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SUMMARY 

    Graphs associated with various algebraic structures have been actively 

investigated and many interesting results have been obtained. Let 𝑋 be a set of 

positive integers. We associate three undirected graphs, which are called the prime 

vertex graph, the common divisor graph and the bipartite divisor graph, to the set 

𝑋. Let 𝐺 be a finite group and 𝑐𝑠(𝐺) the set of the conjugacy class sizes of elements 

in 𝐺. Assume that  𝑋 = 𝑐𝑠(𝐺). By using combinatorial properties of the associated 

graphs, we give some information about the structure of the group. One of the 

main questions that naturally arises in this area is classifying the groups whose 

bipartite divisor graphs have special graphical shapes. In this thesis, we consider the 

case where the bipartite divisor graph of a finite group is a cycle. Bijan Taeri 

classified those groups with this property [Taeri, 2010]. In this thesis, we will write 

his proof in detail. 
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ÖZET 

Çeşitli cebirsel yapılarla ilişkili grafikler incelenmiş ve birçok enteresan 

sonuçlar elde edilmiştir.  𝑋 pozitif tamsayıların bir alt kümesi olsun. Biz üç yönsüz 

grafik olan asal köşe grafiği, ortak bölen grafiği ve ikili bölen grafiğini  𝑋 kümesi        

ile ilişkilendirdik. 𝐺  sonlu bir grup ve 𝑐𝑠(𝐺)  𝐺 ’nin elemanlarının eşlenik sınıfı 

boyutlarının kümesi olsun. 𝑋 = 𝑐𝑠(𝐺)  olsun. İlişkili grafiklerin kombinatoryal 

özelliklerini kullanarak, grubun yapısı hakkında bazı bilgiler verdik. Doğal olarak bu 

alanda ortaya çıkan başlıca sorulardan biri olan ikili bölen grafikleri özel grafik 

şekiller olan gruplarını sınıflandırılmasıdır. Bu tezde, sonlu grup ikili böleni grafiği bir 

döngü olan durum incelendi. Amacımız bu özelliği ile bu grupları sınıflandırmaktır. 

Bunun için biz Bijan Taeri tarfından yazılan bir makaleyi takip edeceğiz [Taeri, 2010]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Asal Köşe Grafiği, Ortak Bölen Grafiği, İkili Bölen Grafiği. 
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1. INTRODUCTION 

1.1. History 

Over the last 30 years there have been many papers on the influence of the 

sizes of conjugacy classes on finite groups. We may ask the following question: 

How much information can one expect to obtain from the sizes of conjugacy 

classes? 

Sylow in 1872 examined what happened if there was information about the 

sizes of all conjugacy classes, whereas in 1904 Burnside showed that strong results 

could be obtained if there was particular information about the size of just one 

conjugacy class. Landau in 1903 bounded the order of the group in terms of the 

number of conjugacy classes whilst in 1919 Miller gave a detailed analysis of groups 

with very few conjugacy classes. Very little then seems to have been done until 

1953 when both Baer and Itô published papers on this topic but with different 

conditions on the sizes. 

By looking at these early results it can been seen that much will depend on 

how much information is given and it is important to be explicit. For example if one 

knows that there is only one conjugacy class size then the group is abelian, but this 

can be any abelian group. However if you know the collection of conjugacy class 

sizes, that is the multiplicities, then the order of the group is also known. However it 

would still not be possible to identify the group.  

Various graphs can be constructed from the sets of conjugacy class sizes. The 

properties of the graphs and the relation to the structure of the groups are the 

main questions in this field of study. This has been a very active area in recent 

years. Recently, Lewis in [Lewis, 2008] discussed many remarkable connections 

among these graphs by analysing analogous of these graphs for arbitrary positive 

integer subsets. Then, inspired by the survey of Lewis, in [Iranmanesh and Praeger, 

2010] introduced the bipartite divisor graph  𝐵(𝑋) for a finite set  𝑋 of positive 

integers and studied some basic invariants of this graph (such as the diameter, girth, 

number of connected components). One of the main questions that naturally arises 

in this area is classifying the groups whose bipartite divisor graphs have special 
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graphical shapes. For instance, in [Hafezieh and Iranmanesh, 2013], the writers have 

classified the groups whose bipartite divisor graphs are paths.  

In this thesis, we will investigate the classification of the groups whose 

bipartite divisor group are cycles which are classified by Taeri [Taeri, 2010]. 

In chapter 2, we introduce three undirected graphs for a set of positive 

integers and discuss some of the combinatorial properties of these graphs. We will 

follow the paper of Iranmanesh and Praeger [Iranmanesh and Praeger, 2010]. 

In chapter 3, we give a structure theorem for the finite groups with three 

conjugacy class sizes which is proved by Dolfi and Jabara [Dolfi and Jabara, 2009]. In 

particular, we also see that they are either solvable groups with derived length at 

most three or nilpotent groups. We will follow the paper of Dolfi and Jabara [Dolfi 

and Jabara, 2009]. 

In chapter 4, we discuss the connections between prime divisors of conjugacy 

classes and prime divisors of a finite group 𝐺. We will investigate a theorem of 

Ferguson that says for a finite solvable group 𝐺, if each conjugacy class size has at 

most two prime divisors and there exists a conjugacy class size with two distinct 

prime divisors, then the set of all primes dividing the conjugacy class sizes of 𝐺 has 

at most four elements. We will follow the paper of Ferguson [Ferguson, 1991]. 

Finally, in chapter 5, we consider the case that the bipartite divisor graph is a 

cycle. We investigate the theorem of Taeri that the bipartite divisor graph is a cycle 

if and only if it is a cycle of length six [Taeri, 2010]. Also he classified those groups 

with this property which covers the main idea of this thesis. We will follow the 

paper of Taeri [Taeri, 2010]. 

 In the rest of this chapter, we give preliminary definitions and results in group 

theory and graph theory which will be used in other sections. 

1.2. Preliminary Definitions and Results in Group Theory 

Note that we work on finite groups. 

Definition 1.1: Let  𝜋 be a set of primes. A finite group  𝐺 is called a  𝜋-group if              

for every prime dividing the order of 𝐺 lies in  𝜋 and a  𝜋-subgroup of a group  𝐺 is a          
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subgroup which itself is a  𝜋-group.  

Definition 1.2: A Hall  𝜋-subgroup of a group 𝐺 is a  𝜋-subgroup with index involving 

no prime of 𝜋. 

 

Definition 1.3: Let 𝐺 be a group and 𝐾 ⊴ 𝐺. A subgroup 𝐻 of 𝐺 is a complement for 

𝐾 in 𝐺 if 𝐺 = 𝐾𝐻 and 𝐾 ∩ 𝐻 = 1.  

     

A Hall 𝑝′ -subgroup of 𝐺  is called a 𝑝 -complement in 𝐺 . Note that 𝜋(𝐺) 

denotes the set of prime divisors of |𝐺|. 

 

Theorem 1.1: (Schur-Zassenhaus Theorem) Let 𝐺  be a group and 𝐾  a normal 

subgroup of 𝐺 such that 𝑔𝑐𝑑 (|𝐾|, |𝐺/𝐾|) = 1. Then 𝐾 has a complement in 𝐺. 

 

Definition 1.4: A subgroup 𝐻 of a group 𝐺 is a characteristic subgroup of 𝐺, if 

𝛼(𝐻) = 𝐻 for all 𝛼 ∈ 𝐴𝑢𝑡(𝐺), where 𝐴𝑢𝑡(𝐺) denotes the group of automorphism 

of 𝐺, and we write 𝐻 𝑐ℎ𝑎𝑟 𝐺.  

 

Note that a characteristic subgroup is normal. It is easy to see that if 𝐻, 𝐾 are 

two subgroups of 𝐺 such that 𝐻 𝑐ℎ𝑎𝑟 𝐾, and 𝐾 ⊴ 𝐺, then 𝐻 ⊴ 𝐺.  

 

Definition 1.5: The largest normal 𝑝-subgroup of a group 𝐺 is denoted by 𝑂𝑝(𝐺) and 

we can easily see that  𝑂𝑝(𝐺) lies in every Sylow  𝑝-subgroup of 𝐺. The Fitting 

subgroup of 𝐺 is the largest nilpotent normal subgroup of 𝐺 and it is denoted by 

𝐹(𝐺), and it is well known that 𝐹(𝐺) =×𝑝∈𝜋(𝐺) 𝑂𝑝(𝐺).  

 

Definition 1.6: The Frattini subgroup of a group 𝐺 is the intersection of all maximal 

subgroups of 𝐺 and it is denoted by  Φ(𝐺). 

 

It is a well-known fact that the subgroups 𝑂𝑝(𝐺), 𝐹(𝐺) and Φ(𝐺) of the group 

𝐺 are characteristic subgroups of 𝐺, and 𝐹((𝐺/Φ(𝐺)) = 𝐹(𝐺)/Φ(𝐺) [Kurzweil and 

Stellmacher, 2004]. 
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Theorem 1.2: (6.1.4 in [Kurzweil and Stellmacher,2004]) Let 𝐺 be a solvable group. 

Then 𝐶𝐺(𝐹(𝐺)) ≤ 𝐹(𝐺).  

 

Definition 1.7: Let 𝐺 be a group and let Ω be a nonempty set. A map ʻʻ·’’ from  Ω × 𝐺 

to Ω  is an action of 𝐺 on Ω if the following two conditions hold: 

 

• 𝛼 · 1 = 𝛼, for all 𝛼 ∈ Ω , and 

• (𝛼 · 𝑔) · ℎ = 𝛼 · (𝑔ℎ) for all 𝛼 ∈ Ω and all group elements 𝑔,ℎ ∈ 𝐺. 

 

Definition 1.8: Let 𝐺 be a group which acts on the set  𝛺. This action is called regular 

if for each pair of elements 𝛼,𝛽 ∈ Ω, there exists precisely one 𝑔 ∈ 𝐺 such that 

𝛼 · 𝑔 = 𝛽.  The action of 𝐺  on 𝛺  is called faithful if 𝛼 ⋅ 𝑔 = 1  for all 𝛼 ∈ 𝛺 , 

then 𝑔 = 1. 

 

Definition 1.9: Let  𝐴 be a group that acts on the group 𝐺. The action of 𝐴 on 𝐺 is 

coprime if  𝑔𝑐𝑑(|𝐴|, |𝐺|) = 1. A subgroup 𝐻 of the group  𝐺 is 𝐴-invariant if for all 

𝑎 ∈ 𝐴, 𝐻𝑎 ∶= {ℎ ⋅ 𝑎|ℎ ∈ 𝐻} = 𝐻.  

 

Suppose that 𝐴 is a group that acts on the group 𝐺 and 𝐻 is a subgroup of 𝐺. 

For any 𝑔 ∈ 𝐺, by (𝐻𝑔)𝐴, we mean the set  {(ℎ𝑔) ⋅ 𝑎|ℎ ∈ 𝐻,𝑎 ∈ 𝐴}. 

 

Theorem 1.3: (8.2.1 in [Kurzweil and Stellmacher,2004]) Suppose that the action of 𝐴 

on the group 𝐺 is coprime. Let  𝑈 be 𝐴-invariant subgroup of 𝐺 and 𝑔 ∈ 𝐺 such that 

(𝑈𝑔)𝐴 = 𝑈𝑔. Then there exists 𝑐 ∈ 𝐶𝐺(𝐴) such that 𝑈𝑔 = 𝑈𝑐. 

 

Definition 1.10: For groups  𝐴 and  𝐺, we say that  𝐴 acts via automorphisms on  𝐺      

if  𝐴 acts on 𝐺, and (𝑥𝑦) ⋅ 𝑎 = (𝑥 ⋅ 𝑎)(𝑦 ⋅ 𝑎) for all  𝑥,𝑦 ∈ 𝐺 and 𝑎 ∈ 𝐴. Let 𝐴 act via 

automorphisms on 𝐺, then we define  [𝐺,𝐴] = ⟨𝑔−1𝑔𝑎 |𝑔 ∈ 𝐺,𝑎 ∈ 𝐴⟩ as a subgroup 

of 𝐺 ⋊ 𝐴 where 𝑔𝑎 is the action of 𝑎 on 𝑔. 

Theorem 1.4: (Lemma 4.28 in [Isaacs, 2008]) Let  𝐴 and 𝐺 be finite groups. Let 𝐴 act 

via automorphisms on 𝐺 and suppose that 𝑔𝑐𝑑 (|𝐺|, |𝐴|) = 1 and that one of 𝐴 or 𝐺  
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is solvable. Then 𝐺 = 𝐶𝐺(𝐴)[𝐺,𝐴]. 

Theorem 1.5: (Theorem 4.34 in [Isaacs, 2008]) Let  𝐴 act via automorphisms on       

an abelian group 𝐺. Assume that 𝐴 and 𝐺 are finite groups and 𝑔𝑐𝑑 (|𝐴|, |𝐺|) = 1. 

Then 𝐺 = 𝐶𝐺(𝐴) × [𝐺,𝐴]. 

Definition 1.11: Suppose that the group 𝐴 acts on the group 𝐺 via automorphisms. 

Assume that 𝑎 ∈ 𝐴,  𝑥 ∈ 𝐺. By  𝐶𝐺(𝑎)  and  𝐶𝐴(𝑥)  we mean  {𝑔 ∈ 𝐺|𝑔.𝑎 = 𝑔} and 

{𝑎 ∈ 𝐴|𝑥.𝑎 = 𝑥}, respectively. 

 

 Definition 1.12: Let  𝐺# denote the set of nonidentity elements of a group 𝐺. The 

action of 𝐴 on 𝐺 is said to be Frobenius if  𝑥 · 𝑎 ≠ 𝑥 whenever  𝑥 ∈ 𝐺# and 𝑎 ∈ 𝐴#.  

 

Equivalently, the action of 𝐴 on 𝐺 is Frobenius if and only if 𝐶𝐺(𝑎) = 1 for all 

𝑎 ∈ 𝐴#, and also if and only if 𝐶𝐴(𝑥) = 1 for all 𝑥 ∈ 𝐺#. 

Theorem 1.6: (Lemma 6.1 in [Isaacs, 2008]) Let  𝐴 and 𝐺 be finite groups, and 

suppose that there is a Frobenius action of 𝐴 on 𝐺. Then |𝐺| ≡ 1 (𝑚𝑜𝑑|𝐴|), and 

hence |𝐺| and |𝐴| are coprime. 

Definition 1.13: A group 𝐴 is called a Frobenius complement if it has a Frobenius 

action on some nonidentity group 𝐺, and similarly, a group 𝐺 is called a Frobenius 

kernel if it admits a Frobenius action by some nonidentity group 𝐴. 

      

Theorem 1.7: (Theorem 6.4 in [Isaacs, 2008]) Let  𝑁 be a normal subgroup of a finite 

group 𝐺, and suppose that 𝐴 is a complement for 𝑁 in 𝐺. Then the followings are 

equivalent. 

i) The conjugation action of 𝐴 on 𝑁 is Frobenius. 

ii) 𝐴 ∩ 𝐴𝑔 = 1 for all elements 𝐺 ∖ 𝐴. 

iii) 𝐶𝐺(𝑎) ≤ 𝐴 for all 𝑎 ∈ 𝐴#. 

iv) 𝐶𝐺(𝑛) ≤ 𝑁 for all 𝑛 ∈ 𝑁#. 
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If both 𝑁 and 𝐴 are nontrivial in the above theorem, we say that 𝐺  is a 

Frobenius group and that 𝐴 and  𝑁 are Frobenius complement and Frobenius kernel 

of 𝐺, respectively. 

Theorem 1.8: (Theorem 6.7 in [Isaacs, 2008]) Let  𝑁 be a normal subgroup of a finite 

group 𝐺 and suppose that 𝐶𝐺(𝑛) ≤ 𝑁 for every  𝑛 ∈ 𝑁#. Then 𝑁 is complemented in 

𝐺 and if 1 < 𝑁 < 𝐺, then 𝐺 is a Frobenius group with kernel 𝑁. 

Theorem 1.9: (Corollary 6.17 in [Isaacs, 2008]) Suppose that  𝐴 is a Frobenius 

complement. Then each Sylow subgroup of 𝐴 is cyclic or generalized quaternion. 

Definition 1.14: A group 𝐺 is said to act on the 𝑛-dimensional vector space  𝑉 over 

the field 𝐾 if 𝐺 acts on the additive group 𝑉 and (𝜆𝑣) ⋅ 𝑔 = 𝜆(𝑣 ⋅ 𝑔) for any 𝜆 ∈ 𝐾, 

𝑣 ∈ 𝑉, 𝑔 ∈ 𝐺. The action of 𝐺 on  𝑉 is callad irreducible if  𝑉 ≠ 0 and 0 and 𝑉 are 

the only 𝐺-invariant subspaces of 𝑉.   

Theorem 1.10: (Theorem 8 in [Huppert and Manz, 1990]) Let  𝑃 be a nontrivial          

𝑝-group, which acts irreducibly and faithfully on a finite vector space 𝑉 over 𝐺𝐹(𝑞), 

where  𝑞 is a prime number different from  𝑝. If  𝑃 contains no section isomorphic to 

𝐶𝑝 ≀ 𝐶𝑝, then 𝑃 has a regular orbit in its action on 𝑉. 

Definition 1.15: Let 𝐺 be a group and 𝐻 be a subgroup of 𝐺. Assume that 𝐺 acts on 

𝐻 and 𝐻 is an 𝐹-module, where 𝐹 is a field. Then 𝐻 is called an 𝐹𝐺-module.  

 

Definition 1.16: Let 𝐺 be a group. The exponent of 𝐺 is a number 𝑒 ∈ ℕ which is 

minimal with respect to the propety that 𝑔𝑒 = 1 for all 𝑔 ∈ 𝐺. Then we write 

𝑒𝑥𝑝 (𝐺) = 𝑒. 

 

Definition 1.17: A group 𝐺 is said to be 𝜋-seperable, where 𝜋 is some set of primes,  

if there exists a normal series 1 = 𝑁0 ≤ 𝑁1 ≤  … ≤ 𝑁𝑟 = 𝐺 such that each factor 

𝑁𝑖/𝑁𝑖−1, 𝑖 = 1, … , 𝑟, is either a 𝜋-group or a 𝜋′-group. The group 𝐺 is 𝜋-solvable if it 

has a normal series where each factor is either a 𝜋′-group or is a solvable 𝜋-group. 

Clearly, a solvable group is 𝜋-solvable for every set 𝜋 of primes. If 𝐺 is 𝜋-seperable, 
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the 𝜋-length of 𝐺 is the minimum possible number of factors that are 𝜋-groups in 

any normal series for 𝐺 in which each factor is either a 𝜋-group or a 𝜋′-group. 

 

Theorem 1.11: (Corollary 3.19 in [Isaacs, 2008]) Let 𝐺 be a finite solvable group. 

Then 𝐺 is 𝜋-seperable for every set 𝜋 of primes. 

Theorem 1.12: (3.1.9 in [Kurzweil and Stellmacher, 2004]) Let  𝐻 be a subgroup of a 

group 𝐺. Then  𝑁𝐺(𝐻) is the largest subgroup of 𝐺 in which 𝐻 is normal. In addition, 

the mapping 𝜑 ∶ 𝑁𝐺(𝐻) → 𝐴𝑢𝑡(𝐻)  via 𝑥 ↦ (ℎ ↦ ℎ𝑥)  is a homomorphism and 

𝐾𝑒𝑟(𝜑) = 𝐶𝐺(𝐻). 

Lemma 1.13: (Frattini Argument) Let 𝑁 be a normal subgroup of a finite group 𝐺. 

Assume that  𝑃 ∈ 𝑆𝑦𝑙𝑝(𝑁). Then  𝐺 = 𝑁𝐺(𝑃)𝑁.  

Theorem 1.14: Let 𝐺 be a solvable group. Then  𝐹(𝐺/Φ(𝐺)) = 𝐹(𝐺)/Φ(𝐺) is a 

completely reducible and faithful  𝐺
𝐹(𝐺)-module. 

Definition 1.18: For a group 𝐺 the subgroup 𝑂𝜋′,𝜋(𝐺) is defined by 

 
𝑂𝜋′,𝜋(𝐺)

𝑂𝜋′(𝐺) = 𝑂𝜋 �
𝐺

𝑂𝜋′(𝐺)�.            (1.1) 

 

Clearly, 𝑂𝜋′,𝜋(𝐺) is a characteristic subgroup of 𝐺. 

 

Theorem 1.15: (6.4.3 in [Kurzweil and Stellmacher, 2004]) Let 𝐺 be 𝑝-seperable for 

𝑝 ∈ 𝜋(𝐺) and 𝑃 a Sylow 𝑝-subgroup of 𝑂𝜋′,𝜋(𝐺). Then 𝐶𝐺(𝑃 ) ≤ 𝑂𝜋′,𝜋(𝐺). 

1.3. Preliminary Definitions and Results in Graph Theory 

Definition 1.19: A graph 𝐺 consists of a nonempty finite set  𝑉(𝐺) of elements called  

vertices, and a finite family  𝐸(𝐺) of unordered pairs of elements of  𝑉(𝐺) called 

edges. An edge  {𝑣,𝑤} is said to join the vertices  𝑣 and  𝑤, and sometimes it is 
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abbreviated to 𝑣 − 𝑤. Two vertices in a graph are called adjacent if there is an edge 

joining them. 

Definition 1.20: A walk in a graph 𝐺 is a finite sequence of vertices  𝑣0, 𝑣1, … , 𝑣𝑛 and 

edges 𝑎1,𝑎2, … ,𝑎𝑛  of 𝐺; 𝑣0,𝑎1, 𝑣1,𝑎2, … ,𝑎𝑛, 𝑣𝑛 where the endpoints of 𝑎𝑖 are  𝑣𝑖−1  

and 𝑣𝑖  for each  𝑖 = 1, 2, … ,𝑛, and the number  𝑛 is the length of the walk. A path is 

a walk in which no vertex is repeated. A walk is closed when the first and last 

vertices, 𝑣0 and 𝑣𝑛, are the same. Two vertices 𝑣 and 𝑤 in a graph 𝐺 are connected 

if there is a path joining them, and their distance  𝑑(𝑣,𝑤) is the length of the 

shortest path joining them.    

 

Definition 1.21: A cycle of length 𝑛 (or an 𝑛-cycle) is a closed walk of length 𝑛, 𝑛 ≥

3, in which the vertices  𝑣0, 𝑣1, … , 𝑣𝑛−1 are all different, and it is denoted by 𝐶𝑛. A 

graph is called acylic if it contains no cycles. 

 

Definition 1.22: If the vertex set of a graph 𝐺 can be split into two disjoints sets 𝐴 

and 𝐵 so that each edge of 𝐺 joins a vertex of  𝐴 and a vertex of  𝐵, then 𝐺 is called 

a bipartite graph. 

Theorem 1.16: (Theorem 2.2 in [Wallis, 2007]) A graph is bipartite if and only if it 

contains no cycle of odd length.  

Definition 1.23: Two graphs 𝐺1 and 𝐺2 are isomorphic if there is a one to one 

correspondence between vertices of 𝐺1 and those of 𝐺2 such that the number of 

edges joining any two vertices of 𝐺1 is equal to the number of edges joining the 

corresponding vertices of 𝐺2. 

 

Definition 1.24: If  𝐺 is a graph, it is possible to choose some of the vertices and 

some of the edges of 𝐺 in such a way that these vertices and edges again form a 

graph, say 𝐻, then 𝐻 is called a subgraph of 𝐺; one writes 𝐻 ≤ 𝐺. If  𝑈 is any set of 

vertices of 𝐺, then the subgraph consisting of 𝑈 and all the edges of 𝐺 that join two 

vertices of 𝑈 is called an induced subgraph, the subgraph induced by 𝑈. 
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Definiton 1.25: If the two graphs are 𝐺1 = (𝑉(𝐺1),𝐸(𝐺1)) and 𝐺2 = (𝑉(𝐺2),𝐸(𝐺2)) 

where  𝑉(𝐺1) and  𝑉(𝐺2) are disjoint, then their union 𝐺1 ∪ 𝐺2 is the graph with 

vertex set  𝑉(𝐺1) ∪ 𝑉(𝐺2) and edge family 𝐸(𝐺1) ∪ 𝐸(𝐺2). A graph 𝐺 is connected 

if it cannot be expressed as the union of two graphs, and disconnected otherwise. 

Clearly any disconnected graph 𝐺 can be expressed as the union of connected 

graphs, each of which is a component of 𝐺, and the number of the components of 𝐺 

is denoted by 𝑛(𝐺). 

Definition 1.26: A graph with 𝑛-vertices is said to be a complete graph if any two 

vertices in the graph are adjacent and it is denoted by 𝐾𝑛. A complete bipartite 

graph is a bipartite graph with disjoint two vertices sets 𝑉1 and 𝑉2 such that any two 

vertices in different sets are adjacent and we write  𝐾𝑚,𝑛 to mean a complete 

bipartite graph with 𝑚 vertices in  𝑉1 and 𝑛 vertices in  𝑉2. 
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2. BIPARTITE DIVISOR GRAPHS FOR INTEGERS SUBSETS 

In this chapter we follow the paper of Iranmanesh and Praeger [Iranmanesh 

and Praeger, 2010]. 

In this chapter we associate three distinct graphs to a set of positive integers 

and discuss some of the combinaorial properties of these graphs such as the 

number of connected components, the diameter and the girth. 

2.1. Representing the Bipartite Graph as 𝑩(𝑿) 

Definition 2.1: Let 𝑋 be a nonempty subset of positive integers. Then we define the 

following two graphs with respect to the set 𝑋: 

 

i) Prime vertex graph: This is an undirected graph whose vertex set is 𝜌(𝑋) which 

is the set of all primes dividing some element of 𝑋, and two such primes 𝑝, 𝑞 are 

joined by an edge if and only if 𝑝𝑞 divides some 𝑥 ∈ 𝑋. We denote this graph by 

∆(𝑋). 

ii) Common divisor graph: This is an undirected graph whose vertex set is 

𝑋∗ = 𝑋 ∖ {1} and two elements like 𝑥,𝑦  of 𝑋∗  form an edge if and only if 

𝑔𝑐𝑑 (𝑥, 𝑦) > 1.  

iii) Bipartite divisor graph: This is an undirected graph whose vertex set is the 

disjoint union 𝜌(𝑋) ∪ 𝑋∗ and its edges are the pairs  {𝑝, 𝑥} where 𝑝 ∈ 𝜌(𝑋), 𝑥 ∈

𝑋∗ and 𝑝 divides 𝑥. 

Theorem 2.1: A bipartite graph 𝐺 is isomorphic to 𝐵(𝑋), for some nonempty set of 

positive integers  𝑋, if and only if 𝐺 is nonempty and has no isolated vertices, where 

by an isolated vertex we mean a vertex which lies on no edge. 

Proof 2.1: Suppose that 𝐺 is a bipartite graph with vertex bipartition  {𝑉1|𝑉2}. Let 

𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑚}  and  𝑉2 = {𝑢1,𝑢2, … ,𝑢𝑛}  where  𝑚 ≥ 1, 𝑛 ≥ 1. First of all, 

suppose that 𝐺 has no isolated vertices. Let 𝑝1,𝑝2, … ,𝑝𝑚 be pairwise distinct primes, 

and let  𝑀 = {𝑝1,𝑝2, . . . ,𝑝𝑚}. Define a bijection 𝑓 ∶ 𝑉1 → 𝑀 by 𝑓(𝑣𝑖) = 𝑝𝑖  for each 
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𝑖 = 1, 2, . . . ,𝑚 . For 1 ≤ 𝑗 ≤ 𝑛  define 𝐼𝑗 = �𝑙�{𝑣𝑙 ,𝑢𝑗} ∈ 𝐸(𝐺)�  and then set 

𝑥𝑗 = ∏ 𝑝𝑙
𝑗

𝑙∈𝐼𝑗 . Since there are no isolated vertices in 𝐺, it is clear that  𝐼𝑗 ≠ ∅. Let 

 𝑋 = {𝑥𝑗|1 ≤ 𝑗 ≤ 𝑛}. We claim that 𝜌(𝑋) = 𝑀 , if not, then there exists a prime 

number  𝑝𝑖 ∈ 𝑀 ∖ 𝜌(𝑋) and 𝑣𝑖 ∈ 𝑉 such that 𝑓(𝑣𝑖) = 𝑝𝑖. Then for each  1 ≤ 𝑗 ≤ 𝑛, 

𝑝𝑖 ⫮ 𝑥𝑗 and hence 𝑖 ∉ 𝐼𝑗 , which implies that 𝑣𝑖  is isolated. Now  {𝑝𝑖,𝑥𝑗} ∈ 𝐸(𝐵), the 

edge set of  𝐵 = 𝐵(𝑋), if and only if  𝑝𝑖 divides  𝑥𝑗 = ∏ 𝑝𝑙
𝑗

𝑙∈𝐼𝑗 , that is, if and only if 

𝑖 ∈ 𝐼𝑗, and this holds if and only if  {𝑣𝑖 ,𝑢𝑗} ∈ 𝐸(𝐺). Thus extending 𝑓 to a map 

𝑉(𝐺) → 𝑉(𝐵) by 𝑓(𝑢𝑗) = 𝑥𝑗, for each 𝑗, defines an isomorphism from 𝐺 to 𝐵(𝑋). 

Conversely, suppose that 𝐺 ≅ 𝐵(𝑋) for some 𝑋. By the definition of a bipartite 

graph we deduce that 𝐺 has at least one vertex, so 𝑋 ≠ {1}. The fact that  𝐵(𝑋) has 

no isolated vertices now follows from its definition. ∎ 

Corollary 2.2: For a nonempty set  𝑋 of positive integers such that  𝑋 ≠ 1, there 

exists a second nonempty set  𝑌 of positive integers, and a graph isomorphism 

𝜑 ∶ 𝐵(𝑋) → 𝐵(𝑌) that induces isomorphisms  ∆(𝑋) ≅ 𝛤(𝑌) and  𝛤(𝑋) ≅ ∆(𝑌). 

Proof 2.2: Let 𝐺 = 𝐵(𝑋) with vertex bipartition  {𝜌(𝑋)|𝑋∗}. By the definition, 𝐺 is 

nonempty and has no isolated vertices. We can apply the proof of Theorem 2.1 to 

the reverse bipartition {𝑋∗|𝜌(𝑋)}. This produces a nonempty subset 𝑌 of positive 

integers and a graph isomorphism 𝜑 ∶ 𝐺 → 𝐵(𝑌). Therefore it induces a graph 

isomorphism from  ∆(𝑌) to the graph induced on the first part  𝑋∗ of the bipartition 

(which by the definition of 𝐺 is  𝛤(𝑋)) and a graph isomorphism from  𝛤(𝑌) to the 

graph induced on the second part  𝜌(𝑋) of the bipartition (which by the definition of 

𝐺 is ∆(𝑋)). ∎ 

Thus if we wish to prove that a certain relationship holds between  𝐵(𝑋) and 

∆(𝑋), for all  𝑋 and also between  𝐵(𝑋) and  𝛤(𝑋), for all  𝑋, it is often sufficient to 

prove only one of these assertions. 

2.2. Relating the Parameters of 𝑩,∆,𝜞 

Throughout  the section let  𝑋  denote a nonempty subset  of positive integers  
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with 𝑋 ≠ {1}, so that  𝑋∗ ≠ ∅. As mentioned above we simplify our notation and 

write 𝐵 = 𝐵(𝑋), ∆ = ∆(𝑋), 𝛤 = 𝛤(𝑋). 

For 𝑢 ∈ 𝑉(𝐵), let [𝑢]𝐵 denote the connected component of 𝐵 containing  𝑢, 

and similarly define [𝑢]∆, [𝑢]𝛤 if 𝑢 ∈ 𝑉(∆) or 𝑢 ∈ 𝑉(𝛤) respectively. By diamater of 

𝐺, we mean the maximum distance between vertices in the same component of 𝐺. 

We show this by 𝑑𝑖𝑎𝑚(𝐺). 

Lemma 2.3: Let  𝑝, 𝑞 ∈ 𝜌(𝑋) and  𝑥, 𝑦 ∈ 𝑋∗ such that  [𝑝]𝐵 = [𝑞]𝐵 and [𝑥]𝐵 = [𝑦]𝐵. 

Then, 

i) 𝑑𝐵(𝑝, 𝑞) = 2𝑑∆(𝑝, 𝑞), 𝑑𝐵(𝑥,𝑦) = 2𝑑𝛤(𝑥,𝑦); 

ii) if 𝑝  divides 𝑥 and 𝑞  divides 𝑦,  then [𝑝]𝐵 = [𝑥]𝐵 = [𝑝]∆ ∪ [𝑥]𝛤  and      

𝑑𝐵(𝑝, 𝑞) − 𝑑𝐵(𝑥, 𝑦) ∈ {−2, 0, 2}; 

iii) 𝑛(𝐵) = 𝑛(∆) = 𝑛(𝛤); 

iv) either 

• 𝑑𝑖𝑎𝑚(𝐵) = 2𝑚𝑎𝑥{𝑑𝑖𝑎𝑚(∆),𝑑𝑖𝑎𝑚(𝛤)}, and |𝑑𝑖𝑎𝑚(∆) − 𝑑𝑖𝑎𝑚(𝛤)| ≤ 1, or 

• 𝑑𝑖𝑎𝑚(∆) = 𝑑𝑖𝑎𝑚(𝛤) = 1
2

(𝑑𝑖𝑎𝑚(𝐵)− 1). 

Proof 2.3: Let  𝑝, 𝑞 ∈ 𝜌(𝑋) and 𝑥,𝑦 ∈ 𝑋∗ such that [𝑝]𝐵 = [𝑞]𝐵 and [𝑥]𝐵 = [𝑦]𝐵. 

i) Suppose that 𝑑∆(𝑝, 𝑞) = 𝑘. There exists a shortest path 𝑃∆ = (𝑝0,𝑝1, . . . , 𝑝𝑘) in 

∆  with 𝑝 = 𝑝0  and 𝑞 = 𝑝𝑘 . Now  {𝑝𝑖,𝑝𝑖+1}  is an edge of  ∆  if and only if 

𝑑𝐵(𝑝𝑖,𝑝𝑖+1) = 2, and so there exists a path 𝑃𝐵 = (𝑝0,𝑥1,𝑝1, . . . , 𝑥𝑘−1,𝑝𝑘) in 𝐵 

of length 2𝑘. Thus 𝑑𝐵(𝑝, 𝑞) ≤ 2𝑘, and as 𝑝 and 𝑞 are in the same part of the 

bipartition of 𝐵, we have 𝑑𝐵(𝑝, 𝑞) = 2𝑙 ≤ 2𝑘. If  𝑃𝐵′ = (𝑝0′ ,𝑥1′ ,𝑝1′ , … , 𝑥𝑙′, 𝑝𝑙′) is a 

shortest path in 𝐵 with 𝑝 = 𝑝0′  and 𝑞 = 𝑝𝑙′, then 𝑃∆′ = (𝑝0′ ,𝑝1′ , … ,𝑝𝑙′) is a path of 

length 𝑙 in ∆, so 𝑘 = 𝑑∆(𝑝, 𝑞) ≤ 𝑙. Therefore 𝑑𝐵(𝑝, 𝑞) = 2𝑘 = 2𝑑∆(𝑝, 𝑞). We can 

write a similar proof to show that 𝑑𝐵(𝑥,𝑦) = 2𝑑𝛤(𝑥,𝑦). 

ii) Suppose that 𝑝  divides 𝑥  and 𝑞  divides 𝑦 . Let  𝑃𝐵 = (𝑝0, 𝑥1,𝑝1, . . . , 𝑥𝑙 ,𝑝𝑙)  be 

the shortest path in 𝐵 with 𝑝 = 𝑝0 and 𝑞 = 𝑝𝑙. Then we have three cases: 

•  Case 1: If  𝑃𝐵 can be chosen with 𝑥1 = 𝑥 and 𝑥𝑙 =  𝑦, then it is clear that 

𝑑𝐵(𝑝, 𝑞) − 𝑑𝐵(𝑥,𝑦) ≥ 2. Let  𝑃𝐵′ = (𝑥0′ ,𝑝1′ , … , 𝑝𝑘′ ,𝑥𝑘′  ) be a shortest path in    
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𝐵  with 𝑥 = 𝑥0′  and 𝑦 = 𝑥𝑘′ . We must have 𝑝1′ ≠ 𝑝  and 𝑝𝑘′ ≠ 𝑞  otherwise 

𝑑𝐵(𝑝, 𝑞) ≤ 𝑑𝐵(𝑥,𝑦)  which contradicts the minimality of  𝑃𝐵 . Now  𝑃𝐵′′ =

(𝑝, 𝑥0′ ,𝑝1′ , … ,𝑝𝑘′ , 𝑥𝑘′ , 𝑞) is a path of lenght 𝑘 + 2 between  𝑝 and 𝑞 in 𝐵. This 

implies that 𝑑𝐵(𝑝, 𝑞) ≤ 𝑑𝐵(𝑥,𝑦) + 2. Thus 𝑑𝐵(𝑝, 𝑞) − 𝑑𝐵(𝑥,𝑦) ≤ 2. Hence 

we have the equality occurs.  

•  Case 2: Suppose that only one of these equalities holds. We may assume 

that 𝑥1 = 𝑥  and 𝑥𝑙 ≠  𝑦 . Now it is clear that 𝑑𝐵(𝑥,𝑦) ≤ 𝑑𝐵(𝑝, 𝑞) . Let 

𝑃𝐵′ = (𝑥0′ , 𝑝1′ , … ,𝑝𝑘′ , 𝑥𝑘′ ) be a shortest path in 𝐵 with 𝑥 = 𝑥0′   and 𝑦 = 𝑥𝑙′, and 

assume that  𝑑𝐵(𝑥,𝑦) < 𝑑𝐵(𝑝, 𝑞). So none of 𝑝 and 𝑞 can be in 𝑃𝐵′ . It follows 

that 𝑑𝐵(𝑝, 𝑞) ≤ 𝑑𝐵(𝑥,𝑦) + 2 , hence 𝑑𝐵(𝑝, 𝑞) = 𝑑𝐵(𝑥,𝑦) + 2 . So we can 

choose 𝑃𝐵 with 𝑥1 = 𝑥 and 𝑥𝑙 = 𝑦, but it contradicts with our assumption, 

thus 𝑑𝐵(𝑝, 𝑞) = 𝑑𝐵(𝑥,𝑦). 

•  Case 3: If  𝑃𝐵 can be only chosen with  𝑥1 ≠ 𝑥 and 𝑥𝑙 ≠ 𝑦, then  𝑑𝐵(𝑥,𝑦) −

𝑑𝐵(𝑝, 𝑞) = 2. This proves that 𝑑𝐵(𝑝, 𝑞) − 𝑑𝐵(𝑥,𝑦) ∈ {−2, 0, 2}, and all cases 

are possible. Moreover in this case, by assumption, the component [𝑝]𝐵 

contains all of 𝑝, 𝑞, 𝑥, y and the fact that [𝑝]𝐵 = [𝑝]∆ ∪ [𝑥]𝛤 follows from the 

proof of part i). 

iii) It follows from the statement in part  ii) about components. 

iv) Let  𝑚 = 𝑚𝑎𝑥 {𝑑𝑖𝑎𝑚(∆),𝑑𝑖𝑎𝑚(𝛤)}. It follows from part i) that  𝑑𝑖𝑎𝑚(𝐵) ≥

2𝑚. Let  𝑀 ∶= 𝑑𝑖𝑎𝑚(𝐵). Assume 𝑣 , 𝑤 ∈ 𝑉(𝐵) such that  𝑑𝐵(𝑣,𝑤) = 𝑀 . If  𝑣      

and 𝑤  are both in 𝜌(𝑋)  (or both in 𝑋∗ ), then 𝑀 = 𝑑𝐵(𝑣,𝑤) = 2𝑑∆(𝑣,𝑤) ≤

2𝑑𝑖𝑎𝑚(∆) ≤ 2𝑚  (respectively, 𝑀 ≤ 2𝑑𝑖𝑎𝑚(𝛤) ≤ 2𝑚) and in either case we 

conclude that  𝑀 = 2𝑚. Now assume that  𝑣 ∈ 𝜌(𝑋) and 𝑤 ∈ 𝑋∗. Since they are 

in distinct partitions, we conclude that 𝑀 is odd and hence  𝑀 ≥ 2𝑚 + 1. Let  

𝑝 ∈ 𝜌(𝑋) be the vertex adjacent to 𝑤 and 𝑃𝐵 be a path of length 𝑀 between 𝑣 

and  𝑤. By the definition of  𝑀 it is clear that a path from  𝑝 to 𝑣 inside 𝑃𝐵 is         

the shortest path between these two vertices, hence by part i) we deduce         

that 𝑑𝐵(𝑣,𝑝) = 2𝑑∆(𝑣,𝑝) = 𝑀 − 1 which is at most 2𝑑𝑖𝑎𝑚(∆). By a similar 

discussion we can see that 𝑀 ≤ 2𝑑𝑖𝑎𝑚(Γ) + 1. Thus 𝑑𝑖𝑎𝑚(∆) = 𝑑𝑖𝑎𝑚(𝛤) =
𝑀−1
2

. 

Now  assume that  𝑑𝑖𝑎𝑚(𝐵) = 2𝑚. Let   𝑗 ∶= 𝑑𝑖𝑎𝑚(∆) and let  𝑝0, 𝑝𝑗 ∈ 𝜌(𝑋) be  
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such that  𝑑∆�𝑝0,𝑝𝑗� = 𝑗. Then by part i), there exists a path 𝑃𝐵′  of  length 2𝑗 in 𝐵  

from  𝑝0 to 𝑝𝑗. Let  𝑥0, 𝑥𝑗 be vertices on 𝑃𝐵′  adjacent to 𝑝0 and 𝑝𝑗 , respectively. 

Then the path inside 𝑃𝐵′   from 𝑥0 to 𝑥𝑗 of length  2𝑗 − 2 is a shortest path in 𝐵 

between two vertices. Thus  𝑑𝐵�𝑥0, 𝑥𝑗� = 2𝑗 − 2. By part i), 𝑑𝛤�𝑥0, 𝑥𝑗� = 𝑗 − 1 

and therefore we have 𝑑𝑖𝑎𝑚(𝛤) ≥ 𝑑𝑖𝑎𝑚(∆) − 1. A similar argument shows that 

𝑑𝑖𝑎𝑚(∆) ≥ 𝑑𝑖𝑎𝑚(𝛤) − 1. Hence |𝑑𝑖𝑎𝑚(∆)− 𝑑𝑖𝑎𝑚(𝛤)| ≤  1 which completes 

the proof of the last assertion of the first part. ∎ 

 

For any nonempty subset 𝐾 ⊆ {𝐵,∆,𝛤} there exists a nonempty set 𝑋 of 

positive integers such that the graphs in 𝐾 are acyclic. Examples of subsets are 

provided in Table 2.1 for the seven nonempty subsets of 𝐾 of {𝐵,∆,𝛤}, and if 

𝑋 = 𝑋2 ∪ 𝑋3 ∪ 𝑋4, with the 𝑋𝑖 as in Table 2.1, then all three graphs contain cycles. 

Note that  𝐾𝑚,𝑛��������⃗  denotes the complete bipartite graph 𝐵 = 𝐵(𝑋) with |𝜌(𝑋)| = 𝑚 

and |𝑋∗| = 𝑛 and if 𝐺 and 𝐻 are graphs, we use the notation 𝐺 + 𝐻 to show the 

graph with connected components 𝐺 and 𝐻. 

Table 2.1: Illustration of acyclic possibilities for 𝐵,∆,𝛤. 

𝑖 𝑋𝑖 𝐵 ∆ 𝛤 

1 {2} 𝐾2 𝐾1 𝐾1 

2 {2, 4, 8} 𝐾1,3������⃗  𝐾1 𝐾3 

3 {105} 𝐾3,1������⃗  𝐾3 𝐾1 

4 {11.13, 112. 13} 𝐶4 𝐾2 𝐾2 

5 𝑋2 ∪ 𝑋3 𝐾1,3������⃗ + 𝐾3,1������⃗  𝐾1 + 𝐾3 𝐾1 + 𝐾3 

6 𝑋2 ∪ 𝑋4 𝐾1,3������⃗ + 𝐶4 𝐾1 + 𝐾2 𝐾2+𝐾3 

7 𝑋3 ∪ 𝑋4 𝐾3,1������⃗ + 𝐶4 𝐾2 + 𝐾3 𝐾1 + 𝐾2 

8 𝑋2 ∪ 𝑋3 ∪ 𝑋4 𝐾1,3������⃗ + 𝐾3,1������⃗ + 𝐶4 𝐾1 + 𝐾2+𝐾3 𝐾1 + 𝐾2+𝐾3 

The girth of a graph 𝐺 is the length of its shortest cycle and is denoted by 

𝘨(𝐺). 

 

14 
 



 

Lemma 2.4: Suppose that 𝐵 contains a cycle of length greater than 4. Then each     

of ∆ and 𝛤  also contains a cycle. Moreover, for Φ ∈ {∆,𝛤}, either 𝘨(Φ) = 3 or 

𝘨(Φ) = 1
2

 𝘨′(𝐵), where 𝘨′(𝐵) is the minimum length of cycles of 𝐵 with more than 

four vertices. 

 

Proof 2.4: Since 𝐵 is bipartite and by Theorem 1.16 we have 𝘨′(𝐵) = 2𝑘  for some 

𝑘 ≥ 3. Let  𝑃𝐵 = (𝑝1,𝑥1, . . . ,𝑝𝑘, 𝑥𝑘) be a closed path of length 2𝑘 in 𝐵 such that 

𝑝𝑖 ∈ 𝜌(𝑋) and 𝑥𝑖 ∈ 𝑋∗. By the definition of 𝐵, 𝑝𝑖 divides 𝑥𝑖  and 𝑥𝑖−1, for 𝑖 = 1, … ,𝑘, 

reading the subscripts modulo 𝑘. Hence there exist closed paths of length 𝑘 in both 

∆ and 𝛤. This implies that both ∆ and 𝛤 contain cycles and 𝘨(∆) ≤ 𝑘, 𝘨(𝛤) ≤ 𝑘.  

If 𝘨(∆) = 𝑙 < 𝑘, then there exist a closed path 𝑃∆ = (𝑝1′ ,𝑝2′ , … ,𝑝𝑙′) in ∆. By the 

definition of ∆, for all 𝑖, there exists 𝑥𝑖′ ∈ 𝑋∗ that is divisible by  𝑝𝑖′ and 𝑝𝑖+1′ , reading 

subscripts modulo 𝑙. If the 𝑥𝑖′’s are pairwise distinct, then  𝑃𝐵′ = (𝑝1′ , 𝑥1′ , . . . , 𝑝𝑙′, 𝑥𝑙′)    

is a closed path in 𝐵  of length 2𝑙 . Since 6 ≤ 2𝑙 < 2𝑘 = 𝘨(𝐵) , we obtain a 

contradiction. Hence  𝑥𝑖′’s are not all distinct.  Let  𝑖, 𝑗 be such that  1 ≤ 𝑖 < 𝑗 ≤ 𝑙 

and 𝑥𝑖′ = 𝑥𝑗′. Then we have in  ∆ the induced subgraph on the set  {𝑝𝑖′,𝑝𝑖+1′ ,𝑝𝑗′ ,𝑝𝑗+1′ } 

is a complete graph (of order 3 and 4) and hence 𝑙 = 𝘨(∆) = 3. So either 𝘨(∆) = 3 

or 𝘨(∆) = 𝑘. A similar proof shows that either 𝘨(𝛤) = 3 or 𝘨(𝛤) = 𝑘 (also one may 

use Corollary 2.2). ∎ 

2.3. Subgraphs of 𝐁,∆,𝜞 

Theorem 2.5: At least one of  ∆, 𝛤 contains a triangle that is 3-cycles if and only if 𝐵 

contains 𝐶6 or 𝐾1,3 as an induced subgraph. 

Proof 2.5: First suppose that  𝘨(𝛤) = 3 and let  𝑃𝛤 = (𝑥1, 𝑥2, 𝑥3) be a cycle of length 

three in 𝛤. If there exists a prime 𝑝 which divides 𝑥𝑖, for all  𝑖 = 1, 2, 3, then the set 

{𝑝, 𝑥1, 𝑥2, 𝑥3} induces a subgraph 𝐾1,3 of 𝐵. So we may assume that no such prime 

exists. Since 𝑃𝛤 is a cycle in  𝛤, there are distinct primes  𝑝1, 𝑝2, 𝑝3 such that, for 

each  𝑖,  𝑝𝑖 divides  𝑥𝑖−1 and 𝑥𝑖, writing subscripts modulo 3. Now it is clear that 

{𝑝1,𝑥1,𝑝2, 𝑥2,𝑝3, 𝑥3} induces a subgraph 𝐶6 of 𝐵. Thus 𝘨(𝛤) = 3, we deduce that 𝐵 

contains an induced subgraph isomorphic to either 𝐶6 or 𝐾1,3. By Corollary 2.2, if 
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𝘨(∆) = 3 verifies that 𝐵 contains an induced subgraph isomorphic to either 𝐶6 or 

𝐾1,3. 

Conversely, if  {𝑝1,𝑥1, 𝑝2,𝑥2,𝑝3, 𝑥3}  induces a subgraph 𝐶6 in 𝐵, where 𝑝𝑖 ∈

𝜌(𝑋)  and 𝑥𝑖 ∈ 𝑋∗ , then (𝑝1,𝑝2,𝑝3)  and (𝑥1, 𝑥2, 𝑥3)  are 3 -cycles in  ∆ and 𝛤 

respectively, so 𝘨(∆) = 𝘨(𝛤) = 3. Similarly if  𝐵 contains an induced subgraph 𝐾1,3, 

then at least one of  ∆, 𝛤 contains a triangle. This completes the proof. ∎ 

Theorem 2.6: Both the graphs ∆ and 𝛤 are acyclic if and only if each connected 

component of 𝐵 is a path or a cycle of length 4. 

Proof 2.6: First suppose that ∆, 𝛤 are both acyclic. If some vertex of 𝐵 lies on at least 

three edges, then one of ∆, 𝛤 contains a 3-cycle, which is a contradiction. Thus each 

vertex of 𝐵 lies on at most two edges in 𝐵. Since 𝐵 is bipartite, we conclude that 

each connected component of 𝐵 is a path, or a cycle  𝐶2𝑘 of even length 2𝑘 ≥ 4. 

Furthermore, in the case of a component  𝐶2𝑘, it follows from Lemma 2.4, we 

conclude that 𝑘 = 2. 

Conversely, suppose that each component of 𝐵 is a path or isomorphic to 𝐶4. 

For a component 𝐶4 of 𝐵, the corresponding component of ∆, 𝛤 is isomorphic to 𝐾2. 

Consider a component 𝐵′ of 𝐵 which is a path. Suppose that 𝑃∆ = (𝑝1,𝑝2, . . . ,𝑝𝑙) is a 

cycle in the corresponding component of ∆ of length 𝑙 ≥ 3. By the definition of ∆, for 

each 𝑖, there exists 𝑥𝑖 ∈ 𝑋∗ which is divisible by both 𝑝𝑖 and 𝑝𝑖+1, reading subscripts 

modulo 𝑙. If 𝑥𝑖’s are pairwise distinct, then 𝑃𝐵′ = (𝑝1,𝑥1, . . . ,𝑝𝑙, 𝑥𝑙) is a cycle in 𝐵′, 

which is a contradiction. Hence there exist 𝑖, 𝑗 such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑙 and 𝑥𝑖 = 𝑥𝑗. 

This verifies that 𝑥𝑖  is joined to at least three vertices in 𝐵′, which contradicts the 

fact that 𝐵′ is a path. Hence the component of ∆ corresponding to 𝐵′ is acyclic. A 

similar proof shows that the component of 𝛤 corresponding to 𝐵′ is also acyclic (also 

one may use Corollary 2.2). ∎ 

Corollary 2.7: Both graphs ∆ and 𝛤 are trees (i.e connected acyclic graph) if and only 

if either 𝐵 is a path or 𝐵 ≅ 𝐶4. 

 

Proof 2.7: The result follows from Theorem 2.6 and part iii) of Lemma 2.3. ∎ 
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3. THE STRUCTURE of FINITE GROUPS of CONJUGATE 
RANK 𝟐 

In this chapter we will follow the paper of Dolfi and Jabara [Dolfi and Jabara, 

2009]. 

Let 𝐺 be a finite group. If 𝑔 is an element of a group 𝐺, then we denote by 𝑔𝐺 

the conjugacy class of 𝑔 in 𝐺 and |𝑔𝐺| which shows the size of this conjugacy class, 

is the positive integer [𝐺 ∶ 𝐶𝐺(𝑔)]. Let 𝑐𝑠(𝐺) denote the set of the sizes of the 

conjugacy classes of a finite group 𝐺. The number of the distinct sizes of the 

noncentral conjugacy classes of 𝐺 is |𝑐𝑠(𝐺)| − 1 and is called the conjugate rank of 

𝐺. Clearly, a group has conjugate rank zero when it is abelian. In this chapter, we 

discuss the structure of the groups of conjugacte rank two.  

If  𝑛 is a positive integer and  𝑝 is a prime, then by  𝑛𝑝 and 𝑝′ we mean the 

largest power of 𝑝  dividing 𝑛  and the set of the primes different from 𝑝 , 

respectively. Now it is clear that 𝑛𝑝′ = ∏ 𝑛𝑞𝑞∈𝑝′  the integer  𝑛/𝑛𝑝. 

3.1. A Normal 𝒑-Complement of 𝑮 when 𝑮/𝑭 is a 𝒑-Group 

Lemma 3.1: Let 𝐺 and 𝐻 be groups. We have the following properties: 

i) 𝑐𝑠(𝐺 × 𝐻) = {𝑎𝑏|𝑎 ∈ 𝑐𝑠(𝐺), 𝑏 ∈ 𝑐𝑠(𝐻)}. 

ii) If  𝑥,𝑦 ∈ 𝐺 commute and  𝑔𝑐𝑑(|𝑥|, |𝑦|) = 1, then 𝐶𝐺(𝑥𝑦) = 𝐶𝐺(𝑥) ∩ 𝐶𝐺(𝑦) 

and so |𝑥𝐺| and |𝑦|𝐺 divide |(𝑥𝑦)𝐺|. 

iii) If  𝑁 is a normal subgroup of  𝐺 and 𝑥 ∈ 𝑁, then |𝑥𝑁| divides |𝑥𝐺|. Also if 

𝑦 ∈ 𝐺, then |(𝑦𝑁 )𝐺/𝑁| divides |𝑦𝐺|. 

Proof 3.1: Let 𝐺 and 𝐻 be groups. 

i) Let (𝑔, ℎ) be an arbitrary element of 𝐺 × 𝐻. By the definition we have  

(𝑔, ℎ)𝐺×𝐻 = �(𝑔′−1,ℎ′−1)(𝑔,ℎ)(𝑔′,ℎ′)�(𝑔′,ℎ′) ∈ 𝐺 × 𝐻�                   
                              = �(𝑔′−1𝑔𝑔′, ℎ′−1ℎℎ′)�(𝑔′,ℎ′) ∈ 𝐺 × 𝐻� = (𝑔𝐺 ,ℎ𝐻). 

(3.1) 
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Now it is clear that 𝑐𝑠(𝐺 × 𝐻) = {𝑎𝑏|𝑎 ∈ 𝑐𝑠(𝐺),𝑏 ∈ 𝑐𝑠(𝐻)}. 

ii) If 𝑥,𝑦 ∈ 𝐺 commute and 𝑔𝑐𝑑(|𝑥|, |𝑦|) = 1, then ⟨𝑥𝑦⟩ = 〈𝑥〉〈𝑦〉. Thus it follows 

that 𝐶𝐺(𝑥𝑦) ⩽ 𝐶𝐺(𝑥) ∩ 𝐶𝐺(𝑦). The other inclusion is trivial. 

iii) Let 𝑁 be a normal subgroup of the group 𝐺. Assume that 𝑥 ∈ 𝑁. It is clear that 

𝐶𝐺(𝑥) ∩ 𝑁 = 𝐶𝑁(𝑥). As 𝑁 is normal, we conclude that 𝑁𝐶𝐺(𝑥) is a subgroup of 𝐺 

and we have:   

|𝑁𝐶𝐺(𝑥)| =
|𝑁||𝐶𝐺(𝑥)|

|𝑁 ∩ 𝐶𝐺(𝑥)|
=

|𝑁||𝐶𝐺(𝑥)|
|𝐶𝑁(𝑥)|

. (3.2) 

 

Thus |𝑥𝑁| = |𝑁|
|𝐶𝑁(𝑥)|

= |𝑁𝐶𝐺(𝑥)|
|𝐶𝐺(𝑥)|

. On the other hand  𝐶𝐺(𝑥) ≤ 𝑁𝐶𝐺(𝑥) ≤ 𝐺 . This 

verifies that  

               |𝑥𝐺| = [𝐺 ∶ 𝐶𝐺(𝑥)] 
                     = [𝐺 ∶ 𝑁𝐶𝐺(𝑥)][𝑁𝐶𝐺(𝑥) ∶ 𝐶𝐺(𝑥)] = [𝐺 ∶ 𝑁𝐶𝐺(𝑥)]|𝑥𝑁|. (3.3) 

Hence  |𝑥𝑁| divides  |𝑥𝐺|. Let  𝐺̅ ∶= 𝐺/𝑁 , and for each subgroup 𝐾  of 𝐺 , let 

𝐾� = 𝐾𝑁/𝑁 . Assume that  𝑦 ∈ 𝐺 . Since 𝐶𝐺(𝑦)�������� ⊆ 𝐶𝐺̅(𝑦�) , we have |𝑦�𝐺̅| =

[𝐺 � :𝐶𝐺̅(𝑦�)]  divides  [𝐺 � :𝐶𝐺(𝑦)��������] = [𝐺 ∶ 𝑁𝐶𝐺(𝑦)]. It is clear that  [𝐺 ∶ 𝑁𝐶𝐺(𝑦)] 

divides  [𝐺:𝐶𝐺(𝑦)] = |𝑦𝐺|. Thus |(𝑦𝑁 )𝐺/𝑁| divides |𝑦𝐺|.∎ 

Theorem 3.2: Suppose 𝐺 is a group and 𝐻 is a subgroup of 𝐺. Then we have  

�⋃ 𝐻𝑔
𝑔∈𝐺 � ≤ |𝐺| − [𝐺 ∶ 𝐻] + 1  (3.4) 

where  𝐻𝑔 = {𝑔−1ℎ𝑔|ℎ ∈ 𝐻} for any 𝑔 ∈ 𝐺. 

Proof 3.2: The number of different conjugates of 𝐻 in 𝐺 is [𝐺 ∶ 𝑁𝐺(𝐻)], so 

�⋃ 𝐻𝑔
𝑔∈𝐺 � ≤ (|𝐻| − 1)[𝐺 ∶ 𝑁𝐺(𝐻)] + 1      

                                             ≤ (|𝐻| − 1)[𝐺 ∶ 𝐻] + 1 = |𝐺| − [𝐺 ∶ 𝐻] + 1  
(3.5) 

where the second inequality is obtained from the fact [𝐺 ∶ 𝑁𝐺(𝐻)] ≤ [𝐺 ∶ 𝐻]. ∎ 
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Lemma 3.3: Let  𝑝 be a prime and let 𝑃 be a Sylow  𝑝-subgroup of the group 𝐺. Then 

𝑝 does not divide any 𝑛 ∈ 𝑐𝑠(𝐺) if and only if 𝑃 is abelian and 𝐺 = 𝑃 × 𝐻 for some 

𝐻 ≤ 𝐺. 

Proof 3.3: Suppose that 𝑝 does not divide any conjugacy class sizes of 𝐺, that is  

𝑝 ∤ |𝑔𝐺| for each 𝑔 ∈ 𝐺. Thus |𝐺|𝑝 = |𝐶𝐺(𝑔)|𝑝  for any 𝑔 ∈ 𝐺, so every element of 𝐺 

centralizes some Sylow  𝑝-subgroup of 𝐺. Hence  𝐺 = ⋃ 𝐶𝐺(𝑃𝑔)𝑔∈𝐺 = ⋃ 𝐶𝐺(𝑃)𝑔𝑔∈𝐺  

and by Theorem 3.2 we have 

 

|𝐺| = �⋃ 𝐶𝐺(𝑃)𝑔𝑔∈𝐺 � ≤ |𝐺| − [𝐺 ∶ 𝐶𝐺(𝑃)] + 1.  (3.6) 

 

It follows that 𝐶𝐺(𝑃) = 𝐺  so 𝑃  is abelian and 𝑃 ⊴ 𝐺  since 𝐶𝐺(𝑃) ≤ 𝑁𝐺(𝑃) . By 

Theorem 1.1, 𝑃 has a 𝑝-complement in  𝐺, say 𝐻, therefore 𝐺 = 𝑃 × 𝐻. Conversely, 

𝑃 ∈ 𝑆𝑦𝑙𝑝(𝐺) and by part i) of Lemma 3.1 we have 𝑐𝑠(𝐺) = 𝑐𝑠(𝐻) as 𝑃 is abelian, so 

the result follows. ∎ 

 

Theorem 3.4: Let 𝐺 be a finite group and 𝐻 a 𝑝-complement subgroup of 𝐺 with 

𝐻 ≤ 𝑍(𝐺) where 𝑝 is a prime divisor of the order of 𝐺. Then 𝑛𝑝(𝐺) = 1. 

Proof 3.4: Take any 𝑃 ∈ 𝑆𝑦𝑙𝑝(𝐺), then 𝐺 = 𝐻𝑃  since 𝐻  is a 𝑝-complement. As 

𝐻 ≤ 𝑍(𝐺), 𝐻 is also in 𝑁𝐺(𝑃), hence 𝐺 = 𝑁𝐺(𝑃). That is 𝑃 ⊴ 𝐺, so 𝑛𝑝(𝐺) = 1. ∎ 

Lemma 3.5: Let 𝐺 be a group and 𝐹 = 𝐹(𝐺). Assume that 𝐺/𝐹 is a 𝑝-group for some 

prime 𝑝. Let  𝐿 be a normal  𝑝-complement of  𝐺. Then the following properties hold: 

i) 𝐶𝐺(𝐿) ≤ 𝐹; 

ii) if 𝑒𝑥𝑝 (𝐺/𝐹) = 𝑝, then there exists a 𝑔 ∈ 𝐿 such that 𝐶𝐺(𝑔) ⩽ 𝐹; 

iii) assume that 𝑒𝑥𝑝 (𝐺/𝐹) = 𝑝 and that there exists a normal subgroup  𝑍 of 𝐺, 

such that 𝑍 < 𝐿 and 𝐶𝐺(𝑦) ≤ 𝐹 for every 𝑦 ∈ 𝐿 ∖ 𝑍. Then |𝐺/𝐹| = 𝑝. 

Proof 3.5: Let 𝐺 be a group. Assume that 𝐺/𝐹 is a 𝑝-group for some prime 𝑝 where 

𝐹 = 𝐹(𝐺). 
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i) Since 𝐿 ⊴ 𝐺, we have 𝑁𝐺(𝐿) = 𝐺 and Theorem 1.12 verifies that  𝑁 ∶= 𝐶𝐺(𝐿) ⊴

𝐺. It is clear that 𝑍(𝐿) = 𝐿 ∩ 𝐶𝐺(𝐿) = 𝐿 ∩ 𝑁. As 𝐿 is a normal 𝑝-complement of 

𝐺, we deduce that  𝑍(𝐿) = 𝐿 ∩ 𝑁 ⊴ 𝑁 and 𝑝 ∤ |𝑍(𝐿)|. On the other hand,  𝑁𝐿
𝐿
≅

𝑁
𝑁∩𝐿

. This implies that  𝑁
𝑍(𝐿)

≅ 𝑁
𝑁∩𝐿

 is a  𝑝-group, so 𝑔𝑐𝑑([𝑁 ∶ 𝑍(𝐿)], |𝑍(𝐿)|) = 1. 

Hence  𝑍(𝐿) is a normal 𝑝-complement of 𝑁. As 𝑍(𝐿) ≤ 𝑍(𝑁), by Theorem 3.4 

we deduce that 𝑁 has a unique Sylow 𝑝-subgroup 𝑃, so 𝑃 𝑐ℎ𝑎𝑟 𝑁. Since 𝑁 is a 

normal subgroup of 𝐺, we conclude that  𝑃 ⊴ 𝐺, so 𝑃 ≤ 𝐹. It is obvious that 

𝑍(𝐿) ≤ 𝐹. Thus 𝑁 = 𝑍(𝐿)𝑃 ≤ 𝐹. 

ii) We work by induction on |𝐹|. 

First suppose that Φ(𝐺) ≠ 1 and let  𝐺̅ ≔ 𝐺/Φ(𝐺). As 𝐹(𝐺̅) = 𝐹/Φ(𝐺), we 

have |𝐹(𝐺̅)| < |𝐹|. On the other hand, 𝐺̅
𝐹(𝐺̅)

≅ 𝐺
𝐹

 is a 𝑝-group. If 𝑒𝑥𝑝(𝐺/𝐹) = 𝑝, 

then 𝑒𝑥𝑝(𝐺̅/𝐹(𝐺̅)) = 𝑝. Now by induction we deduce that there exists an 

element 𝑔̅ of 𝐿�  such that  𝐶𝐺̅(𝑔̅) ≤ 𝐹(𝐺̅) and this will happen if and only if 

𝐶𝐺(𝑔) ≤ 𝐹. So without loss of generality we may assume that  Φ(𝐺) = 1. As 

Φ(𝐹) ≤ Φ(𝐺) , we have Φ(𝐹) = 1  which implies that 𝐹′ = 1  (since 𝐹′ ≤

 Φ(𝐹) = 1). Since 𝐹 is abelian, it has a  ℤ-module structure. Also, it is easy to see 

that  𝑃 ≔ 𝐺/𝐹 acts on 𝐹 by conjugation, so 𝐹 is a  ℤ𝑃-module. From now on 

instead of a  ℤ𝑃-module, we simply write a  𝑃-module. Since Φ(𝐺) = 1, by 

Theorem 1.14 we deduce that  𝐹 is completely reducible and faithful 𝑃-module. 

Further, 𝑃 acts faithfully on 𝐿 because 𝐶𝐺(𝐿) ≤ 𝐹 by part i). Now we claim that 

there exists an element 𝑔 of 𝐿 such that  𝐶𝑃(𝑔) = 𝐶𝑃(𝐿) = 1. If 𝐿 is reducible, 

then there exist nontrivial 𝑃-modules 𝐿1 and 𝐿2 such that 𝐿 = 𝐿1 × 𝐿2. Since 𝐿 is 

a 𝑝-compement of 𝐺, it is clear that 𝐿𝐹 = 𝐹, which implies that 𝐿 ≤ 𝐹. We have 

𝐺 = 𝐿𝑄 where 𝑄 ∈ 𝑆𝑦𝑙𝑝(𝐺), so 𝐺 = 𝐿𝑄 = 𝐹𝑄. Now we deduce that 𝑂𝑝(𝐺) =

𝑄 ∩ 𝐹 and 𝐺/𝐹 ≅ 𝑄/(𝑄 ∩ 𝐹) ≅ 𝑄/𝑂𝑝(𝐺). Let  𝐺𝑖 = 𝐿𝑖𝑄, 𝑖 = 1, 2. We claim that 

 𝐺𝑖 has the properties of 𝐺. 

 Similar to the above part, we can see that  𝑂𝑝(𝐺𝑖) = 𝑄 ∩ 𝐹(𝐺𝑖) and 𝐺𝑖/𝐹(𝐺𝑖) ≅

𝑄/(𝑄 ∩ 𝐹(𝐺𝑖)) ≅ 𝑄/𝑂𝑝(𝐺𝑖) for each 𝑖 ∈ {1,2}. Now we have: 
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𝐺𝑖
𝐹(𝐺𝑖)

≅
𝑄

𝑄 ∩ 𝐹(𝐺𝑖)
=

𝑄
𝑂𝑝(𝐺𝑖)

≅

𝑄
𝑂𝑝(𝐺)
𝑂𝑝(𝐺𝑖)
𝑂𝑝(𝐺)

. (3.7) 

 

Thus  𝐺𝑖
𝐹(𝐺𝑖)

 has exponent  𝑝. Since |𝐹(𝐺𝑖)| < |𝐹(𝐺)|, by inductive hypothesis we 

conclude that there exists 𝑔𝑖 ∈ 𝐿𝑖  for 𝑖 = 1,2  such that 𝐶𝑃(𝑔𝑖) = 𝐶𝑃(𝐿𝑖) . 

Considering  𝑔 = 𝑔1𝑔2, then  

 

𝐶𝑃(𝑔) = 𝐶𝑃(𝑔1) ∩ 𝐶𝑃(𝑔2) = 𝐶𝑃(𝐿1) ∩ 𝐶𝑃(𝐿2) = 𝐶𝑃(𝐿) = 1.  (3.8) 

 

Therefore we can assume that 𝐿 is an irreducible 𝑃-module. Observe that 𝑃 does 

not have any 𝐶𝑝 ≀ 𝐶𝑝 section, because 𝑒𝑥𝑝 (𝑃) = 𝑝. Hence by Theorem 1.10, 𝑃 

has a regular orbit in its action on 𝐿, that is there is a 𝑔 ∈ 𝐿 such that 𝐶𝑃(𝑔) = 1. 

iii) We first show that  𝑃 ∶= 𝐺/𝐹 acts fixed point freely on 𝐿/𝑍, which means 𝑃 

acts on 𝐿/𝑍 and  𝐶𝐿/𝑍(𝑃) = 1. Let  𝑦𝑍 ∈ 𝐿/𝑍  such that 𝐴 = 𝐶𝑃(𝑦𝑍) ≠ 1. 𝐴 ≤ 𝑃, 

thus the action of 𝐴 on 𝐿 is coprime and 𝑍 is an 𝐴-invariant subgroup of 𝐿 such 

that (𝑦𝑍)𝐴 = 𝑦𝑍. Hence by Theorem 1.3 there exists an element 𝑦0 ∈ 𝐶𝐿(𝐴) such 

that 𝑦𝑍 = 𝑦0𝑍, so  𝐶𝐺(𝑦0) ≰ 𝐹 and hence 𝑦0 ∈ 𝑍 and 𝑦𝑍 = 𝑍. Consequently, 𝑃 

acts fixed point freely on 𝐿/𝑍. This implies that  𝑀 = 𝐿
𝑍
⋊ 𝑃 is a Frobenius group 

with the Frobenius kernel 𝐿/𝑍 and the Frobenius complement 𝑃, from Theorem 

1.9, 𝑃 is either cyclic or generalized quaternion. However, 𝑃 has exponent  𝑝, so 

|𝑃| = |𝐺/𝐹| = 𝑝. ∎ 

3.2. Maximal 𝒑-Defect 

A group 𝐺 is metabelian if it has a normal abelian subgroup 𝐾 with 𝐺/𝐾 

abelian. 

Theorem 3.6: (Theorem 1 in [Higman, 1957]) Let 𝐺 be a solvable group all of whose 

elements have prime power order. Let  𝑝 be the prime such that 𝐺 has a normal       
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𝑝-subgroup greater than  1, and let 𝑃 be the greatest normal 𝑝-subgroup of 𝐺. Then 

𝐺/𝑃 is one of the following groups: 

i) A cyclic group whose order is a power of a prime other than 𝑝. 

ii) A generalized quaternion group , 𝑝 being odd. 

iii) A group of order 𝑝𝑎𝑞𝑏 with cyclic Sylow subgroups, 𝑞 being a prime of the 

form 𝑘𝑝𝑎 + 1. 

Thus 𝐺 has order divisible by at most two primes, and 𝐺/𝑃 is metabelian. 

Theorem 3.7: (Chapter IX Theorem 4.3 in [Huppert and Blackburn, 1982]) Suppose 

that 𝐺 is a  𝑝-solvable group of  𝑝-length  𝑙 and that 𝑝𝑒 is the exponent of a Sylow      

𝑝-subgroup of 𝐺. 

i) 𝑙 ≤ 𝑒, provided that one of the following three conditions hold: 

•  𝑝 is odd and 𝑝 is not a Fermat prime. 

•  𝑝 is a Fermat prime and the Sylow 2-subgroups of 𝐺 are abelian. 

•  𝑝 = 2 and the Sylow 𝑞-subgroups of 𝐺 are abelian for every Mersenne prime   

𝑞. 

ii) If  𝑝 is a Fermat prime, 𝑙 ≤ 2𝑒. 

Proposition 3.8: Assume that every element of the solvable group 𝐺 has prime order. 

Then there exists a normal 𝑝-subgroup 𝑃 of 𝐺  such that 𝑒𝑥𝑝 (𝑃) = 𝑝 and either 

𝐺 = 𝑃  or [𝐺 ∶ 𝑃] = 𝑞 , where 𝑝  and 𝑞  are distinct prime numbers. Moreover, if 

𝑃 < 𝐺, then 𝐺 is a Frobenius group with kernel 𝑃. 

Proof 3.8: It is well known that a minimal normal subgroup of a solvable group is an 

elementary abelian  𝑝-group for some prime  𝑝. Thus there exists a prime  𝑝 such 

that 𝑃 ∶= 𝑂𝑝(𝐺) > 1. Since every element of 𝐺 has prime order, we deduce that 

𝑒𝑥𝑝 (𝑃) = 𝑝. If  𝑃 < 𝐺, then by Theorem 3.6 it follows that either  |𝐺/𝑃| = 𝑞 or 

|𝐺/𝑃| = 𝑝𝑞  for a prime 𝑝 ≠ 𝑞. If  |𝐺/𝑃| = 𝑝𝑞 and 𝐺/𝑃 is abelian, then 𝐺/𝑃 is a 

product of normal cyclic Sylow subgroups which means 𝐺/𝑃 is cyclic. As every 

element of 𝐺 has prime order, we have  |𝐺/𝑃| is a prime number which contradicts 
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our assumption. Thus 𝐺/𝑃 is nonabelian. Now Theorem 1.11 verifies that  𝑙𝑝(𝐺) = 2 

where 𝑙𝑝(𝐺) is the 𝑝-length of 𝐺. As the Sylow 𝑝-subgroups of 𝐺 has exponent  𝑝 

and the Sylow 𝑞-subgroups of 𝐺 are abelian, by Theorem 3.7 we have  𝑙𝑝(𝐺) = 1 

which is a contradiction. Thus, |𝐺/𝑃| = 𝑞. Therefore there exists an element  𝑥 ∈ 𝐺 

such that 𝐺 = 𝑃 ⋊ 〈𝑥〉. Since 𝐺 does not have an element of order  𝑝𝑞, by Theorem 

1.8 we conclude that 𝐺 is a Frobenius group with kernel 𝑃. ∎ 

It turns out to be useful to have a notation for the set of the elements of 

‘ʻmaximal 𝑝-defect’’ of the group. 

Let 𝐺 be a group and let 𝑝 be a prime number. We define 

 

• 𝑚𝑝(𝑔) = max�|𝐶𝐺(𝑥)|𝑝�𝑥 ∈ 𝐺 ∖ 𝑍(𝐺)� and 

• 𝑀𝑝(𝐺) = �𝑔 ∈ 𝐺 ∖ 𝑍(𝐺)�|𝐶𝐺(𝑔)|𝑝 = 𝑚𝑝(𝐺)�. 

Lemma 3.9: Let  𝑁 be a normal subgroup of 𝐺 and assume that 𝑝 does not divide 

|𝑁|. If  𝑔 ∈ 𝑀𝑝(𝐺) and 𝑔𝑁 ∉ 𝑍(𝐺/𝑁), then 𝑔𝑁 ∈ 𝑀𝑝(𝐺/𝑁). 

Proof 3.9: Write 𝐺̅ ∶= 𝐺/𝑁 and use the bar convention. We claim that, for every 

𝑥 ∈ 𝐺 ∖ 𝑍(𝐺) , there exists a 𝑦 ∈ 𝐺 ∖ 𝑍(𝐺)  such that 𝑦� = 𝑥̅  and |𝐶𝐺(𝑦)|𝑝 =

|𝐶𝐺̅(𝑥̅)|𝑝. Let 𝐷 ≤ 𝐺 such that 𝐷 = 𝐶𝐺(𝑥) and consider a Sylow  𝑝-subgroup 𝑃 of 𝐷. 

Clearly  𝑃 acts coprimely on  𝑁 by conjugation as 𝑔𝑐𝑑 (|𝑃|, |𝑁|) = 1. For each  𝑦 ∈ 𝑃 

it is clear that 𝑦 ∈ 𝐶𝐺(𝑥), so we have  (𝑁𝑥)𝑦 = 𝑁𝑥𝑦 = 𝑁𝑥. By Theorem 1.3 there 

exists an element  𝑦0 ∈ 𝐶𝐺(𝑃) such that  𝑦0��� = 𝑥̅. Hence  𝑃 ≤ 𝐶𝐺(𝑦0). Let  𝑃1 be a 

Sylow 𝑝-subgroup of  𝐶𝐺(𝑦0) such that 𝑃 ≤ 𝑃1. As  𝑃1�  centralizes  𝑦0��� = 𝑥̅, we have 

𝑃� ≤ 𝑃1� ≤ 𝐷�. Since 𝑃� is a Sylow 𝑝-subgroup of 𝐷�, it follows that 𝑃1� = 𝑃�. We have 

|𝑃1� | = |𝑃1𝑁/𝑁| = |𝑃1| since 𝑃1 ∩ 𝑁 = 1, thus  |𝐶𝐺(𝑦0)|𝑝 = |𝑃1| = |𝑃�| = |𝐶𝐺̅(𝑥̅)|𝑝. 

Finally, 𝑦0 ∉ 𝑍(𝐺), as 𝑦0��� = 𝑥̅ ∉ 𝑍(𝐺̅). 

In particular,  𝑥̅ ∈ 𝑀𝑝(𝐺̅). So there exists a  𝑦 ∈ 𝐺 ∖ 𝑍(𝐺) such that  𝑦� = 𝑥̅ and 

|𝐶𝐺(𝑦)|𝑝 = |𝐶𝐺̅(𝑥̅)|𝑝 . Thus 𝑚𝑝(𝐺̅) ≤ 𝑚𝑝(𝐺) . Let 𝑔 ∈ 𝑀𝑝(𝐺)  and assume that 

𝑔̅ ∉ 𝑍(𝐺̅). Then |𝐶𝐺̅(𝑔̅)|𝑝 ≤ 𝑚𝑝(𝐺̅). If 𝑃  is a Sylow 𝑝-subgroup of 𝐶𝐺(𝑔), then 

𝑚𝑝(𝐺) = |𝑃| = |𝑃�| because  𝑁 ∩ 𝑃 = 1. As 𝑃� ≤ 𝐶𝐺̅(𝑔̅), we conclude that  
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𝑚𝑝(𝐺) ≤  |𝐶𝐺̅(𝑔̅)|𝑝 ≤ 𝑚𝑝(𝐺̅) ≤ 𝑚𝑝(𝐺). (3.9) 

 

Hence, 𝑚𝑝(𝐺̅) = 𝑚𝑝(𝐺) and 𝑔̅ ∈ 𝑀𝑝(𝐺̅). ∎ 

Lemma 3.10: Let 𝐺  be a group and 𝑃0  be a Sylow 𝑝-subgroup of 𝐶𝐺(𝑔) where 

𝑔 ∈ 𝑀𝑝(𝐺). If 𝑃 is a 𝑝-subgroup of 𝐺 such that 𝑃0 ≤ 𝑃, then 𝐶𝑃(𝑃0) ≤ 𝑃0. 

Proof 3.10: Let 𝑥 ∈ 𝐶𝑃(𝑃0) . If 𝑥 ∈ 𝑍(𝐺) , then 𝑥 ∈ 𝑂𝑝(𝑍(𝐺)) ≤ 𝑃0 . So we can 

assume 𝑥 ∉ 𝑍(𝐺) . As 〈𝑃0, 𝑥〉 ≤ 𝐶𝐺(𝑥) , then |〈𝑃0, 𝑥〉| ≤ 𝑚𝑝(𝐺) = |𝑃0|  and hence 

𝑥 ∈ 𝑃0. ∎ 

To prove next proposition we need Thompson’s 𝑃 × 𝑄-Lemma. 

Theorem 3.11: Let  𝐴 = 𝑃 × 𝑄 be the direct product of a 𝑝-group 𝑃 and a 𝑝′-group 

𝑄 and 𝐴 acts via automorphism on a 𝑝-group 𝐺. Suppose that 𝐶𝐺(𝑃) ≤ 𝐶𝐺(𝑄). Then 

𝑄 acts trivially on 𝐺.   

Proposition 3.12: Let 𝐺  be a 𝑝-solvable group and 𝑔  a 𝑝′ -element of 𝐺 . If 𝑔 ∈

𝑀𝑝(𝐺), then 𝑔 ∈ 𝑂𝑝′(𝐺). 

Proof 3.12: We proceed by induction on |𝐺|. If  𝑂𝑝′(𝐺) ≠ 1, then let  𝐺̅ ≔ 𝐺/𝑂𝑝′(𝐺) 

which is a  𝑝-solvable group. Assume that 𝑔 ∈ 𝑀𝑝(𝐺). If  𝑔̅ ∈ 𝑍(𝐺̅), then  〈𝑔̅〉 is a 

normal subgroup of 𝐺̅. This implies that  〈𝑔〉 is a normal 𝑝′-subgroup of 𝐺. Thus 

𝑔 ∈ 𝑂𝑝′(𝐺). So we may assume that  𝑔̅ ∉ 𝑍(𝐺̅). Now by Lemma 3.9 we conclude 

that 𝑂𝑝′(𝐺/𝑂𝑝′(𝐺)) = 1. The inductive hypothesis implies that 𝑔̅ ∈ 𝑂𝑝′(𝐺̅) = 1, so 

𝑔 ∈ 𝑂𝑝′(𝐺). Thus without loss of generality we may assume that 𝑂𝑝′(𝐺) = 1. Let 𝑃0 

be a Sylow  𝑝-subgroup of 𝐶𝐺(𝑔) and let 𝑃 = 𝑃0𝐿, where 𝐿 = 𝑂𝑝(𝐺). Then 𝑃0 × 〈𝑔〉 

acts on 𝑃 and by Lemma 3.10 it is clear that  𝐶𝑃(𝑃0) ≤ 𝑃0. By Theorem 3.11  〈𝑔〉 

acts trivially on 𝑃, so 𝑔 centralizes 𝑃. In particular 𝑔 centralizes 𝐿. Since 𝑂𝑝′(𝐺) = 1, 

we have 𝐶𝐺(𝐿) ≤ 𝐿. Hence 𝑔 = 1. ∎ 
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3.3. Groups of Conjugate Rank 𝟐 

Proposition 3.13: Let  𝐺 be a solvable group. Assume that there is an element 

𝑚 ∈ 𝑐𝑠(𝐺) ∖ {1} such that 𝑚 divides every 𝑛 ∈ 𝑐𝑠(𝐺) ∖ {1}. Then every 𝑔 ∈ 𝐺 such 

that |𝑔𝐺| = 𝑚 belongs to 𝐹(𝐺). 

Proof 3.13: Let  𝑔 ∈ 𝐺 such that  |𝑔𝐺| = [𝐺 ∶ 𝐶𝐺(𝑔)] = 𝑚. By assumption |𝐶𝐺(𝑥)| 

divides |𝐶𝐺(𝑔)|  for each  𝑥 ∈ 𝐺 ∖ 𝑍(𝐺). Hence 𝑔 ∈ 𝑀𝑝(𝐺) for every  𝑝 ∈ 𝜋 ∶= 𝜋(𝐺). 

If  |𝜋| = 1, then 𝐺 is a 𝑝-group, which implies that 𝐺 is nilpotent and 𝐺 = 𝐹(𝐺). So 

we can assume that |𝜋| ≥ 2. We write 𝑔 = ∏ 𝑔𝑞𝑞∈𝜋  , where each 𝑔𝑞 is a 𝑞-element 

and a power of 𝑔; this can be done as  〈𝑔〉 is the product of its Sylow subgroups.    

We prove that  𝑔𝑞 ∈ 𝑂𝑞(𝐺)  for each  𝑞 ∈ 𝜋. If  𝑔𝑞 ∈ 𝑍(𝐺), then  〈𝑔𝑞〉 is a normal 

nilpotent  𝑞-subgroup of 𝐺, so  〈𝑔𝑞〉 ≤ 𝑂𝑞(𝐺). If  𝑔𝑞 ∉ 𝑍(𝐺), then by Lemma 3.1 

𝐶𝐺(𝑔) = ⋂ 𝐶𝐺(𝑔𝑞)𝑞∈𝜋 . Hence 𝐶𝐺(𝑔) = 𝐶𝐺(𝑔𝑞) since |𝐶𝐺(𝑔𝑞)| divides |𝐶𝐺(𝑔)|. Thus 

𝑔𝑞 ∈ 𝑀𝑝(𝐺) for all 𝑝 ∈ 𝜋. Now Proposition 3.12 verifies that 𝑔𝑞 ∈ ⋂ 𝑂𝑝′(𝐺)𝑝≠𝑞 =

𝑂𝑞(𝐺). Therefore  𝑔 ∈ ∏ 𝑂𝑞(𝐺)𝑞∈𝜋 = 𝐹(𝐺). ∎ 

For a group 𝐺, 𝐺 is abelian if  |𝑐𝑠(𝐺)| = 1. If we have |𝑐𝑠(𝐺)| = 2, then 𝐺 is 

nilpotent [Itô, 1953]. In addition, if  |𝑐𝑠(𝐺)| = 3, then 𝐺 is solvable [Itô, 1970]. Thus 

we have the following theorem in general we have the following remark.  

Remark 3.14: If 𝐺 is a group with |𝑐𝑠(𝐺)| ≤ 3, then 𝐺 is solvable.  

Now the following theorem is proved by Isaacs [Isaacs, 1970]. 

Theorem 3.15: Let 𝑁 be a normal subgroup of a group 𝐺. Assume that |𝑥𝐺| = |𝑦𝐺| 

for all 𝑥,𝑦 ∈ 𝐺 ∖ 𝑁. Then one of the following occurs: 

i) 𝐺/𝑁  is cyclic and 𝐺  has an abelian Hall 𝜋 -subgroup and a normal                        

𝜋-complement, where 𝜋 = 𝜋(𝐺/𝑁) is the set of the prime divisors of |𝐺/𝑁|; 

ii) Every nonidentity element in 𝐺/𝑁 has prime order. 
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Theorem 3.16: Let  𝐺 be a group such that  𝑐𝑠(𝐺) = {1,𝑚,𝑛}. If  𝑚 divides  𝑛, then 

either  [𝐺 ∶ 𝑍(𝐺)]  is a prime power  or  there  exists  an abelian normal subgroup  of  

prime index in 𝐺. 

Proof 3.16: Assume that  [𝐺 ∶ 𝑍(𝐺)] is not a prime power. To prove that there exists 

an abelian normal subgroup of prime index in 𝐺, we work by induction on |𝐺|. By 

Remark 3.14 we have 𝐺 is a solvable group. Let  𝑍 ∶= 𝑍(𝐺) and 𝐹 ∶= 𝐹(𝐺). 

 Let  𝑎 = |𝐺|
𝑛

 and  𝑏 = |𝐺|
𝑚

. Then, for every  𝑔 ∈ 𝐺 ∖ 𝑍, |𝐶𝐺(𝑔)| is either  𝑎 or  𝑏. 

By assumption, we conclude that 𝑎 divides 𝑏. We can assume that  𝑎𝑟 < |𝐺|𝑟  for 

every prime divisor  𝑟 of  |𝐺|. If not, there exists a prime divisor  𝑟 of the order of  𝐺 

such that  |𝐺|𝑟 = 𝑎𝑟 = 𝑏𝑟 and hence  𝑟 does not divide either  𝑚 or  𝑛. Hence by 

Lemma 3.3, we have  𝐺 = 𝐻 × 𝑅, where  𝑅 is the normal abelian Sylow  𝑟-subgroup 

of 𝐺. Now Lemma 3.1 implies that 𝑐𝑠(𝐺) = 𝑐𝑠(𝐻). Since  𝑍(𝐺) = 𝑍(𝐻) × 𝑅, we 

deduce that  [𝐻 ∶ 𝑍(𝐻)] = [𝐺 ∶ 𝑍]  is not a prime power. Because of  |𝐻| < |𝐺|, by 

inductive hypothesis,  there exists an abelian normal subgroup 𝐵 of prime index in  

𝐻. Thus 𝐴 = 𝐵 × 𝑅 is an abelian normal subgroup of prime index in 𝐺 as [𝐺 ∶ 𝐴] =

[𝐻 ∶ 𝐵]. 

Let 𝑎(𝐺) ∶= {𝑔 ∈ 𝐺||𝐶𝐺(𝑔)| = 𝑎}  and 𝑏(𝐺) ∶= {𝑔 ∈ 𝐺||𝐶𝐺(𝑔)| = 𝑏}.  We 

proceed by the following series of steps: 

 

i) ∅ ≠ 𝐺 ∖ 𝐹 ⊆ 𝑎(𝐺): 

By the assumption, 𝐺 is a disjoint union of the subsets  𝑍, 𝑎(𝐺) and 𝑏(𝐺). As 𝐺 is 

solvable and 𝑚 ∣ 𝑛, Proposition 3.13 implies that 𝑏(𝐺) ⊆ 𝐹. Since 𝑍 ≤ 𝐹 and 𝐺 is 

the disjoint union of 𝑍, 𝑎(𝐺) and 𝑏(𝐺), we have  𝐺 ∖ 𝐹 ⊆ 𝑎(𝐺). Finally we claim 

that 𝐹 < 𝐺. In fact, if  𝐺 is nilpotent, then  𝐺 = ∏ 𝑃𝑖ℎ
𝑖=1 , where 𝑃1,𝑃2, … ,𝑃ℎ are 

the distinct Sylow subgroups of 𝐺  and therefore we have the set 𝑐𝑠(𝐺) =

{∏𝑘𝑖 |𝑘𝑖 ∈ 𝑐𝑠(𝑃𝑖), 𝑖 = 1,2, … ,ℎ}. Since 𝑐𝑠(𝐺) < 4, it follows that 𝐺 has just one 

noncentral Sylow subgroup, otherwise if  𝑖 ≠ 𝑗  and 𝑃𝑖 , 𝑃𝑗  are two distinct 

noncentral Sylow subgroup of 𝐺, then there exists  𝑥 ∈ 𝑃𝑖  and 𝑦 ∈ 𝑃𝑗 such that 

𝑙 = |𝑥𝑃𝑖| ≠ 1  and 𝑘 = |𝑦𝑃𝑗| ≠ 1  so 𝑙,𝑘 ∈ 𝑐𝑠(𝐺) ∖ {1}  and 𝑔𝑐𝑑(𝑙, 𝑘) = 1  which 

contradicts our assumption. Thus 𝐺 has just one noncentral Sylow subgroup. 
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Hence [𝐺 ∶ 𝑍] is a prime power against our assumption. Thus  𝐹 < 𝐺 and so 

 ∅ ≠ 𝐺 ∖ 𝐹 ⊆ 𝑎(𝐺).     

ii) There exists  𝐾 ⊴ 𝐺 such that  𝐹 < 𝐾 and 𝐾/𝐹 is a 𝑝-group of exponent  𝑝, for 

a suitable prime divisor 𝑝 of  |𝐺/𝐹|. Further, if  𝐾 < 𝐺, then  [𝐺 ∶ 𝐾] = 𝑞, with 𝑞 

is a prime, 𝑞 ≠ 𝑝, and 𝐶𝐺(𝑥) ≤ 𝐾 for every  𝑥 ∈ 𝐾 ∖ 𝐹: 

By part i), it is clear that |𝑔𝐺| = 𝑛 for every 𝑔 ∈ 𝐺 ∖ 𝐹. Now we can apply 

Theorem 3.15. First suppose that is 𝐺/𝐹 is cyclic and 𝐺 has an abelian Hall          

𝜋-subgroup and a normal 𝜋-complement, with 𝜋 = 𝜋(𝐺/𝐹). Then the Sylow        

𝑟 -subgroups of 𝐺  are abelian for every prime divisor  𝑟  of  |𝐺/𝐹|. Let  𝑥  be          

an 𝑟-element of 𝐺 ∖ 𝐹 for such a prime 𝑟, so there exists an abelian Sylow            

𝑟-subgroup of 𝐺 like 𝑅 such that  𝑥 ∈ 𝑅. This implies that  𝑅 ≤ 𝐶𝐺(𝑥). Also by 

part i) we have 𝑎 = |𝐶𝐺(𝑥)| . Thus  𝑎𝑟 = |𝐶𝐺(𝑥)|𝑟 = |𝑅| = |𝐺|𝑟  which is a 

contradiction (since we assumed that 𝑎𝑟 < |𝐺|𝑟). Hence by Theorem 3.15, we 

deduce that every nonidentity element of 𝐺/𝐹 has prime order. So by Proposition 

3.8, there exists  𝐾/𝐹 ⊴ 𝐺/𝐹 such that  𝐾/𝐹 is a 𝑝-group of exponent  𝑝 for some 

prime divisor  𝑝 of  |𝐺/𝐹|. Further, if  𝐾/𝐹 < 𝐺/𝐹, then 𝐺/𝐹 is a Frobenius group 

with kernel 𝐾/𝐹 and complement of prime order 𝑞 ≠ 𝑝. Thus, if 𝐾 < 𝐺, then 

[𝐺 ∶ 𝐾] = 𝑞 and 𝐶𝐺(𝑥) ≤ 𝐾 for every  𝑥 ∈ 𝐾 ∖ 𝐹 since  𝐶𝐺/𝐹(𝑥𝐹) ≤ 𝐾/𝐹. 

iii) We write 𝐹 = 𝑃 × 𝐿 , where 𝑃  is a Sylow  𝑝 -subgroup of 𝐹  and 𝐿  is a                

𝑝-complement of  𝐹. Then 𝑎𝑝 ≤ |𝑃|: 

Note that  𝐹 is nilpotent, so the direct product  𝐹 = 𝑃 × 𝐿 has meaning. Let  𝐾 be 

the normal subgroup as in part ii). Since 𝐹(𝐾) is characteristic in  𝐾, by normality 

of 𝐾 in 𝐺, we deduce that 𝐹(𝐾) ⊴ 𝐺 so 𝐹(𝐾) ≤ 𝐹. Therefore 𝐹 = 𝐹(𝐾). As 𝐾/𝐹 

is a 𝑝-group of exponent  𝑝 and 𝐿 a 𝑝-complement of 𝐹, we conclude that 𝐿 is the 

normal 𝑝-complement of 𝐾. Hence by part ii) of Lemma 3.5, there exists an 

element 𝑔 ∈ 𝐿 such that  𝐶𝐾(𝑔) ≤ 𝐹. Now  [𝐺 ∶ 𝐾] = 1 or  [𝐺 ∶ 𝐾] = 𝑞, where 

𝑞 ≠ 𝑝 is a prime. Since 𝐿 is a normal 𝑝-complement of 𝐾, we conclude that for 

any  𝑄 ∈ 𝑆𝑦𝑙𝑝(𝐾) , 𝑄 ≤ 𝐶𝐾(𝑔) ≤ 𝐹 , so 𝑄  is a Sylow subgroup of 𝐹 . Hence 

|𝑄| = |𝑃|. Since 𝑔 ∈ 𝑎(𝐺) ∪ 𝑏(𝐺) and 𝑎 ∣ 𝑏, we conclude that |𝐶𝐺(𝑔)|𝑝 = |𝑃| ≥

𝑎𝑝. 

iv) ∅ ≠ 𝑃 ∖ 𝑍𝑝 ⊆ 𝑏(𝐺), where 𝑍𝑝 = 𝑍 ∩ 𝑃: 
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Since 𝐾/𝐹 is a nontrivial 𝑝-group, we can fix a 𝑝-element 𝑥 ∈ 𝐾 ∖ 𝐹. First we 

show that 𝑃 ∖ 𝑍𝑝 ≠ ∅. If 𝑃 ∖ 𝑍𝑝 = ∅, then 𝑃 ≤ 𝑍. This implies that  〈𝑃, 𝑥〉 is a      

𝑝-subgroup of 𝐶𝐺(𝑥). However by part i), we know that |𝐶𝐺(𝑥)| = 𝑎. On the 

other hand, by part iii) we have |〈𝑃, 𝑥〉| = |〈𝑃, 𝑥〉|𝑝 ≤ |𝐶𝐺(𝑥)|𝑝 = 𝑎𝑝 ≤ |𝑃|. This 

implies that 〈𝑃, 𝑥〉 = 𝑃 which contradicts our assumption. Therefore 𝑃 ∖ 𝑍𝑝 ≠ ∅. 

Let  𝑥0 be an arbitray element of 𝑃 ∖ 𝑍𝑝. Assume that 𝑥0 ∈ 𝑎(𝐺). As 𝐹 = 𝑃 × 𝐿 

and |𝐶𝐺(𝑥0)| = 𝑎 , we conclude that 𝐿 ≤ 𝐶𝐺(𝑥0)  and  |𝐿| = |𝐿|𝑝′ ≤ 𝑎𝑝′ . As 

𝑥 ∈ 𝐾 ∖ 𝐹, part i) verifies that 𝑎𝑝′ = |𝐶𝐺(𝑥)|𝑝′ and by part ii) we have 𝐶𝐺(𝑥) ≤

𝐾 . So 𝐶𝐾(𝑥) = 𝐾 ∩ 𝐶𝐺(𝑥) = 𝐶𝐺(𝑥) . Now we deduce that 𝑎𝑝′ = |𝐶𝐺(𝑥)|𝑝′ =

|𝐶𝐾(𝑥)|𝑝′ . Since 𝐿 is the normal 𝑝-complement of 𝐾, we obtain  |𝐿| ≤ 𝑎𝑝′ =

|𝐶𝐾(𝑥)|𝑝′ = |𝐶𝐾(𝑥) ∩ 𝐿| ≤ |𝐿| . Thus 𝐶𝐾(𝑥) ∩ 𝐿 = 𝐿 , which implies that 𝑥 

centralizes  𝐿. Now part i) of Lemma 3.5 verifies that 𝐶𝐾(𝐿) ≤ 𝐹, so 𝑥 ∈ 𝐹 which 

is a contradiction. Therefore 𝑃 ∖ 𝑍𝑝 ⊆ 𝑏(𝐺). 

v) 𝑏𝑝′ = |𝐺|𝑝′ and then 𝑚 is a power of 𝑝: 

By part iv), we know that 𝑃 ∖ 𝑍𝑝 ≠ ∅, so there exists a nontrivial element 

𝑥 ∈ 𝑃 ∖ 𝑍𝑝. Since 𝐿 centralizes 𝑃, we deduce that 𝐿 ≤ 𝐶𝐺(𝑥). Thus |𝐿| divides 

|𝐶𝐺(𝑥)| = 𝑏. Since 𝑔𝑐𝑑(𝑝, |𝐿|) = 1, we conclude that  |𝐿| = |𝐿|𝑝′  divides 𝑏𝑝′ . 

Assume that 𝑏𝑝′ < |𝐺|𝑝′. Let 𝐾 be the normal subgroup in part ii). Then either 

[𝐺 ∶ 𝐾] = 𝑞 , where 𝑞  is a prime and 𝑞 ≠ 𝑝 , or  𝐺 = 𝐾 . First suppose that 

[𝐺 ∶ 𝐾] = 𝑞. Since [𝐾 ∶ 𝐿] = [𝐾 ∶ 𝐹][𝐹 ∶ 𝐿] is a power of  𝑝, we have |𝐺|𝑝′ =

𝑞|𝐿|. On the other hand, if 𝐺 = 𝐾, then |𝐺|𝑝′ = |𝐿| so 𝑏𝑝′ = |𝐶𝐺(𝑥)|𝑝′ divides 

|𝐺|𝑝′ = |𝐿|. Hence in both cases  𝑏𝑝′ = |𝐶𝐺(𝑥)|𝑝′ divides |𝐿|. So we deduce that 

|𝐿| = 𝑏𝑝′ . Therefore, for every  𝑥0 ∈ 𝑃 ∖ 𝑍𝑝 , 𝐿  is a 𝑝-complement of  𝐶𝐺(𝑥0).         

If 𝐺 = 𝐾 , then clearly  𝐶𝐺(𝑥0) ≤ 𝐾 = 𝐺 . So assume that  [𝐺 ∶ 𝐾] = 𝑞 . Then 

[𝐶𝐺(𝑥0)𝐾 ∶ 𝐾] is either  1 or 𝑞. If it is one, then we have  𝐶𝐺(𝑥0) ≤ 𝐾. Now 

assume that [𝐶𝐺(𝑥0)𝐾 ∶ 𝐾] = 𝑞. This implies that 𝐶𝐺(𝑥0)𝐾 = 𝐺.  Since 𝐿 ≤

𝐶𝐺(𝑥0) is a 𝑝-complement and  𝑥0 ∈ 𝑏(𝐺), we can easily see that  𝑞 = 1 which is 

impossible. So all together,  we have  𝐶𝐺(𝑥0) ≤ 𝐾. Now consider  𝑢 ∈ 𝐺 ∖ 𝐾. By 

part ii) it is clear that 𝐶𝐾(𝑢) ≤ 𝐹 . Also by part i) we have 𝑢 ∈ 𝑎(𝐺) since 

𝑢 ∈ 𝐺 ∖ 𝐾. Since  𝑆𝑦𝑙𝑝(𝐺) = 𝑆𝑦𝑙𝑝(𝐾), we deduce that |𝐶𝐺(𝑢)|𝑝 = |𝐶𝐾(𝑢)|𝑝 =

|𝐶𝐾(𝑢) ∩ 𝑃| as 𝐶𝐾(𝑢) ≤ 𝐹. On the other hand, if |𝐶𝑃(𝑢)| ≠ |𝑍𝑝|, then there 
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exists 𝑥 ∈ 𝑃 ∖ 𝑍𝑝  such that 𝑥 ∈ 𝐶𝑃(𝑢). This implies that 𝑢 ∈ 𝐶𝐺(𝑥) ≤ 𝐾  which 

contradicts our hypothesis, so |𝐶𝑃(𝑢)| = |𝑍𝑝|  and we have 𝑎𝑝 = |𝐶𝐺(𝑢)|𝑝 =

|𝐶𝑃(𝑢)| = |𝑍𝑝|. Finally, choose a 𝑝-element  𝑥 ∈ 𝐾 ∖ 𝐹 .  Then  𝑥 ∈ 𝑎(𝐺) and 

𝑎𝑝 = |𝐶𝐺(𝑥)|𝑝 ≥ |〈𝑍𝑝, 𝑥〉| > |𝑍𝑝|, which is a contradiction. Thus 𝑏𝑝′ = |𝐺|𝑝′. 

vi) For every  𝑦 ∈ 𝐿 ∖ 𝑍(𝐿), we have  𝐶𝐾(𝑦) ≤ 𝐹 and 𝑦 ∈ 𝑎(𝐺): 

Let  𝑦 ∈ 𝐿 ∖ 𝑍(𝐿). Clearly,  𝑦 ∉ 𝑍. If  𝑦 ∈ 𝑏(𝐺), then by part v), it is clear that 𝑦 

centralizes some 𝑝-complement 𝐻 of 𝐺, and hence 𝑦 centralizes 𝐿 ≤ 𝐻, which 

contradicts our hypothesis that 𝑦 ∉ 𝑍(𝐿). Thus we have 𝑦 ∈ 𝑎(𝐺). As 𝑃 ≤ 𝐶𝐺(𝑦), 

then part iii) yields that 𝑃 is a Sylow 𝑝-subgroup of 𝐶𝐺(𝑦). Since 𝐾/𝐹   is a            

𝑝-group and 𝐶𝐾(𝑦)𝐹/𝐹 is a subgroup of 𝐾/𝐹 such that  

 

�
𝐶𝐾(𝑦)𝐹

𝐹
�
𝑝

=
|𝐶𝐾(𝑦)|𝑝
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we conclude that 𝐶𝐾(𝑦)𝐹/𝐹 is the trivial subgroup, so 𝐶𝐾(𝑦) ≤ 𝐹. 

vii) 𝐿 is abelian: 

Assume that 𝑍(𝐿) < 𝐿. Since 𝐹 = 𝐹(𝐾), by part ii) and part iii) we conclude that 

𝐾/𝐹 is a  𝑝-group of exponent  𝑝, 𝐿 is a normal  𝑝-complement of  𝐾   such that 

𝐶𝐾(𝑦) ≤ 𝐹 for each  𝑦 ∈ 𝐿 ∖ 𝑍(𝐿). Now Lemma 3.5 implies that |𝐾/𝐹| = 𝑝.  

We have 𝐿 ∖ 𝑍(𝐿) is nonempty. Also by part vi), we conclude that 𝐿 ∖ 𝑍(𝐿) ⊆

𝑎(𝐺). Therefore part iii) (or 𝑎𝑝 < |𝐺|𝑝) yields that 𝑎𝑝 = |𝑃|. Since 𝑎 ∣ 𝑏, we have 

𝑎𝑝𝑏𝑝′ = |𝑃||𝐺|𝑝′ = |𝐺|
𝑝

 divides 𝑏. As 𝑏 < |𝐺| we deduce that 𝑏𝑝 = 𝑎𝑝 = |𝑃|. 

Let  𝑍𝑝′ = 𝑍 ∩ 𝐿. Assume that  𝑤 ∈ 𝐿 ∖ 𝑍𝑝′. Then we have |𝐶𝐺(𝑤)|𝑝 = |𝑃|. Since 

𝑃 centralizes  𝑤 and 𝐾/𝐹 is a 𝑝-group, we deduce that 𝐶𝐾(𝑤) ≤ 𝐹. 

Now let  𝑥 ∈ 𝐾 ∖ 𝐹. We claim that  𝐶𝐿(𝑥) = 𝑍𝑝′ , otherwise there exists an 

element 𝑎 ∈ 𝐶𝐿(𝑥)  such that 𝑎 ∈ 𝐿 ∖ 𝑍𝑝′ . Then by the previous paragraph, 

𝐶𝐾(𝑎) ≤ 𝐹 and so 𝑥 ∈ 𝐹 which is impossible. By part ii) we have 𝐶𝐺(𝑥) ≤ 𝐾 since 

𝑥 ∈ 𝐾 ∖ 𝐹 . As 𝐿  is the normal 𝑝 -complement of  𝐾 , we obtain |𝐶𝐺(𝑥)|𝑝′ =

|𝐶𝐾(𝑥)|𝑝′ = |𝐶𝐿(𝑥)| = �𝑍𝑝′�. As, by part i), 𝑥 ∈ 𝑎(𝐺), we conclude that 𝑎𝑝′ =

|𝑍𝑝′|. Finally, consider  𝑦 ∈ 𝐿 ∖ 𝑍(𝐿). By part vi), we can  observe  that  𝑦 ∈ 𝑎(𝐺). 

Since  𝑦 ∉ 𝑍𝑝′, we  obtain  that  𝑎𝑝′ = |𝐶𝐺(𝑦)|𝑝′ ≥ | 〈𝑍𝑝′ ,𝑦〉| > |𝑍𝑝′|  which  is  a  
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contradiction. 

viii) 𝐹 ∩ 𝑎(𝐺) = ∅: 

Assume that there exists a 𝑔 ∈ 𝐹 ∩ 𝑎(𝐺). By part vii), 𝐿 is abelian. As 𝐹 = 𝑃 × 𝐿, 

we have  𝐿 ≤ 𝑍(𝐹). Since  𝑍(𝐹) ≤ 𝐶𝐺(𝑔), we deduce that  |𝐿| divides  𝑎𝑝′. Let 

 𝑥 ∈ 𝐾 ∖ 𝐹. Now by part i) we have 𝑥 ∈ 𝑎(𝐺) and by part ii) we have  𝐶𝐺(𝑥) ≤ 𝐾. 

Therefore  𝑎𝑝′ = |𝐶𝐾(𝑥)|𝑝′ = |𝐶𝐿(𝑥)|, because 𝐿 is the normal 𝑝-complement of 

𝐾. It follows that  𝑥 ∈ 𝐶𝐾(𝐿), which contradicts part i) of Lemma 3.5. 

ix) Conclusion: 𝐹 is abelian and [𝐺 ∶ 𝐹] = 𝑝: 

By part i) and part viii), we know that 𝐹 ∖ 𝑍 ⊆ 𝑏(𝐺). It should be mentioned that 

𝐿  is not contained in 𝑍 , otherwise there exists an element 𝑔 ∈ 𝐿  such that 

𝐶𝐾(𝑔) = 𝐾. Now by part ii) of Lemma 3.5, we have  𝐶𝐾(𝑔) ≤ 𝐹, so 𝐾 = 𝐹 which 

is a contradiction. By part iv), 𝑃 is also not contained in  𝑍. Let 𝑥 ∈ 𝑃 ∖ 𝑍 and  

𝑦 ∈ 𝐿 ∖ 𝑍 . Then  𝐶 = 𝐶𝐺(𝑥𝑦) = 𝐶𝐺(𝑥) ∩ 𝐶𝐺(𝑦) since  𝑥  and 𝑦  commute with 

𝑔𝑐𝑑 (|𝑥|, |𝑦|) = 1. As 𝑥, 𝑦 ∈ 𝑏(𝐺), 𝑥𝑦 must be in 𝐹 ∖ 𝑍. This implies that  𝑥𝑦 ∈

𝑏(𝐺), so  𝐶 = 𝐶𝐺(𝑥) = 𝐶𝐺(𝑦). Let us fix  𝑥, then we see that 𝐶 = 𝐶𝐺(𝑦)  for every  

𝑦 ∈ 𝐿 ∖ 𝑍. Similarly, by keeping  𝑦  fixed, we get 𝐶 = 𝐶𝐺(𝑥) for every 𝑥 ∈ 𝑃 ∖ 𝑍. 

It follows that 𝐶 = 𝐶𝐺(𝑔)  for every element 𝑔 ∈ 𝐹 ∖ 𝑍  because 𝐹 = 𝑃 × 𝐿 . 

Furthermore, 𝑃 ≤ 𝐶  as 𝑃 ≤ 𝐶𝐺(𝑦) for every 𝑦 ∈ 𝐿 ∖ 𝑍  and 𝐿 ≤ 𝐶  as 𝐿 ≤ 𝐶𝐺(𝑥) 

for every 𝑥 ∈ 𝑃 ∖ 𝑍. So 𝐹 ≤ 𝐶 = 𝐶𝐺(𝐹) since  𝐶𝐺(𝐹) = ⋂ 𝐶𝐺(𝑔)𝑔∈𝐹 .  

Conversely, 𝐶 ≤ 𝐹 because 𝐺 is solvable. Thus we have 𝐹 = 𝐶 = 𝐶𝐺(𝑔) for every 

𝑔 ∈ 𝐹 ∖ 𝑍. In particular, this implies that 𝐹 is abelian. 

Furthermore, for any element  𝑦 ∈ 𝐹 ∖ 𝑍, we have  |𝐶𝐺(𝑦)| = 𝑏 = |𝐹|. Thus by 

part v) we see that |𝐺|𝑝′ = |𝐹|𝑝′. Hence 𝐺 = 𝐾 otherwise  [𝐺 ∶ 𝐾] = 𝑞, 𝑞 ≠ 𝑝 

prime. Finally, by part iii) of Lemma 3.5, we conclude that  [𝐺 ∶ 𝐹] = 𝑝. ∎   

Definition 3.1: A nonabelian group  𝐺 is an  𝐹-group if, for every  𝑥,𝑦 ∈ 𝐺 ∖ 𝑍(𝐺), 

we have that 𝐶𝐺(𝑥) ≤ 𝐶𝐺(𝑦) implies 𝐶𝐺(𝑥) = 𝐶𝐺(𝑦). 

 

Definition 3.2: A nonabelian group 𝐺 is a 𝐶𝐴-group if all centralizers of noncentral 

elements are abelian. Clearly, 𝐶𝐴-groups are 𝐹-groups. 
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Theorem 3.17: Let 𝐺 be a finite group of conjugate rank 2. Then 𝐺 is either an         

𝐹-group or the direct product of an abelian group and a group of prime power 

order. 

Proof 3.17: Let 𝐺 be a finite group of conjugate rank 2 and assume that 𝐺 is not an 

𝐹-group. Then there exist elements 𝑥,𝑦 ∈ 𝐺 ∖ 𝑍(𝐺) such that 𝐶𝐺(𝑦) < 𝐶𝐺(𝑥). Let 

𝑚 = |𝑥𝐺|  and 𝑛 = |𝑦𝐺|  be the sizes of the conjugacy classes of 𝑥  and 𝑦  in 𝐺 , 

respectively. Then 𝑚 divides 𝑛, and since 𝐺 has conjugate rank 2, we can apply 

Theorem 3.16. Suppose that there exists an abelian normal subgroup 𝐴 of prime 

index in 𝐺. As 𝐴 ≤ 𝐴𝑍(𝐺) ≤ 𝐺 and [𝐺 ∶ 𝐴] = 𝑝, for a prime 𝑝, either 𝑍(𝐺) < 𝐴 or 

𝐺 = 𝐴𝑍(𝐺). If 𝐺 = 𝐴𝑍, then 𝐺 is abelian which contradicts our hypothesis about 

rank of 𝐺. Thus we have 𝑍(𝐺) < 𝐴. We claim that for any 𝑔 ∈ 𝐴 ∖ 𝑍(𝐺), we have 

𝐶𝐺(𝑔) = 𝐴 . As 𝐴 ≤ 𝐶𝐺(𝑔) ≤ 𝐺  and [𝐺 ∶ 𝐴] = 𝑝 , we have either 𝐶𝐺(𝑔) = 𝐴 , or 

𝐶𝐺(𝑔) = 𝐺 which is impossible since 𝑔 is noncentral. Thus for every ℎ ∈ 𝐺 ∖ 𝐴, we 

have 𝐶𝐺(ℎ) = 𝑍(𝐺)〈ℎ〉. Hence 𝐺 is a 𝐶𝐴-group, and in particular 𝐺 is an 𝐹-group, 

which contradicts our assumption. Thus, [𝐺 ∶ 𝑍(𝐺)] is a power of some prime 𝑝 by 

Theorem 3.16 and therefore we get 𝐺 = 𝑃 × 𝐴 where 𝑃 is a Sylow 𝑝-subgroup of 𝐺 

and 𝐴 is a subgroup of 𝑍(𝐺). ∎ 

The structure of the groups with conjugate rank 2 is determined by the 

following theorem. Let 𝑝 denote a suitable prime number. 

Theorem 3.18: A finite group 𝐺 has conjugate rank 2 if and only if, up to an abelian 

factor, either of the following cases hold: 

• 𝐺 is a 𝑝-group of conjugate rank 2; or 

• 𝐺 = 𝐾𝐿 with 𝐾 ⊴ 𝐺, 𝑔𝑐𝑑 (|𝐾|, |𝐿|) = 1 and one of the following occurs: 

i)  both 𝐾 and 𝐿 are abelian, 𝑍(𝐺) ≤ 𝐿 and 𝐺/𝑍(𝐺) is a Frobenius group; 

ii)  𝐾 is abelian, 𝐿 is nonabelian 𝑝-group, 𝑀 = 𝑂𝑝(𝐺) is an abelian subgroup of 

index  𝑝 in 𝐿 and 𝐺/𝑀 is a Frobenius group; 

iii)  𝐾  is a 𝑝-group of conjugate rank 1, 𝐿 is abelian, 𝑍(𝐾) = 𝑍(𝐺) ∩ 𝐾  and 

𝐺/𝑍(𝐺) is a Frobenius group. 
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Now we will prove a lemma which helps us to prove the above theorem. Note 

that Dedekind’s Modular Law states that if 𝐻, 𝐾 and 𝑈 are subgroups of 𝐺 such that 

𝐻 ≤ 𝑈 ≤ 𝐺, then 𝐻𝐾 ∩ 𝑈 = 𝐻(𝐾 ∩ 𝑈). 

Lemma 3.19: According to the notation of Theorem 3.18, we have the following sets 

of conjugacy class sizes: 

i) 𝑐𝑠(𝐺) = {1, |𝐿/𝑍(𝐺)|, |𝐾|}; 

ii) 𝑐𝑠(𝐺) = {1,𝑝, 𝑝𝑎|𝐾|}, where 𝑝𝑎 = [𝑀 ∶ 𝑍(𝐿)]; 

iii) 𝑐𝑠(𝐺) = {1,𝑝𝑎 ,𝑝𝑏|𝐿/𝑍(𝐺)|}, where 𝑝𝑎 = [𝐾 ∶ 𝑍(𝐾)] and 𝑐𝑠(𝐾) = {1,𝑝𝑏}. 

Proof 3.19: Let  𝑍 = 𝑍(𝐺). 

i) 𝐾 is abelian, so  𝐾𝑍 ≤ 𝐶𝐺(𝑥) for all  𝑥 ∈ 𝐾𝑍 ∖ 𝑍. 𝐺/𝑍 is a Frobenius group, 

clearly 𝐾𝑍/𝑍 and 𝐿/𝑍 are the Frobenius kernel and the Frobenius complement of 

𝐺/𝑍, respectively. Hence if  𝑥 ∈ 𝐾𝑍 ∖ 𝑍, then  𝑥̅ ∈ 𝐾𝑍����, so 𝐶𝐺̅(𝑥̅) ⊆ 𝐾𝑍����. Assume 

that 𝐾𝑍 < 𝐶𝐺(𝑥), then there exists an element 𝑎 ∈ 𝐶𝐺(𝑥) ∖ 𝐾𝑍 , so 𝑎�  and 𝑥̅       

are nontrivial such that 𝑎� ∈ 𝐶𝐺̅(𝑥̅) ⊆ 𝐾𝑍����.This verifies that 𝑎 ∈ 𝐾𝑍 which is a 

contradiction. Thus in this case, we have 𝐶𝐺(𝑥) = 𝐾𝑍  for all 𝑥 ∈ 𝐾𝑍 ∖ 𝑍 . If 

𝑥 ∈ 𝐺 ∖ 𝐾𝑍, then 𝑥𝑍 is a nonidentity element of some Frobenius complement     

of 𝐺/𝑍 . Hence  𝑥 ∈ 𝐿𝑔𝑍 = 𝐿𝑔  for some 𝑔 ∈ 𝐺 , and 𝐶𝐺(𝑥) = 𝐿𝑔  because  𝐿𝑔  is 

abelian and 𝐺/𝑍 is a Frobenius group with complement  𝐿𝑔/𝑍. Thus we have the 

following three cases: 

 

• If 𝑥 ∈ 𝑍, then |𝑥𝐺| = 1; 

• If 𝑥 ∈ 𝐾𝑍 ∖ 𝑍, then |𝑥𝐺| = |𝐺|
|𝐾𝑍|

= |𝐾||𝐿|
|𝐾||𝑍|

= |𝐿|
|𝑍|

; 

• If 𝑥 ∈ 𝐺 ∖ 𝐾𝑍, then |𝑥𝐺| = |𝐺|
|𝐿𝑔| = |𝐾| 

 

So we get 𝑐𝑠(𝐺) = {1, |𝐿/𝑍|, |𝐾|}. 

ii) Let  𝑀 = 𝑂𝑝(𝐺), then  𝑀 centralizes the normal  𝑝-complement  𝐾. 𝐺/𝑀 is a 

Frobenius group with the Fobenius kernel 𝐾𝑀/𝑀 and the Frobenius complement 

𝐿/𝑀 , hence if there exists a 𝑧 ∈ 𝑍 ∖ 𝐿 , then  𝑧̅ ∈ 𝐶𝐺̅(𝑙)̅ = 𝐿�  where 𝑙 ̅  is a 
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nonidentity element of  𝐿�. So 𝑧 ∈ 𝐿, a contradiction. Thus  𝑍 ≤ 𝐿, in particular 

 𝑍 ≤ 𝑀 by the definition of  𝑀. Since  𝑍 ≤ 𝑍(𝐿) ≤ 𝑀 and 𝑀 centralizes 𝐾, we 

have  𝑍(𝐿) = 𝑍. Let  𝐴 = 𝐾𝑀. Then  𝐴 is an abelian normal subgroup of index  𝑝 

in 𝐺. If  𝑥 ∈ 𝐴 ∖ 𝑍, then  𝐴 ≤ 𝐶𝐺(𝑥) and if there exists an element  𝑎 ∈ 𝐶𝐺(𝑥) ∖ 𝐴, 

then  𝐴 ≤ 〈𝑎〉𝐴 ≤ 𝐺 so 

 

[𝐺 ∶ 𝐴] = [𝐺 ∶ 〈𝑎〉𝐴][〈𝑎〉𝐴 ∶ 𝐴] = [〈𝑎〉𝐴 ∶ 𝐴]. (3.11) 

 

This means that 𝑥 ∈ 𝑍, so 𝐶𝐺(𝑥) = 𝐴. If  𝑥 ∈ 𝐺 ∖ 𝐴, then 𝑥 centralizes no element 

in 𝐴 ∖ 𝑍 otherwise as  [𝐺 ∶ 𝐴] = 𝑝, we can see that  𝑎 ∈ 𝑍, and 𝐶𝐺(𝑥) = 𝑍〈𝑥〉, 

with  𝑥𝑝 ∈ 𝑍 as [𝐺 ∶ 𝐴] = 𝑝. Hence  

 

|𝑥𝐺| =
|𝐺|

|𝑍〈𝑥〉|
=

|𝐺|
𝑝|𝑍| =

|𝐾||𝐿|
|𝐿/𝑀||𝑍|

= |𝐾|
|𝑀|
|𝑍| . (3.12) 

 

In this case 𝑐𝑠(𝐺) = {1,𝑝, 𝑝𝑎|𝐾|}, where  𝑝𝑎 = [𝑀 ∶ 𝑍(𝐿)]. 

iii) We have the Frobenius group 𝐺/𝑍 with the Frobenius kernel 𝐾𝑍/𝑍 and the 

Frobenius complement 𝐿𝑍/𝑍. If 𝑥 ∈ 𝐺 ∖ 𝐾𝑍, then 𝑥 is a nonidentity element of 

some Frobenius complement of 𝐺/𝑍 . Hence 𝑥 ∈ 𝐿𝑔𝑍 , for some 𝑔 ∈ 𝐺  and 

𝐶𝐺(𝑥) = 𝐿𝑔𝑍  because 𝐿  is abelian. If 𝑥 ∈ 𝐾𝑍 ∖ 𝑍 , then  𝑥𝑍  is a nonidentity 

element of the Frobenius kernel 𝐾𝑍/𝑍 . It follows that 𝐶𝐺(𝑥) ≤ 𝐾𝑍  since  

𝐶𝐺̅(𝑥̅) ≤ 𝐾𝑍����. There exist  𝑦 ∈ 𝐾 and 𝑧 ∈ 𝑍  such that  𝑥 = 𝑦𝑧. We claim that 

𝐶𝐺(𝑥) = 𝐶𝐾(𝑦)𝑍. It is clear that 𝐶𝐾(𝑦)𝑍 ≤ 𝐶𝐺(𝑥). If 𝑎 ∈ 𝐶𝐺(𝑥), then  𝑦𝑧 = 𝑥 =

𝑎−1𝑥𝑎 = 𝑎−1𝑦𝑎𝑧. This implies that 𝑎 ∈ 𝐶𝐺(𝑦), thus 𝑎 ∈ 𝐾𝑍 ∩ 𝐶𝐺(𝑦) = 𝐶𝐾(𝑦)𝑍 

by Dedekind’s Modular Law. Therefore  𝐶𝐺(𝑥) = 𝐶𝐾(𝑦)𝑍.  

In order to find the conjugacy class size of 𝑥, we need to prove  𝑍 = (𝑍 ∩ 𝐾)(𝑍 ∩

𝐿) = 𝑍(𝐾)(𝑍 ∩ 𝐿). Assume that 𝑍 ≰ 𝑍(𝐾)(𝑍 ∩ 𝐿) = 𝑍 ∩ 𝑍(𝐾)𝐿 . This means 

that 𝑍 ≰ 𝑍(𝐾)𝐿. Hence there exists a 𝑧 ∈ 𝑍 ∖ 𝑍(𝐾)𝐿. As 𝐺 = 𝐾𝐿 we have 𝑧 = 𝑘𝑙 

for some 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿, so 𝑙 = 𝑘−1𝑧 ∈ 𝐾𝑍. 𝑙 ∉ 𝑍 as 𝑧 ∉ 𝑍(𝐾)𝐿. Thus 𝑙 ∈ 𝐾𝑍 ∖ 𝑍 

and so 𝐶𝐺(𝑙) ≤ 𝐾𝑍 . As 𝐿  is abelian, 𝐿 ≤ 𝐶𝐺(𝑙), hence 𝐿𝑍 ≤ 𝐾𝑍 , which is a 

contradiction. Consequently,𝑍 = 𝑍(𝐾)(𝑍 ∩ 𝐿). It follows that if 𝑥 ∈ 𝐾𝑍 ∖ 𝑍, then 
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|𝑥𝐺| =
|𝐺|

|𝐶𝐾(𝑦)𝑍|
=

|𝐾||𝐿||𝑍 ∩ 𝐶𝐾(𝑦)|
|𝐶𝐾(𝑦)||𝑍|

=
𝑝𝑏|𝐿||𝑍(𝐾)|

|𝑍(𝐾)||𝑍 ∩ 𝐿|
=

𝑝𝑏|𝐿|
|𝑍 ∩ 𝐿|

 (3.13) 

where  𝑝𝑏 is the size of conjugacy class of any noncentral element of  𝐾. If 

𝑥 ∈ 𝐺 ∖ 𝐾𝑍, then 

|𝑥𝐺| =
|𝐺|

|𝐿𝑔𝑍|
=

|𝐾||𝐿||𝑍 ∩ 𝐿|
|𝐿||𝑍|

= [𝐾 ∶ 𝑍(𝐾)] = 𝑝𝑎 (3.14) 

since 𝐾 is a 𝑝-group. So we obtained that 𝑐𝑠(𝐺) = {1,𝑝𝑎,𝑝𝑏|𝐿/𝐿 ∩ 𝑍|}, where 

𝑝𝑎 = [𝐾 ∶ 𝑍(𝐾)] and 𝑐𝑠(𝐾) = {1,𝑝𝑏}. ∎ 

It should be mentioned that, in part iii) of Lemma 3.19, we have 𝑝𝑎 > 𝑝𝑏 since 

for every 𝑥 ∈ 𝐾 such that 𝑥 ∉ 𝑍, clearly 𝐶𝐾(𝑥) > 𝑍. Further, 𝐿𝑍/𝑍 is a Frobenius 

complement, and hence 𝐿/𝐿 ∩ 𝑍 ≠ 1. Thus none of the nontrivial class sizes of 𝐺 

divides any other. 

The following theorem which shows the classification of 𝐹-groups is form 

[Rebmann, 1971]. It is easy to see that the 𝐹-groups in i) - v) are solvable while the 

𝐹-groups in vi) - vii) are nonsolvable groups. 

Theorem 3.20: Let  𝐺 be a nonabelian group. Then 𝐺 is an 𝐹-group if and only if it is 

one of the following types: 

i) 𝐺 = 𝑃 × 𝐴 where 𝑃 is an 𝐹-group of prime power order and 𝐴 is abelian. 

ii) 𝐺 has a normal abelian subgroup of prime index. 

iii) 𝐺/𝑍(𝐺) is a Frobenius group with Frobenius kernel 𝐾/𝑍(𝐺) and Frobenius 

complement 𝐿/𝑍(𝐺) with 𝐾 and 𝐿 are abelian. 

iv) 𝐺/𝑍(𝐺) is a Frobenius group with Frobenius kernel 𝐾/𝑍(𝐺) and Frobenius 

complement 𝐿/𝑍(𝐺) where 𝐿 is abelian, 𝑍(𝐾) = 𝑍(𝐺), 𝐾/𝑍(𝐺) has prime power 

order and 𝐾 is an 𝐹-group. 

v) 𝐺/𝑍(𝐺) ≅ 𝑆4 and if  𝑉/𝑍(𝐺) is the Klein 4-group in 𝐺/𝑍(𝐺), then 𝑉 is not 

abelian. 

vi) 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(𝑝𝑛)  or  𝑃𝐺𝐿2(𝑝𝑛),  𝐺′ ≅ 𝑆𝐿2(𝑝𝑛),  where  𝐺′ is  the  derived  
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subgroup of 𝐺, 𝑝 a prime, 𝑝𝑛 > 3. 

vii) 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(9) (≅ 𝐴6) or 𝑃𝐺𝐿2(9), and 𝐺′ is isomorphic to the Schur 

cover of  𝑃𝑆𝐿2(9). 

𝐶𝐴-groups are classified by Schmidt [Schmidt, 1994]. Now we write a part of 

this classifacition. 

Theorem 3.21: Let  𝐺 be a finite group. If 𝐺/𝑍(𝐺) ≅ 𝑆4 and 𝑉 is not abelian if 

𝑉/𝑍(𝐺) is the Klein 4-group, then 𝐺 is a 𝐶𝐴-group and 𝑐𝑠(𝐺/𝑍(𝐺)) = {1, 6, 8, 12}. 

Now we can give the proof of the main Theorem 3.18. 

Proof 3.18: Assume that 𝐺 is a group of conjugate rank 2. By Theorem 3.17, it is 

clear that 𝐺 is either an 𝐹-group or it is the product of an abelian group and a group 

of prime power order, that is a group of type first case. By part i) of Lemma 3.1, we 

can assume 𝐺 has no nontrivial abelian factor. Let  𝑍 = 𝑍(𝐺) and suppose 𝐺 is an         

𝐹-group. By applying Theorem 3.20, and we have the following types of groups: 

i) 𝐺 is a group of prime power order. Thus, we again have the first case. 

ii) 𝐺 is nonabelian and has an abelian normal subgroup 𝐵 of prime index 𝑝. If  𝐺 

is nilpotent, since we assumed that 𝐺 has no nontrivial abelian direct factor, then 

we have the first case. Otherwise, let  𝐿 be a Sylow  𝑝-subgroup of 𝐺, let 𝐾 be a             

𝑝-complement of 𝐵. Let 𝑀 = 𝐿 ∩ 𝐵. Then 𝐾 is an abelian normal subgroup of 𝐺. 

Since |𝐾|  and |𝐿|  are relatively prime, by Theorem 1.5 we conclude that 

𝐾 = [𝐾, 𝐿] × 𝐶𝐾(𝐿). Now we have:  

 

𝐺 = 𝐵𝐿 = (𝐾 × 𝑀)𝐿 =  ��[𝐾, 𝐿] × 𝐶𝐾(𝐿)� × 𝑀�𝐿 = 𝑁 × 𝐶𝐾(𝐿) (3.15) 

 

where  𝑁 = ([𝐾, 𝐿] × 𝑀)𝐿. Thus  𝐶𝐾(𝐿) is an abelian direct factor of  𝐺. Hence by   

the assumption, we have 𝐶𝐾(𝐿) = 1. Since |𝐿/𝑀| = 𝑝, it follows that 𝐺/𝑀 is a 

Frobenius group with 𝐿/𝑀  as its Frobenius complement and 𝐾𝑀/𝑀  as the 

Frobenius kernel. Since 𝑀,𝐾 ≤ 𝐵 and 𝐵 is abelian, we have 𝑀 centralizes 𝐾. Also 
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𝑀 = 𝑂𝑝(𝐺)  since 𝑝 = [𝐿 ∶ 𝑀] = [𝐿 ∶ 𝑂𝑝(𝐺)][𝑂𝑝(𝐺) ∶ 𝑀]  and 𝐿/𝑀  is the 

Frobenius complement of 𝐺/𝑀. If 𝐿 is nonabelian, then we have case ii). If 𝐿 is 

abelian, then 𝑀 ≤ 𝑍 as 𝑀 centralizes 𝐾. As 𝐶𝐾(𝐿) = 1, it follows that 𝑀 = 𝑍(𝐺) 

otherwise if 𝑀 < 𝑍, then either 𝐿 ≤ 𝑍 or 𝐾 ∩ 𝑍 ≠ 1 which contradicts the fact 

that 𝐶𝐾(𝐿) = 1. Hence 𝐺 is a group of type i). 

iii) 𝐺/𝑍 is a Frobenius group with kernel 𝐾0/𝑍 and complement 𝐿/𝑍, with 𝐾0 and 

𝐿 abelian groups. Let 𝜋 = 𝜋(𝐿) and let 𝐾 be the 𝜋-complement of 𝐾0. It is clear 

that 𝐾 ⊴ 𝐺. Let 𝐴 be a 𝜋-Hall subgroup of 𝐾0, so 𝐾0 = 𝐾𝐴 and we have: 

|𝐺|
|𝐾| =

|𝐺|
|𝑍|

|𝑍|
|𝐾| =

|𝐾0|
|𝑍|

|𝐿|
|𝑍|

|𝑍|
|𝐾| =

|𝐾| |𝐴| |𝐿|
|𝑍|

1
|𝐾| =

|𝐴| |𝐿|
|𝑍| . (3.16) 

Thus 𝐾 is a normal 𝜋-complement of 𝐺. Since |𝐾| and |𝐿| are relatively prime, by 

Theorem 1.5 we conclude that 𝐾 = [𝐾, 𝐿] × 𝐶𝐾(𝐿). It is clear that 𝐾 ∩ 𝑍 ≤

𝐶𝐾(𝐿). Assume that there exists an element  𝑥 ∈ 𝐶𝐾(𝐿) ∖ (𝐾 ∩ 𝑍) then 𝑥 ∉ 𝑍 

and so 𝑥𝑍 is a nontrivial element in 𝐾0/𝑍. This implies that 𝐶𝐺̅(𝑥̅) ≤ 𝐾0���, so 

𝐿� ≤ 𝐾0���, which is a contradiction. Therefore  𝐶𝐾(𝐿) = 𝐾 ∩ 𝑍. Similar to part ii),  

we can see that  𝐶𝐾(𝐿) is an abelian direct factor of 𝐺. Hence 𝑍 is a 𝜋-group     

and 𝑍 ≤ 𝐿. Therefore 𝐺 = 𝐾𝐿, with 𝐾 ⊴ 𝐺 and 𝑔𝑐𝑑(|𝐿|, |𝐾|) = 1. Thus, we get 

case i). 

iv) 𝐺/𝑍 is a Frobenius group with kernel 𝐾0/𝑍 and complement 𝐿0/𝑍 where 𝐿0 is 

abelian, 𝐾0  is an 𝐹-group such that 𝑍(𝐾0) = 𝑍  and 𝐾0/𝑍  is a 𝑝-group, for a 

prime p. 

Let 𝐾 be the Sylow 𝑝-subgroup of 𝐾0. Then 𝐾0 = 𝐾 × 𝑍0, with 𝑍0 ≤ 𝑍. As 𝐾 is a 

characteristic subgroup of 𝐾0 and 𝐾0 ⊴ 𝐺, we have 𝐾 ⊴ 𝐺. Now we have 𝑍(𝐾) =

𝑍(𝐾0) ∩ 𝐾 = 𝑍 ∩ 𝐾. Let 𝐿 be 𝑝-complement of 𝐿0. As 

𝐺
𝑍
≅
𝐾0
𝑍
⋊
𝐿0
𝑍
≅

𝐾
𝑍(𝐾)

⋊
𝐿0
𝑍

 (3.17) 

is a Frobenius group, it follows that 𝑝 does not divide [𝐿0 ∶ 𝑍]. Hence, 𝐾 is a 

Sylow 𝑝-subgroup of 𝐺 and 𝐺 = 𝐾𝐿 because 
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|𝐺|𝑝′ =
|𝐾0|𝑝′|𝐿0|𝑝′

|𝑍|𝑝′
= |𝐿0|𝑝′ = |𝐿|. (3.18) 

 

Similar to the argument of the proof of case iii) of Lemma 3.19, we can see that 

𝑐𝑠(𝐺) = {1, [𝐾 ∶ 𝑍(𝐾)], 𝑘[𝐿 ∶ 𝐿 ∩ 𝑍]| 𝑘 ∈ 𝑐𝑠(𝐾),𝑘 ≠ 1}. Since 𝐺 has conjugate 

rank 2, it follows that 𝐾 has conjugate rank 1. 

v) 𝐺/𝑍 ≅ 𝑆4 and, if  𝑉/𝑍 is the Klein 4-subgroup of 𝐺/𝑍, then 𝑉 is nonabelian. By 

Theorem 3.21, this case will not occur when 𝐺 is assumed to be a group of 

conjugate rank 2. 

Conversely, if  𝐺 is one of the groups which are listed in Theorem 3.20, then  𝐺 

has conjugate rank 2 by Lemma 3.19. ∎ 

Corollary 3.22: Let 𝑐𝑠(𝐺) = {1,𝑚, 𝑛}. If 𝑚 and 𝑛 are not coprime, then either 𝑚 or 𝑛 

is a prime power. 

Proof 3.22: Let 𝑐𝑠(𝐺) = {1,𝑚,𝑛} with 𝑔𝑐𝑑 (𝑚,𝑛) ≠ 1. If 𝑚 = 𝑛, then we conclude 

that 𝐺 is nilpotent. So 𝐺 can be written as a direct product of the normal Sylow 

subgroups and 𝑐𝑠(𝐺) = {1,𝑚} where 𝑚 is a prime power. If  𝑚 ≠ 𝑛, then 𝐺 is a 

group of conjugate rank 2 hence 𝐺 is one of the groups described in first part, i), ii) 

or iii) of the second case in Theorem 3.18. In case first part, both 𝑚 and 𝑛 are 

powers of the some prime. By applying Lemma 3.19 we can observe that 𝐺 cannot 

be a group as in case i), because 𝑚 and 𝑛 are not coprime, and that both in cases ii) 

and iii) either 𝑚 or 𝑛 is a prime power. ∎    

Theorem 3.23: (Main Theorem in [Ishikawa, 2002]) Let 𝐺 be a finite 𝑝-group for         

a prime  𝑝 such that  𝑐𝑠(𝐺) = {1,𝑝𝑛}  (𝑛 ≥ 1). Then 𝐺′ is an elementary abelian           

𝑝-group. 

Note that 𝑑𝑙(𝐺) denotes the derived length of the solvable group 𝐺. 

Corollary 3.24: If  |𝑐𝑠(𝐺)| = 3 and 𝐺 is nilpotent, then 𝑑𝑙(𝐺) ≤ 3. 
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Proof 3.24: First note that 𝐺 is solvable by Remark 3.14. Let 𝐺 be a nonnilpotent 

group of conjugate rank 2. Then by Theorem 3.18 it is clear that 𝐺 is, up to an 

abelian direct factor, one of the groups described in i), ii) or iii) of the second case. 

Hence, 𝑑𝑙(𝐺) ≤ 𝑑𝑙(𝐾) + 𝑑𝑙(𝐿). In case i) we have  𝑑𝑙(𝐾) = 𝑑𝑙(𝐿) = 1 since 𝐾 and 

𝐿 are abelian. In case ii) we have 𝑑𝑙(𝐾) = 1 and 𝑑𝑙(𝐿) = 2, since 𝐿 has an abelian 

normal subgroup with cyclic factor group. In case iii) we have 𝑑𝑙(𝐿) = 1, and 

𝑑𝑙(𝐾) = 2 by Theorem 3.23. ∎ 

 

 

 

 

 

 

 

 

 

 

 

38 
 



 

4. CONNECTIONS BETWEEN PRIME DIVISORS of 
CONJUGACY CLASSES and PRIME DIVISORS of |𝑮| 

In this chapter we follow a paper of Ferguson [Ferguson, 1991]. 

Assume that 𝑛 is a positive integer, then 𝑛 = ∏ 𝑝𝑖𝑎𝑖𝑘
𝑖=1  is the factorization of 

𝑛 into distinct prime powers. Let 𝑤(𝑛) ∶= 𝑘 . For a finite group 𝐺 , let 𝛼(𝐺) =

max {𝑤(|𝑥𝐺|)|𝑥 ∈ 𝐺} and 𝜌(𝐺) = {𝑝|𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 𝑝 ∣ |𝑥𝐺|,𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝐺}. 

Proposition 4.1: A prime 𝑝 divides |𝐺/𝑍(𝐺)| if and only if  𝑝 ∣ |𝑥𝐺| for some 𝑥 ∈ 𝐺. 

Proof 4.1: 𝐺  is a finite group and 𝑍(𝐺) ≤ 𝐶𝐺(𝑥)  for each 𝑥 ∈ 𝐺 , therefore 

[𝐺 ∶ 𝑍(𝐺)] = [𝐺 ∶ 𝐶𝐺(𝑥)][𝐶𝐺(𝑥) ∶ 𝑍(𝐺)]. If  𝑝 ∣ |𝑥𝐺|, then we have  𝑝 ∣ |𝐺/𝑍(𝐺)|. 

Conversely, assume that 𝑝 divides |𝐺/𝑍(𝐺)| but 𝑝 does not divide |𝑥𝐺| for all 

𝑥 ∈ 𝐺. Let 𝑃 ∈ 𝑆𝑦𝑙𝑝(𝐺), then 𝑃 ≤ 𝐶𝐺(𝑥) for some 𝑥 ∈ 𝐺, thus 𝐺 = ⋃ 𝐶𝐺(𝑃𝑔) =𝑔∈𝐺

⋃ 𝐶𝐺(𝑃)𝑔𝑔∈𝐺 . By using Theorem 3.2, we have: 

|𝐺| = �⋃ 𝐶𝐺(𝑃)𝑔𝑔∈𝐺 � ≤ |𝐺| − [𝐺 ∶ 𝐶𝐺(𝑃)] + 1.  (4.1) 

So [𝐺 ∶ 𝐶𝐺(𝑃)] = 1. Therefore 𝑃 ≤ 𝑍(𝐺), which contradicts our hypothesis. ∎ 

Lemma 4.2: Assume that 𝐺 is a solvable group and 𝑟 is a prime divisor of |𝐺|. 

i) If 𝑔 is an 𝑟′-element which normalizes a nontrivial 𝑟-subgroup 𝑅, then either 

𝑟 ∣ |𝑔𝐺| or [𝑅,𝑔] = 1. 

ii) If 𝑅  is a minimal normal 𝑟 -subgroup of 𝐺  and 𝑣  is a prime such that 

𝑂𝑣(𝐺/𝐶𝐺(𝑅)) ≠ 1, then 𝑣 ∣ |𝑥𝐺| for all 𝑥 ∈ 𝑅#. 

iii) If 𝐻,𝐾 are subgroups such that 𝑅 ≤ 𝐶𝐺(𝐻) ∪ 𝐶𝐺(𝐾), where 𝑅 is an 𝑟-group, 

then 𝑅 ≤ 𝐶𝐺(𝐻) or 𝑅 ≤ 𝐶𝐺(𝐾). 

Proof 4.2: Let 𝐺 be a solvable group and 𝑟 be a prime divisor of |𝐺|. 

i) By  Frattini  Argument  we  have   𝐺 = 𝑁𝐺(𝑅1) 𝑂𝑟′(𝐺),  where   𝑅1  is  a  Sylow               
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𝑟-subgroup of 𝑂𝑟′,𝑟(𝐺). Since 
𝑂𝑟′,𝑟(𝐺)

𝑂𝑟′(𝐺) = 𝑂𝑟(𝐺/𝑂𝑟′(𝐺)) is an 𝑟-group, we conclude  

that 𝑂𝑟′(𝐺) is a Hall 𝑟′-subgroup of 𝑂𝑟′,𝑟(𝐺). Since 𝑅1 is a Sylow  𝑟-subgroup of 

 𝑂𝑟′,𝑟(𝐺), we have  𝑂𝑟′,𝑟(𝐺) = 𝑅1𝑂𝑟′(𝐺). As 𝐺 is solvable, Theorem 1.15 İmplies 

that  𝐶𝐺(𝑅1) ≤ 𝑅1𝑂𝑟′(𝐺). Let 𝐺̅ ∶= 𝐺/𝑂𝑟′(𝐺) and 𝐴̅ denote the image of a set 𝐴 

in 𝐺 . If 𝑔̅ = 1 , then 𝑔 ∈ 𝑂𝑟′(𝐺)  and [𝑔,𝑅] = 1  since 𝑔  normalizes 𝑅  and 

𝑂𝑟′(𝐺) ∩ 𝑅 = 1 . If 𝑔̅ ≠ 1 , then 𝑔̅ ∈ 𝑁𝐺̅(𝑅1���) ∖ 𝐶𝐺̅(𝑅1���)  as 𝐺 = 𝑁𝐺(𝑅1)𝑂𝑟′(𝐺) . 

Therefore,  𝑅1��� ⊴ 𝐺̅ yields 𝑆̅ ≰ 𝐶𝐺̅(𝑔̅) for any 𝑆 ∈ 𝑆𝑦𝑙𝑟(𝐺). Hence, 𝑟 ∣ |𝑔̅𝐺̅| yields 

𝑟 ∣ |𝑔𝐺| by Lemma 3.1. 

ii) Let  𝑉 ∈ 𝑆𝑦𝑙𝑣(𝐾)  where 𝐾/𝐶𝐺(𝑅) = 𝑂𝑣(𝐺/𝐶𝐺(𝑅)) , then we have  𝑉𝐶𝐺(𝑅)
𝐶𝐺(𝑅) ∈

𝑆𝑦𝑙𝑣 �
𝐾

𝐶𝐺(𝑅)� = 𝐾
𝐶𝐺(𝑅)

 , therefore  𝐾 = 𝑉𝐶𝐺(𝑅) and by Frattini Argument we can 

see that 𝐺 = 𝑁𝐺(𝑉)𝐶𝐺(𝑅). It follows that 𝐶𝑅(𝑉) ⊴ 𝐺 since 𝑥𝑦 ∈ 𝐺 where  𝑥 ∈

𝑁𝐺(𝑉) and 𝑦 ∈ 𝐶𝐺(𝑅), then 𝐶𝑅(𝑉)𝑥𝑦 = 𝐶𝑅(𝑉𝑥)𝑦 = 𝐶𝑅(𝑉). If  𝐶𝑅(𝑉) = 𝑅, then  

𝑉 ≤ 𝐶𝐺(𝑅) hence  𝐾 = 𝐶𝐺(𝑅) and so 𝑂𝑣(𝐺/𝐶𝐺(𝑅)) = 1, a contradiction. Thus 

𝐶𝑅(𝑉) < 𝑅 and the minimality of 𝑅 yields 𝐶𝑅(𝑉) = 1. Therefore, 𝑣 ≠ 𝑟 otherwise 

𝑅 ≤ 𝑍(𝑉) and so 𝑣 ∣ |𝑥𝐺| for all 𝑥 ∈ 𝑅#. 

iii) For any group 𝐺  if 𝐺 = 𝐴 ∪ 𝐵 , where 𝐴  and 𝐵  are subgroups of 𝐺 , it is              

well-known that 𝐺 ⊆ 𝐴 or 𝐺 ⊆ 𝐵. We have 𝑅 ≤ 𝐶𝐺(𝐻) ∪ 𝐶𝐺(𝐾), then we can say 

that 𝑅 = (𝐶𝐺(𝐻) ∩ 𝑅) ∪ (𝐶𝐺(𝐾) ∩ 𝑅), it follows  𝑅 ≤ 𝐶𝐺(𝐻) or 𝑅 ≤ 𝐶𝐺(𝐾). ∎ 

Chillag and Herzog have shown that for a finite solvable group 𝐺, we have  

|𝜌(𝐺)| ≤ 2 if 𝛼(𝐺) = 1 [Chillag and Herzog, 1990]. The following theorem is the 

main theorem of this section. 

Theorem 4.3: Assume 𝐺 is a finite solvable group, then |𝜌(𝐺)| ≤ 4 if 𝛼(𝐺) = 2. 

By Proposition 4.1 we have the following corollary. 

 

Corollary 4.4: Assume 𝐺 is a finite solvable group and |𝑥𝐺| is divisible by at most two 

distinct primes for all 𝑥 ∈ 𝐺, then |𝐺/𝑍(𝐺)| has at most four distinct prime divisors. 
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Note that in Lemma 3.1 we saw that if 𝑥,𝑦 ∈ 𝐺 commute and 𝑔𝑐𝑑(|𝑥|, |𝑦|) =

1, then 𝐶𝐺(𝑥𝑦) = 𝐶𝐺(𝑥) ∩ 𝐶𝐺(𝑦). So |𝑥𝐺| and |𝑦𝐺| divide |(𝑥𝑦)𝐺|. 

We will say 𝐺 satisfies Hypothesis A, if 𝐺 is a counterexample of minimal order 

to Theorem 4.3. 

Lemma 4.5: Assume 𝐺 satisfies Hypothesis A, then 𝑍(𝐺) = 1. 

Proof 4.5: Suppose 𝑝 ∣ |𝑍(𝐺)| and let 𝑃1 be a nontrivial minimal normal subgroup   

of 𝑍(𝐺) . Let  𝐻 ≥ 𝑃1  be the subgroup of 𝐺  such that 𝐻/𝑃1 = 𝑍(𝐺/𝑃1) . Since 

|𝐺/𝑃1| < |𝐺| and 𝐺/𝑃1 satisfies the hypothesis of Theorem 4.3, 𝐺/𝐻 is divisible by 

at most four primes. Let 𝑔 be a 𝑝′-element of 𝐻, then 〈𝑔〉 ⊴ 𝐺 since 〈𝑔〉𝑃1 ⊴ 𝐺 and 

𝑃1 ≤ 𝑍(𝐺). Now [𝑔,𝐺] ≤ 〈𝑔〉 ∩ 𝑃1, as 𝐻/𝑃1 = 𝑍(𝐺/𝑃1), implies that 𝑔 ∈ 𝑍(𝐺)𝑝′. 

As we saw if 𝑔 ∈ 𝐻𝑝′, then 𝑔 ∈ 𝑍(𝐺)𝑝′, so 𝐻𝑝′ ≤ 𝑍(𝐺)𝑝′. Thus 𝐻𝑝 = 𝐻𝑝′ × 𝐻𝑝 ≤

𝑍(𝐺)𝑝′ × 𝐻𝑝. On the other hand 𝑃1 ≤ 𝑍(𝐻) and 𝐻/𝑃1 is nilpotent, hence 𝑍(𝐺) ≤ 𝐻, 

Now we can conclude that 𝐻 = 𝑍(𝐺)𝑝′ × 𝐻𝑝 . Since 𝑝 ∣ |𝑥𝐺|  for some 𝑥 ∈ 𝐺  if      

and only if  𝑝 ∣ |𝐺/𝑍(𝐺)|, we may assume 𝐻𝑝 = 𝐺𝑝 but 𝐺𝑝 = 𝐻𝑝 ≰ 𝑍(𝐺). Therefore 

𝐺𝑝 ⊴ 𝐺 as 𝐻𝑝 is a characteristic subgroup of the normal subgroup  𝐻 of  𝐺. We    

have �𝐺𝑝���,𝐺𝑝′����� = [𝐺𝑝𝑃1
𝑃1

,
𝐺𝑝′𝑃1
𝑃1

]. Since 𝐺𝑝 = 𝐻𝑝  𝐻 = 𝑍(𝐺)𝑝′ × 𝐻𝑝 , we deduce that 

𝑃1 ≤ 𝐻𝑝. Now we can see that �𝐺𝑝���,𝐺𝑝′����� = 1 which implies that [𝐺𝑝,𝐺𝑝′] ≤ 𝑃1 and 

[𝑃1,𝐺𝑝′] = 1. Then  𝐺̅ = 𝐺/𝑃1, 𝐺̅ = 𝐺𝑝′���� × 𝐺𝑝���, hence  𝐺𝑝′𝑃1 ⊴ 𝐺 so 𝐺𝑝′ ⊴ 𝐺 which 

yields 𝐺 = 𝐺𝑝′ × 𝐺𝑝. Since  𝑍(𝐺𝑝) ≠ 𝐺𝑝 by 𝐺𝑝 ≰ 𝑍(𝐺) and 𝑍(𝐺) = 𝑍(𝐺𝑝′) × 𝑍(𝐺𝑝), 

we deduce that 𝐺𝑝 is not abelian, so there exists an element  𝑥 ∈ 𝐺  such that 

𝐺𝑝 ≰ 𝐶𝐺(𝑥). If for each  𝑥 ∈ 𝐺𝑝, 𝑝 does not divide the conjugacy class size of  𝑥, then 

𝐺𝑝 ≤ ⋂ 𝐶𝐺(𝑥)𝑥∈𝐺𝑝 = 𝑍(𝐺𝑝) ≤ 𝑍(𝐺) which is a contradiction. Hence there is an 

𝑥 ∈ 𝐺𝑝 such that 𝑝 ∣ |𝑥𝐺|. If 𝑦 ∈ 𝐺𝑝′, then 𝐶𝐺(𝑦) = 𝐺𝑝(𝐶𝐺(𝑦) ∩ 𝐺𝑝′) hence |𝑦𝐺| =

|𝐺𝑝′/𝐶𝐺𝑝′(𝑦)|. Therefore,  𝑝|𝑦𝐺| divides |(𝑥𝑦)𝐺|  and |𝑦𝐺| is a prime power since 

𝛼(𝐺) = 2. Thus 𝛼(𝐺𝑝′) = 1, so |𝐺𝑝′/𝑍(𝐺𝑝′)| has at most two prime divisors. Now 

|𝐺/𝑍(𝐺)| = |𝐺𝑝/𝑍(𝐺𝑝)||𝐺𝑝′/𝑍(𝐺𝑝′)|  yields that 𝑤(|𝐺/𝑍(𝐺)|) ≤ 3 , which is a 

contradiction. ∎ 
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Theorem 4.6: (3.2.8 in [Kurzweil and Stellmacher, 2004]) Let 𝑁 ⊴ 𝐺 with 𝐺̅ = 𝐺/𝑁, 

and let 𝑃  be a 𝑝-subgroup of 𝐺 . Assume that 𝑔𝑐𝑑 (|𝑁|,𝑝) = 1. Then 𝑁𝐺̅(𝑃�) =

𝑁𝐺(𝑃)�������� and 𝐶𝐺̅(𝑃�) = 𝐶𝐺(𝑃)��������. 

Lemma 4.7: Assume that  𝐺 satisfies Hypothesis A and 𝑃 is a nontrivial minimal 

normal 𝑝-subgroup of 𝐺, then 𝐺𝑝 = 𝑃. 

Proof 4.7: Since 𝐺 satisfies Hypothesis A, Lemma 4.5 implies that 𝑍(𝐺) = 1. Let 

𝐺̅ = 𝐺/𝑃 and 𝐴̅ denote the image of the set 𝐴 in 𝐺̅. Since |𝐺̅| < |𝐺|, |𝐺̅/𝑍(𝐺̅)| is 

divisible by at most four primes. Since 𝐺 satisfies Hypothesis A, we conclude that 

|𝜋(𝐺/𝑍(𝐺))| ≥ 5. Thus there exists a prime 𝑡 ∈ 𝜋(𝐺/𝑍(𝐺)) such that 𝐺̅𝑡 = 𝑍(𝐺̅)𝑡, 

which implies that the Sylow 𝑡-subgroup of 𝐺̅ is central. Therefore 𝐺̅ = 𝐺̅𝑡′ × 𝐺̅𝑡. 

Now we have the following two cases:  

 

• Case 1: 𝑡 = 𝑝. Without loss of generality, we may assume that 𝑃 ≤ 𝐺𝑝, then 

𝐺𝑝 ⊴ 𝐺 and 𝐺̅ = 𝐺̅𝑝′ × 𝐺̅𝑝. Since 1 ≠ 𝑃 ⊴ 𝐺𝑝, we conclude that 𝑍(𝐺𝑝) ∩ 𝑃 ≠ 1. 

As 𝑃 is a minimal normal 𝑝-subgroup of 𝐺, we deduce that  𝑃 ≤ 𝑍(𝐺𝑝). It is easy 

to see that  [𝐺𝑝′ ,𝐺𝑝] ⊴ 𝐺. Now minimality of 𝑃 verifies that �𝐺𝑝′ ,𝐺𝑝� = 𝑃. Now 

by Theorem 1.4 we conclude that  𝐺𝑝 = 𝐶𝐺𝑝(𝐺𝑝′) × 𝑃. Hence  𝑍(𝐶𝐺𝑝(𝐺𝑝′)) ≤

𝑍(𝐺) = 1 yields  𝐶𝐺𝑝(𝐺𝑝′) = 1 and so 𝑃 = 𝐺𝑝.  

• Case 2: 𝑡 ≠ 𝑝. We claim that 𝐺 = 𝐶𝐺(𝑃 )𝐺𝑡. We saw that 𝐺̅ = 𝐺̅𝑡′ × 𝐺̅𝑡 and 𝐺̅𝑡 

is central, therefore by Theorem 4.6 we deduce that 𝐺̅ = 𝐶𝐺̅(𝐺̅𝑡) = 𝐶𝐺(𝐺𝑡)���������. This 

implies that 𝐺 = 𝐶𝐺(𝐺𝑡)𝑃. If  𝑡 divides |𝐶𝐺(𝑃)|, then there exists a  𝑡-element 

𝑥 ∈ 𝐶𝐺(𝑃). Without loss of generality, we may assume that 𝑥 ∈ 𝐺𝑡. Let 𝑔 be an 

element of 𝐺, so there exist  𝑐 ∈ 𝐶𝐺(𝐺𝑡) and 𝑦 ∈ 𝑃 such that 𝑔 = 𝑐𝑦. It is easy to 

see that  [𝑔, 𝑥] = 1. Since 𝑔 is an arbitrary element of 𝐺, we conclude that 

𝑥 ∈ 𝑍(𝐺) = 1. Hence 𝑔𝑐𝑑 (|𝐶𝐺(𝑃)|, 𝑡) = 1. Since 

                       
𝐺𝑡𝐶𝐺(𝑃)
𝐶𝐺(𝑃) = 𝑍 �

𝐺
𝐶𝐺(𝑃)� (4.2) 

 

if   𝐺 ≠ 𝐶𝐺(𝑃) 𝐺𝑡 ,  then  there  is  a  prime  𝑣 ≠ 𝑡  such that   𝑂𝑣(𝐺/𝐶𝐺(𝑃)) ≠ 1 ,  
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because 𝐺 is solvable. If  𝑡 ∤ |𝑥𝑝𝐺| for some 𝑥𝑝 ∈ 𝑃#,then 𝐺𝑡 ≤ 𝐶𝐺(𝑥𝑝). By part ii) 

of Lemma 4.2, we conclude that 𝑡𝑣 ∣ |𝑥𝑝𝐺| for 𝑥𝑝 ∈ 𝑃#. Thus 𝑔𝑐𝑑 (𝑡𝑣,𝑝) = 1. Let 𝑟 

be any prime, such that 𝑟 ∉ {𝑡, 𝑣,𝑝}. Since 𝑡𝑣 ∣ |𝑥𝑝𝐺|, 𝛼(𝐺) = 2 and  𝑡 ≠ 𝑣, we 

conclude that 𝑟 does not divide |𝑥𝑝𝐺|, so 𝐺𝑟 ≤ 𝐶𝐺(𝑥𝑝).   If 𝑔 ∈ 𝐺𝑟#, as 𝑥𝑝 and g 

commute and 𝑝 ≠ 𝑟, by Lemma 3.1, we conclude that |𝑥𝑝𝐺| ∣ |(𝑥𝑝𝑔)𝐺|. Since 

|(𝑥𝑝𝑔)𝐺|  has two prime divisors, we deduce that |𝑔𝐺| = 𝑣𝑏𝑡𝑎, for some positive 

integers 𝑎 and 𝑏. We saw that 𝐺 = 𝐶𝐺(𝐺𝑡)𝑃, so 𝑎 = 0 and |𝑔𝐺| = 𝑣𝑏 > 1. 

It follows that  𝑃 ≤ 𝐺𝑝 ≤ 𝐶𝐺(𝐺𝑟), so 𝐺𝑟 ≤ 𝐶𝐺(𝑃). On the other hand we have 

|𝜋(𝐺/𝑍(𝐺))| ≥ 5 , thus there exists a prime 𝑠 ≠ 𝑟  in 𝜋(𝐺/𝑍(𝐺))  such that 

𝑠 ∉ {𝑣,𝑝, 𝑡}. Similarly we can see that 𝐺𝑠 ≤ 𝐶𝐺(𝑃). Therefore, 𝐶𝐺(𝑃) ≥ 𝐺{𝑟,𝑠}. 

If  𝑦  is any 𝑝′ -element of 𝐶𝐺(𝑃) , then |𝑥𝑝𝐺| ∣ |(𝑥𝑝𝑦)𝐺|   for  𝑥𝑝 ∈ 𝑃#  implies 

|𝑦𝐺| = 𝑣𝑏𝑡𝑎 , for some positive integers 𝑎  and 𝑏 . Now  𝐺 = 𝐶𝐺(𝐺𝑡)𝑃  again 

implies |𝑦𝐺| = 𝑣𝑏 > 1. Hence, if  𝑣 ∣ |𝐶𝐺(𝑃)|, let  𝑉 be a Sylow  𝑣-subgroup of 

𝐶𝐺(𝑃) . Now  𝑃 ⊴ 𝐺  implies  𝐶𝐺(𝑃) ⊴ 𝐺 . Hence  𝑉  is a normal subgroup of         

some  𝐺𝑣 as  𝑉 = 𝐶𝐺(𝑃) ∩ 𝐺𝑣  for some  𝐺𝑣 ∈ 𝑆𝑦𝑙𝑣(𝐺). Thus, there is an element 

1 ≠ 𝑦 ∈ 𝑍(𝐺𝑣) ∩ 𝑉, so  𝐺𝑣 ≤ 𝐶𝐺(𝑦). This happens if and only if  𝑣 does not divide 

|𝑦𝐺|, which is a contradiction. Hence 𝑔𝑐𝑑 (|𝐶𝐺(𝑃)|,𝑣) = 1 and 𝐺𝑣 ∩ 𝐶𝐺(𝑃) = 1. 

Now  𝐺{𝑟,𝑠}  ≤  𝐶𝐺(𝑃)  ⊴  𝐺 , so by Frattini Argument 𝐺 = 𝑁𝐺(𝐺𝑟)𝐶𝐺(𝑃) =

𝑁𝐺(𝐺𝑠)𝐶𝐺(𝑃), and it yields  𝐺𝑣 ≤ 𝑁𝐺(𝐺𝑟) ∪ 𝑁𝐺(𝐺𝑠)  for some  𝐺𝑟 ,𝐺𝑠 of 𝐺. Since 

𝐺𝑣 ∩ 𝐶𝐺(𝑃) = 1, 𝑝 ∣ |𝑔𝐺|  for 𝑔 ∈ 𝐺𝑣#. Since  𝛼(𝐺) = 2, by part i) of Lemma 4.2 

we deduce that 𝑔 ∈ 𝐶𝐺(𝐺𝑟) ∪ 𝐶𝐺(𝐺𝑠). Now part iii) of Lemma 4.2 implies that 

either 𝐺𝑣 ≤ 𝐶𝐺(𝐺𝑟) or 𝐺𝑣 ≤ 𝐶𝐺(𝐺𝑠). Without loss of generality, we may assume 

that 𝐺𝑣 ≤ 𝐶𝐺(𝐺𝑟) . Hence, 𝑣𝑏 = |𝑦𝐺|  for 𝑦 ∈ 𝐺𝑟# . If 𝑏 > 0 , then 𝑣  divides 

[𝐺 ∶ 𝐶𝐺(𝑦)]  and 𝐺𝑣 ≰ 𝐶𝐺(𝑦) . This implies that 𝐺𝑣 ≰ 𝐶𝐺(𝐺𝑟)  which is a 

contradiction. Thus 𝑏 = 0 and 1 ≠ 𝑦 ∈ 𝑍(𝐺) = 1 which is impossible. Therefore, 

𝐺 = 𝐶𝐺(𝑃)𝐺𝑡. 

We have  𝐺̅𝑡 = 𝑍(𝐺̅)𝑡 , so  𝐺𝑡𝑃 ⊴ 𝐺  and therefore  𝐶𝐺(𝐺𝑡𝑃) ⊴ 𝐺.  Since  𝐺 =

𝐶𝐺(𝑃)𝐺𝑡 = 𝐶𝐺(𝐺𝑡)𝑃  and 𝐶𝐺(𝐺𝑡𝑃) = 𝐶𝐺(𝐺𝑡) ∩ 𝐶𝐺(𝑃) , by Dedekind’s Modular 

Law we have 𝐺 = 𝐶𝐺(𝐺𝑡𝑃)𝑃𝐺𝑡. It follows that 𝐺 = 𝐶𝐺(𝐺𝑡𝑃) × 𝑃𝐺𝑡. Let  𝑢 be any 

prime dividing 𝐶𝐺(𝐺𝑡𝑃) , then every Sylow  𝑢 -subgroup of 𝐺  centralizes 𝑃  as 

𝐶𝐺(𝐺𝑡𝑃) ≤ 𝐶𝐺(𝑃) . It follows that if  𝑢  divides  |𝐶𝐺(𝐺𝑡𝑃)/𝐶𝐶𝐺(𝐺𝑡𝑃)(𝑔)|  for  𝑔 ∈
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𝐶𝐺(𝐺𝑡𝑃), then  𝑢 ∣ |(𝑔𝑥)𝐺| for 𝑥 ∈ 𝑃# otherwise there exists a Sylow  𝑢-subgroup 

𝐺𝑢  of 𝐺  such that 𝐺𝑢 ≤ 𝐶𝐺(𝑔𝑥)  for some 𝑥 ∈ 𝑃# , then 𝐺𝑢 ≤ 𝐶𝐺(𝑔) , but it 

contradicts our assumption. Now 𝑔 centralizes all Sylow 𝑡-subgroups of 𝐺  so 

𝑢𝑡 ∣ |(𝑔𝑥)𝐺|  otherwise 𝐺𝑡 ≤ 𝐶𝐺(𝑥)  for some 𝑥 ∈ 𝑃# , hence 𝑥 ∈ 𝑍(𝐺)  as  𝐺 =

𝐶𝐺(𝑃)𝐺𝑡, a contradiction. Thus, the number of elements in any  𝐶𝐺(𝐺𝑡𝑃)-class of 

𝐶𝐺(𝐺𝑡𝑃)# is a prime power because 𝛼(𝐺) = 2. Hence  𝛼(𝐶𝐺(𝐺𝑡𝑃)) = 1, so at 

most two primes divide |𝐶𝐺(𝐺𝑡𝑃)/𝑍(𝐶𝐺(𝐺𝑡𝑃))|. But  𝑍(𝐶𝐺(𝐺𝑡𝑃)) ≤ 𝑍(𝐺) = 1 

yields a contradiction. ∎ 

Now we can prove Theorem 4.3. 

Proof 4.3: Let 𝛾  denote the set of prime divisors of |𝐹(𝐺)| . Since 𝐹(𝐺) =

∏ 𝑂𝑝(𝐺)𝑝∈𝛾 , Lemma 4.7 implies that 𝐹(𝐺) = ∏ 𝐺𝑝𝑝∈𝛾  is an abelian Hall  𝛾-subgroup 

of 𝐺. Let 𝐺̅ ∶= 𝐺/𝐹(𝐺) and 𝐴̅ denote the image of 𝐴 in 𝐺. We first show 𝑤(|𝐺̅|) ≤ 2. 

𝐺 is solvable, therefore 𝐶𝐺(𝐹(𝐺)) ≤ 𝐹(𝐺). As 𝐹(𝐺) is abelian, we have 𝐶𝐺�𝐹(𝐺)� =

𝐹(𝐺). If  𝑥̅ ∈ 𝐺̅#, then 𝑥 ∉ 𝐶𝐺�𝐹(𝐺)� = 𝐹(𝐺) implies that 𝑝 ∣ |𝑥𝐺| for some 𝑝 ∈ 𝛾. 

Now 𝑔𝑐𝑑 (|𝐺̅|, |𝐹(𝐺)|) = 1,0 so 𝑝|𝑥̅𝐺̅| ∣ |𝑥𝐺|. It follows that for each nontrivial 

element  𝑥̅ ∈ 𝐺̅, |𝑥̅𝐺̅| is a prime power. This implies that  𝛼(𝐺̅) = 1 whence 𝑤(𝐺̅/

𝑍(𝐺̅)) ≤ 2. Assume that 𝑤(𝐺̅) ≥ 3. We claim that there are distinct primes 𝑢, 𝑡 such 

that 𝑢, 𝑡 ∈ 𝜋(|𝐹(𝐺̅)|). Since 𝑤(𝐺̅) ≥ 3 and 𝑤(𝐺̅/𝑍(𝐺̅)) ≤ 2, there exists a prime 

𝑢 ∈ 𝜋(|𝐹(𝐺̅)|). If  𝜋(|𝐹(𝐺̅)|) = {𝑢}, then let  𝑈� be a Sylow  𝑢-subgroup of 𝐺̅. Since 

𝑢 ∈ 𝑤(𝐺̅)\𝜌(𝐺̅), we conclude that 𝑈� is an abelian normal direct factor of 𝐺̅. This 

implies that 𝑈� ≤ 𝑍(𝐺̅) and so 𝐹(𝐺̅) = 𝑍(𝐺̅), which is a contradiction. Thus there are 

distinct primes 𝑢, 𝑡  such that 𝑢, 𝑡 ∈ 𝜋(|𝐹(𝐺̅)|). Since 𝑡,𝑢 ∉ 𝛾 , there are primes      

𝑝, 𝑞  (possibly 𝑝 = 𝑞 ) in 𝛾  such that 𝑂𝑡(𝐺/𝐶𝐺(𝐺𝑝)) ≠ 1  and 𝑂𝑢(𝐺/𝐶𝐺(𝐺𝑞)) ≠ 1 . 

Since  𝐺𝑝 and 𝐺𝑞 are minimal normal subgroups of 𝐺, by Lemma 4.7, and part ii)     

of Lemma 4.2, we deduce that  𝑡 ∣ |𝑥𝑝𝐺| for every  𝑥𝑝 ∈ 𝐺𝑝# and 𝑢 ∣ |𝑥𝑞𝐺| for every 

𝑥𝑞 ∈ 𝐺𝑞#. If 𝑝 = 𝑞, then 𝑡𝑢 ∣ |𝑥𝑝𝐺|. If 𝑝 ≠ 𝑞, then 𝑡𝑢 ∣ |(𝑥𝑝𝑥𝑞)𝐺|. In either case, there 

is an 𝑥 ∈ 𝐹(𝐺) such that 𝑡𝑢 ∣ |𝑥𝑝𝐺|. Let  𝑣 be a prime divisor of |𝐺̅|, where 𝑣 ∉ {𝑡,𝑢}. 

Since 𝑡𝑢 ∣ |𝑥𝑝𝐺| , 𝐺𝑣 ≤ 𝐶𝐺(𝑥)  for some Sylow 𝑣 -subgroup 𝐺𝑣 . Let 𝑔 ∈ 𝐺𝑣 . Now 

𝑔𝑐𝑑 (|〈𝑥〉|,𝑣) = 1 implies that every prime divisor |𝑔𝐺| and |𝑥𝐺| divides |(𝑥𝑔)𝐺|. 
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Thus, 𝑡𝑢 ∣ |(𝑥𝑔)𝐺| implies that |𝑔𝐺| = 𝑡𝑎𝑢𝑏. Therefore, |𝐹(𝐺)| divides |𝐶𝐺(𝑔)|. As 

𝐹(𝐺) is the Hall 𝛾-subgroup, we conclude that 𝐹(𝐺) ≤ 𝐶𝐺(𝑔), a contradiction 

because 𝑔̅ ∈ 𝐺̅#  and so 𝑔 ∉ 𝐶𝐺(𝐹(𝐺)) = 𝐹(𝐺) . Hence 𝑤(|𝐺̅|) ≤ 2  and |𝐹(𝐺)|  is 

divisible by at least three primes. 

Let 𝑢 be a prime divisor of |𝐺̅|, then there is a prime 𝑝 ∣ |𝐹(𝐺)| such that 

𝐺𝑢 ≰ 𝐶𝐺(𝐺𝑝). Let 𝑟 ∈ 𝛾 ∖ {𝑝}, if 𝐺𝑢 ≰ 𝐶𝐺(𝐺𝑝) ∪ 𝐶𝐺(𝐺𝑟), then by Lemma 4.2 i), iii) 

verify that there is a 𝑔 ∈ 𝐺𝑢# with 𝑝𝑟 ∣ |𝑔𝐺|. Therefore, 𝐺𝑠 ≤ 𝐶𝐺(𝑔), where 𝑠 ∈ 𝛾 ∖

{𝑝, 𝑟}. Since 𝑔𝑐𝑑 (𝑠,𝑢) = 1 , 𝑝𝑟 ∣ |(𝑔𝑥)𝐺  and |𝑥𝐺| ∣ |(𝑔𝑥)|𝐺  for 𝑥 ∈ 𝐺𝑠#  imply that 

|𝑥𝐺|  is a {𝑝, 𝑟} -number. However, 𝑥 ∈ 𝐹(𝐺)  and 𝐹(𝐺)  abelian already yield 

𝐺𝑝𝐺𝑟 ≤ 𝐶𝐺(𝑥). Thus, 𝑥 ∈ 𝑍(𝐺) = 1, which is a contradiction. Hence, 𝐺𝑢 ≤ 𝐶𝐺(𝐺𝑝) ∪

𝐶𝐺(𝐺𝑟), and part iii) of Lemma 4.2 implies 𝐺𝑢 ≤ 𝐶𝐺(𝐺𝑟). Since 𝑟 was an arbitrary 

prime in 𝛾 ∖ {𝑝}, 𝐺𝑢 ≤ 𝐶𝐺(𝐹(𝐺)𝑝′). 

If  𝑤(|𝐺̅|) = 2, there is a prime 𝑣 ≠ 𝑢 dividing |𝐺̅|. The same argument yields 

a prime 𝑞 ∈ 𝛾 such that 𝐺𝑣 ≤ 𝐶𝐺(𝐹(𝐺)𝑞′). Since |𝛾| ≥ 3, there is a prime 𝑟 such 

that 𝐺𝑟 ≤ 𝐹(𝐺)𝑞′ ∩ 𝐹(𝐺)𝑝′ . Now 𝐹(𝐺) abelian and 𝑤(𝐺̅) ≤ 2 yield 𝐺𝑟 ≤ 𝑍(𝐺), a 

contradiction. If  𝑤(|𝐺̅|) = 1, then 𝐹(𝐺)𝑞′ ≤ 𝑍(𝐺) by the same argument, which is 

again a contradiction. ∎ 
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5. CYCLES and BIPARTITE GRAPH ON CONJUGACY 
CLASS of GROUPS 

In this chapter we will follow the paper of Bijan Taeri [Taeri, 2010]. 

Let 𝐺 be a finite nonabelian group and 𝐵(𝐺) be the bipartite divisor graph of a 

finite group releated to the set of conjugacy class sizes of 𝐺. Let 𝑐𝑠∗(𝐺) = 𝑐𝑠(𝐺) ∖

{1} be the set of sizes of the noncentral classes of 𝐺. In this chapter, we consider 

the case where 𝐵(𝐺) is a cycle. We prove that this case will happen if and only if 

𝐵(𝐺) is a cycle of length six. Further, we classify those groups whose bipartite 

divisor graphs are cycles which is proved by Taeri [Taeri, 2010]. 

5.1. A Group 𝑮 with the Cycle 𝑩(𝑮) 

It is obvious that each cycle is a 2-regular graph where by 2-regular graph we 

mean a graph with this property that every vertex is endpoints of two distinct 

edges. It is easy to see that bipartite 2-regular graphs are cycles. If 𝐵(𝐺) is 2-regular 

then every noncentral conjugacy class has exactly 2 prime divisors which implies 

that 𝛼(𝐺) = 2 . For the case where 𝐺  is nonsolvable, Casolo has proved the 

following lemma: 

Lemma 5.1: (Proposition 3.3 in [Casolo, 1994]) Let 𝐺 be a nonsolvable group with 

𝛼(𝐺) = 2 . Then 𝐺 = 𝐴 × 𝑆 , where 𝐴  is abelian and 𝑆  is isomorphic to either 

𝑃𝑆𝐿2(4) or 𝑃𝑆𝐿2(8). 

Definition 5.1: A group 𝐺 is called a quasi-Frobenius group if 𝐺/𝑍(𝐺) is a Frobenius 

group. The inverse images in 𝐺 of the Frobenius kernel and complement of 𝐺/𝑍(𝐺) 

are called the kernel and complement of 𝐺, respectively.  

 

Now we state a theorem about quasi-Frobenius group with abelian kernel and 

abelian complement [Fang and Zhang, 2003]. 

 

Lemma 5.2: Let  𝐺  be a  quasi-Frobenius group  with  abelian  kernel  𝑁  and abelian  
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complement 𝐻 . Let |𝑍(𝐺)| = 𝑟 , |𝐻/𝑍(𝐺)| = 𝑠 + 1 , and 𝑁/𝑍(𝐺)  be the disjoint 

union of 𝑡 + 1 conjugacy classes of 𝐺/𝑍(𝐺). Then we have 

i) Let 𝐶 be a 𝐺-conjugacy class. Then |𝐶| = 1, 𝑠 + 1, or (𝑠 + 1)𝑡 + 1. 

ii) The numbers of all different conjugacy classes of 𝐺  with length 1, 𝑠 + 1, 

(𝑠 + 1)𝑡 + 1 are respectively 𝑟, 𝑟𝑡, 𝑟𝑠. 

Theorem 5.3: Let  𝐺 be a finite group such that 𝐵(𝐺) is a cycle. Then 𝐺 ≅ 𝐴 × 𝑆, 

where 𝐴 is abelian, and 𝑆 ≅ 𝑆𝐿2(𝑞), 𝑞 = 4, 8. Consequently 𝐵(𝐺) is a cycle if and 

only if 𝐵(𝐺) is the 6-cycle 2 − 12 − 3 − 15 − 5 − 20 − 2 and 𝐺 ≅ 𝐴 × 𝑆𝐿2(4), or is 

the 6-cycle 2 − 72 − 3 − 63 − 7 − 56 − 2 and 𝐺 ≅ 𝐴 × 𝑆𝐿2(8), where A is abelian. 

Proof 5.3: Since 𝐵(𝐺) is a cycle, we have 𝛼(𝐺) = 2. If 𝐺 is nonsolvable, then by 

Lemma 5.1 𝐺 ≅ 𝐴 × 𝑆𝐿2(𝑞), where 𝑖 = 4, 8, and 𝐴 is abelian (𝑃𝑆𝐿2(4) ≅ 𝑆𝐿2(4) ≅

𝐴5  and 𝑃𝑆𝐿2(8) ≅ 𝑆𝐿2(8)). If  𝐺 ≅ 𝐴 × 𝑆𝐿2(4) ≅ 𝐴 × 𝐴5 , then since 𝑐𝑠∗(𝐴5) =

{12, 15, 20}, 𝐵(𝐺) is a cycle of length 6 as follows:  

 

2 − 12 − 3 − 15 − 5 − 20 − 2. (5.1) 

 

If  𝐺 ≅ 𝐴 × 𝑆𝐿2(8), then since 𝑐𝑠∗�𝑆𝐿2(8)� = {56, 63, 72}, 𝐵(𝐺) is the following 

cycle of length 6:  

 

2 − 72 − 3 − 63 − 7 − 56 − 2. (5.2) 

 

Now we claim that  𝐺 cannot be solvable. By the way of contradiction, suppose     

that 𝐺  is solvable and 𝐵(𝐺)  is a cycle. Thus, for all noncentral 𝑔 ∈ 𝐺 , we 

have  |𝜋(𝑔𝐺)| = 2. By Corollary 3.22, it is clear that if  𝑐𝑠∗(𝐺) = {𝑚, 𝑛}, and 

𝑔𝑐𝑑 (𝑚, 𝑛) ≠ 1, then either 𝑚 or 𝑛 is a prime power and so 𝐵(𝐺) cannot be a cycle. 

In particular, if 𝐵(𝐺) is a cycle, it cannot be a cycle of length four. On the other 

hand, by Theorem 4.3, we have |𝑉(∆(𝐺))| ≤ 4. If |𝑉(∆(𝐺))| = 2, then since 𝐵(𝐺) is 

2-regular, 𝐵(𝐺) is a cycle of length 4, which is impossible. It is obvious that 
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|𝑉(∆(𝐺))| ≠ 1, so |𝑉(∆(𝐺))| ≥3. On the other hand, by Proposition 4.1, we know 

that 𝜋(𝐺/𝑍(𝐺)) = 𝑉(∆(𝐺)), so 3 ≤ |𝜋(𝐺/𝑍(𝐺))| ≤ 4 . Since 𝐵(𝐺)  cannot be a 

cycle of length 4, we have |𝑐𝑠∗(𝐺)| ≥ 3. 

We claim that 𝐺 is an 𝐹-group. First note that if 𝑐 = 𝑝𝑎𝑞𝑏 ∈ 𝑐𝑠∗(𝐺), with 𝑎 

and 𝑏 positive, then for all 𝑥 ∈ 𝐺  with 𝑝 ∈ 𝜋(𝑥𝐺) ⊆ {𝑝, 𝑞} we must have |𝑥𝐺| =

𝑝𝑎𝑞𝑏 , since 𝐵(𝐺) is 2-regular. Let 𝑥, 𝑦 be two elements of 𝐺  such that 𝐶𝐺(𝑥) ≤

𝐶𝐺(𝑦). We have to prove 𝐶𝐺(𝑥) = 𝐶𝐺(𝑦). If  𝐶𝐺(𝑥) < 𝐶𝐺(𝑦), then |𝑥𝐺| and |𝑦𝐺| are 

distinct and |𝑦𝐺| divides |𝑥𝐺|, which is impossible. Hence 𝐺 is an 𝐹-group and so is 

one of the groups listed in Theorem 3.20. The groups listed in Theorem 3.20 vi) and 

vii) are nonsolvable. Thus 𝐺 is one of the group listed in i) − v). 

If i) holds, then 𝑐𝑠∗(𝐺) = 𝑐𝑠∗(𝑃), a contradiction. 

Suppose ii) holds. Then 𝐺 has an abelian normal subgroup 𝑁 of prime index  𝑝. 

We show that 𝑐𝑠∗(𝐺) = {𝑝,𝑚} for some positive integer 𝑚. Let 𝑥 be any noncentral 

element of 𝐺. If  𝑥 ∈ 𝑁, then since 𝑁 ≤ 𝐶𝐺(𝑥) < 𝐺 and |𝐺/𝑁| = 𝑝, we have |𝑥𝐺| =

𝑝 as |𝐺/𝑁| = [𝐺 ∶ 𝐶𝐺(𝑥)][𝑁 ∶ 𝐶𝐺(𝑥)]. If  𝑥 ∉ 𝑁, then 𝐺 = 𝑁〈𝑥〉 and so  

 

𝑚 = |𝑥𝐺| =
|𝑁〈𝑥〉|
|𝐶𝐺(𝑥)|

=
|𝑁𝐶𝐺(𝑥)|
|𝐶𝐺(𝑥)|

=
|𝑁|

|𝑁 ∩ 𝐶𝐺(𝑥)|
=

|𝑁|
|𝐶𝑁(𝑥)|

. (5.3) 

Let 𝑦 ∈ 𝐺 be a noncentral element. As 𝐺 = 𝑁〈𝑥〉, without loss of generality, we can 

see that there exists 𝑎 ∈ 𝑁 such that 𝑦 = 𝑎𝑥. Since 𝑁 is abelian, we can see that 

𝐶𝑁(𝑥) = 𝐶𝑁(𝑦) and this implies that |𝑦𝐺| = 𝑚. Thus 𝑐𝑠∗(𝐺) = {𝑝,𝑚}, which is a 

contradiction. 

If iii) holds, then by Lemma 5.2 we have |𝑐𝑠∗(𝐺)| = 2, which is a contradiction.  

Suppose iv) holds. Let 𝑥 ∈ 𝐿 ∖ 𝑍(𝐺). Since  𝐺
𝑍(𝐺)

= 𝐾
𝑍(𝐺)

⋊ 𝐿
𝑍(𝐺)

, we deduce that 

𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) ≤ 𝐿/𝑍(𝐺). As 𝐿 is abelian, we have 𝐶𝐺(𝑥) = 𝐿 hence  

|𝑥𝐺| =
|𝐺|
|𝐿|

=
|𝐿| |𝐾|

|𝑍(𝐺)| |𝐾|
=

|𝐾|
|𝑍(𝐺)|

 (5.4) 

 

which is a prime power, which is a contradiction. 

If v) holds, then 𝜋(𝐺/𝑍(𝐺)) = 𝜋(𝑆4) = {2, 3}, which is a contradiction.  
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Consequently, 𝐺 is nonsolvable. Now the first part of the proof implies that 

𝐵(𝐺) is a cycle if and only if it is a cycle of length six. ∎ 

5.2. Groups with Satisfying the One-Prime Power Hypothesis 

We say that 𝐺 satisfies the one-prime power hypothesis if  𝑚,𝑛 ∈ 𝑐𝑠∗(𝐺), 

then either 𝑔𝑐𝑑 (𝑚,𝑛) = 1 or 𝑔𝑐𝑑 (𝑚,𝑛) is a power of a prime. We can easily see 

that the graph 𝐵(𝐺) has no cycle of length 4 if and only if 𝐺 satisfies one-prime 

power hypothesis. Suppose that 𝐵(𝐺) has no cycle of length 4 and let  𝑚,𝑛 ∈

𝑐𝑠∗(𝐺). If  𝑝𝑞 divides 𝑔𝑐𝑑 (𝑚,𝑛), then 𝑝 −𝑚 − 𝑞 − 𝑛 − 𝑝 is a cycle of length 4 in 

𝐵(𝐺), which is a contradiction. Thus 𝑔𝑐𝑑 (𝑚,𝑛) = 𝑝𝑎, for some prime 𝑝 and integer 

𝑎 ≥ 0. Conversely, if for all  𝑚,𝑛 ∈ 𝑐𝑠∗(𝐺), 𝑔𝑐𝑑 (𝑚, 𝑛) is a prime power, then 𝐺 has 

no cycle of length 4. In fact if  𝑝 −𝑚 − 𝑞 − 𝑛 − 𝑝 is a cycle of length 4 in 𝐵(𝐺), 

then 𝑝𝑞 divides 𝑔𝑐𝑑 (𝑚,𝑛) and so 𝑔𝑐𝑑 (𝑚,𝑛) is not a prime power. 

 

Definition 5.2: A central extension of a group 𝐺 is an exact sequence  1 → 𝑍 → 𝐻 →

𝐺 → 1 such that the image of  𝑍 in 𝐻 is a subgroup of  𝑍(𝐻). A central extension 

determined by pair (𝐻,𝑍) consisting of a group 𝐻 and a subgroup 𝑍 of the center of 

𝐻 such that 𝐻/𝑍 ≅ 𝐺. Such a central extension is often denoted by (𝐻,𝑍). 

 

Definition 5.3: A central extension (𝐻,𝑍) of a finite group 𝐺 is said to be irreducible 

if there is no proper subgroup 𝐿 having the property 𝐻 = 𝑍𝐿. A central extension 𝐻 

of 𝐺 is called a representation group 𝐺 if 𝐻 satisfies the following conditions: 

i) 𝐻 is irreducible, 

ii) |𝑀(𝐺)| = |𝐻′ ∩ 𝑍|, 

iii) |𝐻| = |𝐺||𝑀(𝐺)|, 

where 𝑀(𝐺) is the Schur multiplier of the group 𝐺. 

 

Theorem 5.4: (Theorem 9.18 in [Suzuki, 1982]) Let 𝐺 be a finite group which satisfies  

the property 𝐺′ = 𝐺,  and let  (𝐻,𝑍) be a central extension of 𝐺. 
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i) Set 𝐻1 = 𝐻′and 𝑍1 = 𝑍 ∩ 𝐻′. Then (𝐻1,𝑍1) is an irreducible central extension 

of 𝐺. 

ii) If a noncentral extension (𝐻,𝑍) of 𝐺 is irreducible, then the representation 

group of 𝐻 is (isomorphic to) the representation group of 𝐺. Hence, we have 

|𝑀(𝐻)| = |𝑀(𝐺)|/|𝑍|. 

Suppose that  𝐺/𝑍(𝐺) ≅ 𝑆, where  𝑆 is a group such that  𝑆 = 𝑆′. Let  𝑥 be        

a noncentral element of 𝐺. We claim that |𝑥𝐺| = 𝑐𝑎, where 𝑐 = |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| 

and  𝑎 is a divisor of  |𝑀(𝑆)|. To see this let  𝐷 = {𝑔 ∈ 𝐺|[𝑔, 𝑥] ∈ 𝑍(𝐺)}, where 

[𝑔, 𝑥] = 𝑔−1𝑔𝑥, be the preimage of  𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) in 𝐺. Since  𝐶𝐺(𝑥) is the kernel 

of the homomorphism 𝐷 → 𝐺′ ∩ 𝑍(𝐺) with 𝑑 ↦ [𝑑, 𝑥], it follows that  |𝐷/𝐶𝐺(𝑥)| 

divides |𝐺′ ∩ 𝑍(𝐺)|. We have the central extension (𝐺,𝑍(𝐺)) for the group  𝑆. By 

Theorem 5.4, we obtain that  (𝐺′,𝐺′ ∩ 𝑍(𝐺)) is an irreducible central extension of 𝑆 

and hence |𝑀(𝐺′)| = |𝑀(𝑆)|/|𝐺′ ∩ 𝑍(𝐺)|, so |𝐺′ ∩ 𝑍(𝐺)| divides |𝑀(𝑆)| and so 

𝑎 = |𝐷/𝐶𝐺(𝑥)| divides |𝑀(𝑆)|. Now 

|𝑥𝐺| = [𝐺 ∶ 𝐶𝐺(𝑥)] = �
𝐺

𝑍(𝐺) ∶
𝐷

𝑍(𝐺)� �
𝐷

𝑍(𝐺) ∶
𝐶𝐺(𝑥)
𝑍(𝐺) � = 𝑐𝑎 (5.5) 

as claimed. Also we have that the order of the Schur mutiplier of 𝑃𝑆𝐿2(𝑞) by the 

following theorem [Huppert, 1967]. 

Theorem 5.5: For  𝑝𝑓 ≠ 22, 32  𝑆𝐿2(𝑝𝑓)  is a representation group of 𝑃𝑆𝐿2(𝑝𝑓). For  

𝑝𝑓 > 22 and 𝑝𝑓 ≠ 32 𝑆𝐿2(𝑝𝑓) is the only representation group of 𝑃𝑆𝐿2(𝑝𝑓); 

furthermore, 𝑆𝐿2(5) is the only representation of 𝑃𝑆𝐿2(4). It is  

�𝑀 �𝑃𝑆𝐿2(𝑝𝑓)�� =

⎩
⎪
⎨

⎪
⎧2, 𝑓𝑜𝑟 𝑝 > 2 𝑎𝑛𝑑 𝑝𝑓 ≠ 32;

1, 𝑓𝑜𝑟 𝑝 = 2 𝑎𝑛𝑑 𝑝𝑓 ≠ 32;
2, 𝑓𝑜𝑟 𝑝𝑓 = 22;
6, 𝑓𝑜𝑟 𝑝𝑓 = 32.

         (5.6) 

In 1970, Itô proved the following theorem for a simple group with three 

nonidentity conjugacy class sizes [Itô, 1970]. 
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Theorem 5.6: If 𝐺 is a simple group with 𝑐𝑠∗(𝐺) = 3, then 𝐺 is isomorphic with some 

𝑆𝐿2(2𝑚), 𝑚 ≥ 2. 

In the following lemma we use the well known Burnside’s 𝑝𝛼-Lemma which 

states that a finite group which has a conjugacy class of a prime power size is not 

simple. 

Lemma 5.7: Let 𝐺 be a finite nonsolvable 𝐹-group. If 𝐺 satisfies one-prime power 

hypothesis, then 𝐺/𝑍(𝐺) ≅ 𝑆𝐿2(4) or 𝑆𝐿2(8). 

Proof 5.7: Note that in Theorem 3.20 all groups satisfying i) − v) are solvable. So a 

nonsolvable 𝐹-group satisfying the one-prime power hypothesis is either a group of 

type vi) or vii). Suppose that 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(𝑞) and 𝑞 is odd. It is well-known that 

if 𝑞 ≡ 1 (𝑚𝑜𝑑4), we have 𝑐𝑠∗(𝐺/𝑍(𝐺)) = {𝑞(𝑞 + 1), 𝑞(𝑞 − 1), 1
2
𝑞(𝑞 + 1), 1

2
(𝑞 −

1)(𝑞 + 1)}, and if 𝑞 ≡ 3 (𝑚𝑜𝑑4), we have  𝑐𝑠∗(𝐺/𝑍(𝐺)) = {𝑞(𝑞 + 1), 1
2
𝑞(𝑞 + 1),

1
2

(𝑞 − 1)(𝑞 + 1), 1
2
𝑞(𝑞 − 1)}. If  𝑞 = 9, then  𝑞 ≡ 1 (𝑚𝑜𝑑 4), so  𝑐𝑠∗�𝑃𝑆𝐿2(9)� =

{9 × 10, 9 × 8,9 × 5,8 × 5} which does not satisfy the one-prime-power hypothesis. 

So we may assume that 𝑞 ≠ 9. 

Suppose that we have the first case. By the above discussion, for any  𝑥 ∈ 𝐺 ∖

𝑍(𝐺) we have |𝑥𝐺| = |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)|𝑎, where 𝑎 ∈ {1,2}. As 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(𝑞) is 

simple, by Burnside’s 𝑝𝛼-Lemma we conclude that there is no nontrivial conjugacy 

class of 𝐺/𝑍(𝐺) of prime power size. If 𝑏1 = 𝑎1𝑐 ∈ 𝑐𝑠∗(𝐺) and 𝑏2 = 𝑎2𝑐 ∈ 𝑐𝑠∗(𝐺), 

where 𝑐 ∈ 𝑐𝑠∗(𝐺/𝑍(𝐺)) , then 𝑐  divides 𝑔𝑐𝑑 (𝑏1,𝑏2)  and so 𝑔𝑐𝑑 (𝑏1, 𝑏2)  is not a 

prime power, since 𝑐 ∈ 𝑐𝑠∗(𝐺/𝑍(𝐺)). Thus 𝑏1 = 𝑏2 since 𝐺 satisfies the one-prime 

power hypothesis. So for any 𝑐 ∈ 𝑐𝑠∗(𝐺/𝑍(𝐺)) at most one conjugacy class size of  

𝐺 is a multiple of 𝑐, hence 𝑐𝑠∗(𝐺) = {𝑞(𝑞 + 1)𝑎1, 𝑞(𝑞 − 1)𝑎2, 1
2
𝑞(𝑞 + 1)𝑎3, 1

2
(𝑞 −

1)(𝑞 + 1)𝑎4}, where 𝑎1,𝑎2, 𝑎3,𝑎4 ∈ {1, 2}, and |𝑐𝑠∗(𝐺)| ≤ 4. If 𝑏1 = 𝑞(𝑞 + 1)𝑎1 ∈

𝑐𝑠∗(𝐺)  and 𝑏2 = 𝑞(𝑞 − 1)𝑎2 ∈ 𝑐𝑠∗(𝐺) , are distinct, then 2𝑞  divides 𝑔𝑐𝑑 (𝑏1,𝑏2) 

and so 𝑔𝑐𝑑 (𝑏1,𝑏2) not a prime power. So 𝑏1 = 𝑏2. Therefore there exist at most one 

conjugacy class size which is multiple of  𝑞(𝑞 + 1) and 𝑞(𝑞 − 1). So  𝑐𝑠∗(𝐺) =

{𝑞(𝑞 + 1)𝑎1, 1
2
𝑞(𝑞 + 1)𝑎3, 1

2
(𝑞 − 1)(𝑞 + 1)𝑎4} and |𝑐𝑠∗(𝐺)| ≤ 3. Now we consider 
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𝑏1 = 𝑞(𝑞 + 1)𝑎1 ∈ 𝑐𝑠∗(𝐺)  and 𝑏4 = 1
2

(𝑞 − 1)(𝑞 + 1)𝑎4 ∈ 𝑐𝑠∗(𝐺),  then 𝑞 + 1 

divides 𝑔𝑐𝑑 (𝑏1,𝑏4). If  𝑞 + 1 is a prime power, then 𝑞 + 1 = 2𝑘 as 𝑞 is odd. As we 

assumed 𝑞 ≡ 1 (𝑚𝑜𝑑4), there exists an integer 𝑠 such that 𝑞 = 4𝑠 + 1, so we have 

2𝑘 = 2(2𝑠 + 1), which is a contradiction. Thus 𝑞 + 1 is not a prime power and this 

implies that 𝑔𝑐𝑑 (𝑏1, 𝑏4) is not a prime power. Hence 𝑏1 = 𝑏4 and there exist at 

most one conjugacy class size which is multiple of 𝑞(𝑞 + 1) and  1
2

(𝑞 − 1)(𝑞 + 1). 

Thus  𝑐𝑠∗(𝐺) = {𝑞(𝑞 + 1)𝑎1, 1
2
𝑞(𝑞 + 1)𝑎3}  and  |𝑐𝑠∗(𝐺)| ≤ 2.  Hence 𝐺  is solvable 

which contradicts our hypothesis. 

Similarly in the second case we can obtain a contradiction. 

Suppose we have 𝑐𝑠∗(𝐺) = {𝑞(𝑞 + 1)𝑎1, 1
2
𝑞(𝑞 + 1)𝑎2, 1

2
(𝑞 − 1)(𝑞 + 1)𝑎3,

1
2
𝑞(𝑞 − 1)𝑎4}, where 𝑎1,𝑎2,𝑎3,𝑎4 ∈ {1, 2}. If 𝑏1 = 𝑞(𝑞 + 1)𝑎1 ∈ 𝑐𝑠∗(𝐺) and 𝑏2 =

1
2
𝑞(𝑞 + 1)𝑎2 ∈ 𝑐𝑠∗(𝐺) are distinct, then 2𝑞  divides 𝑔𝑐𝑑 (𝑏1, 𝑏2), so 𝑔𝑐𝑑 (𝑏1,𝑏2) is 

not a prime power. Hence 𝑏1 = 𝑏2. Thus there exist at most one conjugacy class size 

which is multiple of 𝑞(𝑞 + 1) and  1
2
𝑞(𝑞 + 1). Therefore we have 𝑐𝑠∗(𝐺) = {𝑞(𝑞 +

1)𝑎1, 1
2

(𝑞 − 1)(𝑞 + 1)𝑎3, 1
2
𝑞(𝑞 − 1)𝑎4}  and |𝑐𝑠∗(𝐺)| = 3.  Now we consider  𝑏1 =

𝑞(𝑞 + 1)𝑎1 ∈ 𝑐𝑠∗(𝐺) and 𝑏3 = 1
2

(𝑞 − 1)(𝑞 + 1)𝑎3 ∈ 𝑐𝑠∗(𝐺), then 2𝑞 ∣ 𝑔𝑐𝑑 (𝑏1,𝑏3) 

and so 𝑔𝑐𝑑 (𝑏1,𝑏3) is not a prime power. So  𝑏1 = 𝑏3. Hence there exist at most one 

conjugacy class size which is multiple of 𝑞(𝑞 + 1)  and  1
2

(𝑞 − 1)(𝑞 + 1). Thus 

𝑐𝑠∗(𝐺) = {𝑞(𝑞 +  1)𝑎1, 𝑞(𝑞 − 1)𝑎2} and |𝑐𝑠∗(𝐺)| ≤ 2, which is a contradiction. 

If  𝐺/𝑍(𝐺) ≅ 𝑃𝐺𝐿2(𝑞), where 𝑞 is odd, then it follows that  𝑐𝑠∗(𝐺/𝑍(𝐺)) =

{𝑞(𝑞 + 1), 𝑞(𝑞 − 1), (𝑞 − 1)(𝑞 + 1), 1
2
𝑞(𝑞 + 1), 1

2
𝑞(𝑞 − 1)}. Similar to the above 

case, we can see that at most one conjugacy class size of 𝐺 is a multiple of 𝑐, for 

every  𝑐 ∈ 𝑐𝑠∗(𝐺/𝑍(𝐺)), and 𝑐𝑠∗(𝐺) = {𝑞(𝑞 + 1)𝑎1, 𝑞(𝑞 − 1)𝑎2, (𝑞 − 1)(𝑞 + 1)𝑎3,
1
2
𝑞(𝑞 + 1)𝑎4, 1

2
𝑞(𝑞 − 1)𝑎5} and  |𝑐𝑠∗(𝐺)| ≤ 5. As above there exist at most one 

conjugacy class size which is a multiple of 𝑞(𝑞 + 1) and 𝑞(𝑞 − 1). Thus  𝑐𝑠∗(𝐺) =

{𝑞(𝑞 + 1)𝑎1, (𝑞 − 1)(𝑞 + 1)𝑎3, 1
2
𝑞(𝑞 + 1)𝑎4, 1

2
𝑞(𝑞 − 1)𝑎5}  and so |𝑐𝑠∗(𝐺)| ≤ 4. 

Now either 𝑞 = 4𝑘 + 1 or 𝑞 = 4𝑘 +  3. First suppose that 𝑞 = 4𝑘 + 1, then 𝑞 + 1  

is not a prime power. Since 𝑞 + 1 divides 𝑔𝑐𝑑 (𝑏1,𝑏3), where 𝑏1 = 𝑞(𝑞 + 1)𝑎1 and 
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𝑏3 = (𝑞 − 1)(𝑞 + 1)𝑎3 we have 𝑏1 = 𝑏3 and 𝑐𝑠∗(𝐺) = {𝑞(𝑞 +  1)𝑎1, 1
2
𝑞(𝑞 + 1)𝑎4,

1
2
𝑞(𝑞 − 1)𝑎5}. Hence by Theorem 5.6, 𝑃𝐺𝐿2(𝑞) ≅ 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(2𝑚), which is a 

contradiction. Now suppose 𝑞 = 4𝑘 + 3. Then 2𝑞 divides 𝑔𝑐𝑑 (𝑏4,𝑏5), where  𝑏4 =
1
2
𝑞(𝑞 + 1)𝑎4 , and 𝑏5 = 1

2
𝑞(𝑞 − 1)𝑎5 . Thus 𝑏4 = 𝑏5  and 𝑐𝑠∗(𝐺) = {𝑞(𝑞 +  1)𝑎1,

(𝑞 − 1)(𝑞 + 1)𝑎3, 1
2
𝑞(𝑞 − 1)𝑎4}. Hence by Theorem 5.6, 𝑃𝐺𝐿2(𝑞) ≅ 𝐺/𝑍(𝐺) ≅

𝑃𝑆𝐿2(2𝑚), which is a contradiction. 

Finally suppose that 𝐺/𝑍(𝐺) ≅  𝑃𝑆𝐿2(2𝑛) = 𝑃𝐺𝐿2(2𝑛) . Then we have 

𝑐𝑠∗(𝐺/𝑍(𝐺)) = {(2𝑛 − 1)(2𝑛 + 1), 2𝑛(2𝑛 − 1), 2𝑛(2𝑛 + 1)} . Therefore  𝑐𝑠∗(𝐺) =

{(2𝑛 − 1)(2𝑛 + 1)𝑎1, 2𝑛(2𝑛 − 1)𝑎2, 2𝑛(2𝑛 + 1)𝑎3}. It is clear that  2𝑛 − 1 divides 

𝑔𝑐𝑑 (𝑏1, 𝑏2), where 𝑏1 = (2𝑛 − 1)(2𝑛 + 1)𝑎1  and 𝑏2 = 2𝑛(2𝑛 − 1)𝑎2. Also (2𝑛 +

1)  divides 𝑔𝑐𝑑 (𝑏1, 𝑏3) , where 𝑏3 = 2𝑛(2𝑛 + 1)𝑎3 . Therefore we conclude that 

2𝑛 − 1 and 2𝑛 + 1 are both prime power. Thus 𝑛 = 2 or 𝑛 = 3, which implies that 

𝐺/𝑍(𝐺) ≅ 𝑆𝐿2(4) or 𝑆𝐿2(8). ∎ 

Let 𝐺 be finite group and 𝑔 ∈ 𝐺. Then the subgroup of 𝐺 which is generated 

by the set 𝑔𝐺 is the smallest normal subgroup subgroup of 𝐺 which contains 𝑔 and 

we denote it by 〈𝑔𝐺〉. 

Lemma 5.8: (Lemma 6 in [Baer, 1953])  〈𝑔𝐺〉 is a  𝑝-group if and only if 𝑔 is a            

𝑝-element and there exists a normal subgroup 𝑁 of 𝐺 which contains 𝑔 such that 

[𝑁 ∶ 𝐶𝑁(𝑔)] is a power of  𝑝. 

Proof 5.8: First suppose that 〈𝑔𝐺〉 is a 𝑝-group, then 𝑔 is a  𝑝-element and we can 

take 𝑁 = 〈𝑔𝐺〉, so [𝑁 ∶ 𝐶𝑁(𝑔)] is a power of 𝑝. 

Conversely assume that 𝑔 is a 𝑝-element, that 𝑔 is contained in the normal 

subgroup 𝑁 of 𝐺, and that [𝑁 ∶ 𝐶𝑁(𝑔)] is a power of 𝑝. Now we will show that there 

exists a 𝑝-Sylow subgroup 𝑃 of 𝑁 which contains 𝑔 such that 𝑁 = 𝐶𝑁(𝑔)𝑃. To show 

this we only prove that 𝐶𝑁(𝑔) ∩ 𝑃 is a 𝑝-Sylow subgroup of 𝐶𝑁(𝑔). If  [𝑁 ∶ 𝐶𝑁(𝑔)] =

𝑝𝑚 and if |𝐶𝑁(𝑔)| = 𝑝𝑛, then |𝑁|𝑝 = 𝑝𝑛+𝑚 so that |𝑃| = 𝑝𝑛+𝑚. Denote by  𝑝𝑘 the 

order of 𝐶𝑁(𝑔) ∩ 𝑃. It is clear that 𝑝𝑘 is a divisor of 𝑝𝑛. We can see that every right 

coset of 𝑃 modulo 𝐶𝑁(𝑔) ∩ 𝑃 is contained in one and only one right coset of 𝑁 
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modulo 𝐶𝑁(𝑔) so that [𝑃 ∶ 𝐶𝑁(𝑔) ∩ 𝑃] ≤ [𝑁 ∶ 𝐶𝑁(𝑔)]. Since [𝑃 ∶ 𝐶𝑁(𝑔) ∩ 𝑃] is a 

divisor of 𝑝𝑚  and thus 𝑝𝑛+𝑚 = |𝑃| = [𝑃 ∶ 𝐶𝑁(𝑔) ∩ 𝑃]|𝐶𝑁(𝑔) ∩ 𝑃|, it follows that  

[𝑃 ∶ 𝐶𝑁(𝑔) ∩ 𝑃] = 𝑝𝑚 and |𝐶𝑁(𝑔) ∩ 𝑃| = 𝑝𝑛. Consequently 𝐶𝑁(𝑔) ∩ 𝑃 is a 𝑝-Sylow 

subgroup of 𝐶𝑁(𝑔). Hence 〈𝑔𝑁〉 = 〈𝑔𝑃〉 ≤ 𝑃, so that the normal subgroup 〈𝑔𝑁〉 of 𝑁 

is a 𝑝-group. Since every  〈𝑔𝑁𝑥〉 = 〈𝑔𝑁〉𝑥 is part of 𝑁, 𝑥 ∈ 𝐺, it follows that 〈𝑔𝐺〉 is 

the product of normal subgroups of 𝑁 which are 𝑝-groups. So 〈𝑔𝐺〉 is a 𝑝-group. ∎ 

Theorem 5.9: (Theorem 1 in [Camina and Camina, 1998]) Let 𝐺 be a finite group. 

Then all elements of prime conjugacy class size are in 𝐹2(𝐺), where 𝐹2(𝐺)/𝐹(𝐺) =

𝐹(𝐺/𝐹(𝐺)). 

Lemma 5.10: Let 𝐺 be a finite group satisfying the one-prime power hypothesis. If 

𝐺/𝑍(𝐺) has no solvable normal subgroup, then 𝐺 is an 𝐹-group. 

Proof 5.10: Let 𝑥,𝑦 be two noncentral elements of 𝐺 such that 𝐶𝐺(𝑥) ≤ 𝐶𝐺(𝑦). We 

have to prove 𝐶𝐺(𝑥) = 𝐶𝐺(𝑦). If 𝐶𝐺(𝑥) < 𝐶𝐺(𝑦), then |𝑥𝐺| and |𝑦𝐺| are distinct and 

|𝑦𝐺| divides |𝑥𝐺|, so 𝑔𝑐𝑑 (|𝑥𝐺|, |𝑦𝐺|) = |𝑦𝐺|. Since 𝐺 satisfies the one-prime power 

hypothesis |𝑦𝐺| is a prime power. On the other hand |(𝑦𝑍(𝐺))𝐺/𝑍(𝐺)| divides |𝑦𝐺|. 

Since 𝑦 is noncentral, it follows that |(𝑦𝑍(𝐺))𝐺/𝑍(𝐺)| is also a prime power. Thus, by 

Theorem 5.9, the Fitting subgroup (which is solvable and normal) of 𝐺/𝑍(𝐺) is 

nontrivial, which contradicts our hypothesis. Therefore 𝐶𝐺(𝑥) = 𝐶𝐺(𝑦) and so 𝐺 is 

an 𝐹-group. ∎ 

Corollary 5.11: Let 𝐺 be a finite simple group. Then 𝐺 satisfies the one-prime power 

hypothesis if and only if 𝐺 ≅ 𝑆𝐿2(4) or 𝑆𝐿2(8). 

Proof 5.11:  𝐺  is simple, so it is nonsolvable and  𝑍(𝐺) = 1. If  𝐺  satisfies the           

one-prime power hypothesis, then by Lemma 5.10, 𝐺 is a finite nonsolvable 𝐹-group. 

Now  Lemma  5.7  verifies  that  𝐺 ≅ 𝑆𝐿2(4)  or  𝑆𝐿2(8). Conversely, it  is  clear  that  

𝑆𝐿2(4) and 𝑆𝐿2(8) have the one-prime power hypothesis. ∎ 

The converse of Lemma 5.7 is not true. For example if 𝐺 = 𝑆𝐿2(5), then 

𝐺/𝑍(𝐺) ≅ 𝑆𝐿2(4) (≅ 𝐴5) and 𝑐𝑠∗(𝐺) = {12, 20, 30}. It is well-known that in 𝐴5 
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every element of order 3 or 5, is self centralizing, that is 𝐶𝐴5(𝑥) = 〈𝑥〉, for all 𝑥 ∈ 𝐴5 

of order 3 or 5. Also if 𝑥 is any element of order 2 in 𝐴5, then 𝐶𝐴5(𝑥) is a Sylow       

2-subgroup. Thus if 𝑥 ∈ 𝑃# is an arbitrary element of a Sylow 𝑝-subgroup 𝑃 of 𝐴5, 

for 𝑝 ∈ {2, 3, 5}, then 𝐶𝐺(𝑥) = 𝑃. 

We claim that if 𝑥  is a noncentral element of a group 𝐺  such that          

[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)] = 𝑝2, where 𝑝 is a prime, then 𝐶𝐺(𝑥) is abelian and thus there is no 

centralizer of any noncentral element of 𝐺 strictly contained in 𝐶𝐺(𝑥). We use this 

fact in the proof of the following lemma. On the contrary suppose that  𝑍(𝐶𝐺(𝑥)) <

𝐶𝐺(𝑥). Then we have  𝑍(𝐶𝐺(𝑥))/𝑍(𝐺) < 𝐶𝐺(𝑥)/𝑍(𝐺)  and �𝐶𝐺(𝑥) ∶ 𝑍�𝐶𝐺(𝑥)�� =

[𝐶𝐺(𝑥)/𝑍(𝐺) ∶ 𝑍(𝐶𝐺(𝑥))/𝑍(𝐺)] = 𝑝. Thus 𝐶𝐺(𝑥) is abelian, which contradicts our 

assumption that 𝑍(𝐶𝐺(𝑥)) < 𝐶𝐺(𝑥) . Thus 𝑍(𝐶𝐺(𝑥)) = 𝐶𝐺(𝑥)  and so 𝐶𝐺(𝑥)  is 

abelian. Now let  𝑦 be any noncentral element of 𝐺 such that 𝐶𝐺(𝑦) ≤ 𝐶𝐺(𝑥). We 

want to show that 𝐶𝐺(𝑦) = 𝐶𝐺(𝑥). Let 𝑢 ∈ 𝐶𝐺(𝑥). Since 𝐶𝐺(𝑥) is abelian, [𝑢, 𝑣] = 1 

for all 𝑣 ∈ 𝐶𝐺(𝑥). In particular, since 𝑦 ∈ 𝐶𝐺(𝑦) ≤ 𝐶𝐺(𝑥), we have [𝑢,𝑦] = 1 and so 

𝑢 ∈ 𝐶𝐺(𝑦). Hence  𝐶𝐺(𝑦) = 𝐶𝐺(𝑥), as required. This completes the proof of the 

claim. 

Lemma 5.12: Let  𝐺 be a finite group such that  𝐺/𝑍(𝐺) ≅ 𝐴5. Then  𝑐𝑠∗(𝐺) =

{12, 15, 20}, 𝐺′ ≅ 𝐴5  or 𝑐𝑠∗(𝐺) = {12, 20, 30}, 𝐺′ ≅ 𝑆𝐿2(5). Therefore  𝐺  satisfies 

the one-prime power hypothesis if and only if  𝐺′ ≅ 𝐴5. 

Proof 5.12: Let  𝑥 be a noncentral element of 𝐺. Then since 𝑍(𝐺) < 𝐶𝐺(𝑥) < 𝐺, we 

have [𝐺 ∶ 𝑍(𝐺)] = |𝑥𝐺|[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)]  and so |𝐴5| = 60 = |𝑥𝐺|[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)] . 

Since |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| divides |𝑥𝐺|, we have |𝑥𝐺| ∈ {12𝑎, 15𝑏, 20𝑐}, where 𝑎, 𝑏, 𝑐 

are positive integers. If |𝑥𝐺| = 12𝑎, then 5 = 𝑎[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)] and so 𝑎 = 1, also 

𝐶𝐺(𝑥) is abelian. If |𝑥𝐺|  =  20𝑐, then 3 = 𝑐[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)] and so 𝑐 = 1, also 𝐶𝐺(𝑥) 

is abelian. If |𝑥𝐺| = 15𝑏,  then 4 = 𝑏[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)] and so 𝑏 = 1 or 2. We consider 

the following two cases. 

 

•  Case 1: Suppose that there exists 𝑥 ∈ 𝐺 such that |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| = 15 with 

𝐶𝐺(𝑥)/𝑍(𝐺) = 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)). Therefore 
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|𝑥𝐺| = �
𝐺

𝑍(𝐺) ∶
𝐶𝐺(𝑥)
𝑍(𝐺)

� = �
𝐺

𝑍(𝐺) ∶ 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺))� = 15. (5.7) 

We will prove that for all 𝑦 ∈ 𝐺 with |(𝑦𝑍(𝐺))𝐺/𝑍(𝐺)| = 15, we have 𝐶𝐺(𝑦)/

𝑍(𝐺) = 𝐶𝐺/𝑍(𝐺)(𝑦𝑍(𝐺)) and so |𝑦𝐺| = 15. Firstly we know that  𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) 

is a Sylow  2-subgroup of  𝐺/𝑍(𝐺) of order  4. Now it is clear that for each        

nontrivial 𝑦𝑍(𝐺) ∈ 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) , 𝐶𝐺/𝑍(𝐺)�𝑥𝑍(𝐺)� = 𝐶𝐺/𝑍(𝐺)�𝑦𝑍(𝐺)�.  If 

𝑦𝑍(𝐺) ∈ 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)), then  

𝐶𝐺(𝑦)
𝑍(𝐺)

≤ 𝐶𝐺/𝑍(𝐺)�𝑦𝑍(𝐺)� = 𝐶𝐺/𝑍(𝐺)�𝑥𝑍(𝐺)� =
𝐶𝐺(𝑥)
𝑍(𝐺)

 (5.8) 

 

since |𝐶𝐺/𝑍(𝐺)�𝑥𝑍(𝐺)�| = �𝐶𝐺(𝑥)
𝑍(𝐺) � = 4, by the previous note, we conclude that 

𝐶𝐺(𝑥) = 𝐶𝐺(𝑦). Therefore 

𝐶𝐺(𝑦)
𝑍(𝐺)

= 𝐶𝐺/𝑍(𝐺)�𝑦𝑍(𝐺)� = 𝐶𝐺/𝑍(𝐺)�𝑥𝑍(𝐺)� =
𝐶𝐺(𝑥)
𝑍(𝐺)

. (5.9) 

Now suppose that 𝑦𝑍(𝐺) ∉ 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) . Therefore 𝐶𝐺/𝑍(𝐺)(𝑦𝑍(𝐺))  is a 

Sylow 2 -subgroup of 𝐺/𝑍(𝐺)  different from 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) . Since 𝐴5  acts 

transitively, by conjugation, on the set of its Sylow 2-subgroup, there exists    

𝑢 ∈ 𝐺  such that 𝑢−1𝑥𝑢𝑍(𝐺) ∈ 𝐶𝐺/𝑍(𝐺)(𝑦𝑍(𝐺)) . It follows 𝐶𝐺/𝑍(𝐺)(𝑦𝑍(𝐺)) =

𝐶𝐺/𝑍(𝐺)(𝑢−1𝑥𝑢𝑍(𝐺)) and 

𝐶𝐺(𝑦)
𝑍(𝐺)

≤ 𝐶 𝐺
𝑍(𝐺)

�𝑦𝑍(𝐺)� = 𝐶 𝐺
𝑍(𝐺)

�𝑥𝑍(𝐺)�
𝑢

= �
𝐶𝐺(𝑥)
𝑍(𝐺) �

𝑢

=
𝐶𝐺(𝑥𝑢)
𝑍(𝐺) . (5.10) 

 

Hence, by the previous note, we have  𝐶𝐺(𝑦)
𝑍(𝐺)

= 𝐶𝐺(𝑥𝑢)
𝑍(𝐺) , therefore  𝐶𝐺(𝑦)

𝑍(𝐺)
=

𝐶𝐺/𝑍(𝐺)�𝑦𝑍(𝐺)� . Thus we have proved that if |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| = 15  and 

𝐶𝐺(𝑥)
𝑍(𝐺) = 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)) , then for all  𝑦 ∈ 𝐺  with |(𝑦𝑍(𝐺))𝐺/𝑍(𝐺)| = 15 , we    

have  𝐶𝐺(𝑦)
𝑍(𝐺)

= 𝐶𝐺/𝑍(𝐺)(𝑦𝑍(𝐺)) and so |𝑦𝐺| = 15. Hence in this case we have 

𝑐𝑠∗(𝐺) = {12, 15, 20}. Note that if  |𝑥𝐺| = 12 or 20, then 𝐶𝐺(𝑥) is abelian since 
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60 = |𝑥𝐺|[𝐶𝐺(𝑥) ∶ 𝑍(𝐺)]. Also if  |𝑥𝐺| = 15 we saw that 𝐶𝐺(𝑥) is abelian. Hence 

there is no centralizer of any noncentral element of 𝐺 strictly contained in 𝐶𝐺(𝑥). 

Thus 𝐺  is an 𝐹 -group. Therefore by Theorem 3.20, we have 𝐺/𝑍(𝐺) ≅

 𝑃𝑆𝐿2(4) ≅ 𝐴5 and 𝐺′ ≅ 𝑆𝐿2(4) ≅ 𝐴5. It should be mentioned that in this case 

𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(5) ≅ 𝐴5 but we cannot have 𝐺′ ≅ 𝑆𝐿2(5), since otherwise 30 

divides a conjugacy class size of 𝐺 as 𝑐𝑠∗�𝑆𝐿2(5)� = {12, 20, 30}. 

• Case 2: Now suppose that 𝐶𝐺(𝑥)/𝑍(𝐺) < 𝐶𝐺/𝑍(𝐺)(𝑥𝑍(𝐺)), for all 𝑥 ∈ 𝐺 with 

|(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| = 15. Therefore 

|𝑥𝐺| = �
𝐺

𝑍(𝐺) ∶
𝐶𝐺(𝑥)
𝑍(𝐺)

� = |(𝑥𝑍(𝐺))𝐺/𝑍(𝐺)| �𝐶𝐺/𝑍(𝐺)�𝑥𝑍(𝐺)� ∶
𝐶𝐺(𝑥)
𝑍(𝐺)

� (5.11) 

 

and so |𝑥𝐺| = 30  and also |𝐶𝐺(𝑥)/𝑍(𝐺)| = 2 . Thus in this case 𝑐𝑠∗(𝐺) =

{12, 20, 30}. Note that in this case 𝐶𝐺(𝑥) is abelian, for all 𝑥 ∈ 𝐺. Therefore 𝐺 is 

an 𝐹-group and by Lemma 3.20, 𝐺/𝑍(𝐺) ≅ 𝑃𝑆𝐿2(5) ≅ 𝐴5 and 𝐺′ ≅ 𝑆𝐿2(5). ∎ 

Lemma 5.13: Let 𝐺 be a finite group such that 𝐺/𝑍(𝐺) ≅ 𝑆, where 𝑆 is a simple 

group with trivial Schur multiplier. Then 𝐺 ≅ 𝑍(𝐺) × 𝑆. Therefore if  𝐺/𝑍(𝐺) ≅

𝑆𝐿2(2𝑚), where 𝑚 ≥ 3, then 𝐺 satisfies the one-prime power hypothesis if and only 

if 𝐺 = 𝑍(𝐺) × 𝑆𝐿2(8). 

Proof 5.13: By Theorem 5.4, |𝐺′ ∩ 𝑍(𝐺)| divides the order of the Schur multiplier     

of 𝑆. Thus  𝐺′ ∩ 𝑍(𝐺) = 1 as the Schur multiplier of 𝑆 is trivial. Since  𝐺′𝑍(𝐺)/𝑍(𝐺)     

is a normal subgroup of the simple group 𝐺/𝑍(𝐺) ≅ 𝑆 and 𝐺′𝑍(𝐺)/𝑍(𝐺) ≅ 𝐺′, it 

follows that either 𝐺 = 𝑍(𝐺)  if 𝐺′ = 1  or 𝐺 = 𝑍(𝐺) × 𝐺′  if 𝐺′ ≠ 1.  Hence  𝐺 =

𝑍(𝐺) × 𝐺′ ≅ 𝑍(𝐺) × 𝑆.  

On the other hand, by Theorem 5.5, the Schur multiplier of  𝑆𝐿2(2𝑚), 𝑚 ≥ 3, 

is trivial. Also by the proof of Lemma 5.7, 𝑆𝐿2(2𝑚) satisfies the one-prime power 

hypothesis if and only if 𝑚 = 3, therefore the other assertion follows. ∎ 

Theorem 5.14: Let 𝐺 be a finite group such that 𝐺/𝑍(𝐺) is simple. Then 𝐵(𝐺) has no 

cycle of length 4 if and only if 𝐺 ≅ 𝐴 × 𝑆, where 𝐴 is abelian, and 𝑆 ≅ 𝑆𝐿2(𝑞), 

𝑞 = 4, 8. 
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Proof 5.14: Suppose that  𝐵(𝐺)  has no cycle of length  4. Therefore  𝐺 satisfies         

the one-prime power hypothesis. Then, by Lemma 5.10, 𝐺 is an 𝐹-group and so,     

by Lemma 5.7, 𝐺/𝑍(𝐺) ≅ 𝑆𝐿2(𝑞), where 𝑞 ∈ {4, 8}. Hence by Lemma 5.12 and   

Lemma 5.13, 𝐺/𝑍(𝐺) ≅ 𝑆𝐿2(𝑞) ≅ 𝐺′ , where 𝑞 ∈ {4, 8} . Let 𝐻 = 𝑍(𝐺)𝐺′ . Then 

𝐻 = 𝑍(𝐺) × 𝐺′ is a normal subgroup of 𝐺. Therefore 𝐺′ ≅ 𝐻/𝑍(𝐺) is a normal 

subgroup of 𝐺/𝑍(𝐺), which implies that 𝐻 = 𝐺. Hence 𝐺 ≅ 𝐴 × 𝐺′, where 𝐴 is an 

abelian subgroup of 𝐺. 

The converse is obvious since 𝑐𝑠∗(𝑆𝐿2(4)) = {12, 15, 20} and 𝑐𝑠∗(𝑆𝐿2(8)) =

{56, 63, 72}. ∎ 
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