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SUMMARY

A k-regular graph is a graph in which all the degrees are k. A spanning 2-regular

subgraph of G is called a 2-factor in G. A 2-factorization of G is a decomposition of all

the edges of G into edge-disjoint 2-factors. An equipartite graph is a graph whose vertex

set can be partitioned into subsets of the same size such that no two vertices from the same

subset are connected by an edge. The complete equipartite graph with u subsets of size m

is denoted by K(m ∶ u) and it contains every edge between vertices of different subsets. In

this thesis we will find a 2-factorization of complete equipartite graph K(m ∶ u) with four

and eight cycles. In fact, this is a Hamilton-Waterloo problem for K(m ∶ u).

Key Words: Complete multipartite graphs, Resolvable cycle decomposition,

Hamilton-Waterloo problem, Oberwolfach problem.
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ÖZET

K-düzenli bir çizge bütün derecelerin k olduğu bir çizgedir. 2-faktör iseG çizgesinin

2-düzenli kapsayıcı bir altçizgesidir. G’nin bir 2-faktorizasyonu, G’nin bütün kenarlarının

2- faktörlere parçalanışıdır. Eş parçalı bir çizge, köşe seti aynı kümedeki herhangi iki köşe

bir kenar ile bağlı olmayacak şekilde eşit büyüklükte parçalara ayrılabilen bir çizgedir.

u tane m elemanlı parçaya sahip tam eş parçalı çizge K(m ∶ u) ile gösterilir ve farklı

parçalardaki noktaların arasındaki bütün kenarları içerir. Bu tezde tam eş parçalı K(m ∶ u)

çizgesinin 4 ve 8 döngüleriyle 2-faktörizasyonunu incelenecektir. Aslında bu K(m ∶ u)

için bir Hamilton-Waterloo problemidir.

Anahtar Kelimeler: Çok parçalı tam graflar, Yeniden çözülebilir döngü

parçalanışı, Hamilton-Waterloo problemi, Oberwolfach problemi.
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1. INTRODUCTION

We start this section with some introductory basics for graph theory. The following

two subsections are about two well-known problems in graph theory. Then in the last two

subsections, we give some definitions from design theory which will be used in the proof

of the main theorem.

A graph G is an ordered pair G = (V (G),E(G)) where V (G) is called the vertex

(node) set, E(G) is called the edge set and each edge is associated with two vertices (not

necessarily different) which are called as the endpoints of this edge. A loop is an edge

whose endpoints are the same. Multiple edges are edges having the same pair of endpoints.

A simple graph is a graph which has no loops or multiple edges. For convenience, we use

(V,E) instead of (V (G),E(G)) if it is not obligatory to indicate the graph. G′ = (V ′,E′)
is called a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. According to Wilson’s

definition [1], a walk is a ”way of getting from one vertex to another”, and consists of a

sequence of edges, one following after another. A u, v-path is a walk between the vertices

u and v in which no vertex appears more than once. A graph G is connected if for every

pair of vertices u, v of G, there is a u, v-path in G. If u and v are the endpoints of an

edge, then we say u is adjacent to v and vice versa. The number of edges adjacent to a

vertex v in a graph G is called the degree of v and it is denoted by dG(v) or d(v) in short.

Two subgraphs are said to be edge disjoint if they have no edges in common. Likewise,

two subgraphs are vertex disjoint if they have no vertices in common. The union of two

graphs G1 and G2, with disjoint vertex sets V (G1), V (G2) and edge sets E(G1), E(G2)
respectively, is the graph G with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2).

A k-regular graph is a graph in which each vertex has degree k. A spanning (i.e.

including each vertex of a graph) k-regular subgraph ofG is called a k-factor inG. LetG be

a graph and H be a subgraph of G. If all edges of G can be decomposed into edge disjoint

copies of H , then this decomposition is called an H-decomposition of G. If all edges of G

can be decomposed into edge disjoint copies of k-factors, then this decomposition is called

a k-factorization and G is called k-factorable. A parallel class (or resolution class) of a

decomposition of G is a subset of vertex disjoint graphs whose union partitions the vertex

set of G.

Example 1.1: LetG be the graph shown in Figure 1.1 with the following vertex set: V (G) =
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{v0, v1, v2, v3, v4, v5}.

v1

v0

v5 v4

v3

v2

Figure 1.1: Representation of a graph G.

Then G has the following 1-factors F1, F2 and F3 as given in Figure 1.2.

v1

v0

v5 v4

v3

v2

A 1-factor F1

v1

v0

v5 v4

v3

v2

A 1-factor F2

v1

v0

v5 v4

v3

v2

A 1-factor F3

Figure 1.2: A 1-factorization of G.

We see that F1, F2 and F3 are edge disjoint. Furthermore, F1 ∪ F2 ∪ F3 = G. Hence,

G is 1-factorable.

Example 1.2: LetD be the graph shown in Figure 1.3 with the following vertex set: V (D) =
{v0, v1, v2, v3, v4}.

v1

v0 v2

v3v4

Figure 1.3: Representation of a graph D.
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Then D has the following 2-factors S1 and S2, as given in Figure 1.4.

v1

v0 v2

v3v4

A 2-factor: S1

v1

v0 v2

v3v4

A 2-factor: S2

Figure 1.4: A 2-factorization of D.

We see that S1 and S2 are edge disjoint. Furthermore, S1 ∪ S2 = D. Hence, D is

2-factorable.

A cycle is a connected graph which is 2-regular. A cycle with n vertices is denoted

by Cn. A spanning cycle is called an Hamilton cycle. Clearly, a 2-factor consists of vertex

disjoint union of cycles. Cycle decomposition of a graphG is anH-decomposition in which

allH’s are cycles. A resolvable cycle decomposition is a cycle decomposition which forms

a 2-factorization, in other words, it is a cycle decomposition which can be partitioned into

parallel classes.

A complete graph is a simple graph whose vertices are pairwise adjacent. The com-

plete graph with n vertices is denoted by Kn. A bipartite graph is a graph whose vertices

can be divided into two disjoint sets A and B such that every edge connects a vertex in A

to one in B. A complete bipartite graph is a simple bipartite graph in which each vertex

in A is joined to each vertex in B. We denote the complete bipartite graph with ∣A∣ = m
and ∣B∣ = n by Km,n. A k-partite graph (multipartite graph) is a graph whose vertices can

be partitioned into k disjoint sets such that every edge connects a vertex in a set to one in

another set. An equipartite graph is a multipartite graph in which all sets have the same

number of vertices. Complete multipartite graph is a multipartite graph such that each

vertex in any set is joined to each vertex in any other set. We will denote the complete

n-partite graph with m vertices in each part by K(m ∶ n).

3



Example 1.3: A complete bipartite graph K3,3 and a complete multipartite graph K3,3,3

are given in Figure 1.5. K3,3 has two disjoint vertex sets, one set is A with the vertices

{v0, v1, v2}, and the other set is B with the vertices {v3, v4, v5}. K3,3,3 has vertices which

are partitioned into three disjoint sets.

v0

v1

v2

v3

v4

v5

A complete bipartite graph K3,3

v0

v1

v2

v3

v4

v5

v6

v7

v8

A complete multipartite graph K3,3,3

Figure 1.5: A complete bipartite and a complete multipartite graph.

The following definitions are taken from the doctoral thesis of Özkan [2]: An amal-

gamation H of a graph G is formed by a graph homomorphism f ∶ V (G) → V (H), where

each vertex v of H represents η(v) = ∣f−1(v)∣ vertices of G. η(v) is called the amalgama-

tion number of v, and f is called the amalgamation function of G.

Informally, an amalgamation of a graphG is a new graphH , obtained by partitioning

the vertices of G and replacing each element p of this partition, say P , by a single vertex

in H , where edges incident with this single vertex are in one-to-one correspondence with

the edges incident with original vertices of G in P . If there is any multiple edges, we

ignore them and regard as one edge. Disentanglement of vertices is the reverse process of

amalgamation. That is, G is a disentanglement of H .

We do not use amalgamation number in this thesis. The aim of using amalgamations

is to reduce a graph a simpler graph in the proof of the main theorem.

Example 1.4: For example, if we amalgamate the vertices in each part of the complete

bipartite graph K4,4 into groups of two, we obtain the graph K2,2 as shown in Figure 1.6.

Among the decompositions of graphs, cycle decompositions have attracted most of

4



v3

v2

v1

v0

v′3

v′2

v′1

v′0

A complete bipartite graph K4,4

u1

u0

u′1

u′0

Amalgamated graph K2,2

Figure 1.6: Amalgamation of vertices in K4,4.

the attention. The two well-known resolvable cycle decomposition problems are the Ober-

wolfach problem and the Hamilton-Waterloo problem.

1.1. The Oberwolfach Problem

The Oberwolfach problem was first stated by Ringel in 1967 at a conference in Ober-

wolfach, Germany:

“ Is it possible to seat an odd number v of people at s round tables T1, T2, . . . , Ts (where
each Ti can accommodate ti ≥ 3 people and ∑s

i=1 ti = v) for v−1
2 different meals so that

each person has every other person for a neighbor exactly once?”

In graph theory language, this problem is equivalent to finding a 2-factorization for

Kv in which each 2-factor consists of cycles of lengths t1, t2, . . . , ts. Here, v must be odd

so that each vertex has an even degree. Note that, 2-factorization of a graph G exists if

and only if G is even regular [3]. This is because each 2-factor attributes two degrees

to a vertex. In total, degree of a vertex equals two times the number of factors in a 2-

factorization. In the problem, the number of factors correspond to the number of nights

that the meal takes place : v−1
2 . Even if we say v must be odd, this problem is also applied

to the cases where v is even by substracting a 1-factor from the given graph. This is called

the ”spouse-avoiding” version of the problem. In this case, the number of factors is v−2
2 .

The Oberwolfach Problem is completely solved for fixed table sizes in [4] and [5]. And

also, Liu [6] solved the Oberwolfach problem for the complete equipartite graphs with

uniform cycle lengths.
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1.2. The Hamilton-Waterloo Problem

Another resolvable cycle decomposition problem is the Hamilton-Waterloo problem.

In the Oberwolfach problem we have a conference taking place in only one dining hall with

table sizes uniform or not. Now, in the Hamilton-Waterloo problem, people can use two

dining halls (one in Hamilton and the other in Waterloo) by choosing one of them in one

sitting. Again table sizes can be uniform or not. Obviously, total number of people (v)

is equal to the summation of table sizes at one night. Since there are two dining halls,

this sum is the same in both of the dining halls. For example, 48 people can be placed in

a dining hall which has 12 uniform tables with 4 seats and in another dining hall which

has 6 uniform tables with 8 seats. By using these two dining halls, we want to arrange

conference dinners such that each person sits next to another person exactly once. In terms

of graph theory, this is a Hamilton-Waterloo Problem applied to K48 with cycle lengths 4

and 8. The number of factors is the same as in the Oberwolfach Problem. Therefore, we

have v−2
2 = 48−2

2 = 23 cycle factors. Since the cycles have uniform lengths, we can name

the 2-factors as C4-factors and C8-factors. In general, a 2-factorization of Kv (or Kv − I)

where r of the 2-factors are Cm-factors and s of the 2-factors are Cn-factors corresponds

to the solution of the Hamilton-Waterloo problem with uniform cycle sizes. It is denoted

by (m,n)-HWP(v; r, s).

In 2002, Adams et al. [7] solved the Hamilton-Waterloo problem for the cases

(m,n) ∈ {(4,6), (4,8), (4,16), (8,16), (3,5), (3,15), (5,15)} and settled the problem for

all v ≤ 16. Danziger et al. [8] solved the problem for the case (m,n) = (3,4) with a few

exceptions. Horak et al [9], Dinitz and Ling [10, 11] worked on the case m = 3 and n = v,

that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo

problem for bipartite 2-factors [12].

In 2008, the case of 4-cycles and n-cycles for even n is solved by Fu and Huang [13]

and they also settled all cases where n = 2t and t is even. Then, in 2013, Keranen and

Özkan solved the case of 4-cycles and a single factor of n-cycles where n is odd [14].

Although the generalization of the Oberwolfach problem to the complete multipartite

graphs have been studied [6], there is no such generalization is known for the Hamilton-

Waterloo problem up to date. In this thesis, unlike in [6], we study the Hamilton-Waterloo

problem on a complete equipartite graph. Within the parts of a complete multipartite graph

there is no edge which makes the problem harder. We want to study C4 and C8 factors,

6



so we choose 4t for the number of vertices in each part and we work on K(4t ∶ m). If

we worked on a complete graph K4tm, we would use the notation (4,8)-HWP(4tm; r, s)

for the problem. Therefore, we need different notation for K(4t ∶ m) that we will use

(4,8)-HWP(4t ∶ m; r, s) to denote a {Cr
4 ,C

s
8}-factorization of K(4t ∶ m) such that r of the

2-factors are cycle of length 4, s of the 2-factors are cycle of length 8 where r and s satisfy

0 ≤ r, s,≤ 2t(m − 1) and 2t(m − 1) is the total number of factors. Since Liu [6] solved the

Oberwolfach problem for the complete equipartite graphs with uniform cycle lengths, we

have already the cases r = 0, s = 2t(m − 1) and s = 0, r = 2t(m − 1).

We have those obvious necessary conditions for the complete multipartite graph

K(n ∶m) to have a {Cr
4 ,C

s
8}-factorization:

Theorem 1.1: If K(n ∶m) has a {Cr
4 ,C

s
8}-factorization for non-negative integers r, s, then

it satisfies:

i) 8 ∣ nm,

ii) r + s = n(m−1)
2 .

Proof 1.1: The number of cycle factors in K(n ∶ m) is n(m−1)
2 . So, r + s = n(m−1)

2 . Since

a C4-factor is a spanning subgraph, 4 divides the total number of vertices, that is nm. In

the same way, 8 ∣ nm, which implies that 4 ∣ nm, so we only need 8 ∣ nm.

K(4t ∶ m) satisfies the conditions of Theorem 1.1 if at least one of t or m is even.

Since, 8 ∣ 4tm only when at least one of t or m is even. Indeed, if one of n or m were

a multiple of 8 this problem would be easier. On the other hand, if one of n or m is a

multiple of 6, a {Cr
6 ,C

s
12}-factorization can be studied. In general, whether there exists a

{Cr
d ,C

s
2d}-factorization of K(n ∶ m) or not for some positive integer d is a challenging

problem. It can be studied as a future work. In our main theorem, we show that the

necessary conditions are also sufficient for K(4t ∶m) with a few exceptions.

Theorem 1.2: The complete multipartite graph K(4t ∶m) for m ≥ 2, t ≥ 1 has a {Cr
4 ,C

s
8}-

factorization for any non-negative integers r, s with 0 ≤ r, s ≤ 2t(m − 1) if and only if it

satisfies the following conditions:

7



i) 8 ∣ 4tm,

ii) r + s = 2t(m − 1)

possibly except m ≡ 5 (mod 12) when t ≡ 2,10 (mod 12), and m ≡ 2 (mod 24) when

t ≡ 1,5 (mod 6).

1.3. Resolvable Group Divisible Designs

In the proof of Theorem 1.2, we use some results from the design theory. Here, we

shortly define resolvable group divisible designs.

Definition 1.1: Let v >2 be a positive integer. A group divisible design (which is abbreviated

as GDD) GD[K,λ,M, v] is a triple (X,G ,B) where X is a set of points, G = {G1,G2, . . .}
is a partition of X and B is a class of subsets of X with the following properties:

i) ∣X ∣ = v,

ii) Cardinality of each Gi is a member of M ,

iii) Cardinality of each block is a member of K,

iv) Every pair from distinct groups is contained exactly in λ blocks,

v) No pair from the same group is contained in a block.

A GDD becomes a resolvable group divisible design if its blocks can be partitioned

into parallel classes.

Let k ∈K be a fixed scalar, if λ = 1, we denote GD[K,λ,M, v] for fixed M and v as

k-GDD of type mu, where m is the group size and u is the number of groups. We use only

the case where λ = 1 so that there is no edge repetition. In this thesis, we need the cases

where λ = 1, k = 3 and λ = 1, k = 4. In the third section we use group divisible designs

which allow us to find out which triples or quadruples we should use for the right partition

of the graph.

We have the following known results for 3-RGDDs and 4-RGDDs:

Theorem 1.3: [15] A (3,λ)-RGDD of type tm exists if and only if m ≥ 3, λt(m − 1) is even,

tm ≡ 0 (mod 3), and (λ, t,m) /∈ {(1,2,6), (1,6,3)} ∪ {(2j + 1,2,3), (4j + 2,1,6) ∶ j ≥ 0}.

8



Theorem 1.4: [16]-[26] The necessary conditions for the existence of a 4-RGDD of type

hu, namely, u ≥ 4, hu ≡ 0 (mod 4) and h(u − 1) ≡ 0 (mod 3), are also sufficient except for

(h,u) ∈ {(2,4), (2,10), (3,4), (6,4)} and possibly except:

i) h ≡ 2,10 (mod 12) :

h = 2 and u ∈ {34,46,52,70,82,94,100,118,130,178,184,202,214,238,250,334};

h = 10 and u ∈ {4,34,52,94}; h ∈ [14,454]∪{478,502,514,526,614,626,686} and

u ∈ {10,70,82}.

ii) h ≡ 6 (mod 12) : h = 6 and u ∈ {6,68}; h = 18 and u ∈ {18,38,62}.

iii) h ≡ 9 (mod 12) : h = 9 and u = 44.

iv) h ≡ 0 (mod 12) : h = 36 and u ∈ {11,14,15,18,23}.

In [26], Wei H. and Ge G. solved the 4-RGDD of types 2184,944,1410,1818,2210 and

3611.

● Kirkman Triple Systems

First known cycle decompositions are triple systems. We will make use of them in

the proof main theorem. Wesley S. B. Woolhouse was the first person who defined the

Steiner Triple Systems (STS(v) in short for a Steiner Triple System on v points). Existence

problem of STS(v) was posed by W. S. B. Woolhouse in The Lady’s and Gentleman’s

Diary. Later in 1847, Rev. T. P. Kirkman solved this problem [27]. Before giving the

definition of a Kirman triple system, first we define the Steiner Triple Systems:

Definition 1.2: A STS(v) is an ordered pair (S,T), where S is a finite set of v points or

symbols, and T is a set of 3-element subsets of S called triples, such that each pair of

distinct elements of S occurs in precisely one triple of T.

The order of a STS is the cardinality of the set S. If the triples in T can be partitioned

into parallel classes, then STS is resolvable.

Definition 1.3: A resolvable Steiner triple system of order v is called a Kirman triple sys-

tem. It is denoted by KTS(v).

9



Kirkman Triple System with v = 15, that is KTS(15), is known as the solution for the

Kirkman’s schoolgirl problem:

There are 15 schoolgirls. Is it possible to take them for a walk each day of the 7 days

of a week, walking with 5 rows of 3 girls in each, in such a way that each pair of girls

walks together in the same row on exactly one day? In 1850, this problem was posed by

Rev. T. P. Kirkman and solved in 1851. Let the girls are numbered from 1 to 15. In Table

1, a solution of the problem is given.

Table 1: Resolution classes of a KTS(15).

Day 1 Day 2 Day 3 Day 4
{01, 02, 05} {02, 03, 06} {05, 06, 09} {08, 10, 01}
{15, 13, 06} {14, 01, 07} {02, 04, 10} {13, 14, 02}
{04, 03, 07} {04, 05, 08} {07, 08, 11} {03, 05, 11}
{12, 09, 08} {09, 10, 13} {12, 13, 01} {04, 06, 12}
{11, 10, 14} {11, 12, 15} {14, 15, 03} {07, 09, 15}

Day 5 Day 6 Day 7
{15, 01, 04} {01, 03, 09} {01, 06, 11}
{09, 11, 02} {15, 02, 08} {02, 07, 12}
{10, 12, 03} {11, 13, 04} {03, 08, 13}
{05, 07, 13} {12, 14, 05} {04, 09, 14}
{06, 08, 14} {06, 07, 10} {05, 10, 15}

It is proved that a STS(v) exists if and only if v ≡ 1 (mod 6) or v ≡ 3 (mod 6) [27].

The following theorem, which is a generalization of the Kirkman’s schoolgirl problem,

was published by Ray-Chaudhuri D. K. and Wilson R. M. in 1971.

Theorem 1.5: [28] A Kirkman triple system of order v exists if and only if v ≡ 3 (mod 6).

10



2. PRELIMINARY RESULTS

Most of the time in the proof of the main theorem depending on the graph we work

on, say G, we amalgamate vertices in groups of four or eight. Then, we ask for a 1-

factorization of the amalgamated graph, say H . If there exists a 1-factorization of H , then

each 1-factor of H corresponds to a K4,4 factor or a K8,8 factor in G when the vertices are

disentangled. In this section, we will show that K8,8 has a {Cr′

4 ,C
s′

8 }-factorization for each

0 ≤ r′, s′ ≤ 4 which verifies that G has also a {Cr
4 ,C

s
8}-factorization for each possible r

and s. However, K4,4 has {Cr′

4 ,C
s′

8 }-factorization only for r′ = 0, s′ = 2 and r′ = 2, s′ = 0.

Because, K4,4 has two 2-factors in total, this forces K4,4 to have a {Cr′

4 ,C
s′

8 }-factorization

where r′ and s′ are even. So, odd cases are open. On the other hand, we showed thatK4,4,4,4

has a {Cr′

4 ,C
s′

8 }-factorization for all 0 ≤ r′, s′ ≤ 6 and K8,8,8 has a {Cr′

4 ,C
s′

8 }-factorization

for all 0 ≤ r′, s′ ≤ 8. This lead us to consider resolvable group divisible designs. We again

amalgamate vertices in groups of four or eight. So, if there exists a 3-RGDD or a 4-RGDD

for the amalgamated graph H , then we can use the {Cr
4 ,C

s
8}-factorizations of K4,4,4,4 and

K8,8,8.

Now, we begin with the 1-factorable graphs. Among the 1-factorization of graphs,

one of the most important is complete graphs. In 1992, Wallis W. D. solved the following

theorem.

Theorem 2.1: [29] Kn has a 1-factorization for even n.

The following famous theorem was obtained by König in 1916.

Theorem 2.2: [30] Every regular bipartite graph has a 1-factorization.

The following theorem was obtained by Auerbach and Laskar in 1976.

Theorem 2.3: [31] Let s ≥ 2 and 2∣(s − 1)n. Then the complete s-partite graph K(n ∶ s)
can be decomposed into Hamilton cycles.

With the help of the theorems above, we can now prove the following:

Lemma 2.1: There exists a 1-factorization of the complete multipartite graph K(t ∶m) for

11



positive integers m ≥ 2 and t except t and m are both odd.

Proof 2.1: Let K(t ∶ m) be a complete multipartite graph where m ≥ 2 and t are positive

integers. There are two cases depending on the parity of t:

● Case 1:

Assume t is odd. If m is also odd, then total number of vertices is odd. So we can

not pair vertices of K(t ∶m) and there is no 1-factor. Hence, there is no 1-factorization. If

m is even, we amalgamate all t vertices in each part to represent each part by one vertex

and obtain a complete graph Km. Since m is even Km has a 1-factorization by Theorem

2.1. Each 1-factor of Km corresponds to a complete bipartite graph Kt,t when vertices are

disentangled. So we get a Kt,t factorization of K(t ∶m). Using Theorem 2.2, we obtain 1-

factorizations of Kt,t’s. This gives the 1-factorization of K(t ∶m).

● Case 2:

Assume t is even. So, (m−1)t is even for all m. Thus, by Theorem 2.3, K(t ∶m) can

be decomposed into Hamilton cycles. Since there are even number of vertices, tm, each

Hamilton cycle can be decomposed into 1-factors and we can get a 1-factorization out of

this Hamilton decomposition. This implies that K(t ∶m) has a 1-factorization.

Now we find a {Cr
4 ,C

s
8}-factorization of K4,4,4,4, K8,8 and K8,8,8 for all possible r, s

satisfying the necessary conditions to make use of them in the proof of the main theorem.

Lemma 2.2: There exists a {Cr
4 ,C

s
8}-factorization of K4,4,4,4 for each 0 ≤ r, s ≤ 6.

Proof 2.2: Let the four partite sets of K4,4,4,4 be U = {ui ∣ 0 ≤ i ≤ 3}, U ′ = {u′i ∣ 0 ≤ i ≤
3}, V = {vi ∣ 0 ≤ i ≤ 3}, and V ′ = {v′i ∣ 0 ≤ i ≤ 3} respectively. Since each 2-factor

attributes two degrees to a vertex, total number of factors equals to the degree of a vertex

over 2. Each vertex in K4,4,4,4 has degree 12. So there are six factors in the 2-factorization

of K4,4,4,4. That is r + s = 6. We will first analyse the cases where r and s are odd.

A {C3
4 ,C

3
8}-factorization of K4,4,4,4 is given by the following factors:

● {(u0, u′3, u1, u′2, u2, u′1, u3, u′0), (v0, v′3, v1, v′2, v2, v′1, v3, v′0)} is a C8-factor.

● {(u0, v′0, u3, v′1, u2, v′2, u1, v′3), (u′0, v0, u′3, v1, u′2, v2, u′1, v3)} is a C8-factor.
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● {(u0, v′2, u′1, v1, u2, v′0, u′3, v3), (u′0, v′3, u3, v0, u′2, v′1, u1, v2)} is a C8-factor.

● {(u0, v0, u′1, v′1), (u′0, v′0, u1, v1), (u2, v2, u′3, v′3), (u′2, v′2, u3, v3)} is a C4-factor.

● {(u0, u′1, v′0, v1), (u1, u′0, v′1, v0), (u2, u′3, v′2, v3), (u3, u′2, v′3, v2)} is a C4-factor.

● {(u0, u′2, v′0, v2), (u2, u′0, v′2, v0), (u1, u′1, v′3, v3), (u3, u′3, v′1, v1)} is a C4-factor.

These are shown in Figure 2.1.

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

Figure 2.1: A {C3
4 ,C

3
8}-factorization of K4,4,4,4.

A {C1
4 ,C

5
8}-factorization is given by the following factors:

● {(u0, v′0, u1, v0, u′1, v1, u′0, v′1), (u2, v′3, u3, v′2, u′3, v2, u′2, v3)} is a C8-factor.

● {(u0, u′3, u1, u′2, u2, u′1, u3, u′0), (v0, v′3, v1, v′2, v2, v′1, v3, v′0)} is a C8-factor.

● {(u0, u′1, u1, u′0, u2, u′3, u3, u′2), (v0, v′1, v1, v′0, v2, v′3, v3, v′2)} is a C8-factor.

● {(u0, v′2, u2, v′0, u3, v0, u′0, v′3), (u1, v′1, u′2, v1, u′3, v3, u′1, v2)} is a C8-factor.
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● {(u0, v0, u2, v2, u3, v3, u1, v1), (u′0, v′0, u′1, v′1, u′3, v′3, u′2, v′2)} is a C8-factor.

● {(u0, v2, u′0, v3), (v0, u′2, v′0, u′3), (u2, v1, u3, v′1), (u′1, v′2, u1, v′3)} is a C4-factor.

These are shown in Figure 2.2.

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C4-factor

Figure 2.2: A {C1
4 ,C

5
8}-factorization of K4,4,4,4.

A {C5
4 ,C

1
8}-factorization is given by the following factors:

● {(u0, u′0, u1, u′1), (u2, u′2, u3, u′3), (v0, v′0, v1, v′1), (v2, v′2, v3, v′3) } is a C4-factor.

● {(u0, u′2, u1, u′3), (u2, u′0, u3, u′1), (v0, v′2, v1, v′3), (v2, v′0, v3, v′1) } is a C4-factor.

● {(u0, v′0, u′3, v3), (u′0, v0, u3, v′3), (u1, v′1, u′2, v2), (u′1, v1, u2, v′2)} is a C4-factor.

● {(u0, v1, u3, v2), (u′1, v′0, u′2, v′3), (u′0, v′2, u1, v3), (u2, v0, u′3, v′1) } is a C4-factor.

● {(u0, v′1, u3, v′2), (v′0, u1, v′3, u2), (u′0, v1, u′3, v2), (v0, u′1, v3, u′2)} is a C4-factor.

● {(u0, v0, u1, v1, u′2, v′2, u′3, v′3), (u′0, v′0, u3, v3, u2, v2, u′1, v′1)} is a C8-factor.
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U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C8-factor

Figure 2.3: A {C5
4 ,C

1
8}-factorization of K4,4,4,4.

These are shown in Figure 2.3.

We can find the even cases easily via the following construction: By amalgamating

all the vertices in each part, we obtain the complete graphK4. By Theorem 2.1, there exists

a 1-factorization of K4. Each 1-factor in K4 turns into a K4,4 factor in K4,4,4,4 when we

disentagle the vertices. By [6], we know thatK4,4 has aC4-factorization and also has aC8-

factorization. For a {C2
4 ,C

4
8}-factorization of K4,4,4,4, we use a C4-factorization of K4,4

for one of the K4,4 factors and a C8-factorization of K4,4 for the other two K4,4 factors.

For a {C4
4 ,C

2
8}-factorization of K4,4,4,4, we use a C8-factorization of K4,4 for one of the

K4,4 factorsK4 and a C4-factorization for the other twoK4,4 factors. C4-factorization and

C8-factorization of K4,4,4,4 are already known by [6].

Lemma 2.3: There exists a {Cr
4 ,C

s
8}-factorization of K8,8 where 0 ≤ r, s ≤ 4.

Proof 2.3: Let the two parts of K8,8 be V ={vi ∣ 0 ≤ i ≤ 7} and V ′={v′i ∣ 0 ≤ i ≤ 7}. There

are four 2-factors of K8,8. That is r+ s = 4. Now, we will list all possible cases for r and s.
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A {C3
4 ,C

1
8}-factorization is given by the following factors:

● {(v0, v′2, v6, v′4), (v1, v′3, v7, v′5), (v2, v′0, v4, v′6), (v3, v′1, v5, v′7)} is a C4-factor.

● {(v0, v′1, v6, v′7), (v1, v′2, v5, v′6), (v2, v′3, v4, v′5), (v3, v′0, v7, v′4)} is a C4-factor.

● {(v0, v′5, v3, v′6), (v1, v′4, v2, v′7), (v4, v′2, v7, v′1), (v5, v′3, v6, v′0)} is a C4-factor.

● {(v0, v′0, v1, v′1, v2, v′2, v3, v′3), (v4, v′4, v5, v′5, v6, v′6, v7, v′7)} is a C8-factor.

These are shown in Figure 2.4.

a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

Figure 2.4: A {C3
4 ,C

1
8}-factorization of K8,8.

A {C1
4 ,C

3
8}-factorization is given by the following factors:

● {(v0, v′2, v6, v′4), (v1, v′3, v7, v′5), (v2, v′0, v4, v′6), (v3, v′1, v5, v′7)} is a C4-factor.

● {(v0, v′0, v1, v′1, v2, v′2, v3, v′3), (v4, v′4, v5, v′5, v6, v′6, v7, v′7)} is a C8-factor.

● {(v0, v′1, v6, v′7, v2, v′3, v4, v′5), (v1, v′2, v7, v′4, v3, v′0, v5, v′6)} is a C8-factor.

● {(v0, v′6, v3, v′5, v2, v′4, v1, v′7), (v4, v′1, v7, v′0, v6, v′4, v5, v′2)} is a C8-factor.

These are shown in Figure 2.5.

A {C2
4 ,C

2
8}-factorization is given by the following factors:
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a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

Figure 2.5: A {C1
4 ,C

3
8}-factorization of K8,8.

● {(v0, v′0, v1, v′1), (v2, v′2, v3, v′3), (v4, v′4, v5, v′5), (v6, v′6, v7, v′7)} is a C4-factor.

● {(v0, v′2, v1, v′3), (v2, v′0, v3, v′1), (v4, v′6, v5, v′7), (v6, v′4, v7, v′5)} is a C4-factor.

● {(v0, v′4, v1, v′5, v2, v′6, v3, v′7), (v4, v′0, v7, v′3, v6, v′2, v5, v′1)} is a C8-factor.

● {(v0, v′5, v3, v′4, v2, v′7, v1, v′6), (v4, v′2, v7, v′1, v6, v′0, v5, v′3)} is a C8-factor.

These are shown in Figure 2.6.

a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C4-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

a C8-factor

v0

v1

v2

v3

v4

v5

v6

v7

v′0

v′1

v′2

v′3

v′4

v′5

v′6

v′7

Figure 2.6: A {C2
4 ,C

2
8}-factorization of K8,8.
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{C0
4 ,C

4
8}-factorization and {C4

4 ,C
0
8}-factorization of K8,8 are already known by [6].

Lemma 2.4: There exists a {Cr
4 ,C

s
8}-factorization of K8,8,8 where 0 ≤ r, s ≤ 8.

Proof 2.4: For the even cases of r and s we amalgamate each group of 4 vertices in

each part of K8,8,8 and get K2,2,2. By Lemma 2.1, K2,2,2 has a 1-factorization; it can be

decomposed into four 1-factors. When we disentangle the vertices, each 1-factor of K2,2,2

turns into a K4,4. For each K4,4 factor we can use a C4-factorization or a C8-factorization

of K4,4. Now, we follow the same method as in Lemma 2.2. When r = 2 and s = 6, we use

a C4-factorization of K4,4 for one of the K4,4 factors and a C8-factorization of K4,4 for the

other three K4,4 factors. Similarly, we can solve the cases r = 4 and s = 4, r = 6 and s = 2,

r = 8 and s = 0, and r = 0 and s = 8. It only remains to discuss the odd cases.

Let U={ui ∣ 0 ≤ i ≤ 7}, U ′={u′i ∣ 0 ≤ i ≤ 7}, and U ′′={u′′i ∣ 0 ≤ i ≤ 7} be the three

parts of K8,8,8 respectively.

A {C3
4 ,C

5
8}-factorization is given by the following factors:

● {(u0, u′0, u1, u′1, u2, u′2, u3, u′3), (u4, u′′0 , u5, u′′1 , u6, u′′2 , u7, u′′3),

(u′4, u′′4 , u′5, u′′5 , u′6, u′′6 , u′7, u′′7)} is a C8-factor.

● {(u0, u′′1 , u1, u′′2 , u2, u′′3 , u3, u′′0), (u4, u′5, u5, u′6, u6, u′7, u7, u′4),

(u′0, u′′5 , u′1, u′′6 , u′2, u′′7 , u3, u′′4)} is a C8-factor.

● {(u0, u′′5 , u1, u′′6 , u2, u′′7 , u3, u′′4), (u4, u′1, u5, u′2, u6, u′3, u7, u′0),

(u′4, u′′1 , u′5, u′′2 , u′6, u′′3 , u′7, u′′0)} is a C8-factor.

● {(u0, u′4, u5, u′7, u3, u′6, u1, u′5),(u2, u′′4 , u6, u′′7 , u4, u′′6 , u3, u′′5),

(u′0, u′′0 , u7, u′′1 , u′1, u′′2 , u′2, u′′3)} is a C8-factor.

● {(u0, u′6, u7, u′5, u2, u′4, u1, u′7), (u3, u′′1 , u′2, u′′0 , u′3, u′′3 , u5, u′′2),

(u′0, u′′6 , u6, u′′5 , u4, u′′4 , u′1, u′′7)} is a C8-factor.

● {(u0, u′1, u7, u′2), (u1, u′′4 , u′6, u′′7), (u2, u′0, u5, u′3), (u3, u′′5 , u′4, u′′6),

(u4, u′′1 , u′7, u′′2), (u6, u′′3 , u′5, u′′0)} is a C4-factor.

● {(u0, u′′6 , u5, u′′7), (u1, u′′0 , u′1, u′′3), (u2, u′6, u4, u′7), (u3, u′4, u6, u′5),

(u7, u′′5 , u′2, u′′4), (u′0u′′1 , u′3, u′′2)} is a C4-factor.
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● {(u0, u′′2 , u′4, u′′3), (u1, u′2, u4, u′3), (u2, u′′0 , u′0, u′′1), (u3, u′0, u6, u′1),

(u5, u′′4 , u′7, u′′5), (u′5, u′′6 , u7, u′′7)} is a C4-factor.

These are shown in Figure 2.7.

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

Figure 2.7: A {C3
4 ,C

5
8}-factorization of K8,8,8.

A {C5
4 ,C

3
8}-factorization is given by the following factors:

● {(u0, u′′1 , u1, u′′2 , u2, u′′3 , u3, u′′0), (u4, u′5, u5, u′6, u6, u′7, u7, u′4),

(u′0, u′′5 , u′1, u′′6 , u′2, u′′7 , u3, u′′4)} is a C8-factor.

● {(u0, u′4, u5, u′7, u3, u′6, u1, u′5),(u2, u′′4 , u6, u′′7 , u4, u′′6 , u3, u′′5),

(u′0, u′′0 , u7, u′′1 , u′1, u′′2 , u′2, u′′3)} is a C8-factor.

● {(u0, u′6, u7, u′5, u2, u′4, u1, u′7), (u3, u′′1 , u′2, u′′0 , u′3, u′′3 , u5, u′′2),

(u′0, u′′6 , u6, u′′5 , u4, u′′4 , u′1, u′′7)} is a C8-factor.
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● {(u0, u′0, u7, u′3), (u1, u′′5 , u′6, u′′6), (u2, u′1, u5, u′2), (u3, u′′4 , u′4, u′′7),

(u4, u′′0 , u′7, u′′3), (u6, u′′1 , u′5, u′′2)} is a C4-factor.

● {(u0, u′′4 , u′5, u′′5), (u1, u′0, u4, u′1), (u2, u′′6 , u′7, u′′7), (u3, u′2, u6, u′3),

(u5, u′′0 , u′4, u′′1), (u7, u′′2 , u′6, u′′3)} is a C4-factor.

● {(u0, u′1, u7, u′2), (u1, u′′4 , u′6, u′′7), (u2, u′0, u5, u′3), (u3, u′′5 , u′4, u′′6),

(u4, u′′1 , u′7, u′′2), (u6, u′′3 , u′5, u′′0)} is a C4-factor.

● {(u0, u′′6 , u5, u′′7), (u1, u′′0 , u′1, u′′3), (u2, u′6, u4, u′7), (u3, u′4, u6, u′5),

(u7, u′′5 , u′2, u′′4), (u′0u′′1 , u′3, u′′2)} is a C4-factor.

● {(u0, u′′2 , u′4, u′′3), (u1, u′2, u4, u′3), (u2, u′′0 , u′0, u′′1), (u3, u′0, u6, u′1),

(u5, u′′4 , u′7, u′′5), (u′5, u′′6 , u7, u′′7)} is a C4-factor.

These are shown in Figure 2.8.

A {C1
4 ,C

7
8}-factorization is given by the following factors:

● {(u0, u′0, u1, u′1, u2, u′2, u3, u′3), (u4, u′′0 , u5, u′′1 , u6, u′′2 , u7, u′′3),

(u′4, u′′4 , u′5, u′′5 , u′6, u′′6 , u′7, u′′7)} is a C8-factor.

● {(u0, u′′1 , u1, u′′2 , u2, u′′3 , u3, u′′0), (u4, u′5, u5, u′6, u6, u′7, u7, u′4),

(u′0, u′′5 , u′1, u′′6 , u′2, u′′7 , u3, u′′4)} is a C8-factor.

● {(u0, u′′5 , u1, u′′6 , u2, u′′7 , u3, u′′4), (u4, u′1, u5, u′2, u6, u′3, u7, u′0),

(u′4, u′′1 , u′5, u′′2 , u′6, u′′3 , u′7, u′′0)} is a C8-factor.

● {(u0, u′4, u5, u′7, u3, u′6, u1, u′5),(u2, u′′4 , u6, u′′7 , u4, u′′6 , u3, u′′5),

(u′0, u′′0 , u7, u′′1 , u′1, u′′2 , u′2, u′′3)} is a C8-factor.

● {(u0, u′6, u7, u′5, u2, u′4, u1, u′7), (u3, u′′1 , u′2, u′′0 , u′3, u′′3 , u5, u′′2),

(u′0, u′′6 , u6, u′′5 , u4, u′′4 , u′1, u′′7)} is a C8-factor.

● {(u0, u′1, u6, u′0, u2, u′3, u4, u′2), (u1, u′′4 , u5, u′′5 , u3, u′′6 , u7, u′′7)

(u′4, u′′2 , u′7, u′′1 , u′6, u′′0 , u′5, u′′3)} is a C8-factor.
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U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

Figure 2.8: A {C5
4 ,C

3
8}-factorization of K8,8,8.

● {(u0, u′′2 , u4, u′′1 , u2, u′′0 , u6, u′′3), (u1, u′2, u7, u′1, u3, u′0, u5, u′3)

(u′4, u′′5 , u′7, u′′4 , u′6, u′′7 , u′5, u′′6)} is a C8-factor.

● {(u0, u′′6 , u5, u′′7), (u1, u′′0 , u′1, u′′3), (u2, u′6, u4, u′7), (u3, u′4, u6, u′5),

(u7, u′′5 , u′2, u′′4), (u′0, u′′1 , u′3, u′′2)} is a C4-factor.

These are shown in Figure 2.9.

A {C7
4 ,C

1
8}-factorization is given by the following factors:

● {(u0, u′0, u1, u′1, u2, u′2, u3, u′3), (u4, u′′0 , u5, u′′1 , u6, u′′2 , u7, u′′3),

(u′4, u′′4 , u′5, u′′5 , u′6, u′′6 , u′7, u′′7)} is a C8-factor.

● {(u0, u′′6 , u′5, u′′7), (u1, u′′2 , u′4, u′3), (u2, u′′4 , u′7, u′′5), (u3, u′0, u6, u′1),

(u5, u′′2 , u′4, u′′3), (u′7, u′′0 , u′6, u′′1)} is a C4-factor.

21



U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C4-factor

Figure 2.9: A {C1
4 ,C

7
8}-factorization of K8,8,8.

● {(u0, u′1, u5, u′5), (u1, u′′6 , u3, u′′7), (u2, u′0, u7, u′7), (u4, u′′2 , u′6, u′′4),

(u6, u′′0 , u′4, u′′5), (u′2, u′′1 , u′3, u′′3)} is a C4-factor.

● {(u0, u′2, u5, u′7), (u1, u′′4 , u3, u′′5), (u2, u′3, u7, u′5), (u4, u′′1 , u′4, u′′6),

(u6, u′′3 , u′6, u′′7), (u′0, u′′0 , u′1, u′′2)} is a C4-factor.

● {(u0, u′4, u2, u′6), (u1, u′′2 , u3, u′′3), (u4, u′0, u5, u′′7), (u6, u′2, u7, u′′4),

(u′1, u′′5 , u′3, u′′6), (u′5, u′′0 , u′7, u′′1)} is a C4-factor.

● {(u0, u′′0 , u′3, u′′2), (u1, u′4, u3, u′6), (u2, u′′1 , u′1, u′′3), (u4, u′5, u6, u′7),

(u5, u′′4 , u′2, u′′5), (u7, u′′6 , u′0, u′′7)} is a C4-factor.

● {(u0, u′′1 , u′0, u′′3), (u1, u′5, u3, u′7), (u2, u′′0 , u′2, u′′2), (u4, u′6, u7, u′′5),

(u5, u′4, u6, u′′6), (u′1, u′′4 , u′3, u′′7)} is a C4-factor.

● {(u0, u′′4 , u′0, u′′5), (u1, u′′0 , u3, u′′1), (u2, u′′6 , u′2, u′′7), (u4, u′1, u7, u′4),
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(u5, u′3, u6, u′6), (u′5, u′′2 , u′7, u′′3)} is a C4-factor.

These are shown in Figure 2.10.

U U ′ U ′′

a C8-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

U U ′ U ′′

a C4-factor

Figure 2.10: A {C7
4 ,C

1
8}-factorization of K8,8,8.

Lemma 2.5: There exists a {Cr
4 ,C

s
8}-factorization of K16,16 where 0 ≤ r, s ≤ 8.

Proof 2.5: Amalgamating vertices into groups of 8 in each part of K16,16, we obtain

the complete multipartite graph K2,2. K2,2 is 1-factorable. Each 1-factor in K2,2 turns

into a K8,8 factor in K16,16 when we disentagle the vertices. Then, we use a {Cr′

4 ,C
s′

8 }-

factorization of K8,8 for each K8,8 factor where 0 ≤ r′, s′ ≤ 4. Since there are two K8,8

factors, we have r = r1 + r2 and s = s1 + s2 for 0 ≤ ri, si ≤ 4, i = 1,2, so that a {Cr
4 ,C

s
8}-

factorization of K16,16 exists for 0 ≤ r, s ≤ 8.

We can genaralize this to a complete bipartite graph K16h,16h where h is a positive
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integer:

Corollary 2.1: There exists a {Cr
4 ,C

s
8}-factorization of K16h,16h where 0 ≤ r, s ≤ 8h and h

is a positive integer.

Proof 2.1: We amalgamate vertices into groups of 8 in each part of K16h,16h and obtain

the complete bipartite graph K2h,2h. K2h,2h is 1-factorable. Each 1-factor in K2h,2h turns

into a K8,8 factor in K16h,16h when we disentangle the vertices. Then, we use a {Cr′

4 ,C
s′

8 }-

factorization of K8,8 for each K8,8 factor where 0 ≤ r′, s′ ≤ 4. Since there are 2h K8,8

factors, we have r = r1 + r2 + . . . r2h and s = s1 + s2 + ⋅ ⋅ ⋅ + s2h for 0 ≤ ri, si ≤ 4, i = 1, . . .2h,

so that 0 ≤ r, s ≤ 8h as needed.

Lemma 2.6: There exists a {Cr
4 ,C

s
8}-factorization of K2,2,2,2 for each 0 ≤ r, s ≤ 3.

Proof 2.6: Let the four partite sets of K2,2,2,2 be U = {ui ∣ 0 ≤ i ≤ 1}, U ′ = {u′i ∣ 0 ≤ i ≤
1}, V = {vi ∣ 0 ≤ i ≤ 1}, and V ′ = {v′i ∣ 0 ≤ i ≤ 1} respectively. Each vertex in K2,2,2,2 has

degree 6. So there are three factors in the 2-factorization of K2,2,2,2. That is r + s = 3. We

already know the cases r = 0, s = 3 and r = 3, s = 0 by Liu [6]. We analyse the cases where

r and s are odd:

A {C1
4 ,C

2
8}-factorization of K2,2,2,2 is given by the following factors:

● {(u0, u′1, v′1, v0), (u1, u′0, v′0, v1)} is a C4-factor.

● {(u0, u′0, v0, v′0, u1, u′1, v1, v′1)} is a C8-factor.

● {u0, v′0, u′1, v0, u1, v′1, u′0, v1} is a C8-factor.

These are shown in Figure 2.11.

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C8-factor

U U ′ V V ′

a C8-factor

Figure 2.11: A {C1
4 ,C

2
8}-factorization of K2,2,2,2.
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A {C2
4 ,C

1
8}-factorization of K2,2,2,2 is given by the following factors:

● {(u0, u′1, v1, v′0), (u1, u′0, v0, v′1)} is a C4-factor.

● {(u0, v1, u′0, v′1), (u1, u′1, v0, v′0)} is a C4-factor.

● {u0, u′0, v′0, u′1, v′1, v1, u1, v0} is a C8-factor.

These are shown in Figure 2.12.

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C4-factor

U U ′ V V ′

a C8-factor

Figure 2.12: A {C2
4 ,C

1
8}-factorization of K2,2,2,2.
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3. MAIN RESULT

The following theorem gives us the necessary and sufficient conditions forK(4t ∶m)
to have a {Cr

4 ,C
s
8}-factorization with a few exceptions.

Theorem 3.1: The complete multipartite graph K(4t ∶m) for m ≥ 2, t ≥ 1 has a {Cr
4 ,C

s
8}-

factorization for any non-negative integers r, s with 0 ≤ r, s ≤ 2t(m − 1) if and only if it

satisfies the following conditions:

i) 8 ∣ 4tm,

ii) r + s = 2t(m − 1)

possibly except m ≡ 5 (mod 12) when t ≡ 2,10 (mod 12), and m ≡ 2 (mod 24) when

t ≡ 1,5 (mod 6).

Proof 3.1: (⇒) First assume that K(4t ∶ m) for m ≥ 2, t ≥ 1 has a {Cr
4 ,C

s
8}-factorization

for any non-negative integers r, s with 0 ≤ r, s ≤ 2t(m− 1). Now, Theorem 1.1 implies that

8 ∣ 4tm and r + s = 2t(m − 1).

(⇐) Conversely, let K(4t ∶ m) be a complete multipartite graph where t ≥ 1 and

m ≥ 2 are positive integers. Let r, s be non-negative integers satisfying r + s = 2t(m − 1)
with 0 ≤ r, s ≤ 2t(m − 1) and assume 8 ∣ 4tm. Therefore, at least one of t or m must be

even. We have two cases depending on the parity of t.

● Case 1: t is even:

There exists a positive integer k such that t = 2k. So, we can write K(4t ∶ m)
as G1 = K(8k ∶ m) and amalgamate the vertices in each part into groups of 8 and get

H1 = K(k ∶ m). If k is even, by Lemma 2.1, H1 has a 1-factorization. Each 1-factor in

H1 gives us a K8,8 factor in G1 when we disentangle the vertices. For each K8,8 factor, we

can use a {Cr′

4 ,C
s′

8 }-factorization of K8,8 for any 0 ≤ r′, s′ ≤ 4 by Lemma 2.3. Since there

are k(m − 1) K8,8 factors in G1, we have r = r1 + ⋅ ⋅ ⋅ + rk(m−1) and s = s1 + ⋅ ⋅ ⋅ + sk(m−1)

for 0 ≤ ri, si ≤ 4, i = 1, . . . , k(m − 1). So, r and s covers all the integers in the range

0 ≤ r, s ≤ 4k(m − 1) = 2t(m − 1) as required.

Now, assume k is odd (i.e: t ≡ 2 (mod 4)). If m is even, H1 has a 1-factorization as

before and the above construction still applies. So, assume m is odd. If m ≡ 3 (mod 6),

i.e. m = 6n + 3 for some positive integer n, we represent each part of G1 with one vertex
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in the amalgamation. Since amalgamated graph is also complete, we get a K6n+3. By

Theorem 1.5, there exists a KTS(6n + 3) on 6n + 3 points for K6n+3. So, each triple of

KTS(6n + 3) in K6n+3 corresponds to a K8k,8k,8k when the vertices are disentangled. We

amalgamate the vertices in each part of K8k,8k,8k into groups of 8 and obtain the graph

Kk,k,k. By Theorem 1.3, there is a 3-RGDD of type k3 since k is odd. Each triple in the

3-RGDD corresponds to a K8,8,8 in K8k,8k,8k when the vertices are disentangled. Then, we

use a {Cr′

4 ,C
s′

8 }-factorization ofK8,8,8 for 0 ≤ r′, s′ ≤ 8 by Lemma 2.4. Therefore, K8k,8k,8k

has a {Cr′

4 ,C
s′

8 }-factorization for 0 ≤ r′, s′ ≤ 8k. KTS(6n + 3) has 3n + 1 parallel classes

and each of them corresponds to 8k 2-factors via K8k,8k,8k’s. Hence, in total, there are

8k(3n + 1) 2-factors for m = 6n + 3 where r = r1 + ⋅ ⋅ ⋅ + r3n+1, and s = s1 + ⋅ ⋅ ⋅ + s3n+1 for

0 ≤ ri, si ≤ 8k, i = 1, . . . ,3n + 1 so that 0 ≤ r, s ≤ 8k(3n + 1) = 4t(3n + 1) = 2t(m − 1) as

required.

If m /≡ 3 (mod 6), (i.e: m ≡ 1,5 (mod 6)), we fix one part of G1, say P , and

represent it with a vertex p and then represent every two parts of G1/P with one vertex

in the amalgamation. We have m−1
2 pairs and vertex p so that the amalgamated graph

has m−1
2 + 1 = m+1

2 vertices. Since we have started with a complete multipartite graph,

amalgamated graph must also be complete. Hence, we get a Kz where z = m+1
2 . If z is

even (i.e. if m ≡ 3 (mod 4)), Kz has a 1-factorization by Theorem 2.1. Each 1-factor of

Kz corresponds to the union of one K8k,8k,8k and m−3
4 copies of K16k,16k when the vertices

are disentangled. By Corollary 2.1, K16k,16k has a {Cr′

4 ,C
s′

8 }-factorization for 0 ≤ r′, s′ ≤
8k. We know that K8k,8k,8k has a {Cr′

4 ,C
s′

8 }-factorization for 0 ≤ r′, s′ ≤ 8k. There are
m+1
2 − 1 = m−1

2 1-factos in Kz and for each 1-factor there are 8k 2-factors coming from

the union of K8k,8k,8k and K16k,16k. In total, there are 8k(m−1
2 ) = 4k(m − 1) factors in

G1 where r = r1 + ⋅ ⋅ ⋅ + rm−1
2

, and s = s1 + ⋅ ⋅ ⋅ + sm−1
2

for 0 ≤ ri, si ≤ 8k, i = 1, . . . , m−1
2

so that 0 ≤ r, s ≤ 4k(m − 1) = 2t(m − 1) as required. Hence there is also a {Cr
4 ,C

s
8}-

factorization of G1 when k is odd, m ≡ 1,5 (mod 6) and m ≡ 3 (mod 4) meaning that

m ≡ 7,11 (mod 12).

Note thatm ≡ 3,9 (mod 12) cases are covered by the KTS(6n+3). For the exceptions,

that is m ≡ 1,5 (mod 12) when t ≡ 2 (mod 4), we use {Cr
4 ,C

s
8}-factorization of K2,2,2,2

for 0 ≤ r, s ≤ 3: We amalgamate the vertices in each part of K(4t ∶ m) into groups of

two and get H2 = K(2t ∶ m). By Theorem 1.4, there is a 4-RGDD of type (2t)m when

m ≡ 1 (mod 12) and t ≡ 2 (mod 4). However, because of the necessary conditions in

Theorem 1.4, there is a 4-RGDD of type (2t)m when m ≡ 5 (mod 12) and t ≡ 2 (mod 4)
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only if t ≡ 0 (mod 3) additionally. Now, we have exceptions for m ≡ 5 (mod 12) when

t ≡ 1,2 (mod 3) and t ≡ 2 (mod 4) (i.e. t ≡ 2,10 (mod 12)) and also for t = 18, m = 23

(because of the exceptions in Theorem 1.4). Each block in H2 corresponds to a K2,2,2,2 in

K(4t ∶ m) when the vertices are disentangled. Then, we use a {Cr′

4 ,C
s′

8 }-factorization of

K2,2,2,2 for each block where 0 ≤ r′, s′ ≤ 3 by Lemma 2.6 and get the {Cr
4 ,C

s
8}-factorization

of K(4t ∶ m) for m ≡ 1 (mod 12) when t ≡ 2 (mod 4) and for m ≡ 5 (mod 12) when

t ≡ 6 (mod 12).

● Case 2: t is odd:

Since t is odd and 8 ∣ 4tm, m must be even. So, there exists a positive integer l such

that m = 2l. Since 4t vertices in each part of K(4t ∶ 2l) may not be divided into groups of

8, first we will combine every two parts and work on the graph G2 = K(8t ∶ l). After that,

we apply the same method as in Case 1. However, unlike Case 1, sinceG2 does not include

the edges between the amalgamated parts, later we need to work on the factorizations of

these bipartite graphs additionally.

If l is even, we amalgamate the vertices in each part of G2 into groups of 8 so that

we have H3 = K(t ∶ l). Since l is even, by Lemma 2.1, H3 has a 1-factorization. As

in Case 1, each 1-factor in H3 turns into a K8,8 factor in G2 when we disentangle the

vertices. Therefore, for each K8,8 factor, we can use a {Cr′

4 ,C
s′

8 }-factorization of K8,8

for 0 ≤ r′, s′ ≤ 4 which is given in Lemma 2.3. There are (l − 1)t K8,8 factors of G2

and each K8,8 factor there are four 2-factors. So, in total, there are 4(l − 1)t 2-factors in

G2. When we go back to K(4t ∶ m), the unused edges form l copies of K4t,4t. Since we

have considered every two parts as one. Now, we amalgamate each 4 vertices in K4t,4t

and get Kt,t. By Theorem 2.2, Kt,t has a 1-factorization. Each edge in a 1-factor of Kt,t

corresponds to a K4,4 in K4t,4t. And we know that K4,4 has a C4 and a C8-factorization

by [6]. So, we use a C4 or a C8-factorization for each of the K4,4 factors of K4t,4t. Hence,

there exists a {Cr′

4 ,C
s′

8 }-factorization of K4t,4t for r′ and s′ are even and 0 ≤ r′, s′ ≤ 2t.

Since K4t,4t has 2t 2-factors, there are 4(l − 1)t + 2t = 2t(m − 1) 2-factors in total in

K(4t ∶ m) where r = r1 + ⋅ ⋅ ⋅ + r(l−1)t + r′, and s = s1 + ⋅ ⋅ ⋅ + s(l−1)t + s′ for 0 ≤ ri, si ≤ 4,

i = 1, . . . , (l − 1)t and 0 ≤ r′, s′ ≤ 2t for even r′, s′ so that 0 ≤ r, s ≤ 2t(m − 1) as required.

When l is odd (i.e: m ≡ 2,6,10 (mod 12)), we can not use 1-factorization of H3

directly since l is odd. If l ≡ 3 (mod 6) where l = 6d + 3 for some positive integer d, we

represent each part of K(8t ∶ l) with one vertex in the amalgamation and get a K6d+3.

By Theorem 1.5 there exists a KTS(6d + 3) on 6d + 3 points for K6d+3. So, each triple of
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KTS(6d+3) inK6d+3 corresponds to aK8t,8t,8t when the vertices are disentangled as before.

We amalgamate the vertices in each part of K8t,8t,8t into groups of 8 and obtain the graph

Kt,t,t. By Theorem 1.3, there is a 3-RGDD of type t3. Each block corresponds to a K8,8,8

in K8t,8t,8t when the vertices are disentangled. Then, we use a {Cr′

4 ,C
s′

8 }-factorization of

K8,8,8 for 0 ≤ r′, s′ ≤ 8 by Lemma 2.4. Therefore, K8t,8t,8t has a {Cr′

4 ,C
s′

8 }-factorization

for 0 ≤ r′, s′ ≤ 8t. There are 3d + 1 2-factors (parallel classes) and each of them has 8t

2-factors. In addition, there are 2t 2-factors from the {Cr′

4 ,C
s′

8 }-factorization of K4t,4t for

some even r′ and s′. Therefore, in total, there are 8t(3d + 1) + 2t = 2t(12d + 5) 2-factors

where r = r1 + ⋅ ⋅ ⋅ + r3d+1 + r′, and s = s1 + ⋅ ⋅ ⋅ + s3d+1 + s′ for 0 ≤ ri, si ≤ 8t, i = 1, . . . ,3d+ 1
and 0 ≤ r′, s′ ≤ 2t so that 0 ≤ r, s ≤ 2t(m − 1) as required. Otherwise, m ≡ 2,10 (mod 12)
since m = 2l and l is odd. Since G2 has odd number of parts, we fix one part, say P , and

represent every two parts of G2/P with one vertex in the amalgamation. Also we represent

P with one vertex, say p. In the amalgamation, applying this to G2, we get a Kq where

q = m+2
4 . If q is even, by Theorem 2.1 there is a 1-factorization of Kq. So, we have an

exception for the cases where q is odd here, that is, m ≡ 2,10 (mod 24). Since m is also

2,10 (mod 12). In each 1-factor of Kq, p is adjacent to a vertex in G2/P . Thus, in each

1-factor of Kq, edges between P and a vertex which is adjacent to P form one copy of

K8t,8t,8t when the vertices are disentangled. The remaining edges of 1-factor of Kq form

(m − 6)/8 copies of K16t,16t. By Corollary 2.1, K16t,16t has {Cr′

4 ,C
s′

8 }-factorization for

0 ≤ r′, s′ ≤ 8t. We know that there is a {Cr′

4 ,C
s′

8 }-factorization ofK8t,8t,8t for 0 ≤ r′, s′ ≤ 8t.

For each 1-factor of Kq we obtain 8t 2-factors from the union of K8t,8t,8t and K16t,16t’s.

There are q − 1 = m−2
4 1-factors in Kq so, this makes 8tm−2

4 = 2t(m − 2) 2-factors. In

addition, there are 2t 2-factors from the {Cr′

4 ,C
s′

8 }-factorization of K4t,4t for r′ and s′ are

even and 0 ≤ r′, s′ ≤ 2t. Because, we have considered every two parts of K(4t ∶m) as one

and edges between each of these pairwise parts constitue a graph K4t,4t. All of this makes

2t(m−2)+2t = 2t(m−1) 2-factors where r = r1 + ⋅ ⋅ ⋅ + rq−1 + r′, and s = s1 + ⋅ ⋅ ⋅ + sq−1 + s′

for 0 ≤ ri, si ≤ 8t, i = 1, . . . , q − 1 and 0 ≤ r′, s′ ≤ 2t so that 0 ≤ r, s ≤ 8t(q − 1) = 2t(m − 1)
as required. Although K4t,4t has a {Cr

4 ,C
s
8}-factorization for only even r and s, we can

cover all the odd cases in G; we take even number of 2-factors from the 2-factorization of

bipartite graphs, (i.e. K4t,4t) and odd number of 2-factors from the 2-factorization of the

remaining 2-factors.

For the exceptions, that is m ≡ 2,10 (mod 24) when t is odd, we proceed as in

Case 1: We amalgamate the vertices in each part of K(4t ∶m) into groups of two and get
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H4 =K(2t ∶m). By Theorem 1.4, there is a 4-RGDD of type (2t)m whenm ≡ 10 (mod 24)
for all odd t. But, there are some exceptions of type (2t)m for odd t given in Theorem 1.4:

For t = 1 and m ∈ {10,34,82,130,178,202,250,346)}, (2t,m) ∈ (10,34) and t ∈
[7,227]∪{251,257,263,307,313,343} andm ∈ {10,82}. In [26], (2t)m of types 1410 and

2210 are obtained.

Also, because of the necessary conditions in Theorem 1.4, there is a 4-RGDD of type

(2t)m for m ≡ 2 (mod 24) only when t ≡ 3 (mod 6) except t ∈ [7,227] with t ≡ 3 (mod 6)
andm ∈ {10,82}. Therefore, we have exceptions form ≡ 2 (mod 24) when t ≡ 1,5 (mod 6)
now.
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