W+ (α) is the analytical continuation of W− (α) to domain B+, and vice versa. Thus,

it is possible to define an arbitrary entire function W (α) which is regular at all finite

points of the entire α-complex plane as follows [27]:

W (α) =

 W+ (α) , α ∈ B+

W− (α) , α ∈ B−

(2.87)

In addition, it is required to evaluate the asymptotic behavior of the entire function

W (α). In accordance with Liouville's theorem,W (α) is 0 for all α-values, sinceW (α)

is asymptotically equivalent to 0 as α → ∞, and, it allows one to write P+ (α) as

follows:

P+ (α) =
2ik

N+ (α)N+ (k)
− ikf0

N+ (α)N+ (k)

− i
2

∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ α) (k+ γm)
N+ (α)N+ (γm)

(2.88)

The unknown coefficients fm (m = 0, 1, 2, ...) can be calculated by taking into account

equations 2.67, 2.68 and 2.85 simultaneously, which yields the algebraic system of

equations.
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2kχm
N+ (k)

f0 + fm + (k+ γm) χm
∞∑
n=1

fn
(γm + γn)

Y0 (Γnd)
Y0 (Γnb)

(k+ γn)
N+ (γn)

=
4kχm
N+ (k)

(2.89)

for m = 1, 2, ... This explicit statement can be written as,

Af = B (2.90)

where the elements ofA, namely Amn are

A00 =

[
N+ (k) b log (d/b) +

1
N+ (k)

]
(2.91)

Am0 =
2kχm
N+ (k)

, m = 1, 2, ... (2.92)

A0n =
Y0 (Γnd)

N+ (γn)Y0 (Γnb)
, n = 1, 2, ... (2.93)

Amn =


1+ χm

Y0 (Γmd)
Y0 (Γmb)

(k+ γm)
2

2γmN+ (γm)
, n = m

(k+ γm) χm
(γm + γn)

Y0 (Γnd)
Y0 (Γnb)

(k+ γn)
N+ (γn)

, n ̸= m

, m, n = 1, 2, .. (2.94)

and the elements of B, namely Bm are

Bm =


2

N+ (k)
, m = 0

4kχm
N+ (k)

, m = 1, 2, ...

(2.95)

with

χm =
Y0 (Γmd)Y0 (Γmb)[
Y2
0 (Γmb)− Y2

0 (Γmd)
] 1
γmbN+ (γm)

(2.96)
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for m, n = 1, 2, ....

2.1.3. Analysis of the scattered fields

The scattered field u1 (ρ, z) can be determined by solving the inverse Fourier

transform integral

u1 (ρ, z) =
1
2π

∫
L
F (ρ, α) e−iαzdα (2.97)

Considering 2.29 and 2.88, the above integral becomes

u1 (ρ, z) =
1
2π

∫
L

2
πb

{
2k

N+ (α)N+ (k)
− kf0

N+ (α)N+ (k)

−1
2

∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ α) (k+ γm)
N+ (α)N+ (γm)

}

× πK [J1 (Kρ)Y0 (2Ka)− J0 (Ka)Y1 (Kρ)]
2 (k2 − α2)M (b, a, α)

e−iαzdα (2.98)

In order to determine the reflected field back to the region z < 0, the above inte-

gral can be evaluated by virtue of the application of the Cauchy Residues Theorem,

yielding the sum of the residues related to the poles occurring at the simple zeros of(
k2 − α2

)
M (b, a, α) lying in the upper half-plane, namely, at α = αn's (n = 0, 1, 2, ...).

In accordance with the law of residues, one can write the integral 2.98 as one on the

closed contour consisted of the infinite upper semicircle arc CR and the counter L− as

follows:

∫
L−

2
πb

F (ρ, α) e−iαzdα +

∫
CR

2
πb

F (ρ, α) e−iαzdα = 2πi
∞∑
n=1

Rez (αn) (2.99)

where F (ρ, α) is the integrand of 2.98. By making use of Jordan's lemma, it can be

easily shown that CR counter integral in equation 2.99 satisfies
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lim
R→∞

∫
CR

F (ρ, α) e−iαzdα → 0 (2.100)

for

lim
α→∞

F (ρ, α) → 0 (2.101)

where F (ρ, α) = O
(
α−1/2

)
. Thus, the integral along the real axis is just the sum of

complex residues in the contour as follows:

u1 (ρ, z) =
1
2π

∫
L−

2
πb

F (ρ, α) e−iαzdα = i
∞∑
n=1

Rez (αn) (2.102)

where the term Rez (αn) represents the residues related to the poles. The right hand side

of 2.99 is evaluated by:

i
∞∑
n=1

Rez (αn) = lim
α→αn

(α − αn) i
2
πb

{
2k

N+ (α)N+ (k)
− kf0

N+ (α)N+ (k)

−1
2

∞∑
m=1

fm
(α + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ α) (k+ γm)
N+ (α)N+ (γm)

}

× πK [J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]
2 (k2 − α2)M (b, a, α)

e−iαz (2.103)

and,

i
∞∑
n=1

Rez (αn) = i
2
πb

{
2k

N+ (αn)N+ (k)
− kf0

N+ (αn)N+ (k)

−1
2

∞∑
m=1

fm
(αn + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ αn) (k+ γm)
N+ (αn)N+ (γm)

}

× πKn [J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]
2 [(k2 − α2)M (b, a, α)]′α→αn

e−iαnz (2.104)
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Denoting the reflected field as

u1 (ρ, z) = R0
e−ikz

ρ
+

∞∑
n=1

Rn
π
2
Kn [J1 (Knρ)Y0 (Kna)− J0 (Kna)Y1 (Knρ)] e−iαnz

, z < 0 (2.105)

with

Kn =
√
k2 − α2n (2.106)

By taking into account the equation 2.104, the reflection coefficient Rn is derived as

follows:

Rn =
2
πb

{
kf0

N+ (αn)N+ (k)
− 2k

N+ (αn)N+ (k)

+
1
2

∞∑
m=1

fm
(αn + γm)

Y0 (Γmd)
Y0 (Γmb)

(k+ αn) (k+ γm)
N+ (αn)N+ (γm)

}

× 1
[(k2 − α2)M (b, a, α)]′α→αn

(2.107)

For the fundamental TEM mode reflected back to z < 0, it is found

R0 =
1

2b log (b/a)N+ (k)N+ (k)

{
f0 − 2+ N+ (k)

∞∑
m=1

fm
N+ (γm)

Y0 (Γmd)
Y0 (Γmb)

}
(2.108)

In a similar fashion, the transmission coefficient can be determined by evaluating the

integral in 2.98 for z > 0. The transmitted field is

u2 (ρ, z) = T0
e−ikz

ρ
+

∞∑
n=1

Tn
π
2
ξn [J1 (ξnρ)Y0 (ξna)− J0 (ξna)Y1 (ξnρ)] eiβnz

, z > 0 (2.109)
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with

ξn =
√
k2 − β2n (2.110)

and βn's are the simple zeros of
(
k2 − α2

)
M (a, d, α), where β0 = k. The transmission

coefficients Tn's and T0 are derived as

Tn = −

{
2k

N+ (k)
− kf0

N+ (k)
− 1
2

∞∑
m=1

fm
(γm − βn)

Y0 (Γmd)
Y0 (Γmb)

(k− βn) (k+ γm)
N+ (γm)

}

× M (b, d, βn)N+ (βn)
[(k2 − α2)M (a, d, α)]′α→−βn

(2.111)

and

T0 = (f0 − 2)
log (d/b)
2 log (d/a)

(2.112)

respectively.

2.2. Mode-Matching Analysis

The geometry of the problem is also suitable for applying the Mode-Matching

technique[16]. For this type of formulation, the geometry is divided into two regions

as shown in Figure 2.3, where region A is the part before the step discontinuity defined

as ρ ∈ (a, b) , z < 0 and region B is the part after the step discontinuity defined as

ρ ∈ (a, d) , z > 0. Let the incident TEM mode propagating in the positive z direction

be given by

H i
ϕ (ρ, z) = ui (ρ, z) =

eikz

ρ
(2.113)

where k is the propagation constant. The ϕ−component of the total magnetic field at

each region is defined as

24



PEC
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ρ

z

z=0
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Figure 2.3: Regions for Mode-Matching technique.

H T
ϕ =


eikz

ρ
+ u1 (ρ, z) , ρ ∈ (a, b) , z < 0

u2 (ρ, z) , ρ ∈ (a, d) , z > 0
(2.114)

where u1 (ρ, z) and u2 (ρ, z) are the scattered fields in region A and region B, respec-

tively. The geometry allows one to expand the field components in terms of their nor-

mal modes. Hence, the total field in region A can be written as

H A
ϕ (ρ, z) =

eikz

ρ
+ u1 (ρ, z) =

eikz

ρ
+

∞∑
n=0

Rnφn (ρ) e
−iαnz (2.115)

where Rn is the reflection coefficient, φn (ρ) is the eigenfunction and αn is the wave

number of the nth. modes of reflected wave, respectively. Similarly,

H B
ϕ (ρ, z) = u2 (ρ, z) =

∞∑
n=0

Tnψn (ρ) e
iβnz (2.116)

where Tn is the transmission coefficient of the nth. modes of transmitted wave and βn's

are the zeros of the function
(
k2 − α2

)
M (d, a, α) given by

ξn =
√
k2 − β2n (2.117)

On the other hand, one can write ρ−component of the electric field as follows.
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E A
ρ (ρ, z) =

1
iωϵ

∂

∂z

[
eikz

ρ
+ u1 (ρ, z)

]
=

k
ωϵ

eikz

ρ
−

∞∑
n=0

αn
ωε

Rnφn (ρ) e
−iαnz (2.118)

and

E B)
ρ (ρ, z) =

1
iωϵ

∂

∂z
u2 (ρ, z) =

∞∑
n=0

βn
ωε

Tnψn (ρ) e
iβnz (2.119)

The eigenfunctions φn (ρ) and ψn (ρ) in 2.118 and 2.119 stand for

φn (ρ) =
π
2
Kn [J1 (Knρ)Y0 (Kna)− J0 (Kna)Y1 (Knρ)] (2.120)

and

ψn (ρ) =
π
2
ξn [J1 (ξnρ)Y0 (ξna)− J0 (ξna)Y1 (ξnρ)] (2.121)

respectively, with Kn and ξn are being given by 2.106 and 2.117. Note that the eigen-

functions in the Fourier-Bessel series in 2.115 and 2.116 are determined, such that

u1 (ρ, z) and u2 (ρ, z) are the solution of the Helmholtz equation, satisfying the boundary

conditions given by:

u1 (a, z) + a
∂

∂ρ
u1 (a, z) = 0 (2.122)

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0 (2.123)

u2 (a, z) + a
∂

∂ρ
u2 (a, z) = 0 (2.124)

u2 (d, z) + d
∂

∂ρ
u2 (d, z) = 0 (2.125)
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In addition, u2 (ρ, z) and its derivative are continuous at z = 0.

u2 (ρ, 0) =


0 , ρ ∈ (a, b)

eikz

ρ
+ u1 (ρ, 0) , ρ ∈ (b, d)

(2.126)

The unknown coefficients Rn and Tn in the series expansions are determined by taking

into account the continuity of the tangential components of the electric and themagnetic

fields at z = 0, namely

E B
ρ (ρ) =

 E A
ρ (ρ) , ρ ∈ (a, b)

0 , ρ ∈ (b, d)
(2.127)

and

H B
ϕ (ρ) = H B

ϕ (ρ) , ρ ∈ (a, b) (2.128)

Substituting 2.118 and 2.119 into 2.127 yields

∞∑
n=0

βn
ωε

Tnψn (ρ) = −
∞∑
n=0

αn
ωε

Rnφn (ρ) +
k
ωε

1
ρ
, ρ ∈ (a, b) (2.129)

Multiplying 2.129 by ωεψm (ρ) and then integrating it along ρ ∈ (a, d) yields

∫ d

a

∞∑
n=0

βnTnψn (ρ)ψm (ρ) ρdρ = −
∫ d

a

∞∑
n=0

αnRnφn (ρ)ψm (ρ) ρdρ

+

∫ d

a

k
ρ
ψm (ρ) ρdρ (2.130)

The series expansions in 2.130 exists if and only if the related eigenfunctions satisfy

the orthogonality integral given below:

∫ d

a
ψn(ρ)ψm(ρ)ρdρ = 0 , m ̸= n (2.131)
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Then, 2.130 can be written as,

βmTmQ
(1)
m = kU(1)

m −
∞∑
n=0

αnRnΔ(1)
mn (2.132)

with

Δ(1)
mn =

∫ b

a
φn (ρ)ψm (ρ) ρdρ (2.133)

Q(1)
m =

∫ d

a
ψm (ρ)ψn (ρ) ρdρ (2.134)

U(1)
m =

∫ b

a
ψm (ρ) dρ (2.135)

Similarly, after substituting 2.115 and 2.116 into 2.128, multiplying the related equation

by ωεφm (ρ) and integrating it along ρ ∈ (a, d) yields

U(2)
m + RmQ(2)

m =
∞∑
n=0

TnΔ(2)
mn (2.136)

with

Δ(2)
mn =

∫ b

a
φm (ρ)ψn (ρ) ρdρ (2.137)

Q(2)
m =

∫ b

a
φn (ρ) φm (ρ) ρdρ (2.138)

U(2)
m =

∫ b

a
φm (ρ) dρ (2.139)

The reader notes that the set of equations in 2.132 is derived by matching the fields at

z=0 and in the region A defined by a < ρ < b, while the set of equations in 2.136 is
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a result of matching the fields at z=0 and in the region B defined by a < ρ < d. In

this respect, the set of equations pair are regarded as a doubly infinite set of equations

which must be solved simultaneously. As a result, the main equations are given by

βmTmQ
(1)
m = kU(1)

m −
∞∑
n=0

αnRnΔ(1)
mn , m = 0, 1, 2, ...,∞ (2.140)

and

U(2)
m + RmQ(2)

m =
∞∑
n=0

TnΔ(2)
mn , m = 0, 1, 2, ...,∞ (2.141)

The solution of this doubly infinite set of equations entails truncating the first and the

second equations with a truncation number such P and Q, respectively.

βmTmQ
(1)
m = kU(1)

m −
P∑

n=0

αnRnΔ(1)
mn , m = 0, 1, 2, ...,P (2.142)

and

U(2)
m + RmQ(2)

m =

Q∑
n=0

TnΔ(2)
mn , m = 0, 1, 2, ...,Q (2.143)

This truncating procedure yields a (N + 2) × (N + 2) system with N = P + Q. Note

that P must be greater than Q since the first set of equations involves more information

than the latter. The explicit expressions for Δ(1)
mn , Δ

(2)
mn , Q

(1)
m , Q(2)

m , U(1)
m and U(2)

m are

Δ(1)
mn =



log (b/a) , m = 0, n = 0

0 , m = 0, n ̸= 0
π
2
M (a, b, βm) , m ≠ 0, n = 0

π
2

ξ2m(
ξ2m − K2

n
)Y0 (Kna)
Y0 (Knb)

M (a, b, βm) , m ̸= 0, n ̸= 0

(2.144)
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Δ(2)
mn =



log (b/a) , m = 0, n = 0

π
2M (a, b, βn) , m = 0, n ̸= 0

0 , m ̸= 0, n = 0

π
2

ξ2n(
ξ2n − K2

m
)Y0 (Kma)
Y0 (Kmb)

M (a, b, βn) , m ̸= 0, n ̸= 0

(2.145)

Q(1)
m =


log (d/a) , m = 0[

Y2
0 (ξma)− Y2

0 (ξmd)
]

2Y2
0 (ξmd)

, m ̸= 0
(2.146)

Q(2)
m =


log (b/a) , m = 0[

Y2
0 (ξma)− Y2

0 (ξmb)
]

2Y2
0 (ξmb)

, m ̸= 0
(2.147)

U(1)
m =


log (b/a) , m = 0

π
2M (a, b, βm) , m ̸= 0

(2.148)

and

U(2)
m =


log (b/a) , m = 0

0 , m ̸= 0
(2.149)

respectively.
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3. STEP DISCONTINUITY ON THE INNERWALL

3.1. Wiener-Hopf Analysis

3.1.1. Formulation of the problem

Consider a semi-infinite coaxial cylindrical waveguide whose inner and outer

cylindrical walls are located at ρ = a for z ∈ (−∞, 0) and ρ = b for z ∈ (−∞, 0)

is connected to another semi-infinite coaxial cylindrical waveguide whose inner and

outer cylindrical walls are located at ρ = d for z ∈ (0,∞) and ρ = b for z ∈ (0,∞) as

illustrated in Figure 3.1. Note that the step discontinuity on the inner wall occurs at the

point z = 0 for ρ ∈ (a, d).

PEC

PEC

PEC

PEC

z = 0

ui = eikz/ρ

Region A

Region B

Figure 3.1: Geometry of the problem.

Let the incident TEM mode propagating in the positive z direction be given by

H i
ϕ (ρ, z) = ui (ρ, z) =

eikz

ρ
(3.1)

where k is the propagation constant which is assumed to have a small positive imaginary

part corresponding to a slightly lossy medium. The lossless case can then be obtained

by letting Im (k) → 0 at the end of the analysis. In virtue of the axial symmetry of the
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problem, all the field components may be expressed in terms of Hϕ (ρ, z) = u (ρ, z) as

Eρ =
1
iωϵ

∂

∂z
u (ρ, z) and Ez = − 1

iωϵ
1
ρ
∂

∂ρ
[ρu (ρ, z)] (3.2)

where the other components of the fields are zero. For the sake of analytical conve-

nience, the total field uT (ρ, z) can be expressed as

uT (ρ, z) =

 ui (ρ, z) + u1 (ρ, z) , d < ρ < b

[ui (ρ, z) + u2 (ρ, z)] H (−z) , a < ρ < d
(3.3)

with H(z) being the Heaviside step function and where u1 (ρ, z) and u2 (ρ, z) are the

scattered fields which satisfy the Helmholtz equation

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

∂2

∂z2
+

(
k2 − 1

ρ2

)]
uj (ρ, z) = 0 , j = 1, 2 (3.4)

in their domains of validity with the boundary conditions

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0 , z ∈ (−∞,∞) (3.5)

u1 (d, z) + d
∂

∂ρ
u1 (d, z) = 0 , z ∈ (0,∞) (3.6)

u2 (a, z) + a
∂

∂ρ
u2 (a, z) = 0 , z ∈ (−∞, 0) (3.7)

∂u2 (ρ, 0)
∂z

= − ik
ρ

, ρ ∈ (a, d) (3.8)

The continuity relations at ρ = d are given by

u1 (d, z) + d
∂

∂ρ
u1 (d, z) = u2 (d, z) + d

∂

∂ρ
u2 (d, z) , z ∈ (−∞, 0) (3.9)

32



and

u1 (d, z) = u2 (d, z) , z ∈ (−∞, 0) (3.10)

respectively. To ensure the uniqueness of the mixed boundary-value problem defined

by the Helmholtz equation and the conditions 3.5-3.8, one has to take into account the

radiation and edge conditions as well [16]. These statements are

(
∂u
∂r

− iku
)

= O
(
r−1/2

)
, r → b (3.11)

and

Hϕ = O
(
z2/3

)
Ez = O

(
z−1/3

)
, z → 0 , ρ = a, d (3.12)

The Fourier transform of the Helmholtz equation satisfied by u1 (ρ, z) with respect to z

in the range of z ∈ (−∞,∞) gives

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
F (ρ, α) = 0 (3.13)

Here K (α) =
√
k2 − α2 is the square-root function defined in the complex α-plane, cut

along α = k to α = k+ i∞ and α = −k to α = −k− i∞, such that K (0) = k and this

choice of branch will be assumed for all square-root functions throughout the thesis as

mentioned before. The Fourier transform is defined by

F (ρ, α) = F− (ρ, α) + F+ (ρ, α) (3.14)

where

F± (ρ, α) = ±
∫ ±∞

0
u1 (ρ, z) eiαzdz (3.15)
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Notice that F+ (ρ, α) and F− (ρ, α) are unknown functions which are regular in the half-

planes Im (α) > Im (−k) and Im (α) < Im (k), respectively. The general solution of

3.13 is determined as

F (ρ, α) = A (α) J1 (Kρ) + B (α)Y1 (Kρ) (3.16)

Here J1 (Kρ) and Y1 (Kρ) are the usual Bessel functions of the first and second kinds,

respectively. As mentioned in chapter 2, one have to take into account the boundary

conditions 3.5 and 3.8 to determine the unknown spectral coefficients A (α) and B (α).

Applying the Fourier transform to the boundary condition 3.5 yields

B (α) = −A (α)
J0 (Kb)
Y0 (Kb)

(3.17)

Substituting 3.17 into 3.16, one gets

F (ρ, α) =
A (α)

Y0 (Kb)
[J1 (Kρ)Y0 (Kb)− J0 (Kb)Y1 (Kρ)] (3.18)

Similarly, the Fourier transform of the boundary condition 3.6 gives

∫ ∞

0
u1 (d, z) eiαzdz+ d

∂

∂ρ

∫ ∞

0
u1 (d, z) eiαzdz = 0 (3.19)

F+ (d, α) + dF ′
+ (d, α) = 0 (3.20)

where the prime denotes the first-order derivative with respect to ρ. On the other hand,

it can be written that

F (d, α) + dF ′ (d, α) = F− (d, α) + dF ′
− (d, α) + F+ (d, α) + dF ′

+ (d, α) (3.21)

Substituting 3.20 into 3.21 yields
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F (b, α) + bF ′ (b, α) = F− (b, α) + bF ′
− (b, α) (3.22)

Substituting 3.22 into 3.18, the spectral coefficient A (α) is written as:

A (α) =
[
F− (d, α) + dF ′

− (d, α)
]
Y0 (Kb)

Kd [J0 (Kd)Y0 (Kb)− J0 (Kb)Y0 (Kd)]
(3.23)

Hence, equation 3.18 becomes

F (ρ, α) = P− (α)
[J1 (Kρ)Y0 (Kb)− J0 (Kb)Y1 (Kρ)]

Kd [J0 (Kd)Y0 (Kb)− J0 (Kb)Y0 (Kd)]
(3.24)

where P− (α) stands for

P− (α) = F− (d, α) + dF ′
− (d, α) (3.25)

Similarly, the scattered field u2 (ρ, z) satisfies the Helmholtz equation, in the region

ρ ∈ (a, d), z ∈ (−∞, 0), whose Fourier transform with respect to z yields

[
∂2

∂ρ2
+
1
ρ
∂

∂ρ
+

(
K2 (α)− 1

ρ2

)]
G− (ρ, α) = iαf (ρ) +

ik
ρ

(3.26)

where the boundary condition 3.8 is taken into account. G− (ρ, α), which is regular in

the half-plane Im (α) < Im (k), and f (ρ) stand for

G− (ρ, α) =
∫ 0

−∞
u2 (ρ, z) eiαzdz (3.27)

and

f (ρ) = u2 (ρ, 0) (3.28)

respectively. The general solution of this nonhomogeneous differential equation is
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written by

G− (ρ, α) = G p
− (ρ, α) + G h

− (ρ, α) (3.29)

where G p
+ (ρ, α) and G h

+ (ρ, α) represent the particular and homogeneous solutions, re-

spectively. A particular solution of 3.26 can be expressed in terms of the Green's func-

tion related to this differential equation as follows:

G p
− (ρ, α) = iα

∫ d

a
f(t)G (ρ, t, α) tdt+ ik

∫ d

a
G (ρ, t, α) dt (3.30)

where G (ρ, t, α) is the Green's function satisfies the Helmholtz equation

[
1
ρ
∂

∂ρ

(
ρ
∂

∂ρ

)
+

(
K2 (α)− 1

ρ2

)]
G (ρ, t, α) =

1
t
δ (ρ− t) , ρ, t ∈ (a, d) (3.31)

where

G (t+ 0, t, α)− G (t− 0, t, α) = 0 (3.32)

and

∂

∂ρ
G (t+ 0, t, α)− ∂

∂ρ
G (t− 0, t, α) =

1
t

(3.33)

with the boundary conditions

G (a, t, α) + a
∂

∂ρ
G (a, t, α) = 0 (3.34)

and

G (d, t, α) + d
∂

∂ρ
G (d, t, α) = 0 (3.35)
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The general solution of this Green's function in 3.31 is in the form of

G (ρ, t, α) =

 A (α) J1 (Kρ) + B (α) Y1 (Kρ) , a < ρ < t

C (α) J1 (Kρ) + D (α) Y1 (Kρ) , t < ρ < d
(3.36)

Taking into account the equations given in 3.5-3.8, the Green's function is determined

as follows:

G (ρ, t, α) =
Q (ρ, t, α)
M (a, d, α)

(3.37)

In 3.37, Q (ρ, t, α) is given by

Q (ρ, t, α) =
π
2

 L (t, d, α)L (ρ, a, α) , a < ρ < t

L (t, a, α)L (ρ, d, α) , t < ρ < d
(3.38)

whereM (ρ1, ρ2, α) and L (ρ1, ρ2, α) are determined in 2.44 and 2.45, respectively. Sub-

stituting 3.37 into 3.30 allows one to get a particular solution.

G p
− (ρ, α) =

1
M (a, d, α)

[
iα
∫ d

a
f(t)G (ρ, t, α) tdt+ ik

∫ d

a
G (ρ, t, α) dt

]
(3.39)

On the other hand, the homogeneous solution G h
− (ρ, α) is determined as mentioned in

chapter 2.

G h
− (ρ, α) =

C (α)
Y0 (Ka)

[J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)] (3.40)

Hence, the general solution of 3.26 can be expressed as

G− (ρ, α) =
1

M (a, d, α)
{
C̃ (α) [J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]

+iα
∫ d

a
f (t)Q (t, ρ, α) tdt+ ik

∫ d

a
Q (t, ρ, α) dt

}
(3.41)
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Note that C̃ in equation 3.41 is given by

C̃ (α) =
C (α)M (a, d, α)

Y0 (Ka)
(3.42)

The Fourier transform of the continuity relation 3.9 allows one to write

F− (d, α) + dF ′
− (d, α) = G− (d, α) + dG ′

− (d, α) (3.43)

Substituting 3.41 into 3.43, the unknown coefficient C̃ becomes

C̃ (α) = −P− (α)
Kd

(3.44)

where

P− (α) = F− (d, α) + dF ′
− (d, α) (3.45)

Finally, equation 3.41 becomes

G− (ρ, α) = − 1
K2dM (a, d, α)

{P− (α)K [J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]

−iα
∫ d

a
f (t)Q (t, ρ, α) tdt− ik

∫ d

a
Q (t, ρ, α) dt

}
(3.46)

Although the left-hand side of 3.46 is a regular function of α in the lower half-

plane, the regularity of the right-hand side is violated by the presence of simple poles

occurring at the zeros of K2M (a, d, α) lying in the lower half of the complex α−plane,

namely, at α = −γm's (m = 0, 1, 2, ...). These poles can be eliminated by imposing that

their residues are zero. This gives

38



[
P− (α)K [J1 (Kρ)Y0 (Ka)− J0 (Ka)Y1 (Kρ)]

− iα
∫ d

a
f (t)Q (t, ρ, α) tdt− ik

∫ d

a
Q (t, ρ, α) dt

]∣∣∣
ρ=d,α=−γm

(3.47)

After the similar procedure given by 2.56-2.66, one can get

f0 = 1− P− (−k)
ikd log (d/a)

(3.48)

and

fm = − 2Y0 (Γma)Y0 (Γmd)
iγmd [Y2

0 (Γma)− Y2
0 (Γmd)]

P− (−γm) (3.49)

with

f0 =
1

log (d/a)

∫ d

a
f (t) dt, (3.50)

fm =
2Y2

0 (Γmd)
[Y2

0 (Γma)− Y2
0 (Γmd)]

∫ d

a
f (t)

π
2
ΓmL (t, a, γm) tdt (3.51)

and

Γm =
√
k2 − γ2m (3.52)

for m = 1, 2, ... Owing to 3.48-3.51, f (ρ) can be expanded into Fourier-Bessel series

as

f (ρ) =
f0
ρ
+

∞∑
m=1

fm
{π
2
Γm [J1 (Γmρ)Y0 (Γma)− J0 (Γma)Y1 (Γmρ)]

}
(3.53)
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Now, substituting 3.46 into the Fourier transform of the continuity relation 3.10 and

making use of 3.14 and 3.24, one gets

N (α)
(k2 − α2)

P− (α)− dP+ (α)

=
1

(k2 − α2)M (a, d, α)
2iα
π

∫ d

a
f (t)

[π
2
KL (t, a, α)

]
tdt+

ik
(k2 − α2)

(3.54)

with

N (α) =
2
πd

M (a, b, α)
M (a, d, α)M (d, b, α)

(3.55)

and

P+ (α) = F+ (d, α) (3.56)

Incorporating 3.53 into 3.54, one obtain after term by term integration

N (α)
(k2 − α2)

P− (α) − dP+ (α) =
i (k+ αf0)
(k2 − α2)

− i
∞∑
m=1

fm
α

(α2 − γ2m)
Y0 (Γma)
Y0 (Γmd)

(3.57)

Equation 3.57 is nothing but the modified Wiener-Hopf equation of the second type to

be solved. Note that N (α) is the kernel function of the Wiener-Hopf equation which

characterizes the nature of the step discontinuity on the inner wall of a coaxial waveg-

uide.

3.1.2. Solution of MWHE

Applying classical Wiener-Hopf procedure as described in 2.80- 2.87, one deter-

mines

P− (α) =
ik (1+ f0)

N+ (k)N− (α)
− i

2

∞∑
m=1

fm
(α − γm)

Y0 (Γma)
Y0 (Γmd)

(k+ γm)
N+ (γm)

(k− α)
N− (α)

(3.58)

40



with N+ (α) being the usual split function

N+ (α) =
√

2
πd

M+ (a, b, α)
M+ (a, d, α)M+ (d, b, α)

(3.59)

where the factorization of M (ρ1, ρ2, α) is done by following the procedure described

in [26]. The unknown coefficients fm (m = 0, 1, 2, ...) can be calculated by taking

into account equations 3.48, 3.49 and 3.58 simultaneously, which yields the algebraic

system of equations

2kχm
N+ (k)

f0 + fm + χm
∞∑
n=1

fn
(γm + γn)

Y0 (Γna)
Y0 (Γnd)

(k+ γn) (k+ γm)
N+ (γn)

= − 2kχm
N+ (k)

(3.60)

for m = 1, 2, ... This explicit statement can be written as,

Af = B (3.61)

where the elements ofA, namely Amn are

A00 = d log (d/a) +
1

[N+ (k)]2
(3.62)

Am0 =
2kχm
N+ (k)

, m = 1, 2, ... (3.63)

A0n =
1

N+ (k)N+ (γn)
Y0 (Γna)
Y0 (Γnd)

, n = 1, 2, ... (3.64)

Amn =


1+

χm
2γm

Y0 (Γma)
Y0 (Γmd)

(k+ γm)
2

N+ (γm)
, n = m

χm
(γm + γn)

Y0 (Γna)
Y0 (Γnd)

(k+ γn) (k+ γm)
N+ (γn)

, n ̸= m

, m, n = 1, 2, .. (3.65)
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and the elements of B, namely Bm are

Bm =


d log (d/a)− 1

[N+ (k)]2
, m = 0

− 2kχm
N+ (k)

, m = 1, 2, ...

(3.66)

with

χm =
Y0 (Γma)Y0 (Γmd)

γmdN+ (γm) [Y2
0 (Γma)− Y2

0 (Γmd)]
. (3.67)

3.1.3. Analysis of the scattered fields

The scattered field u1 (ρ, z) can be determined by solving the inverse Fourier

transform integral

u1 (ρ, z) =
1
2π

∫
L
F (ρ, α) e−iαzdα. (3.68)

Considering 3.23 and 3.58, the above integral becomes

u1 (ρ, z) =
i

2π
2
πd

∫
L

{
k (1+ f0)
N+ (k)

−1
2

∞∑
m=1

fm
(α − γm)

Y0 (Γma)
Y0 (Γmd)

(k+ γm) (k− α)
N+ (γm)

}

× πKL (ρ, b, α)
2 (k2 − α2)M (d, b, α)N− (α)

e−iαzdα (3.69)

In order to determine the reflected field back to the region z < 0, the above integral

can be evaluated by virtue of Jordan's lemma and the application of the law of residues,

yielding the sum of the residues related to the poles occurring at the simple zeros of(
k2 − α2

)
M (a, b, α) lying in the upper half-plane, namely, at α = αn's (n = 0, 1, 2, ...).

42



Denoting the reflected field as

u1 (ρ, z) = R0
e−ikz

ρ
+

∞∑
n=1

Rn
π
2
Kn [J1 (Knρ)Y0 (Knb)− J0 (Knb)Y1 (Knρ)] e−iαnz

, z < 0 (3.70)

with

Kn =
√
k2 − α2n (3.71)

Then, the reflection coefficient Rn is found to be

Rn =

{
−k (1+ f0)

N+ (k)
+
1
2

∞∑
m=1

fm
(αn − γm)

Y0 (Γma)
Y0 (Γmd)

(k+ γm) (k− αn)
N+ (γm)

}

× N+ (αn)M (a, d, αn)
K2
nM′ (a, b, αn)

(3.72)

For the fundamental TEM mode (n = 0) reflected back to z < 0, it is found

R0 =
(1+ f0)

2
log (d/a)
log (b/a)

(3.73)

In a similar fashion, the transmission coefficient can be determined by evaluating the

integral in 3.69 for z > 0 to give

u2 (ρ, z) = T0
e−ikz

ρ
+

∞∑
n=1

Tn
π
2
ξn [J1 (ξnρ)Y0 (ξnb)− J0 (ξnb)Y1 (ξnρ)] eiβnz

, z > 0 (3.74)

with

ξn =
√
k2 − β2n (3.75)
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and βn's are the simple zeros of
(
k2 − α2

)
M (d, b, α), where β0 = k. The transmission

coefficients Tn's and T0 are determined as

Tn =

{
2k (1+ f0)
N+ (k)

+
∞∑
m=1

fm
(βn + γm)

Y0 (Γma)
Y0 (Γmd)

(k+ γm) (k+ βn)
N+ (γm)

}

× 1
πdN+ (βn) ξ

2
nM′ (d, b,−βn)

(3.76)

and

T0 =
1

2dN+ (k) log (b/d)

{
(1+ f0)
N+ (k)

+
∞∑
m=1

fm
N+ (γm)

Y0 (Γma)
Y0 (Γmd)

}
(3.77)

respectively.

3.2. Mode-Matching Analysis

For the Mode-Matching formulation, the geometry is divided into two regions as

depicted in Fig. 3.2, where region A is the part before the step discontinuity defined

as ρ ∈ (a, b) , z < 0 and region B is the part after the step discontinuitydefined as

ρ ∈ (d, b) , z > 0.

PEC

PEC

PEC

PEC

z = 0

Region A Region B

Figure 3.2: Regions for Mode-Matching technique.
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The ϕ-component of the total magnetic field at each region is defined as

H T
ϕ =


eikz

ρ
+ u1 (ρ, z) , ρ ∈ (a, b) , z < 0

u2 (ρ, z) , ρ ∈ (d, b) , z > 0
(3.78)

where u1 (ρ, z) and u2 (ρ, z) are the scattered fields in region A and region B, respec-

tively. The geometry allows one to expand the field components in terms of their nor-

mal modes. Hence, the φ-component of the total magnetic field in region A can be

written as

H A
ϕ (ρ, z) =

eikz

ρ
+ u1 (ρ, z) =

eikz

ρ
+

∞∑
n=0

Rnφn (ρ) e
−iαnz (3.79)

and, similarly

H B
ϕ (ρ, z) = u2 (ρ, z) =

∞∑
n=0

Tnψn (ρ) e
iβnz (3.80)

On the other hand, one can write ρ−component of the electric field at related region

defined as

E A
ρ (ρ, z) =

1
iωϵ

∂

∂z

[
eikz

ρ
+ u1 (ρ, z)

]
=

k
ωϵ

eikz

ρ
−

∞∑
n=0

αn
ωε

Rnφn (ρ) e
−iαnz (3.81)

and

E B
ρ (ρ, z) =

1
iωϵ

∂

∂z
u2 (ρ, z) =

∞∑
n=0

βn
ωε

Tnψn (ρ) e
iβnz (3.82)

with

φn (ρ) =
π
2
Kn [J1 (Knρ)Y0 (Knb)− J0 (Knb)Y1 (Knρ)] (3.83)
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and

ψn (ρ) =
π
2
ξn [J1 (ξnρ)Y0 (ξnb)− J0 (ξnb)Y1 (ξnρ)] (3.84)

The eigenfunctions in the Fourier-Bessel series in 3.79 and 3.80 are determined, such

that u1 (ρ, z) and u2 (ρ, z) are the solution of the Helmholtz equation, satisfying the

boundary conditions given by:

u1 (a, z) + a
∂

∂ρ
u1 (a, z) = 0 (3.85)

u1 (b, z) + b
∂

∂ρ
u1 (b, z) = 0 (3.86)

u2 (b, z) + b
∂

∂ρ
u2 (b, z) = 0 (3.87)

and

u2 (d, z) + d
∂

∂ρ
u2 (d, z) = 0 (3.88)

Applying the continuity relations at z = 0 yields

E A
ρ (ρ, 0) =

 0 , a < ρ < d

E B
ρ (ρ, 0) , d < ρ < b

(3.89)

and

H A
ϕ (ρ, 0) = H B

ϕ (ρ, 0) d < ρ < b. (3.90)

Substituting 3.81 and 3.82 into 3.89 yields the following equation.
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− k
ωε

1
ρ
+

∞∑
n=0

αn
ωε

Rnφn (ρ) =
∞∑
n=0

βn
ωε

Tnψn (ρ) , ρ ∈ (a, b) (3.91)

Multiplying 3.91 by ωεφm (ρ) and integrating along a < ρ < b yields

αmRmQ(1)
m +

∞∑
n=0

βnTnΔ
(1)
mn = kU(1)

m , m = 0, 1, 2, ...∞ (3.92)

with

U(1)
m =

∫ b

a
φm (ρ) dρ (3.93)

Q(1)
m =

∫ b

a
φn (ρ) φm (ρ) ρdρ (3.94)

Δ(1)
mn =

∫ b

d
ψn (ρ) φm (ρ) ρdρ (3.95)

Similarly, after substituting 3.79 and 3.80 into 3.90 andmultiplying the related equation

by ωεψm (ρ) and integrating along d < ρ < b yields

−
∞∑
n=0

RnΔ(2)
mn + TmQ(2)

m = U(2)
m , m = 0, 1, 2, ...∞ (3.96)

with

U(2)
m =

∫ b

d
ψm (ρ) dρ (3.97)

Q(2)
m =

∫ b

d
ψn (ρ)ψm (ρ) ρdρ (3.98)

Δ(2)
mn =

∫ b

d
φn (ρ)ψm (ρ) ρdρ (3.99)
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The sets of equations given by 3.92 and 3.96 must be regarded as a doubly infinite set

of equations that must be solved simultaneously. On the other hand, the solution of

this doubly infinite set of equations entails truncating the first and the second equations

with a truncation number such P and Q, respectively.

αmRmQ(1)
m +

N∑
n=0

βnTnΔ
(1)
mn = kU(1)

m , m = 0, 1, 2, ...P (3.100)

TmQ(2)
m −

N∑
n=0

RnΔ(2)
mn = U(2)

m , m = 0, 1, 2, ...Q (3.101)

The explicit expressions for Δ(1)
mn , Δ

(2)
mn , Q

(1)
m , Q(2)

m , U(1)
m and U(2)

m are

Δ(1)
mn =



log (b/d) , m = 0, n = 0

0 , m = 0, n ̸= 0

−π
2
V

(1)
m , m ̸= 0, n = 0

π
2

K2
m

ξ2n − K2
m

Y0 (ξnb)
Y0 (ξnd)

V
(1)
m , m ̸= 0, n ̸= 0

(3.102)

V(1)
m = [J0 (Kmb)Y0 (Kmd)− J0 (Kmd)Y0 (Kmb)] (3.103)

Δ(2)
mn =



log (b/d) , m = 0, n = 0
π
2
V

(2)
n , m = 0, n ̸= 0

0 , m ̸= 0, n = 0

π
2

K2
n

K2
n − ξ2m

Y0 (ξmb)
Y0 (ξmd)

V
(2)
n , m ̸= 0, n ̸= 0

(3.104)

V(2)
n = [J0 (Knd)Y0 (Knb)− J0 (Knb)Y0 (Knd)] (3.105)
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Q(1)
m =


log (b/a) , m = 0[

Y2
0 (Kma)− Y2

0 (Kmb)
]

2Y2
0 (Kma)

, m ̸= 0
(3.106)

Q(2)
m =


log (b/d) , m = 0[

Y2
0 (ξmd)− Y2

0 (ξmb)
]

2Y2
0 (ξmd)

, m ̸= 0
(3.107)

U(1)
m =


log (b/a) , m = 0

0 , m ̸= 0
(3.108)

U(2)
m =


log (b/d) , m = 0

0 , m ̸= 0
(3.109)
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4. NUMERICAL RESULTS

In this chapter, the results obtained via both Wiener–Hopf and Mode-Matching

techniques are evaluated numerically and compared to each other. Constructing the

systems of linear algebric equations obtained in Chapter 2 and Chapter 3 via two meth-

ods properly allow one to determine the coefficients Rn and Tn numerically. On the

other hand, when there is an only the fundamental TEM mode propagating, the trans-

mission coefficients calculated via Wiener–Hopf and Mode-Matching techniques have

the relation

T0,WienerHopf = T0,Mode−Matching − 1 (4.1)

due to the difference in defining the total field in the two formulations. Considering the

Mode-Matching formulation for the outer wall problem at the frequencies where only

the fundamental TEM mode is propagating, one can write the field terms Hϕ and Eρ in

region A (z < 0)

H A
ϕ =

eikz

ρ
+ R0

e−ikz

ρ
, E A

ρ =
k
ωϵ

eikz

ρ
− k

ωϵ
R0

e−ikz

ρ
(4.2)

and in region B (z > 0)

H B
ϕ = T0

eikz

ρ
, E B

ρ =
k
ωϵ

T0
eikz

ρ
(4.3)

Considering the general formula for calculating the power

P =
1
2
Re

{∫ ∫
S

(
E A
ρ âρ × H A∗

ϕ âϕ
)}

· âzdS (4.4)

where H A∗
ϕ is the conjugate of the related term.
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The power in regions A and B become

P A =
πk
ωϵ

(
1− |R0|2

)
log (b/a) (4.5)

and

P B =
πk
ωϵ

|T0|2 log (d/a) (4.6)

respectively. The conservation of energy yields

(
1− |R0|2

)
log (b/a) =

(
|T0|2

)
log (d/a) (4.7)

Following the similar procedure, an analogue equation can be obtained for the inner

wall problem.

(
1− |R0|2

)
log (b/a) =

(
|T0|2

)
log (b/d) (4.8)

4.1. The Convergence Comparison of the Techniques

Since both Wiener–Hopf and Mode-Matching analysis involve infinite sets of

linear algebraic equations, convergence of the solution regarding the truncation number

must be illustrated for each technique. The Figures 4.1- 4.4 show the dependence of the

magnitudes of the reflection and transmission coefficients R0 and T0 to the truncation

number N at frequencies f = 100 MHz and f = 4 GHz for a = 1 cm, b = 3 cm

and d = 10 cm. These figures show that the Wiener–Hopf technique provides a better

convergence than the Mode-Matching technique.
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Figure 4.1: Convergence of |R0| at f = 100 MHz

Figure 4.2: Convergence of |T0| at f = 100 MHz
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Figure 4.3: Convergence of |R0| at f = 4 GHz

Figure 4.4: Convergence of |T0| at f = 4 GHz

This issue is well known in the literature as the lack of edge conditions in 2.12 and

therefore theMode-Matching technique causes slower convergence. Since theWiener–

Hopf technique is converging faster, the computation time for this technique is less

compared to the Mode-Matching technique.
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4.2. Scattering Coefficients of the Outer Wall Problem

In this section the results obtained via both Wiener-Hopf and Mode-Matching

techniques are evaluated numerically for the problem of step discontinuity on the outer

wall.

During the numerical analysis, one needs to calculate the zeros of the functions

M (a, b, α),M (a, d, α) andM (b, d, α). Note that these functions are related to the kernel

functionN (α) of theWiener-Hopf equation given in 2.76which characterizes the nature

of the step discontinuity on the outer wall of a coaxial waveguide. If M (a, b, α) is

analyzed asymptotically for large |a| by taking into account

J0 (z) ≃
√

2
πz

cos
(
z− π

4

)
, for large |z| (4.9)

and

Y0 (z) ≃
√

2
πz

sin
(
z− π

4

)
, for large |z| (4.10)

In this respect, one gets the eigenvalue equation

sin [Km (b− a)] = 0 , m = 1, 2, ... (4.11)

where

Km ≃ mπ
(b− a)

, m = 1, 2, ... (4.12)

Thus, for the zeros ofM (a, d, α) one finds,

ξm ≃ mπ
(d− a)

, m = 1, 2, ... (4.13)
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and

βm =

√
k2 − ξ2m , m = 1, 2, ... (4.14)

Here αm's and βm's correspond to the wavenumbers of higher-order modes asso-

ciated with their indices in the regions A and B, respectively. Hence, the corresponding

modes are propagating only when these wavenumbers become purely real. Note that,

the righthand sides of the equations 4.13 and 4.14 are only the asymptotic expressions

for Km and ξm. The details in variations of M (a, b, α) and M (a, d, α) with respect to

K (α) are illustrated in [28].

On the other hand, the asymptotic expression for the zeros of M (b, d, α) can be

found in a similar fashion to give,

Γm ≃ mπ
(d− b)

, m = 1, 2, ... (4.15)

and

γm =
√
k2 − Γ2m , m = 1, 2, ... (4.16)

Reader in this section finds the computational results of the scattering coefficients

showing the effect of the ratio of cross-sectional areas for frequencies up to 10 MHz,

1.5 GHz and 4 GHz respectively, where the excitation is the incident TEM wave given

by 2.1. In all the figures, the area ratio defined by

Area ratio =
S2
S1

=
d2 − a2

b2 − a2
(4.17)

is 12.375 for the blue line, 6.6 for the green line, and 4.125 for the red line.

The truncation number N is chosen as 40 and 80 for Wiener–Hopf and Mode-

Matching analysis, respectively. In addition, the straight lines in the graphs indicate the

Wiener–Hopf technique, while the dashed lines with a marker demonstrate the Mode-

Matching technique.
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It can be observed in Figures 4.5- 4.14 that the twomethods, i.e., theWiener–Hopf

andMode-Matching techniques, have very good agreement. Besides, one can conclude

that when the area ratio increases, the magnitude of the reflection coefficient also in-

creases while the magnitude of the transmission coefficient decreases. This means that

when the area ratio is increased, more energy is reflected back and less is transmitted

to region B.

In addition, the same trend is observed in Figures 4.9-4.12 regarding the return

and insertion losses for the same area ratios, which are calculated directly by

RL = −20 log |R0| (4.18)

and

IL = −20 log |T0| (4.19)

respectively, with the unit dB.

The graphs related to the RL and IL demonstrate that when the area ratio is in-

creased, more energy is reflected back and less is transmitted to region B. The Figures

4.5, 4.7, 4.9 and 4.11 are of special interest due to the need of low frequency electro-

magnetic modelling of the measurement setup described in [2].

Additionally, the magnitude of the reflection and transmission coefficients are

presented in Figs.4.13 and 4.14 upto 4GHz, where two additional TM modes are ob-

served to start propagating in region B after their relevant cut-off frequencies 1.62 GHz

and 3.31 GHz are exceed. When new modes start to propagate, the energy carried by

the fundamental TEM mode is obviously decreased dramatically.
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Figure 4.5: Magnitude of R0 upto f = 10 MHz.

Figure 4.6: Magnitude of R0 upto f = 1.5 GHz.
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Figure 4.7: Magnitude of T0 upto f = 10 MHz.

Figure 4.8: Magnitude of T0 upto f = 1.5 GHz.
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Figure 4.9: Insertion loss upto f = 10 MHz.

Figure 4.10: Insertion loss upto f = 1.5 GHz.
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Figure 4.11: Return loss upto f = 10 MHz.

Figure 4.12: Return loss upto f = 1.5 GHz.
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Figure 4.13: Magnitude of R0 upto f = 4 GHz.

Figure 4.14: Magnitude of T0 upto f = 4 GHz.
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4.3. Scattering Coefficients of the Inner Wall Problem

Reader in this section finds the computational results of the scattering coefficients

showing the effect of the ratio of cross-sectional areas of the inner wall problem for

frequencies up to 10MHz, 1.5 GHz and 4 GHz respectively, where the excitation is the

incident TEM wave given by (2.1). In all the figures, the area ratio defined by

Area ratio =
S2
S1

=
b2 − d2

b2 − a2
(4.20)

is 0.9192 for the blue line, 0.8485 for the green line, and 0.7575 for the red line. Similar

to previous problem, the truncation number N is chosen as 40 and 80 for Wiener–Hopf

and Mode-Matching analysis, respectively.

It can be observed in Figures 4.15- 4.24 that the two methods, i.e., the Wiener–

Hopf and Mode-Matching techniques, have very good agreement, especially at low

frequencies. On the other hand, contrary to the results of the outer wall problem, one

can conclude that when the area ratio increases, the magnitude of the reflection coeffi-

cient also decreases while the magnitude of the transmission coefficient increases. This

means that when the area ratio is increased, less energy is reflected back and more is

transmitted to region B. Same trend is also observed in Figures 4.19-4.22 regarding RL

and IL terms.

Additioanlly, the magnitude of the reflection and transmission coefficients are

presented in Figs.4.23 and 4.24 upto 4GHz, where two additional TM modes are ob-

served to start propagating in region A after their relevant cut-off frequencies 1.62 GHz

and 3.31 GHz are exceed. When new modes start to propagate, the energy carried by

the fundamental TEM mode is obviously decreased dramatically.
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Figure 4.15: Magnitude of R0 upto f = 10 MHz.

Figure 4.16: Magnitude of R0 upto f = 1.5 GHz.
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Figure 4.17: Magnitude of T0 upto f = 10 MHz.

Figure 4.18: Magnitude of T0 upto f = 1.5 GHz.
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Figure 4.19: Insertion loss upto f = 10 MHz.

Figure 4.20: Insertion loss upto f = 1.5 GHz.
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Figure 4.21: Return loss upto f = 10 MHz.

Figure 4.22: Return loss upto f = 1.5 GHz.
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Figure 4.23: Magnitude of R0 upto f = 4 GHz.

Figure 4.24: Magnitude of T0 upto f = 4 GHz.
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5. CONCLUSION

Engineering applications of coaxial waveguides involving discontinuities -such

as a abrupt step on the outer or inner conductor wall- have received considerable atten-

tion since many decades, and an accurate evaluation of the behaviours of electromag-

netic waves along these cables is essential for practical purposes.

In this thesis, the propagation of TEM waves along a coaxial waveguide with

a step discontinuity on its outer and inner walls has been analyzed by applying the

Wiener-Hopf and Mode-Matching techniques, both of which are considered to be rig-

orous analyses in frequency domain.

First, at the beginning of the analysis, the geometry of step discontinuity on the

outer wall problem is reduced into an equivalent two dimensional one in the virtue

of axial symmetry. Then, the Wiener-Hopf technique is applied to this problem by

considering the Helmholtz equation, boundary conditions, and continuity relations in

the Fourier transform domain, and a modified Wiener-Hopf equation of the second

type is derived. This MWHE also contains a unique kernel function representing the

area expansion, i.e, the step discontinuity on the outer wall. It is solved according to the

relatedmethod and the obtained solution is form of an algebraic system of equations. At

final stage, this algebraic system is evaluated approximately by following the numerical

procedure and the scattering coefficients are derived.

Second, the Mode-Matcing technique is employed to analyze the same geometry,

and a doubly infinite set of equations is found at the end of the method, which must

be solved simultaneously. This system is solved by truncating both equations with a

truncation number such P and Q. At the and of the analysis, the explicit statements are

obtained for each equation.

Third, following a similar procedure, the problem of step discontinuity on the in-

ner wall is formulated and solved by the Wiener-Hopf and Mode-Matching techniques,

and the scattering coefficients are determined.

Fourth, i.e, the computational part of this study, a computer code is developed

in MATLAB by using the approximate statements and the related equations for each

problem and for each method, and then the graphs are produced to visualize the nu-

merical results. The Figures 4.1-4.4 show that the Wiener-Hopf technique provides
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a better convergence than the Mode-Matching technique. In other words, the Mode-

Matching technique causes slower convergence due to the well known issue in the liter-

ature as the lack of edge conditions in 2.12. In this respect, the Wiener-Hopf technique

is converging faster and the computation time for this method is less compared to the

Mode-Matching technique.

In the Figures 4.6-4.15, the reflection and transmission coefficients demonstrat-

ing the effect of the area expansion are illustrated for frequencies up to 10 MHz, 1.5

GHz and 4 GHz respectively, where the excitation is the incident TEMwave. Note that

the truncation number N is chosen as 40 and 80 for Wiener-Hopf and Mode-Matching

calculation, respectively. It is clearly seen in these figures that the two methods, i.e.,

the Wiener-Hopf and Mode-Matching techniques, have very good agreement. It is in-

teresting to note that although the lack of edge conditions, the accuracy of the Mode-

Matching technique is great, especially for low frequencies. This information is very

useful for the application of the Mode-Matching technique in more complex problems,

where the Wiener-Hopf technique cannot be applicable.

In addition, by evaluating these figures one can conclude that when the area ratio

increases, the magnitude of the reflection coefficient also increases while the magni-

tude of the transmission coefficient decreases. This means that when the area ratio is

increased, more energy is reflected back and less is transmitted to region B. This phe-

nomena can also observed from the figures related to the return and insertion losses for

the same area ratios. Besides, Figures 4.14 and 4.15 indicate that two additional TM

modes start propagating in region B after their relevant cut-off frequencies are exceed,

and therefore the energy carried by the fundamental TEMmode is obviously decreased

dramatically. Same phenomena and the law of conversation of energy as well can be

observed in the Figure 4.5.

The effects of the area expansion are illustrated in Figures 4.16-4.25 for the in-

ner wall problem as well. In contrast to the results of the first problem, the area ratio

increases, the magnitude of the reflection coefficient decreases while the magnitude of

the transmission coefficient increases. In other words, the area expansion of the region

B is increased, less energy is reflected back and more is transmitted to region B, et vice

versa.

These results constructs a solid knowledge of the effect of a step discontinuity on
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the outer and inner walls of a coaxial waveguide on the propagation of TEM waves.

These types of scattering mechanisms are among the many occurring in the measure-

ment setup described in [2]. In particular, these results illustrate the great importance

of an area change in the modelling of connector mismatch at low frequencies. Addi-

tionally, the comparison of these two techniques provides an understanding on the use

of the Wiener-Hopf and Mode-Matching techniques for future studies which involving

more complex geometries, and these different scattering mechanisms will be subject of

forthcoming studies by the author.
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