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SUMMARY

A k-regular graph is a graph in which all the degrees are k. A spanning 2-regular
subgraph of G is called a 2-factor in G. A 2-factorization of GG is a decomposition of all
the edges of GG into edge-disjoint 2-factors. An equipartite graph is a graph whose vertex
set can be partitioned into subsets of the same size such that no two vertices from the same
subset are connected by an edge. The complete equipartite graph with u subsets of size m
is denoted by K (m : u) and it contains every edge between vertices of different subsets. In
this thesis we will find a 2-factorization of complete equipartite graph K (m : u) with four

and eight cycles. In fact, this is a Hamilton-Waterloo problem for K (m : u).

Key Words: Complete multipartite graphs, Resolvable cycle decomposition,

Hamilton-Waterloo problem, Oberwolfach problem.



OZET

K -diizenli bir ¢izge biitiin derecelerin k oldugu bir ¢izgedir. 2-faktor ise G ¢izgesinin
2-diizenli kapsayici bir altgizgesidir. G’nin bir 2-faktorizasyonu, G’nin biitiin kenarlarinin
2- faktorlere parcalanisidir. Es pargali bir ¢izge, kose seti ayni kiimedeki herhangi iki kose
bir kenar ile bagh olmayacak sekilde esit biiyiikliikte parcalara ayrilabilen bir cizgedir.
u tane m elemanl pargaya sahip tam es parcal ¢izge K (m : u) ile gosterilir ve farkli
pargalardaki noktalarin arasindaki biitiin kenarlari icerir. Bu tezde tam es pargali K (m : u)
cizgesinin 4 ve 8 dongiileriyle 2-faktdrizasyonunu incelenecektir. Aslinda bu K (m : u)

icin bir Hamilton-Waterloo problemidir.

Anahtar Kelimeler: Cok parcal tam graflar, Yeniden c¢oziilebilir dongii

parcalamisi, Hamilton-Waterloo problemi, Oberwolfach problemi.
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1. INTRODUCTION

We start this section with some introductory basics for graph theory. The following
two subsections are about two well-known problems in graph theory. Then in the last two
subsections, we give some definitions from design theory which will be used in the proof
of the main theorem.

A graph G is an ordered pair G = (V(G), E(G)) where V(G) is called the vertex
(node) set, E(G) is called the edge set and each edge is associated with two vertices (not
necessarily different) which are called as the endpoints of this edge. A loop is an edge
whose endpoints are the same. Multiple edges are edges having the same pair of endpoints.
A simple graph is a graph which has no loops or multiple edges. For convenience, we use
(V, E) instead of (V(G), E(G)) if it is not obligatory to indicate the graph. G’ = (V', E")
is called a subgraph of a graph G = (V, E) if V' ¢ V and E’ ¢ E. According to Wilson’s
definition [1], a walk is a ”way of getting from one vertex to another”, and consists of a
sequence of edges, one following after another. A u, v-path is a walk between the vertices
u and v in which no vertex appears more than once. A graph G is connected if for every
pair of vertices u,v of G, there is a u,v-path in G. If u and v are the endpoints of an
edge, then we say wu is adjacent to v and vice versa. The number of edges adjacent to a
vertex v in a graph G is called the degree of v and it is denoted by d(v) or d(v) in short.
Two subgraphs are said to be edge disjoint if they have no edges in common. Likewise,
two subgraphs are vertex disjoint if they have no vertices in common. The union of two
graphs (G; and G, with disjoint vertex sets V' (G1), V(G>) and edge sets E(G1), E(G»)
respectively, is the graph G with V(G) = V(G1) uV(G,) and E(G) = E(G1) u E(G3).

A k-regular graph is a graph in which each vertex has degree k. A spanning (i.e.
including each vertex of a graph) k-regular subgraph of G is called a k-factor in G. Let G be
a graph and H be a subgraph of G. If all edges of GG can be decomposed into edge disjoint
copies of H, then this decomposition is called an H-decomposition of G. If all edges of G
can be decomposed into edge disjoint copies of k-factors, then this decomposition is called
a k-factorization and G is called k-factorable. A parallel class (or resolution class) of a
decomposition of G is a subset of vertex disjoint graphs whose union partitions the vertex

set of GG.

Example 1.1: Let G be the graph shown in Figure 1.1 with the following vertex set: V(G =



{/007/017/027 U3, U4, U5}.

(%1 V2

Vo U3

Us V4

Figure 1.1: Representation of a graph G.

Then G has the following 1-factors Fy, F5 and F; as given in Figure 1.2.

v1 (5 U1 U2
Vo / \ V3 g \ / V3 Vo Vs
U5 V4 Us V4
A 1-factor F} A 1-factor F5 A 1-factor Fj

Figure 1.2: A 1-factorization of G.

We see that F, F, and F3 are edge disjoint. Furthermore, Iy U F5 U F3 = G. Hence,
G is I-factorable.

Example 1.2: Let D be the graph shown in Figure 1.3 with the following vertex set: V(D) =

{vo, v1,v2, v3, U4}

U1

Vo (%)

(7 Vs

Figure 1.3: Representation of a graph D.



Then D has the following 2-factors Sy and Ss, as given in Figure 1.4.

U1 U1

Vo (% Vo V2

V4 V3 (W) U3

A 2-factor: S A 2-factor: S,

Figure 1.4: A 2-factorization of D.

We see that Sy and Sy are edge disjoint. Furthermore, S1 U Sy = D. Hence, D is
2-factorable.

A cycle is a connected graph which is 2-regular. A cycle with n vertices is denoted
by C,,. A spanning cycle is called an Hamilton cycle. Clearly, a 2-factor consists of vertex
disjoint union of cycles. Cycle decomposition of a graph G is an H-decomposition in which
all H’s are cycles. A resolvable cycle decomposition is a cycle decomposition which forms
a 2-factorization, in other words, it is a cycle decomposition which can be partitioned into
parallel classes.

A complete graph is a simple graph whose vertices are pairwise adjacent. The com-
plete graph with n vertices is denoted by K,,. A bipartite graph is a graph whose vertices
can be divided into two disjoint sets A and B such that every edge connects a vertex in A
to one in B. A complete bipartite graph is a simple bipartite graph in which each vertex
in A is joined to each vertex in B. We denote the complete bipartite graph with |A| = m
and |B| = n by K,, . A k-partite graph (multipartite graph) is a graph whose vertices can
be partitioned into k disjoint sets such that every edge connects a vertex in a set to one in
another set. An equipartite graph is a multipartite graph in which all sets have the same
number of vertices. Complete multipartite graph is a multipartite graph such that each
vertex in any set is joined to each vertex in any other set. We will denote the complete

n-partite graph with m vertices in each part by K (m : n).



Example 1.3: A complete bipartite graph K;3 and a complete multipartite graph Ks 3 3
are given in Figure 1.5. Ks 3 has two disjoint vertex sets, one set is A with the vertices
{vo,v1,v2}, and the other set is B with the vertices {vs,vq,v5}. K333 has vertices which

are partitioned into three disjoint sets.

% Us (%)

X

SN

R

U1 V4 U1

Vo U3 Vo

A complete bipartite graph /3 3 A complete multipartite graph K35 3

Figure 1.5: A complete bipartite and a complete multipartite graph.

The following definitions are taken from the doctoral thesis of Ozkan [2]: An amal-
gamation H of a graph G is formed by a graph homomorphism [ : V(G) - V(H), where
each vertex v of H represents (v) = |f~1(v)]| vertices of G. n(v) is called the amalgama-
tion number of v, and f is called the amalgamation function of G.

Informally, an amalgamation of a graph G is a new graph H, obtained by partitioning
the vertices of GG and replacing each element p of this partition, say P, by a single vertex
in H, where edges incident with this single vertex are in one-to-one correspondence with
the edges incident with original vertices of G in P. If there is any multiple edges, we
ignore them and regard as one edge. Disentanglement of vertices is the reverse process of
amalgamation. That is, G is a disentanglement of H.

We do not use amalgamation number in this thesis. The aim of using amalgamations

is to reduce a graph a simpler graph in the proof of the main theorem.

Example 1.4: For example, if we amalgamate the vertices in each part of the complete

bipartite graph K, 4 into groups of two, we obtain the graph K, 5 as shown in Figure 1.6.

Among the decompositions of graphs, cycle decompositions have attracted most of
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Vo ’UO

U1 [
(%) Ué U u6
(R} ’Ué (75} u’l

A complete bipartite graph K4 4 Amalgamated graph K »

Figure 1.6: Amalgamation of vertices in Ky 4.

the attention. The two well-known resolvable cycle decomposition problems are the Ober-

wolfach problem and the Hamilton-Waterloo problem.

1.1. The Oberwolfach Problem

The Oberwolfach problem was first stated by Ringel in 1967 at a conference in Ober-

wolfach, Germany:

“Is it possible to seat an odd number v of people at s round tables Ty,T5, ..., T (where

each T; can accommodate t; > 3 people and Y;_t; = v) for ”51 different meals so that

each person has every other person for a neighbor exactly once?”

In graph theory language, this problem is equivalent to finding a 2-factorization for
K, in which each 2-factor consists of cycles of lengths ¢4, %o,...,ts. Here, v must be odd
so that each vertex has an even degree. Note that, 2-factorization of a graph G exists if
and only if G is even regular [3]. This is because each 2-factor attributes two degrees
to a vertex. In total, degree of a vertex equals two times the number of factors in a 2-
factorization. In the problem, the number of factors correspond to the number of nights
that the meal takes place : ”7’1 Even if we say v must be odd, this problem is also applied
to the cases where v is even by substracting a 1-factor from the given graph. This is called
the ”spouse-avoiding” version of the problem. In this case, the number of factors is %
The Oberwolfach Problem is completely solved for fixed table sizes in [4] and [5]. And
also, Liu [6] solved the Oberwolfach problem for the complete equipartite graphs with

uniform cycle lengths.



1.2. The Hamilton-Waterloo Problem

Another resolvable cycle decomposition problem is the Hamilton-Waterloo problem.
In the Oberwolfach problem we have a conference taking place in only one dining hall with
table sizes uniform or not. Now, in the Hamilton-Waterloo problem, people can use two
dining halls (one in Hamilton and the other in Waterloo) by choosing one of them in one
sitting. Again table sizes can be uniform or not. Obviously, total number of people (v)
is equal to the summation of table sizes at one night. Since there are two dining halls,
this sum is the same in both of the dining halls. For example, 48 people can be placed in
a dining hall which has 12 uniform tables with 4 seats and in another dining hall which
has 6 uniform tables with 8 seats. By using these two dining halls, we want to arrange
conference dinners such that each person sits next to another person exactly once. In terms
of graph theory, this is a Hamilton-Waterloo Problem applied to /K43 with cycle lengths 4

and 8. The number of factors is the same as in the Oberwolfach Problem. Therefore, we

48-2 _

5 23 cycle factors. Since the cycles have uniform lengths, we can name

have ”2;2 =
the 2-factors as Cy-factors and Cy-factors. In general, a 2-factorization of K, (or K, — I)
where r of the 2-factors are C,,-factors and s of the 2-factors are C),-factors corresponds
to the solution of the Hamilton-Waterloo problem with uniform cycle sizes. It is denoted
by (m,n)-HWP(v; 7, s).

In 2002, Adams et al. [7] solved the Hamilton-Waterloo problem for the cases
(m,n) €{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15), (5,15)} and settled the problem for
all v < 16. Danziger et al. [8] solved the problem for the case (m,n) = (3,4) with a few
exceptions. Horak et al [9], Dinitz and Ling [10, 11] worked on the case m = 3 and n = v,
that is, triangle factors and Hamilton cycles. Bryant et al. settled the Hamilton-Waterloo
problem for bipartite 2-factors [12].

In 2008, the case of 4-cycles and n-cycles for even n is solved by Fu and Huang [13]
and they also settled all cases where n = 2t and ¢ is even. Then, in 2013, Keranen and
Ozkan solved the case of 4-cycles and a single factor of n-cycles where n is odd [14].

Although the generalization of the Oberwolfach problem to the complete multipartite
graphs have been studied [6], there is no such generalization is known for the Hamilton-
Waterloo problem up to date. In this thesis, unlike in [6], we study the Hamilton-Waterloo
problem on a complete equipartite graph. Within the parts of a complete multipartite graph

there is no edge which makes the problem harder. We want to study C and Cg factors,



so we choose 4t for the number of vertices in each part and we work on K (4t : m). If
we worked on a complete graph Ky;,,, we would use the notation (4,8)-HWP(4tm;r, s)
for the problem. Therefore, we need different notation for K (4¢ : m) that we will use
(4,8)-HWP(4t : m;r, s) to denote a {C}, C§ }-factorization of K (4t : m) such that r of the
2-factors are cycle of length 4, s of the 2-factors are cycle of length 8 where r and s satisfy
0<r,s,<2t(m—-1)and 2t(m — 1) is the total number of factors. Since Liu [6] solved the
Oberwolfach problem for the complete equipartite graphs with uniform cycle lengths, we
have already the cases = 0, s = 2t(m —1) and s = 0, 7 = 2t(m - 1).

We have those obvious necessary conditions for the complete multipartite graph

K(n:m) to have a {C, C§ }-factorization:

Theorem 1.1: If K (n : m) has a {C}, C§ }-factorization for non-negative integers r, s, then

it satisfies:

i) 8| nm,

n(m—l).

i) r+s=—=5

n(m-1) .
5. dince

Proof 1.1: The number of cycle factors in K(n : m) is @ So, r+s =
a Cy-factor is a spanning subgraph, 4 divides the total number of vertices, that is nm. In

the same way, 8 | nm, which implies that 4 | nm, so we only need 8 | nm. [

K (4t : m) satisfies the conditions of Theorem 1.1 if at least one of ¢ or m is even.
Since, 8 | 4tm only when at least one of ¢ or m is even. Indeed, if one of n or m were
a multiple of 8 this problem would be easier. On the other hand, if one of n or m is a
multiple of 6, a {C{, C}, }-factorization can be studied. In general, whether there exists a
{C7, C5, }-factorization of K (n : m) or not for some positive integer d is a challenging
problem. It can be studied as a future work. In our main theorem, we show that the

necessary conditions are also sufficient for £ (4¢ : m) with a few exceptions.

Theorem 1.2: The complete multipartite graph K (4t : m) form > 2, t > 1 has a {C}, C§}-
factorization for any non-negative integers r,s with 0 < r, s < 2t(m — 1) if and only if it

satisfies the following conditions:



i) 8| 4tm,
ii) T+s=2t(m-1)

possibly except m = 5 (mod 12) when t = 2,10 (mod 12), and m = 2 (mod 24) when
t=1,5 (mod 6).

1.3. Resolvable Group Divisible Designs

In the proof of Theorem 1.2, we use some results from the design theory. Here, we

shortly define resolvable group divisible designs.

Definition 1.1: Let v >2 be a positive integer. A group divisible design (which is abbreviated
as GDD) GD[K, \, M,v] is a triple (X,4,B) where X is a set of points, 4 = {G1,Gs, ...}

is a partition of X and B is a class of subsets of X with the following properties:

i) |X|=v,
ii) Cardinality of each 9; is a member of M,
iii) Cardinality of each block is a member of K,
iv) Every pair from distinct groups is contained exactly in \ blocks,

v) No pair from the same group is contained in a block.

A GDD becomes a resolvable group divisible design if its blocks can be partitioned
into parallel classes.

Let k € K be a fixed scalar, if A = 1, we denote GD[ K, A\, M, v] for fixed M and v as
k-GDD of type m*, where m is the group size and u is the number of groups. We use only
the case where A = 1 so that there is no edge repetition. In this thesis, we need the cases
where A =1, k=3 and A = 1, k£ = 4. In the third section we use group divisible designs
which allow us to find out which triples or quadruples we should use for the right partition
of the graph.

We have the following known results for 3-RGDDs and 4-RGDDs:

Theorem 1.3: [15] A (3,A\)-RGDD of type t™ exists if and only if m > 3, \t(m — 1) is even,
tm =0 (mod 3), and (A, tm) ¢ {(1,2,6), (1,6,3)} U {(2 + 1,2,3), (4] +2,1,6) 5 j > 0}.

8



Theorem 1.4: [16]-[26] The necessary conditions for the existence of a 4-RGDD of type
h, namely, u > 4, hu =0 (mod 4) and h(u — 1) = 0 (mod 3), are also sufficient except for
(hyu) € {(2,4),(2,10),(3,4),(6,4)} and possibly except:

i) h=2,10 (mod 12) :
h =2 and u € {34,46,52,70,82,94,100, 118,130, 178, 184, 202, 214, 238, 250, 334},
h=10and u € {4,34,52,94); h e [14,454] U {478, 502, 514, 526, 614, 626, 686} and
u € {10,70,82).

ii) h=6 (mod12) : h=6and ue {6,68}; h =18 and u € {18,38,62}.
iii) h=9 (mod 12) : h=9 and u = 44.

iv) h=0 (mod 12) : h =36 and uw € {11,14,15,18,23}.

In [26], Wei H. and Ge G. solved the 4-RGDD of types 2184, 944 1410 1818 2210 and

36,

e Kirkman Triple Systems

First known cycle decompositions are triple systems. We will make use of them in
the proof main theorem. Wesley S. B. Woolhouse was the first person who defined the
Steiner Triple Systems (STS(v) in short for a Steiner Triple System on v points). Existence
problem of STS(v) was posed by W. S. B. Woolhouse in The Lady’s and Gentleman’s
Diary. Later in 1847, Rev. T. P. Kirkman solved this problem [27]. Before giving the

definition of a Kirman triple system, first we define the Steiner Triple Systems:

Definition 1.2: A STS(v) is an ordered pair (S,T), where S is a finite set of v points or
symbols, and T is a set of 3-element subsets of S called triples, such that each pair of

distinct elements of S occurs in precisely one triple of T.

The order of a STS is the cardinality of the set S. If the triples in I" can be partitioned

into parallel classes, then STS is resolvable.

Definition 1.3: A resolvable Steiner triple system of order v is called a Kirman triple sys-

tem. It is denoted by KTS(v).



Kirkman Triple System with v = 15, that is KTS(15), is known as the solution for the
Kirkman’s schoolgirl problem:

There are 15 schoolgirls. Is it possible to take them for a walk each day of the 7 days
of a week, walking with 5 rows of 3 girls in each, in such a way that each pair of girls
walks together in the same row on exactly one day? In 1850, this problem was posed by
Rev. T. P. Kirkman and solved in 1851. Let the girls are numbered from 1 to 15. In Table

1, a solution of the problem is given.

Table 1: Resolution classes of a KTS(15).

Day 1
{01, 02, 05}
{15, 13, 06}
{04, 03, 07}
{12, 09, 08}
{11, 10, 14}

Day 2
{02, 03, 06}
{14, 01, 07}
{04, 05, 08}
{09, 10, 13}
{11, 12, 15}

Day 3
{05, 06, 09}
{02, 04, 10}
{07, 08, 11}
{12, 13,01}
{14, 15, 03}

Day 4
{08, 10, 01}
{13, 14, 02}
{03, 05, 11}
{04, 06, 12}
{07, 09, 15}

Day 5
{15, 01, 04}
{09, 11, 02}
{10, 12, 03}
{05, 07, 13}
{06, 08, 14}

Day 6
{01, 03, 09}
{15, 02, 08}
{11, 13, 04}
{12, 14, 05}

Day 7
{01, 06, 11}
{02, 07, 12}
{03, 08, 13}
{04, 09, 14}

{06, 07, 10} | {05, 10, 15}

It is proved that a STS(v) exists if and only if v = 1 (mod 6) or v = 3 (mod 6) [27].
The following theorem, which is a generalization of the Kirkman’s schoolgirl problem,

was published by Ray-Chaudhuri D. K. and Wilson R. M. in 1971.

Theorem 1.5: [28] A Kirkman triple system of order v exists if and only if v = 3 (mod 6).

10




2. PRELIMINARY RESULTS

Most of the time in the proof of the main theorem depending on the graph we work
on, say (-, we amalgamate vertices in groups of four or eight. Then, we ask for a 1-
factorization of the amalgamated graph, say H. If there exists a 1-factorization of H, then
each 1-factor of H corresponds to a K, 4 factor or a Kgg factor in G when the vertices are
disentangled. In this section, we will show that K g has a {C}, C¢' }-factorization for each
0 <17, s" < 4 which verifies that G has also a {C], C§ }-factorization for each possible r
and s. However, K4 4 has {C] C’g’}—factorization only for " =0,s' =2and ' =2, s’ = 0.
Because, K4 4 has two 2-factors in total, this forces K, 4 to have a {C’j;', C’g"}—factorization
where r” and s’ are even. So, odd cases are open. On the other hand, we showed that Ky 4 4 4
has a {C}’, C§' }-factorization for all 0 < 7/, s’ < 6 and Kggg has a {C] , Cg }-factorization
for all 0 < 7', s’ < 8. This lead us to consider resolvable group divisible designs. We again
amalgamate vertices in groups of four or eight. So, if there exists a 3-RGDD or a 4-RGDD
for the amalgamated graph H, then we can use the {C}, C§ }-factorizations of Ky 444 and
Ksgs.

Now, we begin with the 1-factorable graphs. Among the 1-factorization of graphs,
one of the most important is complete graphs. In 1992, Wallis W. D. solved the following

theorem.
Theorem 2.1: [29] K, has a I-factorization for even n.

The following famous theorem was obtained by Konig in 1916.
Theorem 2.2: [30] Every regular bipartite graph has a 1-factorization.

The following theorem was obtained by Auerbach and Laskar in 1976.

Theorem 2.3: [31] Let s > 2 and 2|(s — 1)n. Then the complete s-partite graph K(n : s)

can be decomposed into Hamilton cycles.
With the help of the theorems above, we can now prove the following:

Lemma 2.1: There exists a I-factorization of the complete multipartite graph K (t : m) for
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positive integers m > 2 and t except t and m are both odd.

Proof 2.1: Let K(t : m) be a complete multipartite graph where m > 2 and t are positive

integers. There are two cases depending on the parity of t:

® Case I:

Assume t is odd. If m is also odd, then total number of vertices is odd. So we can
not pair vertices of K (t : m) and there is no 1-factor. Hence, there is no 1-factorization. If
m is even, we amalgamate all t vertices in each part to represent each part by one vertex
and obtain a complete graph K,,. Since m is even K,, has a I-factorization by Theorem
2.1. Each I-factor of K,,, corresponds to a complete bipartite graph K, when vertices are
disentangled. So we get a K, factorization of K (t : m). Using Theorem 2.2, we obtain -

factorizations of Ky ,’s. This gives the 1-factorization of K (t : m).

® Case 2:

Assume t is even. So, (m—1)t is even for all m. Thus, by Theorem 2.3, K (t : m) can
be decomposed into Hamilton cycles. Since there are even number of vertices, tm, each
Hamilton cycle can be decomposed into 1-factors and we can get a 1-factorization out of

this Hamilton decomposition. This implies that K (t : m) has a 1-factorization. [

Now we find a {C7, C§ }-factorization of K, 444, K3 and Ky g s for all possible r, s

satisfying the necessary conditions to make use of them in the proof of the main theorem.

Lemma 2.2: There exists a {C}, C§ }-factorization of Ky 444 for each 0 <1, s <6.

Proof 2.2: Let the four partite sets of Kys44be U ={u; |0<i <3}, U ={u,|0<i<
3, V=Av; | 0<i <3}, and V' = {v] | 0 < i < 3} respectively. Since each 2-factor
attributes two degrees to a vertex, total number of factors equals to the degree of a vertex
over 2. Each vertex in K4 444 has degree 12. So there are six factors in the 2-factorization
of Kyaa4. That is v+ s = 6. We will first analyse the cases where r and s are odd.

A {C3, C3}-factorization of Ky 444 is given by the following factors:

/ / / / / / i / ;
i {(UOau37u17u27u2au17u37u0)’ (UO7U37U17U27027017037UO)} Isa C’S-factor.

/ !/ / / !/ ! / !/ o
i {(UOaUOau37vl7u27vgau1avg)a (uo,vo,ug,vl,u2,vz,u1,v3)} Isa Cg"faCtOK
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{(Uo,Ué,ull,Ul,UQ,’U(l),Ué,1}3), (UE),’U:,)),U3,’U0,ul2,vi,ul,’l}2)} is a Cg-detOK
{(UOaUOaulpvi)a (U/Oavéaulavl), (U27U27U§,>U§), (Uéﬂ)é,Ug,Ug)} isa C4'.faCt0n
{(UOaullvv(,bUl)’ (Ul,U(),Ui,Uo), (Ug,Ué,Ué,U;),), (Ug,U127Ué,U2)} isa C4'faCt0K

{(u07ul27v(l]7v2)’ (u27u671}é7ﬂ0)’ (u17ullvvé7v3)» (u37ué7vi7vl)} is a 04-‘]“(,16'1‘07’:

These are shown in Figure 2.1.

v v v vu u Vv viu u v v
a Cy-factor a Cyg-factor a Cyg-factor
%’ v v v o viu u v v
a Cy-factor a Cy-factor a Cy-factor

Figure 2.1: A {C3, C3}-factorization of Ky 44 4.

A {C}, C8}-factorization is given by the following factors:

{(u07v(,)7u171}07u,1>/017u67v1>7 (UQ,UéaU37U§,U§:U2>U§a03)} is a Cg-detOK
!/ !/ !/ !/ ! ! / / 4

{(Uo,U3,U1,U2,U2,U1,U3,UO), (UO7U37U17U27U27U17U37U0)} Isa CS"faCtOK
’ / 1 / ’ ’ I I :

{(anulvuhuOvu2au37u37u2), (UO7U1)U17U07U27U37U37UQ)} Isa CB-fClCIOK

!/ ! !/ !/ / !/ ! !/ ;
{(UOJU27u27U07u37U07u07U3)’ (Ul,U17U2,U1,u3,U3,U17U2)} Isa Og-detOl’:
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d {(Uo,vo,UQ,Ug,u;g,’Ug,Ul,1}1), (UE),’U(,),Ull,’Ui,u,B,Ué,Ué,’Ué)} isa Cg-fCZCI‘OK

o {(ug,va,uf,vs), (vo,ub, v, ul), (ug, vy, us, v)), (u],vh,u,v5)} is a Cy-factor.

These are shown in Figure 2.2.

I%’UU’VV’UU’V‘/’

a Cg-factor a Cg-factor a Cg-factor

v v v o vvuv v v viu u v VvV

a Cs-factor a Cg-factor a C-factor

Figure 2.2: A {C}, C3 }-factorization of K444 4.

A {C3, C}-factorization is given by the following factors:

{(u07u67u17u,1)7 (u27u§7u37u,3)5 (/U07U(,)7U17U1)9 (U27/U§7/U37U§) } isa C4‘faCt0n

{(UO,Ué,ul,Ué), (u2,U6,U3,U’1), (’Uo,Ué,Ul,Ué), (027?](,)7/037/01) } isa C’4-fact0r.

{(UOaU(/)aué7U3)a (u()aUOau?nUé), (U,l,’Ui,Ué,’Ug), (U’17U1,U2,Ué)} isa C4'.faCt0n

{(UOavlaU'?nUQ)’ (Ull,U(I),UIQ,Ué), (U,(,),Ué,uh?]?,), (U'Q)U[)auéavi) } isa C4'faCt0K

{(UO,Ui,Ug,Ué), (U(l)aUlaU:’),aUQ), (u67vl7ué7v2)’ (Uo,ull,Ug,Ué)} isa 04_]“(’1610”'

{(u07U07u17vl7uévvé7ugavé)9 (U67U6,U3,U3,U,2,1)2,U,1,Ui)} is a Cg-f‘(lct()l’l




v v vovieu o ouovov

S ok

a Cy-factor a Cy-factor a Cy-factor

v v v vuv v v viu u v VvV

a C-factor a Cy-factor a Cyg-factor

Figure 2.3: A {C}, C} }-factorization of Ky 44 4.

These are shown in Figure 2.3.

We can find the even cases easily via the following construction: By amalgamating
all the vertices in each part, we obtain the complete graph K,. By Theorem 2.1, there exists
a l-factorization of K,. Each I-factor in K4 turns into a Ky 4 factor in K4 444 when we
disentagle the vertices. By [6], we know that K4 4 has a Cy-factorization and also has a Cs-
factorization. For a {C%,Cg}-factorization of Ky .44, we use a Cy-factorization of Ky 4
for one of the K4 4 factors and a Cs-factorization of K44 for the other two K, 4 factors.
For a {C},C3}-factorization of Ky .44, we use a Cs-factorization of Ky 4 for one of the
K, 4 factors Ky and a Cy-factorization for the other two K, 4 factors. Cy-factorization and

Cs-factorization of K4 4 4.4 are already known by [6]. [ |

Lemma 2.3: There exists a {C}, C§ }-factorization of Ksg where 0 <1, s < 4.

Proof 2.3: Let the two parts of Kgg be V={v; | 0<i <7} and V'={v]| 0 <i < 7}. There

are four 2-factors of Kgg. That is v + s = 4. Now, we will list all possible cases for r and s.
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A {C3, Cl}-factorization is given by the following factors:

{(U07U57U67U4,1)’ (’Ul,'Ué,U'ﬁUé), (U27U(,)7U47Ué)’ (U3,U17U5,Ur,7)} isa C4’faCt0n
{(1}071}171}6?1};)’ (0170570571}&)’ (U2>Ué>U4>U§,)’ (Ug,Ué,’Uﬁ’Ué)} isa O4'faCt0r-
{(UO,U%,'U:;,'U(,S), (/Uh/UZ“’U27UI7), (U47U57U77U1)’ (U5,Ué,1}6,1}6)} isa 04_faCt0n

{(/007 U(’)a U1, 1}1, V2, ’Uéa ’Ug,’Ué), (U4a Uzlp Us, Uéa Vs, U(IS7U77U’,7)} isa CS-fClCIOK

These are shown in Figure 2.4.

Vo U(l) Vo U(’) Vo 1)6
(1 V] U1 V] Uy v]
Vg vy U2 v} (2} v
V3 Ué U3 Ué V3 Ué
v A / ) !
4 vy U4 (A 4 v}
(Y UE,') Us ’Ué Vs Ué
v [ ! v !
6 Vg U6 Vg 6 Vg
v I v ! v !
7 U7 7 'U7 7 U7
a Cy-factor a (y-factor a (y-factor a Cyg-factor

Figure 2.4: A {C%, C4 }-factorization of Ky g.

A {C}, C3}-factorization is given by the following factors:

{(vg, v}, v6,vY), (v1,v},v7,0%), (v2, 0], v4,05), (v3,0],05,05) } is a Cy-factor.
{(vo,vg, v1, 0], v2,v5,v3,03}), (v4, V], U5, VE, Vg, U, v7,V5) } is a Cs-factor.
{(vo, vy, v6, VY, Vo, V5, vy, VL), (V1,05 vz, V], V3,00, Vs, 4) } is a Cs-factor.
{(vo, v, v3, v, v2, v, v1, V%), (v4, V], V7, 0§, Ve, VY, Vs, 05) } is a Cs-factor.

These are shown in Figure 2.5.

A {C2,CZ}-factorization is given by the following factors:
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Vo U(l)

U1 vy
(%) Ué
V3 Ué
V4 Ufl
(% UL,{.)
Vg Ué
U7 U%
a Cy-factor

Vo U(l)
U1 vy
(%) Ué
(%] Ué
(W ’Ufl
(% UE")
Vg ’Ué
U7 U;
a Cg-factor

a Cg-factor

Vo

U1

%

U3

V4

Us

Vg

U7

a Cg-factor

Figure 2.5: A {C}, C3}-factorization of K.

{(U07U(l)71}177j1)’ (v27U§7U37U§), (U4>UQ,U57U§), (Uﬁavéw?,vé)} is a Cy-factor.

{(UO,U&,Ul,Ué), ('027,067,1]37@1)7 (1}4,1)%,'05,'0;), (UGJUZI,LJU77UEI3)} isa C4_faCt0n

{(U07 Uzlp U1, véa V2, U(,ja ’Ug,’Ué), (U47 U(,)a vr, Uéa Vs, ’Ué,’Ug),’Ui)} isa CS-fClCIOK

/ / !/ ! / !/ !/ ! o
{(U07 Uy, U3, Uy, V2, Uy, U17U6)’ (U47 Uy, U7, V1, Vg, U07U57U3)} Isa Og-faCtOK

These are shown in Figure 2.6.

Vg Uy

Vs U;—)

Vg Ué

U7 U;
a Cy-factor

Vo UO
U1 Ui
U2 (4
V3 Ué
Vg v
Us ’Ué
Vg Ué
(%4 ’U;
a C,-factor

a Cg-factor

Vo

U1

V2

U3

Uy

Us

Ve

U7

a Cy-factor

Figure 2.6: A {C?%, C2}-factorization of K.
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{CY, C§}-factorization and {C}, C }-factorization of Ky g are already known by [6]. m

Lemma 2.4: There exists a {C, C§ }-factorization of Ksgs where 0 <r,s <8.

Proof 2.4: For the even cases of r and s we amalgamate each group of 4 vertices in
each part of Kggg and get Ko 29. By Lemma 2.1, Ky 29 has a 1-factorization; it can be
decomposed into four 1-factors. When we disentangle the vertices, each I-factor of K 3 2
turns into a K4 4. For each K, 4 factor we can use a Cy-factorization or a Cs-factorization
of K44. Now, we follow the same method as in Lemma 2.2. When r = 2 and s = 6, we use
a Cy-factorization of K4 4 for one of the K, 4 factors and a Cg-factorization of Ky 4 for the
other three K4 4 factors. Similarly, we can solve the cases r =4 and s =4, r =6 and s = 2,
r=8and s =0, and r =0 and s = 8. It only remains to discuss the odd cases.

Let U={u; |0<i <7}, U'={u, |0<i <7}, and U"={u}' | 0 < i < 7} be the three
parts of Kgg g respectively.

A {C3, C8}-factorization is given by the following factors:

o {(ug,up, ur,ul, ug, uh, ug, ul), (wq, uf, us, uf, ug, uy, uz, uy),
(uly, ulf, ul, u ug, ug, ul, u)} is a Cs-factor.

o {(ug,ul,ur,ulf, ug, uf,us,uy), (wq, ul, us, ug, ug, ul, Uz, 1),
(up, ul ul, ug, uh, ulf us, ul)}ois a Cs-factor.

L {(Uo,ug,Ub“é’»“?au?,u&%’)’ (U4aU1>U5,UIQ,U6,U§>U7,U6),
(w), uf b, ul) ug, ul, ul, uy)}ois a Cs-factor.

o {(ug,uly, us,ul,ug, ug, ur, ul),(ug, uy, ug, ull, wg, ug, us, ul),
(up, uy, ur, uf ,uy, ul, uy, uf)} is a Cs-factor.

g {(u07ug7u77u:’)7u27uﬁbulvu,?)’ (ug,u’l’,u’Q,u(’)’,u’g,ug,u5,u’2’),
(up, ug , ug, ul ,uqg, wy, uf, u)} is a Cs-factor.

g {(u07u,17u77ué)’ (ul,uﬁl’,ug,u’;), (uQ,ué,u5,u’3), (u37ugvuzl7ug >
(wq, uf ub,ul)), (ug, uy, ub,uy)} is a Cy-factor.

g {(u07ué,7u57ul7,)’ (ul,ugvulhug)’ (U27Ué,u4,u,7), (u?nuZpuG?ug)’

(uz, ulf, uh, ulf), (uguy, uy,ul)} is a Cy-factor.
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b {(uojug?uﬁpug)’ (ul,uéau%ué)’ (u27u6,?u67u1,)a (u37u6>u6?u,1)’

(us, uy, ub,ull), (ul, uf,ur,ull)} is a Cy-factor.

These are shown in Figure 2.7.

a Cy-factor a Cy-factor a Cs-factor a Cy-factor

a Cy-factor a C-factor a C-factor a C-factor

Figure 2.7: A {C}, C3 }-factorization of Ky g.

A {C3, C3}-factorization is given by the following factors:

o {(ug,uf,uy,ulf, ug,uf, us,uf), (wg, ul, us, ug, ug, ub, ur, ul),
(up, ul, ul, ug, uh, uf us, ul)} is a Cs-factor.

L {(UOauipu57u/77u3au,67ulaug)’(u2au27u67u,7,7u47u,6,au37ug s
(up, uy, ur, uf ,uy, ul, uy, uf)} is a Cs-factor.

o {(ug,ug, uz, ul, ug, uly, uy, ul), (us, uf, ub, ul, ul, uf, us, ul),
(up, ug, ue, u, g, wf, vy, u)} is a Cs-factor.
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i {(u07u67u77ué)’ (ulaug>ué?ulﬁl)’ (u2,u’1,u5,u§), (u37u51,7u:1’u,7, )
(wq, uy, ub,ul), (ug, uf,ul,ul)} is a Cy-factor.

i {(uo,uﬁf,ug,ug’), (u17u6>u4vu,1)’ (Ug,ug,U,;,U{?’), (u3au,27u6>ué)’
(us, uy, wy,ul), (uz, uy, ug, ul)} is a Cy-factor.

i {(UOau/Du%u;)’ (ulaugauévu?)’ (u27u6’u57ué)’ (u37u15/7u217u,6, >
(wq, uf,ub,ul)), (ug, uy, ul,uy)} is a Cy-factor.

g {(u07ug’u5>ul7l)’ (ul,ugvullaug)’ (u27u,67u4’u/7)’ (U3,u2,u6,u’5),
(uz, u, ul, ulf), (uyuy, uy,ulf)} is a Cy-factor.

g {(u07u,2,7u217ug)’ (u17u127u47ué)’ (u27u6,7u67u,1,)’ (u37u67u67u,1)’
(us, ulf, ub, ull), (ub,uf, ur,ull)} is a Cy-factor.
These are shown in Figure 2.8.
A {C}, Cl}-factorization is given by the following factors:

o {(ug,up, ur,ul, ug, uh, ug, ul), (wq, uf, us, uf, ug, uy, uz, ufy),
(uly, wlf, ul, u ug, ug, ul, u)} is a Cs-factor.

o {(ug,uf,ur,ulf, us,uf, us,uf), (g, ul, us, ug, ug, ub, ur, ul),
(up, ulf, ul, ug, uh, uf us, ul)} is a Cs-factor.

o {(ug,uy,uy,ug,ug, ul, us,uy), (wg, ul, us, ub, ug, uh, wz, uy),
(uly, uf, ul, ul, ug, uy,ul, ul)} is a Cs-factor.

o {(ug,uly, us, ul, ug, ug, uy, ul),(ug, uy, ug, ull, wg, ug, us, ul),
(up, uy, ur, uff ,uy, ull, uy, uy)} is a Cs-factor.

o {(ug,ug, ur,ul, ug, uy, ur,ul), (us,uf, uh, uf, uy, v, us, ul),
(up, ug , ug, ul ,uqg, wy, uf, ul)} is a Cy-factor.

o {(ug,uy, ug, upy, g, wy, ug, uh), (ur,ulf, us, ul, us, ug , uz, uy)

VT N N N AN U
(u4’ Ug, Ug, Uy s Ug, UO,U5,U3)} Isa Cg—delOl”.
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a Cy-factor a Cy-factor a Cs-factor a (y-factor

a Cy-factor a C-factor a Cy-factor a C-factor

Figure 2.8: A {C}, C3 }-factorization of Ky g.
14 144 14 14 A l4 4 l4
g {(Uo, Ug , Uy, Uy, U2, Ug, Ug, Usg )’ (uh Ug, U7, Uy, U3, Uy, Us, U3)
l4 144 4 144 l4 14 4 144 .
(uly, ulf, ul, uwlf ug, w? ul, ug)} is a Cs-factor.

o {(u07ug7u57u,7,)’ (u17ug7u,17ug)’ (UQ,Ug,U4,U,7), (u?nuil?u&ug)’

(uz, ulf, uh, ulf), (uy,uy, uy,ul)} is a Cy-factor.

These are shown in Figure 2.9.

A {C7, Cl}-factorization is given by the following factors:

! ! ! ! 124 144 144 144
o {(ug,up,ur,ul,ug, ub, us, ul), (ug,uf, us, uf, ug, ul, uz, ul),
! 144 4 124 ! 144 4 124 M
(w), uy, ul, ul  ug, ug, ut, u)} is a Cy-factor.

o {(uo, ug, ug, ug), (ur,uy, uj, ug), (ug, uff, ug, ug), (us, up, ug, '),

(us, ul, uy,uf), (us, ul,ug,uy)} is a Cy-factor.
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a Cy-factor a Cy-factor a Cs-factor a Cy-factor

a Cy-factor a Cyg-factor a Cyg-factor a Cy-factor

Figure 2.9: A {C}, C{}-factorization of Kggg.
i {(Uo, u’l,U5,Ué), (u17ug7u37 U’7,), (u27 Ué, u7,u’7), (u47U§’7Ué7UZ)’
(ug, ug, uy, u), (ub,uy, uy,uf)} is a Cy-factor.

i {(u07ul27u57u,7)’ (uhugvu?nug)’ (u27ug7u77ug)’ (u47u,1,7u217ug ’

(ug, ufy, ug, ull), (uy,uy, ul,ul)} is a Cy-factor.

i {(uo’ugvu%ué)’ (u1>ug>u3au:,3,)’ (u4,u6,u5,u’7’), (uﬁvué>u7’u2)’

!/ " ! I ! 1 !/ " ;
(uh, ul g, ug), (ul, ul,ub,uy)} is a Cy-factor.

i {(UO’UJ(/)/’U%?U&/)’ (ubuipu?nué)’ (u27u/1/’u/1’ug)’ (u4’u/57u67u/7)’

(us, uy, ub,ull), (uz, ug,uy, ull)} is a Cy-factor.

L4 {(anulllauéaug)7 (u17ul57u37u,7)’ (u27u6,au,2au12,)’ (u4aué7u77ul5,),

(us, uly, ug, ug ), (uh, uy,ul,ull)} is a Cy-factor.

g {(u07u27u67ug)’ (ul?ug7u37u,1,)’ (u%ug?uévu,?,)’ (u4vu,17u77u:1)’
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(us, ul, ug, ug), (ul,ulf, us, uy)} is a Cy-factor.

These are shown in Figure 2.10. ]

a Cy-factor a Cy-factor a Cy-factor a Cy-factor

ur v

a Cy-factor a Cy-factor a C-factor a C,-factor

Figure 2.10: A {C7, C3}-factorization of Ky .

Lemma 2.5: There exists a {C, C§ }-factorization of K616 where 0 <1, s < 8.

Proof 2.5: Amalgamating vertices into groups of 8 in each part of Kis16, we obtain
the complete multipartite graph Ko 5. K is I-factorable. Each 1-factor in K,y turns
into a Kgg factor in K616 when we disentagle the vertices. Then, we use a {CZ;', Cg’}—
factorization of Kgg for each Kyg factor where 0 < 1',s" < 4. Since there are two Kgg
factors, we have r = ry + 1y and s = sy + so for 0 < r;, s, <4, 1 =1,2, so that a {C},C§}-

factorization of K¢ 16 exists for 0 <r, s <8. [

We can genaralize this to a complete bipartite graph K65, 16, Where h is a positive
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integer:

Corollary 2.1: There exists a {C}, C§ }-factorization of Kigp16,, where 0 <1, s < 8h and h

is a positive integer.

Proof 2.1: We amalgamate vertices into groups of 8 in each part of Kigp 165 and obtain
the complete bipartite graph Koy, op. Kop on is 1-factorable. Each I-factor in Koy, op, turns
into a Kgg factor in K¢, 161, when we disentangle the vertices. Then, we use a {CZ;', Cg"}—
factorization of Kgg for each Kgg factor where 0 < 1',s" < 4. Since there are 2h Kgg
factors, we have r =ri+ro+...1ropand s = S1+ Sg+ -+ Sop for 0 <y 8, <4,i=1,...2h,

so that 0 < r,s < 8h as needed. [

Lemma 2.6: There exists a {C, C§ }-factorization of Ks 295 for each 0 <1, s < 3.

Proof 2.6: Let the four partite sets of Ko909be U ={u; |0<i <1}, U ={u|0<i<
1Y, V={v; |0<i< 1}, and V' = {v]| 0 < i< I} respectively. Each vertex in Ks 399 has
degree 6. So there are three factors in the 2-factorization of Ko 229. Thatis v+ s = 3. We
already know the casesr =0, s=3andr =3, s =0 by Liu [6]. We analyse the cases where
r and s are odd:

A {C}, C2}-factorization of Ky .42 is given by the following factors:

o {(ugp,ul,vi,vo), (u1,uf,vy,v1)} is a Cy-factor.
o {(ug,up,vo, vy, ur,ul,vy,v))} is a Cs-factor.

l4 !/ ! ! ;
o {ug, vy, ul, v, ur,v],up, v1} is a Cs-factor.

These are shown in Figure 2.11.

U ViU U’ Vv VU 4
a C,-factor a Cg-factor a Cg-factor

Figure 2.11: A {C}, C2}-factorization of K52 2.
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A {C2,Cl}-factorization of Ky .92 is given by the following factors:

o {(ug,ul,vi,v)), (ur,uf,vo,vy)} is a Cy-factor.
o {(ug,vy,uf,vt), (ur,uy,vo,vy)} is a Cy-factor.

! ! ! ! :
o {up,up, v, uy, vy, v1,u1,v0} is a Cs-factor.

These are shown in Figure 2.12.

a C-factor a C-factor a Cyg-factor

Figure 2.12: A {C?%, C{ }-factorization of K559 5.
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3. MAIN RESULT

The following theorem gives us the necessary and sufficient conditions for K (4t : m)

to have a {C}, C§ }-factorization with a few exceptions.

Theorem 3.1: The complete multipartite graph K (4t : m) form > 2, t > 1 has a {C}, C§}-
factorization for any non-negative integers r,s with 0 < r, s < 2t(m — 1) if and only if it

satisfies the following conditions:
i) 81|4tm,
ii) r+s=2t(m-1)

possibly except m = 5 (mod 12) when t = 2,10 (mod 12), and m = 2 (mod 24) when
t=1,5 (mod6).

Proof 3.1: (=) First assume that K (4t : m) for m > 2, t > 1 has a {C}, C§ }-factorization
for any non-negative integers r, s with 0 < r, s < 2t(m —1). Now, Theorem 1.1 implies that
8 | 4tm and r + s = 2t(m - 1).

(<) Conversely, let K(4t : m) be a complete multipartite graph where t > 1 and
m > 2 are positive integers. Let r, s be non-negative integers satisfying r + s = 2t(m — 1)
with 0 < r,s < 2t(m — 1) and assume 8 | 4tm. Therefore, at least one of t or m must be

even. We have two cases depending on the parity of t.

® Case 1: tis even:

There exists a positive integer k such that t = 2k. So, we can write K (4t : m)
as G1 = K(8k : m) and amalgamate the vertices in each part into groups of 8 and get
Hy = K(k:m). If k is even, by Lemma 2.1, Hy has a I-factorization. Each 1-factor in
H gives us a Ks g factor in G when we disentangle the vertices. For each Kg g factor, we
can use a {C’Z', Cg’}—factorization of Kggforany 0 <1’ s" <4 by Lemma 2.3. Since there
are k(m — 1) Kgg factors in Gy, we have r = 11 + -+ + Tj(m_1) ANd 8 = S + - + Sp(m-1)
for 0 <rys; <4, i=1,...,k(m-1). So, r and s covers all the integers in the range
0<r,s<4k(m—-1)=2t(m - 1) as required.

Now, assume k is odd (i.e: t =2 (mod 4)). If m is even, Hy has a I-factorization as
before and the above construction still applies. So, assume m is odd. If m = 3 (mod 6),

i.e. m = 6n + 3 for some positive integer n, we represent each part of G with one vertex
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in the amalgamation. Since amalgamated graph is also complete, we get a Kg,.3. By
Theorem 1.5, there exists a KTS(6n + 3) on 6n + 3 points for Kg,.3. So, each triple of
KTS(6n + 3) in Ke,.3 corresponds to a Ky, gi, s, Wwhen the vertices are disentangled. We
amalgamate the vertices in each part of Kgy, s, s into groups of 8 and obtain the graph
Ky g k- By Theorem 1.3, there is a 3-RGDD of type k3 since k is odd. Each triple in the
3-RGDD corresponds to a Kggg in Ky, s, s Wwhen the vertices are disentangled. Then, we
use a {C} ,C§ }-factorization of Kgg g for 0 <1',s' < 8 by Lemma 2.4. Therefore, Kgy, gy s,
has a {C7',C§ Y-factorization for 0 < ', s" < 8k. KTS(6n + 3) has 3n + 1 parallel classes
and each of them corresponds to 8k 2-factors via Kgy, gk s1’s. Hence, in total, there are
8k(3n + 1) 2-factors for m = 6n + 3 where r =1 + -+ + 3,41, and s = 1 + -+ + Szp41 for
0<7,s<8ki=1,....3n+1sothat0<r,s <8k(3n+1)=4t(3n+1)=2t(m-1) as
required.

If m # 3 (mod 6), (i.,e: m = 1,5 (mod 6)), we fix one part of Gy, say P, and
represent it with a vertex p and then represent every two parts of G1\P with one vertex

in the amalgamation. We have mT_l pairs and vertex p so that the amalgamated graph

m-1

m=1 m+1
2

+1 =5

has vertices. Since we have started with a complete multipartite graph,

amalgamated graph must also be complete. Hence, we get a K, where z = ™ L Ifzis

even (i.e. if m =3 (mod 4)), K, has a I-factorization by Theorem 2.1. Each I-factor of
K, corresponds to the union of one Kgj, g, 31, and mT’B’ copies of Kigi 161 Wwhen the vertices
are disentangled. By Corollary 2.1, K161 has a {C’Z;', Cg’}—factorizationfor 0<r’,s'<

8k. We know that Kgj, si.sx has a {C} ,C§ }-factorization for 0 < 1, s' < 8k. There are

mT*l -1= mT_l I-factos in K, and for each I-factor there are 8k 2-factors coming from

the union of Kgy, sisi and Kig 16x. In total, there are 8/{:(’"7‘1) = 4k(m - 1) factors in
G where r = 1y o Tm, and s = 31+---+3m74f0r0 <71, 8 <8k 1= 1,...,mT_1
so that 0 < r,s < 4k(m - 1) = 2t(m — 1) as required. Hence there is also a {C},C§}-
factorization of G1 when k is odd, m = 1,5 (mod 6) and m = 3 (mod 4) meaning that
m =7,11 (mod 12).

Note that m = 3,9 (mod 12) cases are covered by the KTS(6n+3). For the exceptions,

that is m = 1,5 (mod 12) when t = 2 (mod 4), we use {C}, C§ }-factorization of K229

for 0 < r s < 3: We amalgamate the vertices in each part of K (4t : m) into groups of
two and get Hy = K (2t : m). By Theorem 1.4, there is a 4-RGDD of type (2t)™ when
m = 1 (mod 12) and t = 2 (mod 4). However, because of the necessary conditions in

Theorem 1.4, there is a 4-RGDD of type (2t)™ when m = 5 (mod 12) and t = 2 (mod 4)
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only if t = 0 (mod 3) additionally. Now, we have exceptions for m = 5 (mod 12) when
t=1,2 (mod 3) and t =2 (mod 4) (i.e. t =2,10 (mod 12)) and also for t = 18, m = 23
(because of the exceptions in Theorem 1.4). Each block in Hy corresponds to a K229 in
K (4t : m) when the vertices are disentangled. Then, we use a {C}', C$ }-factorization of
K5 599 for each block where 0 < r',s" < 3 by Lemma 2.6 and get the {C}, C§ }-factorization
of K(4t : m) for m = 1 (mod 12) when t = 2 (mod 4) and for m = 5 (mod 12) when
t =6 (mod 12).

® Case 2: tisodd:

Since t is odd and 8 | 4tm, m must be even. So, there exists a positive integer | such
that m = 2l. Since 4t vertices in each part of K (4t : 21) may not be divided into groups of
8, first we will combine every two parts and work on the graph Gy = K (8t : ). After that,
we apply the same method as in Case 1. However, unlike Case 1, since G5 does not include
the edges between the amalgamated parts, later we need to work on the factorizations of
these bipartite graphs additionally.

If | is even, we amalgamate the vertices in each part of Gy into groups of 8 so that
we have Hy = K(t : 1). Since l is even, by Lemma 2.1, H3 has a I-factorization. As
in Case 1, each I-factor in Hs turns into a Kgg factor in Gy when we disentangle the
vertices. Therefore, for each Kgg factor, we can use a {CZ', Cg"}-factorl’zation of Kgg
for 0 < 1 s" < 4 which is given in Lemma 2.3. There are (I — 1)t Kgg factors of G
and each Ks g factor there are four 2-factors. So, in total, there are 4(1 — 1)t 2-factors in
(5. When we go back to K (4t : m), the unused edges form | copies of Ky 4. Since we
have considered every two parts as one. Now, we amalgamate each 4 vertices in Ky 4
and get K. By Theorem 2.2, K., has a 1-factorization. Each edge in a I-factor of K,
corresponds to a K44 in Ky 1p. And we know that Ky 4 has a Cy and a Cs-factorization
by [6]. So, we use a Cy or a Cs-factorization for each of the K4 4 factors of K 4. Hence,
there exists a {C’Z', Cg'}-factorization of Ky a4 for " and s’ are even and 0 < r',s" < 2t.
Since Ky 44 has 2t 2-factors, there are 4(1 — 1)t + 2t = 2t(m - 1) 2-factors in total in
K (4t : m) where r = vy + -+ 1.1y + 7, and s = 51+ -+ + Sq_1y + 8’ for 0 < ry, 85 < 4,
i=1,...,(I-Dtand 0 <r' s" <2t for evenr',s" so that 0 < r,s < 2t(m — 1) as required.

When 1 is odd (i.e: m = 2,6,10 (mod 12)), we can not use 1-factorization of Hs
directly since l is odd. If | = 3 (mod 6) where | = 6d + 3 for some positive integer d, we
represent each part of K (8t : |) with one vertex in the amalgamation and get a Kgg,s.

By Theorem 1.5 there exists a KTS(6d + 3) on 6d + 3 points for Kgq,3. So, each triple of
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KTS(6d+3) in Kgq.3 corresponds to a Kg; s s when the vertices are disentangled as before.
We amalgamate the vertices in each part of Kg; s g into groups of 8 and obtain the graph
Ky 1. By Theorem 1.3, there is a 3-RGDD of type t3. Each block corresponds to a Kg g s
in Kg; g s+ when the vertices are disentangled. Then, we use a {C’Z,:’, Cg’}-factorization of
Kgsgs for 0 <1/, s' < 8 by Lemma 2.4. Therefore, Kg; 85 has a {C} ,C5 }-factorization
for 0 <1’ s" < 8t. There are 3d + 1 2-factors (parallel classes) and each of them has 8t
2-factors. In addition, there are 2t 2-factors from the {C’Z', C’g’}—factorization of Ky 44 for
some even 1’ and s'. Therefore, in total, there are 8t(3d + 1) + 2t = 2t(12d + 5) 2-factors
wherer =ry+--+73q,1 +7,and s =Sy +++-+S3g.1 + 8 for0<r;,;s; <8, i=1,...,3d+1
and 0 <1’ s" <2t so that 0 < r,s < 2t(m — 1) as required. Otherwise, m = 2,10 (mod 12)
since m = 2l and | is odd. Since Gy has odd number of parts, we fix one part, say P, and
represent every two parts of Go\ P with one vertex in the amalgamation. Also we represent
P with one vertex, say p. In the amalgamation, applying this to G, we get a K, where
q = mT+2_ If q is even, by Theorem 2.1 there is a I-factorization of K,. So, we have an
exception for the cases where q is odd here, that is, m = 2,10 (mod 24). Since m is also
2,10 (mod 12). In each I-factor of K, p is adjacent to a vertex in Go\P. Thus, in each
1-factor of K, edges between P and a vertex which is adjacent to P form one copy of
Kgy st.3t when the vertices are disentangled. The remaining edges of 1-factor of K, form
(m - 6)/8 copies of Kigr16:- By Corollary 2.1, Ky 16: has {CY Cg’}-factorization for
0<7r',s" < 8. Weknow that there is a {C} , C§ }-factorization of Kg; g; s+ for 0 <1’ s' < 8t.
For each 1-factor of K, we obtain 8t 2-factors from the union of Kg; gt g and Kt 16¢’S.
There are ¢ — 1 = mT’Q I-factors in K, so, this makes 8tmT’2 = 2t(m - 2) 2-factors. In
addition, there are 2t 2-factors from the {CZ;', Cg’}—factorization of Ky 4 for v’ and s' are
even and 0 < 1', s' < 2t. Because, we have considered every two parts of K (4t : m) as one
and edges between each of these pairwise parts constitue a graph K 4. All of this makes
2t(m—2) +2t = 2t(m—1) 2-factors where r =ry+---+7r,1+7', and s = sy +---+ 541 + §'
for0<r;, s, <8t i=1,...,q—land0<r' s" <2t sothat 0 <r,s<8t(q—1)=2t(m-1)
as required. Although Ky 4 has a {C}, C§ }-factorization for only even r and s, we can
cover all the odd cases in G; we take even number of 2-factors from the 2-factorization of
bipartite graphs, (i.e. Ky 1) and odd number of 2-factors from the 2-factorization of the
remaining 2-factors.

For the exceptions, that is m = 2,10 (mod 24) when t is odd, we proceed as in

Case 1: We amalgamate the vertices in each part of K (4t : m) into groups of two and get
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Hy = K(2t: m). By Theorem 1.4, there is a 4-RGDD of type (2t)™ when m = 10 (mod 24)
for all odd t. But, there are some exceptions of type (2t)™ for odd t given in Theorem 1.4:

Fort =1 and m € {10,34,82,130,178,202,250,346)}, (2t,m) € (10,34) and t €
[7,227]u{251,257,263,307,313,343} and m € {10,82}. In [26], (2t)™ of types 1410 and
2210 gre obtained.

Also, because of the necessary conditions in Theorem 1.4, there is a 4-RGDD of type
(26)™ for m = 2 (mod 24) only when t = 3 (mod 6) except t € [7,227] with t = 3 (mod 6)
and m € {10,82}. Therefore, we have exceptions for m = 2 (mod 24) whent = 1,5 (mod 6)

now. |
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