T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCES

TEM WAVE PROPAGATION IN COAXIAL WAVEGUIDES
WITH STEP DISCONTINUITY

HUSEYIN SINAN AKSIMSEK
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF ELECTRONICS ENGINEERING

GEBZE
2014



T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCES

TEM WAVE PROPAGATION IN
COAXIAL WAVEGUIDES WITH STEP
DISCONTINUITY

HUSEYIN SINAN AKSIMSEK
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF ELECTRONICS ENGINEERING

THESIS SUPERVISOR
ASSOC. PROF. DR. GOKHAN CINAR

GEBZE
2014



DOKTORA JURI ONAY FORMU

GEBZE YUKSEK
TEKNOLOJI ENSTITUSU

GYTE Miihendislik ve Fen Bilimleri Enstitiisi Yonetim Kurulu’nun
......... 7////.29/4 tarih ve 20/4’/61’ sayili karariyla olusturulan
juri tarafindan 05/12/2014 tarihinde tez savunma sinavi yapilan Hiiseyin Sinan
Aksimsek’in tez ¢alismasi Elektronik Mithendisligi Anabilim Dalinda DOKTORA

tezi olarak kabul edilmistir.

JURI
UYE
(TEZ DANISMANI) : Dog. Dr. Gokhan Cnar (_.ff

UYE : Prof. Dr. Ali Alkumru M

UYE : Prof. Dr. G6ékhan Uzgéren 1 ILJL'_-"“’E"L b=
UYE : Dog. Dr. Ismail Hakki Tayyar
UYE : Dog. Dr. Ahmet Demir (/

ONAY

GYTE Mihendislik ve Fen Bilimleri Enstitiisii Yonetim Kurulu’nun

.................................. tarih ve ........./......... sayil1 karari.

iMZA/MUHUR



SUMMARY

In this thesis, the propagation of TEM waves along a coaxial waveguide
involving single step discontinuity on the outer wall and the inner wall is investigated
in order to understand the nature and the effect of the area expansion on the
scattering phenomenon. These two problems are independently analyzed by applying
Wiener-Hopf and Mode-Matching techniques, both of which are considered to be
rigorous analyses. First, each problem is examined by Wiener-Hopf technique. By
applying Fourier integral transformation to Helmholtz equation and then taking into
account the boundary conditions and the continuity relations in related transform
domain, a modified Wiener-Hopf equation of the second type is obtained for each
problem. The solution of each Wiener-Hopf equation is determined in terms of an
infinite number of unknown coefficients, which satisfy an infinite set of linear
algebraic equations. These systems are solved numerically and the related explicit
statements are derived. Then, the Mode-Matching technique is applied to the
problems. This method gives two infinite sets of equations for each geometry, and
this pair of equations is solved simultaneously. Later, by using the explicit statements
for each geometry and each technique, a computer program is coded in MATLAB,
and the computational results are presented graphically for the related problems. The
graphs show the effect of area ratio on the scattering coefficients in the case of TEM
mode. The computational results are also examined considering the rate of
convergence. It is observed that the Wiener-Hopf technique provides a better
convergence than the Mode-Matching technique. At the final chapter of the thesis, all
numerical results are evaluated in terms of each problem, and the Wiener-Hopf and
Mode-Matching techniques are compared in terms of accuracy, computation time,

and applicability in more complex problems.

Key Words: Coaxial, Waveguides, Discontinuities, Electromagnetic Wave
Propagation, Electromagnetic Wave Scattering, Mode-Matching Technique,

Wiener-Hopf Technique.



OZET

Bu calismada, once dis duvarinda ve ardindan da i¢ duvarinda basamak
siireksizligi bulunan bir koaksiyel dalga kilavuzunda TEM dalgalarm yayilimi
incelenmistir. Bu iki probleme, kesin ¢6ziim yontemi olduklar1 kabul edilen Wiener-
Hopf ve Mod-Uydurma teknikleri ayr1 ayr1i uygulanmistir. Her bir problem,
oncelikle, Wiener-Hopf teknigi ile analiz edilmis, bu dogrultuda Helmholtz
denklemine Fourier doniisiimii uygulanmis, ardindan smir ve stireklilik kosullar1 ayni
tanim alaninda isleme sokularak her problem i¢in 2. tiirden birer Modifiye Wiener-
Hopf denklemi elde edilmistir. Bu denklemlerin ¢oziimii, sonsuz sayida lineer
cebirsel denklem sistemini saglayan, sonsuz sayida bilinmeyen katsayilar sistemi
cinsinden elde edilmistir. Bu sistemler sayisal olarak ¢6ziilmiis ve her sisteme iliskin
acik ifadeler tiiretilmistir. Ardindan, iliskin problemlere Mod-Uydurma teknigi
uygulanmistir. Teknige 0zgili formiilasyonun ardindan, her problem i¢in bir ¢ift
sonsuz denklemler sistemi elde edilmis ve bu denklem ciftleri eszamanli olarak
¢cOzililmiistiir. Analitik calismanin ardindan, uygulanan iki teknigin sonucunda her
problem i¢in elde edilen ifadeler kullanilarak, MATLAB programlama dilinde
programlar yazilmig, problemler niimerik olarak ¢6ziilmiis ve sonuglar iiretilen
grafikler ile sunulmustur. Bu grafiklerden kimileri duvarlar arasindaki alan
genislemesinin her iki yontemle elde edilen sagilma katsayilarina olan etkilerini
ortaya koyarken, kimileri de kullanilan yontemlerin yakmsaklik davranislarni
betimlemektedir. Bu bakimdan Wiener-Hopf tekniginin, Mod-Uydurma tekniginden
cok daha hizli yakinsadigi gozlenmistir. Son boliimde, hesaplamali sonuglar her bir
problem acisindan degerlendirilmis ve Wiener-Hopf ve Mod-Uydurma teknikleri
dogruluk, hesaplama istinligii ve karmasik problemlerde uygulanabilirlik

acilardan karsilastirimistir.

Anahtar  Kelimeler: Koaksiyel, Dalga Kilavuzlan, Siireksizlikler,
Elektromanyetik Dalga Yayihmi, Elektromanyetik Dalga Sacimimi, Mod-
Uydurma Teknigi, Wiener-Hopf Teknigi.
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1. INTRODUCTION

Waveguides are composite structures containing not only uniform or nonuniform
regions, but also discontinuity regions [1] and electromagnetic wave propagation in
waveguides has been an interesting topic and subject to various engineering problems,
such as microwave and transmission line measurement techniques, filters, connectors,
and matching devices. A typical example is with the low-frequency electromagnetic
modelling of a power cable measurement setup [2], where there are many scattering
mechanisms, such as different inner and outer radii of two connected coaxial cables,
different dielectric media, etc. Among these mechanisms, scattering by step discon-
tinuities in coaxial waveguides has been drawing interest since many decades, and
considering the literature, there can be several different types of discontinuities. For
instance, single step in one conductor is one of the most common problem which is
referred to the abrupt step on the inner or outer conductor wall of a coaxial waveguide.
A double step in both conductor walls occurs frequently in engineering applications as
well similar to the previous type, and it can be characterized by a junction region of
two connected coaxial cables which have different inner and outer radii. On the other
hand, a longitudinal discontinuity, i.e., a gap on the inner conductor wall of a coaxial
cable is related to a finite gap problem.

Step type discontinuity in a coaxial cable was first studied by Whinnery et al. in
1944 where they obtained an equivalent circuit by placing an admittance at the plane
of discontinuity in the case of TM waves [3]. In 1965, Green analyzed different con-
figurations of step discontinuity in coaxial waveguides numerically by use of finite
difference technique [4]. Here, Green studied the finite gap discontinuity on the inner
conductor wall and obtained a z-type equivalent circuit in static case for the representa-
tion of the gap. In 1998, Eom et al. obtained analytical series solution for scattering on
the problem of a coaxial line terminated by a gap using the Fourier transform and the
Mode-Matching technique [5]. In the same year, Mongiardo et al. analyzed the step
type problem with generalized network formulation by the use of Green's function [6].
Yu et al. applied a nonuniform Finite Difference Time Domain (NUFDTD) technique
to study cascaded circularly symmetric discontinuities on waveguides in 2001 [7]. In

2004, Obrzut et al. analyzed a coaxial line terminated by a gap numerically by the use



of the commercial simulator HFSS [8]. Finally, in 2006, Fallahi and Rashed-Mohassel
considered the dyadic Green's function approach using the principle of scattering su-
perposition for the problem where there is a step discontinuity on the inner wall [9].
Waveguide discontinuities with axial symmetry were successfully studied in time do-
main methods as well as in [10]-[12].

This thesis investigates the TEM wave propagation along a coaxial waveguides
involving single step discontinuity on the outer and inner wall. These two problems are
separately analyzed by applying both Wiener-Hopf and Mode-Matching techniques in
order to understand the nature and the effect of the area expansion on the scattering
phenomenon.

In chapter ], first, the Wiener-Hopf technique is applied to the problem of step
discontinuity on the outer wall by considering direct Fourier transform of the Helmholtz
equation, boundary conditions, and continuity relations, and then a unique type of
Wiener-Hopf equation is determined following a similar procedure mentioned in [13]-
[17]. This is a modified Wiener-Hopf equation (MWHE) of the second type and it
involves a certain kernel function characterizing the nature of the step discontinuity on
the outer wall. The modified Wiener-Hopf equation is solved in terms of an infinite
number of unknown coefficients, which satisfy an infinite set of linear algebraic equa-
tions, and then the scattering coefficients are obtained at the end of the analysis. The
solution of this Wiener-Hopf equation has an importance in some engineering applica-
tions such as microwave filters and power-line measurements mentioned in [2]. The
same problem is then analyzed by applying the Mode-Matching technique, as described
in [16]. Mode-Matching technique is a well-known method for formulating boundary-
value problems in guided-wave theory and it has been widely used in previous studies
involving step discontinuities at waveguides in general [17]-[19] and at coaxial waveg-
uides when the discontinuities exist both on inner and outer walls [20]-[21]. Following
a similar procedure as described in [21], the scattering coefficients are determined at
the last part of this chapter.

In chapter [3, the problem of step discontinuity on the inner wall is analyzed by
applying both Wiener-Hopf and Mode-Matching techniques, following the same pro-
cedure as discussed in the previous chapter.

After determining the analytical results, a computer code is developed in MAT-



LAB for each problem and each technique. Chapter § deals with the numerical re-
sults involving the scattering parameters in the case of TEM mode. This chapter also
presents the comparison of the Wiener-Hopf and Mode-Matching techniques computa-
tionally as well in terms of the accuracy and the speed of convergence, which has not
been done before in the literature to the best of the author's knowledge. The related
graphs in this chapter show that the Wiener-Hopf technique has a faster convergence
than the Mode-Matching technique. Contrary to the Wiener-Hopf technique, the Mode-
Matching technique does not take into account the edge condition, this lack causes the
Mode-Matching technique converge slow.

This study is strongly motivated by engineering applications, in particular, power-
line measurements mentioned in [2], and in chapter 3, all numerical results are evaluated
in terms of practical applications. The comparison of the Wiener-Hopf and the Mode-
Matching techniques provides an understanding for future studies involving more com-
plex geometries.

Time dependence exp(—iwt), with w being the angular frequency is assumed
and suppressed throughout the analysis. Conductor walls in both problems are perfect

electric conductor (PEC) and the geometries don't involve any physical discontinuities.



2. STEP DISCONTINUITY ON THE OUTER WALL

2.1. Wiener-Hopf Analysis

2.1.1. Formulation of the problem

Consider a semi-infinite coaxial cylindrical waveguide whose inner and outer
cylindrical walls are located at p = a forz € (—o0,0) and p = b forz € (—o0,0)
is connected to another semi-infinite coaxial cylindrical waveguide whose inner and
outer cylindrical walls are located at p = a forz € (—o0,00) and p = d forz € (0, c0)

as illustrated in Figure P.1|.

PEC

PEC

H—>u'=e™/p | b

a PEC

z=0

Figure 2.1: Geometry of the problem.

Let the incident TEM mode (with only a ¢-component of the magnetic field and a
p-component of the electric field being nonzero) propagating in the positive z direction
be given by

eikz

Hq; (p,Z) = U (p,Z) = 7 (21)

where £ is the propagation constant, which is assumed to have a small imaginary part
corresponding to slightly lossy medium. The lossless case can then be obtained by

letting Im (k) — 0 at the end of the analysis. In virtue of the axial symmetry of the



problem, all the field components may be expressed in terms of Hy (p,z) = u (p,z) as

follows:

19 1190
Ey=—oulpz) and E;=————-lpu(p,z)] (2.2)

where the other components of the fields are zero. For the sake of analytical conve-

nience, the total field ur (p, z) can be expressed as

u (p Z)_ Ui(p’Z)‘i‘ul(p,Z) ? a<p<b (23)
T ) - .
u> (p,z) H (z) , b<p<d

with H (z) being the Heaviside step function and where u; (p,z) and u;, (p,z) are the

scattered fields which satisfy the Helmholtz equation

0? 10 0? 1 .
a_p2+;%+@+(k2_;)]u,(p,z>_ Lj=12 @4

for j = 1,2 in their domains of validity with the boundary conditions

up (a,z) + aagpul (a,z) =0 , z€ (—00,00) (2.5)
b b 0 b,z) =0 0 2.6
u1(72)+ %ul(az)_ > ZE(—OO,) (2.6)
0
uy (d,z) + d%uz (d,z)=0 , ze€(0,00) (2.7)
Ouy (p7 0) _

which are derived from the fact that the tangential components of the electric field must

be zero on the walls of the waveguide, and the continuity relations at p = b:



9] 0
up (b, z) + b%ul (b,z) =uy (b,z) + b%uz (b,z) (2.9

eikz
Uy (b,Z) + b

=u, (b,z) (2.10)

for z € (0, 00), denoting that the tangential components of the electric fields and mag-
netic fields are continuous in the given region. Note that the incident field is a ho-
mogeneous solution of .4 satisfying boundary conditions 2.3 and 2.§. To ensure the
uniqueness of the mixed boundary-value problem defined by the Helmholtz equation
and the conditions 2.32.§, one has to take into account the radiation and edge condi-

tions as well [16]. These statements are

@ . _ —1/2
(ar lku) =0 '), r—b (2.11)
and

Hy=0(?) E=0("*),z-0, p=bd (2.12)

respectively. The Fourier transform of the Helmholtz equation satisfied by u; (p, z)

with respect to z, in the range of z € (—o00, 0) gives

(210

1
0 +;%+ <K2 (a)——)}F(p,a) = (2.13)

Here

K(a) =k —a? (2.14)

is the square-root function defined in the complex a-plane, cut along a = kto a =
k+ioc and a = —kto a = —k — ico, such that K (0) = k as seen in Figure 2.2 and this

choice of branch will be assumed for all square-root functions throughout the thesis.



ImaAd

k
L,
Re?
—k
Figure 2.2: Complex a-plane.

The Fourier transform is defined by

F(p,a):F, (p>a>+F+ (paa) (215)
where
+o0 )
Fy(p,a)= :i:/ uy (p,z) e%dz. (2.16)
0

Notice that F, (p,a) and F_ (p, a) are unknown functions, which are regular in the
half-planes Im (&) > Im (—k) and Im (@) < Im (k), respectively. The general solution
of is determined as described in [24]:

F(p,a) =4 ()] (Kp) + B (a) Y1 (Kp) (2.17)

Here J; (Kp) and Y, (Kp) are the usual Bessel functions of the first and second kinds,
respectively. On the other hand, unknown 4 () and B (a) spectral coefficients are
determined by use of the boundary conditions 2.3 and .6 which are satisfied on the
perfect electric conductor (PEC) walls of the coaxial waveguide. First, applying the

Fourier transform to the boundary condition 2.5 yields

/ uy (a,z) e%dz + a% uy (a,z) e*dz =0 (2.18)



F(a,a)+aF'(a,a) =0 (2.19)

where the prime denotes the first-order derivative with respect to p. Substituting

into 2.19:

A(a) ], (Ka) + B (a) Y, (Ka)

+ a{4 (aKa) — %Jl (Ka)] + B (@) K[Yo (Ka) — %Yl (Ka)]} =0 (2.20)

A(a) Ty (Ka) + B () Yo (Ka) =0 (2.21)
B(a) = —A4(a) éoo(g(‘g (2.22)

Substituting into 2.17, one gets the following equation.

A (a)

F(p,a) = Y, (Ka)

1 (Kp) Yo (Ka) — Jo (Ka) Y1 (Kp)] (2.23)
Secondly, applying the Fourier transform to the boundary condition P.§ yields

0 ) a 0 )
/ uy (b,z) €%“dz + ba— / uy (b,z)e“dz =0 (2.24)
—00 P J-

F_(b,a)+bF' (b,a) =0 (2.25)
On the other hand, it can be written that

F(b,a)+bF' (b,a) = F_(b,a) + bF! (b,a)+ Fy (b,a) + bF| (b,a)  (2.26)

Substituting into .26, one can obtain the following statement:



F(b,a) +bF' (b,a) = Fy (b,a) + bF | (b,a) (2.27)

In addition, substituting into for p = b yields

[Fy(b,a) + bFL (b,a)] Yo (Ka)
Ale) =15 3o (KB) Yo (Ka)+— Jo (Ka) Yo (Kb)] (2.28)

Hence, equation becomes

i (Kp) Yo (Ka) —Jo (Ka) Y1 (Kp)]

F(p,a) =P (a) Kb [Jo (Kb) Yo (Ka) — Jo (Ka) Yo (KD)]

(2.29)
where P, (a) stands for
P+ (0!) - F+ (b, OC) + bF_;_ (b, a) (2.30)

Similarly, the scattered field u, (p,z) satisfies the Helmholtz equation, in the region

described by p € (b,d), z € (0,00), whose Fourier transform with respect to z yields

(W= 2) ] pa—-w) e

where the boundary condition . is taken into account. G (p, a), which is regular in

the half-plane Im () > Im (—k), and f(p) stands for

Gy (p,a)= / uy (r,z) €%da (2.32)
0

and

f(p) =ua(p,0) (2.33)

respectively. The general solution of this nonhomogeneous differential equation is the



sum of a particular solution of the nonhomogeneous equation and the general solution

of the related homogeneous equation.
Gy (p,a) = G (p,a) + G} (p, a) (2.34)

In equation GY (p,a) and G (p, a) represent the particular and homogeneous

solutions, respectively. A particular solution of can be expressed in terms of

d
G? (p,a) = —ia/b A0G (t, p,a)tdt (2.35)

following the procedure described in [25]. In equation R.33,G (p,t,a) is the Green's

function related to this differential equation and it satisfies the Helmholtz equation.

i 05) (0o 22 e

for p,t € (b, d) with the associated continuity relations and boundary conditions which

are given as follows.

G(t+0,t,a) —G(t—0,t,a) =0 (2.37)

0 0 1
%g (t4+0,t,a) — a—pg(t—O,t, a) = " (2.38)
G (b,t )+b£g(bt )=0 (2.39
77a ap 77a - . )
G (d,t )+d£g(dt )=0 (2.40
7»0[ ap 77a - . )

Note that the continuity relations and are written in the region described by
p € (b,d),z € (0,00).

10



The general solution of this Green's function in is in the form of

A(@) 1 (Kp) +B(@)Y) (Kp) . b<p<i
C(a)Ji (Kp) +D(a)Y: (Kp) , t<p<d

(2.41)

where 4 (a), B (a), C (a) and D (a) are the unknown spectral coefficients. Taking into

account the conditions given in 2.37-2.40, the Green's function is determined as

Q(p,t,0)
ta) = ——7—+= 2.42
G(p.t,a) M(b.da) (242)
with
L(t,d,a)L(p,b,a) , b<p<t
Q(p,t,a) == ( JL( ) (2.43)
L(t,b,a)L (p,d,a) , t<p<d
and
M (py, pyra) = Jo (Kpy) Yo (Kpy) — Jo (Kp,) Yo (Kpy) (2.44)
InR.43, L (p,, p,, @) stands for
L(py, pyy0) =1 (Kpy) Yo (Kpy) — Jo (Kpy) Y1 (Kpy) (2.45)
Substituting into allows one to get a particular solution.
1 d
G? =———(i 1O (t tdt 2.
L0n0) = ~3pa a0 [ N0Q(p.0) (2.46)

On the other hand, the homogeneous solution G (p, ) is determined as the following

statement.

G} (p,a) = C(a)J, (Kp) + D (a) Y, (Kp) (2.47)

11



where C (a) and D (a) are the unknown spectral coefficients. The Fourier transform of

the boundary condition 2.7 yields

Gl (p.a) = o o I (Kp) Yo (Kd) — 3o KDY (Kp)] (2:48)

As mentioned before, the general solution G (p, @) is the sum of a particular solution

GY (p, a) and the homogeneous solution G (p, a). Therefore,

G (pv) = o 01 (69) Yo () = I (K Y (Kp)

1

" M(b.d,a) (i) /b A0Q(t,p,a) rdt (2.49)

For the sake of the analytical convenience, C (a) coefficient can be defined as follows:

C(a)M (b,d,a)
Y (Kd)

Clo) = (2.50)

Rearranging yields

G () = 57 (€ (@) I (K)o (Ka) — o (Ka) Y, ()

M(b,d,a

—io /bdf(t) Q(t,p,a) tdt} (2.51)
The Fourier transform of the continuity relation 2.9 allows one to write,
Fi(b,a)+bF (b,a) =G4 (b,a)+ bG. (b,a) (2.52)
Substituting into yields

C(a) = ) (2.53)

12



Note that P, () in equals:

P, (a) = Fy (b, a) + bF. (b, a) (2.54)
and becomes
G, (p.a) = W (P, (a) K (11 (Kp) Yo (Kd) — o (Kd) Y, (Kp))

d
—iab/f(t)KzQ(t,p,a)tdt} (2.55)
b

Although the left-hand side of at p = b is a regular function of in the upper half-
plane, the regularity of the right-hand side is violated by the presence of simple poles
occurring at the zeros of K2M (b, d, &) lying in the upper half of the complex a—plane,
namely, ata = y,'s (m = 0, 1,2, ...). These poles can be eliminated by imposing that

their residues are zero. This gives

Py (a) K1y (Kp) Yo (Kd) —Jo (Kd) Y, (Kp)]

d
—iab/f(t)KzQ(t,p,oc)tdt =0 (2.56)
b

p=b,0=y,

becomes,

Py (T) D [J1 (Tb) Yo (Tud) — Jo (Tud) Y1 (b))

d
—ind [ SOT2Q by, it 25T
b
where

T
Q(t,b,y,) = 5L(b,by,) L(t.dy,)  p=b (2.58)
The function L (b, b, y,,) in can be written in terms of its Wronskian as in 2.59.
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2
b

L <b7 b, ym) =1 (Fmb) Yo (rmb) —Jo (rmb> Y, (rmb) = (2.59)

Substituting 2.58 and 2.59 into 2.57 yields

P, () % 11 (Tb) Yo (Tud) — To (D) Y (T)]

m

d T
_ / S0 STl (1,d,3,) e (2.60)
b

Since f(¢) is a absolutely integrable function which satisfies the Dini's criterion, it can

be expanded into the Fourier-Bessel series as follows:

SO =Y futw 2.61)
m=0
with
1
@, = EFmL (t,d,y,) ,m=12 .. (2.62)

where f,, and ¢,, are the normalized Bessel coefficients and the related set of orthogonal

functions, respectively. This series expansion allows one to write

1 d T
=L /b F0) 5Tl (1. d. ) (2.63)

2
Vin

in which v2, is the norm of the related series expansion determined by making use of

the orthogonality integral given by:

d T T
— / EKL(r,d,a) 5r,,,L(t,d,y,,,)tdt (2.64)
b

A=Y,

Equation is evaluated as:

14



2 _ Y5 (Tub) = Y§ (Tud)

v, = (2.65)
2Y5 (Twb)
On the other hand, rearranging according to yields
zl,
VS = Ps (7,,) 25y 1 (Tnb) Yo () = Jo (Tud) Y1 (Tub)] - (266)
Note that f,, Bessel coefficients are determined by substituting into P.66.
2 Yo (T,d) Y, (T,b)
"= P ,m=1,2,.. 2.67
and
P, (k)
= ——— 2.68
fo ikblog (d/b) (2.68)
with f,, given by and
1 d
= — t)dt 2.69

As mentioned before, f(p) can be represented as its Fourier-Bessel series. Owing to

R.672.69,

+me{ r.L(p.d, ym)} (2.70)

+ me {500 01 (Tap) Yo (Tad) = 1o (Tud) Y1 (Tap)]} - 271)
The Fourier transform of the continuity relation allows one to write

Fy(b,a) = = =G, (b,a) (2.72)

15



Substituting into yields

b KD (KB) Yo (Kd) — 1y (Kd) Y, (Kb)]
+(a) K2bM (b, d, oc)
J(ZbM b d,a)

/f NK*Q(t,b,a)tdt = F, (b,a) (2.73)

Making use of .15 and 2.29, 2.70 can be written as follows:

K LIy (Kb) Yo (Kd) — Jo (Kd) Yo (KD)
Jo (Ka) Y() (Kb) — J() (Kb) Yo (Ka) B ’

[ iab d 5
- (0(-|—k) +M(b,d, O() \/b f(t)K Q(t,b,a) tdt (274)
and then,
N
RO bp @) = g [0 b @9
with
2 Ma,d, a)
N(a) = b M (b.d o) M(ab.) (2.76)
and

P_(a)=F_(b,a) (2.77)

On the other hand, by use of 2.71], the last term of the right hand side of is evaluated

as follows:

b,d,a) |f; = fu  Yo(T,d
I_/f Q (1, b, a) tdt = % é_KZI(az—yZ)ngrmbg (2.78)

m
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Incorporating into .75, we obtain

N ., S iofy N~ Yo(Tnd)
eyt (OO0 = e oy T Y, (1)
(2.79)

Equation 1s nothing but the modified Wiener-Hopf equation of the second type to
be solved. Note that N («) is the kernel function of the Wiener-Hopf equation which
characterizes the nature of the step discontinuity on the outer wall of a coaxial waveg-

uide.
2.1.2. The solution of MWHE

According to the classical Wiener-Hopf procedure, the kernel function N (a) is

factorized into N, (a) and N_ () as follows:
N(a) =Ny (a)N_ (a) (2.80)

in which N, (a) and N_ (a) are regular and nonzero usual split functions in the half-
planes Im (a) > Im (—k) and Im (a) < Im (k), respectively. Following the procedure,

N< (a) are to be as

/2 My (a,d,a)
2.81
b M. (b,d,a) My (a,b, a) (281)

where My (p,, p,, @) stands for the factorization of M (p,, p,, @) which is done by
following the procedure described in [26]. Then, equation becomes

N, (a)

(k—a) i (k—a) iafo 1
(k+ o) F-

(k+a)N_(a) (k+a)N_(a)

S d Yo(Td) (k—a)
2 @Y N @ &%

m=1

17



Determining of unknown P4 () (note that P_ (a) = F_ (a)) requires that the function
in the right hand side of should be represented in the form of the sum of two regular
functions on regions B, and B_. Note that B, and B_ demonstrate the regions described
by Im () > Im (—k) and Im (a) < Im (k), respectively. To remove the singularities
in the right hand side of 2.82, the decomposition procedure is applied to the related

equation by use of the Cauchy Residues Theorem.

N (a)
(k+ a)

k—a), . (b, a) = i% 5 (kjrr) (Nk__(;))ria

1 itfy 1 1
27i J,, (k+7)N_(1)7 -«

27”/ Z —tfm Yo ([pd) (k—1) 1 & (2.83)
[ —

dr

dr

2 —12)Yo(Tub) N_ (1) 7 —

Following the integration, becomes,

N, () i 2k ifi  k
(k+a)P+(a)_(k+a)N+(k)+(k+a)N+(k)
—  Su Yo (Tud) (k+7y,)  if o k
Gt ) Ve (Tab) 2V, )~ Gt ) EackEac]
(k—a) i [k—a) 2k
N_<a>bF‘“’ >+<k+a> N wm)

o0

_l 0 (Tyd) alk—a)  (k+7,)
2 a+ym <r b) La—ymw @ 2N, <ym>} (2.54)

The left hand side of is the sum of terms which are regular on region B, while
the right hand side is the sum of terms which are regular on region B_. can be

separated to two different equations symbolized by W, (a) and W_ (a).

o 2k ify k
W, (a) = (k+a)Ny (k) (k+ a) Ny (k)
Y e e P @)

pow +ym 0(Cub) 2N1 (7,)  (k+a) ™

, O € B+ (285)
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and

i (k—a) 2k ifo a k

{N_ @ N <k>] Tkt {N_ @ "N, <k>]

S e Yo(Tud) [ alk—a)  (k+y,)
2 ( {(a — ) N_(a) 2N, (ym)}

(k—a)
b bF_(b,a) ,a € B_ (2.86)

which each of them is regular (analytic) on the related domains.

At this point, the reader can clearly see that the equality of W, (a) = W_ (a)
is valid on the intersection region B described by B.NB_. Then, it can be said that,
W, () is the analytical continuation of W_ (a) to domain B, and vice versa. Thus,
it is possible to define an arbitrary entire function W (a) which is regular at all finite

points of the entire a-complex plane as follows [27]:

Wiay<d ) acB 2.87)
W_(a) , a€B_

In addition, it is required to evaluate the asymptotic behavior of the entire function
W (o). In accordance with Liouville's theorem, W (a) is 0 for all a-values, since W (a)
is asymptotically equivalent to 0 as &« — oo, and, it allows one to write P, (a) as

follows:

1 Fmd) (k+a)(k+7y,)
Z @ & o) Yo (Cub) Ny (@) N; () 00

The unknown coefficients f,, (m = 0, 1,2, ...) can be calculated by taking into account

equations .67, and simultaneously, which yields the algebraic system of

equations.
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2ky,,

Jo Yo (Tud) (k+7y,) _

4ky,,

o+ S+ 6+ 7,) A

n=1

Ny (k)

form = 1,2, ... This explicit statement can be written as,
Af=B
where the elements of A, namely 4,,, are

Ao = | N+ (k) blog (d/b) +

(P 7) Yo (Tub) N () No (k)

N (k)
2k

Ao = —Fm 1.2
Ny (k)
Yo (I

Aoy = o (F'nd) L n=12..
Ny (7,) Yo (I'nb)
( Yo (T,d) (k 2
L Yollud) (k)
A = , mn=1,2,
(V +70) Yo (Iub) Nu(7,)
and the elements of B, namely B,, are
2
) m=0
N (k)
B, =
4k
Inm=1,2,
N, (k)
with
Yo (Td) Yo (T'b) 1

Xm (Y5 (Twb) — Y5 (Tud)] 7,0N+ (7,,)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)
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formn=1,2,....
2.1.3. Analysis of the scattered fields

The scattered field u; (p,z) can be determined by solving the inverse Fourier

transform integral

1 ,
uy (p,z) = 7 /L:F(p,a) e '"“do (2.97)

Considering and .88, the above integral becomes

1 2 2k Kfo
u (p,2) = /L s {N+ (@) Ny (k) Ny () Ny (k)

o Yo (Opd) (k+a) (k+y,
_Ez(af ( ><+><+y>}

+ V) Yo (Lwb) Ny (a) Ny (7,,)

" 7K [J, (Kp) Yo (2Ka) — Jy (Ka) Y, (Kp)]
2 —a?)M(b,a,a)

m=1

e “do (2.98)

In order to determine the reflected field back to the region z < 0, the above inte-
gral can be evaluated by virtue of the application of the Cauchy Residues Theorem,
yielding the sum of the residues related to the poles occurring at the simple zeros of
( — o*) M (b, a, o) lying in the upper half-plane, namely, at & = a,'s (n = 0, 1,2, ...).
In accordance with the law of residues, one can write the integral as one on the
closed contour consisted of the infinite upper semicircle arc Cy and the counter L_ as

follows:

2 . 2 . >
/L EF (p,a) e "“da + /C72 %F (p,a) e “da = 2m;ReZ (o) (2.99)

where F (p, a) is the integrand of 2.9§. By making use of Jordan's lemma, it can be

easily shown that Cr counter integral in equation satisfies
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lim [ F(p,a)e “da— 0 (2.100)

R—o0 Cr

for

lim F(p,a) — 0 (2.101)

0—r 00

where F (p,a) = O (a‘l/ 2). Thus, the integral along the real axis is just the sum of

complex residues in the contour as follows:
uy (p,z) = —/ —F(p,a)e "“da = iZRez (o) (2.102)
c-

where the term Rez (a,,) represents the residues related to the poles. The right hand side

of is evaluated by:

= ‘ 2 2k kfo
iy Rez(a,) = lim (a—a,)i— {N+ (@) Ny (k) Ny (a)Ny (k)

n=1

BES Fmd) (k+a)(k+7,)
2 ; (a + V) Yo (Tnb) Ny (o) Ny (,,) }
y 7K [J; (Kp) Yo (Ka) — Jo (Ka) Y, (Kp)]
2k —a?>)M(b,a,a)

e i (2.103)

and,

. _.2 2k B Kfo
z;Rez (o) = b {N+ (a,) Ny (k) Ny (a,) Ny (k)

_lf: I Yo (rmd) (k+ a,,) (k+ ym)
2 2= (an +7,) Yo (Tub) Ny (@n) Ni (7,,)
K, [J1 (Kp) Yo (Ka) — Jo (Ka) Y (Kp)]
2[(k — o) M (b, a, )],

e (2.104)

00— 0p
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Denoting the reflected field as

e—ikz
U (p>Z) = Ry 0

- T —ianz
+ D R K (11 (Kup) Yo (Kua) = Jo (Kua) Y1 (Kop)] e
n=1

, z<0 (2.105)
with
K, = /K — a2 (2.106)

By taking into account the equation 2.104, the reflection coefficient R, is derived as

follows:

. _{ K 2%
" wb Ny (an) Ny (k) Ny (an) Ny (k)

l” fu Yo (T,d) (k+ a,) (k+7y,)
D) ; (a + 7,) Yo (Twb) Ny (an) Nt (7,,) }
", ! . (2.107)

(K> — a?) M (b, a,a)]

00— 0p

For the fundamental TEM mode reflected back to z < 0, it is found

- ! Yo (Td)
Ro_Zblog(b/a)N+(k)N+(k){ TN ZM )Y mb)} (2.108)

In a similar fashion, the transmission coefficient can be determined by evaluating the

integral in for z > 0. The transmitted field is

—ikz

s (p,2) = To— + D 1,56, 1 (&) Yo (&,0) = Jo (,) Y1 (&) €7
n=1

, z>0 (2.109)
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with

& =\ — B, (2.110)

n

and f,'s are the simple zeros of (k2 — az) M (a,d,a), where 5, = k. The transmission

coefficients 7,'s and T, are derived as

S Yo (Tud) (k= B,) (k+7,)
(7 = Ba) Yo (Tmb) Ny (7,)

M (b.d, B)N, (8,)
@ mada), &M

a——p,

S B N
" Ny (k) Ny(k) 2

m=1

and

log (d/b)

Tos (/a] (2.112)

To = (fo—2)
respectively.
2.2. Mode-Matching Analysis

The geometry of the problem is also suitable for applying the Mode-Matching
technique[16]. For this type of formulation, the geometry is divided into two regions
as shown in Figure .3, where region A is the part before the step discontinuity defined
as p € (a,b),z < 0 and region B is the part after the step discontinuity defined as
p € (a,d),z > 0. Let the incident TEM mode propagating in the positive z direction
be given by

eikz

H;(p,Z):Mi(p7Z): P)

(2.113)

where £ is the propagation constant. The ¢—component of the total magnetic field at

each region is defined as
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PEC

PEC

Region B
Region A

PEC

z=0

Figure 2.3: Regions for Mode-Matching technique.

eikz
—+u (p,z) , € (a,b),z<0
o 1(p,2) . p€l(ab) 2.114)

uy (p,z) , p€lad),z>0

where u; (p,z) and u, (p, z) are the scattered fields in region A and region B, respec-
tively. The geometry allows one to expand the field components in terms of their nor-

mal modes. Hence, the total field in region A can be written as

eikz eikz > i
H (p,z):7—|—u1 (p,2) :7+ZR,,¢” (p) e i (2.115)
n=0

where R, is the reflection coefficient, ¢, (p) is the eigenfunction and a,, is the wave

number of the n* modes of reflected wave, respectively. Similarly,

Hf (p,2) =ua (p,2) = > _ Tuy, (p) €’ (2.116)
n=0

th.

where 7, is the transmission coefficient of the »” modes of transmitted wave and S, 's

are the zeros of the function (k> — a?) M (d, a, ) given by
E =K — p? (2.117)

On the other hand, one can write p—component of the electric field as follows.
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1 0 [e* kel Na :
A o _ . n —lopz
E}(p,z) = e Oz { P +u (P72)] = }? —Rup, (p)e

and

1 0

EB) - - = _ &Tn if,z
p (p7Z) iwe aZuZ <p72> ; e Y (p) e

The eigenfunctions ¢, (p) and y, (p) in R.118 and R.119 stand for

0, (p) = 5K [ (Kup) Yo (Kua) = Jo (K@) Y1 (Kup)]

and

T

zfn 1 (Eap) Yo (Eua) — Jo (E4a) Y1 (Ep)]

v, (p)

(2.118)

(2.119)

(2.120)

(2.121)

respectively, with K, and &, are being given by 2.106 and 2.117. Note that the eigen-

functions in the Fourier-Bessel series in 2.115 and R.11¢ are determined, such that

uy (p,z) and uy (p, z) are the solution of the Helmholtz equation, satisfying the boundary

conditions given by:

uy (a,z) + a%ul (a,z) =0
uy (b )—i—b2 (b,z2) =0
1 yZ apul y2) =

uy (a,z) + a%uz (a,z) =0

(Z5) (d, Z) + d%uz (d,Z) =0

(2.122)

(2.123)

(2.124)

(2.125)
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In addition, u, (p, z) and its derivative are continuous at z = 0.

0 , p€(ab)
ur (p,0) = { ik (2.126)
P +u (p70) ’ pe(bvd)

The unknown coefficients R, and 7, in the series expansions are determined by taking
into account the continuity of the tangential components of the electric and the magnetic

fields at z = 0, namely

A
ES (p) = E0)  pelab) (2.127)
0 , p€(bd
and
Hf(p)=H](p) , p € (ab) (2.128)

Substituting 2.11§ and 2.119 into 2.127 yields

=B = a, k1
Pup —_N" %R L b 2.129
; T, (p) ; —Rup, (p) + wip’ PE (a,b) (2.129)

Multiplying by wey,, (p) and then integrating it along p € (a, d) yields

d d o°
/ > BT, (p) v, (p) pdp = — / > aRup, (), (p) pdp

?k
+f S () pdp 2130

The series expansions in exists if and only if the related eigenfunctions satisfy

the orthogonality integral given below:

d
| vowalolodp =0 m (2.131)
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Then, can be written as,
ﬁmeQr(nl) = kUSnl) - Z anR"Ar(nln)
n=0

with

b
Uy =/ W, (p)dp

(2.132)

(2.133)

(2.134)

(2.135)

Similarly, after substituting 2.115 and 2.116|into 2.128, multiplying the related equation

by wep,, (p) and integrating it along p € (a, d) yields
U +RaQ) =) T.Af)
n=0
with

b
AL = / 0. (P) W, (p) pdp

b
o = / 0, (p) @, (p) pdp

(2.136)

(2.137)

(2.138)

(2.139)

The reader notes that the set of equations in is derived by matching the fields at

7z=0 and in the region A defined by @ < p < b, while the set of equations in is
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a result of matching the fields at z=0 and in the region B defined by a < p < d. In
this respect, the set of equations pair are regarded as a doubly infinite set of equations

which must be solved simultaneously. As a result, the main equations are given by

BuTu0) =KUY = " a,RAL)  m=0,1,2,..,00 (2.140)
n=0
and
UP + R, 0P =) TAL) , m=0,12,..., 00 (2.141)
n=0

The solution of this doubly infinite set of equations entails truncating the first and the

second equations with a truncation number such P and Q, respectively.

P
BuTn0) =kUD =3 a,RAL)  m=0,1,2,....P (2.142)
n=0
and
0
UD + RO =D T,AL) . m=0,1,2,..,0 (2.143)
n=0

This truncating procedure yields a (N 4 2) x (N + 2) system with N = P + Q. Note
that P must be greater than Q since the first set of equations involves more information
Q?ﬁ),£2$),lﬁi)and.léf)are

than the latter. The explicit expressions for A(l) A2)

mn > mn >

(
log (b/a) Cm=0.n=0
0 , m=0,n#0
" ; (2.144)
EM(a’b’ﬁ’") , m#0,n=0
T & Yo(Ka)
\ 2(1271_K,21)Y0(Knb) (a’ ’ﬂm> ) m# ,n7£
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and

respectively.

log (b/a) m=0.n=0
%M<a7b7ﬁn) , mzo,n#o
0 , m ?é 0, n=20
& Yo(Kua)
@ K2) Yo (Kob) 1@ 0P m#0n 70
) log (d/a) , m=0
1) _
On’ =\ [Y3(&a) — Y3 (&0d)] o
2Y5 (¢nd) ’
: log (b/a) C m=0
(2) —
O’ =\ [Y3 (&) — Y3 (E,0)] o

2Y5 (&,b) ’

Ul = log (b/a) . m=0
gM(a’b7ﬂm) ) m%O

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)
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3. STEP DISCONTINUITY ON THE INNER WALL

3.1. Wiener-Hopf Analysis

3.1.1. Formulation of the problem

Consider a semi-infinite coaxial cylindrical waveguide whose inner and outer
cylindrical walls are located at p = a forz € (—00,0) and p = b forz € (—00,0)
is connected to another semi-infinite coaxial cylindrical waveguide whose inner and
outer cylindrical walls are located at p = d forz € (0,00) and p = b forz € (0,00) as
illustrated in Figure 3.1. Note that the step discontinuity on the inner wall occurs at the

pointz = 0 for p € (a,d).

PEC
u'=e%p Region B
o L
PEC || | PEC
Region A
PEC
z=0

Figure 3.1: Geometry of the problem.
Let the incident TEM mode propagating in the positive z direction be given by

elkz

Hq; (p,Z) =U (p,Z) = p

(3.1)

where £ is the propagation constant which is assumed to have a small positive imaginary
part corresponding to a slightly lossy medium. The lossless case can then be obtained

by letting Im (k) — 0 at the end of the analysis. In virtue of the axial symmetry of the
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problem, all the field components may be expressed in terms of Hy (p,z) = u (p,z) as

1 0 110
Ep—ﬁa—zu(/),z) and Ez——E;%[Pu(%Z)] (3.2)

where the other components of the fields are zero. For the sake of analytical conve-

nience, the total field ur (p, z) can be expressed as

ur (p.2) = u; (p,z) +ui (p,2) , d<p<b (3.3)
s (p,2) + 1> (p,2)| H(=2) , a<p<d

with H (z) being the Heaviside step function and where u; (p,z) and u, (p, z) are the

scattered fields which satisfy the Helmholtz equation
0? 10 0? 1
— -+ — | — - =0 =1,2 3.4
ap2+pap+8zz+( pz u](:ouz) > J ) ( )

in their domains of validity with the boundary conditions

uy (b,z) + b%ul (b,z) =0 , z€ (—00,00) (3.5)
0
uy (d,z) + da—pul (d,z)=0 , ze€(0,00) (3.6)
0
uy (a,z) + a%uz (a,z) =0 , z€(—00,0) (3.7)
deln _ X e (8)
82 - p ’ ,0 Cl, .

The continuity relations at p = d are given by

0 0
uj (dv Z) + d%ul <d7 Z) = U (d,Z) + da_puZ (da Z) , ZE (_007 0) (39)
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and

uy(d,z) =uy(d,z) , zé€(—00,0) (3.10)

respectively. To ensure the uniqueness of the mixed boundary-value problem defined
by the Helmholtz equation and the conditions B.5-B.§, one has to take into account the

radiation and edge conditions as well [16]. These statements are

u o _ —1/2
(5 lku) —O(r ), r—b (3.11)
and
Hy=0(?) E=0(z"%),z-0, p=ad (3.12)

The Fourier transform of the Helmholtz equation satisfied by u; (p, z) with respect to z

in the range of z € (—o0, 00) gives

2
Bt rene o

Here K () = VK> — & is the square-root function defined in the complex a-plane, cut
along a = kto a = k+icoand a = —kto a = —k — ioo, such that K (0) = k and this
choice of branch will be assumed for all square-root functions throughout the thesis as

mentioned before. The Fourier transform is defined by
F(p,a) =F_(p,a) + Fi (p,a) (3.14)
where
+oo )
Felpa) == [ w(p2)eas (3.15)
0
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Notice that ', (p, a) and F_ (p, o) are unknown functions which are regular in the half-

planes Im (o) > Im (—k) and Im (a) < Im (k), respectively. The general solution of

is determined as

F(p,a) =A4(a)Ji (Kp) + B(a) Y (Kp)

(3.16)

Here J; (Kp) and Y, (Kp) are the usual Bessel functions of the first and second kinds,

respectively. As mentioned in chapter [, one have to take into account the boundary

conditions B.5 and B.§ to determine the unknown spectral coefficients 4 () and B («).

Applying the Fourier transform to the boundary condition B.9 yields

Jo (KD)
Yo (KD)

B(a) = —4(a)

Substituting into B.16, one gets

A (a)

[J1 (Kp) Yo (Kb) — Jo (KD) Y (Kp)]
Similarly, the Fourier transform of the boundary condition B.€ gives

/ uy (d,z) e%dz + d— / uy (d,z) €“dz=0
0 ap Jo

F.(d.a)+dF, (d,a) =0

(3.17)

(3.18)

(3.19)

(3.20)

where the prime denotes the first-order derivative with respect to p. On the other hand,

it can be written that

F(d,a) +dF'(d,a) =F_(d,a)+dF' (d,a)+ F. (d,a) +dF} (d,a)

Substituting into yields

(3.21)
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F(b,a)+bF'(b,a) =F_(b,a) + bF" (b,a) (3.22)

Substituting into B.18], the spectral coefficient 4 (o) is written as:

_ [F-(d,a)+dF’ (d,a)] Y, (Kb)
@) = a3 (Kd) Yo (Kb) — Jo (Kb) Yo (Kd)] (3:23)

Hence, equation becomes

[J1 (Kp) Yo (Kb) — Jo (Kb) Y (Kp)]
Kd[Jo (Kd) Y (Kb) — Jo (Kb) Y (Kd)]

(3.24)
where P_ () stands for
P_(a)=F_(d,a) +dF’' (d a) (3.25)

Similarly, the scattered field u, (p,z) satisfies the Helmholtz equation, in the region

p € (a,d), z € (—o00,0), whose Fourier transform with respect to z yields

0? 10 1 . ik
st ot (R )| o bw =+ X 620

where the boundary condition B.§ is taken into account. G_ (p, a), which is regular in

the half-plane Im (a) < Im (k), and f(p) stand for
G_(p,a) = / uy (p,z) €%dz (3.27)
and

f(p) =us(p,0) (3.28)

respectively. The general solution of this nonhomogeneous differential equation is
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written by
G_(p,a) = G (p,a) + G (p, a) (3.29)

where G (p, a) and G (p, a) represent the particular and homogeneous solutions, re-
spectively. A particular solution of can be expressed in terms of the Green's func-

tion related to this differential equation as follows:

d d
G’ (p,a) = ia/ fA0G (p,t,a) tdt + ik/ G(p,t,a)dt (3.30)

where G (p, t, a) is the Green's function satisfies the Helmholtz equation

o (rs) (@) |6bna=T06-0 . prc@a @

where
G({t+0,t,a) —G(t—0,t,a) =0 (3.32)
and
%(] (t+0,t,a) — %Q (t—0,t,a) = % (3.33)

with the boundary conditions

0
G(a,t,a)+ a%g (a,t,a) =0 (3.34)
and
G (d.t )—l—dgg(dt )=0 (3.35)
,,(Z ap 77a - .
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The general solution of this Green's function in is in the form of

A(a) 1 (Kp) +B(a) Y1 (Kp) , a<p<t (3.36)

Taking into account the equations given in B.3-8.8, the Green's function is determined

as follows:

7t7
InB.37, Q (p,1,a) is given by
L(t,d, o)L
Q (p’[’ a) - = <t7 7a) (p7 a7 a) ? a < p < t (3.38)

L(t,a,a)L (p,d,a) , t<p<d

where M (p,, p,,a)and L (p,, p,, a) are determined in and P.43, respectively. Sub-
stituting into allows one to get a particular solution.

d d
G’ (p,a) = {ia/ f1)G (p,t, ) tdt + ik/ G(p,t a) dt] (3.39)

M(a,d, a)

On the other hand, the homogeneous solution G” (p, &) is determined as mentioned in

chapter [.

%) 13, (Kp) Yo (Ka) — Jo (Ka) Yy (Kp)]  (3.40)

G!(p,a) = Y, (Ka)

Hence, the general solution of can be expressed as

{C (@) 31 (Kp) Yo (Ka) — Jo (Ka) Y, (Kp)

+1a/f (t,p, o tdt—l—lk/ Q(t,p,a )dt} (3.41)
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Note that C in equation is given by

C(a)M(a,d,a)

C(a) = Vo (Ka) (3.42)
The Fourier transform of the continuity relation B.9 allows one to write
F_(d,a)+dF' (d,a)=G_(d,a)+dG’ (d,a) (3.43)
Substituting into B.43, the unknown coefficient C becomes
C(a) = —PKE;C) (3.44)
where
P_(a)=F_(d,a)+dF' (d, a) (3.45)

Finally, equation becomes

G- () = ~groras 1P~ (@ K11 (Kp) Yo (Ka) = Jo (Ka) V1 (Kp)

—1a/f (¢, p,a) tdt — 1k/ Q(t,p, )dt} (3.46)

Although the left-hand side of is a regular function of a in the lower half-
plane, the regularity of the right-hand side is violated by the presence of simple poles
occurring at the zeros of KM (a, d, &) lying in the lower half of the complex a—plane,
namely, ata = —y,'s(m = 0, 1,2, ...). These poles can be eliminated by imposing that

their residues are zero. This gives
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P_ (o) K[J1 (Kp) Yo (Ka) — Jo (Ka) Y, (Kp)]

1a/ 1) Q(t, p, ) tdt — lk/ Q(t,p,a )dt] (3.47)
p=d,a=—y,
After the similar procedure given by 2.56-2.64, one can get
P_(—k)
el WAV 3.48
fo ikdlog (d/a) (348)
and
2Y0 (Fma) Yo (Fmd)
= —- P_(— 3.49
I = N (Ta) ~ Y3 (T 7 G4
with
1 d
=— t)dt 3.50
2YZ (T,.d)
= F L(t tdt 3.51
o= el [0 2t () (35)
and
L=k -9 (3.52)

form = 1,2, ... Owing to B.48-B.51], 7(p) can be expanded into Fourier-Bessel series

as

A, me {50 00 (Tap) Yo (Ta@) = Jo (L) Y (Tup)l } - (3.53)
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Now, substituting into the Fourier transform of the continuity relation and
making use of and B.24], one gets

N p ) ap. (a
(kz_az)P*() dP+()

1 2i d ik
- (kz _ az)M(a,d, a) %/a f(t) [gKL (t>a> OC)] tdt + ﬁ (3.54)

with
N(o) = 2 Mlab.a) (3.55)
nd M (a,d, o) M (d, b, a)
and
P, (a)=F,(d a) (3.56)
Incorporating into B.54], one obtain after term by term integration
%P_ (@ — dP (@) = o HE+ af) ‘;‘Cfg’ Z i E;ZZ; (3.57)

Equation is nothing but the modified Wiener-Hopf equation of the second type to
be solved. Note that N («) is the kernel function of the Wiener-Hopf equation which
characterizes the nature of the step discontinuity on the inner wall of a coaxial waveg-

uide.

3.1.2. Solution of MWHE

Applying classical Wiener-Hopf procedure as described in 2.80- 2.87, one deter-

mines




with N (a) being the usual split function

[ 2 M. (a,b,a)
3.59
wd M., (a,d,a) M, (d,b,a) (3-59)

where the factorization of M (p,, p,, a) is done by following the procedure described

in [26]. The unknown coefficients f,, (m = 0,1,2,...) can be calculated by taking

into account equations .48, B.49 and .58 simultaneously, which yields the algebraic

system of equations

2ky —~ S Yo(Twa) (k+y,) (k+7,) 2ky
— o+ S+ X 2 ml — . Zm o (3,60)
N (k) Z] O +70) Yo (Dud) Ny (7,) N, (k)
form = 1,2, ... This explicit statement can be written as,
Af=B (3.61)
where the elements of A, namely 4,,, are
1
Aoo = leg (d/a) + 3 (362)
+ (k)]
2ky
Apo = 2 o om=1,2,.. 3.63
TN —
1 Y() (Fna)
Ao, , n=12 .. 3.64
" = Ny BN, (7,) Yo (L) o9
( Y
1+Xm 0( )(k+ym) . n=m
2y,, Yo (Tnd) Ny (7,)
Apn = , m,n — 1,2, . (365)
Yo (I k k
\ (ym + yn) Y (Fnd> N+ (yn>
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and the elements of B, namely B, are

( 1
dlog (d/a) — , m=0
+ ()
B, = (3.66)
2
_ 2K , om=1,2,
| N, (k)
with
YO (Fma) Yo (Fmd)

— . 3.67
T = S dN () (Y2 (Fa) — Y2 (Td) (.67)

3.1.3. Analysis of the scattered fields

The scattered field u; (p,z) can be determined by solving the inverse Fourier

transform integral

1

uy (p,z) = 7 /LF(p, a) e “da. (3.68)

Considering and B.58, the above integral becomes

w(pz) = L2 {k(1+fo)

27 d N, (k)
_loo na) (k+7,) (k—a)
2 £~ (o — Vm md) Ny (V)
x 7KL (p. b, a) e %dg (3.69)

2k —a?>)M(d,b,a) N_ (a)

In order to determine the reflected field back to the region z < 0, the above integral
can be evaluated by virtue of Jordan's lemma and the application of the law of residues,
yielding the sum of the residues related to the poles occurring at the simple zeros of

(K — a*) M (a, b, a) lying in the upper half-plane, namely, at o = a,'s (n = 0, 1,2, ...).
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Denoting the reflected field as

e—ikz
U (p>Z) = Ry 0

) - '
+) Ry K [J1 (Kap) Yo (Kib) = Jo (Kub) Y1 (Kup)] e
n=1

, z<0 (3.70)
with
K, = /K — a2 (3.71)

Then, the reflection coefficient R, is found to be

_ ) KO IS e Yo(Tua) (kb y) (k= a)
o= { Ny (k) T2 ; (an = 7,) Yo (Tud) Ny (7,) }

N, (0,) M (a,d, a,)
KZM' (a,b, a,)

(3.72)

For the fundamental TEM mode (n = 0) reflected back to z < 0, it is found

_ (I +/o)log (d/a)
Ro= 2 log(b/a) (3-73)

In a similar fashion, the transmission coefficient can be determined by evaluating the

integral in forz > 0 to give

—ikz 00
T3 Ti36 I (G Yo (60) o (6,0) Y1 (Gp)] €

n=1

25) (/),Z) = TO

L 2>0 (3.74)

with

E, =\ K — B (3.75)
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and f,'s are the simple zeros of (k* — a*) M (d, b, a), where B, = k. The transmission

coefficients 7,'s and T} are determined as

B ETETRS S NG ICEAIEYA
T’"{ ) LG Y d) Vo) }

1

X (B e @b —p,) O
and
1o = 2aN. () 1og (b/d) { N0 T 2N (1) Yo (Tod) } G77)
respectively.

3.2. Mode-Matching Analysis

For the Mode-Matching formulation, the geometry is divided into two regions as
depicted in Fig. B.2, where region A is the part before the step discontinuity defined
as p € (a,b),z < 0 and region B is the part after the step discontinuitydefined as

€ (d,b),z>0.

PEC
Region A Region B
PEC PEC
PEC
z=0

Figure 3.2: Regions for Mode-Matching technique.
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The ¢-component of the total magnetic field at each region is defined as

ok
—+u (p,z) , €(a,b),z<0
H¢T: P 1(p,2) p € (a,b) (3.78)

uy (p,z) , pe(d,b),z>0

where u; (p,z) and u, (p, z) are the scattered fields in region A and region B, respec-
tively. The geometry allows one to expand the field components in terms of their nor-
mal modes. Hence, the p-component of the total magnetic field in region A can be

written as

eikz
+ up p7
P

0, (p) e "™ (3.79)

H (;24 (p 2 ) =
and, similarly

Hp (p,z) = uy (p,z Zann e (3.80)

On the other hand, one can write p—component of the electric field at related region

defined as
1 a eikz k eikz 0 o )
A _ - - o o —iapz
B (02) =g | 4 0)] = 2 > e, ol G
and
1 0 =B .
EB = — =) T b7 .82
p (p,Z) leaZuz (p7 ) Zowg nl//n (p)e (38 )
with
9, (p) = 5 K, [J1 (Kup) Yo (Kub) — Jo (Kub) Y1 (Kup)] (3.83)
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and

v, () = 5 31 (€4) Yo (&4) = Jo (£,6) Y1 (¢,0)] (3.84)

The eigenfunctions in the Fourier-Bessel series in and are determined, such
that u; (p,z) and u;, (p,z) are the solution of the Helmholtz equation, satisfying the

boundary conditions given by:

0

up (a,z) + a%ul (a,z) =0 (3.85)
(b,z) + bg (b,z) =0 (3.86)

uy (b,z 8pu1 ,Z) = :
uy (b z)—l—bﬁu (b,z) =0 (3.87)

2\, ap 2\Y, - .

and

(d,z) + a’2 (d,z) =0 (3.88)

uy (d,z 8pu2 ,Z) = :

Applying the continuity relations at z = 0 yields

p 0 , a<p<d
E!(p,0) = (3.89)
EP(p,0) , d<p<bh
and
H; (p,0) = Hf (p,0) d<p<b. (3.90)

Substituting 3.81| and B.82] into 3.89 yields the following equation.
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k1
we p

n=0

Multiplying by wep,, (p) and integrating along a < p < b yields

ROV + 3 B, T,AL) =KUY m=0,1,2, .00
n=0

with

b
o) = / 0, (p) 0, (p) pdp

b
AL = /d v, (p) @, (p) pdp

— 0 — B,
— st D) R, (p) =) TET, (p) . p € (ah)
n=0

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

Similarly, after substituting 3.79 and 3.8 into B.90 and multiplying the related equation

by wey,, (p) and integrating along d < p < b yields

> RAD+T,00 =UY , m=0,12,..00
n=0

with

(3.96)

(3.97)

(3.98)

(3.99)
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The sets of equations given by and must be regarded as a doubly infinite set
of equations that must be solved simultaneously. On the other hand, the solution of
this doubly infinite set of equations entails truncating the first and the second equations

with a truncation number such P and Q, respectively.

N

0nRuOY + > B, TAL) = kU |, m=0,12,. P (3.100)
n=0
N

T,0% > RAZ) =UY ., m=0,12,..0 (3.101)
n=0

The explicit expressions for A A(z), Q;(nl ), QSn2 ), ljﬁnl ) and ljﬁnz ) are

mn?> mn

log (b/d) , m=0,n=0
0 , m=0,n#0
Ar(nlg = (3.102)
—g\/ﬁnl) , m#0,n=0
T K2 Yo (5 b) (1)
- m n Vm ’ 07 0
[ 22— K2 Yo (&,d) mron?
VO = [y (Kub) Yo (Knd) — Jo (Kd) Yo (Kpb) (3.103)
( log (b/d) , m=0,n=0
gV,(,z) , m=0,n+#0
A}(iyg — (3.104)
0 , m#0n=0
T K2 Yo (Cf b) (2)
z " nN 0 0
\2K%—éfnYo(§md)V I m% 7n#
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0, =

0p -

log (b/a)

[Y(z) (Kma) - Y(Z) (Kmb)}

2Y? (Kna)

log (b/d)

Y

[Y2(&,d) — Y3 (&,b)]

2Y2 (&,d)

log (b/a)

)

(3.106)

(3.107)

(3.108)

(3.109)
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4. NUMERICAL RESULTS

In this chapter, the results obtained via both Wiener—Hopf and Mode-Matching
techniques are evaluated numerically and compared to each other. Constructing the
systems of linear algebric equations obtained in Chapter 2 and Chapter 3 via two meth-
ods properly allow one to determine the coefficients R, and 7, numerically. On the
other hand, when there is an only the fundamental TEM mode propagating, the trans-
mission coefficients calculated via Wiener—Hopf and Mode-Matching techniques have

the relation

TO,WienerHopf = TO,ModefMatching —1 (4 1)

due to the difference in defining the total field in the two formulations. Considering the
Mode-Matching formulation for the outer wall problem at the frequencies where only
the fundamental TEM mode is propagating, one can write the field terms Hy and £, in

region A (z < 0)

ikz —ikz ikz —ikz
e e k e k e
Hj' = — + Ry ,El=————Ry (4.2)
p we p we p
and in region B (z > 0)

ikz k ikz
H =T, | Ef = —T1,"— (4.3)

p we " p

Considering the general formula for calculating the power

1
P = SRe { / / (E)la, x Hj*@)} - a.dS (4.4)
N

where H qfl* is the conjugate of the related term.
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The power in regions A and B become

pi_ (1 IRoP) 1og (b/a) (4.5)

we

and
B k 2
P® = —|Ty|"log (d/a) (4.6)
we
respectively. The conservation of energy yields

(1= 1RoP?) 1og (b/a) = (|To|* ) log (d/a) (4.7)

Following the similar procedure, an analogue equation can be obtained for the inner

wall problem.
(1= 1RoP?) 1og (b/a) = (ITo|* ) log (b/d) (4.8)

4.1. The Convergence Comparison of the Techniques

Since both Wiener—-Hopf and Mode-Matching analysis involve infinite sets of
linear algebraic equations, convergence of the solution regarding the truncation number
must be illustrated for each technique. The Figures .1 .4 show the dependence of the
magnitudes of the reflection and transmission coefficients R, and 7| to the truncation
number N at frequencies f = 100 MHz and f = 4 GHz fora = 1l cm, b = 3 cm
and d = 10 cm. These figures show that the Wiener—Hopf technique provides a better

convergence than the Mode-Matching technique.
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Figure 4.1: Convergence of |Ry| at f'= 100 MHz
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Figure 4.2: Convergence of | 7| at /= 100 MHz
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Figure 4.4: Convergence of | 7| at f = 4 GHz

This issue is well known in the literature as the lack of edge conditions in and
therefore the Mode-Matching technique causes slower convergence. Since the Wiener—
Hopf technique is converging faster, the computation time for this technique is less

compared to the Mode-Matching technique.
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4.2. Scattering Coefficients of the Outer Wall Problem

In this section the results obtained via both Wiener-Hopf and Mode-Matching
techniques are evaluated numerically for the problem of step discontinuity on the outer
wall.

During the numerical analysis, one needs to calculate the zeros of the functions
M(a,b,a),M(a,d,a)and M (b,d, o). Note that these functions are related to the kernel
function N (o) of the Wiener-Hopf equation given in which characterizes the nature
of the step discontinuity on the outer wall of a coaxial waveguide. If M (a,b,a) is

analyzed asymptotically for large |a| by taking into account

2
Jo (2) ~ 4/ —cos <Z - E) , for large || (4.9)
nz 4

and

2
Yo (z) ~ {/—sin <z - %) , for large |z]| (4.10)
nz

In this respect, one gets the eigenvalue equation
sin[K,(b—a)]=0, m=1,2,... (4.11)

where

,m=1,2,... (4.12)

 m=1,2,.. (4.13)
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and

’Bm: k2_§2 4 m:1727"' (414)

m

Here a,,'s and B,,'s correspond to the wavenumbers of higher-order modes asso-
ciated with their indices in the regions A and B, respectively. Hence, the corresponding
modes are propagating only when these wavenumbers become purely real. Note that,
the righthand sides of the equations and are only the asymptotic expressions
for K,, and ¢&,,. The details in variations of M (a, b, a) and M (a,d, o) with respect to
K (a) are illustrated in [28].

On the other hand, the asymptotic expression for the zeros of M (b, d, a) can be

found in a similar fashion to give,

,m=12, .. (4.15)

and

po =R —T2  m=12,.. (4.16)

Reader in this section finds the computational results of the scattering coefficients
showing the effect of the ratio of cross-sectional areas for frequencies up to 10 MHz,
1.5 GHz and 4 GHz respectively, where the excitation is the incident TEM wave given

by R.1|. In all the figures, the area ratio defined by
Sz dQ — a2

Area ratio = S, = (4.17)

is 12.375 for the blue line, 6.6 for the green line, and 4.125 for the red line.
The truncation number N is chosen as 40 and 80 for Wiener—Hopf and Mode-
Matching analysis, respectively. In addition, the straight lines in the graphs indicate the

Wiener—Hopf technique, while the dashed lines with a marker demonstrate the Mode-

Matching technique.

55



It can be observed in Figures #.5- that the two methods, i.e., the Wiener—Hopf
and Mode-Matching techniques, have very good agreement. Besides, one can conclude
that when the area ratio increases, the magnitude of the reflection coefficient also in-
creases while the magnitude of the transmission coefficient decreases. This means that
when the area ratio is increased, more energy is reflected back and less is transmitted
to region B.

In addition, the same trend is observed in Figures #.9-4.12 regarding the return

and insertion losses for the same area ratios, which are calculated directly by

RL = —201og |Ry| (4.18)

and

IL = —201log |Ty| (4.19)

respectively, with the unit dB.

The graphs related to the RL and IL demonstrate that when the area ratio is in-
creased, more energy is reflected back and less is transmitted to region B. The Figures
4.3, 4.7, B9 and are of special interest due to the need of low frequency electro-
magnetic modelling of the measurement setup described in [2].

Additionally, the magnitude of the reflection and transmission coefficients are
presented in Figs4.13 and upto 4GHz, where two additional TM modes are ob-
served to start propagating in region B after their relevant cut-off frequencies 1.62 GHz
and 3.31 GHz are exceed. When new modes start to propagate, the energy carried by

the fundamental TEM mode is obviously decreased dramatically.
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4.3. Scattering Coefficients of the Inner Wall Problem

Reader in this section finds the computational results of the scattering coefficients
showing the effect of the ratio of cross-sectional areas of the inner wall problem for
frequencies up to 10MHz, 1.5 GHz and 4 GHz respectively, where the excitation is the
incident TEM wave given by (R.1)). In all the figures, the area ratio defined by

.S -
Area ratio = 57? e (4.20)

15 0.9192 for the blue line, 0.8485 for the green line, and 0.7575 for the red line. Similar
to previous problem, the truncation number N is chosen as 40 and 80 for Wiener—Hopf
and Mode-Matching analysis, respectively.

It can be observed in Figures §.13- that the two methods, i.e., the Wiener—
Hopf and Mode-Matching techniques, have very good agreement, especially at low
frequencies. On the other hand, contrary to the results of the outer wall problem, one
can conclude that when the area ratio increases, the magnitude of the reflection coeffi-
cient also decreases while the magnitude of the transmission coefficient increases. This
means that when the area ratio is increased, less energy is reflected back and more is
transmitted to region B. Same trend is also observed in Figures f.19-4.22 regarding RL
and IL terms.

Additioanlly, the magnitude of the reflection and transmission coefficients are
presented in Figs.4.23 and upto 4GHz, where two additional TM modes are ob-
served to start propagating in region A after their relevant cut-off frequencies 1.62 GHz
and 3.31 GHz are exceed. When new modes start to propagate, the energy carried by

the fundamental TEM mode is obviously decreased dramatically.
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S. CONCLUSION

Engineering applications of coaxial waveguides involving discontinuities -such
as a abrupt step on the outer or inner conductor wall- have received considerable atten-
tion since many decades, and an accurate evaluation of the behaviours of electromag-
netic waves along these cables is essential for practical purposes.

In this thesis, the propagation of TEM waves along a coaxial waveguide with
a step discontinuity on its outer and inner walls has been analyzed by applying the
Wiener-Hopf and Mode-Matching techniques, both of which are considered to be rig-
orous analyses in frequency domain.

First, at the beginning of the analysis, the geometry of step discontinuity on the
outer wall problem is reduced into an equivalent two dimensional one in the virtue
of axial symmetry. Then, the Wiener-Hopf technique is applied to this problem by
considering the Helmholtz equation, boundary conditions, and continuity relations in
the Fourier transform domain, and a modified Wiener-Hopf equation of the second
type is derived. This MWHE also contains a unique kernel function representing the
area expansion, i.e, the step discontinuity on the outer wall. It is solved according to the
related method and the obtained solution is form of an algebraic system of equations. At
final stage, this algebraic system is evaluated approximately by following the numerical
procedure and the scattering coefficients are derived.

Second, the Mode-Matcing technique is employed to analyze the same geometry,
and a doubly infinite set of equations is found at the end of the method, which must
be solved simultaneously. This system is solved by truncating both equations with a
truncation number such P and Q. At the and of the analysis, the explicit statements are
obtained for each equation.

Third, following a similar procedure, the problem of step discontinuity on the in-
ner wall is formulated and solved by the Wiener-Hopf and Mode-Matching techniques,
and the scattering coefficients are determined.

Fourth, i.e, the computational part of this study, a computer code is developed
in MATLAB by using the approximate statements and the related equations for each
problem and for each method, and then the graphs are produced to visualize the nu-

merical results. The Figures 4.1-4.4 show that the Wiener-Hopf technique provides
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a better convergence than the Mode-Matching technique. In other words, the Mode-
Matching technique causes slower convergence due to the well known issue in the liter-
ature as the lack of edge conditions in .12. In this respect, the Wiener-Hopf technique
is converging faster and the computation time for this method is less compared to the
Mode-Matching technique.

In the Figures 4.6-4.15, the reflection and transmission coefficients demonstrat-
ing the effect of the area expansion are illustrated for frequencies up to 10 MHz, 1.5
GHz and 4 GHz respectively, where the excitation is the incident TEM wave. Note that
the truncation number N is chosen as 40 and 80 for Wiener-Hopf and Mode-Matching
calculation, respectively. It is clearly seen in these figures that the two methods, i.e.,
the Wiener-Hopf and Mode-Matching techniques, have very good agreement. It is in-
teresting to note that although the lack of edge conditions, the accuracy of the Mode-
Matching technique is great, especially for low frequencies. This information is very
useful for the application of the Mode-Matching technique in more complex problems,
where the Wiener-Hopf technique cannot be applicable.

In addition, by evaluating these figures one can conclude that when the area ratio
increases, the magnitude of the reflection coefficient also increases while the magni-
tude of the transmission coefficient decreases. This means that when the area ratio is
increased, more energy is reflected back and less is transmitted to region B. This phe-
nomena can also observed from the figures related to the return and insertion losses for
the same area ratios. Besides, Figures 4.14 and 4.15 indicate that two additional TM
modes start propagating in region B after their relevant cut-off frequencies are exceed,
and therefore the energy carried by the fundamental TEM mode is obviously decreased
dramatically. Same phenomena and the law of conversation of energy as well can be
observed in the Figure 4.5.

The effects of the area expansion are illustrated in Figures 4.16-4.25 for the in-
ner wall problem as well. In contrast to the results of the first problem, the area ratio
increases, the magnitude of the reflection coefficient decreases while the magnitude of
the transmission coefficient increases. In other words, the area expansion of the region
B is increased, less energy is reflected back and more is transmitted to region B, et vice
versa.

These results constructs a solid knowledge of the effect of a step discontinuity on
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the outer and inner walls of a coaxial waveguide on the propagation of TEM waves.
These types of scattering mechanisms are among the many occurring in the measure-
ment setup described in [2]. In particular, these results illustrate the great importance
of an area change in the modelling of connector mismatch at low frequencies. Addi-
tionally, the comparison of these two techniques provides an understanding on the use
of the Wiener-Hopf and Mode-Matching techniques for future studies which involving
more complex geometries, and these different scattering mechanisms will be subject of

forthcoming studies by the author.
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