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SUMMARY

In this dissertation, the Wiener-Hopf technique has been widely used to analyse

the scattering of a TEM wave by a finite gap on the outer wall of a coaxial waveguide.

In the first section, it is assumed that inner and outer parts of the waveguide are free

space. As for that second geometry, it is investigated that inner part is dielectric-filled

while the outer part is free space. By applying the direct Fourier transform to

Helmholtz equation, each problem is reduced into the the solution of a modified

Wiener-Hopf equation of the first type which is solved via a set of Fredholm integral

equations of the second type. Also, with the purpose of point to difficulty of

non-conductivity, two different approaches are used for the factorization of the kernel

function. Then, numerical results are used to show the excellent agreement between

the Wiener-Hopf analysis and simple series representation. At the end of the analysis,

the effects of the radii of the walls, relative permittivity, frequency and the gap width

on the scattered fields are illustrated graphically.

Keywords: Wiener-Hopf method, Electromagnetic wave scattering, Circular

waveguide, Circumferential gap, Integral equations.
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ÖZET

Bu çalışmada, koaksiyel dalga kılavuzunun dış duvarındaki sonlu bir açıklığın

TEM dalgaların kırınımına etkisi, Wiener-Hopf metodu kullanılarak analiz edilmiştir.

İlk bölümde dalga kılavuzunun iç ve dış kısmının boş uzay olduğu durum ele

alınmıştır. İkinci bölümde ise içerideki ortamın dielektrik malzeme ile dolu olduğu,

dışarıdaki ortamın boş uzay olduğu geometri incelenmiştir. Her bir probleme ilişkin

Helmholtz denklemi doğrudan Fourier dönüşümü uygulanması ile birinci tip modifiye

Wiener-Hopf denklemlerine indirgenmiş ve bu denklemler ikinci tip Fredholm integral

denklemleri aracılığı ile çözülmüştür. Ayrıca, içerideki ortamın dielektrik malzeme

ile dolu olmasının ortaya çıkardığı zorluğa dikkat çekmek amacı ile çekirdek

fonksiyonunun faktorizasyonunda iki farklı yaklaşım kullanılmıştır. Daha sonra,

öncelikli olarak Wiener-Hopf metodu ve Simple Series metodu ile elde edilen sonuçlar

grafikler aracılığı ile karşılaştırmalı olarak gösterilmiştir. Buna ilaveten, içerideki

ve dışarıdaki silindirlerin yarıçaplarının, dış duvardaki sonlu boşluğun uzunluğunun,

frekans değerlerinin ve bağıl dielektrik sabitinin kırınım olayına etkisi incelenmiştir.

Anahtar Kelimeler: Wiener-Hopf metodu, Elektromagnetik dalgaların saçılımı ,

Dairesel dalga kılavuzu, Çevrel boşluk , İntegral denklemler.
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1. INTRODUCTION

The scattering of electromagnetic waves by gaps on the walls of the waveguides

has been an important topic in both theory and application, such as microwave

bandpass filters, measurement devices, and waveguide radiators. Regarding the need of

more accurate modeling of related engineering applications involving electromagnetic

wave scattering, the interest in analytical methods has recently increased. [Seran et al.,

2009],[Büyükaksoy et al., 2004], [Melkumyan, 2007], [Lee et al., 2011], [Sautbekov,

2011], [Moiola et al., 2011]. [Sheingold and Storer, 1954] analyzed a circular

waveguide with a gap on its wall in the case of TE wave incidence by using a variational

principle. They found good agreement with experiments for narrow gaps ( small gap

width compared to the wavelength ). Later, [Morita and Nakanishi, 1968] investigated

the same problem by means of fictitious equivalent magnetic current for the gap. They

compared the results with the analysis obtained by Bethe’s method and two results

agreed well for narrow gaps. [Chang, 1973] studied the coaxial waveguide with a

narrow gap in the case of TEM wave incidence, where he formulated an exact integral

equation for the aperture field and solved by a quasi-static technique. [Hurd, 1973] also

studied the same problem and determined the electric field in a narrow circumferential

gap in the outer wall of a coaxial waveguide. [Wait and Hill, 1975a], [Wait and Hill,

1975b] derived field expressions fore a dielectric coated coaxial cable with a narrow

gap in the shield in the case of TEM wave incidence.

The case where the gap on the wall of a waveguide is large compared to the

wavelength is studied by Elmoazzen and Shafai, first for parallel-plate waveguides

and TE wave incidence [Elmoazzen and Shafai, 1973], then for circular waveguides

and TM wave incidence [Elmoazzen and Shafai, 1974]. They applied direct Fourier

transform and reduced the problem into solving a modified Wiener-Hopf technique of

the first kind. The resulting Fredholm integral equation of the second type is solved for

large gap width compared to the wavelength. The first problem of TE wave propagation

in a parallel-plate waveguide with a slit is then studied by [Cho, 1987], where he

determined the fields for narrow slits. The second problem of TM wave propagation

in circular waveguides with gaps is then analyzed by [Park and Eom, 2003] for thick

walls and field expressions are determined by applying a new method based on Fourier
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transform and mode-matching techniques.

In this thesis, the TEM wave propagation in a two different coaxial waveguide

having a large gap on its outer wall is analysed. In Section 2, it is assumed that the

inner and outer parts of the waveguide are free space. In Section 3, as a continuation

of the previous section, focused on the case where the interior region of the waveguide

is filled with a dielectric material. For each problem, by applying direct Fourier

transform, a modified Wiener-Hopf equation of the first type is determined as in [Polat,

1999], [Tayyar et al., 2008], [Çınar and Büyükaksoy, 2004]. Particularly, when there

is a slit/strip type of finite-length scattering mechanisms or discontinuities on the

normal direction like steps, modified Wiener-Hopf equations occur. Slit/strips yield

a Wiener-Hopf equation in the form of

P− (α) + P+ (α) +G (α)P1 (α) = g (α) (1.1)

which involves an entire function unlike classical Wiener-Hopf equations. These are

called modified Wiener-Hopf equations of the first type. On the other hand, when there

is a step discontinuity, a term with a series appears in the Wiener-Hopf equation to be

in the form of

G (α)P− (α) + P+ (α) = g (α) +
∞∑
m=0

fm (α) (1.2)

and such equations are called modified Wiener-Hopf equations of the second type.

Finally, when there is both slit/strip and step discontinuity, the formulation yields

Wiener-Hopf equations involving both an entire function and a series term which

are called modified Wiener-Hopf equations of the third type. A more detailed study

on modified Wiener-Hopf equations can be found in [Kobayashi, 1993]. Then, the

modified Wiener-Hopf equation is reduced to a Fredholm integral equation of the

second type, which is solved in a similar fashion as in [Polat, 1999]. Finally, diffraction

coefficients related to the reflected, transmitted and radiated fields are determined

explicitly. Finally, numerical results are compared with the method described in [Park

and Eom, 2003] and the effects of the cross-sectional area of the coaxial cylindrical

waveguide and the gap width on the radiated field are presented.

2



With the analysis done in this thesis, the effect of the relative permittivity of

the material inside the waveguide on the method of formulation is clarified, and

interestingly, it is found out that when the waveguide is filled with a dielectric material,

the factorization method described in [Seran et al., 2009] lacks accuracy. In order to

overcome this difficulty, we followed the procedure described in [Mittra and Lee, 1971]

and derived new formal expressions for the split functions of the kernel in Appendix

C.

Throughout the analysis, a time dependence exp (−iwt) with w being the

angular frequency is assumed.

3



2. SCATTERING OF A TEM WAVE BY A LARGE
CIRCUMFERENTIAL GAP ON A COAXIAL
WAVEGUIDE

Consider a perfectly conducting coaxial cylindrical waveguide whose inner

and outer cylindrical walls are located at S = {ρ = a,−∞ < z < ∞)} and

S = {ρ = b, (−∞ < z < 0) ∪ (l < z <∞)}, respectively as shown in Figure 2.1.

Here, we proposed to study the TEM wave scattering from a large gap on the outer wall

rigorously by applying direct Fourier transform which yields a modified Wiener-Hopf

equation. Then this modified Wiener-Hopf equation reduced to a pair of simultaneous

Fredholm integral equation of the second kind which is solved method of successive

approximation. Finally, the diffraction coefficients related to the reflected, transmitted,

and radiated fields are determined explicitly. At the end of the analysis, numerical

results illustrating the effects of the cross-sectional area of the coaxial cylindrical

waveguide and the gap width on the fields are presented as compared with Simple

series method.

Let the incident TEM mode propagating in the positive z direction be given by

H i
φ(ρ, z) = ui(ρ, z) =

eik0z

ρ
(2.1)

where k0 is the propagation constant which is assumed to have a small imaginary part

corresponding to slightly lossy medium. The lossless case can then be obtained by

letting Im (k0) → 0 at the end of the analysis. In virtue of the axial symmetry of the

problem, all the field components may be expressed in terms of Hφ(ρ, z) = u(ρ, z) as

Eρ =
1

iwε0

∂

∂z
u(ρ, z), and Ez = −

1

iwε0

1

ρ

∂

∂ρ
[ρu(ρ, z)]. (2.2)

4



Figure 2.1: The geometry of the problem.

2.1. Formulation of the Problem

For the sake of analytical convenience, the total field uT (ρ, z) can be expressed

as

uT (ρ, z) =

{
ui (ρ, z) + u1 (ρ, z) ; a < ρ < b

u2 (r, z) ; ρ > b
(2.3)

where u1(ρ, z) and u2(ρ, z) are the scattered fields which satisfy the following

differential equation

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+

(
k20 −

1

ρ2

)]
uj(ρ, z) = 0 , j = 1, 2 (2.4)

in their domains of validity with the boundary conditions

u1(a, z) + a
∂

∂ρ
u1(a, z) = 0 , z ∈ (−∞,∞), (2.5)

u1(b, z) + b
∂

∂ρ
u1(b, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞), (2.6)

u2(b, z) + b
∂

∂ρ
u2(b, z) = 0 , z ∈ (−∞, 0) ∪ (l,∞), (2.7)

continuity relations

5



u1(b, z) + b
∂

∂ρ
u1(b, z) = u2(b, z) + b

∂

∂ρ
u2(b, z) = 0 , z ∈ (0, l), (2.8)

u1(b, z) +
eik0z

b
= u2(b, z) , z ∈ (0, l). (2.9)

Additionally, to ensure the uniqueness of the solution, one has to take into account the

radiation condition

∂u2
∂r
− ik0u2 = O(r−1/2), r =

√
ρ2 + z2 →∞, (2.10)

and the edge conditions

uT (b, z) = O(1) and
∂

∂ρ
uT (b, z) = O(z−

1
3 ), z → 0, l. (2.11)

The Fourier transform of the Helmholtz equation satisfied by u1(ρ, z) with respect to

z, in the range of z ∈ (−∞,∞) gives

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2

0(α)−
1

ρ2

)]
F (ρ, α) = 0. (2.12)

HereK0(α) =
√
k20 − α2 is the square-root function defined in the complex α−plane ,

cut along α = k0 to α = k0+i∞ and α = −k0 to α = −k0−i∞, such thatK0(0) = k0

as seen in Figure 2.2, and the Fourier transform is defined by

F (ρ, α) = F−(ρ, α) + F1(ρ, α) + eiαlF+(ρ, α), (2.13)

with

F−(ρ, α) =

0∫
−∞

u1(ρ, z)e
iαzdz, (2.14)

F1(ρ, α) =

l∫
0

u1(ρ, z)e
iαzdz, (2.15)

6



and

F+(ρ, α) =

∞∫
l

u1(ρ, z)e
iα(z−l)dz. (2.16)

Notice that F+(ρ, α) and F−(ρ, α) are unknown functions which are regular in the

Re α

Im α

−k0

L +

L−

L

k0

C1C2

Figure 2.2: Complex α− plane.

half-planes Im (α) > Im (−k0) and Im (α) < Im (k0) , respectively, while F1(ρ, α)

is an entire function of α. The general solution of equation (2.12) is determined as

F (ρ, α) = A(α)J1(K0ρ) +B(α)Y1(K0ρ), (2.17)

where A(α) and B(α) are unknown spectral coefficients to be found, and J1(K0ρ)

and Y1(K0ρ) are the usual Bessel functions of the first and second kinds, respectively.

Applying the Fourier transform of the boundary conditions, (2.5) and (2.6) yields

B(α) = −A(α)J0(K0a)

Y0(K0a)
, (2.18)

7



and

F1(b, α) + bF
′

1(b, α) = K0bA(α)J0(K0b) +K0bB(α)Y0(K0b), (2.19)

to give

A(α) =
Y0(K0a)

[
F1(b, α) + bF

′
1(b, α)

]
K0b [J0(K0b)Y0(K0a)− J0(K0a)Y0(K0b)]

. (2.20)

In (2.19), the prime denotes the first-degree derivetive with respect to ρ. On the

other hand, the Fourier transform of the Helmholtz Equation satisfied by u2(ρ, z) with

respect to z, in the range of z ∈ (−∞,∞) gives

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2

0(α)−
1

ρ2

)]
G(ρ, α) = 0, (2.21)

with

G(ρ, α) = G−(ρ, α) +G1(ρ, α) + eiαlG+(ρ, α), (2.22)

where G−(ρ, α), G1(ρ, α) and G+(ρ, α) are defined similar to that of (2.14) - (2.16)

by replacing the function u1(ρ, z) with u2(ρ, z). G+(ρ, α) and G−(ρ, α) are unknown

functions which are regular in the half-planes Im (α) > Im (−k0) and Im (α) <

Im (k0) , respectively, while G1(ρ, α) is an entire function of α. The general solution

of (2.21) is determined as

G(ρ, α) = C(α)H
(1)
1 (K0ρ). (2.23)

Applying the Fourier transform of the boundary condition (2.7) yields

C(α) =
[G1(b, α) + bG

′
1(b, α)]

K0bH
(1)
0 (K0b)

. (2.24)

By taking into account the Fourier transform of the continuity relations (2.8) and (2.9),

one gets

8



P1(α) = G1(b, α) + bG
′

1(b, α) = F1(b, α) + bF
′

1(b, α), (2.25)

and

F1(b, α) +

[
ei(α+k0)l − 1

]
ib (α + k0)

= G1(b, α), (2.26)

respectively, to give

−2
πb2

M(α)

K2
0(α)

P1(α) + P−(α) + eiαlP+(α) =
ei(α+k0)l

ib(α + k0)
− 1

ib(α + k0)
, (2.27)

with

M(α) =
H

(1)
0 (K0a)

H
(1)
0 (K0b)[J0(K0b)Y0(K0a)− J0(K0a)Y0(K0b)]

. (2.28)

Equation (2.27) is nothing but the modified Wiener-Hopf equation of the first kind to

be solved. The first step in solving the modified Wiener-Hopf equation is to factorize

the kernel Function M(α). This can be done by following the procedures described in

[Mittra and Lee, 1971] as

M(α) =M+(α)M−(α) (2.29)

with

M+(α) =
√
M(0)

∞∏
m=1

1

(1 + α/δm)eiα(b−a)/mπ

× exp

[
ik(b− a)

2
+
K(α)(a− b)

π
log

α + iK(α)

k
+ q(α, a)− q(α, b)

]
(2.30)

× exp

{
α

πi
(b− a)

[
1− C + log

(
2πi

k(b− a)

)]}
,

and

M−(α) =M+(−α). (2.31)

9



In (2.30), C is the Euler’s constant given by C = 0.57721566... and q(α, ρ1) is the

integral

q(α, ρ1) =
1

π
P

∞∫
0

[
1− 2

πx

1

J2
0 (x) + Y 2

0 (x)

]
log

(
1 +

αρ1[
(k0ρ1)

2 − x2
]1/2

)
dx (2.32)

Above, the letter P denotes the Cauchy principle value at the singularity x = k0ρ1.

By standard asymptotics, we have M±(α) = O(±α−1/2) as | α |→ ∞. In the split

functionM+(α), the poles ofM(α) are δm’s satisfying δm =
√
k20 − ξ2m, m = 1, 2, ...

with

J0(ξmb)Y0(ξma)− J0(ξma)Y0(ξmb) = 0, m = 1, 2, ... (2.33)

Now, multiplying all terms of (2.27) by (k0 + α) e−iαl/M+ (α) , one gets

− 2

πb2
M− (α)

(k0 − α)
P1 (α) e

−iαl + e−iαl
(k0 + α)

M+ (α)
L (α) +

(k0 + α)

M+ (α)
U (α) = 0 (2.34)

with

U (α) = P+ (α)− eik0l

ib (α + k0)
(2.35)

and

L (α) = P− (α) +
1

ib (α + k0)
. (2.36)

Obviously, in (2.34), the first and third terms are regular in the lower and upper

half-planes, respectively. However, the second term has singularities in both

half-planes. Because of this, it is compulsory to apply the Wiener-Hopf decomposition

as

e−iαl
(k0 + α)

M+ (α)
L (α)

=
1

2πi

∫
L+

e−iτ l
(k0 + τ)

M+(τ)

L (τ)

(τ − α)
dτ − 1

2πi

∫
L−

e−iτ l
(k0 + τ)

M+(τ)

L (τ)

(τ − α)
dτ (2.37)

10



Hence, (2.34) can be rearranged as

2M− (α)P1 (α) e
−iαl

πb2 (k0 − α)
+

1

2πi

∫
L−

e−iτ l (k0 + τ)L (τ)

M+(τ) (τ − α)
dτ

=
1

2πi

∫
L+

e−iτ l (k0 + τ)L (τ)

M+(τ) (τ − α)
dτ +

(k0 + α)U (α)

M+ (α)
(2.38)

While the left hand side of the above equation is regular in the lower half-plane, right

hand side of the same equation is regular in the upper half-plane. By performing

analytical continuation principle together with the Liouville’ theorem yields

(k0 + α)

M+(α)
U (α) = − 1

2πi

∫
L+

e−iτ l
(k0 + τ)

M+(τ)

L (τ)

(τ − α)
dτ (2.39)

On the other hand, multiplying all terms of (2.27) by (k0 − α) /M− (α), we get

− 2

πb2
M+ (α)

(k0 + α)
P1 (α) +

(k0 − α)
M− (α)

P− (α) + eiαl
(k0 − α)
M− (α)

U (α)

= − 1

ib (k0 + α)

(k0 − α)
M− (α)

(2.40)

Similar to the upper case, one has neccessarily to apply decomposition for the third

term and the right hand side of (2.40) as

eiαl
(k0 − α)
M− (α)

U (α)

=
1

2πi

∫
L+

eiτ l
(k0 − τ)
M−(τ)

U (τ)

(τ − α)
dτ − 1

2πi

∫
L−

eiτ l
(k0 − τ)
M−(τ)

U (τ)

(τ − α)
dτ (2.41)

and

− 1

ib (k0 + α)

(k0 − α)
M− (α)

= f+ (α)∓ f− (α) (2.42)
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with

f+ (α) =
1

2πi

∫
L+

− 1

ib (k0 + τ)

(k0 − τ)
M− (τ) (τ − α)

dτ,

=
1

2πi

{
−2πi×Rez

(
− 1

ib (k0 + τ)

(k0 − τ)
M− (τ) (τ − α)

,−k0
)}

, (2.43)

= − 2k0
ibM+(k0) (k0 + α)

.

and

f−α = − 1

ib (k0 + α)

[
(k0 − α)
M− (α)

− 2k0
M+(k0)

]
. (2.44)

If we substitute these result in (2.40) and apply the analytical continuation principle

again, one obtains

(k0 − α)
M−(α)

L (α) =
1

2πi

∫
L−

eiτ l
(k0 − τ)
M−(τ)

U (τ)

(τ − α)
dτ +

2k0
ib (k0 + α)

1

M+ (k0)
. (2.45)

(2.39) and (2.45) are Fredholm integral equations of the second type to be solved. The

paths of integration L+ nad L− in these integral equations are depicted in Figure 2.2.

Changing the integration variable τ by −τ in (2.39) and replacing α by −α in (2.45),

the addition and subtraction of the resulting equations yield

(k0 + α)

M+(α)

∼
U(α) =

1

2πi

∫
L−

eiτ l
(k0 − τ)
M−(τ)

∼
U(τ)

dτ

(τ + α)
+

2k0
ib(k0 − α)

1

M+(k0)
(2.46)

and

(k0 + α)

M+(α)

∼
L(α) = − 1

2πi

∫
L−

eiτ l
(k0 − τ)
M−(τ)

∼
L(τ)

dτ

(τ + α)
− 2k0
ib(k0 − α)

1

M+(k0)
(2.47)

respectively, where
∼
U(α) and

∼
L(α) are defined by

∼
U(α) = U(α) + L(−α) (2.48)
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and

∼
L(α) = U(α)− L(−α). (2.49)

Hence, the problem is reduced to the solution of two integral equations (2.46) and

(2.47) which can be solved by using an iterative procedure that produces a Neumann

series expansion of solutions. The asymptotical analysis of this type of integrals has

been done in detail in [Serbest and Büyükaksoy, 1993] where it is proved that an

iterative solution is possible when k0l >> 1. Following the procedure described in

[Serbest and Büyükaksoy, 1993] for large k0l, it is found that the first terms lying

in the right-hand sides of equations (2.46) and (2.47) give the first-order solution.

Second-order solutions can then be obtained by replacing the unknown functions

appearing in the integrands by their first-order approximations. Higher-order terms

can be obtained by following the same procedure to give
∼
U(α) =

∼
U (1)(α)+

∼
U (2)(α)+

∼
U (3)(α) + ... and

∼
L(α) =

∼
L(1)(α) +

∼
L(2)(α) +

∼
L(3)(α) + .... Then, the first-order

solutions are determined to be

∼
U (1) (α) = −

∼
L(1)(α) =

2k0
ib (k0 − α)

1

M+ (k0)

M+ (α)

(k0 + α)
(2.50)

while the second-order solutions become

∼
U (2) (α) =

M+ (α)

(k0 + α)

1

2πi

∫
L−

eiτ l
1

M−(τ)

[
2k0

ib (k0 + τ)

M+ (τ)

M+ (k0)

]
dτ

(τ + α)
,

= −k0
bπ

M+ (α)

(k0 + α)M+ (k0)
I1 (α) . (2.51)

and

∼
L(2) (α) =

M+ (α)

(k0 + α)
− 1

2πi

∫
L−

eiτ l
1

M−(τ)

[
− 2k0
ib (k0 + τ)

M+ (τ)

M+ (k0)

]
dτ

(τ + α)
,

= −k0
bπ

M+ (α)

(k0 + α)M+ (k0)
I1 (α) . (2.52)

with
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I1 (α) =

∫
L−

eiτ l
[M+ (τ)]2

M (τ)

1

(k0 + τ)

dτ

(τ + α)
. (2.53)

By virtue of Jordan’s lemma, L− can be deformed to the branch-cut integral along

C1 and C2 as

I1 (α) =

∫
C1−C2

eiτ l
[M+ (τ)]2

M (τ)

1

(k0 + τ)

dτ

(τ + α)
(2.54)

Using properties J0 (−K0b) = J0 (K0b) , Y0 (−K0a) = Y0 (K0a) + 2iJ0 (K0a) ,

H
(1)
0 (−K0a) = −J0 (K0a)+ iY0 (K0a) and making the substitution k0− τ = te−iπ/2,

t > 0, the above integrals can be reduced to

I1 (α) =

∫
C1−C2

eiτ l
[M+ (τ)]2

(k0 + τ) (τ + α)

1

M (τ)
dτ,

=

∞∫
0

ei(k0+it)l [M+ (k0 + it)]2 2 [J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]
2

(2ik0 − t) (k0 + it+ α) [J2
0 (K0a) + Y 2

0 (K0a)]
dt, (2.55)

=
eik0l [M+ (k0)]

2

ik0
β (a, b, l;α) .

with

β (a, b, l;α) =

∞∫
0

e−tl

[t− i (k0 + α)]

[J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]
2

J2
0 (K0a) + Y 2

0 (K0a)
dt (2.56)

is to be evaluated numerically. Above, K0 =
√
t2 − 2ikt. Finally, the solution of the

modified Wiener-Hopf equation reads

P1 (α) = −
iπk0b

M+ (k0)M+ (α)
+
ib

2

ei(α+k0)l (k0 − α)M+ (k0)

M− (α)
β (a, b, l;α) . (2.57)
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2.2. Analysis of the Fields

The radiated field in the region ρ > b, −∞ < z < ∞, namely, u2 (ρ, z) can be

solved by the below inverse Fourier transform integral

u2 (ρ, z) =
1

2π

∫
L

P1 (α)
H

(1)
1 (K0ρ)

K0bH
(1)
0 (K0b)

e−iαzdα, (2.58)

where L is the line depicted in Figure 2.2, lying in the strip Im (−k0) < Im (α) <

Im (k0) . Utilizing the asymptotic expansion of H(1)
1 (K0ρ) →

√
2

πK0ρ
ei(K0ρ−3π/4)

as ρ → ∞, the asymptotic evaluation of the above integral, using the saddle point

technique, yields

u2 (r, θ) = D (θ)
eik0r

k0r
(2.59)

with

D (θ) =
ik0

H
(1)
0 (k0b sin θ) sin θ

{
1

M+ (k0)M− (k0 cos θ)

−e
ik0l(1−cos θ)

2π

(1 + cos θ)M+ (k0)

M+ (k0 cos θ)
β (a, b, l,−k0 cos θ)

}
. (2.60)

Here, r and θ are the spherical coordinates defined by ρ = r sin θ and z = r cos θ,

which are presented in Figure 2.3. On the other hand, the diffracted field in the region

a < ρ < b, −∞ < z <∞ can be determined by the integral

u1 (ρ, z) =
1

2π

∫
L

P1 (α) [J1 (K0ρ)Y0 (K0a)− J0 (K0a)Y1 (K0ρ)]

K0b [J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]
e−iαzdα. (2.61)

In order to determine the reflected field, the above integral must be evaluated for z < 0.

Taking into account the asymptotic behaviour of M+ (α) , (2.61), and the standard

asymptotics related to the Bessel functios of the first and second type, one can show

that the integrand in (2.61) tends to zero for | α |→ ∞. This allows the application
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of the Jordan’s lemma and by virtue of Jordan’s lemma and the application of the

law residues, the above integral becomes equal to the sum of the residues related to

the poles occuring at the simple zeros of K2
0 [J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]

lying in the upper half-plane, namely, at α = k0 and α = α′ms. Defining the reflected

field in this region as

Figure 2.3: Geometrical relations for the radiated field.

u1 (ρ, z) = R0
e−ik0z

ρ
+
∞∑
m=1

Rmψm (ρ) e−iαmz, a < ρ < b, z < 0 (2.62)

with

ψm (ρ) =
π

2
Km [J1 (Kmρ)Y0 (Kma)− J0 (Kma)Y1 (Kmρ)] , (2.63)

one gets

R0 = −
π

2 log (a/b)

1

[M+ (k0)]
2 (2.64)

and

Rm =
2k0

M+ (k0)M+ (αm)

1

{K2
0 [J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]}′α→αm

(2.65)
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Here, R0 corresponds to the reflection coefficient for the fundamental TEM mode.

Similarly, defining the field in the region a < ρ < b, z > l as

u1 (ρ, z) = −
eik0z

ρ
+ T0

eik0z

ρ
+
∞∑
m=1

Tmψm (ρ) eiαmz, a < ρ < b, z > l (2.66)

and evaluating the integral (2.61) in a similar fashion, the transmission coefficients are

found as

T0 =
β (a, b, l,−k0)
2 log (a/b)

(2.67)

and

Tm =
1

π

ei(k0−αm)l (k0 + αm)M+ (k0)

M+ (αm)
β (a, b, l,−αm)

× 1

{K2
0 [J0 (K0b)Y0 (K0a)− J0 (K0a)Y0 (K0b)]}′α→−αm

. (2.68)

2.3. Numerical Results

For the radiated, reflected, and transmitted fields, some numerical results are

obtained and are shown in Figures 2.4-2.10. The infinite integrals in (2.32) and (2.56)

are evaluated numerically. In Figure 2.4, the results obtained in this analysis are

compared to a previous study by [Park and Eom, 2000] , where they analyzed TM wave

propagation along an N-slot coaxial line with thick outer wall by applying the simple

series method. In order to make such a comparision available, the wall thickness is

assumed to be zero and the results are used for the limiting case of one slot only. Figure

2.4 shows that the simple series method in [Park and Eom, 2000] and the Wiener-Hopf

analysis in this paper have an excellent agreement. In Figures 2.5-2.7, the variation

of the radiated field pattern, normalized as | D (θ) | / | 1/a | with respect to the

observation angle θ is presented for different values of b/a, k0l, and frequency. In these

figures, strong radiation is observed in the forward and backward directions along the

waveguide walls, due to the directive effect of the outer surface of the waveguide walls
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for TEM waves. This characteristic is also seen in the case of a circular waveguide with

a large gap on its wall, which is studied rigorously in [Elmoazzen and Shafai, 1974].

In Figue 2.5, it can be observed that the magnitude of the radiated field increases with

b/a ratio, which means for a larger cross-sectional area in the coaxial waveguide, more

energy will be radiated to the outer space. On the other hand, very little dependence

to k0l is observed for the observation angles θ < 60◦, as shown in Figure 2.6, while

the radiated field seems to be almost totally insensitive to k0l for θ > 100◦. When

the frequency is increased, the magnitude of the radiated field also increases as it is

observed in Figure 2.7. This is expected as decreasing the wavelength or increasing the

cross-sectional area of the waveguide should have a similar effect. The dependences

of the reflection and transmission coefficients of the fundamental TEM mode to the

cross-sectional area of the waveguide are also investigated as seen in Figures 2.8 and

2.9. The frequency range in these figures is 100 MHz-2.5 GHz where there is still

only TEM mode propagating. As expected, when b/a ratio increases, | R0 | decreases,

while | T0 | increases. Figure 2.10 shows the magnitude of the radiated field versus

the truncation number (N) for different values of b/a. It can be seen that radiated field

amplitude becomes insensitive to the increase of the truncation number for N > 4.

b/a = 1.5, k0l = 6, f = 150 MHz

Figure 2.4: Comparison of Wiener-Hopf analysis and simple series method.
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Figure 2.5: Radiated field for a = 0.025 m, k0l = 6, f = 150 MHz.

Figure 2.6: Radiated field for a = 0.025 m, b = 2a, f = 150 MHz.
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Figure 2.7: Radiated field for a = 0.025 m, b = 2a, k0l = 6.

Figure 2.8: Reflected field for a = 0.025 m, k0l = 6.
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Figure 2.9: Transmitted field for a = 0.025 m, k0l = 6.
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3. TEM WAVE RADIATION FROM A
DIELECTRIC-FILLED COAXIAL WAVEGUIDE
WITH A LARGE CIRCUMFERENTIAL GAP ON
ITS OUTER WALL

In this section, as well as a finite slit of length l on the outer wall, we will

assume the interior region of the waveguide (a < ρ < b) is characterized by the relative

permitivity εr (Figure 3.1) . The wave numbers for the regions ρ > b and a < ρ < b

are denoted by k0 = w
√
ε0µ0 and k1 = w

√
ε1µ0, respectively,with ε1 = ε0εr.

Similarly to the Section 2, the incident TEM mode propagating in the positive z

direction be given by

H i
φ(ρ, z) = ui(ρ, z) =

eik1z

ρ
(3.1)

bε1

ε0

zz = 0 z = l

a PEC

PEC PEC

Figure 3.1: Geometry of the problem.

3.1. Formulation of the Problem

Note that, the total electromagnetic field can be expressed as

uT (ρ, z) =

{
ui (ρ, z) + u1 (ρ, z) , a < ρ < b

u2 (ρ, z) , ρ > b
(3.2)
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where u1 (ρ, z) and u2 (ρ, z) are the scattered fields which satisfy the boundary

conditions and continuity relations in their relevant regions

u1 (a, z) + a
∂u1 (a, z)

∂ρ
= 0, z ∈ (−∞,∞) , (3.3)

u1 (b, z) + b
∂u1 (b, z)

∂ρ
= 0, z ∈ {(−∞, 0) ∪ (l,∞)} , (3.4)

u2 (b, z) + b
∂u2 (b, z)

∂ρ
= 0, z ∈ {(−∞, 0) ∪ (l,∞)} , (3.5)

ε0

{
u1 (b, z) + b

∂u1 (b, z)

∂ρ

}
= ε1

{
u2 (b, z) + b

∂ub (b, z)

∂ρ

}
, z ∈ (0, l) , (3.6)

eik1z

b
+ u1 (b, z) = u2 (b, z) , z ∈ (0, l) . (3.7)

Additionally, to ensure the uniqueness of the solution, one has to take into account

the radiation condition and the edge conditions given in the previous section. In

their relevant regions the scattered fields u1 (ρ, z) and u2 (ρ, z) satisfy the Helmholtz

equations

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+

(
k21 −

1

ρ2

)]
u1(ρ, z) = 0 (3.8)

and

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂

∂z2
+

(
k20 −

1

ρ2

)]
u2(ρ, z) = 0 (3.9)

whose Fourier transform yield

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2

1(α)−
1

ρ2

)]
F (ρ, α) = 0 (3.10)

and
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[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

(
K2

0(α)−
1

ρ2

)]
G(ρ, α) = 0 (3.11)

respectively. Here, K0(α) =
√
k20 − α2 and K1(α) =

√
k21 − α2 are the square-root

−k0

k0

Re α

L

Im α

k1

−k1

L−

L+

Figure 3.2: Complex α− plane.

function defined in the complex α− plane cut along as shown in Figure 3.2, such that

K0(0) = k0 and K1(0) = k1. As before in the previous section, the general solutions

of Eqs. (3.10) and(3.11) yield

F (ρ, α) = A(α)J1(K1ρ) +B(α)Y1(K1ρ), (3.12)

and

G(ρ, α) = C(α)H
(1)
1 (K0ρ). (3.13)

respectively. The Fourier transform of the boundary condition (3.3) gives

F (a, α) + aF
′

1(a, α) = 0, (3.14)
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which reads

B (α) = −A (α)
J0(K1a)

Y0(K1a)
. (3.15)

On the other hand, the Fourier transform of boundary condition (3.4) yields

A (α) =
Y0(K1a)

[
F1(b, α) + bF

′
1(b, α)

]
K1b [J0(K1b)Y0(K1a)− J0(K1a)Y0(K1b)]

(3.16)

Taking into account these relations, one can write

F (ρ, α) =

[
F1(b, α) + bF

′
1(b, α)

]
[J1(K1ρ)Y0(K1a)− J0(K1a)Y1(K1ρ)]

K1b [J0(K1b)Y0(K1a)− J0(K1a)Y0(K1b)]
(3.17)

From equations (3.5) and (3.6), we have

C (α) =

[
G1(b, α) + bG

′
1(b, α)

]
K0bH1

0 (K0b)
H1

1 (K0ρ) (3.18)

and

ε0

[
F1(b, α) + bF

′

1(b, α)
]
= ε1

[
G1(b, α) + bG

′

1(b, α)
]

(3.19)

Lastly, incorparating ((3.15-(3.19) into the continuity relation given by (3.7), one

determines the Wiener-Hopf equation

M(α)

K2
0(α)b

P1(α) + P−(α) + eiαlP+(α) =

[
ei(α+k1)l − 1

]
ib(α + k1)

(3.20)

with

P1(α) = F1(b, α) + bF
′

1(b, α), (3.21)

P+(α) = F+(b, α)−G+(b, α), (3.22)

P−(α) = F−(b, α)−G−(b, α), (3.23)
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and

M(α) =
K0ε0H

1
1 (K0b)

ε1H1
0 (K0b)

− K2
0 [J1 (K1b)Y0 (K1a)− J0 (K1a)Y1 (K1b)]

K1 [J0 (K1b)Y0 (K1a)− J0 (K1a)Y0 (K1b)]
. (3.24)

Following the procedures described in " Appendices B and C " , one can determine

the split functions M+ (α) and M− (α) . By multiplying both sides of (3.20) by

e−iαl (α + k0) /M+ (α) and (k0 − α) /M− (α) , respectively, we get

P1 (α) e
−iαlM−(α)

b(k0 − α)
+
P+ (α) (k0 + α)

M+(α)
+
e−iαl (k0 + α)

M+(α)
L (α)

=
eik1l (k0 + α)

ib (α + k1)M+(α)
(3.25)

and

P1 (α)

b(k0 + α)
M+(α) +

P− (α) (k0 − α)
M−(α)

+
eiαl(k0 − α)
M−(α)

U (α)

= − (k0 − α)
ibk1 + α)M−(α)

(3.26)

with

U (α) = P+ (α)− eik1l

ib (α + k1)
(3.27)

and

L (α) = P− (α) +
eik1l

ib (α + k1)
. (3.28)

The third term of (3.25) and the third term and the right hand side of the equation

(3.26) have singularities in both half-planes. After performing the Wiener-Hopf

decomposition procedure and analytical continuation principle, one obtains

(k0 + α)

M+(α)
U (α) = − 1

2πi

∫
L+

e−iτ lL (τ) (k0 + τ)

M+(τ)(τ − α)
dτ (3.29)

and
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(k0 − α)
M−(α)

L (α) =
1

2πi

∫
L−

eiτ lU (τ) (k0 − τ)
M−(τ)(τ − α)

dτ +
(k0 + k1)

ib(k1 + α)M+(k1)
(3.30)

Applyig the classical Wiener-Hopf method as in the previous problem, one can obtain

the pair of simultaneous integral equations

(k0 + α)

M+(α)

∼
U(α) =

1

2πi

∫
L−

eiτ l(k0 − τ)
∼
U(τ)

M−(τ)(τ + α)
dτ +

(k0 + k1)

ib(k1 − α)M+(k1)
(3.31)

(k0 + α)

M+(α)

∼
L(α) = − 1

2πi

∫
L−

eiτ l(k0 − τ)
∼
L(τ)

M−(τ)(τ + α)
dτ − (k0 + k1)

ib(k1 − α)M+(k1)
(3.32)

where
∼
U(α) and

∼
L(α) are defined by

∼
U(α) = U(α) + L(−α) (3.33)

∼
L(α) = U(α)− L(−α). (3.34)

This is the same case as before in the previous problem except with k replaced by k1.

Thus we can use the method of successive approximation to solve integral equation

system for large k0,1l and obtain

∼
U1(α) =

(k0 + k1)M+(α)

ib(k1 − α)M+(k1)(k0 + α)
, (3.35)

∼
L1(α) = −

M+(α)(k0 + k1)

ib(k0 + α)(k1 − α)M+(k1)
(3.36)

and

∼
U2(α) =

∼
L2(α) = −

(k0 + k1)

2πbM+(k1)
I2 (α) (3.37)

with
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I2 (α) =

∫
L−

eiτ lM+(τ)(k0 − τ)
M−(τ)(τ + α) (k1 − τ) (k0 + τ)

dτ (3.38)

The above integral is calculated by closing the contour in the upper hallf plane and

evaluating the residue contributions from the simple poles occuring at the zeros of

M (α) lying in the upper half plane as follows

I2 (α) =
eik0lM2

+ (k0)

2ik0πb
β (a, b, l, k0, k1, α)

+ 2πi
∞∑
s=1

eiγsl(k0 − γs)M2
+ (γs)

(γs − α)(k1 − γs)(k0 + γs)M ′ (γs)
(3.39)

where γ′s s are the zeros of M (α) and

β (a, b, l, k0, k1, α)

=

∞∫
0

te−tlε0ε14iK
2
1 [J0 (K1b)Y0 (K1a)− J0 (K1a)Y0 (K1b)]

(t− i (k0 + α)) (k1 − k0)F (t)
dt (3.40)

with

F (t) = K2
0 {[J0 (K1b)Y0 (K1a)− J0 (K1a)Y0 (K1b)]

×
[
ε20K

2
1H

(1)
1 (K0b)H

(2)
1 (K0b) + ε21K

2
0H

(1)
0 (K0b)H

(2)
0 (K0b)

]}
−2ε0ε1K1K

3
0 {[J1 (K1b)Y0 (K1a)− J0 (K1a)Y1 (K1b)] (3.41)

× [J1 (K0b) J0 (K0b) + Y0 (K0b)Y1 (K0b)]}

to be evaluated numerically. Therefore, one arrives at

U (α) = − M+(α)(k0 + k1)

(k0 + α)2πbM+ (k1)
I2 (α) (3.42)
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L (α) =
M−(α)(k0 + k1)

ibM+(k1) (α + k1) (k0 − α)
(3.43)

and

P1 (α) = −
(k0 + α) (k0 + k1)

iM+ (k1) (k1 + α)M+ (α)
+

(k0 − α) eiαl (k0 + k1)

2πM+ (k1)M− (α)
I1 (α) . (3.44)

3.2. Analysis of the Fields

Taking into account equations (3.17), (3.21) and (3.44), the scattered field for the

region ρ > b,−∞ < z <∞ is given by the inverse Fourier transform

u2 (ρ, z) =
1

2π

∫
L

ε0P1 (α)

ε1K0bH
(1)
0 (K0b)

H
(1)
1 (K0ρ)e

−iαzdα (3.45)

Using the asymptotic expansion of H(1)
1 (K0ρ) for large arguments as follows

H
(1)
1 (K0ρ) '

√
2

πK0ρ
ei(K0ρ−3π/4) (3.46)

and applying the saddle point technique yields

u2 (r, θ) = −D (θ)
eik0r

k0r
(3.47)

with
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D (θ) = − ε0 (k0 + k1)

ε1πb sin θH
(1)
0 (k0b sin θ)

×
{

−k0 (1− cos θ)

i (k1 − k0 cos θ)M+ (−k0 cos θ)M+ (k1)

+
(1 + cos θ) eik0l(1−cos θ)M2

+ (k0) β (a, b, l, k0, k1,−k0 cos θ)
4iπM+ (k1)M+ (k0 cos θ)

(3.48)

+
e−ik0l cos θik0 (1 + cos θ)

M+ (k0 cos θ)M+ (k1)

∞∑
s=1

eiγsl (k0 − γs)L (−γm)M2
+ (γs)

M ′ (γs) (k0 + γs) (k1 − γs) (γs − k0 cos θ)

}

3.3. Numerical Results

For the radiated field, some numerical results are obtained and are shown in

Figures 3.3-3.8, where the variation of the radiated field pattern, normalized as | D (θ) |

/ | 1/a |with respect to the observation angle θ is presented for different values of b/a,

εr, k1l and frequency. In these figures , strong radiation is observed in the forward and

backward directions along the waveguide walls, due to the directive effect of the outer

surface of the waveguide walls for TEM waves. This characteristic is also seen in the

case of a circular waveguide with a large gap on its wall, which is studied rigorously

in [Elmoazzen and Shafai, 1974].

In order to provide a comparision of the analysis done in this paper with

the previous study for hollow coaxial waveguides [Öztürk and Çınar, 2013], the

normalized magnitude of the radiated field is presented in Fig. 3.3 for εr = 1,

b/a = 1.5, k1l = 6 and f = 150 MHz and an excellent agreement is observed

between the Wiener-Hopf analysis wih both types of factorization methods and the

analysis by the use of simple series representation. However, when the waveguide

is filled with a dielectric material, it is observed from Fig. 3.4 that the factorization

method matters and the one described in " Appendix C " has a better agreement

with the result obtained by simple series method although with a slight difference

for smaller observation angles ( considering the scale of the vertical axis ). Such a

difference could be expected as there is less information in the analysis done by simple

series method, such as the lack of the use of edge conditions. A similar conclusion

is done for the comparision of Wiener-Hopf analysis and mode-matching technique in
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[Öztürk and Çınar, 2013] and [Aksimsek et al., 2013]. In Fig. 3.5, the variation of the

normalized magnitude of the radiated field with respect to b/a ratio is illustrated and it

is seen that the magnitude is increasing with increasing b/a ratio. This characteristic

was also observed in hollow coaxial waveguides as in [Öztürk and Çınar, 2013]. The

effects of the relative permittivity of the dielectric material inside the waveguide and

the frequency are presented in Figures. 3.6 and 3.7, respectively. The normalized

magnitude of the radiated field is increasing when εr is decreasing or the frequency

is increasing. Finally, in Figure 3.8, the variation of the normalized magnitude of the

radiated field with respect to k1l is illustrated. As for the hollow coaxial waveguide

case in [Öztürk and Çınar, 2013], it is observed that k1l has very little effect on the

radiated field.
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4. CONCLUDING REMARKS

In this thesis, the TEM wave propagation in an hollow and dielectric-filled

coaxial waveguides having a large gap on its outer wall is analyzed rigorously by

applying direct Fourier transform which yields a modified Wiener-Hopf equation of

the first type. The modified Wiener-Hopf equation is reduced to a Fredholm integral

equation of the second type, which is solved iteratively. Finally, the diffraction

coefficients related to the reflected, transmitted and radiated fields are determined

explicitly for large gap width compared to the wavelength.It is observed that when

the waveguide is filled with a dielectric material, the factorization method described

in " Appendix B " lacks accuracy, which is an important conclusion for future studies.

Besides, the effects of the cross-sectional area of the coaxial cylindrical waveguide,

the gap width and the frequency on the radiated field are presented graphically. The

behaviour of the radiated field has been observed to be similar to that of in [Elmoazzen

and Shafai, 1974] and in [Öztürk and Çınar, 2013] for εr = 1. This analysis can also be

applied to the case where the medium outside the waveguide is complex. Also, having

coated walls on the waveguide after the gap would also be very interesting problem in

the sense of microwave filters.
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Appendix B: Factorization of M (α) with the first procedure

In order to solve the Wiener-Hopf equation (3.20), one must first factorize the

kernel function M (α) as follows

M (α) =M+ (α)M− (α) (B1.1)

which can be done by following the procedures described in [Seran et al., 2009] as

follows

M+ (α) =M− (−α) =
√
M (0)eA+(α)−s (B1.2)

with

A+ (α) =
1

2πi

∫
L+

ln [M (t)]

t− α
dt (B1.3)
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and

s =
1

2πi

∫
L+

ln [M (t)]

t
dt (B1.4)

Above, the integration contour for A+ (α) and s can be modified as follows

A+ (α) =
1

2πi

∞−iη∫
k′1−iη

ln [M (t)]

t2 − α2
2αdt+

1

2πi

∫
C

ln [M (t)]

t− α
dt (B1.5)

and

s =
1

2πi

∫
C

ln [M (t)]

t
dt. (B1.6)

respectively, with k′1 being the real part of k1. The integration path can be seen in

Figure B1.1.

Re α

Im α

−k1 −k0 k0 k1α

−k1+iη −k0+iη+δ

−k0−iη+δ −k1−iη

δ = (k0+α)/2

η > 0

Figure B1.1: Path of integration.
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Appendix C: Factorization of M (α) with the second
procedure

New formal expressions for the split functions M+ (α) and M− (α), satisfying

M (α) =M+ (α)M− (α) can also be derived by the following procedure described in

[Mittra and Lee, 1971] defining

M1 (α) = ε1K
2
1 [J0 (K1b)Y0 (K1a)− J0 (K1a)Y0 (K1b)] , (C1.1)

M2 (α) =
1

H
(1)
0 (K0b)

×
{
ε0K0K

2
1H

(1)
1 (K0b) [J0 (K1b)Y0 (K1a)− J0 (K1a)Y0 (K1b)] (C1.2)

−ε1K1K
2
0H

(1)
0 (K0b) [J1 (K1b)Y0 (K1a)− J0 (K1a)Y1 (K1b)]

}
and

M+ (α) =M− (−α) =
M2+ (α)

M1+ (α)
(C1.3)

to give

M1+ (α) =
√
ε1 (k1 + α)

√
J0 (k1b)Y0 (k1a)− J0 (k1a)Y0 (k1b)

×
∞∏
m=1

(1 + α/αm) e
iα(b−a)/mπ (C1.4)

× exp

{
α

πi
(b− a)

[
1− C + log

(
2πi

k1 (b− a)

)]}

with α′m s being the zeros of J0 (k1b)Y0 (k1a)− J0 (k1a)Y0 (k1b) and
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M2+ (α) =
√
M2 (0)

∞∏
m=1

(1 + α/γm)

× exp

[
−ik0 (a− b)

2
+
K0 (α) (a− b)

π
log

(
α + iK0 (α)

k0

)]
(C1.5)

× exp [q (α)]

with C = 0.57721..., γ′m s being the zeros of M2 (α) and

q (α) = P

∞∫
0

[
(a− b)
π

− {B (w) +B (weiπ)}
2πi

]
log

(
1 +

α

[k20 − w2]
1/2

)
dw (C1.6)

In the above expressions, P notation denotes the Cauchy principle value at the

singularity w = k0 and B (w) can be written as follows

B (w) =
1

∼
B (w)

{A1 (w)C1 (w) + A2 (w)C2 (w)

−ε1
[
H

(1)
0 (wb)

]2
w3aA3 (w) (C1.7)

+
(
ε0
∼
ww2aH

(1)
1 (wb)H

(1)
0 (wb)

)
A4 (w)

}
with

∼
B (w) = H

(1)
0 (wb)

{
ε0w

∼
w

2
H

(1)
1 (wb)

[
J0

(
∼
wb
)
Y0

(
∼
wa
)
− J0

(
∼
wa
)
Y0

(
∼
wb
)]

−ε1
∼
ww2H

(1)
0 (wb)

[
J1

(
∼
wb
)
Y0

(
∼
wa
)
− J0

(
∼
wa
)
Y1

(
∼
wb
)]}

, (C1.8)

A1 (w) =
[
J0

(
∼
wb
)
Y0

(
∼
wa
)
− J0

(
∼
wa
)
Y0

(
∼
wb
)]
, (C1.9)

A2 (w) =
[
J1

(
∼
wb
)
Y0

(
∼
wa
)
− J0

(
∼
wa
)
Y1

(
∼
wb
)]
, (C1.10)
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A3 (w) =
[
J1

(
∼
wa
)
Y1

(
∼
wb
)
− J1

(
∼
wb
)
Y1

(
∼
wa
)]
, (C1.11)

A4 (w) =
[
J1

(
∼
wa
)
Y0

(
∼
wb
)
− J0

(
∼
wb
)
Y1

(
∼
wa
)]
, (C1.12)

C1 (w) = ε1H
(1)
1 (wb)H

(1)
0 (wb) 2w2

+ε0w
∼
w

2
b

[(
H

(1)
0 (wb)

)2
+
(
H

(1)
1 (wb)

)2]
(C1.13)

−ε1
(
H

(1)
0 (wb)

)3
w3b,

C2 (w) = −ε0H(1)
1 (wb)H

(1)
0 (wb)w2∼wb− ε1

(
H

(1)
0 (wb)

)2
2
∼
ww, (C1.14)

and

∼
w =

√
w2 + k21 − k20. (C1.15)

Appendix D: Convergence of the β (a, b, l;α)

Let’s split the integral in a sum of two terms:

β (a, b, l;α) =

1∫
0

e−tl

[t− i (k + α)]

[J0 (Kb)Y0 (Ka)− J0 (Ka)Y0 (Kb)]2

J2
0 (Ka) + Y 2

0 (Ka)
dt

+

∞∫
1

e−tl

[t− i (k + α)]

[J0 (Kb)Y0 (Ka)− J0 (Ka)Y0 (Kb)]2

J2
0 (Ka) + Y 2

0 (Ka)
dt (D1.1)

Since the integrand is continuous for t ∈ [0, 1] , the first integral is convergent. For the

second integral, by utilizing the following asymptotic expansions as t→∞,

[J0 (Kb)Y0 (Ka)− J0 (Ka)Y0 (Kb)]2 '
4

π2t2ab
sin2 (t (a− b)) , (D1.2)
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J2
0 (Ka) + Y 2

0 (Ka) ' 2

πta
(D1.3)

it is appropriate to use limit comparison test with g(t) = 2e−tl

πbt3/2
sin2 (t (a− b)) , which

is continuous except 0. Fot t > 1 holds

∣∣∣∣ 2e−tlπbt3/2
sin2 (t (a− b))

∣∣∣∣ ≤ 1

t3/2
. (D1.4)

Since
∞∫
1

1
t3/2

dt converges,
∞∫
1

2e−tl

πbt3/2
sin2 (t (a− b)) dt is absolutely convergent.

Moreover,

lim
t→∞

∣∣∣∣∣∣
e−tl

[t−i(k+α)]
[J0(Kb)Y0(Ka)−J0(Ka)Y0(Kb)]2

J2
0 (Ka)+Y

2
0 (Ka)

2e−tl

πbt3/2
sin2 (t (a− b))

∣∣∣∣∣∣ = 0. (D1.5)

Since
∞∫
1

2e−tl

πbt3/2
sin2 (t (a− b)) dt is absolutely convergent, we conclude that

∞∫
1

e−tl

[t−i(k+α)]
[J0(Kb)Y0(Ka)−J0(Ka)Y0(Kb)]2

J2
0 (Ka)+Y

2
0 (Ka)

dt is convergent. Therefore, the improper

integral β (a, b, l;α) isconvergent.
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