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SUMMARY

Graphs associated with various algebraic structures have been actively
investigated and many interesting results have been obtained. Let X be a set of
positive integers. We associate three undirected graphs, which are called the prime
vertex graph, the common divisor graph and the bipartite divisor graph, to the set
X. Let G be a finite group and cs(G) the set of the conjugacy class sizes of elements
in G. Assume that X = cs(G). By using combinatorial properties of the associated
graphs, we give some information about the structure of the group. One of the
main questions that naturally arises in this area is classifying the groups whose
bipartite divisor graphs have special graphical shapes. In this thesis, we consider the
case where the bipartite divisor graph of a finite group is a cycle. Bijan Taeri
classified those groups with this property [Taeri, 2010]. In this thesis, we will write

his proof in detail.

Key Words: Prime Vertex Graph, Common Divisor Graph, Bipartite Divisor Graph.



OZET

Cesitli cebirsel vyapilarla iliskili grafikler incelenmis ve bircok enteresan
sonuglar elde edilmistir. X pozitif tamsayilarin bir alt kiimesi olsun. Biz {i¢ yonsiz
grafik olan asal kose grafigi, ortak bolen grafigi ve ikili bélen grafigini X kiimesi
ile iliskilendirdik. G sonlu bir grup ve cs(G) G’nin elemanlarinin eglenik sinifi
boyutlarinin  kiimesi olsun. X = ¢s(G) olsun. iliskili grafiklerin kombinatoryal
Ozelliklerini kullanarak, grubun yapisi hakkinda bazi bilgiler verdik. Dogal olarak bu
alanda ortaya cikan baslica sorulardan biri olan ikili bolen grafikleri 6zel grafik
sekiller olan gruplarini siniflandirilmasidir. Bu tezde, sonlu grup ikili béleni grafigi bir
dongl olan durum incelendi. Amacimiz bu 06zelligi ile bu gruplari siniflandirmaktir.

Bunun icin biz Bijan Taeri tarfindan yazilan bir makaleyi takip edecegiz [Taeri, 2010].

Anahtar Kelimeler: Asal Kése Grafigi, Ortak Bélen Grafigi, ikili Bélen Grafigi.
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1. INTRODUCTION

1.1. History

Over the last 30 years there have been many papers on the influence of the
sizes of conjugacy classes on finite groups. We may ask the following question:

How much information can one expect to obtain from the sizes of conjugacy
classes?

Sylow in 1872 examined what happened if there was information about the
sizes of all conjugacy classes, whereas in 1904 Burnside showed that strong results
could be obtained if there was particular information about the size of just one
conjugacy class. Landau in 1903 bounded the order of the group in terms of the
number of conjugacy classes whilst in 1919 Miller gave a detailed analysis of groups
with very few conjugacy classes. Very little then seems to have been done until
1953 when both Baer and It6 published papers on this topic but with different
conditions on the sizes.

By looking at these early results it can been seen that much will depend on
how much information is given and it is important to be explicit. For example if one
knows that there is only one conjugacy class size then the group is abelian, but this
can be any abelian group. However if you know the collection of conjugacy class
sizes, that is the multiplicities, then the order of the group is also known. However it
would still not be possible to identify the group.

Various graphs can be constructed from the sets of conjugacy class sizes. The
properties of the graphs and the relation to the structure of the groups are the
main questions in this field of study. This has been a very active area in recent
years. Recently, Lewis in [Lewis, 2008] discussed many remarkable connections
among these graphs by analysing analogous of these graphs for arbitrary positive
integer subsets. Then, inspired by the survey of Lewis, in [Iranmanesh and Praeger,
2010] introduced the bipartite divisor graph B(X) for a finite set X of positive
integers and studied some basic invariants of this graph (such as the diameter, girth,
number of connected components). One of the main questions that naturally arises

in this area is classifying the groups whose bipartite divisor graphs have special
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graphical shapes. For instance, in [Hafezieh and Iranmanesh, 2013], the writers have
classified the groups whose bipartite divisor graphs are paths.

In this thesis, we will investigate the classification of the groups whose
bipartite divisor group are cycles which are classified by Taeri [Taeri, 2010].

In chapter 2, we introduce three undirected graphs for a set of positive
integers and discuss some of the combinatorial properties of these graphs. We will
follow the paper of Iranmanesh and Praeger [Iranmanesh and Praeger, 2010].

In chapter 3, we give a structure theorem for the finite groups with three
conjugacy class sizes which is proved by Dolfi and Jabara [Dolfi and Jabara, 2009]. In
particular, we also see that they are either solvable groups with derived length at
most three or nilpotent groups. We will follow the paper of Dolfi and Jabara [Dolfi
and Jabara, 2009].

In chapter 4, we discuss the connections between prime divisors of conjugacy
classes and prime divisors of a finite group G. We will investigate a theorem of
Ferguson that says for a finite solvable group G, if each conjugacy class size has at
most two prime divisors and there exists a conjugacy class size with two distinct
prime divisors, then the set of all primes dividing the conjugacy class sizes of G has
at most four elements. We will follow the paper of Ferguson [Ferguson, 1991].

Finally, in chapter 5, we consider the case that the bipartite divisor graph is a
cycle. We investigate the theorem of Taeri that the bipartite divisor graph is a cycle
if and only if it is a cycle of length six [Taeri, 2010]. Also he classified those groups
with this property which covers the main idea of this thesis. We will follow the
paper of Taeri [Taeri, 2010].

In the rest of this chapter, we give preliminary definitions and results in group

theory and graph theory which will be used in other sections.

1.2. Preliminary Definitions and Results in Group Theory

Note that we work on finite groups.

Definition 1.1: Let w be a set of primes. A finite group G is called a m-group if

for every prime dividing the order of G lies in ™ and a m-subgroup of a group G is a



subgroup which itself is a m-group.

Definition 1.2: A Hall m-subgroup of a group G is a m-subgroup with index involving

no prime of .

Definition 1.3: Let G be a group and K 2 G. A subgroup H of G is a complement for
KinGifG=KHand KNnH =1.

A Hall p’-subgroup of G is called a p-complement in G. Note that m(G)

denotes the set of prime divisors of |G].

Theorem 1.1: (Schur-Zassenhaus Theorem) Let G be a group and K a normal

subgroup of G such that gcd(|K|,|G/K|) = 1. Then K has a complement in G.

Definition 1.4: A subgroup H of a group G is a characteristic subgroup of G, if
a(H) = H for all @ € Aut(G), where Aut(G) denotes the group of automorphism

of G, and we write H char G.

Note that a characteristic subgroup is normal. It is easy to see that if H, K are

two subgroups of G such that H char K,and K 2 G, then H 2 (.

Definition 1.5: The largest normal p-subgroup of a group G is denoted by 0,(G) and
we can easily see that 0,(G) lies in every Sylow p-subgroup of G. The Fitting
subgroup of G is the largest nilpotent normal subgroup of G and it is denoted by
F(G), and it is well known that F (G) =Xpen(g) Op(G).

Definition 1.6: The Frattini subgroup of a group G is the intersection of all maximal

subgroups of G and it is denoted by ®(G).

It is a well-known fact that the subgroups 0,(G), F(G) and ®(G) of the group
G are characteristic subgroups of G, and F((G/®(G)) = F(G)/P(G) [Kurzweil and
Stellmacher, 2004].



Theorem 1.2: (6.1.4 in [Kurzweil and Stellmacher,2004]) Let G be a solvable group.
Then C;(F(G)) < F(G).

Definition 1.7: Let G be a group and let () be a nonempty set. A map ““” from QX G

to Q is an action of G on Q if the following two conditions hold:

ea-1=aqa,foralla € Q,and

o (a-g) -h=a-(gh)foralla € Qand all group elements g,h € G.

Definition 1.8: Let G be a group which acts on the set (). This action is called regular
if for each pair of elements a,f € (), there exists precisely one g € G such that
a-g=p. The action of G on 2 is called faithful if a-g =1 for all a € 2,
theng = 1.

Definition 1.9: Let A be a group that acts on the group G. The action of Aon G is
coprime if gcd(|A|,|G|) = 1. A subgroup H of the group G is A-invariant if for all
a€A H*:={h-alh € H} = H.

Suppose that A is a group that acts on the group G and H is a subgroup of G.
Forany g € G, by (Hg)#, we mean the set {(hg) - alh € H,a € A}.

Theorem 1.3: (8.2.1 in [Kurzweil and Stellmacher,2004]) Suppose that the action of A
on the group G is coprime. Let U be A-invariant subgroup of G and g € G such that

(Ug)? = Ug. Then there exists ¢ € C;(A) such that Ug = Uc.

Definition 1.10: For groups A and G, we say that A acts via automorphisms on G
if Aactson G, and (xy)-a = (x-a)(y-a)forall x,y € G and a € A. Let A act via
automorphisms on G, then we define [G,A] = (g~ 1g%|g € G,a € A) as a subgroup

of G < A where g% is the action of a on g.

Theorem 1.4: (Lemma 4.28 in [Isaacs, 2008]) Let A and G be finite groups. Let A act

via automorphisms on G and suppose that gcd(|G|, |A|) = 1 and that one of A or G

4



is solvable. Then G = C;(A)[G, A].

Theorem 1.5: (Theorem 4.34 in [Isaacs, 2008]) Let A act via automorphisms on
an abelian group G. Assume that A and G are finite groups and gcd(|A|,|G|) = 1.
Then G = C;(A) X [G, A].

Definition 1.11: Suppose that the group A acts on the group G via automorphisms.
Assume thata € A, x € G. By C;(a) and C4(x) we mean {g € G|g.a = g} and

{a € A|x.a = x}, respectively.

Definition 1.12: Let G¥ denote the set of nonidentity elements of a group G. The

action of A on G is said to be Frobenius if x - a # x whenever x € G* and a € A*.

Equivalently, the action of A on G is Frobenius if and only if C;(a) = 1 for all

a € A%, and also if and only if C,(x) = 1 for all x € G*.

Theorem 1.6: (Lemma 6.1 in [Isaacs, 2008]) Let A and G be finite groups, and
suppose that there is a Frobenius action of Aon G. Then |G| = 1 (mod|A|), and

hence |G| and |A| are coprime.

Definition 1.13: A group A is called a Frobenius complement if it has a Frobenius
action on some nonidentity group G, and similarly, a group G is called a Frobenius

kernel if it admits a Frobenius action by some nonidentity group A.

Theorem 1.7: (Theorem 6.4 in [Isaacs, 2008]) Let N be a normal subgroup of a finite
group G, and suppose that A is a complement for N in G. Then the followings are

equivalent.

i) The conjugation action of A on N is Frobenius.
i) AN A9 =1 for all elements G \ A.

iii) C;(a) < Aforall a € A*.

iv) C;(n) < N foralln € N¥,



If both N and A are nontrivial in the above theorem, we say that G is a
Frobenius group and that A and N are Frobenius complement and Frobenius kernel

of G, respectively.

Theorem 1.8: (Theorem 6.7 in [Isaacs, 2008]) Let N be a normal subgroup of a finite
group G and suppose that C;(n) < N for every n € N*. Then N is complemented in

Gandif1 < N < G, then G is a Frobenius group with kernel N.

Theorem 1.9: (Corollary 6.17 in [Isaacs, 2008]) Suppose that Ais a Frobenius

complement. Then each Sylow subgroup of A is cyclic or generalized quaternion.

Definition 1.14: A group G is said to act on the n-dimensional vector space V over
the field K if G acts on the additive group V and (Av) - g = A(v - g) for any A € K,
v €V, g€G. The action of G on V is callad irreducible if V #+ 0and 0 andV are

the only G-invariant subspaces of V.

Theorem 1.10: (Theorem 8 in [Huppert and Manz, 1990]) Let P be a nontrivial
p-group, which acts irreducibly and faithfully on a finite vector space V over GF(q),
where q is a prime number different from p. If P contains no section isomorphic to

Cp U Gy, then P has a regular orbit in its actionon V.

Definition 1.15: Let G be a group and H be a subgroup of G. Assume that G acts on
H and H is an F-module, where F is a field. Then H is called an FG-module.

Definition 1.16: Let G be a group. The exponent of G is a number e € N which is
minimal with respect to the propety that g¢ =1 for all g € G. Then we write

exp(G) =e.

Definition 1.17: A group G is said to be mt-seperable, where T is some set of primes,
if there exists a normal series1 = Ny < N; < ... < N, = G such that each factor
N;/N;_, i =1, ...,1, is either a T-group or a m'-group. The group G is Tt-solvable if it
has a normal series where each factor is either a '-group or is a solvable t-group.
Clearly, a solvable group is m-solvable for every set i of primes. If G is m-seperable,

6



the m-length of G is the minimum possible number of factors that are mt-groups in

any normal series for G in which each factor is either a -group or a T'-group.

Theorem 1.11: (Corollary 3.19 in [Isaacs, 2008]) Let G be a finite solvable group.

Then G is -seperable for every set m of primes.

Theorem 1.12: (3.1.9 in [Kurzweil and Stellmacher, 2004]) Let H be a subgroup of a
group G. Then N;(H) is the largest subgroup of G in which H is normal. In addition,
the mapping ¢ : N;(H) = Aut(H) via x » (h — h*) is a homomorphism and
Ker(¢p) = C;(H).

Lemma 1.13: (Frattini Argument) Let N be a normal subgroup of a finite group G.

Assume that P € Syl,,(N). Then G = Ng(P)N.

Theorem 1.14: Let G be a solvable group. Then F(G/®(G)) = F(G)/®(G)is a

completely reducible and faithful %—modu/e.

Definition 1.18: For a group G the subgroup O . (G) is defined by

o0_r_(G
L()=0,T< ¢ ) (1.1)

On/(G) OnI(G)
Clearly, O (G) is a characteristic subgroup of G.

Theorem 1.15: (6.4.3 in [Kurzweil and Stellmacher, 2004]) Let G be p-seperable for
p € m(G) and P a Sylow p-subgroup of O,/ ,(G). Then C;(P) < 0,1 ,(G).

1.3. Preliminary Definitions and Results in Graph Theory
Definition 1.19: A graph G consists of a nonempty finite set V(G) of elements called

vertices, and a finite family E(G) of unordered pairs of elements of V(G) called

edges. An edge {v,w}is said to join the vertices v and w, and sometimes it is



abbreviated to v — w. Two vertices in a graph are called adjacent if there is an edge

joining them.

Definition 1.20: A walk in a graph G is a finite sequence of vertices vy, v, ..., VU, and
edges a4, a,, ..., a, of G; vy, a4,v4,Q,, ..., Ay, U, Where the endpoints of a; are v;_4
and v; foreach i = 1,2, ...,n, and the number n is the length of the walk. A path is
a walk in which no vertex is repeated. A walk is closed when the first and last
vertices, vy and vy, are the same. Two vertices v and w in a graph G are connected
if there is a path joining them, and their distance d(v,w)is the length of the

shortest path joining them.

Definition 1.21: A cycle of length n (or an n-cycle) is a closed walk of lengthn, n >
3, in which the vertices vy, vy, ..., V1 are all different, and it is denoted by C,,. A

graph is called acylic if it contains no cycles.

Definition 1.22: If the vertex set of a graph G can be split into two disjoints sets A
and B so that each edge of G joins a vertex of A and a vertex of B, then G is called

a bipartite graph.

Theorem 1.16: (Theorem 2.2 in [Wallis, 2007]) A graph is bipartite if and only if it

contains no cycle of odd length.

Definition 1.23: Two graphs G; and G, are isomorphic if there is a one to one
correspondence between vertices of G; and those of G, such that the number of
edges joining any two vertices of G is equal to the number of edges joining the

corresponding vertices of G,.

Definition 1.24: If G is a graph, it is possible to choose some of the vertices and
some of the edges of G in such a way that these vertices and edges again form a
graph, say H, then H is called a subgraph of G; one writes H < G. If U is any set of
vertices of G, then the subgraph consisting of U and all the edges of G that join two

vertices of U is called an induced subgraph, the subgraph induced by U.



Definiton 1.25: If the two graphs are G, = (V(G,),E(G,)) and G, = (V(G,), E(G,))
where V(G,) and V(G,) are disjoint, then their union G, U G, is the graph with
vertex set V(G,) UV (G,) and edge family E(G,) U E(G,). A graph G is connected
if it cannot be expressed as the union of two graphs, and disconnected otherwise.
Clearly any disconnected graph G can be expressed as the union of connected
graphs, each of which is a component of G, and the number of the components of G

is denoted by n(G).

Definition 1.26: A graph with n-vertices is said to be a complete graph if any two
vertices in the graph are adjacent and it is denoted by K,. A complete bipartite
graph is a bipartite graph with disjoint two vertices sets V; and V, such that any two
vertices in different sets are adjacent and we write K,, , to mean a complete

bipartite graph with m vertices in V; and n vertices in V.



2. BIPARTITE DIVISOR GRAPHS FOR INTEGERS SUBSETS

In this chapter we follow the paper of Iranmanesh and Praeger [Iranmanesh
and Praeger, 2010].

In this chapter we associate three distinct graphs to a set of positive integers
and discuss some of the combinaorial properties of these graphs such as the

number of connected components, the diameter and the girth.
2.1. Representing the Bipartite Graph as B(X)

Definition 2.1: Let X be a nonempty subset of positive integers. Then we define the

following two graphs with respect to the set X:

i) Prime vertex graph: This is an undirected graph whose vertex set is p(X) which
is the set of all primes dividing some element of X, and two such primes p, q are
joined by an edge if and only if pq divides some x € X. We denote this graph by
A(X).

ii) Common divisor graph: This is an undirected graph whose vertex set is
X*=X\{1} and two elements like x,y of X* form an edge if and only if
ged(x,y) > 1.

iii) Bipartite divisor graph: This is an undirected graph whose vertex set is the
disjoint union p(X) U X* and its edges are the pairs {p,x} wherep € p(X), x €

X* and p divides x.

Theorem 2.1: A bipartite graph G is isomorphic to B(X), for some nonempty set of
positive integers X, if and only if G is nonempty and has no isolated vertices, where

by an isolated vertex we mean a vertex which lies on no edge.

Proof 2.1: Suppose that G is a bipartite graph with vertex bipartition {V;|V,}. Let
Vi ={vy, v, ...,vn} and V, ={u4,uy,...,u,} where m=>1,n > 1. First of all,
suppose that G has no isolated vertices. Let p4,p,, ..., Pm be pairwise distinct primes,

and let M = {p4,p2,...,Pm}- Define a bijection f : Vi = M by f(v;) = p; for each

10



i=1,2,....,m. For 1<j<n define I; = {l|{vl,uj} € E(G)} and then set
Xj = ]_[lelj 'plj . Since there are no isolated vertices in G, it is clear that I; + @. Let
X ={xj|1 <j < n}. We claim that p(X) = M, if not, then there exists a prime
number p; € M \ p(X) and v; € V such that f(v;) = p;. Then for each 1 <j <n,
p; ¥ xj and hence i & I;, which implies that v; is isolated. Now {p;,x;} € E(B), the
edge set of B = B(X), if and only if p; divides x; = ]_[le,j plj, that is, if and only if
[ € I;, and this holds if and only if {v;,u;} € E(G). Thus extending f to a map
V(G) - V(B) by f (u;) = x;, for each j, defines an isomorphism from G to B(X).
Conversely, suppose that G = B(X) for some X. By the definition of a bipartite

graph we deduce that G has at least one vertex, so X # {1}. The fact that B(X) has

no isolated vertices now follows from its definition. m

Corollary 2.2: For a nonempty set X of positive integers such that X # 1, there
exists a second nonempty set Y of positive integers, and a graph isomorphism

¢ : B(X) = B(Y) that induces isomorphisms A(X) = T'(Y) and I'(X) = A(Y).

Proof 2.2: Let G = B(X) with vertex bipartition {p(X)|X*}. By the definition, G is
nonempty and has no isolated vertices. We can apply the proof of Theorem 2.1 to
the reverse bipartition {X*|p(X)}. This produces a nonempty subsetY of positive
integers and a graph isomorphism ¢ : G - B(Y). Therefore it induces a graph
isomorphism from A(Y) to the graph induced on the first part X* of the bipartition
(which by the definition of G is I'(X)) and a graph isomorphism from I'(Y) to the
graph induced on the second part p(X) of the bipartition (which by the definition of
GisA(X)). m

Thus if we wish to prove that a certain relationship holds between B(X) and
A(X), for all X and also between B(X) and I'(X), for all X, it is often sufficient to

prove only one of these assertions.
2.2. Relating the Parameters of B, A, I

Throughout the section let X denote a nonempty subset of positive integers

11



with X # {1}, so that X* # @. As mentioned above we simplify our notation and
write B = B(X), A= A(X), I’ =T (X).

Foru € V(B), let [u]p denote the connected component of B containing u,
and similarly define [u],, [u]r if u € V(A) oru € V(I') respectively. By diamater of
G, we mean the maximum distance between vertices in the same component of G.

We show this by diam(G).

Lemma 2.3: Let p,q € p(X) and x,y € X™ such that [plg = [q]g and [x]p = [¥]B-
Then,

i) dp(p,q) = 2dx(p, @), dp(x,y) = 2dr(x,y);
i) if p divides x and q divides y, then [plgz = [x]z =[p]aV [x]r and
dg(p,q) — dp(x,y) € {=2,0,2};
i) n(B) = n(A) =n(l'),
iv) either
ediam(B) = 2max{diam(A),diam(I")}, and |diam(A) — diam(I')| < 1, or
ediam(A) = diam(I') = l(diam(B) —1).

2

Proof 2.3: Let p,q € p(X) and x,y € X™ such that [p]g = [q]p and [x]g = [V]5-

i) Suppose that dy(p, q) = k. There exists a shortest path P, = (pg, P1,---,Px) in
A with p = py and q = p,. Now {p;,pi+1} is an edge of A if and only if
dg(pi,Pi+1) = 2, and so there exists a path Pz = (pg, X1,P1,+++»Xk-1,Px) in B
of length 2k. Thus dg(p,q) < 2k, and as p and q are in the same part of the
bipartition of B, we have dg(p,q) = 2l < 2k. If Py = (pg, X1, P1, -, X[, D) is a
shortest path in B with p = p; and q = p;, then Py = (pg, vy, -, b}) is a path of
length Lin A, so k = dx(p,q) < L. Therefore dg(p, q) = 2k = 2d(p, q). We can
write a similar proof to show that dg(x,y) = 2d,(x, y).
i) Suppose that p divides x and q divides y. Let Py = (po,X1,P1,---, X1, P1) be
the shortest path in B with p = p, and q = p;. Then we have three cases:

e Case 1: If Pg can be chosen with x; = x and x; = y, then it is clear that

dg(p,q) —dg(x,y) = 2. Let Py = (xg,p1, )Pk, X1, ) be a shortest path in
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B with x = xy and y = x;,. We must have p; # p and p, # q otherwise
dg(p,q) < dg(x,y) which contradicts the minimality of Pg. Now Pg =
(0, %4, P1s - Pr>» Xk, q) is a path of lenght k + 2 between p and q in B. This
implies that dg(p,q) < dg(x,y) + 2. Thus dg(p,q) —dg(x,y) < 2. Hence
we have the equality occurs.
e Case 2: Suppose that only one of these equalities holds. We may assume
that x; =x and x; # y. Now it is clear that dg(x,y) <dp(p,q). Let
Pg = (x4, P1, -, Pr» X1) be a shortest path in B with x = x, andy = x;, and
assume that dg(x,y) < dg(p,q). So none of p and q can be in Pg. It follows
that dg(p,q) < dg(x,y) + 2, hence dg(p,q) =dg(x,y) +2. So we can
choose Pz with x; = x and x; =y, but it contradicts with our assumption,
thus dg(p, q) = dp(x,y).
e Case 3: If Py can be only chosen with x; # x and x; # y, then dg(x,y) —
dg(p,q) = 2. This proves that dg(p,q) —dg(x,y) € {—2,0,2}, and all cases
are possible. Moreover in this case, by assumption, the component [p]g
contains all of p, q, x, y and the fact that [p]g = [p]a U [x] follows from the
proof of part i).
iii) It follows from the statement in part ii) about components.
iv) Let m = max{diam(A),diam(I")}. It follows from part i) that diam(B) =
2m. Let M :=diam(B). Assume v, w € V(B) such that dg(v,w) =M. If v
and w are both in p(X) (or both in X*), then M = dg(v,w) = 2d,(v,w) <
2diam(A) < 2m (respectively, M < 2diam(I") < 2m) and in either case we
conclude that M = 2m. Now assume that v € p(X) and w € X*. Since they are
in distinct partitions, we conclude that M is odd and hence M = 2m + 1. Let
p € p(X) be the vertex adjacent tow and Pz be a path of length M between v
and w. By the definition of M it is clear that a path from p to v inside Py is
the shortest path between these two vertices, hence by part i) we deduce
that dg(v,p) = 2d,(v,p) = M — 1 which is at most 2diam(A). By a similar

discussion we can see that M < 2diam(I") + 1. Thus diam(A) = diam(I') =

M-1
2

Now assume that diam(B) = 2m. Let j:=diam(A) and let p,, p; € p(X) be
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such that dA(pO,pj) = j. Then by part i), there exists a path Py of length 2j in B
from po top;. Let xo, x; be vertices on Py adjacent top, and pj, respectively.
Then the path inside Py from x, to x;j of length 2j — 2 is a shortest path in B
between two vertices. Thus dB(xO,x]-) = 2j — 2. By part i), dr(xo,xj) =j—1
and therefore we have diam(I') = diam(A) — 1. A similar argument shows that
diam(A) = diam(I') — 1. Hence |diam(A) — diam(I')| < 1 which completes

the proof of the last assertion of the first part. m

For any nonempty subset K C {B,A, '} there exists a nonempty set X of
positive integers such that the graphs in K are acyclic. Examples of subsets are
provided in Table 2.1 for the seven nonempty subsets of K of {B,A, '}, and if
X =X, U X3 U X,, with the X; as in Table 2.1, then all three graphs contain cycles.
Note that K7 denotes the complete bipartite graph B = B(X) with [p(X)| = m
and |X*| = nand if G and H are graphs, we use the notation G + H to show the

graph with connected components G and H.

Table 2.1: lllustration of acyclic possibilities for B, A, I'.

g(G).

i X; B A r

1 {2} K, K, K,

2 (2,4,8} Kis K, K,

3 {105} K7 K, K,

4] {11.13,11%.13} C. K, K,

5 X, U X, Kis + Ksq K, + K, K, + K,
6 X, UX, Kiz+Cy K, + K, K,+K,

7 X;UX, Ks7 + Cy K, + K; K, + K,
8| X,UX3UX, |Kiz+Ksg+Cy|Ki+KotKs | Ky + Kp+Ks

The girth of a graph G is the length of its shortest cycle and is denoted by
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Lemma 2.4: Suppose that B contains a cycle of length greater than 4. Then each

of Aand I' also contains a cycle. Moreover, for ® € {A,T'}, either g(®) =3 or
g(d) = % g'(B), where g'(B) is the minimum length of cycles of B with more than

four vertices.

Proof 2.4: Since B is bipartite and by Theorem 1.16 we have g'(B) = 2k for some
k > 3. Let Py = (p1,X1,---,Pk, Xx) be a closed path of length 2k in B such that
pi € p(X) and x; € X*. By the definition of B, p; divides x; and x;_4, fori =1, ..., k,
reading the subscripts modulo k. Hence there exist closed paths of length k in both
A and I'. This implies that both A and I" contain cycles and g(A) < k, g(I') < k.

If g(A) =1 < k, then there exist a closed path Py, = (p1,p3, ..., P;) in A. By the
definition of A, for all i, there exists x; € X* that is divisible by p; and p;,,, reading
subscripts modulo l. If the x;’s are pairwise distinct, then Pg = (p1,x1,..., P}, X])
is a closed path in B of length 2l. Since 6 < 21l < 2k = g(B), we obtain a
contradiction. Hence x;’s are not all distinct. Let i, j be such that 1 <i<j <l
and x; = x;. Then we have in A the induced subgraph on the set {p{,p;,1, P}, Pj+1}
is a complete graph (of order 3 and 4) and hence | = g(A) = 3. So either g(A) = 3
or g(A) = k. A similar proof shows that either g(I') = 3 or g(I') = k (also one may

use Corollary 2.2). m
2.3. Subgraphs of B, A, I’

Theorem 2.5: At least one of A, I' contains a triangle that is 3-cycles if and only if B

contains Cg or K; 3 as an induced subgraph.

Proof 2.5: First suppose that g(I') = 3 and let Pr = (xq, X, X3) be a cycle of length
three in I'. If there exists a prime p which divides x;, for all i = 1,2,3, then the set
{p, x1, X2, x3} induces a subgraph K, 3 of B. So we may assume that no such prime
exists. Since Pr is a cycle in T, there are distinct primes p;, p,, p3 such that, for
each i, p; divides x;_; and x;, writing subscripts modulo 3. Now it is clear that
{p1, X1, P2, X2, P3, X3} induces a subgraph Cg of B. Thus g(I') = 3, we deduce that B
contains an induced subgraph isomorphic to either Cg or K, 3. By Corollary 2.2, if
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g(A) = 3 verifies that B contains an induced subgraph isomorphic to either Cg or
K 3.

Conversely, if {p1,x1,P2,X2,P3,%X3} induces a subgraph Cqin B, where p; €
p(X) and x; € X*, then (pi,p2,p3) and (xq,x,,x3) are 3 -cycles in Aand I
respectively, so g(A) = g(I') = 3. Similarly if B contains an induced subgraph K 3,

then at least one of A, I' contains a triangle. This completes the proof. m

Theorem 2.6: Both the graphs A and I' are acyclic if and only if each connected

component of B is a path or a cycle of length 4.

Proof 2.6: First suppose that A, I" are both acyclic. If some vertex of B lies on at least
three edges, then one of A, I' contains a 3-cycle, which is a contradiction. Thus each
vertex of B lies on at most two edges in B. Since B is bipartite, we conclude that
each connected component of B is a path, or a cycle C, of even length 2k > 4.
Furthermore, in the case of a component C,, it follows from Lemma 2.4, we
conclude that k = 2.

Conversely, suppose that each component of B is a path or isomorphic to C,.
For a component C, of B, the corresponding component of A, I' is isomorphic to K.
Consider a component B’ of B which is a path. Suppose that Py, = (p1,02,---,P1) is a
cycle in the corresponding component of A of length | = 3. By the definition of A, for
each i, there exists x; € X* which is divisible by both p; and p;, 1, reading subscripts
modulo L. If x;’s are pairwise distinct, then Pgr = (pq,X4,...,P1, X1) is a cycle in B,
which is a contradiction. Hence there exist i, j such that 1 <i < j < land x; = x;.
This verifies that x; is joined to at least three vertices in B', which contradicts the
fact that B' is a path. Hence the component of A corresponding to B' is acyclic. A
similar proof shows that the component of I' corresponding to B’ is also acyclic (also

one may use Corollary 2.2). m

Corollary 2.7: Both graphs A and I are trees (i.e connected acyclic graph) if and only

if either B is a path or B = C,.

Proof 2.7: The result follows from Theorem 2.6 and part iii) of Lemma 2.3. m
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3. THE STRUCTURE of FINITE GROUPS of CONJUGATE
RANK 2

In this chapter we will follow the paper of Dolfi and Jabara [Dolfi and Jabara,
2009].

Let G be a finite group. If g is an element of a group G, then we denote by g°
the conjugacy class of g in G and |g%| which shows the size of this conjugacy class,
is the positive integer [G : C;(g)]. Let cs(G) denote the set of the sizes of the
conjugacy classes of a finite group G. The number of the distinct sizes of the
noncentral conjugacy classes of G is |cs(G)| — 1 and is called the conjugate rank of
G. Clearly, a group has conjugate rank zero when it is abelian. In this chapter, we
discuss the structure of the groups of conjugacte rank two.

If nis a positive integer and pis a prime, then by n, and p’ we mean the
largest power of p dividing n and the set of the primes different from p,

respectively. Now it is clear thatn, = [I4ep' nq the integer n/n,,.
3.1. A Normal p-Complement of G when G/F is a p-Group

Lemma 3.1: Let G and H be groups. We have the following properties:

i) cs(G X H) = {abla € cs(G),b € cs(H)}.

i) If x,y € Gcommute and gcd(|x|,|y]) =1, then C;(xy) = Cs(x) N Cs(y)
and so |x%| and |y|° divide |(xy)€|.

i) If Nis a normal subgroup of G andx € N, then |x"| divides |x%|. Also if
y € G, then |(yN )¢/N| divides |y¢]|.

Proof 3.1: Let G and H be groups.

i) Let (g, h) be an arbitrary element of G X H. By the definition we have

(g, W ={(g'"", K" (g, Mg’ M)|(g' k') € G x H}

_ = 3.1
— {(g" gg", k" hR)| (g, ) € G x H} = (gF, ki), 3.1
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Now it is clear that cs(G X H) = {abla € ¢s(G),b € cs(H)}.

i) If x,y € G commute and gcd(|x|,|y|) = 1, then (xy) = (x){y). Thus it follows
that C;(xy) < Cq(x) N Cq(y). The other inclusion is trivial.

i) Let N be a normal subgroup of the group G. Assume that x € N. It is clear that
Ce(x) NN = Cy(x). As N is normal, we conclude that NCg;(x) is a subgroup of G

and we have:

INIICs ()| _ INIICs ()]

INCe(x)| = = . (3.2)
¢ INNCe()l [Cy@)]
Ny — _INI _ INCg(x)| :
Thus |x"| = TRk On the other hand C;(x) < NCq(x) < G. This

verifies that

x| =[G : Co(x)]

=[G : NC;(O)IINC(x) : Co(0)] = [G : NCo(0)]1x"]. (3:3)

Hence |x"| divides |x%|. Let G :=G/N, and for each subgroup K of G, let
K =KN/N. Assume that y € G. Since C;(y) S Cz(¥), we have |y%| =
[G:C:z(3)] divides [G:C;(y)] =[G : NC;(y)]. It is clear that [G : NC;(y)]
divides [G:C;(y)] = |y€|. Thus |(yN )/N| divides |y©|.m

Theorem 3.2: Suppose G is a group and H is a subgroup of G. Then we have

[Ugec H| <161 =[G : H] + 1 (3.4)
where H9 = {g~*hg|h € H} forany g € G.

Proof 3.2: The number of different conjugates of H in G is [G : N;(H)], so

|Ugec HY| < (IHI — DIG : Ng(H)] + 1

<(HI-D[G:H+1=cI-[¢:uj+1 O

where the second inequality is obtained from the fact [G : N;(H)] < [G : H]. m
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Lemma 3.3: Let p be a prime and let P be a Sylow p-subgroup of the group G. Then
p does not divide any n € ¢s(G) if and only if P is abelian and G = P X H for some
H < G.

Proof 3.3: Suppose that p does not divide any conjugacy class sizes of G, that is
p t|gC| foreach g € G. Thus |G|, = |Cc(g)], forany g € G, so every element of G
centralizes some Sylow p-subgroup of G. Hence G = Ugeg Cq(P9) = Ugeg C(P)?

and by Theorem 3.2 we have

1G] = |Ugee Cc(P)?]| < 1G| =[G : Co(P)] + 1. (3.6)

It follows that C;(P) = G so P is abelian and P 2 G since C;(P) < N;(P). By
Theorem 1.1, P has a p-complement in G, say H, therefore G = P X H. Conversely,
P € Syl,,(G) and by part i) of Lemma 3.1 we have cs(G) = cs(H) as P is abelian, so

the result follows. m

Theorem 3.4: Let G be a finite group and H a p-complement subgroup of G with
H < Z(G) where p is a prime divisor of the order of G. Then n,,(G) = 1.

Proof 3.4: Take any P € Syl,(G), then G = HP since H is a p-complement. As
H < Z(G), H is also in Ng(P), hence G = Ng(P). ThatisP 2 G,son,(G) =1. m

Lemma 3.5: Let G be a group and F = F(G). Assume that G /F is a p-group for some

prime p. Let L be a normal p-complement of G. Then the following properties hold:

i) Ce(L) £ F;

i) if exp(G/F) = p, then there exists a g € L such that C;(g) < F;

iii) assume that exp(G/F) = p and that there exists a normal subgroup Z of G,
such that Z < L and C;(y) < F foreveryy € L\ Z. Then |G/F| = p.

Proof 3.5: Let G be a group. Assume that G /F is a p-group for some prime p where
F = F(G).
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i) Since L 2 G, we have N;(L) = G and Theorem 1.12 verifies that N := C;(L) 2
G. It is clear that Z(L) = LN C;(L) = L N N. As L is a normal p-complement of

G, we deduce that Z(L) = LN < N and p t |Z(L)|. On the other hand, ~= =

N
NNL'

N _ N

This implies that Z0 = WaL

is a p-group, so gcd([N : Z(L)],|1Z(L)|) = 1.

Hence Z(L) is a normal p-complement of N. As Z(L) < Z(N), by Theorem 3.4
we deduce that N has a unique Sylow p-subgroup P, so P char N. Since N is a
normal subgroup of G, we conclude that P 2 G, soP < F. It is obvious that
Z(L)<F.ThusN = Z(L)P < F.

ii) We work by induction on |F|.

First suppose that ®(G) # 1 and let G := G/®(G). As F(G) = F/®(G), we

have |F(G)| < |F|. On the other hand, FL_G_)

~

e

is a p-group. If exp(G/F) = p,
then exp(G/F(G)) = p. Now by induction we deduce that there exists an
element g of L such that C¢(g) < F(G) and this will happen if and only if
C;(g) < F. So without loss of generality we may assume that ®(G) = 1. As
®(F) < d(G), we have ®(F) =1 which implies that F' =1 (since F' <
®(F) = 1). Since F is abelian, it has a Z-module structure. Also, it is easy to see
that P = G/F acts on F by conjugation, so F is a ZP-module. From now on
instead of a ZP-module, we simply write a P-module. Since ®(G) =1, by
Theorem 1.14 we deduce that F is completely reducible and faithful P-module.
Further, P acts faithfully on L because C;(L) < F by part i). Now we claim that
there exists an element g of L such that Cp(g) = Cp(L) = 1. IfL is reducible,
then there exist nontrivial P-modules L, and L, such that L = Ly X L,. Since L is
a p-compement of G, it is clear that LF = F, which implies that L < F. We have
G = LQ where Q € Syl,,(G), soG = LQ = FQ. Now we deduce that 0,(G) =
QNFandG/F =Q/(QNF)=Q/0,(G). Let G; = L;Q, i = 1,2. We claim that
G; has the properties of G.

Similar to the above part, we can see that 0,(G;) = Q N F(G;) and G;/F(G;) =
Q/(Q NF(G;)) = Q/0,(G;) foreachi € {1,2}. Now we have:
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Q

G; - Q 0 - 0,(G) .
F(G) ~ QNnF(G) 0,(G) ~ 0,(G) (3.7)
0,(G)

Thus %has exponent p. Since |F(G;)| < |F(G)|, by inductive hypothesis we

conclude that there exists g; € L; for i = 1,2 such that Cp(g;) = Cp(L;) .

Considering g = g19,, then

Cp(g) = Cp(g1) N Cp(92) = Cp(L1) NCp(Ly) = Cp(L) = 1. (3.8)

Therefore we can assume that L is an irreducible P-module. Observe that P does
not have any Cy ¢ C, section, because exp(P) = p. Hence by Theorem 1.10, P
has a regular orbit in its action on L, that is there is a g € L such that Cp(g) = 1.
i) We first show that P := G /F acts fixed point freely on L/Z, which means P
actsonL/Z and C,,;(P) =1.Llet yZ € L/Z suchthatA = Cp(yZ) # 1. A< P,
thus the action of A on L is coprime and Z is an A-invariant subgroup of L such
that (yZ)? = yZ. Hence by Theorem 1.3 there exists an element y, € C,(A) such

that yZ = yoZ, so C;(yo) * F and hence y, € Z and yZ = Z. Consequently, P
acts fixed point freely on L/Z. This implies that M = %x P is a Frobenius group

with the Frobenius kernel L/Z and the Frobenius complement P, from Theorem
1.9, P is either cyclic or generalized quaternion. However, P has exponent p, so
|P|=|G/F|=p. =

3.2. Maximal p-Defect

A group G is metabelian if it has a normal abelian subgroup K with G /K

abelian.

Theorem 3.6: (Theorem 1 in [Higman, 1957]) Let G be a solvable group all of whose

elements have prime power order. Let p be the prime such that G has a normal
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p-subgroup greater than 1, and let P be the greatest normal p-subgroup of G. Then

G /P is one of the following groups:

i) A cyclic group whose order is a power of a prime other than p.

i) A generalized quaternion group , p being odd.

i) A group of order p®q® with cyclic Sylow subgroups, q being a prime of the
form kp® + 1.

Thus G has order divisible by at most two primes, and G /P is metabelian.

Theorem 3.7: (Chapter IX Theorem 4.3 in [Huppert and Blackburn, 1982]) Suppose
that G is a p-solvable group of p-length | and that p® is the exponent of a Sylow

p-subgroup of G.

i) | < e, provided that one of the following three conditions hold:
e p is odd and p is not a Fermat prime.
e p is a Fermat prime and the Sylow 2-subgroups of G are abelian.
e p = 2 and the Sylow q-subgroups of G are abelian for every Mersenne prime
q.

i) If pis a Fermat prime, | < 2e.

Proposition 3.8: Assume that every element of the solvable group G has prime order.
Then there exists a normal p-subgroup P of G such that exp(P) = p and either
G =Por|G:P]=gq, wherep and q are distinct prime numbers. Moreover, if

P < G, then G is a Frobenius group with kernel P.

Proof 3.8: It is well known that a minimal normal subgroup of a solvable group is an
elementary abelian p-group for some prime p. Thus there exists a prime p such
that P := 0,(G) > 1. Since every element of G has prime order, we deduce that
exp(P) =p. If P < G, then by Theorem 3.6 it follows that either |G/P| = q or
|G/P| =pq for a primep # q. If |G/P| =pqand G/P is abelian, then G/P is a
product of normal cyclic Sylow subgroups which means G /P is cyclic. As every

element of G has prime order, we have |G /P| is a prime number which contradicts
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our assumption. Thus G /P is nonabelian. Now Theorem 1.11 verifies that 1,,(G) = 2
where 1,,(G) is the p-length of G. As the Sylow p-subgroups of G has exponent p
and the Sylow q-subgroups of G are abelian, by Theorem 3.7 we have L,(G) = 1
which is a contradiction. Thus, |G/P| = q. Therefore there exists an element x € G
such that G = P % (x). Since G does not have an element of order pq, by Theorem

1.8 we conclude that G is a Frobenius group with kernel P. m

It turns out to be useful to have a notation for the set of the elements of
“maximal p-defect” of the group.

Let G be a group and let p be a prime number. We define

e m,(g) = max{ICG(x)|p|x EG \Z(G)} and

e My(6) ={g € G\ Z(G)|ICc(], = my(6)}.

Lemma 3.9: Let N be a normal subgroup of G and assume that p does not divide

IN|. If g € M,(G) and gN & Z(G/N), then gN € M, (G/N).

Proof 3.9: Write G := G/N and use the bar convention. We claim that, for every
x €G\Z(G), there exists a y € G\Z(G) such that y =X and |C;(y)l, =
|Ce(X)|p. Let D < G such that D = C;(x) and consider a Sylow p-subgroup P of D.
Clearly P acts coprimely on N by conjugation as gcd(|P|,|N|) = 1. For each y € P
it is clear thaty € C;(x), so we have (Nx)Y = Nx¥ = Nx. By Theorem 1.3 there
exists an element y, € C;(P) such that y, = X. Hence P < C;(y,). Let Py be a
Sylow p-subgroup of Cg;(y,) such that P < P,. As P, centralizes y, = X, we have
P < P, <D. Since P is a Sylow p-subgroup of D, it follows that P, = P. We have
|P1| = |PAN/N| = |Py| since P, N N =1, thus |Cc(¥o)lp = |P1] = |P| = [Ca(D)]p-
Finally, yo & Z(G), asy, = x & Z(G).

In particular, x € Mp(é). So there existsa y € G \ Z(G) such that y = X and
[Cc|p = Ce(X)|,. Thus mp(G_) <my(G). Let g € M,(G) and assume that
g € Z(G). Then |Cz(§)|, <m,(G). IfPis a Sylow p-subgroup of C;(g), then
my,(G) = |P| = |P| because N NP = 1. As P < C;(g), we conclude that

23



Hence, m,,(G) = m,(G) and g € M,(G). m

Lemma 3.10: Let G be a group and P, be a Sylow p-subgroup of C;(g) where
g € My,(G). If P is a p-subgroup of G such that Py < P, then Cp(P;) < P,.

Proof 3.10: Let x € Cp(Py). If x € Z(G), then x € 0,(Z(G)) < P,. So we can
assume x & Z(G). As (Py,x) < C;(x), then |(Py,x)| < m,(G) = |Py| and hence

X €EP, m
To prove next proposition we need Thompson’s P X Q-Lemma.

Theorem 3.11: Let A = P X Q be the direct product of a p-group P and a p'-group
Q and A acts via automorphism on a p-group G. Suppose that C;(P) < C;(Q). Then

Q acts trivially on G.

Proposition 3.12: Let G be a p-solvable group and g a p'-element of G. If g €
M,(G), then g € 0,/ (G).

Proof 3.12: We proceed by induction on |G|. If 0,/(G) # 1, then let G = G/0,(G)
which is a p-solvable group. Assume that g € M,,(G). If g € Z(G), then {g)is a
normal subgroup of G. This implies that {g)is a normal p'-subgroup of G. Thus
g € 0,/(G). So we may assume that g & Z(G). Now by Lemma 3.9 we conclude
that 0,,(G/0,/(G)) = 1. The inductive hypothesis implies that § € 0,/(G) = 1, so
g € 0,/(G). Thus without loss of generality we may assume that 0,,(G) = 1. Let P,
be a Sylow p-subgroup of C;(g) and let P = PyL, where L = 0,(G). Then Py X (g)
acts on P and by Lemma 3.10 it is clear that Cp(Py) < P,. By Theorem 3.11 (g)
acts trivially on P, so g centralizes P. In particular g centralizes L. Since OPr(G) =1,

we have C;(L) < L. Henceg = 1. m
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3.3. Groups of Conjugate Rank 2

Proposition 3.13: Let G be a solvable group. Assume that there is an element
m € ¢s(G) \ {1} such that m divides everyn € c¢s(G) \ {1}. Then every g € G such
that |g%| = m belongs to F(G).

Proof 3.13: Let g € G such that |g%| =[G : C;(g)] = m. By assumption |Cg(x)|
divides |Cg(g)| foreach x € G \ Z(G). Hence g € M,,(G) for every p € m := m(G).
If || =1, then G is a p-group, which implies that G is nilpotent and G = F(G). So
we can assume that || = 2. We write g = [14er 94, where each g, is a q-element
and a power of g; this can be done as (g) is the product of its Sylow subgroups.
We prove that g, € 04(G) for each q € m. If g, € Z(G), then (g,)is a normal
nilpotent q-subgroup of G, so {(gq) < 04(G). If g4 € Z(G), then by Lemma 3.1
C6(9) = Ngen Cs(9q)- Hence C(g) = C(gy) since |Ce(gq)| divides |Cq(g)|. Thus
9q € My(G) for allp € m. Now Proposition 3.12 verifies that gq € Npzq 0,/(G) =
04(G). Therefore g € [14en 04(G) = F(G). m

For a group G, G is abelian if |cs(G)| = 1. If we have |cs(G)| = 2, then G is
nilpotent [It6, 1953]. In addition, if |cs(G)| = 3, then G is solvable [It6, 1970]. Thus

we have the following theorem in general we have the following remark.
Remark 3.14: If G is a group with |cs(G)| < 3, then G is solvable.

Now the following theorem is proved by Isaacs [Isaacs, 1970].

G|:

Theorem 3.15: Let N be a normal subgroup of a group G. Assume that |x ly¢|

forallx,y € G\ N. Then one of the following occurs:

i) G/N is cyclic and G has an abelian Hall 1 -subgroup and a normal
nm-complement, where m = (G /N) is the set of the prime divisors of |G /N|;

i) Every nonidentity element in G /N has prime order.
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Theorem 3.16: Let G be a group such that cs(G) = {1, m,n}. If m divides n, then
either [G : Z(G)] is a prime power or there exists an abelian normal subgroup of

prime index in G.

Proof 3.16: Assume that [G : Z(G)] is not a prime power. To prove that there exists
an abelian normal subgroup of prime index in G, we work by induction on |G|. By

Remark 3.14 we have G is a solvable group. Let Z := Z(G) and F := F(G).

|Gl

Let a = TGI’)d b= % Then, for every g € G\ Z, |C;(g)| is either a or b.

By assumption, we conclude that a divides b. We can assume that a, < |G|, for
every prime divisor r of |G|. If not, there exists a prime divisor r of the order of G
such that |G|, = a, = b, and hence r does not divide either m or n. Hence by
Lemma 3.3, we have G = H X R, where R is the normal abelian Sylow r-subgroup
of G. Now Lemma 3.1 implies that cs(G) = c¢s(H). Since Z(G) = Z(H) X R, we
deduce that [H : Z(H)] =[G : Z] is not a prime power. Because of |H| < |G|, by
inductive hypothesis, there exists an abelian normal subgroup B of prime index in
H. Thus A = B X R is an abelian normal subgroup of prime index in G as [G : A] =
[H : B].

Let a(G):={g € G||C;(g)| =a} and b(G):={g € G||C;(g)| = b}. We

proceed by the following series of steps:

i)®+G\F < a(G):

By the assumption, G is a disjoint union of the subsets Z, a(G) and b(G). As G is
solvable and m | n, Proposition 3.13 implies that b(G) € F. Since Z < F and G is
the disjoint union of Z, a(G) and b(G), we have G \ F S a(G). Finally we claim
that F < G. In fact, if G is nilpotent, then G = ]_[?=1 P;, where P;,P,, ..., P, are
the distinct Sylow subgroups of G and therefore we have the set cs(G) =
{I1k; |k; € cs(P;),i = 1,2, ..., h}. Since cs(G) < 4, it follows that G has just one
noncentral Sylow subgroup, otherwise if i +# j and P;, P; are two distinct
noncentral Sylow subgroup of G, then there exists x € P; andy € P; such that
l=|xPi|#1and k =|y"i| #1s0 L,k € cs(G) \ {1} and gcd(l, k) = 1 which

contradicts our assumption. Thus G has just one noncentral Sylow subgroup.
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Hence [G : Z]is a prime power against our assumption. Thus F < G and so
@+G\F < a(G).

i) There exists K < G such that F < K and K /F is a p-group of exponent p, for
a suitable prime divisor p of |G/F|. Further, if K < G, then [G : K] = q, withq
is a prime, q # p, and C;(x) < K forevery x € K \ F:

By part i), it is clear that|g%| = n for every g € G\ F. Now we can apply
Theorem 3.15. First suppose that is G/F is cyclic and G has an abelian Hall
m-subgroup and a normal T-complement, withm = (G/F). Then the Sylow
r-subgroups of G are abelian for every prime divisor r of |G/F|. Let x be
an r-element of G \ F for such a primer, so there exists an abelian Sylow
r-subgroup of G like R such that x € R. This implies that R < C;(x). Also by
part i) we have a = |Cs;(x)|. Thus a, = |Cz(x)|, = |R| = |G|, which is a
contradiction (since we assumed that a, < |G|,). Hence by Theorem 3.15, we
deduce that every nonidentity element of G /F has prime order. So by Proposition
3.8, there exists K/F 2 G /F such that K /F is a p-group of exponent p for some
prime divisor p of |G/F|. Further, if K/F < G/F, then G/F is a Frobenius group
with kernel K/F and complement of prime order q # p. Thus, if K < G, then
[G : K] =qand Cs(x) < K forevery x € K \ F since Cg/p(xF) < K/F.

iiif) We write F =P XL, where P is a Sylow p-subgroup of F and L is a
p-complement of F. Then a, < |P|:

Note that F is nilpotent, so the direct product F = P X L has meaning. Let K be
the normal subgroup as in part ii). Since F (K) is characteristic in K, by normality
of K in G, we deduce that F(K) 2 G so F(K) < F. Therefore F = F(K). AsK/F
is a p-group of exponent p and L a p-complement of F, we conclude that L is the
normal p-complement of K. Hence by part ii) of Lemma 3.5, there exists an
element g € L such that Cx(g) < F. Now [G :K]=1or [G: K] =q, where
q # pis a prime. Since L is a normal p-complement of K, we conclude that for
any Q € Syl,(K), Q <Cx(g) <F, soQis a Sylow subgroup of F. Hence
|Q| = |P|. Since g € a(G) U b(G) and a | b, we conclude that |C;(g)|, = |P| =
ap.
iv)® # P\ Z, € b(G), where Z, = Z N P:
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Since K/F is a nontrivial p-group, we can fix a p-elementx € K \ F. First we
show that P\ Z, # @. If P\ Z, = @, then P < Z. This implies that (P,x)is a
p-subgroup of C;(x). However by part i), we know that |C;(x)| = a. On the
other hand, by part iii) we have [(P,x)| = [(P,x}|, < |Cc(X)|, = a, < |P|. This
implies that (P, x) = P which contradicts our assumption. Therefore P \ Z,, # .
Let x, be an arbitray element of P \ Z,,. Assume that x, € a(G). AsF =P X L
and |Cs(xo)| = a, we conclude that L < Cg(xo) and |L| =|L|,y < a,r. As
x € K\ F, part i) verifies that a,,, = |C;(x)|,r and by part ii) we have Cg(x) <
K. So Cx(x) = KN Cg(x) = Cs(x). Now we deduce that a, = |Cq(x)|, =
|Cx(xX)|,. Since L is the normal p-complement of K, we obtain |L| < a, =
|Ck ()| = [Ck(x) NL| < |L|. Thus Cx(x)NL =L, which implies that x
centralizes L. Now part i) of Lemma 3.5 verifies that Cx (L) < F, so x € F which
is a contradiction. Therefore P \ Z,, < b(G).

v) b, = |G|, and then m is a power of p:

By part iv), we know that P\ Z, # @, so there exists a nontrivial element
x € P\ Z,. Since L centralizes P, we deduce that L < C;(x). Thus |L| divides
|Cs(x)| = b. Since gcd(p,|L]) =1, we conclude that |L| = |L|, divides b,,.
Assume that b,y < |G|, Let K be the normal subgroup in part ii). Then either
[G: K] =4q, where qis a prime and q # p, or G =K. First suppose that
[G: K] =gq. Since [K:L] =[K:F][F:L]is a power of p, we have |G|, =
q|L|. On the other hand, if G = K, then |G|, = |L| so b, = |Cs(x)]|, divides
|G|,» = |L|. Hence in both cases b, = |C;(x)|, divides |L|. So we deduce that
|L| = b,. Therefore, for every xo € P\ Zp, L is a p-complement of Cg(xo).
If G =K, then clearly C;(xy) <K =G. So assume that [G: K] =q. Then
[Co(xo)K : K] is either 1orq. If it is one, then we have C;(xy) < K. Now
assume that [C;(xo)K : K| = q. This implies that C;(xq)K = G. Since L <
Cs(x0) is a p-complement and x, € b(G), we can easily see that q = 1 which is
impossible. So all together, we have C;(xy) < K. Now consider u € G \ K. By
part ii) it is clear that Cx(u) < F. Also by part i) we have u € a(G) since
u € G\ K. Since Syl,,(G) = Syl,(K), we deduce that |C;(u)|, = |Cxk ()], =
|Cx(uw) NPl as Cx(u) < F. On the other hand, if |Cp(u)| # |Z,|, then there
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exists x € P\ Z, such that x € Cp(u). This implies thatu € C;(x) < K which
contradicts our hypothesis, so |Cp(u)| = |Z,| and we have a, = |Cs(u)|, =
|Cp(w)| = |Z,|. Finally, choose ap-element x € K\ F. Then x € a(G) and
a, = |Ce(X)|p = {Zp, x)| > |Zp|, which is a contradiction. Thus b, = |G|,

vi) Forevery y € L\ Z(L), we have Cx(y) < Fandy € a(G):

Let y € L\ Z(L). Clearly, y & Z. If y € b(G), then by part v), it is clear that y
centralizes some p-complement H of G, and hence y centralizes L < H, which
contradicts our hypothesis that y & Z(L). Thus we have y € a(G). As P < C;(y),
then part iii) yields that P is a Sylow p-subgroup of C;(y). Since K/F is a
p-group and Cx(y)F /F is a subgroup of K /F such that

CK(y)F‘ _ GOy _ P _
Fol, GO [Pl

(3.10)
we conclude that Cx (y)F /F is the trivial subgroup, so Cx(y) < F.

vii) L is abelian:

Assume that Z(L) < L. Since F = F(K), by part ii) and part iii) we conclude that
K/F is a p-group of exponent p, L is a normal p-complement of K such that
Cx(y) < F foreach y € L\ Z(L). Now Lemma 3.5 implies that |K /F| = p.

We have L \ Z(L) is nonempty. Also by part vi), we conclude that L \ Z(L) <
a(G). Therefore part iii) (or a,, < |G|,) yields that a,, = |P|. Since a | b, we have

ayb, = |P||G|, = I%divides b. As b < |G| we deduce that b, = a,, = |P|.

Let Z,y =Z N L. Assume that w € L\ Z,,. Then we have |C;(w)|, = |P|. Since
P centralizes w and K /F is a p-group, we deduce that Cx(w) < F.

Now let x € K\ F. We claim that C,(x) = Z,, otherwise there exists an

p's
element a € C;(x) such thata € L\ Z,. Then by the previous paragraph,
Ck(a) < F and so x € F which is impossible. By part ii) we have C;(x) < K since
x € K\F. AsLis the normal p-complement of K, we obtain |Cs(x)|, =
[Ck ()] = |CL(x0)] = |Zpr|.As, by part i), x € a(G), we conclude that a, =
|Z,|. Finally, consider y € L'\ Z(L). By part vi), we can observe that y € a(G).

Since y & Z,,1, we obtain that a, = |Cc(V)|,r = | (Z,, ¥ > |Zyy| which is a
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contradiction.

viii) F N a(G) = @:

Assume that there exists a g € F N a(G). By part vii), L is abelian. AsF = P X L,
we have L < Z(F). Since Z(F) < C;(g), we deduce that |L| divides a,. Let
x € K \ F. Now by part i) we have x € a(G) and by part ii) we have C;(x) < K.
Therefore a, = |Cx(x)|, = |C,(x)|, because L is the normal p-complement of
K. It follows that x € Cx (L), which contradicts part i) of Lemma 3.5.

ix) Conclusion: F is abelian and [G : F] = p:

By part i) and part viii), we know that F \ Z € b(G). It should be mentioned that
L is not contained in Z, otherwise there exists an element g € L such that
Cx(g) = K. Now by part ii) of Lemma 3.5, we have Cx(g) < F, so K = F which
is a contradiction. By part iv), P is also not contained in Z. Letx € P\ Z and
YyEL\Z. Then C = C;(xy) = Cs(x) N Cq(y) since x and y commute with
ged(|x|, |y]) = 1. Asx,y € b(G), xy must be in F \ Z. This implies that xy €
b(G),so C = Cs;(x) = C;(y). Let us fix x, then we see that C = C;(y) for every
y € L\ Z. Similarly, by keeping y fixed, we get C = C;(x) for everyx € P \ Z.
It follows that C = C;(g) for every element g € F\ Z because F =P X L.
Furthermore, P < C as P < C;(y) for everyy € L\ Z and L < C as L < C;(x)
foreveryx € P\ Z.SoF < C = C;(F) since Cs(F) = Nger Cc(9).

Conversely, C < F because G is solvable. Thus we have F = C = C;(g) for every
g € F\ Z. In particular, this implies that F is abelian.

Furthermore, for any element y € F \ Z, we have |C;(y)| = b = |F|. Thus by
part v) we see that |G|, = |F|,. Hence G = K otherwise [G:K]=gq,q#p

prime. Finally, by part iii) of Lemma 3.5, we conclude that [G : F] =p. m

Definition 3.1: A nonabelian group G is an F-group if, for every x,y € G \ Z(G),
we have that C;(x) < C;(y) implies C;(x) = C ().

Definition 3.2: A nonabelian group G is a CA-group if all centralizers of noncentral

elements are abelian. Clearly, CA-groups are F-groups.
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Theorem 3.17: Let G be a finite group of conjugate rank 2. Then G is either an
F-group or the direct product of an abelian group and a group of prime power

order.

Proof 3.17: Let G be a finite group of conjugate rank 2 and assume that G is not an
F-group. Then there exist elements x,y € G \ Z(G) such that C;(y) < Cs(x). Let
m = |x%| and n = |y%| be the sizes of the conjugacy classes of x and y in G,
respectively. Then m divides n, and since G has conjugate rank 2, we can apply
Theorem 3.16. Suppose that there exists an abelian normal subgroup A of prime
index in G. AsA < AZ(G) < G and [G : A] = p, for a prime p, either Z(G) < A or
G =AZ(G). If G = AZ, then G is abelian which contradicts our hypothesis about
rank of G. Thus we have Z(G) < A. We claim that for any g € A\ Z(G), we have
Ce(g) =A. AsA<C;(g) <Gand|[G:A]=p, we have either C;(g) = A, or
C;(g) = G which is impossible since g is noncentral. Thus for everyh € G \ A, we
have C;(h) = Z(G){h). Hence G is a CA-group, and in particular G is an F-group,
which contradicts our assumption. Thus, [G : Z(G)] is a power of some prime p by
Theorem 3.16 and therefore we get G = P X A where P is a Sylow p-subgroup of G
and A is a subgroup of Z(G). m

The structure of the groups with conjugate rank 2 is determined by the

following theorem. Let p denote a suitable prime number.

Theorem 3.18: A finite group G has conjugate rank 2 if and only if, up to an abelian

factor, either of the following cases hold:

e (G is a p-group of conjugate rank 2; or

e G =KLwithK 2 G, gcd(|K|,|L|]) = 1 and one of the following occurs:
i) both K and L are abelian, Z(G) < L and G /Z(G) is a Frobenius group;
i) K is abelian, L is nonabelian p-group, M = 0,,(G) is an abelian subgroup of
index p in L and G /M is a Frobenius group;
i) K is a p-group of conjugate rank 1, L is abelian, Z(K) = Z(G) N K and
G/Z(G) is a Frobenius group.
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Now we will prove a lemma which helps us to prove the above theorem. Note
that Dedekind’s Modular Law states that if H, K and U are subgroups of G such that
H<U<G,thenHKNU=H(KnNU).

Lemma 3.19: According to the notation of Theorem 3.18, we have the following sets

of conjugacy class sizes:

i) es(G) ={L,I1L/Z(G)|, K|}
ii) cs(G) = {1,p,p%|K|}, where p® = [M : Z(L)];
i) cs(G) = {1,p% p?|L/Z(G)|}, where p* = [K : Z(K)] and cs(K) = {1,p"}.

Proof 3.19: Let Z = Z(G).

i) K is abelian, so KZ < C;(x) for all x € KZ\Z. G/Z is a Frobenius group,
clearly KZ/Z and L/Z are the Frobenius kernel and the Frobenius complement of
G/Z, respectively. Hence if x € KZ \ Z, then x € KZ, so Cz(X) € KZ. Assume
that KZ < C;(x), then there exists an element a € C;(x) \ KZ, soa and X
are nontrivial such thata € C;(x) S KZ.This verifies thata € KZ which is a
contradiction. Thus in this case, we have C;(x) = KZ for all x € KZ\ Z. If
x € G \ KZ, then xZ is a nonidentity element of some Frobenius complement
of G/Z. Hence x € L9Z = L9 for some g € G, and C;(x) = L9 because LY is
abelian and G /Z is a Frobenius group with complement L9 /Z. Thus we have the

following three cases:

olfx € Z, then |x%| = 1;

61 _ IKILI _ Il

olfx € KZ\ Z, then |x°| = Ikz| ~ IKl|z| |z

elfx € G\ KZ, then |x¢| = % = |K|
Sowe get cs(G) ={1,|L/Z|,|K]|}.
i) Let M = 0,(G), then M centralizes the normal p-complement K.G/M is a

Frobenius group with the Fobenius kernel KM /M and the Frobenius complement

L/M, hence if there exists a z€ Z\ L, then Z€ Cg(l) =L where L is a
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nonidentity element of L. Soz € L, a contradiction. Thus Z < L, in particular
Z < M by the definition of M. Since Z < Z(L) < M and M centralizes K, we
have Z(L) = Z. Let A = KM. Then A is an abelian normal subgroup of index p
inG.If x€ A\ Z, then A < C;(x) and if there exists an element a € C;(x) \ 4,

then A < (a)A < G so

[G : A] =[G : (@A][{@)A : A] = [(a)A : A]. (3.11)

This means that x € Z, so C;(x) = A. If x € G \ A, then x centralizes no element
in A\ Z otherwise as [G : A] = p, we can see that a € Z, and C;(x) = Z({x),

with xP € Z as [G : A] = p. Hence

o 161 _ 161 _ KL M
iz’

= = = = 3.12
1Z{x) plz]  IL/M]|Z] 542

In this case cs(G) = {1,p,p?*|K|}, where p* = [M : Z(L)].

iiif) We have the Frobenius group G /Z with the Frobenius kernel KZ /Z and the
Frobenius complement LZ/Z. If x € G \ KZ, then x is a nonidentity element of
some Frobenius complement of G/Z. Hence x € L9Z, for some g € G and
Ce(x) = LIZ because L is abelian. If x € KZ\ Z, then xZ is a nonidentity
element of the Frobenius kernel KZ/Z . It follows that C;(x) < KZ since
Cg(x) < KZ. There exist y € K and z € Z such that x = yz. We claim that
Ce(x) = Cx(¥)Z. It is clear that Cx(y)Z < C;(x). If a € Cs(x), then yz = x =
a 'xa = a lyaz. This implies that a € C4(y), thusa € KZ N C;(y) = Cx(y)Z
by Dedekind’s Modular Law. Therefore C;(x) = Cx(y)Z.

In order to find the conjugacy class size of x, we need to prove Z = (Z N K)(Z N
L)y=Z(K)(ZNL). Assume that Z £ Z(K)(ZNL) =ZnNZ(K)L. This means
that Z < Z(K)L. Hence there exists a z € Z \ Z(K)L. As G = KL we have z = kl
for somek €K,l€L, sol=k™'ze€KZ. l¢Zasz ¢ Z(K)L. Thusl€ KZ\ Z
and so C;(l) < KZ. As Lis abelian, L < C;(l), hence LZ < KZ, which is a
contradiction. Consequently,Z = Z(K)(Z N L). It follows that if x € KZ \ Z, then
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1G] _IKILIZn GOl _ pPILIZE)| _ pPIL]

G| —
o = Gz = T Gzl 1Z®lzZnLl - 1Znl]

(3.13)

where pPis the size of conjugacy class of any noncentral element of K. If

x € G\ KZ, then

Gl IKILIZnL
16| = 6] IKIILIZ N |=[1(:Z(K)]=p“ (3.14)

S Lez) 1Lz

since K is a p-group. So we obtained that cs(G) = {1,p% p®|L/L N Z|}, where
p*=[K:Z(K)]and cs(K) = {1,p’}. m

It should be mentioned that, in part iii) of Lemma 3.19, we have p® > p” since
for every x € K such that x € Z, clearly Cx(x) > Z. Further, LZ/Z is a Frobenius
complement, and hence L/L N Z # 1. Thus none of the nontrivial class sizes of G
divides any other.

The following theorem which shows the classification of F-groups is form
[Rebmann, 1971]. It is easy to see that the F-groups in i) - v) are solvable while the

F-groups in vi) - vii) are nonsolvable groups.

Theorem 3.20: Let G be a nonabelian group. Then G is an F-group if and only if it is

one of the following types:

i) G = P X A where P is an F-group of prime power order and A is abelian.

ii) G has a normal abelian subgroup of prime index.

iii) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius
complement L/Z(G) with K and L are abelian.

iv) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius
complement L/Z(G) where L is abelian, Z(K) = Z(G), K/Z(G) has prime power
order and K is an F-group.

v) G/Z(G) = S, and if V/Z(G)is the Klein 4-group in G/Z(G), thenV is not
abelian.

vi) G/Z(G) = PSL,(p™) or PGL,(p™), G' = SL,(p™), where G' is the derived
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subgroup of G, p a prime, p™ > 3.
vii) G/Z(G) = PSL,(9) (= Ag) or PGL,(9), and G' is isomorphic to the Schur
cover of PSL,(9).

CA-groups are classified by Schmidt [Schmidt, 1994]. Now we write a part of

this classifacition.

Theorem 3.21: Let G be a finite group. If G/Z(G) = S, and V is not abelian if
V/Z(G) is the Klein 4-group, then G is a CA-group and cs(G/Z(G)) = {1,6,8,12}.

Now we can give the proof of the main Theorem 3.18.

Proof 3.18: Assume that G is a group of conjugate rank 2. By Theorem 3.17, it is
clear that G is either an F-group or it is the product of an abelian group and a group
of prime power order, that is a group of type first case. By part i) of Lemma 3.1, we
can assume G has no nontrivial abelian factor. Let Z = Z(G) and suppose G is an

F-group. By applying Theorem 3.20, and we have the following types of groups:

i) G is a group of prime power order. Thus, we again have the first case.

ii) G is nonabelian and has an abelian normal subgroup B of prime index p. If G
is nilpotent, since we assumed that G has no nontrivial abelian direct factor, then
we have the first case. Otherwise, let L be a Sylow p-subgroup of G, let K be a
p-complement of B. Let M = L N B. Then K is an abelian normal subgroup of G.
Since |K| and |L| are relatively prime, by Theorem 1.5 we conclude that

K = [K,L] X Cx(L). Now we have:

G=BL=(KxM)L=[([K L] xCx(L)) X M|L = N X Cx(L) (3.15)

where N = ([K,L] X M)L. Thus Cx(L) is an abelian direct factor of G. Hence by
the assumption, we have Cx(L) = 1. Since |L/M| = p, it follows that G/M is a
Frobenius group with L/M as its Frobenius complement and KM /M as the

Frobenius kernel. Since M, K < B and B is abelian, we have M centralizes K. Also
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M = 0,(G) since p=[L:M]=[L:0,(G)][0,(G):M] and L/M is the
Frobenius complement of G/M. If L is nonabelian, then we have case ii). If L is
abelian, then M < Z as M centralizes K. As Cx (L) = 1, it follows that M = Z(G)
otherwise if M < Z, then either L < Z or K N Z + 1 which contradicts the fact
that Cx (L) = 1. Hence G is a group of type i).

iii) G /Z is a Frobenius group with kernel Ky/Z and complement L/Z, with K, and
L abelian groups. Let m = m(L) and let K be the m-complement of K,,. It is clear
that K 2 G. Let A be a m-Hall subgroup of K, so K, = KA and we have:

Gl _1GI1Z] _ Kol IL 1] _ IKTIAIIL] 1 |A[|L]

o _ el 1RollBliel 1RTIANIA 2 M (3.16)
Kl 1Z| K| |Z] |Z] K] 1Zl K] |Z|

Thus K is a normal -complement of G. Since |K| and |L| are relatively prime, by
Theorem 1.5 we conclude that K = [K,L] X Cx(L). It is clear that KNZ <
Cx(L). Assume that there exists an element x € Cx (L) \ (K NZ)thenx & Z
and so xZ is a nontrivial element in Ky/Z. This implies that Cz(%X) < K,, so
L < K,, which is a contradiction. Therefore Cy(L) = K N Z. Similar to part ii),
we can see that Cx(L)is an abelian direct factor of G. Hence Z is a m-group
and Z < L. Therefore G = KL, with K 2 G and gcd(|L|,|K|) = 1. Thus, we get
case i).

iv) G/Z is a Frobenius group with kernel K,/Z and complement L,/Z where Ly is
abelian, K, is an F-group such that Z(K,y) = Z and Ky/Z is a p-group, for a
prime p.

Let K be the Sylow p-subgroup of K,. Then Ky = K X Zy, withZy < Z. AsK is a
characteristic subgroup of K, and K, 2 G, we have K 2 G. Now we have Z(K) =

Z(Ky) NK =ZNK. Let L be p-complement of L. As

h

K, 0 K Ly

Z 772K Z

IR
R

(3.17)

N| D

is a Frobenius group, it follows that p does not divide [L, : Z]. Hence, K is a

Sylow p-subgroup of G and G = KL because
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|K0| ’|L0| !
|Gl =%= |Lol,r = ILI. (3.18)
14

Similar to the argument of the proof of case iii) of Lemma 3.19, we can see that
cs(G) =1{1, [K:Z(K)], k[L: LN Z]| k € cs(K),k # 1}. Since G has conjugate
rank 2, it follows that K has conjugate rank 1.

v) G/Z = S, and, if V/Z is the Klein 4-subgroup of G /Z, then V is nonabelian. By
Theorem 3.21, this case will not occur when G is assumed to be a group of

conjugate rank 2.

Conversely, if G is one of the groups which are listed in Theorem 3.20, then G

has conjugate rank 2 by Lemma 3.19. m

Corollary 3.22: Let cs(G) = {1, m,n}. If m and n are not coprime, then either m orn

is a prime power.

Proof 3.22: Let cs(G) = {1, m,n} with gcd(m,n) # 1. If m = n, then we conclude
that G is nilpotent. So G can be written as a direct product of the normal Sylow
subgroups and cs(G) = {1, m} where mis a prime power. If m #n, thenG is a
group of conjugate rank 2 hence G is one of the groups described in first part, i), ii)
or iii) of the second case in Theorem 3.18. In case first part, both m and n are
powers of the some prime. By applying Lemma 3.19 we can observe that G cannot
be a group as in case i), because m and n are not coprime, and that both in cases ii)

and iii) either m or n is a prime power. &

Theorem 3.23: (Main Theorem in [Ishikawa, 2002]) Let G be a finite p-group for

a prime p such that cs(G) = {1,p"} (n=1). Then G'is an elementary abelian

p-group.
Note that dI(G) denotes the derived length of the solvable group G.

Corollary 3.24: If |cs(G)| = 3 and G is nilpotent, then dl(G) < 3.
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Proof 3.24: First note that G is solvable by Remark 3.14. Let G be a nonnilpotent
group of conjugate rank 2. Then by Theorem 3.18 it is clear that G is, up to an
abelian direct factor, one of the groups described in i), ii) or iii) of the second case.
Hence, dl(G) < dI(K) + dI(L). In case i) we have dl(K) = dl(L) = 1 since K and
L are abelian. In case ii) we have dl(K) = 1 and dl(L) = 2, since L has an abelian
normal subgroup with cyclic factor group. In case iii) we have dl(L) =1, and

dl(K) = 2 by Theorem 3.23. m
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4. CONNECTIONS BETWEEN PRIME DIVISORS of
CONJUGACY CLASSES and PRIME DIVISORS of |G|

In this chapter we follow a paper of Ferguson [Ferguson, 1991].
Assume that n is a positive integer, then n = [[¥, p;% is the factorization of
ninto distinct prime powers. Let w(n) :=k. For a finite group G, let a(G) =

max{w(|x¢|)|x € G} and p(G) = {plp is a prime and p | |x%|, for some x € G}.
Proposition 4.1: A prime p divides |G /Z(G)| if and only if p | |x%| for some x € G.

Proof 4.1: G is a finite group and Z(G) < Cq;(x) for each x € G, therefore

[G:Z(G)] =[G : C4(x)][Cs(x) : Z(G)]. If p | |xC]|, then we have p | |G/Z(G)|.
Conversely, assume that p divides |G /Z(G)| but p does not divide |x©| for all

x € G. Let P € Syl,,(G), then P < C(x) for some x € G, thus G = Ugeg Ca(PY) =

Ugec Cq(P)9. By using Theorem 3.2, we have:

1G] = |Ugea Ca(P)9| < 1GI = [G = Ca(P)] + 1. (4.1)
So [G : C;(P)] = 1. Therefore P < Z(G), which contradicts our hypothesis. m

Lemma 4.2: Assume that G is a solvable group and r is a prime divisor of |G|.

i) If g is an r'-element which normalizes a nontrivial r-subgroup R, then either
r11g% or[R,g] = 1.

ii)If R is a minimal normal r-subgroup of G and v is a prime such that
0,(G/Cs(R)) # 1, thenv | |xC| for all x € R*.

iii) If H, K are subgroups such that R < C;(H) U C;(K), where R is an r-group,
thenR < C;(H) or R < C;(K).

Proof 4.2: Let G be a solvable group and r be a prime divisor of |G|.

i) By Frattini Argument we have G = N;(R;) 0,/(G), where R; is a Sylow
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0. (G)
or ‘T(G) = 0,(G/0,:(G)) is an r-group, we conclude

r-subgroup of 0,1 .(G). Since

that 0,/(G) is a Hall r'-subgroup of 0, ,.(G). Since Ry is a Sylow r-subgroup of
0, (G), we have 0,1,(G) = R,0,(G). As G is solvable, Theorem 1.15 implies
that C;(Ry) < R10,/(G). Let G := G /0,:(G) and A denote the image of a set A
inG. If g=1, then g € 0,4(G) and [g,R] = 1 since g normalizes R and
0,(G)NR=1. Ifg#1, then g € Ns(B)\ Ca(Ry) as G = Ng(Ry)0,s(G).
Therefore, Ry 2 G yields S £ Cz(g) for any S € Syl,.(G). Hence, r | |§¢| yields
r11g%| by Lemma 3.1.

VCg(R)

i) Let V € Syl,(K) where K/C;(R) = 0,(G/C;(R)), then we have co(®)
G

S

K K -
Syl, (m) =@ therefore K = VC;(R) and by Frattini Argument we can

see that G = N;(V)Cs(R). It follows that Cr(V) 2 G since xy € G where x €
Ne;(V)andy € C;(R), then CR(V)* = Cxr(V*)Y = Cxr(V). If Cx(V) =R, then
V < C;(R) hence K = C;(R) and so 0,(G/C;(R)) =1, a contradiction. Thus
Cr (V) < R and the minimality of R yields Cr(V) = 1. Therefore, v # r otherwise
R <Z(V)andsov | |x%| forall x € R*.

iii) For any group G if G = AU B, where A and B are subgroups of G, it is
well-known that G € Aor G € B. We have R < C;(H) U C;(K), then we can say
thatR = (C,(H)NR)VU (Cz(K)NR), it follows R < Cz(H)orR < C;(K). m

Chillag and Herzog have shown that for a finite solvable group G, we have
|p(G)| < 2if a(G) = 1 [Chillag and Herzog, 1990]. The following theorem is the

main theorem of this section.
Theorem 4.3: Assume G is a finite solvable group, then |p(G)| < 4 if a(G) = 2.

By Proposition 4.1 we have the following corollary.

Corollary 4.4: Assume G is a finite solvable group and |x€| is divisible by at most two

distinct primes for all x € G, then |G /Z(G)| has at most four distinct prime divisors.
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Note that in Lemma 3.1 we saw that if x,y € G commute and gcd(|x|, |y]) =
1, then Cg(xy) = C5(x) N Cg(y). So |x€| and |y divide |(xy)¢].
We will say G satisfies Hypothesis A, if G is a counterexample of minimal order

to Theorem 4.3.
Lemma 4.5: Assume G satisfies Hypothesis A, then Z(G) = 1.

Proof 4.5: Suppose p | |Z(G)| and let P; be a nontrivial minimal normal subgroup
of Z(G). Let H> P, be the subgroup of G such that H/P, = Z(G/P;). Since
|G/P;| < |G| and G /P; satisfies the hypothesis of Theorem 4.3, G/H is divisible by
at most four primes. Let g be a p'-element of H, then (g) < G since (g)P; 2 G and
Py < Z(G). Now [g,G] <(g)N Py, asH/P, = Z(G/Py), implies that g € Z(G),.
As we saw if g € Hy, then g € Z(G),, so Hy < Z(G)p,. Thus H, = Hpyr X Hy <
Z(G),' X Hy. On the other hand Py < Z(H) and H /P is nilpotent, hence Z(G) < H,
Now we can conclude that H = Z(G), X H,. Since p | |x¢| for some x € G if
and only if p | |G/Z(G)|, we may assume H, = G, but G, = H, £ Z(G). Therefore
Gp 2 G as H, is a characteristic subgroup of the normal subgroup H of G. We

G /P
%,pp—l]. Since G, = H, H = Z(G),r X Hy,, we deduce that

have [G,, G| = [ P
P, < H,,. Now we can see that [G,, G,/| = 1 which implies that [G,, G,'] < P, and
[P1,G,] =1. Then G = G/Py, G = G,y X G, hence G, Py <G soG, <G which
yields G = G,r X Gy, Since Z(Gp) # G, by G, £ Z(G) and Z(G) = Z(G,r) X Z(Gp),
we deduce that G, is not abelian, so there exists an element x € G such that
Gp % C;(x). If for each x € Gy, p does not divide the conjugacy class size of x, then
Gp < Nieg, Ce(x) = Z(G,) < Z(G) which is a contradiction. Hence there is an
X € Gy such thatp | |x6|. Ify € G, then Cs(y) = Gp(Cs(¥) N Gyr) hence |y©| =
|Gpr/CGp,(y)|. Therefore, p|y©| divides |(xy)¢| and |y®|is a prime power since
a(G) = 2. Thus a(G,) = 1, so |G,/ /Z(G,)| has at most two prime divisors. Now
|G/Z(G)| = |Gp/Z(Gp)|G 1 /Z(G )| yields that w(|G/Z(G)]) <3, which is a

contradiction. m
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Theorem 4.6: (3.2.8 in [Kurzweil and Stellmacher, 2004]) Let N < G with G = G/N,
and let P be a p-subgroup of G. Assume that gcd(|N|,p) = 1. Then Nz (P) =
N;(P) and Cz(P) = C;(P).

Lemma 4.7: Assume that G satisfies Hypothesis A and P is a nontrivial minimal

normal p-subgroup of G, then G, = P.

Proof 4.7: Since G satisfies Hypothesis A, Lemma 4.5 implies that Z(G) = 1. Let
G = G/P and A denote the image of the set AinG. Since |G| < |G|, |G/Z(G)| is
divisible by at most four primes. Since G satisfies Hypothesis A, we conclude that
|m(G/Z(G))| = 5. Thus there exists a prime t € m(G/Z(G)) such that G, = Z(G),,
which implies that the Sylow t-subgroup of G is central. Therefore G = G, X G..

Now we have the following two cases:

e Case 1:t = p. Without loss of generality, we may assume that P < G, then
G, QG and G = G, X Gy. Since 1 # P 2 G, we conclude that Z(G,) N P # 1.
As P is a minimal normal p-subgroup of G, we deduce that P < Z(G,). It is easy
to see that [G,,Gp] 2 G. Now minimality of P verifies that [Gpr, Gp] = P. Now
by Theorem 1.4 we conclude that G, = CGp(Gpr) X P. Hence Z(CGP(Gpr)) <
Z(G) = 1yields CGp(Gpr) =1landso P = G,

e Case 2: t # p. We claim that G = C;(P )G;. We saw that G = G, X G, and G,
is central, therefore by Theorem 4.6 we deduce that G = Cz(G,) = C;(Gy). This
implies that G = C;(G)P. If t divides |C;(P)|, then there exists a t-element
x € C;(P). Without loss of generality, we may assume that x € G;. Let g be an
element of G, so there exist ¢ € C;(G;) and y € P such that g = cy. It is easy to
see that [g,x] = 1. Since g is an arbitrary element of G, we conclude that

x € Z(G) = 1. Hence gcd(|C;(P)|,t) = 1. Since

G:Cc(P) G
Cc.(P) z (CG(P)) (4-2)

if G # C;(P) G, then there is a prime v # t such that 0,(G/C;(P)) #1,
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because G is solvable. If t t |xg|for some x,, € P# then G, < C; (xp). By part ii)
of Lemma 4.2, we conclude that tv | |xg|for Xp € P*. Thus gcd(tv,p) = 1. Letr
be any prime, such thatr & {t,v,p}. Since tv | |x,|, a(G) = 2and t # v, we
conclude that r does not divide |xg |, s0G. < Cs(xp). IfgE GE, as Xp and g
commute andp # r, by Lemma 3.1, we conclude that|xg| | |(xpg)G|. Since
| Cxp 9)¢| has two prime divisors, we deduce that |g¢| = v°t%, for some positive
integers a and b. We saw that G = C;(G,)P, soa = 0 and |g¢| = v’ > 1.

It follows that P < G, < C;(G,), so G- < C;(P). On the other hand we have
|t(G/Z(G))| =5, thus there exists a prime s #r in n(G/Z(G)) such that
s & {v, p, t}. Similarly we can see that Gg < C;(P). Therefore, C;(P) = Gy .

If yis any p'-element of C;(P), then |x5|||(x,»)¢| for x, € P* implies
ly¢| = vPt%, for some positive integers a and b. Now G = C;(G,)P again
implies |y¢| = v? > 1. Hence, if v | |C;(P)|, let V be a Sylow v-subgroup of
C;(P). Now P 2 G implies C;(P) 2 G. Hence V is a normal subgroup of
some G,as V = C;(P) NG, for some G, € Syl,(G). Thus, there is an element
1+y€eZ(G,)NV,so G, < Cq(y). This happens if and only if v does not divide
|y¢|, which is a contradiction. Hence gcd(|C;(P)|,v) = 1 and G, N C;(P) = 1.
Now Ggqy < Cg(P) 2 G, so by Frattini Argument G = Ng(G,)Cs(P) =
N;(G)Ci(P), and it yields G, < N;(G,) U N;(Gg) for some G,, G, of G. Since
G,NC;(P)=1,p||g°| forg € GE. Since a(G) = 2, by part i) of Lemma 4.2
we deduce that g € C;(G,) U C;(Gs). Now part iii) of Lemma 4.2 implies that
either G, < C;(G,) or G, < C;(Gy). Without loss of generality, we may assume
that G, < C;(G,). Hence, v° = |y%| for y€ G. If b>0, then v divides
[G: C;(y)] and G, £ C;(y) . This implies that G, £ C;(G,) which is a
contradiction. Thusb = 0 and 1 # y € Z(G) = 1 which is impossible. Therefore,
G = C;(P)Gy.

We have G, =Z(G),, so G.P 2G and therefore Cg;(G.P) < G. Since G =
Ce;(P)G: = C;(G)P and C;(G:P) = C;(Gy) N C;(P), by Dedekind’s Modular
Law we have G = C;(G.P)PG,. It follows that G = C;(G¢P) X PG,. Let u be any
prime dividing C;(G:P), then every Sylow u-subgroup of G centralizes P as

Cc(GeP) < C(P). It follows that if u divides |Cs(GcP)/Cc.,p)(9)] for g €
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C;(G.P), then u | |(gx)€¢| for x € P* otherwise there exists a Sylow u-subgroup
G, of G such that G, < C;(gx) for some x € P*, then G, < C;(g), but it
contradicts our assumption. Now g centralizes all Sylow t-subgroups of G so
ut | |(gx)€| otherwise G, < C;(x) for some x € P¥, hence x € Z(G) as G =
C;(P)Gy, a contradiction. Thus, the number of elements in any C;(G.P)-class of
C;(G.P)*is a prime power because a(G) = 2. Hence a(Cz(G.P)) =1, so at
most two primes divide |C;(G¢P)/Z(Cs(G¢P))|. But Z(Cz(GP)) <Z(G) =1

yields a contradiction. m
Now we can prove Theorem 4.3.

Proof 4.3: Let y denote the set of prime divisors of |F(G)|. Since F(G) =
[Iyey 0,(G), Lemma 4.7 implies that F(G) = [lyey G, is an abelian Hall y-subgroup
of G. Let G := G/F(G) and A denote the image of A in G. We first show w(|G|) < 2.
G is solvable, therefore C;(F(G)) < F(G). As F(G) is abelian, we have C;(F(G)) =
F(G). If x € G*, thenx & C;(F(G)) = F(G) implies thatp | |x%| for somep € y.
Now gcd(|G|, |F(G)]) = 1,0 so p|xC| | |xC€|. It follows that for each nontrivial
element % € G, |%%| is a prime power. This implies that a(G) = 1 whence w(G/
Z(G)) < 2. Assume that w(G) = 3. We claim that there are distinct primes u, t such
thatu,t € T(|F(G)|). Since w(G) =3 and w(G/Z(G)) < 2, there exists a prime
u € n(|F(G)|). If m(|F(G)|) = {u}, then let U be a Sylow u-subgroup of G. Since
u € w(G)\p(G), we conclude that U is an abelian normal direct factor of G. This
implies that U < Z(G) and so F(G) = Z(G), which is a contradiction. Thus there are
distinct primes u,t such that u,t € n(|F(G)|). Since t,u & y, there are primes
p,q (possibly p = q) iny such that 0.(G/Cs(Gp)) # 1 and 0,(G/Cs(Gy)) # 1.
Since Gy, and G4 are minimal normal subgroups of G, by Lemma 4.7, and part ii)
of Lemma 4.2, we deduce that t | |xg|for every xp € G,f and u | nglfor every
Xq €GY. Ifp=gq, thentu | |x5|. Ifp # q, then tu | |(x,x4)C]|. In either case, there
is an x € F(G) such that tu | |xg |. Let v be a prime divisor of |G|, where v & {t,u}.
Since tu | ng , G, < Cg(x) for some Sylow v-subgroup G,. Let g € G,. Now

ged(|[{x)|,v) = 1 implies that every prime divisor |g%| and |x®| divides |(xg)®]|.
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Thus, tu | |(xg)€| implies that |g®| = t*uP. Therefore, |F(G)| divides |C;(g)|. As
F(G) is the Hall y-subgroup, we conclude that F(G) < C;(g), a contradiction
because g € G* and so g & C;(F(G)) = F(G). Hence w(|G|) < 2 and |F(G)| is
divisible by at least three primes.

Let u be a prime divisor of |G|, then there is a primep | |F(G)| such that
Gy % Cs(Gp). Letr € y \ {p}, if G, £ Cs(Gp) U C5(Gy), then by Lemma 4.2 i), iii)
verify that there is a g € G} withpr | |g®|. Therefore, G; < C;(g), wheres € y \
{p,r}. Since gcd(s,u) =1, pr | |(gx)¢ and |x%| | |(gx)|® for x € G¥ imply that
|x¢| is a {p,7}-number. However, x € F(G) and F(G) abelian already yield
GpGr < C(x). Thus, x € Z(G) = 1, which is a contradiction. Hence, G, < C;(Gp) U
C;(G,), and part iii) of Lemma 4.2 implies G,, < C;(G,.). Since r was an arbitrary
prime iny \ {p}, G, < Cc(F(G)y).

If w(|G|) = 2, there is a prime v # u dividing |G|. The same argument yields
a prime q € y such that G, < Cs(F(G)g4). Since |y| = 3, there is a prime r such
that G, < F(G)q N F(G),. Now F(G) abelian and w(G) < 2 yield G, < Z(G), a
contradiction. If w(|G|) = 1, then F(G)q < Z(G) by the same argument, which is

again a contradiction. m
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5. CYCLES and BIPARTITE GRAPH ON CONJUGACY
CLASS of GROUPS

In this chapter we will follow the paper of Bijan Taeri [Taeri, 2010].

Let G be a finite nonabelian group and B(G) be the bipartite divisor graph of a
finite group releated to the set of conjugacy class sizes of G. Let cs*(G) = ¢s(G) \
{1} be the set of sizes of the noncentral classes of G. In this chapter, we consider
the case where B(G) is a cycle. We prove that this case will happen if and only if
B(G) is a cycle of length six. Further, we classify those groups whose bipartite

divisor graphs are cycles which is proved by Taeri [Taeri, 2010].
5.1. A Group G with the Cycle B(G)

It is obvious that each cycle is a 2-regular graph where by 2-regular graph we
mean a graph with this property that every vertex is endpoints of two distinct
edges. It is easy to see that bipartite 2-regular graphs are cycles. If B(G) is 2-regular
then every noncentral conjugacy class has exactly 2 prime divisors which implies
that a(G) = 2. For the case where G is nonsolvable, Casolo has proved the

following lemma:

Lemma 5.1: (Proposition 3.3 in [Casolo, 1994]) Let G be a nonsolvable group with
a(G) =2. Then G = A XS, where A is abelian and S is isomorphic to either

PSL,(4) or PSL,(8).

Definition 5.1: A group G is called a quasi-Frobenius group if G/Z(G) is a Frobenius
group. The inverse images in G of the Frobenius kernel and complement of G /Z(G)

are called the kernel and complement of G, respectively.

Now we state a theorem about quasi-Frobenius group with abelian kernel and

abelian complement [Fang and Zhang, 2003].

Lemma 5.2: Let G be a quasi-Frobenius group with abelian kernel N and abelian

46



complement H. Let |Z(G)| =71, |H/Z(G)| =s+ 1, and N/Z(G) be the disjoint

union of t + 1 conjugacy classes of G /Z(G). Then we have

i) Let C be a G-conjugacy class. Then |C| =1,s+ 1, or (s + 1)t + 1.
ii) The numbers of all different conjugacy classes of G with length 1, s + 1,

(s + 1)t + 1 are respectively r,rt,rs.

Theorem 5.3: Let G be a finite group such that B(G) is a cycle. ThenG = A X S,
where A is abelian, and S = SL,(q), q = 4,8. Consequently B(G) is a cycle if and
only if B(G) is the 6-cycle2 — 12 -3 —15—5—-20—2and G = A X SL,(4), oris
the 6-cycle2 —72—3—-63—-7—-56—2and G = A X SL,(8), where A is abelian.

Proof 5.3: Since B(G) is a cycle, we have a(G) = 2. If G is nonsolvable, then by
Lemma 5.1 G = A X SL,(q), where i = 4,8, and A is abelian (PSL,(4) = SL,(4) =
As and PSL,(8) = SL,(8)). If G =AXSL,(4) = A X As, then since cs*(4s) =
{12,15, 20}, B(G) is a cycle of length 6 as follows:

2—-12-3-15-5-20-2. (5.1)

If G = AXxSLy(8), then since cs*(SL,(8)) = {56,63,72}, B(G) is the following
cycle of length 6:

2—-72—-3—-63—-7—-56—2. (5.2)

Now we claim that G cannot be solvable. By the way of contradiction, suppose
that G is solvable and B(G) is a cycle. Thus, for all noncentral g € G, we
have |m(g%)| = 2. By Corollary 3.22, it is clear that if cs*(G) = {m,n}, and
gcd(m,n) # 1, then either m or n is a prime power and so B(G) cannot be a cycle.
In particular, if B(G) is a cycle, it cannot be a cycle of length four. On the other
hand, by Theorem 4.3, we have |V(A(G))| < 4. If [V(A(G))| = 2, then since B(G) is

2-regular, B(G) is a cycle of length 4, which is impossible. It is obvious that
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[V(A(G))| # 1, so |[V(A(G))| =3. On the other hand, by Proposition 4.1, we know
that t(G/Z(G)) =V(A(G)), so3 < |n(G/Z(G))| < 4. Since B(G) cannot be a
cycle of length 4, we have |cs*(G)| = 3.

We claim that G is an F-group. First note that if c = p®q® € cs*(G), with a
and b positive, then for all x € G withp € m(x%) € {p,q} we must have |x¢| =
p*qP, since B(G) is 2-regular. Let x,y be two elements of G such that C;(x) <
Cs(y). We have to prove C;(x) = C;(y). If Cq(x) < Cg(y), then |x%| and |y©| are
distinct and |y©| divides |x“|, which is impossible. Hence G is an F-group and so is
one of the groups listed in Theorem 3.20. The groups listed in Theorem 3.20 vi) and
vii) are nonsolvable. Thus G is one of the group listed in i) — v).

If i) holds, then cs*(G) = cs*(P), a contradiction.

Suppose ii) holds. Then G has an abelian normal subgroup N of prime index p.
We show that cs*(G) = {p, m} for some positive integer m. Let x be any noncentral
element of G. If x € N, then since N < C;(x) < G and |G/N| = p, we have |x¢| =
pas|G/N| =[G : Co(x)][N : C(x)]. If x € N, then G = N(x) and so

_ NG INGe()l [N IV

= G_ = = =
= @ = TG00l —INA G 1en GOl

(5.3)

Lety € G be a noncentral element. As G = N{(x), without loss of generality, we can
see that there exists a € N such thaty = ax. Since N is abelian, we can see that
Cy(x) = Cy(y) and this implies that |y®| = m. Thus cs*(G) = {p, m}, which is a
contradiction.

If iii) holds, then by Lemma 5.2 we have |cs*(G)| = 2, which is a contradiction.

K L
7@ = 7 P 7Y we deduce that

Ce/z2(6)(xZ(G)) < L/Z(G). As L is abelian, we have C;(x) = L hence

Suppose iv) holds. Let x € L \ Z(G). Since

_IGI_ LIk _ K|
Ll " TZGI KT~ 12(0)]

|x¢| (5.4)

which is a prime power, which is a contradiction.

If v) holds, thent(G/Z(G)) = n(S,) = {2, 3}, which is a contradiction.
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Consequently, G is nonsolvable. Now the first part of the proof implies that

B(G) is a cycle if and only if it is a cycle of length six. m

5.2. Groups with Satisfying the One-Prime Power Hypothesis

We say that G satisfies the one-prime power hypothesis if m,n € cs*(G),
then either gcd(m,n) = 1 or gcd(m,n) is a power of a prime. We can easily see
that the graph B(G) has no cycle of length 4 if and only if G satisfies one-prime
power hypothesis. Suppose that B(G) has no cycle of length 4 and let m,n €
¢s*(G). If pq divides gcd(m,n), thenp —m —q —n —pis a cycle of length 4in
B(G), which is a contradiction. Thus gcd(m,n) = p¢, for some prime p and integer
a = 0. Conversely, if for all m,n € cs*(G), gcd(m,n) is a prime power, then G has
no cycle of length4. In fact if p—m —qg—n—pis a cycle of length 4in B(G),

then pq divides gcd(m,n) and so gcd(m, n) is not a prime power.

Definition 5.2: A central extension of a group G is an exact sequence 1 - Z - H —
G — 1 such that the image of Z in H is a subgroup of Z(H). A central extension
determined by pair (H,Z) consisting of a group H and a subgroup Z of the center of
H such that H/Z = G. Such a central extension is often denoted by (H, Z).

Definition 5.3: A central extension (H,Z) of a finite group G is said to be irreducible
if there is no proper subgroup L having the property H = ZL. A central extension H

of G is called a representation group G if H satisfies the following conditions:

i) H is irreducible,
i) IM(G)| =|H' nZ|,
i) |H| = |G||M(G)|,

where M (G) is the Schur multiplier of the group G.

Theorem 5.4: (Theorem 9.18 in [Suzuki, 1982]) Let G be a finite group which satisfies

the property G' = G, and let (H,Z) be a central extension of G.
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i)SetH; = H'and Z; = Z N H'. Then (Hy,Z,) is an irreducible central extension
of G.

i) If a noncentral extension (H,Z) of G is irreducible, then the representation
group of H is (isomorphic to) the representation group of G. Hence, we have

IM(H)| = [M(&)]/1Z].

Suppose that G/Z(G) = S, where Sis a group such that S = S’. Let x be
a noncentral element of G. We claim that [x%| = ca, where ¢ = |(xZ(G))¢/?(®)]
and ais a divisor of |M(S)|. To see this let D = {g € G|[g,x] € Z(G)}, where
[g,x] = g tg”*, be the preimage of Ce/2(6)(xZ(G)) in G. Since Cg(x) is the kernel
of the homomorphism D = G' N Z(G) withd ~ [d, x], it follows that |D/C;(x)|
divides |G' N Z(G)|. We have the central extension (G,Z(G)) for the group S. By
Theorem 5.4, we obtain that (G',G' N Z(G)) is an irreducible central extension of S
and hence |[M(G")| = |[M(S)|/|G' N Z(G)]|, so |G' N Z(G)| divides |[M(S)| and so
a = |D/Cq(x)| divides |M(S)|. Now

1 =165 Co(1 = o H D_ Lol (5.5)

726 Z |z 7z | T4

as claimed. Also we have that the order of the Schur mutiplier of PSL,(q) by the

following theorem [Huppert, 1967].

Theorem 5.5: For p/ # 22,32 SL,(p’) is a representation group of PSL,(p’). For
p > 22 and p’ # 32 SL,(p”) is the only representation group of PSL,(p”);

furthermore, SL,(5) is the only representation of PSL,(4). It is

|f2, forp > 2 and p/ # 3%
1, forp=2andp’ # 3%
f =4
M (PsL,("))| LZ’ forpf = 22
6, forp/ =32

(5.6)

In 1970, 1t6 proved the following theorem for a simple group with three

nonidentity conjugacy class sizes [It6, 1970].
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Theorem 5.6: If G is a simple group with cs*(G) = 3, then G is isomorphic with some

SL,(2™), m > 2.

In the following lemma we use the well known Burnside’s p%-Lemma which
states that a finite group which has a conjugacy class of a prime power size is not

simple.

Lemma 5.7: Let G be a finite nonsolvable F-group. If G satisfies one-prime power

hypothesis, then G /Z(G) = SL,(4) or SL,(8).

Proof 5.7: Note that in Theorem 3.20 all groups satisfying i) — v) are solvable. So a
nonsolvable F-group satisfying the one-prime power hypothesis is either a group of
type vi) or vii). Suppose that G/Z(G) = PSL,(q) and q is odd. It is well-known that
if ¢ = 1(mod4), we have cs*(G/Z(6)) = {q(q + 1),q(q — 1,59(q + 1,5 (q —
1)(q + 1)}, and if q = 3 (mod4), we have cs*(G/Z(G)) = {q(q + 1),%q(q + 1),
%(q - 1D(q+ 1),%q(q — 1D} If q=9, then q =1 (mod 4), so cs*(PSL2(9)) =
{9 x 10,9 x 8,9 x 5,8 X 5} which does not satisfy the one-prime-power hypothesis.
So we may assume that q #+ 9.

Suppose that we have the first case. By the above discussion, for any x € G \
Z(G) we have |x¢| = |(xZ(G))¢/%@|a, where a € {1,2}. As G/Z(G) = PSL,(q) is
simple, by Burnside’s p®*-Lemma we conclude that there is no nontrivial conjugacy
class of G/Z(G) of prime power size. If b; = a,c € c¢s*(G) and b, = a,c € ¢cs*(G),
where ¢ € ¢s*(G/Z(G)), then c divides gcd(by,b,) and so gcd(by, by) is not a
prime power, since ¢ € cs*(G/Z(G)). Thus b; = b, since G satisfies the one-prime
power hypothesis. So for any ¢ € cs*(G/Z(G)) at most one conjugacy class size of
G is a multiple of ¢, hence cs*(G) = {q(q + 1)aq,q(q — 1)a2,%q(q + 1)a3,%(q -
1)(q + 1)a,}, where a4, a,,a3,a4 € {1,2}, and |cs*(G)| £ 4. Ifby = q(q + 1)a, €
¢s*(G) and b, = q(q — 1)a, € cs*(G), are distinct, then 2q divides gcd (b4, b,)
and so gcd(bq, b;) not a prime power. So by = b,. Therefore there exist at most one
conjugacy class size which is multiple of q(q + 1) and q(q —1). So cs*(G) =

{q(q + 1)a1,%q(q + 1)a3,%(q — 1) (g + 1)as} and |cs*(G)| < 3. Now we consider
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b =q(q+1)a, €cs*(G) and b, = %(q — 1 (g + 1ay € cs*(G), then q+1
divides gcd(by,bs). If q + 1is a prime power, then q + 1 = 2¥ as q is odd. As we
assumed q = 1 (mod4), there exists an integer s such that q = 4s + 1, so we have

2% = 2(2s + 1), which is a contradiction. Thus q + 1 is not a prime power and this

implies that gcd(by, b,) is not a prime power. Hence b, = b, and there exist at

most one conjugacy class size which is multiple of q(q + 1) and %(q —1)(q +1).

Thus cs*(G) = {q(q + 1)a1,%q(q + 1)as} and |cs*(G)| < 2. Hence G is solvable

which contradicts our hypothesis.

Similarly in the second case we can obtain a contradiction.

Suppose we have c¢s*(G) = {q(q + 1)a1,%q(q + 1)a2,%(q —1)(q + Das,
%q(q — 1)a,}, where aq,a;,a3,a4 € {1,2}. Ifby = q(q+ 1)a, € cs*(G) and b, =
%q(q + 1)a, € cs*(G) are distinct, then 2q divides gcd(by,b,), so gcd(by,b,) is
not a prime power. Hence b; = b,. Thus there exist at most one conjugacy class size
which is multiple of q(q + 1) and %q(q + 1). Therefore we have cs*(G) = {q(q +
1)a1,%(q - 1(q+ 1)a3,%q(q — 1)a,} and |cs*(G)| = 3. Now we consider by =
q(q+ Da; € cs*(G) and b = %(q —1)(q+ Das € cs*(G), then 2q | gcd(by, b3)
and so gcd (b4, b3) is not a prime power. So by, = b;. Hence there exist at most one
conjugacy class size which is multiple of q(q + 1) and %(q —1(g+1). Thus
cs*(G) ={q(q + 1)a4,q(q — Da,}and |cs*(G)| < 2, which is a contradiction.

If G/Z(G) = PGL,(q), where q is odd, then it follows that cs*(G/Z(G)) =
{q(qg+1),q(q —1),(q — (g + 1),%q(q + 1),%q(q — 1)}. Similar to the above
case, we can see that at most one conjugacy class size of G is a multiple of c, for
every ¢ € cs*(G/Z(G)), and cs*(G) = {q(q + 1)ay,q(q — Day, (q — 1)(q + Das,
%q(q + 1)a4,%q(q — Das}and |cs*(G)| < 5. As above there exist at most one
conjugacy class size which is a multiple of q(q + 1) and q(q — 1). Thus cs*(G) =
(@@ + Day, (q = D(q + Das, 3q(q + Dag,39(q — Das} and so |es*(6)] < 4.
Now either q = 4k + 1 or q = 4k + 3. First suppose thatq = 4k + 1, thenq + 1
is not a prime power. Since q + 1 divides gcd(b,, b3), where b; = q(q + 1)a, and
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b; = (q —1)(q + 1)a; we have b; = bz and ¢s*(G) = {q(q + 1)a1,%q(q + 1)ay,
%q(q — 1)as}. Hence by Theorem 5.6, PGL,(q) = G/Z(G) = PSL,(2™), which is a

contradiction. Now suppose q = 4k + 3. Then 2q divides gcd(by, bs), where b, =

%q(q + 1)ay, and bs = %q(q —1as. Thus by = bg and cs*(G) = {q(q + Day,
(q—D(q + Das, %q(q — 1)a,}. Hence by Theorem 5.6, PGL,(q) = G/Z(G) =
PSL,(2™), which is a contradiction.

Finally suppose that G/Z(G) = PSL,(2") = PGL,(2™). Then we have
cs*(G/Z(G)) ={2" - 1D(2"+ 1),2" (2" - 1),2™"(2" + 1)}. Therefore cs*(G) =
{2"-1D2"+ Day, 2" (2" — Da,, 2™ (2™ + 1)as}. It is clear that 2™ — 1 divides
gcd(by,by), where by = (2" —1)(2" + 1)a, and b, = 2" (2" — 1)a,. Also (2™ +
1) divides gcd(by,b3), where b; = 2™"(2"™ + 1)az. Therefore we conclude that

2™ — 1 and 2™ + 1 are both prime power. Thusn = 2 orn = 3, which implies that

G/Z(G) = SL,(4) or SL,(8). m

Let G be finite group and g € G. Then the subgroup of G which is generated
by the set g% is the smallest normal subgroup subgroup of G which contains g and

we denote it by (g¢).

Lemma 5.8: (Lemma 6 in [Baer, 1953]) (gG) is a p-group if and only ifgis a

p-element and there exists a normal subgroup N of G which contains g such that

[N : Cy(g)]is a power of p.

Proof 5.8: First suppose that {(g“) is a p-group, then g is a p-element and we can
take N = {(g©), so [N : Cy(g)] is a power of p.

Conversely assume that g is a p-element, that g is contained in the normal
subgroup N of G, and that [N : Cy(g)] is a power of p. Now we will show that there
exists a p-Sylow subgroup P of N which contains g such that N = Cy(g)P. To show
this we only prove that Cy(g) N P is a p-Sylow subgroup of Cy(g). If [N : Cy(g)] =
p™ and if |Cy(g)| = p™, then |N|, = p™*™ so that |P| = p™*™. Denote by p* the
order of Cy(g) N P. It is clear that p* is a divisor of p™. We can see that every right

coset of P modulo Cy(g) N P is contained in one and only one right coset of N
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modulo Cy(g) so that [P : Cy(g) N P] < [N : Cy(g)]. Since [P :Cy(g)NP]is a
divisor of p™ and thus p™*™ = |P| = [P : Cy(g) N P]|Cy(g) N P|, it follows that
[P:Cy(g)NP]=p™and|Cy(g) N P| =p™ Consequently Cy(g) N P is a p-Sylow
subgroup of Cy(g). Hence (g") = (g¥) < P, so that the normal subgroup (g") of N
is a p-group. Since every {g"*) = (g")* is part of N, x € G, it follows that (g°) is

the product of normal subgroups of N which are p-groups. So {g®) is a p-group. ®

Theorem 5.9: (Theorem 1 in [Camina and Camina, 1998]) Let G be a finite group.

Then all elements of prime conjugacy class size are in F,(G), where F,(G)/F(G) =

F(G/F(G)).

Lemma 5.10: Let G be a finite group satisfying the one-prime power hypothesis. If

G /Z(G) has no solvable normal subgroup, then G is an F-group.

Proof 5.10: Let x,y be two noncentral elements of G such that C;(x) < Cg(y). We
have to prove C;(x) = Cg(y). If C4(x) < Cg(y), then |x%| and |y€| are distinct and
|y¢| divides |x€¢|, so gcd(|x€],|y%|) = |y©|. Since G satisfies the one-prime power
hypothesis |y©| is a prime power. On the other hand |(yZ(G))¢/?©| divides |y€].
Since y is noncentral, it follows that |(yZ(G))¢/?(©)| is also a prime power. Thus, by
Theorem 5.9, the Fitting subgroup (which is solvable and normal) of G/Z(G) is
nontrivial, which contradicts our hypothesis. Therefore C;(x) = C;(y) and so G is

an F-group. m

Corollary 5.11: Let G be a finite simple group. Then G satisfies the one-prime power

hypothesis if and only if G = SL,(4) or SL,(8).

Proof 5.11: G is simple, so it is nonsolvable and Z(G) = 1. If G satisfies the
one-prime power hypothesis, then by Lemma 5.10, G is a finite nonsolvable F-group.
Now Lemma 5.7 verifies that G = SL,(4) or SL,(8). Conversely, it is clear that

SL,(4) and SL,(8) have the one-prime power hypothesis. m

The converse of Lemma 5.7 is not true. For example if G = SL,(5), then

G/Z(G) = SL,(4) (2 4s) and cs™(G) = {12,20,30}. It is well-known that in As
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every element of order 3 or 5, is self centralizing, that is C4_ (x) = (x), forall x € A
of order3 or5. Also if xis any element of order 2in 4s, then (4 (x) is a Sylow
2-subgroup. Thus if x € P* is an arbitrary element of a Sylow p-subgroup P of As,
forp € {2,3,5}, then C;(x) = P.

We claim that if x is a noncentral element of a group G such that
[C;(x) : Z(G)] = p?, where p is a prime, then C;(x) is abelian and thus there is no
centralizer of any noncentral element of G strictly contained in C;(x). We use this
fact in the proof of the following lemma. On the contrary suppose that Z(C;(x)) <
Ce(x). Then we have Z(C;(x))/Z(G) < Cz(x)/Z(G) and [CG(x) : Z(CG(x))] =
[Cc(x)/Z(G) : Z(Cs(x))/Z(G)] = p. Thus C;(x) is abelian, which contradicts our
assumption that Z(C;(x)) < Cez(x). Thus Z(Ci(x)) = Ce(x) and so Cg(x) is
abelian. Now let y be any noncentral element of G such that C;(y) < C;(x). We
want to show that C;(y) = C;(x). Letu € C;(x). Since C;(x) is abelian, [u,v] = 1
for all v € C;(x). In particular, since y € C;(y) < C;(x), we have [u,y] = 1 and so
u € Ce(y). Hence C;(y) = Cz(x), as required. This completes the proof of the

claim.

Lemma 5.12: Let G be a finite group such that G/Z(G) = As. Then cs*(G) =
{12,15,20}, G' = As or cs*(G) = {12,20,30}, G’ = SL,(5). Therefore G satisfies

the one-prime power hypothesis if and only if G' = As.

Proof 5.12: Let x be a noncentral element of G. Then since Z(G) < C;(x) < G, we
have [G : Z(G)] = |x%|[Cs(x) : Z(G)] and so |As| = 60 = |x%|[C;(x) : Z(G)] .
Since |(xZ(G))¢/%@)| divides |x¢|, we have |x%| € {12a,15b,20c}, where a,b,c
are positive integers. If |x¢| = 12a, then5 = a[C;(x) : Z(G)] and so a = 1, also
Ci(x) is abelian. If |x®| = 20c, then 3 = c[Cg(x) : Z(G)] and so ¢ = 1, also Cg(x)
is abelian. If |x¢| = 15b, then4 = b[C;(x) : Z(G)] and so b = 1 or 2. We consider

the following two cases.

e Case 1: Suppose that there exists x € G such that |(xZ(G))¢/?©)| = 15 with
Ce(x)/Z(G) = Cgz(6)(xZ(G)). Therefore
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6| = G -CG(x)]z[ G

I=ze zo) Tz

: Cg2(6)(XZ(G))| = 15. (5.7)
We will prove that for all y € G with |(vZ(G))¢/?@| = 15, we have C;(y)/
Z(G) = Cg/7(6)(¥Z(G)) and so |y¢| = 15. Firstly we know that Ce/z(6)(xZ(G))
is a Sylow 2-subgroup of G/Z(G) of order 4. Now it is clear that for each
nontrivial  yZ(G) € Cg/z)(xZ(G)) , Ci/z(6)(xZ(6)) = C;/2(6)(¥Z(6)). If
VZ(G) € Cg/7(6)(xZ(G)), then

Ce(¥) Ce(x)
200 S Corz@ (VZ(8) = Coyz6)(2(6)) = 5 (5.8)
since |CG/Z(G)(xZ(G))| = |‘;G(—(;C; = 4, by the previous note, we conclude that

Cs(x) = C;(y). Therefore

Ce(y)
Z(G)

Ce (%)
Z(G)’

= Co/26)(VZ(®) = Co/26)(xZ(6)) = (5.9)
Now suppose that yZ(G) & Cg/7(6)(xZ(G)). Therefore Cg 7(¢y(VZ(G)) is a
Sylow 2 -subgroup of G/Z(G) different from Cg;76)(xZ(G)). Since As acts
transitively, by conjugation, on the set of its Sylow 2-subgroup, there exists
u € G such that u lxuZ(G) € Co/z(y(VZ(G)). It follows Cg/z6)(¥Z(G)) =
Ce,2(6) (U™ xuZ(G)) and

Ce(y) u Ce(x) “ Ce(x™)
<Cg¢ (vZ(G))=C ¢ (xZ(G)) = = ) (5.10)

20 = G5, 0F@) =C e (2O) =\7057) = 7@
. Ce(y) _ Ce(x™) Cc(y) _
Hence, by the previous note, we have 20 - 2@ therefore 70 -

Coz(¢)(¥Z(G)). Thus we have proved that if |(xZ(G))%/*©@| =15 and

68 = Coyz0)(xZ(G)), then for all y € G with |(yZ(6)*/*©)| =15, we

CeOy) _
Z(G)

cs*(G) = {12,15,20}. Note that if |x%| = 12 or 20, then C;(x) is abelian since

have Ce/z(6)(YZ(G)) and so |y¢| = 15. Hence in this case we have
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60 = |x|[Cs(x) : Z(G)]. Also if |x| = 15 we saw that C;(x) is abelian. Hence
there is no centralizer of any noncentral element of G strictly contained in Cg(x).
Thus G is an F -group. Therefore by Theorem 3.20, we have G/Z(G) =
PSL,(4) = Ag and G’ = SL,(4) = As. It should be mentioned that in this case
G/Z(G) = PSL,(5) = A5 but we cannot have G' = SL,(5), since otherwise 30
divides a conjugacy class size of G as cs*(SLz (5)) = {12,20,30}.

e Case 2: Now suppose that C;(x)/Z(G) < Cg/z7(6)(xZ(G)), for all x € G with
|(xZ(G))¢/?(@| = 15. Therefore

Ce(x)
Z(G)

G C(x)
72(6)  Z(6)

|x¢ = ] = |(xZ(6))/*@ [CG/Z(G>(xZ(G)) : ] (5.11)

and so |x%| =30 and also |C;(x)/Z(G)| = 2. Thus in this case cs*(G) =
{12,20,30}. Note that in this case C;(x) is abelian, for all x € G. Therefore G is
an F-group and by Lemma 3.20, G /Z(G) = PSL,(5) = As and G' = SL,(5). =

Lemma 5.13: Let G be a finite group such that G/Z(G) = S, where S is a simple
group with trivial Schur multiplier. Then G = Z(G) X S. Therefore if G/Z(G) =
SL,(2™), where m > 3, then G satisfies the one-prime power hypothesis if and only

if G = Z(G) x SL,(8).

Proof 5.13: By Theorem 5.4, |G' N Z(G)| divides the order of the Schur multiplier
of S. Thus G' N Z(G) = 1 as the Schur multiplier of S is trivial. Since G'Z(G)/Z(G)
is a normal subgroup of the simple group G/Z(G) = Sand G'Z(G)/Z(G) = G, it
follows that either G =Z(G) if G' =1 0or G =Z(G) X G' if G' # 1. Hence G =
Z(G) X G'"=Z(G) X S.

On the other hand, by Theorem 5.5, the Schur multiplier of SL,(2™), m = 3,
is trivial. Also by the proof of Lemma 5.7, SL,(2™) satisfies the one-prime power

hypothesis if and only if m = 3, therefore the other assertion follows. m

Theorem 5.14: Let G be a finite group such that G /Z(G) is simple. Then B(G) has no
cycle of length 4 if and only if G = A XS, where A is abelian, and S = SL,(q),
q=4,8.
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Proof 5.14: Suppose that B(G) has no cycle of length 4. Therefore G satisfies
the one-prime power hypothesis. Then, by Lemma 5.10, G is an F-group and so,
by Lemma 5.7, G/Z(G) = SL,(q), where q € {4,8}. Hence by Lemma 5.12 and
Lemma 5.13, G/Z(G) = SL,(q) = G', where q € {4,8}. Let H=Z(G)G'. Then
H =Z(G) X G"is a normal subgroup of G. Therefore G' = H/Z(G) is a normal
subgroup of G/Z(G), which implies that H = G. Hence G = A X G', where A is an
abelian subgroup of G.

The converse is obvious since cs*(SL,(4)) = {12,15,20} and cs*(SL,(8)) =
{56,63,72}. m
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