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SUMMARY 

 
  

We discuss the conformal and Kaš-Moody symmetries in two dimensional 

sigma models. We perform our analysis regarding the classical and quantum aspects 

of the sigma models whose fields are taking values on a target space manifold and 

living in a two dimensional world-sheet. We explicitly point out that existence of 

classical symmetries requires the on-shell holomorphic stress energy tensors. 

However, the quantum conformal symmetries are provided with the presence of 

conformal ward identities. We clearly demonstrate that ward identities are also split 

into holomorphic forms. While classical symmetries are presented by de-Witt 

algebra, conformal symmetries are configured by Virasoro algebra. We slightly 

touch the operator formalism with the construction of Hilbert space of sigma models. 

In the last chapter we work out the Kaš-Moody symmetries of sigma models in a 

profound way by employing the hidden symmetry formalism. In this respect we 

establish the complex version of Lax-pair equations and investigate the hidden 

symmetries. We show that hidden symmetry formalism gives rise to Kaš-Moody 

symmetries.  
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ÖZET 
 

 

Bu çalışmada iki boyutlu sigma modellerindeki konformal ve Kaš-Moody 

simetrilerini ele aldık. Analizimizi, bir hedef uzay katmanı ile iki boyutlu bir yer 

tabakasında değerlerini alan sigma model alanlarının klasik ve kuantum özelliklerini 

göz önünde bulundurarak yaptık. Açıkça ifade edebiliriz ki, klasik simetrilerin varlığı 

holomorfik stres-enerji tensörünün varlığını gerekli kılar. Halbuki kuantum 

konformal simetrilerin varlığı ise konformal Ward biriminin varlığı ile sağlanmış 

olur. Ward birimlerinin holomorfik olarak ayrıldığını açık bir şekilde gösterdik. 

Klasik simetriler de-Witt cebiri ile gösterilirken konformal simetriler Virasoro cebiri 

ile gösterilir. Sigma modellerin Hilbert uzayının oluşturulmasında operatör 

formalizmine çok az temas ettik. Son bölümde, gizli simetri formalizmini etkili bir 

şekilde kullanarak sigma modellerdeki Kaš-Moody simetrilerini çalıştık. Bu itibarla, 

Lax-pair denklemlerinin kompleks versiyonun oluşturduk ve gizli simetrileri 

araştırdık. Ve gizli simetri formalizminin Kaš-Moody simetrilerini verdiğini 

gösterdik. 
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1. INTRODUCTION 

 

It is our current understanding that physical theories can be best formulated in 

terms of their symmetries in which they are embodied. Thus, symmetry is the key 

leading term behind all theories. Since its first debut in 1960, sigma models [Gell-

mann and Lévy, 1960] are the basic framework at which almost all physically 

realizable theories are rep- resented. Currently they have applications in many fields 

of physics varying from string theories, supersymmetric models and gravity theories 

to solid state, condensed matter and optical physics. Apparently understanding 

symmetries in sigma models leads many other theories to be comprehended in 

various features.  

It is widely believed that an ultimate theory in unification attempts should 

contain all symmetries at hand. Therefore, one needs to inquire as much symmetries 

to extend to infinite in quantity, namely Kaš-Moody symmetries. In order to better 

understand the character of Kaš-Moody symmetry one further needs to consider its 

lie algebraic structure. In this thesis, we try to achieve this goal and obtain conformal 

symmetries in sigma models thereof consistently extent to Kaš-Moody algebra by 

means of lie algebraic methods developed by Ellié Cartan
1
.  

We first outline some field theoretical methods and introduce sigma model in 

the following chapter. We then start investigating classical conformal symmetries in 

two dimensional sigma models, and then smoothly go on to the analysis of quantum 

conformal symmetries to obtain the corresponding Ward Identities. We successively 

get operator product formalism (OPF) by means of Hilbert space constructions built 

by Ward Identities. Using the standard approach, we show that OPF gives rise to 

canonical commutation relations, which is an indication of symmetries. It is well-

known that local conformal symmetry in two dimensions yields infinite number of 

symmetries but globally they reduce to finite number. Inspired by this result it is 

quite reasonable to consider Kaš-Moody symmetries in sigma models. In the last part 

of our work we do this.  

We first construct the complex version of sigma model action and figure out 

___________________________________________________________________ 
 
1
 A French Mathematician lived at the beginning of twentieth century. He contributed differential 

geometry considerably, especially in the field of differential forms and lie algebra using his famous 
moving frame methods, see [2]-[5] for details of Cartan’s approach. 
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the corresponding equations of motion. Together with the Cartan structural 

equations, we are able to build our Lax-pair equations. Equations we find are distinct 

from one usually expressed in literature since our equations contain coupled terms. 

We could express these equations compactly in differential form approach by getting 

rid of couplings. We then move on the hidden symmetry formalism on the steps of 

solutions of lax-pair equation. Analytic continuation provides the key factor in the 

hidden symmetry formalism and leads to Kaš-Moody symmetries.  
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2. OUTLINE OF BACKGROUND MATERIAL 
 

2.1. Review of Field Theory Methods 
 

In this section we will review some field theory basics emphasizing the 

importance of symmetries. Consider a collection of fields which are collectively 

denoted by Φ. The action functional depending on Φ and its first derivatives and 

defined on a d-dimensional space-time, denoted by x is given by 

        ∫                         (2.1) 

A transformation in space-time affects both space-time coordinates and fields by the 

rules:  

           and                              (2.2) 

In this transformation the new position    is a function of   , and the new field    at 

   is expressed as a function of   at    

                             (2.3) 

It is crucial to realize that the field  , considered as a mapping from space-time to 

some target space            , is affected by the transformation (2.2) in two 

ways: first by the functional change    =     , and the second by the change of 

argument      . The change of the action functional under the transformation (2.2) 

is obtained by substituting the new function       for the function      (we note 

that the argument   is the same in both case). In other words, the new action is  

        ∫    (             )  ∫     (         
       ) 

              ∫     ( (    )   
  (    ))       (2.4) 

        ∫    |
   

  
|   ( (    ) (       ⁄ )   (    ))       

This shows the new transformed action in generalized form. To study the effect of 

infinitesimal transformation on the action we make use of the following 
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transformations  

         
   

   
                     (2.5a) 

               
  

   
                       (2.5b) 

Here {  } is a set of infinitesimal parameters, which is kept to the first order. We 

de- fine the generator    of a symmetry transformation by the following expression 

for the infinitesimal transformation at the same point:  

                                                                   (2.6) 

We may relate this definition to Eq. (2.5a) and (2.5b) by noting that, to first order in 

    

                   
  

   
            

   

   
           

  

   
           (2.7) 

The explicit expression for the generator therefore  

           
   

   
     

  

   
        (2.8) 

From the last equation (2.4), we may write the effect on the action of the 

infinitesimal transformation (2.5). To first order, the Jacobian matrix is 

      
    

      
       

   

   
         (2.9) 

The determinant of this matrix may be calculated to first order from the formula  

                      (for any matrix   which is small)          (2.10) 

         |
   

  
|         

   

   
                    (2.11) 

The inverse Jacobian matrix may be obtained to the first order simply by reversion 

the sign of the transformation parameter: 

       
   

       
       

   

   
              (2.12) 
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With the help of these preliminary steps, the transformed action    may be written as 

 

   (2.13) 

 

The variation         of the action contains terms with no derivatives of   . 

These sum up to zero if the action is symmetric under rigid transformations. Then    

involves the first derivatives of   , obtained by expanding the Lagrangian. We write  

                        ∫    
 
                   (2.14) 

where 

      
 

 [
  

      
      

 
 ]

   

   
 

  

      

  

   
           (2.15) 

The quantity   
 
 is called the current associated with the infinitesimal transformation 

(2.5). Integration by parts yields  

          ∫       
 
               (2.16) 

Now comes Noether’s theorem: If the field configuration obeys the classical 

equations of motion, the action is stationary against any variation of the fields. In 

other words, δS should vanish for any position-dependent parameters      . This 

implies the conservation law  

             
 

               (2.17) 

In words, every continuous symmetry implies the existence of a current given by 

(2.15), which is classically conserved.  

The conserved charge associated with   
 
 is 

           ∫       
             (2.18) 

where   
  is the time component of   

 
, and a       stands for the purely spatial 

integration measure.  

Classically, the invariance of the action under a continuous symmetry implies 

   ∫   [    (  

   

   
)]   

    [    
  

   
 *  

       
   

   
  + *      (  

  

   
)+] 
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the existence of a conserved current. At the quantum level, correlation functions are 

the main object of study, and a continuous symmetry leads to constraints relating 

different correlation functions.  

Consider again a theory involving a collection of fields   with an action      

invariant under a transformation of the type (2.2). Consider then the general 

correlation function
2
  

   〈           〉  
 

 
∫                              (2.19) 

where   is the vacuum functional. The consequence of the symmetry of the action 

and of the invariance of the functional integration measure under the transformation 

(2.2) is  

    〈    
       

  〉  〈                 〉          (2.20) 

where the mapping   describes the functional change of the field under the 

transformation, as in Eq. (2.3). The demonstration of this identity is straightforward: 

        〈    
       

  〉  
 

 
∫        

       
         

        
 

 
∫                 

     [  ]        (2.21) 

  
 

 
∫                             〈                 〉  

The consequence of a symmetry of the action and the measure on the correlation 

functions may also be expressed via the so-called Ward identities, which we shall 

now demonstrate. An infinitesimal transformation may be written in terms of the 

generators as  

                                      (2.22) 

where    is a collection of infinitesimal, constant parameters. Note that the positions 

show up on both sides of this expression. We make a change of functional integration 

___________________________________________________________________ 
 
2
 We emphasize that fields inside the correlation functions are time-ordered so that an implicit time- 

ordering operator is intended. Time ordering requires that the relatively smaller times come to the 
right.  
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variables in the correlation function (2.19), in the form of the above infinitesimal 

transformation with   now a function of  . The action is not invariant under such a 

local transformation; its variation being given by (2.16). Denoting by   the 

collection                of the fields in the correlation function and by    its 

variation under the transformation, we can write  

    〈 〉  
 

 
∫                   ∫      

 
              (2.23) 

We again assume that the functional integration measure is invariant under the local 

transformation (i.e.,           ) When expanded to first order in      , the 

above yields 

      〈  〉  ∫    〈  
 
    〉               (2.24) 

The variation    explicitly given by 

       ∑ (                    ) 
                   (2.25a) 

              ∫       ∑ {                    } 
             (2.25b) 

Since (2.24) holds for any infinitesimal function      , we may write the following 

local relation: 

 

         (2.26) 

 

This is the Ward identity for the current   
 

. Note that the form of the current may be 

modified from the canonical definition (2.15) without affecting the Ward identity, if 

one adds to   
 
 a quantity that is divergenceless identically.  

We integrate the Ward identity (2.25) over a region of space-time that includes 

all the points   . On the left-hand side (l.h.s.), we obtain a surface integral 

      ∫
 
   〈  

 
              〉           (2.27) 

which vanishes, since the hyper-surface   may be sent to infinity without affecting 

 

   
〈  

 
              〉 

   ∑       

 

   

〈                    〉 
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the integral, indeed the divergence   〈  
 
 〉 vanishes away from the points    and the 

correlator 〈  
 
 〉 goes to zero sufficiently fast as    , by hypothesis. For the right 

hand side (r.h.s.) of Eq. (2.26), this implies 

        〈           〉      ∑ 〈                   〉    
            (2.28) 

In other words, the variation of the correlator under an infinitesimal transformation 

vanishes. This is simply the infinitesimal version of Eq. (2.21). 

The Ward identity allows us to identify the conserved charge  

                       ∫       
                 (2.29) 

as the generator of the symmetry transformation in the Hilbert space of quantum 

states.  

The fact that a correlation function is the vacuum expectation value of a time-

ordered product in the operator formalism, we conclude that 

                               (2.30) 

In other words, the conserved charge    is the generator of the infinitesimal 

symmetry transformation in the operator formalism. These identities are of course 

usually obtained in the Euclidean formalism. An easy way to retrieve the Minkowski 

space-time is to replace the charge   by    , since it is the outcome of an 

integration of the time-like component of a vector. 

2.1.1. The Energy-Momentum Tensor 

In this subsection, we apply the general results of the previous section to the 

invariance of a theory with respect to the translations and rotations (or Lorentz 

transformations). The conserved current associated with translation invariance is the 

energy-momentum tensor, whose components are the density and flux density of 

energy and momentum. In this thesis, the consequences of conformal symmetry will 

be expressed in terms of the Ward identities associated with the energy-momentum 

tensor.  

The infinitesimal translation          includes the following variations in 

the coordinates and fields:  
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,  

  

   
              (2.31) 

Consequently, the corresponding canonically conserved current is 

        
  

       
  

      
                (2.32) 

and the conservation law is     
  

  . The conserved charge is the four-momentum  

          ∫       
              (2.33) 

In particular, the energy is 

               ,
  

  ̇
 ̇   -           (2.34) 

which is the usual definition of the Hamiltonian. As an operator, the conserved 

charge   has therefore the following effect in Euclidean time, according to Eq. 

(2.30):  

        [    ]                  (2.35) 

In real time, this relation becomes [    ]       , which is the well-known 

commutator of an  −dependent operator with momentum in ordinary quantum 

mechanics.  

2.2. Sigma Model Preliminaries 

The two dimensional non-linear sigma model [Hull et al., 2009] has the action  

     
 

 
∫

 
   √ [          

                  
       ]       (2.36) 

for maps { } from a two dimensional manifold   to a  -dimensional target space  : 

                           (2.37) 

specified locally by functions       giving the dependence of the real coordinates    

of   on the real coordinates    of  , where    is identified by      . For notational 

convenience, we employ the Greek letters for world-sheet coordinates while letters in 
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Latin alphabet are reserved for target space. The index   is running up to   which is 

the dimension of  ,   = dim( ). The target manifold   has a field-dependent 

metric   and 2-form potential field  , while   has a metric     with    |det(   )|. 

The potential   needs only be locally defined, but there is a globally-defined closed 

3-form field strength   such that locally     . One shows that the equations of 

motion depend on   only through the 3-form field strength   and are well-defined as 

shown by the form  

           [      
        

 ]       
          (2.38) 

with                . Notice that we ignore the boundary terms. In the usual 

case, the metric     has Lorentzian signature
3
 and        and        have real 

components. The Euclidean version of this action used in the path integral (given by 

a Wick rotation) is 

     
 

 
∫

  
   √ [          

                   
       ]      (2.39) 

with     an Euclidean signature metric, and   represents the Euclidean world-sheet. 

Note that the term involving   is now pure imaginary, so that the action is complex. 

For both Lorentzian and Wick-rotated case, the quantum theory is well-defined if   

is a globally-defined 3-form that represents an integral cohomology class,   

      Geometrically this means that there is a gerbe with curvature   and 

connection    in each coordinate patch   . For the path integral, if       is non-

trivial, it is not sufficient to specify  , and a choice of   must be made. Then the 

term containing the  -field  

            ∫                  (2.40) 

defines the holonomy of a gerbe over the embedding of the world sheet.  

For Euclidean signature one can also consider the real action (2.36) with     a 

Euclidean signature metric. For the action to be well-defined,   should be a globally-

defined 2-form. However, the field equations are well-defined provided only that   

is a well-defined 3-form, so that a classical theory exists for any closed 3-form  .  

___________________________________________________________________ 
 
3
 By convention, Lorentzian signature is (-1, 1), while Euclidean signature is the usual one (1, 1).  
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One way that non-linear  -models differ from other quantum field theories 

often considered in high energy physics is that the coefficient in front of their kinetic 

term depends on the fields themselves. This feature also makes these models 

interesting, since, at least naively, it might alter the expected short-distance behavior 

of  -point correlation functions or operator product expansions.  

It is manifest in literature that sigma models are diffeomorphism invariant 

together with the Weyl invariance [Meessen].  

 

 

Figure 2.1: Graph configures the sigma model map. The map   embeds world-sheet 

a)   into the target space  , b) and represents the local coordinates on  . Notice 

that  and   are local coordinates of  . 

 

Most often one encounters sigma models defined on a group manifold  . In 
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this case sigma model turns out to be Wess-Zumino-Witten Model (WZW Model) 

[Witten, 1984] and can be expressed by the following action  

                          (2.41) 

where  

        
 

 
∫                              (2.42) 

and   represents the WZ term: 

       ∫                                    (2.43) 

In this representation    stands for the trace, the field g is given by the map      

 . We take   to be two dimensional Minkowski space, and   be group valued target 

space manifold which usually takes values in a compact Lie group. We emphasize 

that   is expressed on the boundary of the region at which WZW Model is defined, 

and  -term describes the corresponding bulk-space counterpart, which is known as 

Wess-Zumino term (WZ-term). Without WZ-term, this model is not scale invariant 

at the quantum level, and therefore remains missing. WZ-term is necessary to 

guarantee the scale invariance, and as we will see below needed for conformal 

invariance. This term is relevant to the geometry of the model and inherits the 

topology of the space in which the theory lies.  

2.3. Simple Lie Groups 

Since WZW Models are based on Lie groups, we briefly review basics of 

simple Lie groups and lie algebra in this section. A lie algebra   is a vector space 

equipped with an antisymmetric binary operation     , called a commutator, mapping  

      into   , and further constrained to satisfy the Jacobi identity 

 [         ]  [         ]  [         ]      for                          (2.44) 

Lie group   is the exponential of  , i.e. to     there corresponds the group 

elements      where   is some parameter and the exponential is defined from its 

power expansion. Hence the algebra describes the group in the vicinity of the 

identity.  
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A Lie algebra can be specified by a set of generators    and their commutation 

relations  

                ∑    
  

               (2.45) 

The number of generators is the dimension of the algebra. The constants   
   are 

called   the structure constants. Simple Lie algebras are the Lie algebras that do not 

contain any proper subset of generators {  } such that         {  } for any   . A 

direct sum of simple algebras is said to be semisimple. Based on the basis 

constructed to define algebra, generators take corresponding values.  

In the standard Cartan-Weyl basis, the generators are constructed as follows. 

We first find the maximal set of commuting Hermitian generators   ,         

where   is the rank of the algebra:  

        [     ]                (2.46) 

The set of generators from the Cartan subalgebra  . The generators of the Cartan 

subalgebra can all be diagonalized simultaneously. The remaining generators are 

chosen to be those particular combinations of the    ’s that satisfy the following 

eigenvalue equation:  

        [     ]                  (2.47) 

The vector              is called a root and    is the corresponding ladder 

operator. Because   is the maximal Abelian subalgebra of g, the roots are non-

degenerate. The root   naturally maps an element      to the number    by 

 (  )    . Hence, the roots are elements to the dual of the Cartan subalgebra, 

    . 

Since           (Eα)†, one can show that    is necessarily a root 

whenever   is. In this thesis   will denote the set of all roots. Root components can 

be regarded as the nonzero eigenvalues of    in the adjoint representation, for which 

the Lie algebra itself serves as the vector space on which the generator acts. In the 

adjoint representation the action of a generator   is represented by ad   , defined as 

ad                      (2.48) 
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In view of specifying the remaining commutators, the full set of commutation 

relations in the Cartan-Weyl basis is i) [     ]   , ii) [     ]      , iii) 

[     ]           if       it is 
 

  
    if      and it is   otherwise. 

Commutators are usually fixed by means of the renormalized version of the 

Killing form defined as  

              
 

  
                    (2.49) 

where   is a constant and the dual Coxeter number of the algebra  . Killing form 

defines a scalar product and it can be used to lower or raise indices. Standard basis 

 {  } is understood to be orthonormal with respect to  : 

                                  (2.50) 

The same normalization holds for the generators of the Cartan subalgebra  

         (     )                  (2.51) 

Killing form of    and     turns out to be 

                  
 

|  |
           (2.52) 

However, the fundamental role of the Killing form is to establish an isomorphism 

between the Cartan subalgebra   and its dual   : the form  (    ) (  fixed) maps 

every element of the Cartan subalgebra onto a number. Hence, to every element 

    , there corresponds a      through 

               (     )           (2.53) 

With this isomorphism, the Killing form can be transferred into a positive definite 

scalar product in the dual space  

               (     )           (2.54) 

 

 Weights 

Up to this point, we have analyzed the structure of the algebra from the point of 
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view of a particular representation (the adjoint), that for which the algebra itself 

plays the role of the vector space. In this representation, the eigenvalues of the 

Cartan generators are called the roots and the scalar product between roots is induced 

by the Killing form. Since the essential structure of the algebra is coded in this 

representation, it needs to be studied in more detail. For this, it is useful to first recast 

the problem in the general context of a finite-dimensional representation.  

For an arbitrary representation, a basis {| ⟩} can always be found such that  

          | ⟩    | ⟩           (2.55) 

The eigenvalues build the vector             = (λ1 , · · · , λr ), called a weight. 

Weights live in the space     (  )      Hence, the scalar product between weights 

is also fixed by the Killing form. In the adjoint representation, the weights deserve 

the special name of roots. The commutator (2.3.4) shows that    changes the 

eigenvalue of a state by  

       | ⟩  [     ]| ⟩      | ⟩           | ⟩        (2.56) 

so that   | ⟩ if nonzero, must be proportional to state |   ⟩ This justifies the name 

ladder (or step) operator for   . Representations of interest are the finite-dimensional 

ones. For these, we will derive an important relation, to be used shortly for the 

adjoint representation. For any state | ⟩ in a finite-dimensional representation, there 

are necessarily two positive integers   and  , such that 

             | ⟩     |    ⟩            (2.57a) 

              | ⟩     |    ⟩           (2.57b) 

for any root  . Indeed, notice that the triplet of generators   ,     and     |  | 

forms an SU(2) subalgebra to the set {  ,   ,   }, with commutation relations 

                                           (2.58) 

Therefore, | ⟩ belongs to a finite-dimensional representation, its projection onto the 

SU(2) subalgebra associated with the root   must also be finite dimensional.  
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 Simple Roots and Cartan Matrix 

The number of roots is equal to the dimension of the algebra minus its rank, 

and this number is in general much larger than the rank itself. This means that the 

roots are linearly dependent. We then fix a basis {       }in the space   , so that 

any root can be expanded as 

          ∑   
 
                 (2.59) 

In this basis, an ordering can be defined as follows:   is said to be positive if the first 

number in the sequence              is positive. We denote by    the set of 

positive roots. The set of negative roots    is defined in the obvious way. We have 

already observed that whenever   is a root,    is also a root, hence       = 

∆+. A simple root,    is defined to be a root that cannot be written as the sum of two 

positive roots. There are necessarily   simple roots, and their set {       } 

provides the most convenient basis for the  -dimensional space of roots. Notice that 

the subindex is a labeling index: it does not refer to a root component. Two 

immediate consequences of the definition of simple roots are : (i)        ; (ii) 

any positive root is a sum of positive roots (indeed, if a positive root is not simple, it 

can be written as a sum of two positive roots, which, if not simple, can also be 

written as the sum of two positive roots, and so on). The scalar products of simple 

roots define the Cartan matrix  

            
        

  
              (2.60) 

the entries of this matrix are necessarily integers. Its diagonal elements are equal to 2 

and it is not symmetric in general. The Schwarz inequality implies that          

for    . Since        is not a root,   
 |  ⟩   , and     in Eq. (2.57) for      

and     . 

It is convenient for us to introduce a special notation for the quantity     |  |
 : 

           ̌  
   

|  |
 
            (2.61) 

  ̌ is called coroot associated with the root   . The scalar product between roots and 

coroots is thus always an integer. The Cartan matrix now takes the compact form  
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                  ̌             (2.62) 

The dual Coxeter number is defined as  

          ∑   ̌
 
                 (2.63) 

which is used to define the normalization constant of Killing form above. The theory 

of Simple Lie groups is in fact vast, and requires a much tedious analysis. But for our 

purpose, we stop here and go on to their applications by means of conformal 

symmetries which is the topic of next chapter.  
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3. CONFORMAL INVARIANCE IN SIGMA 

MODELS 

 

In this chapter we construct the classical and quantum conformal symmetry of 

sigma models in two dimensions, and generalize them to Lie algebra valued fields by 

using WZW Sigma Models. Classical conformal symmetries are embodied in stress-

energy tensor, which has a form such that only holomorphic and antiholomorphic 

components exist, while quantum conformal symmetries are demonstrated by the 

presence of ward identities, which are derived through correlation (green) functions.  

3.1. Conformal Invariance in Classical Sigma Models 

 

Classical symmetries are displayed via action functional, and in turn leads to 

the classical conserved quantities by means of currents [8]-[11]. It is well-known that 

conformal symmetry in two dimensions implies the Cauchy-Riemann conditions and 

therefore makes us use of separability of holomorphic and antiholomorphic 

coordinates [11], [12].  

 We consider coordinates         on the world-sheet plane with metric tensor  

    and we perform a coordinate transformation         . It is known that metric 

tensor transforms as  

           (
   

   ) (
   

   )                (3.1a) 

and yields conformal symmetry via the relation for a conformal mapping 

           
                          (3.1b) 

Therefore, it is quite easy to show that conformal symmetry condition produces the 

result, which is already known as complex Cauchy-Riemann condition for analyticity 

              ̅           (3.2) 

where we introduce the complex coordinates 

               ̅                   (3.3a) 
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                     ̅  

 

 
                 (3.3b) 

and       and  ̅    ̅ are used for notational convenience. Notice that Cauchy- 

Riemann condition (3.2) leads to the conformal symmetry and further investigation 

produces a solution that conformal symmetry is a holomorphic mapping  

                        (3.4) 

Infinitesimally, the conformal transformation gives rise to  

              ,  ̅   ̅    ̅ ̅       (3.5) 

This infinitesimal mapping admits a Laurent expansion around     and  ̅    

respectively  

         ∑   
 
             ̅ ̅  ∑   ̅ ̅    

       (3.6) 

which leads to the specifications of the generators 

                                              ,    ̅    ̅    ̅            (3.7) 

These generators obey the following commutation relations, known as the Witt 

algebra  

                  ,   [    ̅ ]   , [  ̅   ̅ ]        ̅            (3.8) 

It is obvious that there are infinite number of conformal transformations locally, but 

only three of them contribute to global conformal symmetries, which are   

        .      is the familiar translations on the plane,     yields Lorentz 

(rotation) and scale transformations commonly, and finally     produces what is 

known as special conformal transformations. These four transformations are the 

subgroup of conformal group, and indications of global conformal symmetries.  

Now we come to the transformation of a field under conformal symmetry. How 

a field is affected by a conformal transformation depends on the type of the field. In 

general a field may be assigned a conformal dimension   and  ̅, which are defined 

by 

      
 

 
     ,   ̅  

 

 
           (3.9) 
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where ∆ is the scaling dimension of the field
4 and s is its planar spin. A (quasi)-

primary field, at which we are interested in the sigma models, transforms as  

        (   ̅)  (
  

  
)
  

(
  ̅

  ̅
)
  ̅

     ̅           (3.10) 

according to the conformal map        and  ̅   ̅  ̅ . 

In case of infinitesimal conformal transformations (3.5) this expression turns 

out to be  

      ̅        ̅       ̅                ̅  ̅ ̅    ̅̅         (3.11) 

In the view of all these constructions, the sigma model action in complex coordinates 

defined in (3.3) can be established in a simple form
5 as follows 

          ∫                ̅           (3.12) 

Classically, conformal invariance requires the holomorphism of currents, and hence 

the stress-energy tensor associated to this action [11], [13]. The currents can be 

derived from the expression (2.1.15), where                ̅   is the 

Lagrangian of the sigma model action.  

The energy-momentum tensor components associated with this Lagrangian
67

 is 

found by (2.32)  

   ̅    ̅   ,     
 

 
               ,   ̅ ̅  

 

 
          ̅   ̅       (3.13) 

The form of (3.13) verifies that stress-energy tensor only has holomorphic 

components and therefore traceless, hence proves the conformal symmetry of sigma 

model action.  

___________________________________________________________________ 
 
4
 Here, an abuse of notation is encountered. In the previous chapter, ∆ is used for the set of roots 

but here it denotes the scaling dimension of the field.  
5
     is given by      

 

 
     ̅. 

6
 Note that the metric tensor in complex coordinates is     (

  
 ⁄

 
 ⁄  

) in covariant basis 

    (
  
  

) in contravariant basis. 

7
 Using              , one can readily show that   ̅ ̅  

 

 
   and     

 

 
  ̅ ̅. 
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3.2. Quantum Conformal Symmetries in Sigma Models 

 

It is known that conformal symmetries at quantum level are described by 

correlation (or namely green) functions (2.19). Corresponding quantity of conserved 

currents in correlation functions is the ward identity (2.26). Conformal 

transformation in correlation functions gives rise to the ward identities. Therefore, 

presence of conformal ward identities is the evidence of quantum conformal 

symmetries in sigma models.  

Ward identities corresponding to global conformal symmetries [Francesco et 

al., 1997] are found to be 

            
 

   
〈  

 
    〉   ∑        

 
   

 

   
 〈 〉 

        〈 
      〉    ∑          

 
   〈 〉            (3.14) 

             〈  
 
    〉    ∑        

 
     〈 〉         

where   is the collection of fields,     is the antisymmetric tensor and    is the spin 

of the field   . In terms of complex coordinates, these identities are reduced to 

following forms 

     〈     〉  ∑ ,
 

    
   

〈 〉  
  

      
 
〈 〉- 

                   (3.15) 

     〈 ̅  ̅  〉  ∑ ,
 

 ̅  ̅ 
  ̅ 

〈 〉  
 ̅ 

  ̅  ̅  
 
〈 〉- 

                   (3.16) 

where      and  ̅  ̅  are holomorphic and antiholomorphic normalized energy-

momentum tensors respectively defined as follows 

             ,   ̅      ̅ ̅ ̅           (3.17) 

and     shows that the function of   is analytic at   . These ward identities give rise 

to single so-called conformal ward identities, which is the variation of correlation 

function under conformal symmetry  

      ̅〈 〉   
 

   
∮   
 

    〈     〉  
 

   
∮   ̅
 

  ̅ ̅ 〈 ̅  ̅  〉        (3.18) 
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where      and  ̅  ̅  are found in (3.13). Notice that (3.15) and (3.16) are the 

expansions of the operator valued fields with stress-energy tensor. It is of curiosity to 

find out all the expansions of fields with operator products. Ward identities gives this 

expectation. One distinct expansion is the product of two stress-energy tensors, 

which are given by 

                
 

 ⁄

      
 

     

      
 

     

   
           (3.19) 

Here   is the central charge and depends on the model under study (it’s   for a free 

boson, 
 

 
 for a free fermion, and    for a simple ghost system, etc.). Operator product 

expansion (OPE) of stress-energy tensor shows that conformal dimension of   is 

   . OPE of fields are important because they give rise to the construction of 

Hilbert space.  

3.3. Hilbert Space and Virasoro Algebra 

 

We know that a Hilbert space   is a complete inner product space 

 Prugoveški, 2007]. Obviously this leads to a proper definition of hermitian product 

on state functions. Together with the conformal symmetry, one is required to 

introduce a complex valued parameter, which is defined by a radial quantization. In 

this scheme, a cylindrical world- sheet with a spacial period   is mapped to a 

complex plane with      denoted at the origin and     by the infinite distant 

point on the complex plane. Radial quantization is represented by mapping  

                             (3.20) 

where        with an initial world-sheet a Minkowski space, on which the 

points     ) and       are identified, yielding a cylindrical geometry.  

In order to establish a Hilbert space, we need a vacuum state upon which the 

Hilbert space is to be constructed. Usually, vacuum state is obtained by using a field 

at far distance so that interaction could be eliminated. This field could be 

demonstrated by means of the asymptotic field                    at     . 

For the Hilbert space requirements, there will be a corresponding field      

              at    , which is connected to     by a hermitian conjugation. In 
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radial quantization these fields correspond to the fields  

      |   ⟩         ̅       ̅ | ⟩           

(3.21a) 

      |    ⟩         ̅       ̅ | ⟩               (3.21b) 

Hilbert space is built up by virtue of mode expansions, defined for a conformal field 

of dimensions     ̅  as fallows 

           ̅  ∑        
      ̅     ̅              (3.22) 

where the modes are expressed in terms of the original fields as 

         
 

   
∮           

   
∮  ̅  ̅    ̅        ̅               (3.23) 

We realize that Hermitian conjugation produces 

            
                    (3.24) 

Now we come to the general consequence of OPE obtained in previous section by 

using stress-energy tensor. We figured out that conformal ward identity is expressed 

in terms of OPE such that it contains conformal symmetry within its own structure. 

To reveal this symmetry, we convert integrals of type (3.18) to commutation 

relations 

            ∮  ∮                    (3.25a) 

where 

       ∮             ∮             (3.25b) 

Commutation relations are the main objects that reflect the symmetry properties 

behind the theory. Combining all these results, one can explicitly translate conformal 

ward identity into 

                                   (3.26) 

where we introduced the conformal charge 
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∮                     (3.27) 

The energy-momentum tensors can be mode-expanded as follows 

        ∑      
          

 

   
∮                 (3.28a) 

    ̅  ̅  ∑  ̅    
    ̅    ̅  

 

   
∮  ̅  ̅    ̅  ̅       (3.28b) 

where a conformal dimension of 2 is assumed. Here    and  ̅  are the mode 

operators of energy-momentum tensors and they generate the local conformal 

transformations. These mode operators have commutation relations like classical 

counterparts   and  ̅  (3.8) 

                             
 

  
              

                                        ̅                    (3.29) 

       ̅   ̅         ̅    
 

  
                     

except for the terms containing c, where c is the central charge of the theory. These 

commutation relations constitute the Virasoro algebra.  

All these constructions can be combined to give rise to the Hilbert space. We 

first guarantee the existence of ground state by inserting the vacuum state | ⟩ by the 

condition   | ⟩    and  ̅ | ⟩    if      which is due to the fact that     | ⟩ 

and  ̅  ̅ | ⟩ are well-defined as    ̅   . Primary fields create asymptotic states, the 

eigenstates of the Hamiltonian, when acting on the vacuum. Therefore, we can define 

the asymptotic state for the eigenstate of the Hamiltonian |   ̅⟩        | ⟩. Thus 

  |   ̅⟩   |   ̅⟩ and  ̅ |   ̅⟩   ̅|   ̅⟩. Likewise   |   ̅⟩    and  ̅ |   ̅⟩    if  

   . Other than the ground state, i.e. excited states can be obtained by acting the 

ladder operators to the ground state. The commutation relation could be shown to 

satisfy  

                                         (3.30) 

We understand that the operator    raises or lowers the eigenstates of       . 

Likewise, the generator      raise the conformal dimension with respect to the 



 

 25 

Virasoro algebra  

                                (3.31) 

So, we conclude that excited states of holomorphic Hilbert space can be obtained by 

direct application of the operators on the ground state | ⟩8 

       
    

     
| ⟩                       (3.32) 

As a consequence, we observe that conformal symmetry indeed yields the same 

quantum states within a given formalism with the shifted quantum states. This is 

consistent with the classical interpretation of the symmetry, and proves the validity 

of conformal ward identity in constructing the Hilbert space.  

3.4. Conformal Symmetries in WZW Model 

 

The resulting outcome of last section brings forth the use of Lie algebra valued 

model, WZW model (2.3). It is easy to derive the classical conserved currents 

yielding the conformal symmetry as follows
9
 

                   ̅       ̅            (3.33) 

Likewise, the definition of currents separately implies the relation 

      [     ]                         (3.34) 

We notice that these currents are invariant under      ̅         ̅  where   and   

are Lie group valued fields [11], [15]. We then observe that the classical conformal 

symmetry of these currents imply the equations of motion in the form  

      ̅                 
    ̅              (3.35) 

It is of special importance that these currents have         ̅  symmetry given by 

     ̅           ̅      ̅  where      (     ̅   ) is a Lie algebra valued fields 

with parameter   ( ̅). 

___________________________________________________________________ 
 
8
 Similar states for antiholomorphic states could be obtained in the same manner. 

9
 For convenience, we adopt the notation      for    and   ̅ ̅  for   ̅.  
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Quantum conformal symmetry is written down via the conformal ward 

identity. First we realize that  

           ̅〈 〉  〈     ̅   〉            (3.36) 

and 

       ̅  
 

  
∮               

 

  
∮  ̅      ̅ ̅   ̅ ̅         (3.37a) 

With Lie algebra valued fields   and   expressed in basis {  }10   ∑   
    and 

  ∑   
   . (3.36) can be turned into the desired form 

      ̅〈 〉   
 

   
∮  ∑   

 〈   〉  
 

   
∮  ̅ ∑  ̅  〈  ̅ 〉       (3.37b) 

The variation of   in the basis   is expressed as
11

 

                                (3.38) 

Therefore, we can construct the OPE of the currents with above expressions 

                  
   

      
 ∑     

       

   
          (3.39) 

Then the commutation relation of the currents is 

        
    

   ∑     
      

                      (3.40) 

Likewise, there is a similar expression fort the  ’̅s (with a bar placed on each item) 

and the commutation relation of   and   ̅is   as expected 

            
    ̅

                (3.41) 

One would naturally construct Hilbert space based on these commutation relations 

following the same ideas as in previous section. Notice that     causes the     

term to vanish in (3.40) which gets similar result in usual sigma model. The 

interesting fact is that when     and      , which yields     , there is a 

___________________________________________________________________ 
 
10

 We realize that                 and         ∑         . 
11

 This follows from         and   ̅     .̅ 



 

 27 

central-term contribution to the algebra. This results in an additional analysis in the 

context of Kaš-Moody algebra, which we will discuss in the next chapter.  
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4. KAĆ-MOODY SYMMETRY IN SIGMA 

MODELS 
 

4.1. Motivation 
 

We first generally review basics of Kaš-Moody algebra in an affine Lie 

algebra. This is actually an extension of simple Lie algebra with a central term. Let   

be a simple Lie algebra. We consider the loop algebra  ̃ which is the generalization 

of   in which the elements of the algebra are also Laurent polynomials in some 

variable  . The set of such polynomials are denoted by         . The loop algebra
12

 

can be written by  ̃             with the generators      . We use the 

shorthand notation   
  to stand for this generator,   

       . Therefore, 

commutation relation is described with a central term due to loop algebras: 

        
    

   ∑     
      

   ̂               (4.1) 

where the generators    are orthogonal with respect to Killing form K (2.50) and  ̂ 

commutes with all    with [  
   ̂]   . 

One can Show that only one central element exists in the loop extension of a 

simple Lie algebra [Francesco, 1997]. Commutation relations of this new algebra in 

the Cartan-Weyl basis are 

    [  
    

 
]   ̂          ,  

    *  
    

 
+        

 ,  

    *  
    

 
+  

 

  {        ̂       }        ,   (4.2) 

                 
   

                 ,   

                  otherwise. 

The set of generators {  
      

   ̂} is manifestly Abelian. In the adjoint 

___________________________________________________________________ 
 
12

 Expressing        
with   real, this yields a map from the circle    to  , hence the name loop. 
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representation, in which the action of a generator   is represented by      , the 

eigenvalues of      
   and     ̂  on the generator   

  are respectively    and  . 

Being independent of  , the eigenvector             is thus infinitely degenerate. 

Hence, {  
      

   ̂} is not a maximal Abelian subalgebra. It must be augmented by 

the addition of a new grading operator   , whose eigenvalues in the adjoint 

representation depend upon  ; it is defined as follows      
 

  
. Its action on the 

generator [     
        

 . The maximal Cartan subalgebra is generated by 

{  
      

   ̂   }. The other genera- tors,   
  for any   and   

  for    , play the 

role of ladder operators. With the addition of the operator   , the resulting algebra is 

denoted by  ̂ 

        ̃        ̂              (4.3) 

It will be referred to as an affine Lie algebra. It is clearly an infinite dimensional 

algebra, given that it has an infinite number of generators {  
 },    . 

4.2. Hidden Symmetries in Sigma Models 

 

In this section we make use of the mechanism of hidden symmetry in two 

dimensions and point out that they are relevant to Kaš-Moody symmetries. This is in 

fact a long-standing approach and after Schwarz’s seminal works  16],  17] in 

showing that infinite dimensional extensions of classical symmetries are the hidden 

symmetries and they turn out to be Kaš-Moody type symmetries, it became somehow 

popular in recent years [18], [19]. We follow his approach and investigate the hidden 

symmetries arised from Lax pair relations which are obtained via the use of 

equations of motion and Cartan structural equations in our case. We start with our 

previous action (3.12) and find out the equations of motion associated with it as 

follows  

       
    ̅ ̅

      
 (  

 
  

    ̅
 
  ̅

 )       
   ̅

 
  

     (4.4) 

where we use       and   ̅   ̅ ,      is the Riemannian connection and is 

expressed by    
          and       

 

 
                   , and    

          

is globally defined torsion and is given by       
 

 
                   . Since 
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the use of orthonormal coframe bundle approach
13

 is more efficient in our analysis, 

we would like to use the power of Cartan’s differential geometric methods  2],  4], 

[20], [21], and carry our equations to orthonormal coframe. It is already known that 

orthonormal coframe bundle is defined by a orthonormal coframing    and the 

corresponding connection one form   
  The orthonormal coframing     is given by  

           
       

      ̅
   ̅       (4.5) 

where the beginning of the alphabet represents the world-sheet indices whereas the 

middle of the alphabet does the target space coordinates, and       ̅  is used for 

convenience. Notice that the exterior derivative
14 of    is computed to give  

             ̅
   ̅       ̅ 

      ̅     (4.6a) 

which can be associated with (4.3). To do that, we use the Hodge star product 

(namely, Hodge duality operator)  , specified by
15

 

        ̅,       ̅                (4.6b) 

This in turn leads to        
   ̅    ̅

    and           
    ̅ ̅

       ̅. It is 

obvious that      yields the left-hand side of the equations of motion (4.3). Right- 

hand side could easily be derived in terms of the orthonormal coordinates and can be 

found out to be  

             
           

                  (4.7) 

If we introduce the connection one form as   
     

     with the shorthand notation 

   
      

     
  the equations of motion is reduced to an elegant familiar compact 

form as 

             
        

                 (4.8) 

___________________________________________________________________ 
 
13

 Orthonormal coframe bundle is obtained by  -dimensional rotation of manifold   in which sigma 
model is defined, and is represented by              , where       is  -dimensional 
rotation matrix. 
14

 If   is a  -form and   is a  -form, then exterior derivative of their wedge product is        
               . 
15

 In Minkowski space, Hodge duality operator acts on basis one forms as        and       . 
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Now we come to the constraints due to torsion-free Cartan’s structural equations 

which are expressed by  

             
              (4.9) 

          
    

    
    

             (4.10) 

where   
  is the curvature two form and is defined by   

  
 

 
    

       and     
 is 

the Riemann curvature tensor. In case of curvature-free problem we just make use of 

the first equation (4.8) together with the equations of motions we just derived in 

(4.7). Now the problem is to figure out a pair of differential equations which satisfy 

both equations of motion (4.7) and so-called Maurer-Cartan equation (4.8). This is 

achieved by means of well-known Lax-pair relations. In literature, people developed 

lax-pair relations of principal chiral models based on a lie group, but in our case this 

requires a tedious analysis and in turn verification. Heuristically one can show that 

lax-pair equations are  

      [ ̅   (      ̅
 )]               (4.11) 

      [   ( ̅      
 )]               (4.12) 

These lax-pair equations are unusual compared to ones encountered in literature. The 

reason is that derivative terms are coupled. This feature is peculiar to complex 

coordinates. When we switch the complex coordinates into the usual flat space (or 

light cone coordinates) it is manifest that these equations are uncoupled. In these 

equations   is a spectral parameter which is a constant and    is a vector valued 

quantity which may depend on  . To show that these equations give rise to our 

constraint relations which are equations of motion and Cartan’s first structural 

equation, we multiply the first equation (4.10) by     and second equation (4.11) by 

   ̅ and subtract from each other to obtain
16

 

                   
               (4.13) 

We take the star product of (4.12) to obtain 

___________________________________________________________________ 
 
16

 One can show that          ̅̅ and      ̅     ̅.  
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              (4.14) 

Now replace (4.12) with (4.13) to give rise to 

            
   

          
 

       
           (4.15) 

We next define a quantity  , which is given by        , satisfying the Maurer- 

Cartan equation         . This is the place that lax-pair equations come 

into play so that the ultimate Maurer-Cartan equation reveals the fact that our 

constraint relations are contained in it. Consequently, Maurer-Cartan equation 

yields
17

 

   [      
    ]             

         
              (4.16) 

where we introduced   
        ,   

        
  and    

     
      

    . It is 

intriguing that the first term is our second constraint relation (4.8), Cartan’s first 

structural equation, and the second one is the equations of motion (4.7), both of 

which guarantee the validity of Maurer-Cartan equation in an obvious way. We 

understand that we can safely use our lax-pair equations to find out hidden 

symmetries. To unravel the hidden symmetries associated with a symmetry relation, 

we figure out the solution of lax-pair relations (4.14) as 

             ∫ 
  

    
    

  
 

    
   

  
           (4.17) 

where   denotes an ordering operator which puts the terms in order. In [Ogura and 

Hosoya, 1985] it is pointed out that Sigma model fields are required to take values on 

a (Lie) group valued homogeneous space. Thus, right and left actions of the fields 

become significant. This is expressed by the lie group valued field           with 

   represents the basis for the corresponding lie algebra as given by [     ]     
    

and    
  is the structure constant. Therefore, holomorphic and antiholomorphic 

conserved currents are given by  ̅       ̅      and              with the 

conservation law   ̅   ̅   . In this situation, our sigma model action turns out to 

___________________________________________________________________ 
 
17

 One can consistently write the exterior derivative of    by means of definitions right after (4.15), 

      
    + = 0. 
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be equivalent to the WZW model defined on a Lie group   with     (2.41).  

4.2.1. Kać-Moody Algebra 

We make use of the hidden symmetry mechanism to obtain the Kaš-Moody 

algebra and employ the symmetry relations as follows  

                          (4.18) 

         ̅      ̅             (4.19) 

In these symmetry transformations one observes the automorphism      . It is 

manifest that       , the lie algebra of   with        and  ̅   ̅   . We 

emphasize that these symmetry relations are just remnants of an infinite number of 

symmetry transformations which are extended by a spectral parameter   playing the 

role of time
18

. In this scenario, (4.17) and (4.18) are just the first of these symmetry 

transformations. Therefore, we express the extended symmetry transformations as 

follows  

                                  (4.20) 

       ̅   ̅        ̅   ̅                (4.21) 

where                    and  ̅   ̅          ̅     . We again stress out that 

   ̅    and       ,  ̅   ̅   . In these representations, we can express the 

infinitesimal operators as follows  

          ∑    
           ̅   ̅    ∑    

     ̅   ̅        (4.22) 

The reason of why the expansion of  ̅ does not embody     term is explained 

below by the property of analytic continuation together with the corresponding 

symmetry of Lax-pair equation.  

As a consequence, finding symmetry relations for the Kaš-Moody algebra 

requires constructing the full set of commutation relations         , [  ̅   ̅]  and 

___________________________________________________________________ 
 
18

 In this case time propagation of the operator   is given by             and 
  

          
 

       
  plays the role Hamiltonian. 
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[     ̅] , where subindex   with       denotes that corresponding expression 

depends on parameters    and   19. We remark that these commutation relations are 

all needed to see that the algebra constructed is a closed algebra. One of the main 

obstacles in computing the mentioned symmetry algebra is to figure out the 

transformation of     . It can readily be shown by taking    of Lax pair relation 

stated in parameters    to get the resulting expression 

 

           
  

     
                       (4.23) 

To show the details of this result we start with (4.14) with      and take the 

variation    to obtain the result  

    

(4.24a) 

 

We next notice that the    variation of   
         leads to        To find the 

variations of    and     we reexpress them as follows  

  i)                 , ii)                          

where we introduce        ̅  and    (
 
 ̅
).   and    are transposes of   and 

  respectively, and    is the Pauli spin matrix in  -direction
20

. We notice the 

infinitesimal form of (4.19) as    
     

Therefore, (4.23a) turns out to be 

   (    )  [
   

 

    
          

  

    
       ]         

             (4.24b) 

One can verify by substitution that (4.22) is indeed the desired solution. Let us 

___________________________________________________________________ 
 
19

 At this point, we remark the abuse of notation    with the basis    used for the lie algebra of  , 
which might cause reader confuse. 
20

    (
   
  

) 

        [
   

 

    
           

  

    
       

  ]    
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concentrate on the first symmetry relation, namely         . Using (4.19) and the 

definition of        one gets  

                                           (4.25a) 

First we notice that 

        [(    )  
     ]  

  

     
          

               (4.25b) 

Thus one finds out that 

               
                     

     
         (4.25c) 

where                
   

   
 
   and   (   )   (      ). Right-hand side of 

(4.24c) can be expanded by means of (4.21) as follows 

    
                   

     
 ∑ (

  
      

   

     
) 

                 (4.25d) 

    ∑ ∑   
  

     
   

           ∑   
  

       
                (4.25e) 

Likewise, the left-hand side of (4.24c) has modes as given by (4.21). Therefore, one 

can easily obtain the resulting commutation relation of the modes 

                                         (4.26) 

where the ranges of   and   are     and    . 

Now let us compute the commutator [  ̅   ̅] . In order to find this commutator 

we adopt the Schwartz approach in which our second symmetry transformation is 

obtained via the analytic continuation of the first one by means of the replacements 

  
 

 
 and  ̅   ̅      (  

 

 
). In this situation one get   ̅       . Thus one can 

observe that (4.20) is the analytic continuation of (4.19). So with the guidance of 

these remarks it is easy to find that 

     [  ̅   ̅]     ̅   ̅       ̅ ̅    ̅ ̅            (4.27) 

Employing the identity 
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         ̅ ̅  
  

     
{ ̅   ̅   ̅  ̅ }           (4.28) 

in the expressions of   ̅ ̅  one gets that  

     ̅ ̅  [(  ̅ ̅ ) ̅ 
    ̅ ]  

  

     
{ ̅   ̅  ̅ 

     ̅   ̅  }         (4.29) 

Therefore, we come up with 

      [  ̅   ̅]  
   ̅   ̅           ̅   ̅       

     
        (4.30a) 

We notice that expansion of   ̅ with       does not include     term due to 

analytic continuation of the symmetry transformations and the form of (4.27). 

Expanding the right-hand side of (4.29a) 

   
   ̅   ̅          ̅   ̅      

     
 ∑ (

    
        

   

     
) 

     ̅     ̅        (4.30b) 

   ̅  ∑ ∑   
  

     
      

     ̅     ̅   ∑   
    

       
     ̅    ̅           (4.31) 

Therefore 

   [  ̅   ̅    ̅   ̅ ]    ̅     ̅                  (4.32) 

Finally, we figure out the commutator [     ̅]  as follows 

     [     ̅]        ̅      ̅ ̅              (4.33) 

Under the view of analytic continuation, one can find the following variations 

         ̅  
 ̅   ̅      ̅   ̅  

      
             (4.34) 

        ̅   
    {                }

      
           (4.35) 

where             and   ̅     ̅   ̅ . In obtaining these expressions we make use 

of the identities 

         ̅  
 

      
{ ̅           ̅ }         (4.36a) 
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        ̅   
    

      
{    ̅    ̅  

    }        (4.36b) 

Indeed, these are the symmetries of Lax-pair equation, which can be shown to 

satisfy, but easy way to show these arguments follows from analytic continuation of 

(4.22). therefore, [     ̅]  comes out to be 

     [     ̅]  
              ̅   ̅    

      
          (4.37a) 

Expanding   and  ̅ with respect to the corresponding spectral parameters and 

following analogous statements we used above we obtain 

 [         ̅   ̅ ]              ̅     ̅                  (4.37b) 

As a consequence, we have obtained three sets of infinite symmetry relations. 

These symmetry relations can be combined into just one symmetry relation by 

introducing a new set of variations as 

                          (4.38a) 

           ̅                   (4.38b) 

Therefore, our commutation relations (4.25), (4.32) and (4.36b) turn out to be 

                                         (4.39) 

We notice that   and   ̅ are not distinguishable in our framework and treated as the 

same in our notation. The reason is that   ̅ is expressed in terms of   via the group 

element    which is defined at the boundary of the integral (4.16) as  ̅    
      and 

we take   to be identity which leads to     ̅ In order to observe the analogy of 

relation with the Kaš-Moody algebra we perform the specification           
  

     and        where    is the component of   in the basis   . In this 

association it is implied that currents       are expressed on a circle as       

∑      
      

 
 

which verifies the extension of our group   to the Kaš-Moody 

algebra based on a loop group  ̂ with generators   
 . Thus, our final commutation 

relation will be 

          
    

   ∑    
      

            (4.40) 
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This is centreless Kaš-Moody algebra based on the group  ̂   ̂ as shown in (4.2). 

This is general characteristic feature of sigma models which give rise to centreless 

Kaš-Moody algebra based on a loop group. The reason that center term does not 

appear in this expression is due to lack of curvature and conformal symmetry of 

spinless field. At this point it would be natural to consider the Virasoro symmetry 

investigation along the same track in the hidden symmetry mechanism. This could be 

achieved by means of         ̇           with the dot representing the derivative 

with respect to the spectral parameter  . This is beyond the scope of our primary aim 

and will not be discussed here.  
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5. CONCLUSION 

 

In this thesis we have analyzed the classical and quantum conformal 

symmetries of the sigma model in a detailed fashion and looked for the conditions if 

the sigma model field gives rise to the Kaš-Moody symmetries. For this purpose, we 

made use of the hidden symmetry mechanism raised by some previous authors  16]- 

 19]. The reason why we perform such an inquiry is that we would like to figure out 

the infinite number of symmetries comprising our model. In this way we highlight 

the claim of people using Kaš-Moody formalism that uncovering the whole 

symmetries of a theory gives rise to a complete under- standing of that theory. Our 

construction serves this aim by means of finding Kaš-Moody symmetries of the 

sigma model. Sigma models are important in the sense that almost all theories in 

physics can be reduced from a sigma model under appropriate conditions. Therefore, 

understanding all symmetries of this model also serves finding the unification 

scheme of the final theories.  

In the first few chapters we focused on the classical and quantum symmetries 

of the sigma model and found that classically holomorphic configuration of the 

currents, and in turn stress-energy tensors, leads to a conformal symmetry. Quantum 

version requires that the presence of Ward identity is the indication of quantum 

conformal symmetries. In the last chapter we concentrate upon the hidden symmetry 

mechanism to display the Kaš-Moody algebra. In this direction we established the 

lax-pair equations and showed that integrability of these equations produces the 

equations of motion and curvature-free Maurer-Cartan equation. We imposed the 

extension of symmetries on the symmetry of currents in association to our sigma 

model. We employed a spinless field for easiness. The key point in this way was to 

use the analytic continuation of our symmetry relations. In this way, we behave our 

second current arising from the non-holomorphic part as the analytic continuation of 

the first one. Consequently, the ultimate symmetry relation is the Kaš-Moody algebra 

which is an extension of the usual currents on a circle, and thus a loop algebra.  
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