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SUMMARY

In this dissertation, the methods of statistical inference of record values are
considered for the Burr Type XII, the generalized exponential and the Kumaraswamy
distributions. This includes estimates of the distribution parameters, the stress-strength
reliability and prediction of the future record values. Both frequentist and Bayesian
techniques, namely maximum likelihood, uniformly minimum variance unbiased,
Bayesian and empirical Bayesian estimates are used for the unknown parameters
and stress-strength reliability of the distributions. All these estimates are obtained
based on record values or based on record values with their corresponding inter-record
times. Furthermore, the asymptotic confidence interval using Fisher information or
observed information matrix, Bayesian credible, highest probability density credible
intervals and the exact confidence interval, when it is available, are constructed. In
order to draw a statistical inference a simulation study is carried out for each of these
distributions. The performance of all these estimates are compared by using the Monte
Carlo simulation. A numerical findings of the estimates are presented for the generated

data in every case and a real life data when it is available.

Keywords: Record Values, Stress-Strength Reliability, Bayesian Estimation,
Prediction, Lindley’s Approximation, Markov Chain Monte Carlo (MCMC)
Method.



OZET

Bu tezde, Burr XII, genellestirilmis iistel ve Kumaraswamy dagilimlari i¢in rekor
degerlerin istatistiksel ¢ikarim methodlar ele alinmistir. Bu methodlar dagilimlarin
parametreleri, giivenilirlik ve gelecek rekor degerlerin kestrimi tahminlerini
icermektedir. Klasik ve Bayes tekniklerinden en cok olabilirlik, diizgiin en kiiciik
varyanslt yansiz, Bayes ve empirik Bayes tahmin edicileri kullamilmistir. Tim
bu tahmin ediciler rekor degerler veya rekor degerler ve onlarin rekor zamanlar
kullanilarak elde edilmistir. Ayrica, Fisher bilgisi veya gozlemlenmis bilgi matrisi
kullanilarak asimptotik giiven aralig1, Bayes giiven araliklar1 ve miimkiin oldugunda
kesin giiven aralifi olusturulmustur.  Bu dagilimlarin herbiri i¢in istatistiksel
cikarim elde etmek amaciyla simiilasyon ¢alismasi yapilmistir. Bu tahmin edicilerin
performanslar1 Monte Carlo simiilasyon yontemi ile karsilastirilmistir. Her durum igin
tiretilmis veriler ve miimkiin oldugunda gercek hayat verileri kullanilarak bahsedilen

tahmin ediciler i¢in niimerik sonug¢lar sunulmustur.

Anahtar Kelimeler: Rekor Degerler, Stres-Dayamiklihk Giivenilirligi, Bayes
Tahmin Edicisi, Kestirim, Lindley Yaklasimi, Markov Zinciri Monte Carlo

(MCMC) Methodu.
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1. INTRODUCTION

1.1. Overview and Motivation

Record values and the associated statistics are of interest in many real life
applications. For example, predicting the flood level of a river that is greater than the
previous ones is of importance to climatologists and a hydrologist, while predicting the
magnitude of an earthquake which has a greater magnitude than the previous ones, in
a given region, is of importance to seismologists. A meteorologist may want to know
how much flooding will occur the next time the current rainfall record is broken. The
statistician must estimate the next record value of rainfall from a data set consisting of
past record values. In industry and reliability studies, many products may fail under
stress. For example, a wooden beam breaks when sufficient perpendicular force is
applied to it, an electronic component ceases to function in an environment of too
high temperature, and a battery dies under the stress of time. But the precise breaking
stress or failure point varies even among identical items. Hence, in such experiments,
measurements may be made sequentially and only values smaller (or larger) than all
previous ones are recorded. This type data is called record data or records. Thus,
the number of measurements made is considerably smaller than the complete sample
size. Therefore, the measurement saving can be important when the measurements of
these experiments are costly or the entire sample is very big or destroyed. For more
examples, see [Gulati and Padgett, [1994].

The theory of record values was first introduced by [Chandler, [1952]] and it has
been extensively studied in the literature since then. A number of statisticians have
worked on interesting problems about the records. The distributions of lower records
and inter-record times for independent and identically distributed sequences of random
variables were studied by [Chandler, |1952]]. The theory of the limiting distributions
concerning the random variables, which was constituted by the index of the record
values, were studied by [Rényi, 1962]. Record values, inter-record times and their
limiting properties were studied by many authors. These studies were summarized
by [Glick, |1978]]. A likelihood function for estimating unknown parameters based on

record samples was given by [Arnold et al., [1998]. A predictive likelihood function



for future record values was given by [Basak and Balakrishnan, 2003].More details
and references can be found in [Ahsanullah, (1995]], [Arnold et al., [1998]], [Nevzorov,
2001].

1.2. Definitions

e Definition of Record Values and Record Times

Suppose that X, X5, ... be a sequence of independent and identically distributed
(i.i.d.) random variables from a continuous distribution. An observation X is called
an upper record value and j is called upper record time if X, exceeds that of than
all preceding observations. That is X; is an upper record value if X; > X, for all
t < j. The record times are the indices at which record values occur. The record time
sequence for upper record values {U(n), n > 1} is defined in the following manner:

U(1) = 1 with probability 1 and nth record time, for n > 1
Un)=min{j:j>U(n—1),X; > Xyu_1}- (1.1)

Then, the nth upper record value is X;(,,). Similarly, X is called a lower record value
if its value is smaller than all preceding observations. The record time sequence for
lower record values is denoted by L(n). It is clear that X is a lower (upper) record
value and U(1) = L(1) = 1 by definitions.

Let A, = U(r+1)—U(r)and Ay = L(r+1) — L(r), r = 1,2,.... A,
and A, are called upper and lower inter-record times, respectively. Inter-record times

correspond roughly to the number of non-record observations between record values.

e Distributions of Record Values and Record Times
Let X;, X5,... be a sequence of i.i.d. random variables with continuous
cumulative distribution function (cdf) F' and probability density function (pdf) f. The

pdf of nth upper record value Xy ,,) ,say f,.(z), is

(R(z))"™

fn(aj) = (n — 1)!

flx), —co<x <0 (1.2)



where R(z) = —InF(z),0 < F(z) < 1and F(z) = 1 — F(x). Then the joint pdf

f(@1, 22, ..., z,) of n upper record values Xy 1), Xv(2), .., Xum) is given by

f(z1, 2, ..y xn) = r(x)r(z2)..r(Tn 1) f(x)

= f(xn>1jllf(—;fi()$i), (13)

for —oo < 1 < g < ... < Tp_y < T, < 00 Where r(x) = dR(z)/dx = f(z)/(1 —
F(x)),0 < F(z) < 1 and r(x) is known as hazard rate function.

The pdf of nth lower record value Xy,,,), say f(n)(2), is

H n—1
f(n>(x)=%f(:c), — 00 <x <00 (1.4)
and the joint pdf of n lower record values Xp,1y, X1,2), ..., X(n) 1S given by

fa,... (n)(iﬂbflfz, coes Tp) = h(x1)(@2).. A (T0-1) f(20)

_ o f(w:)
Sl I ot (1.5)
1=1
for —oo <z, < 1 < ... <z < oowhere H(z) = —InF(x),0 < F(x) < 1and

hz) = —dH(z)/dz = f(x)/F(z).
An important question that the number of record values among the sequence
of observations X, Xo,..., X,,. Let M, be the number of record values among the

sequence X1, Xo, ..., X,,. [Rény1, 1962]] showed that the mean and variance of M,, are

n n

E(M,)=>" % and Var(M,) = Zl (1 - 1) : (1.6)

i=1 i=1

Moreover, the mean and variance approximately equal to logn + v and logn + v —
(2/6), respectively, where ~y is Euler’s constant 0.5772... and log is used for the
natural logarithm (see [Arnold et al., |1998]). Therefore, record values are clearly not
common. A sequence of n i.i.d. continuous random variables only about log n records

are expected.



Foralln > 1, A, and A, are identically distributed. [Nevzorov, 2001] shows
that the inter-record times are conditionally independent given the record values, and

the nth inter-record time has probability mass function
k—1
P(A, = k| Xvay, Xve), ) = (1 = F(Xym-1)) (F(Xvm-1))" (1.7)

fork=1,2,...and n = 1,2, 3, .... Thus, the nth inter-record time follows a geometric
distribution. The pdfs of A,, and A, are independent of the parent distribution F'(z)

and are given as

Moreover,

= = A, | X = = ———7, (1.
E(A, [ Xy = ) T Fw Var(A, | Xvw) = ) T (1.9)
1 1— F(Zt(n))
E(Aw) |XL(n) =) = —F(x(n))’ Var(Am ’XL(n) =) = —(F(;c( )))2 (1.10)

The various probabilities of the record times can be easily obtained by using the
probability of the inter-record times. It is known that the record times are independent
from [Rény1, |1962]]. Then, the joint probability mass function of the first n record

times is

1
J2 = 1) (s = 1) = 1)’

PUQR) = j2,UB) = Js, -, U(n) = jn) =1 (1.11)
forl =71 < js < ... < Jn.

When the consider the sample which consists of the record values and their
corresponding inter-record times, we have two sampling schemes for generating record
data known as inverse sampling and random sampling schemes. Let K is the number
of trials required to obtain a new record value, namely K; = A; (or A;)). Under the

inverse sampling scheme, units are taken sequentially and sampling is terminated when

4



the mth maximum (or minimum) is observed. In this case, the total number of sampled
unit is a random number, and K, is defined to be one for convenience, while under
the random sampling scheme, a random sample X1, ..., X, is examined sequentially
and successive maximum (minimum) values are recorded. In this setting the number
of records N (™ obtained is a random and fof : K; =n.

The distribution of K; given the past upper records and inter-record times is
P(K; =k |Xua =2:) = (1 — F(x)) (F(z:)" !, (1.12)

for £ = 1,2, .... It follows that the joint pdf or likelihood function associated with the
sequence {XU(1)7 Ky, ..., Xum), Km} under the inverse sampling scheme is given by

[Samaniego and Whitaker, |[1986] as

m

L<X7 k) = Hf(x2> {F<xl>}k7_1 I(ivi—hoo)(xi)? (113)

=1

where xg = —o0, k,, = 1 and I4(z) is the indicator function of the set A. Similarly,

the distribution of K; given the past lower records and inter-record times is
P(K; =k|Xpu =) = F(a;) (1 — F(2))" ", (1.14)

for k = 1,2, .... It follows that the joint pdf or likelihood function associated with the

sequence { X11), K1, ..., XL(m), K} under the inverse sampling scheme is
L(X7 k) = Hf($l) {1 - F(xi)}ki_l [(_Ooyxi—l)(xi)7 (1.15)
i—1

where g = co and k,,, = 1.

e Definition of The Stress-Strength Reliability
Let X and Y be independent random variables, the quantity of R = P(X < Y)
is commonly referred as stress-strength parameter or reliability. In the simplest terms

this can be described as an assessment of reliability of a component in terms of random

5



variables X representing stress experienced by the component and Y representing the
strength of the component available to overcome the stress. If the stress exceeds the
strength, i.e. X > Y, then the component will fail.

Assume that a random vector (X, Y') has pdf f(z,y |0) with an unknown scalar
or vector-valued parameter # € ©. The aim is to estimate 1 on the basis of observations
(X1,Y7), ..., (X5, Yy). Note that if X and Y are independent with the pdf of the form
f(z,y|0) = f(x|0)f(y|0) the number of observations for X and Y need not be the
same.

The reliability R can be calculated as

R= /OO /00 flz,y|0)I(x < y)dzdy. (1.16)

If X and Y are independent with the pdfs f(z|6) and f(y|6) and the cdfs Fx(x|0)
and Fy (y |0), respectively, equation (1.16) can be rewritten as

[e.9]

R= [ FGOfGI0: = [ (1= Fleo) fee0)d

o0 —00

The main idea was introduced by [Birnbaum,|1956] and developed by [Birnbaum
and McCarty, 1958]. The problem of estimating of R on random samples has
been extensively studied under various distributional assumptions on X and Y. A
comprehensive account of this topic is presented by [Kotz et al., 2003]]. It is provided
an excellent review of the development of the stress-strength under classical and
Bayesian point of views up to the year 2003. For most recent results on the topic
see [Kundu and Guptal 2005], [Mokhlis, 2005], [Baklizi, 2008, [Rezaei et al., [2010],

[Nadar et al., 2014]] and the references therein.

e Inferential Methods For Bayesian Analysis

In Bayesian methods, to evaluate various characteristics of posterior and
predictive distributions, especially their densities, means and variances are very
important. When the problem under consideration does not involve a conjugate prior
likelihood pair, these tasks can not be obtained in closed form. In this case, an

analytical or a numerical approximation methods are needed. Because the Lindley



approximation, the Tierney-Kadane approximation and Markov Chain Monte Carlo
(MCMC) methods are used frequently in this thesis, the summary of these methods
using [Press, 2002], [Gelman et al., 2003]], [Tierney and Kadane, |1986], [Lindley,
1980], [Soliman et al., 2011]] are given below.

e The Lindley Approximation
Let u(f) be a smooth, positive function on the parameter space. The posterior

mean of u(¢) for given data x = (21, ..., z,,) can be written as

i u(0) e+, qp

Eu(®)x) = [ elO+r0)dh

(1.18)

where [(6) is the logarithm of the likelihood function, p(f) is the logarithm of the
prior density of # and 0 = (04, ...,0,,) is a parameter. The Lindley approximation is

developed by [Lindleyl 1980] and is given in the following theorem.

Theorem 1.1: For n sufficiently large and [(0) defined in equation concentrates
around a unique maximum likelihood estimator h = (51, e é\m) for 0, the ratio of

integrals in equation is given by approximately as

Z Z Uz] + 2“110] Oij

i=1 j=1

E(u(8) |x u+

N —

+

DD D) Liggoijonu|  (1.19)

i=1 j=1 k=1 k=1 )

N | —

where u; = ﬁu(é’)/&%, U5 = 82U(6>/8928(93, Lijk = 8%(6’)/8@189]5’919 pPi =
0p(0)/06;, and o = (i, j)th element in the inverse of the matrix {—L;;} all evaluated

at the MLE of the parameters.
Proof [I.1} For the proof of theorem see [Lindley, 1980]. R

Remark 1.1: The first term in equation is O(1); the other terms are O(1/n) and
are called correction terms. The overall approximation in the Theorem 1.1 is O(1/n),

so the first term neglected is O(1/n?).



Remark 1.2: When m = 3, equation reduces to

A
E(U(Q) |X) =u-+ (u101 + UoCo + U3C3 + C4 + 05) + 5 (U10'11 + U901 + U30'13)

+

| &

(u1091 + U2092 + U3093) + §(U1031 + U039 + us0ss), (1.20)

evaluated at § = (@\1, 0s, 53) where

Ci = p1041 + p20ie + p3oyz, 1 =1,2,3, (L.21)
C4 = U12012 + U13013 + U23093, (1.22)

1
C5 = §(U110'11 + Uge092 + U33033), (1.23)

A = 011L111 + 20121191 + 2013 L4131 + 2023 L9231 + 022 L991 + 033L331, (1.24)
B = 011L112 + 2012 L1292 + 2013 L1392 + 2093 La3s + 099 L92a + 033 L339, (1.25)

C = 011113 + 2012123 + 2013 L1353 + 2093 La33 + 092223 + 033 L333. (1.26)

Remark 1.3: When m = 2, the following notations in [Jaheen, 2005|] are used

1
E(u(0)|x) =u+ B (B + Q30812 + Q21C12 + Q12C51 + Qo3 Bar] , (1.27)

where B = 23:1 25:1 Ui Tijy Qij = 0 Q)0'010705, fori,j =0,1,2,3 and i + j =
3, u; = Ou(0)/06;, ui; = 0%u(h)/06,00; for i,j = 1,2 and Byj = (w;Tyi + u;Tij)Tii
and C;; = 3u;m;Tij + uj (175 + 2Ti2]-)f0}’"i # j, where T;; is the (i, j)th element in the
inverse of the matrix Q* = (=Qy;), i,j = 1,2 such that Q}; = 0*Q/00,00;, Q is the
logarithm of the posterior density function of 6 except for the normalizing constant.
The equation is to be evaluated at (51, 52) the mode of the posterior density
density function of 0.



e The Tierney-Kadane Approximation
Another analytical approximation result for evaluation of Bayesian integrals is
Tierney-Kadane approximation. It is developed by [Tierney and Kadane, [1986] and is

given in Theorem 1.2.

Theorem 1.2: For n sufficiently large, if the posterior distribution of u(0) (given the
data) is concentrated on the positive (or negative) half-line, and if (1(6)+p(0)), defined
in equation ([{I.18)), concentrates around a unique maximum, under suitable regularity

conditions the ratio of integrals in equation ({I.18)) is given approximately by

det X*
det X

1/2 _ _
E(u(8) |x) = [ ] exp (n [A*(e*) - A(Q)D , (1.28)
where nA(6) = 1(0) + p(0), nA*(8) = Inw(8) + 1(0) + p(0), 0% maximizes A*(6), 6
is the posterior mode and therefore maximizes [(0), and ¥* and 3 are the negatives of

the inverse Hessians of A*(6%) and (), respectively.

Remark 1.4: The terms omitted in the approximation in equation are O(1/n?),

as in the results in equation ({1.19).

e MCMC Method

The MCMC method is a general simulation method for sampling from posterior
distributions. The MCMC methods sample successively from a target distribution.
A Markov chain is generated by sampling the current point based on the previous
one. The MCMC method works successfully in Bayesian computing. The analytical
forms of the posterior distributions can only be recognized in the simplest models.
Most posterior densities are computationally intensive to work with directly. With
the MCMC method, it is possible to generate samples from the posterior distribution
and to use these samples to approximate expectations of quantities of interest. In
addition, the simulation algorithm can be easily extensible to models with a large
number of parameters or high complexity. The MCMC techniques, including the
Metropolis—Hastings algorithm and the Gibbs sampler have become very popular in
recent years as methods for generating a sample from a complicated model. Details of

the MCMC method can be found in [Gelman et al., 2003]].



e The Gibbs Sampling Algorithm
The Gibbs sampler is a special case of an MCMC algorithm. It generates

a sequence of samples from the full conditional probability distributions of two or
more random variables. Gibbs sampling requires decomposing the joint posterior
distributions into full conditional distributions for each parameter in the model and
then sampling from them. The sampler can be efficient when the full conditional
distributions are easy to sample from. Suppose that 61, ..., 0 denote some grouping
(blocking) of # and 7} (61| 0a, ..., 0k, ), ..., T (Ok| 01, ..., Ox—1, ) denote the associated
conditional densities, often called the full conditional densities. After having derived
the full conditional posterior distributions for the parameters 61, ..., 6, the Gibbs

sampler works as follows:

e Step 1: Begin with some initial values §(*) = (ng), o 0,(60)).

e Step 2: Set 5 = 1.

e Step 3: Generate 6 from conditional distribution 7} (6:6s, ..., 6, z).

e Step 4: Generate 6 ) from conditional distribution 75(62| b1, ..., Ok, ).

e Step 5: Generate Qlij ) from conditional distribution (0| b1, ...y O, ).

e Step 6: Set j = j + 1 and repeats steps 3-5, 7 = 1,2, ..., N.

e The Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is a very general MCMC method. It can be

used to obtain random samples from any arbitrarily complicated target distribution of
any dimension that is known up to a normalizing constant. In fact, the Gibbs sampler is
just a special case of the Metropolis-Hastings algorithm. For specificity, suppose that
the full conditional density 7} (6|0, ..., 0k, z) is intractable. Let q(07|0,, ..., 0, )
denote a proposal density that generates a candidate 67. The Metropolis-Hastings

algorithm for intractable 7} (6, |0, ..., 0y, ) can be summarized as follows:

e Step 1: Specify an initial value 6© = (8 . 6",
e Step 2: Propose a value for 0; by drawing 6* ~ ¢( 0| Géjfl), e 9,(371),@).
e Step 3: Calculate the acceptance probability

* * —1 —1 —1 —1 —1
w0365, 097D 2)q(8Y V100D U )

)y =

p(67™",67) = min |1, =D pi-1) (G-1) (1) (5-1) (1.29)
71—1((61] 92] ) "aek] 7£)q(0ﬂ02j 7"79]@] ai)
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e Step 4: Generate U ~ Uniform(0,1).
e Step5: If U < p(ng_l), 6*), accept the proposal and set 99) = #*. Otherwise,
reject the proposal and set 09 ) = 09 -,

e Step 6: Set j = 5 + 1 and repeats steps 1-4, j =1,2,..., N.

If the proposal distribution is symmetric, then we have p(6~|6*) = p(6*[ (1),

so that the acceptance probability is given by

*( [ j—1 j—1
w0765, 097V 1)

) =

s nG—1 i—1 i—1
w0V V199D Y 1)

p(69™Y 6*) = min |1, (1.30)

A similar approach is used to sample 65, ..., 0.

1.3. The Aim of The Thesis

In recent years, the record values and the stress-strength reliability models are
getting more popular among the statisticians. Many authors have investigated the
statistical inferences of the record values and the stress-strength reliability models
for the different distributions. However, the estimation of the unknown distribution
parameters based on record values with their corresponding inter-record times and
the estimation of the stress-strength reliability based on record values have not paid
much attention in the literature. Hence, we basically concentrate on these subjects in
this thesis when the underlying distributions are the Burr Type XII, the generalized

exponential and the Kumaraswmay.
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2. STATISTICAL ANALYSIS FOR THE BURR
TYPE XII DISTRIBUTION

2.1. Introduction

The Burr system of distributions includes twelve types of cumulative distribution
functions which yield a variety of density shapes and were listed in,[Burr, [1942]. It
has applied in business, chemical engineering, quality control, medical and reliability
studies. The Burr XII distribution is one of the different distributions introduced by
[Burr, |1942] for modeling data.

If a random variable X follows a Burr Type XII distribution, denoted by

Burr(a, B), then its pdf and cdf are given by

Flz;o,8) = 1—(1+2)7 2>0, (>0, 3>0) 2.1)

f(zia,8) = afz*t(1+2%)"F 2>0 (2.2)

a, > 0 are the shape parameters. The mean and variance of a Burr Type XII

distribution are given by
1 1
E(X)=BB(B——1+—], (2.3)
o !

and
2
Var(X):ﬁB(ﬂ—é,l—i—%)—{ﬁB(ﬂ—é,l—i—é)} . 2.4)

The Burr Type XII distribution is unimodal and its mode x5 =
(a—1/(af+1)*if a > 1. If & > 1, its pdf increases on (0, Z,noge] and decreases
oN [Tymode, 00). If a > 1, its pdf is strictly decreasing.

The Burr Type XII distribution has been studied by many authors. For example,
the Bayes estimates of the shape parameter and reliability function were derived
by [Papadopoulos, 1978|]] when the other shape parameter was known. The Bayes

estimates of the parameters, the reliability and failure rate functions based on a Type-2

12



censored sample were obtained by [Al-Hussain1 and Jaheen, 1992]. The Bayesian
prediction bounds for certain order statistics were considered by [Al-Hussaini and
Jaheen, |1995]. The maximum likelihood (ML) estimates of the parameters based
on randomly right censored data were obtained by [Ghitany and Al-Awadhi, 2002].
The ML and Bayes estimates of the parameters based on generalized order statistics
were derived by [Jaheen, 2005]. The ML and Bayes estimates for some life time
parameters (reliability and hazard functions) as well as the shape parameters based on
progressively Type-II censored samples were obtained by [Soliman, 2005].

The rest of this chapter is organized as follows. In Section 2.1, the statistical
inferences for the Burr Type XII distribution based on record values are mentioned. In
Section 2.2, the statistical inferences for the Burr Type XII distribution based on record
values with their corresponding inter-record times are considered. In Section 2.3, the
statistical inferences for the stress-strength reliability of the Burr Type XII distribution

based on record values are considered.

2.2. Estimation of The Parameters Based on Record Values

The Bayesian estimates for the two shape parameter of the Burr Type XII
distribution based on upper record values were obtained by [Ahmadi and Doostparast,
2006] using the symmetric loss function. Bayesian prediction bounds for future upper
record values was also derived. When the first shape parameter was known, the Bayes
and empirical Bayes estimates for the unknown shape parameter of the Burr Type XII
distribution based on upper record values were considered by [Wang and Shi, 2010].
The Bayesian and empirical Bayesian prediction bounds for future upper record values
were also obtained. The frequentist and Bayesian point estimates for the two shape
parameters based on upper record values were derived by [Nadar and Papadopoulos,
2011]] using the asymmetric loss function. The prediction for the future record values

was also obtained by using non-Bayesian and Bayesian approach.
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2.3. Estimation of the Parameters Based on Records and
Inter-Record Times

When the underlying distribution is exponential, estimation of the mean
parameter by using record values and their corresponding inter-record times was
obtained by [Samaniego and Whitaker, 1986] under random sampling and inverse
sampling schemes. The optimal random sampling plan and associated cost analysis
for the exponential distribution were studied by [Doostparast and Balakrishnan, |2010]].
Non-Bayesian and Bayesian estimates were derived by [Doostparast, 2009] for the
two parameters of the exponential distribution based on record values and their
corresponding inter-record times under the inverse sampling scheme. The optimal
confidence intervals, uniformly most powerful tests for one-sided alternatives were
derived by [Doostparast and Balakrishnan, 2011] when the underlying distribution
is the two-parameter exponential distribution. Also, they obtained as generalized
likelihood ratio test, uniformly unbiased and invariant tests for a two-sided alternative.
The optimal statistical procedures including point and interval estimation as well as
most powerful tests based on record data from a two-parameter Pareto model were
obtained by [Doostparast and Balakrishnan, 2013]. When the underlying distribution
is lognormal, non-Bayesian and Bayesian point estimates as well as asymptotic
confidence intervals for the unknown parameters were obtained by [Doostparast et
al.,[2013].

Prediction of future records becomes a problem of great interest. For example,
while studying the record rainfalls or snowfalls, having observed the record values
until the present time, we will be naturally interested in predicting the amount of
rainfall or snowfall that is to be expected when the present record is broken for the
first time in future. Let Ry, ..., R,, be the first m lower record values observed from a
specific distribution. Then, we may be interested in predicting (either point or interval
prediction) the value of the next record (R,,;1), or, more generally, the value of the
s-th record (R,) for some s > m (see [Arnold et al., [1998]]). Prediction of future
records has been studied by many authors such that [Ahmadi and Doostparast, 2006/,
[Soliman et al., 2006]], [Ragab et al., 2007].

In this section, the parameter estimates of Burr Type XII distribution based on

lower record values and their corresponding inter-record times are obtained under
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the classical and Bayesian frameworks. The Lindley approximation and MCMC
technique are used to obtain the Bayes estimates under different loss functions. The
non-Bayesian and Bayesian point predictors and the Bayesian prediction interval of
future lower record values are obtained based on the observed lower record values
with their corresponding inter-record times. Also, the Bayesian point predictors and
the Bayesian prediction interval of future lower record values are constructed based on
just the lower record values. Finally, the two approach are compared by using Monte

Carlo simulations to see the effect of the inter-record times in prediction.

2.3.1. ML Estimation

Let X;, X5, ... be1i1.d. random variables, coming from a population with the cdf
and the pdf F'(.) and f(.), respectively. Then, the likelihood function associated with

the sequence { Ry, K1, ..., R, K, } is given by [Samaniego and Whitaker, 1986] as
L(r,k) = [[f(r) {1 = Fra)}" ™ T e,y (r2), (2.5)

i=1

where 1y = 00, k,,, = 1 and [4(z) is the indicator function of the set A. From equations

2.1), @.2) and (2.5)), we have

L(a, B;1,k) = o™ 3™ exp {(a - 1) Zln ri— Z(ﬁkl +1)In(1 + Tf‘)} , (2.6)
i=1

i=1
where r; > ... > r,, and so the log-likelihood function is

m

l(a, By, k) =m(lna+In ) + (a—1) Xm:lnri — Z(ﬁkz + 1) In(14+r3). 2.7)
i=1

i=1
The ML estimates of a and [ are given by

B=—, (2.8)

S3)3

where T, = > " k;In(1 + r*) and & is the solution of the following non-linear

equation
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m r®Inr,
- Inr; : 1) +—*=o. 2.
+an Z( Ta+>1+r$‘ 0 (2.9)

=1

Therefore, & can be obtained as the solution of the non-linear equation of the form

h(a) = o where

-1

(2.10)

m ~— kire lnrZ i Inr;
T, 1+r — 1+

i=1

Since, @ is a fixed point solution of the non-linear equation , its value can be
obtained using an iterative scheme as: ;1) = h(cy;)), where «;) is the jth iterate of
a. The iteration procedure should stopped when }a(j) — a(j+1)| is sufficiently small.
After & is obtained, B can be obtained from equation .

Next, we establish the existence and uniqueness of the maximum likelihood
estimation (MLE) of the parameters « and 3 of the Burr Type XII distribution based on
lower record data. Similar result has been obtained by [[Ghitany and Al-Awadhi, 2002]
for the Burr Type XII distribution using randomly right censored data. We present the

following lemma that will be used in the proof of Theorem 2.1.

Lemma 2.1: Let

Wi (1, ey Tpy) = {Z k;In(1 +xz)} — {Z /ﬁf(%)}

+ik-ln(1+m)ik§2($i) 2.11)
T (A (A :L" ) *
i=1 i=1 ¢

where £(x) = xzlnx/(1 + x), x > 0. Then, wy(x1, ..., Tm) > 0 for all x; > 0 and
ki 2 1,7, = 1,...,77?,

Proof 2.1} For a proof, one may refer to [Ghitany and Al-Awadhi, 2002|]. W

Theorem 2.1: The ML estimates of the parameters « and 3 are unique and given by
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B = m/Ts where Q is the solution of the non-linear equation:

moom kirgInr; " Inr
Gla)=——7> T +td =0 (2.12)
i=1

m m S kilnr, 1 B
G(0) = lim G(a )_BL%E_QIH2 ST T +2;1nm—00- (2.13)

The limit of G(«) as o — o0 is considered in four cases.

i) If at least one record value is greater than unity, then

m ~— kird Inr; " o
Gloo) = Jirg, Gle) = Jl&(rﬁu e EHTZ@)

Yy B Inr /(L +78)) + 300 oy (kird Inry /(1 + 1))

= —m lim — —
oo Die 1(r;<1) kiln(1+ ) + Zi:l(ri>1) kiln(1+rf)
- Inr; - Inr;
li . . 2.14
T Z 1+rg+AZ 1o @.14)
1=1(r;<1) i=1(r;>1)

i=1(r;<1)
ii) If at least one record value is less than unity, then
G(oo)= >  Inr;<0. (2.15)
i=1(r;<1)

iii) If all record values are less than unity, thatisr; < 1,1 =1, ...,m, then (r;/r1) <
1, limgy o0 (13/71)" = 0 and lim, oo (In(1 4+ 7)) /r¢ = 0,7 = 2, ..., m. By using

these limits and dividing the numerator and denominator of the second term of G(«)
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by r{, then we obtain

G(c0) = —m lim > i (ki /(1 + r§)) (ri/11) gt Z In7r;
a—r00

T m
oo > iy ki(In(1 4 78)/re) = 1+

k: 1
— ! n7"1 Zlnn = Z Inr; —Inr) <0. (2.16)
i=1

iv) If all record values are greater than unity, thatisr; > 1,1 =1, ..., m, then

oo kil (rd /(14 1)) In 7
=—_ml |
Gloo) = —m lim =S ey Tl D

=1

1 1
Inr; 1 — 0. 2.17
<an£l;<<1+ra> 1n<1+rgn>)< @.17)

i=1

Hence, we obtain that lim,,_,o G(«) = 0o and lim,—,., G(a) < 0. By the intermediate
value theorem G(«) has at least one root in (0,00). If it can be shown that

G(«)/Oa < O then the proof will be completed. It is easily obtained that

It is clear that 0G(«) /O < 0 by using Lemma 1.

Finally, we will show that the ML estimates of («,[) maximizes the
log-likelihood function l(«, 5;1,k). Let H(«, ) be the Hessian matrix of l(«, B; 1, k)

at (a, p). It is clear that Hy, (Q, B\) < 0 and the determinant of the Hessian matrix
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m 2(,.a
_ L msne <g>+wm(r§,...,rg>], (2.19)

-~ -~

and D(a, ) > 0 by Lemma 2.1. Hence, (Q, [3) is the local maximum of l(«, 3; 1, k).
Since there is no singular point of l(«, 5;r, k) and it has a single critical point then,
it is enough to show that the absolute maximum of the function is indeed the local
maximum. Assume that there exist a 0 in the domain in which I* () > I*(Q), where
(o) = l(a, Bir, k). Since & is the local maximum there should be some point o in
the neighborhood of iy, such that I*(@) > 1*(ay). Let k(o) = I*(a) — I*(Q) then
k() > 0, k(ay) < 0 and k(@) = 0. This implies that o is a local minimum of the

I*(«), but & is the only critical point so it is a contradiction. Therefore, (Q, ) is the

absolute maximum of l(«, f;r, k). A

2.3.1.1. ML Estimation When « Is Known

Without loss of generality, the parameter « is assumed to be known, say o = «v.

Then, by equation (2.6)

L(a, B;1,k) = oy exp {(040 - 1) Zh””i - Z(ﬁkz + 1) In(1 + T?O)} , (2.20)
=1

i=1

where r, > ... > r,. In this case, T,, is a sufficient statistic for S and the
MLE of f is By = m/T,,. The moment generating function of 7T, is M(t) =
1/(1 —t/B)™, B > t. By the uniqueness of the moment generating function, 7y,
is distributed as Gamma(m,1//3) and its mean and variance are m/3 and m//3?,
respectively. Therefore, E(By1,) = (m/(m — 1))/ and an unbiased estimator for /3 is
By = (m — 1)/Ty,. Notice that, MSE(By) < MSE(Byy) and MSE(By) — 0 as

m — oo then 8y, and Sy converge to [ in mean square.
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2.3.1.2. Asymptotic Confidence Interval

In practice, the observed information matrix is used as a consistent estimator of
the Fisher information matrix. An asymptotic confidence intervals for the parameters
« and [ based on the record values and their corresponding inter-record times are
obtained by using the observed information matrix. The observed information matrix

Jom(a, B) is given by

2 2
Il B) = - %‘i 82“?% z{‘]” J”}, (2.21)
9590 952 Jar Jao

where J;;, = (m/a?) + S0 (Bki + Ve (Inr/(1+r8)?, Jio = Ju =
S (ke lnr) /(1 +r¢) and Jao = m/ [
By the  asymptotic  normality of the MLE, we  have
V(@ — o), vm(Bur — B)| & No(0,I"!) for large m, where <~ means
approximately distributed and 17! is the inverse of the Fisher information matrix.
If the likelihood equations have a unique solution §n, then 5n 1s consistent,
asymptotically normal and efficient, see [Lehmann and Casella, 1998]. When
the likelihood equations have a unique solution, the observed information matrix
Jm(&ML,gML)/m is a consistent estimator for I,,(c,3)/m (see Appendix C in
[Lawless, [2003]]). Therefore, the observed information matrix can be used in the
asymptotic normality of the MLE. For large m (the number of record values) under

inverse sampling, the approximate 100(1 — ~)% equi-tail confidence intervals for «

and [ are constructed as

N Jao 7 Ju
L o d 4o o 2.22
(O‘ML A2 J11J29 — J122> o (BML o Jurda = J%Z) ! )

where z, is the upper ~th quantile of the standard normal distribution.
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2.3.2. Bayesian Estimation

In the Bayesian inference, the most commonly used loss function is the squared
error (SE) loss, L(6*,0) = (6* — 0)?, where 0* is an estimate of 6. This loss function
is symmetrical and gives equal weight to overestimation as well as underestimation.
It is well known that the use of symmetric loss functions may be inappropriate in
many circumstances, particularly when positive and negative errors have different
consequences. A useful asymmetric loss function is the linear-exponential (LINEX)
loss, L(6*,0) = e’ —y(0* — ) — 1, v # 0, introduced by [Varian, [1975]. The
sign and magnitude of v represents the direction and degree of asymmetry, respectively.
For v close to zero, the LINEX loss is approximately equal to the SE loss and therefore
almost symmetric.

In this section, the Bayes estimates of the parameters Burr Type XII distribution
are obtained by using different loss functions for both « is known and unknown cases

under the inverse sampling scheme.

2.3.2.1. Bayesian Estimation When o Is Known

When the parameter « is assumed to be known, say o = «p, the gamma
conjugate prior density is used for the parameter [, that was first used by
[Papadopoulos, |1978]], i.e.

bt Bb
() = ——=p["e 71, B> 0. 2.23
The posterior density function of 3 is readily obtained from equations (2.20]) and (2.23))
as 3| (r,k) ~ Gamma (m+a, +1,(by + Th,)”'). Then, the Bayes estimate of o

under the SE loss function, 3 Bs.1, is the mean of the | (r, k). Therefore

~ m+4a; + 1
= 2.24
BBs,1 bt T (2.24)
and the Bayes estimate of 5 under the LINEX loss function, B BL,1, 1S given by
3 L By (8 = PPt Ly v (2.25)
=——In rk)le = ———In — . .
BL,1 v Bl(r k) v by + Tao
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If we use the Jeffrey’s non-informative prior, that is 7(8) = 1/, then we have
Bl (r,k) ~ Gamma (m,1/T,,). Therefore, the Bayes estimates of « under the SE

and the LINEX loss functions are obtained as

BBS,O = and apro = U™ (1 + ; ) , (2.26)
v

() @Q

respectively. Notice that, 33570 and B\BL,O are the limit of BBSA and BBL,I asa; — 0
and by — 0. Moreover, EBLJ — B\BSJ as v — 0 is satisfied. The Bayesian credible
interval can be easily constructed by using the posterior density function of 5. It is

clear that 2(b; + T,,,) 5| (r, k) ~ X%( Therefore, a Bayesian credible interval

m+ai+1)°

for B is given by

(X%(m+a1+1)(7/2) Xg(m+a1+1)(1 B 7/2)> 2.27)

2(by + Ty,) 2(by + Ty,)

In the following proposition, the comparison of Bayes estimates are given under
the SE and the LINEX loss functions.

Proposition 2.1:
i) Ber1 < Bps,i forv > 0.

i) BBL,I > ng,1f0r — (b1 +T,,) <v<0.

[

Proof 2.1: It is known that

In(1+ z) < x for every x > —1. (2.28)

i) Suppose v > 0. v/(by + T,,) > 0, when by > OTaO > 0. We have
In(1+v/(by+Th,)) <v/(b1 + Th,) by the inequality (2.28). Therefore, g1 <
Brs.1.

ii) Suppose v < 0 and —(by + To,) < v, then v/(b; @O) > —1. We have
In(1+v/(by+Th,)) <v/(bi + Th,) by the inequality (2.28). Therefore, g1 >
B\BS,l- n

22



2.3.2.2. Bayesian Estimation When o and S Are Unknown

Assume that the parameters o and 8 have a joint bivariate density function,
suggested by [Al-Hussaini and Jaheen, [1992]]. The parameters o and  follow the

joint bivariate density function

(o, B) = m (B |a)ma(a), (2.29)

where

aaﬁ—l

[(a; + 1)b5+!

(B la) = Bre=PM 350 (ay > —1,b; > 0), (2.30)

and o has gamma distribution with parameters (as, by). From equations (2.6) and

(2.29), the joint posterior density function of « and [ is
7T(Ot, ﬁ| r, k) — I(I‘, k)am+a1+a25m+a1
a 1 m m
exp 1 — ——i—Ta)—a — = Inr; | — In(1+4+77) p, (2.31)
- (1. Emn) - Zowr 0
where
—1 00 —m—a;—1
[I(r7 k)] — / am+a1+a2 g + Ta 1
P(TTL +a; + 1) 0 bl

exp {—a (b_lz — ZZ In m) — ZZI In(1+ rza)} da. (2.32)

The Bayes estimator of a given measurable function of « and 3, say g(«, ) under the

SE loss function is

_ I Jy gla, B)L(a, B;r, K)n(a, B)dadf
I J Lie, Bi v k) m(a, B)dadB

/g\BS = Ea,ﬁ\r,k(g(a7ﬁ)) (233)
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It is not possible to compute equation (2.33) analytically. Two approaches are
suggested here to approximate equation (2.33), namely Lindley’s approximation and

MCMC method.

e Lindley’s approximation
For the two parameter case («, 3), we have from equation (2.31])

Q=mIl(r,k)+(m+a +a)lna+(m+a)lnp

Q 1 = < o
_— (b_l_|_Ta> — <b_2 —Elnn) —;ln(l—!—ri). (2.34)

The joint posterior mode is obtained from the equations Q) /0 = 0 and 0Q /9 = 0

as

~ m + a;

@ T 239

and « is the solution of the nonlinear equation

m4a+a m4a |1 " ko 1 Inr;
— = — + —— |-+ = 0. 2.36

It can be solved by using the same procedure in equation (2.10). The elements of the

Q*

m + CL1 m+ay +ap Inr; \2
= ki +1)r ‘ 2.37
Qn + Z Bki + (1 o ) ; (2.37)
. . 1 kiryInr; m 4+ ag
Qi = Q@n= b_1 Zzl H_—a7 Q5 = Ta (2.38)

and 7;5, 4, j = 1, 2 are obtained by using equations (2.37) and (2.38). Moreover,

1 2 2
Q2 = 0, Qa1 =— Z/““ < nr1> ,QO3ZM, (2.39)

33
2(m+ay + az) " o o Inm; °
Q30 = agl : _Z(ﬁki—i_l)(l_ri Jri (1+r?) - (240

i=1
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Therefore, the approximate Bayes estimates of « and 5 under the SE and the LINEX

loss functions are

- 1
QBS,Lind = O + 5 [Q307121 + 3Q21 11712 + Q037217'22] ; (2.41)

~ ~ 1 v
QBL,Lind = O — v In [1 + ) (UTll - Q307'121 —3Q21T11T12 — Q037'217'22)} , (242)

- ~ 1
BBs,Linda = B + B} [Q307127'11 + Qo1 (11722 + 2715) + Q037'222} ) (2.43)
~ ~ v? v
Ber.Lina =B ——In1+ —Tog — —Q30T12T11
v 2 2

v v
— 5@21(7117'22 + 27'122) - 5@037'222 (2.44)

Notice that all approximate Bayes estimates are evaluated at (a, B ).

e MCMC method

In the previous section, the Bayes estimates of « and 5 are obtained under the SE
and the LINEX loss functions by using the Lindley’s approximation. Since the exact
probability distributions of these estimates are not known, it is difficult to evaluate
HPD credible intervals of parameters. For this reason, the MCMC method are used to
compute the Bayes estimates of « and  under the SE and the LINEX loss functions
as well the HPD credible intervals.

The MCMC method are considered to generate samples from the posterior
distributions and then the Bayes estimates of o and $ under the SE and the LINEX loss
functions are computed. The joint posterior density of « and [ is given by equation

(2.31). It is easy to see that

Bl a,r, k ~Gamma (m +ay + 1, (a/by) + To) , (2.45)
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1 m m N
exp {—a (b—2 — Zlnn) - ;ln(l + 7 )} . (2.406)

Therefore, the samples of 5 can be generated by using the gamma distribution.
However, the posterior distribution of o cannot be reduced analytically to well known
distribution and therefore it is not possible to sample directly by standard methods.
If the posterior density of « is unimodal and roughly symmetric then it is often
convenient to approximate it by a normal distribution centered at the mode, (see
[Gelman et al.l 2003]]). Since the posterior density of « is log-concave density
(so unimodal) and the posterior density of « is roughly symmetric with respect to
mode (by experimentation), we use the Metropolis-Hasting algorithm with the normal
proposal distribution to generate a random sample from the posterior density of a.
The hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be used
to solve our problem, is suggested by [Tierney, 1994]]. This algorithm combines
the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian proposal

distribution.

e Step 1: Take some initial guess of a and 3, say a(®) and 5(),
e Step 2: Sett = 1.
e Step 3: Generate o*) from 7(a| 3, r, k) using the Metropolis-Hastings algorithm
with the proposal distribution g(a) = N(a,Vz) where & is a mode of
w(al B4, r, k) and V,, = (—=2(In7(a| B4, r,k))/da2) " :

-Step 3.1: Let v = ot~

-Step 3.2: Generate w from the proposal distribution g.

m(w] B, 1, k) q(v)
m(v] 84,1, k) q(w) |
-Step 3.4: Generate u from Uniform(0,1). If u < p(v,w) then accept the

-Step 3.3: Let p(v, w) = min {1,

proposal and set a®) = w; otherwise, set oY) = v.

e Step 4: Generate 3 from Gamma <m +ar + 1, (/b)) + 220 ki In(1 + r;"(t))>_
e Step5: Sett =1¢+ 1.
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e Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (o), 3()),
i=1... N

The samples obtained from the algorithm are used to compute the Bayes
estimates and to construct the HPD credible intervals. The Bayes estimator of
g = g(a, B) based on the SE and the LINEX loss function are given, respectively,
by

1 N—M ‘ 4
Gesarn = E(glr.k) = 5= > g, 8Y), (2:47)
i=M+1
and
1 1 -
Geram = ——In | = i_%jﬂ exp (—vgl@®?, BM)) |, (248)

where M is the burn-in period.
The HPD 100(1 — 7)% credible intervals of « and 5 can be obtained by the
method of [Chen and Shao, |1999]. In particular for «:
From MCMC, the sequence a4, ..., ay, are obtained, and ordered as o) <
. < a(ny. The credible intervals are constructed as (a(j),a(jHN(l,,y)D) for j =
1,..,N — [N(1 — 7)] where [z] denotes the largest integer less than or equal to x.
Then, the HPD credible interval of « is that interval which has the shortest length.

Similarly, the HPD credible interval of S can also be constructed.

2.3.3. Prediction of Future Record Values

In this section, the problem of prediction and prediction interval for the s th (s >

m) lower record value are considered using non-Bayesian and Bayesian approaches.

2.3.3.1. Non-Bayesian Prediction Approach

When the first m lower record values are observed, the predictive likelihood
function of Y = R,, s > m and the parameters 0 is given by [Basak and Balakrishnan,

2003]] as
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Ly, 0;1) = Hf(n;é) [H (y: 0) — H(rp; 0)]™"

Frs:0) T(s—m) f(y: 0). (2.49)

where 0 = (o, (), v = (r1,..,7m) and H(y;0) = —InF(y;0). Moreover, the
likelihood function associated with the sequence { Ry, K1, ..., R,,, K,,} is given by
[Samaniego and Whitaker, [1986] in equation (2.5). Similarly, the predictive likelihood
function for the future record R, based on the sequence { Ry, K1, ..., Ry, K, Rs} is

derived, we have

L(y,0;r,k) Hf ri; 0) {1 = F(ri; )Y ™ I oo 1) (r:)

[H(y;0) = H(rm; )]
['(s—m)

f(y;0). (2.50)

Notice that, K,, = 1 is defined for convenience, when the inverse sampling is
employed (see [Samaniego and Whitaker, |1986]]). The predictive maximum likelihood
estimator (PMLE) of (a, #) and the maximum likelihood predictor (MLP) of Y = R,
are obtained by maximizing the logarithm of the predictive likelihood function in

equation (2.50) with respect to mentioned parameters.

2.3.3.2. Bayesian Prediction Approach

The prediction and prediction interval of future records based on a Bayesian
approach are considered under the SE and the LINEX loss functions. The conditional

density function of Y = R, s > m given the past m records is

[H(y) — H(r)]™" " f(y)

flolr )= I'(s —m) F(ry)
s—m—1 s—m-—1 (_1)jf(y) [lnF(y)]j
jZO < ) ['(s—m)F(ry)[In F(rm)]—s+m+1+j7 (2.51)

where 0 < y < r,,. The Bayes predictive density function Y is given by
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h(y|r, k) = /0 /0 flylr,a, B)m(a, B r, k)dads. (2.52)

It is clear that h(y|r, k) cannot be expressed in closed form and hence it cannot be
computed analytically.

The consistent estimator of h(y|r,k) is constructed by using the hybrid
Metropolis-Hastings and Gibbs sampling procedure as described in MCMC case.
Suppose that {(«;, 5;), i = 1, ..., N} are MCMC samples obtained from 7(«, 5| r, k)
using the hybrid Metropolis -Hastings and Gibbs sampling technique. The consistent

estimator of h(y|r, k) based on the simulation can be obtained as

N
1
h(y|r k) = NZ (y]r, 04, 5y), (2.53)

and a consistent estimator of the predictive distribution of ¥ = R, based on the

simulation, say H (y|r, k), can be obtained as

H(y|r,k) ZF* ylr.o0, B), (2.54)

and F*(y|r,a, ) denotes the distribution function corresponding to the density

function f(y|r,«, 5) and
Flolrad) = [ rtras

S—

P s —m— 1D\ I F(ry)] ™ DG+ 1, — In F(y))
-2 < j ) I(s—m)F(r,) B

j=0

where I'(z,y) is an incomplete Gamma function, i.e. I'(z,y) = fyoo t"le~tdt. It
should be noted that the same MCMC samples {(«a;, §;), i = 1, ..., N} can be used to

compute ﬁ(y| r, k) or H(y|r,k) for all y.
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Then, the point predictor of Y = R, under the SE loss function is

Vo= [ty Z/ uf (ylr, o B)dy

yf y| a“ﬁl) F(rm; o, B)\]7"
N Z/ F(rm;aq, B;) {ln <m)1 dy.  (2.56)

The point predictor of Y = R, under the LINEX loss function is

. 1 i rm €7vyf<y; Qy, /Bz)
YL - _U In { N ;/Ov F(S — m)F(Tm;ahﬁi)

F(rm; o, B5) et
(n (i) e

For a special case, when s = m + 1, the conditional density function of ¥ =

Rs,s > m givenris f(y|r,«o,3) = f(y)/F(rm). Hence, the distribution function of

f(y|r, o, B) is given by

1+r;g>5 (1+y")" -1 258)

T+ye) (14r2)? -1

Fulras) - (

Therefore, /f;( ylr, k), H (y|r,k), Vs and Y}, are obtained from equations 1D , 1| ,
(2.56) and (2.57)), respectively by using equations (2.51) and (2.55).

Moreover, a symmetric 100y% prediction interval for Y, can be obtained by

solving the following non-linear equations, for the lower bound L and upper bound U,

1 1
% = P(Y > L]r,k):1—H(L|r,k):>H(L]r,k):TW, (2.59)
- 1

77 — P(Y > U]r,k):1—H(Uyr,k);»H(U|r,k)=ﬂ (2.60)

These equations can be easily solved by using the Newton-Raphson method.
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2.3.4. Simulation Study

In this section, some numerical results are presented to compare the performance
of the different methods for different sample sizes and different priors. The
performances of the point estimators and predictors are compared by using the
estimated risk (ER) and mean square predictor error (MSPE), respectively. The
performances of the confidence, credible and prediction intervals are compared by
using average confidence lengths and cps. The ER of 6, when 6 is estimated by 9\, is

given by
ER(0) = 1 EN ((/9\ — 0)2 (2.61)
N — RV '

under the SE loss function. Moreover, the estimated risk of 8 under the LINEX loss

function is given by

ER(6) = %ﬁ: (e”(@'—ei) — (é}- - 92-) - 1) , (2.62)
=1

where NV is the number of replication. Similarly, the MSPEs can be computed with
respect to SE and LINEX loss functions. All of the computations are performed by
using Matlab R2010a. All the results are based on 5000 replications.

In Table 2.1, the ML and Bayes estimates under the SE and the LINEX (v =
—2,—1,1 and 2) loss functions with their corresponding ERs are listed for 5 when
a is known (o = 2), f = 2.0092 and the prior parameters of § are chosen to be
(a1,b1) = (3,2). Since the exact distribution of the MLE of /3 is known, the 95%
exact confidence intervals are easily constructed. Moreover, the 95% Bayesian credible
interval for § which is obtained by using the posterior distribution of J are listed. From
Table 2.1, the average ERs of [ decrease as the sample size increases in all cases,
as expected. The Bayes estimates under the SE and the LINEX loss functions have
smaller ER than that of MLEs. The average lengths of the intervals decrease as the
sample size increases. The lengths of the Bayesian credible intervals are smaller than
that of exact confidence intervals. Also, the coverage probabilities are quite close to

nominal level 95%.
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In Tables 2.2 and 2.3, the ML and Bayes estimates under the SE and LINEX
loss functions with their corresponding ERs are listed for o and 5 when (o, ) =
(5.0381,1.0564), (5.9303, 1.4606), respectively. In the Bayesian case, two different
bivariate priors are considered as follows: Prior 1: (a1, b1) = (0.2,2), (as,bs) = (5,1)
and Prior 2: (ay,b1) = (1,3), (ag,by) = (6,1).The Bayes estimates are computed
by using Lindley’s approximation and MCMC method under SE and LINEX (v =
—2,—1,1 and 2) loss functions for different prior parameters. Moreover, the 95%
asymptotic and HPD credible intervals with their coverage probabilities are listed.
From Tables 2.2 and 2.3, the average ERs of « and (5 generally decrease as the sample
size increases. The ERs of Bayes estimates under the SE loss function are smaller
than that of MLEs. But under the LINEX loss function ERs of the Bayes and ML
estimates can not be compared. On the other hand, the ERs of the Bayes estimates
for o and (3 based on the Lindley’s approximation and MCMC methods are close to
each other under the SE and the LINEX loss functions when v > 0. The ERs of the
Bayes estimates under the LINEX loss function close each other as the sample size
increases when v < 0. The average lengths of the intervals decrease as the sample
size increases. Furthermore, the average lengths of the Bayesian credible intervals are

smaller than that of the asymptotic confidence intervals.

Table 2.1: Results for the true value of 5 = 2.0092, (a;,b;) = (3,2) and « is known.

Bayes estimates
LINEX Exact MLE Bayesian

MLE SEL v=-2 v=-1 wv=1 wv=2 confidenceinterval credible interval

m=>5
2.8388 2.1144 3.0982 2.4603 1.8802 1.7063 (0.927,5.8147) (0.9668,3.7032)
5.4084 0.5554 2.0372 0.3545 0.2307 0.8004 0.9406 0.9438

m = 10
2.3723 2.0860 2.5902 2.2948 1.9255 1.7961 (1.1376,4.0530) (1.1404,3.3124)
1.0663 0.3572 0.9697 0.2046 0.1586 0.5731 0.9432 0.9464

m =15
2.1987 2.0400 2.3663 2.1838 1.9216 1.8215 (1.2306,3.4431) (1.2282,3.0544)
0.5330 0.2654 0.7007 0.1497 0.1198 0.4372 0.9464 0.9496

m = 20
2.1454 2.0295 2.2761 2.1415 1.9338 1.8505 (1.3105,3.1828) (1.3003,2.9184)
0.3249 0.1890 0.4378 0.1007 0.0886 0.3318 0.9464 0.9528
Notes: The first row represents the average estimates and the second row represents corresponding ERs for each choice
of m. The last two columns, the first row represents a 95% confidence interval and the second row represents their cp’s.
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In the MCMC case, five MCMC chains are run with fairly different initial values
and generated 10000 iterations for each chain. To diminish the effect of the starting
distribution, the first half of each sequence are discarded and focus on the second half.
To provide relatively independent samples for improvement of prediction accuracy, the
Bayesian MCMC estimates are calculated by the means of every 5 sampled values
after discarding the first half of the chains (see [Gelman et al., [2003]]). In our case, the
scale factor value of the MCMC estimators are found below 1.1 which is an acceptable
value for their convergency.

In Tables 2.4-2.7, the point predictors for ¥ = R,,,; which are computed
(based on 5000 replications) by using non-Bayesian and Bayesian (with respect to
the SE and LINEX loss functions) methods and the 95% prediction intervals are
listed when («, ) = (5,1). In the Bayesian case, two different bivariate priors are
considered as follows: Prior 1: (a;,b;) = (0.2,2), (az,b2) = (5,1) and Prior 3:
(a1,b1) = (0.005,2.4/1.005), (az,b2) = (2,2.5). To observe the sensitivity of the
predictors with respect to different informative priors, these priors are chosen with
same means but different variances. Notice that the variances of the Prior 1 are smaller
than that of Prior 3. Moreover, to observe the effect of the inter-record times, the
point predictors and prediction intervals are also obtained based on only lower record
values (without taking inter-record times into consideration). The results based on
only lower record values are given in Tables 2.5 and 2.7. From Tables 2.4-2.7, the
average MSPEs of the point predictors decrease as the sample size increases in all
cases. Also, the average lengths of the prediction intervals decrease as the sample
size increases and their coverage probabilities are quite close to nominal level 95%.
Moreover, the MSPEs of the Bayesian point predictors which are obtained by using
lower record values and lower record values with their inter-record times are almost the
same. However, the average lengths of the prediction intervals based on lower record
values with their inter-record times are smaller than the one based on only lower record
values. Furthermore, Prior 1 can be considered as a good informative prior, because
its variance smaller than Prior 3. The MSPEs and the average lengths of the prediction
intervals using Prior 1 in almost all cases are smaller than those using Prior 3 based
on lower record values with their inter-record times. Similar results based on just

lower record values are observed only for sufficiently large m (m > 12). Therefore,
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Table 2.4: Predictions based on lower records with inter-record times using Prior 1.

Bayes point predictors
Tm LINEX Prediction interval
T+l SEL v=-2 v=-1 v=1 v=2 Length/cp
m=25
0.3738 0.304272 0.307671 0.306013 0.302443 0.300522  (0.157121,0.37166)
0.2755 0.006420 0.012191 0.003129 0.003290 0.013475 0.214545/0.9314
m=7
0.2518 0.206737 0.208197 0.207479 0.205972 0.205181  (0.111397,0.250464)
0.1867 0.003001 0.005747 0.001468 0.001534 0.006270 0.139067/0.9276
m =12
0.1635 0.135226 0.135801 0.135516 0.134929 0.134627  (0.075340,0.162595)
0.1238 0.001083 0.002114 0.000535 0.000548 0.002217 0.087255/0.9272
m =15
0.1607 0.133240 0.133782 0.133513 0.132961 0.132677  (0.074895,0.159849)
0.1242  0.000890 0.001741 0.000440 0.000450 0.001818 0.084953/0.9394

Notes: First column: The first row represents the average of the r,, th record values and second row
represents the average of the true values (7,,,41) which we want to predict. Last column, the first row
represents a 95% prediction interval (PI) and second row represents their lengths and cp’s. For the
others, the first row represents the average predictors and second row represents corresponding
MSPEs for each choice of m.

from these results we can infer that using the record values with their corresponding
inter-record times is preferable to the results based on only record values. On the other
hand, we empirically see that the MLP of Y = R, is very big compared to the last
record values which violates }A/M p < Tm. Hence, the MLP of Y was not listed when
the true values of o > 3 and 5 < 25 (contains the case in Tables 2.4-2.7).

A real-life data set which the amount of rainfall (in inches) recorded at the
Los Angeles Civic Center in February from 1943 to 2006 (see the website of Los
Angeles Almanac: www.laalmanac.com/weather/we0O8aa.htm) are given in Table
2.8. To see if the underlying distribution follows the Burr Type XII, we compute
the Kolmogorov-Smirnov distances between the empirical distribution and the fitted
distribution functions based on the complete data set. These distances are 0.1112,
0.1572 and 0.1567 based on parameter estimations by using ML and Bayes (Lindley
approximation and MCMC method under SE loss function) estimates, respectively.
The associated p values for the Bayes cases are 0.1 < p < 0.2 and for the ML
case p value is greater than 0.2. This indicates that Burr Type XII model provides
an adequate fit for data. The first 7 lower records (among 8 lower record values)

with their corresponding inter-record times are used for the estimates of («, 5) and
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Table 2.5: Predictions based on only lower records using Prior 1.

Bayes point predictors
Tm LINEX Prediction interval
T+l SEL v=-2 v=-1 v=1 v=2 length/cp
m=25
0.3738 0.304120 0.307625 0.305937 0.302191 0.300212  (0.150699,0.371640)
0.2755 0.006759 0.012722 0.003278 0.003482 0.014346 0.220941/0.9315
m=7
0.2518 0.198408 0.200342 0.199436 0.197325 0.196321  (0.090187,0.250146)
0.1867 0.002964 0.005662 0.001448 0.001518 0.006216 0.159958/0.9480
m =12
0.1635 0.119685 0.120807 0.120257 0.119101 0.118519  (0.042573,0.161937)
0.1238  0.000999 0.001960 0.000495 0.000504 0.002036 0.119365/0.9610
m =15
0.1607 0.115616 0.116762 0.116192 0.115030 0.114429  (0.038611,0.159088)
0.1242 0.000896 0.001752 0.000443 0.000453 0.001831 0.120477/0.9648

Notes: First column: The first row represents the average of the r,, th record values and second row
represents the average of the true values (7,,,41) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

Table 2.6: Predictions based on lower records with inter-record times using Prior 3.

Bayes point predictors
T LINEX Prediction interval
Trm+1 SEL v=—-2 v=-1 v=1 v =2 length/cp
m=>5
0.3738 0.303292 0.306801 0.305090 0.301402 0.299415  (0.153746,0.371641)
0.2755 0.006454 0.012241 0.003143 0.003310 0.013569 0.217895/0.9340
m=7
0.2518 0.206606 0.208076 0.207353 0.205835 0.205038  (0.110915,0.250461)
0.1867 0.003005 0.005753 0.001470 0.001536 0.006279 0.139546/0.9274
m =12
0.1635 0.135279 0.135853 0.135569 0.134984 0.134683  (0.075452,0.162597)
0.1238 0.001085 0.002118 0.000536 0.000549 0.002222 0.087145/0.9272
m =15
0.1607 0.133310 0.133850 0.133583 0.133033 0.132750  (0.075057,0.159852)
0.1242 0.000892 0.001745 0.000441 0.000451 0.001822 0.084794/0.9384

Notes: First column: The first row represents the average of the r,,, th record values and second row
represents the average of the true values (7,+1) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

prediction of Rg. In the Bayesian case, we need to determine the hyperparameters.

The method of moments are used as in Section 4.2.4 to obtain hyperparameters ai, as,
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Table 2.7: Predictions based on only lower records using Prior 3.

Bayes point predictors
Tm LINEX Prediction interval
T+l SEL v=-2 v=-1 v=1 v=2 length/cp
m=25
0.3738 0.300983 0.304911 0.303292 0.298323 0.296371  (0.140628,0.371344)
0.2755 0.006793 0.12753 0.003289 0.003508 0.014474 0.230715/0.9348
m=7
0.2518 0.194859 0.197305 0.196724 0.192646 0.191954  (0.082255,0.249968)
0.1867 0.002953 0.005623 0.001434 0.001526 0.006230 0.167713/0.9502
m =12
0.1635 0.116909 0.118231 0.117754 0.116003 0.115493  (0.037944,0.161798)
0.1238 0.001039 0.002029 0.000510 0.000530 0.002133 0.123854/0.9616
m =15
0.1607 0.112941 0.114185 0.113578 0.112291 0.111652  (0.034418,0.158947)
0.1242  0.000956 0.001865 0.000472 0.000484 0.001959 0.124529/0.9644

Notes: First column: The first row represents the average of the r,, th record values and second row
represents the average of the true values (7,,,41) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

by and b,. Therefore, the hyperparameters are obtained as a; = 1.1685, a; = 0.9543,
by = 0.7750 and b, = 0.9985. The Bayes estimates of the parameters, Bayes
point predictors and Bayesian prediction interval of Rg are obtained by using MCMC
method. The findings based on these approaches are listed in Table 2.9. It can be

observed that the prediction of Ry are satisfactory under Bayesian approach.

Table 2.8: Record data from a set of rainfall data during February from 1943 to 2006.

l 1 2 3 4 5 6 7 8
R, 307 152 086 0.63 033 0.15 0.11 0.08
K, 3 1 5 1 8 6 1 -

2.3.5. Conclusions

In this section, firstly the non-Bayesian and Bayesian point estimates as well as
confidence intervals for the unknown parameters of Burr Type XII distribution are
considered based on the lower record values with their corresponding inter-record

times. The ML estimates of the unknown parameters are derived under the inverse
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Table 2.9: Results by using bivariate prior for o and f3.

Method Q@ 16 Point Predictor of Rg
MLE 1.4089 0.5991 -

PMLE/MLP 1.3910 0.6743 0.3164

SEL 1.4524 0.6655 0.0634

LINEX(v = —2) 1.6127 0.7191 0.0643

LINEX(v = —1) 1.5257 0.6910 0.0638

LINEX(v = 1) 1.3877 0.6423 0.0629

LINEX (v = 2) 1.3293 0.6211 0.0624

HPD credible Int.  (0.7186,2.1370) (0.2921,1.1150) -

Prediction Int. - - (0.0058,0.1080)

sampling scheme. The Lindley’s approximation and MCMC methods are used to get
the Bayes estimates under the SE and LINEX loss function for bivariate prior case.
Monte Carlo simulation reveals out that the ERs of the Bayes estimates are smaller
than that of MLEs under the SE loss function. However, the ERs for the LINEX
loss function depend on the asymmetry parameter v. The average length of the HPD
credible intervals are smaller than that of the asymptotic intervals.

Secondly, non-Bayesian and Bayesian point predictors as well as prediction
intervals for the future lower record values are considered. The point predictors
and prediction intervals of the future lower record values are computed based on
only the lower record values and the lower record values with their corresponding
inter-record times. Therefore, we can see the effect of considering the inter-record
times for the predictors. Itis observed that using the inter-record times in the prediction
case decrease the average lengths of the prediction intervals with reasonable coverage
probabilities. On the other hand, the MSPEs of the point predictors are almost the
same for both cases. As a result, using the record values with their corresponding

inter-record times instead of just using the record values is suggested.

2.4. Estimation of The Reliability Based on Record Values

In the literature, many papers are available for an estimate of the reliability based
on a random sample or records sample. When the X and Y are independent and follow
the Burr Type III, X and XII, generalized exponential, Weibull, generalized logistic

and Kumaraswamy distributions, the estimation of R based on a random sample were
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studied by [Mokhlis, 2005], [Ahmad et al., |1997], [Awad and Gharraf, 1986, [Kundu
and Gupta, 2005], [Kundu and Gupta, 2006]], [Asgharzadeh et al., 2013|], [Nadar et
al., 2014], respectively. When the X and Y are independent and follow the one and
two parameters generalized exponential, Weibull, exponentiated gumbel, one and two
parameters exponential distributions, the classical and Bayesian estimates of R based
on records were considered by [Baklizi, [2008]], [Asgharzadeh et al., 2014, [Baklizi,
2012, [Tarvirdizadel 2013|], [Baklizi, 2014]], respectively.

The ML, uniformly minimum variance unbiased (UMVU) and Bayes estimates
of the stress-strength reliability based on complete sample were obtained by [Awad
and Gharraf, |1986] when the second shape parameter is common. They used the
gamma priors for the first shape parameters and constant number for the common
shape parameter in the Bayesian case. Recently, the ML, UMVU and Bayes estimates
of the stress-strength reliability were discussed by [Panahi and Asadi,|[2010] when the
second shape parameter is common and known. The multicomponent stress-strength
reliability was considered by [Web 1, 2015]. However, the statistical inference for the
stress-strength reliability of the Burr Type XII distribution based on record values has
not been considered up to now.

The main purpose of this section is to improve the inference procedures for the
stress-strength reliability based on upper record values while the measurements follow
the two-parameter Burr Type XII distribution when the first shape parameters are
common. When the first shape parameter « is unknown, the ML and Bayes estimates,
as well as asymptotic confidence and HPD credible intervals are derived. When « is
known, different estimates, namely ML, UMVU, Bayes and empirical Bayes estimates,
are obtained. The Bayes estimates of R under the SE and LINEX loss functions are
derived in closed forms for informative and non informative prior cases. It is also
obtained by using Lindley’s approximation and MCMC method. The exact and other
Bayes estimates are compared in terms of ER by the Monte Carlo simulations. Also,
the exact and asymptotic confidence intervals, as well as Bayesian, empirical Bayesian

and HPD credible intervals are constructed for R.
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2.4.1. Estimation of K When « Is Common and Unknown

The ML estimates, its existence and uniqueness, asymptotic confidence intervals,
as well as Bayes estimates and Bayesian credible interval for I? are obtained when the

first shape parameter o is common for the distributions of X and Y.

2.4.1.1. ML Estimation of R

Let X ~ Burr(a, 1) and Y ~ Burr(a, B2) are independent random variables.
Then, the reliability R = P(X <Y) is

R=P<X<Y>=/0°Ofy<y>P<X<Y|Y=y>dy

_ B
b1+ B2

(2.63)

The estimate of R are considered based on upper record data on both variables.
Let Ry, ..., R, be a set of upper records from Burr(c, 1) and Sy, ..., .S, be a set of
upper records from Burr(«, [33) independently from the first sample. The likelihood

functions based on records are given by, see [Arnold et al., [ 1998]],

/r'l»’ )
Li(B,alr) = rn,aﬁln I Py 5161) 0<r <...<rp (2.64)
b 9(sj; @, Ba)
Lo(Bo,a|s) = g(sm;a, ,0< 81 < ... < s, (2.65)
2( 2 | ) ( 2)] L 1 —G(SJ,OC,/BQ) 1

where r = (ry,...,7,), $ = (S1,...,5m), [ and F are the pdf and cdf of X follows
Burr(ca, By), respectively and g and G are the pdf and cdf of Y follows Burr(«, 32),

respectively. Then, the joint likelihood function of (1, 82, «) given (r, s) is given by

L(Br, B a|r, ) = ha(r; @)ha(s; a)a™ ™ By e T rmic) g =f2alomia) - (2,66)
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where

n T‘?_l m S?_l
(o) = HHT?’ h2<§,a>—jH11+S?, (2.67)
Ti(rp;a) = In(14+79), Ta(spm;a) = In(1 4 s2). (2.68)

The joint log-likelihood function is

[(B1, B2, a|r,s) = Inhy(r;a) +Inho(s; ) + (n 4+ m) Ina

+nln B +min By — BT (1 ) — BoTo(sm; ). (2.69)

The ML estimates of 31, 2 and «, say 31, BQ and @, are given by

~ n
B = T rua)’ (2.70)
~ m

By = Tolomi )’ (2.71)

and a is the solution of the following non-linear equation

n+m " In T nrolnr, /(1 +rs
L3 I /(4
L+ re In(1+ r2)

07 X
=1

" Ins;  ms Ins,, /(14 s2)
- —nr T =0. (272
+Zl+sq In(1+ s2) (272)

Therefore, & can be obtained as a solution of the non-linear equation of the form

h(a) = o where

Inr,  nrdlnr,/(1+719)
L+7rd In(1+r2)

h(a) = —(n+m) |>

i=1

— . (273
L+ s In(1+ s2) (273)

+i Ins;  ms%Ins,/(1+s%) B

j=1
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Since, @ is a fixed point solution of the non-linear equation (2.73), its value can be
obtained using an iterative scheme as: a1y = h(a(j)), where ay;) is the 4 iterate of
a. The iteration procedure should be stopped when ‘a(jﬂ) — Qagj } is sufficiently small.
After & is obtained, Bl and B\Q can be obtained from (2.70) and || respectively.
Therefore, the MLE of R, say ﬁ, is given as

~

R (2.74)

514—32‘

Next, the existence and uniqueness of the ML estimates of the parameters 31, 5 and «
are established. We present the following lemma that will be used in proof of Theorem

2.2.

Lemma 2.2: Let

(2.75)

w(z) = [In(1+ 2) + &(x) [@ - 1] |

where {(x) = x1n(z)/(1 4 x). Then w(z) > 0 for x > 0.
Proof 2.2} For a proof, one may refer to [Ghitany and Al-Awadhi, 2002|]. W

Theorem 2.2: The ML estimates of the parameters (1, 35 and o are unique, with B\l =

n/Ti(ry; @), 32 = m/T5(sm; @) where Q is the solution of the non-linear equation

n+m "L Inry nrolnr, /(1 +ry
_ntm s ln o/ 4

— L+ re In(1+r)

in: Ins; _msfnlnsm/(ljts%)_o (2.76)

s 1+ s¢ In(1+ s2,)

if at least one of the rj, 1 = 1,...,n (or sj, j = 1,...,m) is less than unity.

Proof 2.2} We have, G(0) = lim,_,o G(),

n+m “lnry " Ins; nlnr mlns
— li Z J_ DT "o (277
G(0) im —1—2 5 +Z 5 512 52 00 ( )
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Let

no o= Inr,  nr®nr,/(1+r2)
ey _nry n 2.78
1(a;1) o +; 14 re In(1 + r2) ’ ( :
and
Galass) = = +i Ins;  mspInsn/(1+s5) (2.79)
o;8) = — o .
2T = o O 1+ 5§ In(1+s5)

Then, G(o) = Gi(a;r) + Go(a;s). Firstly, the limit of G1(o;r) as o — o0 is

considered.

i) If vy, is less than unity, that is r; < 1,1 = 1,..,n, then, Gi(oo;r) =

hma%oo Gl (CY, f)u

. n o~ Inr nlnr,/(1+17)
] n _ n 2.80
Gl(OO,f) 1m ( +Z 1-’-7"? ln(l-i—?”%)/?"% ) ( :

=> (Inr;—1Inr,) <0. (2.81)
=1

ii) If only r, is greater than or equal to unity, that is r, > land r; < 1,1 =

1,....n—1, then

[y

avos \a - =14y 147y In(1 + r2)

i P o Inr, /(14 7o
Gi(o0;7) = lim <ﬁ+ nri o oy e ””)) (2.82)

n—1
- Z Inr; < 0. (2.83)
=1

iii) If r,, and some r; record values are greater than unity and some r; record values

are less than unity, thatisr, > landr; > 1,1 =p,...t,1 <p <t < n, then

n - Inr; - Inr,
G cr) = 1i — ! t
ooin) = lim 3 0k D et D L+rp

i=1(r;<1) ¢ i=1(r;>1)

n

& Inr;,  nr@lor,/(1+r)
- —= - = Inr;, <0. (2.84
+,Z 1+7rd In(1+r) Z nr (2.84)
1=1(r;>1) 1=1(r;<1)
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When the conditions given in i)-iii) holds for s;, j = 1, ...,m, Ga(a; s) < 0as a — oc.
So that, the limit of G(a) = G1(a;1) + Ga(a;s) < 0as o — cowhenry, i =1,...,n
and sj, j = 1,...,m satisfy any of the conditions given in i)-iii).

Next, we need to show the limit of G(a) < 0asa — oo fors; >1,7=1,...m
and when the conditions given i)-iii) holds for r;; 1 = 1,...n (orr; > 1,2 =1,...,n
and when the conditions given i)-iii) holds for s;, j = 1,...,m). In particular, when
sj > 1,7 = 1,...,m and the conditions given i) holds for r;, i = 1, ...,n, we can take
« large enough, such that Go(c; s) — 07 and G1(a;r) + Ga(a;s) < 0as o — oc.
Other cases can be obtained similarly.

Finally, we need to show that there is no solution if all records are greater than
unity, thatisr; > 1, =1,...,nand s; > 1,j=1,...m. Ifr; > 1,i=1,...,n, then

o

n 1 n +
Gl(a;f)<a+nlnrn 1—1—7’%_(1—4—7“3)2 — 0" as o — 00. (2.85)

Similarly, Go(c; s) — 07 as a — oo. Therefore, G(a) — 0% as a — <.

Except all records are greater than unity, we obtain that lim,,_,o G(«) = oo and
lim, 0 G(c) < 0. By the intermediate value theorem G(«) has at least one root in
(0, 00). If it can be shown that G(«) is decreasing, then the proof will be completed. It

is easily obtained that

oGy (o) 1 —~ &) | n&(re) (1 1
da @ T TRy <%‘1n<1+rs:>)]
e n o
a2 [; r +(ln(1+rﬁ))2w(rn)]. (280
Similarly,
0Gs(azs) 1 Xm:52(3?> + B w(sY) 2.87)
da of | & s (m(1+sg)” ") |

It is clear that 0G,(a;1)/0ac < 0 and 0Gy(a;s)/0a < 0O by using Lemma 2.2.
Therefore, 0G(«) /0o < 0.
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Finally, we will show that the ML estimates of (01,2, «) maximizes the
log-likelihood function (51, B2, ac|r,s). Let H(B1, 52, ) be the Hessian matrix of
[(B1, B2, |1, s) at (By, o, «x). It is clear that if det(H) # 0 for the critical point
(B1, B2, ) and det(Hy) < 0, det(Hy) > 0 and det(H3) < 0 at (p1, B2, «) then it is a

local maximum of l(31, Pa, v |1, s ), where

521 o2 O
Hy =~ Hy = o 00\ Hy=Handl =1(By,fa, |1, 8).  (2.88)
ﬁl 0B20p1 862

It can be easily seen that

a2
det(H; (B, P2, @) = —M<O, (2.89)

av) 2 a2
det(Hy(By, Ba, @) = (n(1+730)" (In(+55))" 0, (2.90)

n m

and

2

0G(@) (n(1+r)* (In(1 + s3,))
oo n m

det(HQ(BlvB\Z?a)) = < 0. (291)

Hence, (31, B\g, Q) is the local maximum of l(3y, B2, a |1, s ). Since there is no singular
point of l(81, Po, v |1, s) and it has a single critical point then, it is enough to show that
the absolute maximum of the function is indeed the local maximum. Assume that there
exist a @y in the domain in which (@) > 1*(Q), where I*(@) = I(By, Ba, Q| s).
Since Q is the local maximum there should be some point o in the neighborhood of
& such that I*(Q) > I*(ay). Let k(o) = I*(«) — I*(Q) then k(ap) > 0, k(o) < 0
and k(@) = 0. This implies that o, is a local minimum of the [*(«), but & is the only

critical point so it is a contradiction. Therefore, ([1, B, Q) is the absolute maximum

of 1(B1, B2, a |£,§)~ u

Remark 2.1: In case all records are greater than one, we can still get a unique solution
of the parameters when we divide the record values, say by r,, ( or by s, or divide r;
by ry, and divide s; by s,, ) as long as the transformed observations follow from Burr

Type XII.
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2.4.1.2. Asymptotic Distribution and Confidence Intervals For R

The Fisher information matrix I = I(;, 52, «) is given by

52 92 92
E(a_ﬂ%) E(aﬁlalﬁQ> E(BBIQOAQ) .[11 112 113
I=~|EGgs) B EGLg) | =1 I» b, (2.92)
EGES) EGly) B fa T L
where I, = n/B3%, I, = m/f33,
Rn lan ﬁ?lpl(nvﬁl)
2= F = 2.93
13 < 1+ R ) al'(n) (2.93)
S,InS,, Py (m, )
I = FE — 2 ! 2.94
23 ( 1+ 852 > al’'(m) ( )

Pa(n, Br) | B M a(m, Bo)

e T a0 299
oo a—1
r(a,b) = /0 xln:”((llrifz;i)) da, (2.96)
[z (nz)® (In(l +2))*!
¥a(a,b) = /0 T dz. (2.97)

By the asymptotic properties of the MLE, R is asymptotically normal with mean R

and asymptotic variance

3

i OR OR |
= Z Z 5551 (2.98)

Jj=1 =1

where 53 = « and Igl is the (7, j)th element of the inverse of the I(f;, B2, @), see
[Rao, [1965]]. Then,

OR\? OR OR OR\?
2= == ! P il B 2.
UR (8,81) I +2aﬁ aﬁ ‘[12 +(862> ]227 ( 99)
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where OR/0B1 = [2/(B1 + (2)* and OR/DBy = —P1/(B1 + (2)*. Therefore, the

asymptotic 100(1 — )% confidence interval of R is

(R = 2/280 R+ 220 (2.100)

where 2, is the upper th quantile of the standard normal distribution and o' is the

value of oy at the MLE of the parameters.

If the likelihood equations have a unique solution §m then §n 1S consistent,
When

asymptotically normal and efficient, see [Lehmann and Casella, 199§].

the likelihood equations have a unique solution, the observed information matrix

Jm(Bl,Bz, a)/m is a consistent estimator for I,,(51, B2, «)/m (see Appendix C in

[Lawless, [2003]). The observed information matrix J(3;, 52, @) is given by

0% 9% foad)
Ju Jio Jis

8@% 8/312852 8ﬁ12804
J(ﬁbﬁ%a) = - % g_ﬁé Bﬁiﬁ == J21 J22 J23 s (2.101)
01 021 22 J31 Jzp Js3
Oa?

90df1  0adps

where
n r®lnr m s 1Ins
Jii ==, Jig = Jy = 2—2, = —, Jog3 = J3 = 1 - 2.102
11 12 12 21 1+ ra 22 % 23 32 1+ ( )
n—+m . Inr; \2 " Ins; \°
J = a ! So.é —‘7
% a? +ZT’ (1+rf’> +; I (14—8?‘)

Inr 2 Ins 2
« n - i .21
won () +on () - @i

Therefore, an asymptotic 100(1 — )% confidence interval of R can be obtained

following from equation (2.100) by replacing / with .J in equation (2.99).

2.4.1.3. Bayes Estimation of i
We assume that all parameters (1, 52 and o are unknown and have independent
gamma prior distributions with parameters (a;,b;), i = 1,2,3, respectively. The

density function of a gamma random variable X with parameters (a, b) is
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ba
flz) = F(a)x“*e*wb, x>0, a,b>0. (2.104)

Then, the joint posterior density function of (31, 32 and « is

T (B, Boy a|r, 8) = (1, 8)hi (1; ) ha(s; )T Hes—1 gntar=l gmax =1

exp {—abz — By (b1 + T1(rn; ) — Bo (ba + To(sm; )}, (2.105)

where

-1 > T'(n4a1)T(m+az)hi (r;0)ha(s;a)antmtaez—le—abs
[I(£7 §)] - /O (;1+T1(rn;2a))ln+“1(b22+T2(sm;a))m+‘12 da. (2106)

Then, the Bayes estimate of a given measurable function of [, and «, say

u( 4, o, ) under the SE loss function is

iy — / N / N / T wlBrs By )T (B, By |1, 8 )dBrd e, 2.107)
0 0 0

It is not possible to compute equation (2.107) analytically. Two approaches can be
applied to approximate equation (2.107)), namely Lindley’s approximation and MCMC

method.

e Lindley’s approximation
For the three parameter case (1, 82, ), we have L1 = —n /3%, Lyy = —m/ 33,

L13 = L31 = —r;‘;lnrn/(l +7"Z), L23 = L32 = —S%lnsm/(l + S?n)

n+m - Inr; \2 " Ins: \?2
_ « ? E /‘ [e% J
Las===0 _Z¢—1 hi (1+7“?) e (1+s°‘>

By Inr, \ Bys In s, \ (2.108)
n\ T Pel\Tsse)

p1= ((ar —1)/B1) = b1, p2 = ((ag — 1)/B2) = ba, p3 = ((az — 1)/a) = b3, 03,1, =
1,2, 3 are obtained by using L;;, 4,7 = 1,2,3 and L1711 = 2n/3}, Lass = 2m/ s,
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Inr 2 Ins 2
L33 = Lag = —r® - Loss = L3y = —5% 4l 2.10
133 331 Ty <1 +T%) , 1233 322 Sm (1 —l—S?n) ) ( 9)

~ 2(n+m) irf‘(l—r Y(In7;)? is (1—s59) lnsj)

— (1+7r2)3 s 1+s

B =rp)(Inry)®  Basy (1 —sp)(In sm)z‘

(1+ra)? (1+52)? (2-110)

Moreover, A = o11L111 + 0331331, B = 0920990 + 0330332 and C' = 20130133 +
2093933 + 033L333. To obtain the Bayes estimate of IR under the SE loss function,
we take u(f1, B, ) = R = B1/(B1 + Ba2). Then, uz = uiz = ugz = uzz = 0,
uy = Baf (B + P2)% ug = —B1/(Br + B2)?, w2 = ug1 = (Br — Ba) /(B + B2)?, uny =
=20/ (B1 + B2)?, uza = 261/ (B + B2)* and ¢4 = w2012, €5 = (u11011 + U22022) /2.

Hence, the Bayes estimate of 12 under the SE loss function is

~ 1
Rps Lindiey = R+ [uic1 + uaca + ¢4 + c5) + B {A w011 + u2012)

B [u1021 + u2022] + C [U10'31 + 'LL20'32]} . (2111)

Notice that all parameters are evaluated at ( Bl, BQ, Q).
For the Bayes estimate of R under the LINEX loss function, u(f;, 52, &) = e vk
are taken. Then, us = uyz = Upz = usz = 0, uy = —vBee "B/(B1 + B2)?, up =

vBre” " /(b1 + B2)°

Ve BBy ve (B — fa)

w—— _ , (2.112)
" (81 + B2)* (61 + B2)?
. ve "B(vB2 + 28,82 + 23) Uy — ve (v — 2818 — 267) 2.113)
Git ) it &)
and ¢4 = u12012, ¢5 = 3(u11011 + U2202:). Then, the Bayes estimate of R under the

LINEX loss function is ﬁBL,Lmdley = — (ln E(e’”R)) /v where
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1
E(e ™) = e ™ 4 [uye; + ugeo + ¢4 +cs5] + 5 {A[uy011 4 uz01s]
B [U10'21 + UQO'QQ] + O [U10'31 + UQO'32]} . (2114)

Notice that all parameters are evaluated at ( B\l, BQ, Q).

e MCMC method
In the previous section, the Bayes estimate of R are obtained by using the
Lindley’s approximation under the SE and the LINEX loss functions. Since the exact
probability distribution of R are not known, it is difficult to evaluate Bayesian credible
interval of R. For this reason, the MCMC method are used to compute the Bayes
estimate R under the SE and the LINEX loss functions as well as the HPD credible
interval.
The MCMC method are considered to generate samples from the posterior
distributions and then compute the Bayes estimate of R under the SE and the LINEX
loss functions. The joint posterior density of o and 3 is given by equation (2.105)). It

is easy to see that the posterior density functions of 3;, 5 and « are

bila,r,s ~ Gamma(n + ay, by + Ti(rp; @), (2.115)

Bala,r,s ~ Gamma(m + az, by + To(sm; @), (2.116)

and

m(a|By, Ba,1,5) oc " exp {—aby — BT (rm; @) — BoTo(5m; )}
exp {— Zln(l +7r¥) + (Z Inr; +72, In sj> — Zln(l + s?‘)} . (2.117)
=1 i=1 j=1

Therefore, samples of §; and [; can be generated by using the gamma distribution.
However, the posterior distribution of o cannot be reduced analytically to well known

distribution and therefore it is not possible to sample directly by standard methods.
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If the posterior density of « is unimodal and roughly symmetric then it is often
convenient to approximate it by a normal distribution (see [Gelman et al., 2003]).
Since the posterior density of « is log-concave density (so unimodal) and it is roughly
symmetric (by experimentation), we use the Metropolis-Hasting algorithm with the
normal proposal distribution to generate a random sample from the posterior density
of a. The hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be
used to solve our problem, is suggested by [Tierney, 1994]. This algorithm combines
the Metropolis-Hastings with Gibbs sampling scheme under the normal proposal

distribution.

Step 1: Start with initial guess ().
e Step 2: Set: = 1.
e Step 3: Generate Bfi) from Gamma(n + ay, Ty (1,; a01) + by).
e Step 4: Generate 55’ from Gamma(m + ag, To(Sm; 2D + by).
e Step 5: Generate a® from 7(a|f1, B2, 1, s) using the Metropolis-Hastings
algorithm with the proposal distribution g(a) = N (a1, 1) :
Step 5.1: Let v = a1,
-Step 5.2: Generate w from the proposal distribution gq.
2.8 1, 5) q(v)

L, —
n(w |87, 8 1. 5) a(w)

-Step 5.4: Generate u from Uniform(0,1). If u < p(v,w) then accept the

m(w
-Step 5.3: Let p(v, w) = min

proposal and set (") = w; otherwise, set o) = v.

e Step 6: Compute the R = 8\ /(3% 1 gy,

e Step7. Sett =1+ 1.

e Step 8. Repeat Steps 2-7, N times, and obtain the posterior sample R, i =
1,...,N.

This sample are used to compute the Bayes estimate and to construct the HPD
credible interval for R. The Bayes estimate of R under the SE and the LINEX loss

function are given as

N-M

. 1 .
R — R 2.118
BSMCMC = 77 i:%;rl : ( )
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v N-—-M

Rpr vome = ! In E(e™®) = Ly ( L N_ZM e“R“>> . (2.119)
’ v i=M+1
where M is the burn-in period.

The HPD 100(1 — )% credible interval of R is obtained by the method of
[Chen and Shaol |1999]. From MCMC, the sequence R(l), el RW) | are obtained,
and ordered as R(;y < ... < R(y). The credible intervals are constructed as
(R(j), R+ va—y)) for j =1,..., N — [N(1—~)] where [z] denotes the largest integer
less than or equal to x. Then, the HPD credible interval of R is that interval which has

the shortest length.
2.4.2. Estimation of 7 When o Is Common and Known
The estimation of R are considered when « is known, say o = «p. Let

Ry,..., R, be a set of upper records from Burr(ag, ;) and Si,..., S, be an

independent set of upper records from Burr(ayg, B2).

2.4.2.1. ML Estimation and Confidence Intervals of R

Based on the above samples, the MLE of R, say R MLE, 1S

3 B T5(Sm;
Ry = — B . n 2(5 Oéo)

L , (2.120)
By + By T (Sm; o) + mTi(ry; o)

where T (1,; ag) = In(1 4 r20), Th(Sm; o) = In(1 + s20).
It is easy to see that 23, In(1 + r2) ~ x?(2n) and 26, In(1 + s2°) ~ x*(2m).

A
F* = ( i ) ARMLE (2.121)
1-R Ryre

is an F distributed random variable with (2n,2m) degrees of freedom. The pdf of

Therefore,

R,r1E 1s as follows;
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1 np\" ()

mpBar

where 0 < r < 1. The 100(1 — )% exact confidence interval for R can be obtained

as

1 1
1+ F2m,2n;g <%> 14 FZm,Qn;k% (%)

RyLe RyLE

(2.123)

where Iy, 9. 1 and F2m72n;1_% are the lower and upper %th percentile points of a F'
distribution with (2m, 2n) degrees of freedom.
On the other hand, the approximate confidence interval of R can be easily

obtained by using the Fisher information matrix. The Fisher information matrix of

(B1, B2) is

921 o2

- E(@T%) E(@ﬁlam) _(n/Bt 0 (2.124)

e s(g)) L0 ) ®
9pB10p2 053

By the asymptotic properties of the MLE, R v e 1s asymptotically normal with mean

R and asymptotic variance

2 2
OR OR
2 -1
"=2. 255 95, (2:129)

where [ 51 is the (7, j) th element of the inverse of the I, (see [Rao, |1965]). Then, the

asymptotic 100(1 — )% confidence interval for R is
(EMLE — 2y/20R, JSLMLE + 27/233> ; (2.126)

where z, is the upper ~yth percentile points of a standard normal distribution, 0%, =

R*(1 — R)?(1/n+ 1/m) and G, is the value of o at the MLE of the parameters.
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2.4.22. UMVUE of R

When the first shape parameter « is known, (77(7,;a0), To(sm;a0)) is a
sufficient statistics for (51, 32). It can be shown that it is also a complete sufficient

statistic by using Theorem 10-9 in [Arnold, |1990]. Let us define

1 ifR <5

R, S)) = . 2.127
¢(B1, 51) {OifR1251 (2.127)

Then E (¢(Ry,S51)) = R so it is an unbiased estimator of R. Let P, = In(1 + R{°)
and P, = In(1 + S%). The UMVUE of R, say Ry, can be obtained by using the
Rao-Blackwell and the Lehmann-Scheffe’s Theorems, (see [|Arnold, [1990]),

Ry = E(¢(P, P) | (T1,T»))

= / O(Pr, Py) fpim (01 |T1) fro i (P2 | T ) dpr dp2, (2.128)
Py J P

where (Tl, Tg) = (Tl (T’n, Oé(]), TQ(Sm; Oé(]>), f(pl,pg ‘Tl, Tg) is the conditional pdf of
(Py, P,y) given (T1,T5). Using the joint pdf of (Ry, R,,) and (54, S,,) and after making
a simple transformation, we obtain the fp, 1, (p1|71) and fp, 1, (p2 |12 ), and are given

by

_ (ty —p1)"
fpl‘Tl (pl | Tl) = (n — 1)tn—717 0< p1 < 11, (2.129)
1
ty — m—2
Fram(p2 | To) = (m — 1)%, 0<ps<ts  (2130)
2

Therefore,

Ry — / / frum (1 | T fems(pa | To)dprdps

P <P
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_1 1 o n—2 o m—2
t1 ft2 (77, )(m )(tl pl) <t2 p2) ddepl if to >t

0 p1 t?iL—lt;n—l
= , , (2.131)
n—1)m—1)(t1 —p1)" “(ta — p2)"" )
(;2 énz ( ) )gnl_ltfi)l (t2 — p2) dpydpy ifty <t
1 b2
2F1(1,1—m,n,t1/t2) lftQZtl
1 BT —mmtafty) ifts <t
where oF)(.,.;.;.) is Gauss hypergeometric function, (see formula 3.196(1) in

[Gradshteyn and Ryzhik} [ 1994]).

2.4.2.3. Bayes Estimation of R

Assume that the parameters 3; and [3; are random variables and have independent
gamma prior distributions with parameters (a;,b;), i = 1,2, respectively. Then, the

joint posterior density function of 3; and [, is

A pD2 et e
7 (B, P |, 1, 8) = m fl ! 32 le=Prhie ﬁQ}‘Q, (2.132)

where )\1 = bl + Tl(rn;ao), )\2 = bg + TQ(Sm;OéQ), 51 =n++ ay, (52 =m + as. The
posterior pdf of 2 can be obtained by using the joint posterior density function and is

given by

fR(r) B A‘il )\32 7,51—1(1 _ 7,)52—1

= , 0<r<1. 2.133
B(01,02) (rAy 4 (1 = r)Ag)" @139

After making suitable transformations and simplifications by using formula 3.197(3)
of [Gradshteyn and Ryzhik, [1994], the Bayes estimate of 2, say fAZBS, under the SE
loss function is

51
c(i_;> 2Fie 0+ e+ 1= 51 i A < A
Bps — 6 , (2.134)
2
c(&) 2F1<c*,52;c*—|—1;1—§—f) if Ay < )\

1

where ¢ = §;/c* and ¢* = §; + ds.
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The Bayes estimate of R under the LINEX loss function, say EB L, 1S EB L =
—{In Eg(e ")} /v, where Eg(.) denotes posterior expectation with respect to the

posterior density of 1. It can be easily obtained that

51
<§—;> (51, c* C ]_ — & —U) if )\1 < )\2
E(e %) = i , (2.135)
(i—?) ’ 6_v@1<52,0*,0 1-— U) if )\2 S )\1
where ®4(., ., ., ., .) is confluent hypergeometric series of two variables, (see formulas

3.385 and 9.261(1) in [Gradshteyn and Ryzhik, [1994])). Therefore,

(cl—i-ln[ 1(d1, ¢, c* 1———U)D if Ay < s

Rpr = , (2.136)

@I)—‘ GII—‘

<02—|—ln[ 1(0g, ", ¢ 1— v)]) if Ao < )\

where ¢; = 0; In(32 L) and ¢y = d, In(32 2) — 0.
If we use the Jeffrey’s non informative prior, is given by v/det /, then the joint
prior density function is w(51, 82) o 1/31/52. Therefore, the joint posterior density

function of 3; and (3, is

7™

O (2.137)

7T(51,52 \040,£7§)

and the posterior pdf of R is given by

TlnT2m 7m—l(l _ T)m—l

Jalr) = B(n,m) (rTy + (1 — r)Ta)»tm’

0<r<l, (2.138)

where 17 = T’ (rp,; ap) and Ty = T5(S; o). The Bayes estimate of R under the SE

and the LINEX loss function, say I?Z*B g and E*B ;, respectively, are

R c3 <%> 2F1(c§,n+1;c§+1;1—%) it Ty < Ty
Rps = : (2.139)
€3 <%’> oI (e, mycy +1;1 — %’) ifT, <T)
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and

1 T
= <c4 +In {@1(71,@;,@;, 1— =1, —U)D it Ty < Ty
v T2

Ry, = ,  (2.140)
1 15 .
— (c5 —v+1In {Ql(m,cg,cg, 1- ﬁ,v)]> itT, <T
where c3 = n/ck, ¢ =n+m,cy, =nn(T)/T3) and ¢5 = mIn(T5/TY).

The Bayes estimates are not always derived in the closed forms. However, for
our case the Bayes estimates are obtained in the closed form. These estimates can be
obtained by using alternative methods such as Lindley’s approximation and MCMC
method. The purpose of applying all these two methods is to see how good the
approximate methods compared with the exact one. If these result are close, then
it will be encouraging to use the approximate methods when the exact form can not
be obtained as in the case of o unknown. These estimators will be compared in the
simulation study section. Next, the Bayes estimates of R are given by using Lindley’s

approximation and MCMC method.

e Lindley’s approximation
The approximate Bayes estimate of R under the SE and the LINEX loss

functions for the informative prior case, say [Rpg rindiey and BB, Lindiey T€SPECtively,

are
5 ~ 1-R? R(1-R
Rps Lindiey = R <1 + n(+ o _) T Sr - _)1> : (2.141)
and
~ ~ 1 Ri(1—R)(vR—2) RiR(v—vR+2)
mdiey = R— —1n | 1 2.142
B indiey = 1 =710 ( M T r— dmta—1) ) &4

where R — El/(Bl +Bo), Ry = vR(1— R), By = (n+ay—1)/(by +Ti(ry; o)) and
Bo = (m + az — 1)/ (b + To(sm; ).

If we use the Jeffrey’s non informative prior, the approximate Bayes estimate
of R under the SE and the LINEX loss functions, say E*BS, Lindiey a0d E*BL, Lindley

respectively, are
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n—1 m—1

~ ~ 1-R? R(1-R
BS,Lindley — R (1 + ( ) - ( )> ) (2143)

and

Ry finaen = R— =1
BL,Lindley v 2<TL _ 1) 2<m _ 1)

1n<1+RmL<me—2),&RW—UR+®>’QJM)

where R = by/(by + by), R = vR(1 — R), by = (n — 1)/Ty(rn; ) and by =
(m — 1)/ Ta(sm; ).

e MCMC method
It is clear from equation (2.132)), the marginal posterior densities of §; and

[ are gamma distribution with the parameters (91, A1) and (d2, Ao), respectively. A
samples are generate by using Gibss sampling from these distributions. The following

algorithm are used.

e Step 1: Seti = 1.

e Step 2: Generate 5?) from Gamma(dy, A1).
Step 3: Generate Bg) from Gamma(da, Ag).
Step 4: Compute the R® = 8 /(31 4 i),
Step 5: Seti =1+ 1.

Step 6: Repeat Steps 2-5, N times, and obtain the posterior sample R, i =
1,...,N.

This sample is used to compute the Bayes estimate and to construct the HPD
credible interval for k. The Bayes estimate of R under the SE and the LINEX loss

functions are given as

N
RBS MCMC = 3¢ Z (2.145)
1 1 1 o
o) _ _ = —vRy _ _ - —vR®
Rprmcme = » In E(e™™) ” In <N ; e ) . (2.146)

The HPD 100(1 — )% credible interval of R can be obtained by the method of [Chen
and Shao, [1999].
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2.4.2.4. Empirical Bayes Estimation of R

The Bayes estimates of I? are obtained by using three different ways. It is clear
that these estimates depend on the prior parameters. However, the Bayes estimates can
be also obtained independently of the prior parameters.

These prior parameters could be estimated by means of an empirical Bayes
procedure, (see [Lindley, [1969], [Awad and Gharraf, 1986]). Let R,,..., R, and
S1, ..., Sm be two independent random samples from Burr(ay, 51) and Burr(a, 52),
respectively. For fixed r, the function L, (/31 |ap, ) of 31 can be considered as a gamma
density with parameters (n + 1,7 (r,; o)). Therefore, it is proposed to estimate the
prior parameters «; and (; from the samples as n + 1 and 7} (r,; o), respectively.
Similarly, cs and (35 could be estimated from the samples as m + 1 and T5(s,,; ap),
respectively. Hence, the empirical Bayes estimate of R with respect to SE and LINEX

loss functions, say R rps and R pBL, respectively, could be given as

N CeCr 2F1 (C13, 2n + 2, C13 + 1, Cg) if T1 < T2
Reps = ) (2.147)
cecs 2 F1(c13,2m + L;c13 + 1;¢0) i 15 < Ty

and
1 ((Qn +1)In(&) + lncn) if Ty < Ty
Rppr = . (2.148)
1 ((Qm +1)In(%) —v+n 012) if T, < T

where Cg = (271 + 1)/0137 Cr = (Tl/T2)2n+l, cg = (TQ/T1)2m+1, Cog = 1-— (Tl/TQ),
cio = 1 = (To/Th), cu = ®1(2n + 1,c13,¢13,¢09,—v) and cip = P1(2m +

1, c13, ¢13, €10, V), €13 = 2n + 2m + 2.

2.4.2.5. Bayesian Credible Intervals For R

It is known that 3; |ag, r ~ Gamma(dy, A1) and Bs |ag, s ~ Gamma(da, A\2).

Then, 281 |ag, 7 ~ Xx*(2(n + ay)) and 205535 |ag, s ~ x%(2(m + a3)). Therefore,

~ 2X9B2 |, 5 /2(m + as)

W =
2\ 61 lag, T /2(n+ aq)

(2.149)
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is an F distributed random variable with (2(m + a2), 2(n + a1)) degrees of freedom

and the 100(1 — )% Bayesian credible interval for R can be obtained as

1 1
5 (2.150)
(]- + CF2(m+a2),2(n+a1);% 1+ CFQ(m+a2),2(n+a1);1’2Y>

where C' = da\1 /61 \a, Fomtaz)2(ntar);y a0 Foimiay) 2(ntar)1-7 are the lower and
upper th percentile points of a F' distribution with (2(m + az),2(n 4 a1)) degrees of
freedom.

Moreover, this interval can be obtained independently of these parameters by
using the empirical method. In this case, the posterior distributions of (3, and 35 have
gamma distributions with parameters (2n+ 1, 277 (1,,; o)) and (2m+ 1, 275 (5,5 ) )

respectively and the 100(1 — ~)% Bayesian credible interval for R can be obtained as

1 1
, (2.151)
1+ C1Fumy2), (ant2)z 1+ CrFlums2) @ant2)1-32

where C1 = ((4m+ 2)T1(rn; a0)) / ((4n + 2)T2(8m; 0)), Flami2),(ant2),z and
F(4m+2),(4n+2);1,% are the lower and upper %th percentile points of a F' distribution

with (4m + 2, 4n + 2) degrees of freedom.

2.4.3. Numerical Experiments

In this section, firstly the Monte Carlo simulations for the comparison of the

derived estimates are presented, then two real life data sets are analysed.

2.4.3.1. Simulation Study

In this section, some numerical results are presented to compare the performance
of the different estimates for different sample sizes and different priors. The
performances of the point estimates are compared by using ERs. The performances of
the confidence and credible intervals are compared by using average interval lengths

and cps. All of the computations are performed by using MATLAB R2010a. All the
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results are based on 3000 replications.

We consider two cases separately to draw inference on R, namely when the
common first shape parameter « is unknown and known. In both cases, the upper
record values are generated from the Burr Type XII distribution with the sample sizes;
(n,m) = (5,5), (8,8), (10, 10), (12,12), (15, 15).

In Table 2.10, the ML and Bayes estimates of R and their corresponding ERs
are listed when « is unknown. The Bayes estimates are computed by using Lindley’s
approximation and MCMC method under the SE and the LINEX (v = —1 and 1) loss
functions for different prior parameters. In the Bayesian case, Prior 1: (a1, b;) = (4, 2),
(ag,by) = (4,2), (as,b3) = (3,3), Prior 2: (a1,b1) = (5,1), (az,b2) = (3,3/2),
(as,b3) = (3,3/2) and Prior 3: (a1,b;) = (5,1/2), (a2,ba) = (3,3), (a3, b3) =
(3,3/2), are used for R = 0.5006, 0.7145 and 0.9095, respectively. Moreover, the 95%
asymptotic confidence intervals, which are computed based on Fisher information and
observation matrices, and HPD credible intervals with their cps are listed. From Table
2.10, the ERs of all estimates decrease as the sample sizes increase in all cases, as
expected. The Bayes estimates under the SE and LINEX loss functions generally have
smaller ER than that of ML estimates. Moreover, the ERs of the Bayes estimates based
on Lindley’s approximation are smaller than that of MCMC method. These estimates
are close to each other as the sample sizes increase. The average lengths of the intervals
decrease as the sample sizes increase. The asymptotic confidence intervals based on
Fisher information and observation matrices are very similar, as expected. The average
lengths of the HPD Bayesian credible intervals are smaller than that of the asymptotic
confidence intervals.

In Tables 2.11 and 2.12, the ML, UMVU and Bayesian estimates of R and
their corresponding ERs are listed when « is known (o = 3). In this case, the
Bayes estimates are evaluated analytically under the SE and the LINEX (v = —1
and 1) loss functions for different prior parameters. Moreover, it is also computed by
using Lindley’s approximation and MCMC method. In the Bayesian case, Prior 4:
(a1,b1) = (6,5/2), (ag,by) = (4,2), Prior 5: (a1,b1) = (12,2), (az,b2) = (3,3/2)
and Prior 6: (ay,b) = (15,5/4), (ag,by) = (2,2) are used for R = 0.5484,
0.7506 and 0.9165, respectively. In addition, the empirical Bayes estimates are

obtained. All point estimates of R are listed in Table 2.11. The exact and asymptotic
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confidence intervals are computed from equations and (2.126). The Bayesian
and empirical Bayesian credible intervals are computed from equations (2.150) and
(2.151). The HPD credible interval is constructed by using the MCMC samples. All
interval estimates of R are listed in Table 2.12.

From Table 2.11, the ERs of all estimates decrease as the sample sizes increase
in all cases, as expected. The Bayes estimates with their corresponding ERs based
on Lindley’s approximation and MCMC method are very close to the exact values.
The ERs of the ML, UMVU, Bayes and empiric Bayes (under the SE loss function)
estimates are ordered as ER(]TZBS) < ER(EEBS) < ER(EMLE) < ER(ﬁU) when
R = 0.5484, 0.7506 and ER(Rps) < ER(Ry) < ER(Ry1r) < ER(Rpps) when
R = 0.9165. Moreover, the ERs of the Bayes estimates under the LINEX loss function
have smaller than that of ML estimates. From Table 2.12, the average lengths of the
intervals decrease as the sample sizes increase. The average lengths of the empirical
Bayesian credible intervals are smallest, but their cps are not preferable. The HPD
Bayesian credible intervals are more suitable than others in terms of the average lengths
and cps.

In the MCMC case, three MCMC chains are run with fairly different initial
values and generated 10000 iterations for each chain. To diminish the effect of the
starting distribution, the first half of each sequence are discarded and focus on the
second half. To provide relatively independent samples for improvement of prediction
accuracy, the Bayesian MCMC estimates are calculated by the means of every 5%
sampled values after discarding the first half of the chains (see [[Gelman et al., 2003]).
In our case, the scale factor value of the MCMC estimates are found below 1.1 which

is an acceptable value for their convergency.

In Table 2.13, the ML, UMVU and Bayesian estimates of R and their
corresponding ERs are listed when « is known (o = 3). In this case, the Bayes
estimates are evaluated analytically and by using the Lindley’s approximation under
the SE and the LINEX (v = —1 and 1) loss functions for the non informative prior.
Moreover, the exact and asymptotic confidence intervals are computed from equations
(2.123) and (2.126). The point and interval estimates are computed for R = 0.25,
0.33,0.50, 0, 70, 0.90 and 0.92 when (51, 52) = (2,6), (2,4), (2,2), (7,3), (18,2) and

(23, 2), respectively. From Table 2.13, the ERs of all estimates decrease as the sample
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Table 2.12: Confidence intervals of R when « is known (v = 3).

(n,m) R Exact C.I. Asymptotic C.I. Bayes Credible . HPD Bayes C.I. Empiric Bayes C.L
(5,5 0.5484 (0.2855,0.7877) (0.2895,0.8055) (0.3461,0.7476)  (0.3508,0.7483)  (0.3704,0.7145)
0.5023/0.9500  0.5160/0.8940 0.4014/0.9473 0.3975/0.9450 0.3441/0.8173
(8.8) (0.3351,0.7456) (0.3386,0.7568)  (0.3722,0.7220)  (0.3761,0.7227)  (0.4019,0.6864)
0.4104/0.9427  0.4182/0.9023 0.3498/0.9440 0.3466/0.9407 0.2845/0.8067
(10,10) (0.3507,0.7240) (0.3531,0.7323)  (0.3808,0.7066)  (0.3840,0.7068)  (0.4102,0.6700)
0.3732/0.9527  0.3792/0.9240 0.3257/0.9497 0.3228/0.9463 0.2598/0.8203
(12,12) (0.3683,0.7110)  (0.3709,0.7182)  (0.3922,0.6973)  (0.3953,0.6979)  (0.4226,0.6617)
0.3427/0.9463  0.3473/0.9223 0.3051/0.9457 0.3026/0.9470 0.2391/0.8207
(15,15) (0.3839,0.6948) (0.3861,0.7005)  (0.4026,0.6845)  (0.4050,0.6847)  (0.4326,0.6502)
0.3109/0.9460  0.3144/0.9303 0.2819/0.9440 0.2797/0.9437 0.2175/0.8207
(5,5 0.7506 (0.4760,0.8997) (0.5253,0.9441) (0.5877,0.8828) (0.6015,0.8910)  (0.5712,0.8554)
0.4237/0.9497  0.4189/0.8860 0.2951/0.9460 0.2895/0.9497 0.2842/0.8043
(8,8) (0.5429,0.8789) (0.5762,0.9090) (0.6105,0.8681)  (0.6215,0.8748)  (0.6129,0.8424)
0.3360/0.9463  0.3328/0.9070 0.2576/0.9470 0.2533/0.9493 0.2295/0.8180
(10,10) (0.5632,0.8678) (0.5905,0.8929) (0.6177,0.8593) (0.6272,0.8652)  (0.6244,0.8339)
0.3046/0.9533  0.3024/0.9190 0.2416/0.9483 0.2380/0.9417 0.2095/0.8160
(12,12) (0.5791,0.8579) (0.6020,0.8789)  (0.6243,0.8521)  (0.6329,0.8574)  (0.6336,0.8261)
0.2787/0.9423  0.2769/0.9200 0.2278/0.9390 0.2246/0.9377 0.1925/0.8077
(15,15) (0.6035,0.8524) (0.6226,0.8700) (0.6373,0.8470) (0.6448,.08518)  (0.6511,0.8237)
0.2489/0.9470  0.2474/0.9333 0.2098/0.9433 0.2070/0.9417 0.1726/0.8297
(5,5 009165 (0.7433,0.9697) (0.8033,0.9952) (0.8394,0.9676) (0.8508,0.9733)  (0.8115,0.9540)
0.2264/0.9540  0.1918/0.8933 0.1282/0.9613 0.1225/0.9527 0.1425/0.8057
(8.8) (0.7945,0.9631) (0.8309,0.9851)  (0.8494,0.9614) (0.8582,0.9662)  (0.8395,0.9498)
0.1686/0.9447  0.1541/0.9227 0.1121/0.9473 0.1080/0.9500 0.1103/0.8150
(10,10) (0.8105,0.9594) (0.8394,0.9776)  (0.8531,0.9582) (0.8610,0.9625)  (0.8481,0.9469)
0.1489/0.9497  0.1382/0.9363 0.1050/0.9493 0.1016/0.9547 0.0988/0.8303
(12,12) (0.8199,0.9558) (0.8438,0.9715) (0.8551,0.9551)  (0.8620,0.9591)  (0.8527,0.9439)
0.1360/0.9410  0.1277/0.9457 0.1001/0.9350 0.0970/0.9473 0.0912/0.8127
(15,15) (0.8315,0.9523) (0.8506,0.9653) (0.8578,0.9516) (0.8640,0.9552)  (0.8594,0.9412)
0.1208/0.9250  0.1147/0.9423 0.0937/0.8953 0.0912/0.9097 0.0818/0.7570
Notes: The first row represents a 95% confidence interval and the second row represents their lengths and cp’s.

sizes increase in all cases, as expected. The Bayes estimates under the SE loss function
with their corresponding ERs are close to their response in the ML case. Moreover,
the Bayes estimates with their corresponding ERs based on Lindley’s approximation
are very close the exact values. The ERs of the ML, UMVU and Bayes (under the SE
loss function) estimates are ordered as ER(ﬁ*BS) < ER(Ryip) < ER(Ry) when
R =0.25,0.33,0.50, 0.70 and ER(Ry) < ER(Ry1r) < ER(R}g) when R = 0.90,
0.92. The ERs of ML and Bayes estimates have larger values when the true value
of R is around 0.5 and it decreases as the true value of R approaches the extremes.
Furthermore, the average lengths of the intervals decrease as the sample sizes increase.
When R = 0.25, 0.90 and 0.92 the lengths of the asymptotic confidence intervals are
smaller than that of exact confidence intervals, but for & = 0.33, 0.50 and 0, 70 it is

other way around.
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2.4.3.2. Real Examples

The two real life data sets, lifetime data for insulation specimens and lifetime
data for steel specimens, are considered to illustrate the use of the methods proposed

in this paper.

e Lifetime data for insulation specimens

The results of a life test experiment in which specimens of a type of electrical
insulating fluid were subjected to a constant voltage stress was given in [Nelson, [1972].
The length of time until each specimen failed, or "broke down," was observed. The
results for seven groups of specimens, tested at voltages ranging from 26 to 38 kilovolts
(kV) were presented. The data sets for 36kV and 38 kV, reported in [Lawless, [2003],
are considered and corresponding upper record values are given in Table 2.14. We fit
the Burr Type XII distribution to the two data sets. The Kolmogorov-Smirnov (K-S)
distances between the fitted and the empirical distribution functions and corresponding
p-values, the parameters and the reliability (R) estimates are computed. All these
results are presented in Table 2.15. It is observed that the Burr Type XII distribution

provides an adequate fit for both the data sets.

Table 2.14: Upper record values from 36kV and 38kV data sets.

1 2 3 4
r 1.97 258 2.71 25.50
s 047 0.73 1.40 2.38

e Lifetime data for steel specimens

The lifetimes of steel specimens tested at 14 different stress levels was given
in [[Crowder, 2000]. The data sets for 38.5 and 36 stress levels are considered and
corresponding upper record values are given in Table 2.16. Since all record values
are greater than unity, we encounter the problem for the uniqueness of the ML
estimates of the parameters. To overcome this situation, these data sets are divided
by the corresponding maximum values. Then, we compute the K-S distances between
the fitted and the empirical distribution functions. The K-S and the corresponding

p-values, the parameters and the reliability (R) estimates are presented in Table 2.17.
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Table 2.15: K-S values and estimates for Table 2.14 when « is common.

Kolmogorov-Smirnov and corresponding p values
Data Set K-S(MLE) p-value K-S(Lindley) p-value
r 0.6111 >0.05 0.4796 >0.2
s 0.3879 >0.2 0.4180 >0.2
Parameter and reliability estimates
Parameter MLE Lindley(SEL)
51 0.5468 0.4227
Ba 1.9134 0.4736
o 2.2587 1.9249
R 0.2222 0.3311

Table 2.16: Upper record values from 38.5 and 36 stress levels.

1 2 3 4 )
r 60 83 140 - —
s 173 218 288 394 585

It is observed that the Burr Type XII distribution provides an adequate fit for both the

data sets.

Table 2.17: K-S values and estimates when the first shape parameters a is common.

Kolmogorov-Smirnov and corresponding p values
Data Set K-S(MLE) p-value K-S(Lindley) p-value
r 0.5104 >0.2 0.4464 >0.2
s 0.4431 >0.2 0.3098 >0.2
Parameter and reliability estimates
Parameter MLE Lindley(SEL)

B4 4.3281 15.1596

Ba 7.2135 14.3937

o 2.0278 43117

R 0.3750 0.7283

2.4.4. Conclusion

In this section, the estimates of the stress-strength reliability based on upper
record values are derived when the stress and strength variables follow the Burr
Type XII distribution under the non-Bayesian and Bayesian frameworks. The first

shape parameters of the distributions of the measurements are assumed to be the
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same. When the first shape parameters are unknown, the ML and Bayes estimates are
obtained by using Lindley’s approximation and MCMC method. It is observed that the
performance of the Bayes estimates are better than ML estimates. When the first shape
parameters are known, the Bayes estimates are obtained exactly and approximately by
using the Lindley and MCMC methods for the informative prior case. It is observed
that the performance of the Bayes estimates are better than ML and UMV U. Moreover,
for the non informative prior case, it is observed that the performance of the Bayes
estimates are better than others when the true values of the stress-strength reliability
is not close to the extremes (0 or 1), while near the extremes the UMVU and ML
estimates are better than the Bayes estimates. It is observed that the performance
of the HPD Bayesian credible interval are better than others in all cases. When the
first shape parameter is unknown, it is encouraging to see that the estimates of the
stress-strength reliability are very close for the exact and approximate methods when it
is known. Furthermore, the Bayes estimates based on the Lindley’s approximation and
MCMC method are close to each other. Since the cost of time for the MCMC method
is more than the Lindley’s approximation, the Bayes estimates based on the Lindley’s
approximation are recommended.

To obtain the point and interval estimates of the stress-strength reliability are
difficult due to lack of explicit form of the reliability when the measurements follow
from the Burr Type XII distribution with no common parameters. More work is needed

along that direction.
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3. STATISTICAL ANALYSIS FOR THE
GENERALIZED EXPONENTIAL DISTRIBUTION

3.1. Introduction

The distributions from the gamma and the Weibull families are commonly used
for analyzing a lifetime data as well-as-a-skewed data.The pros and cons of these
distributions were discussed by [Gupta and Kundu, 1999]. They introduced the
generalized exponential distribution and pointed out that many of the properties of
this distribution are similar to those of gamma and the Weibull families.

If a random variable X follows a two-parameter generalized exponential (GE)

distribution, denoted by GE(«, \), then its pdf and cdf are given by

F(r;a,)) = (1—e™)% >0 (3.1

flz;a,\) = ade™(1—e)* 250 (3.2)

where o > 0 and A > 0 are the shape and scale parameters, respectively. The mean

and variance of a two-parameter generalized exponential distribution are given by

B(X) = 5 (9@ +1) ~ p(1)} (3
and
Var(X) = % {w’a) — P (a+ 1)} , (3.4)

where v(z) is the digamma function, ' (z) its derivative and ¢(z) = dInT'(z)/dx =
I'(z)/T(x).

The density functions of the GE distribution can take different shapes. For v < 1,
it is a decreasing function and for o > 1, it is a unimodal, skewed, right tailed similar
to the Weibull or gamma density function. It is observed that even for very large shape
parameter, it is not symmetric. For A = 1, the mode is at In o for @« > 1 and for o < 1,

the mode is at 0.
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The GE distribution has a wide range of applications. A comprehensive
amount of research has been done over the years from both frequentist and Bayesian
perspectives. The GE distribution has been studied extensively by many authors.
The properties of the ML estimates of the GE distribution were studied by [Gupta
and Kundu, [1999]. The ML etimates were compared with the other estimators
like method of moment estimators, estimators based on percentiles, least squares
estimators, weighted least squares estimators and the estimators based on the linear
combinations of order statistics by [Gupta and Kundu, 2001]]. The ML estimates
of the unknown parameters of the GE distribution for complete sample as well as
censored sample were considered by [Gupta and Kundu, |2002]. An extensive survey
of some recent developments for the GE distribution based on a complete random
sample was provided by [Gupta and Kundu, 2007]. The Bayes estimators of the
unknown parameters of the GE distribution under the assumptions of gamma priors
on both the shape and scale parameters were derived by [Kundu and Gupta, 2008].
The statistical inference of the unknown parameters of the GE distribution in presence
of progressive censoring were considered by [Pradhan and Kundu, 2009]]. The analysis
of the hybrid censored data was considered by [Kundu and Pradhan, |2009] when the

lifetime distribution of the individual item was the GE distribution.

3.2. Estimation of The Parameters Based on Record Values

Exact expressions for single and product moments of record statistics and
the best linear unbiased estimators of the location and scale parameters of the GE
distribution were obtained by [Ragabl 2002]. The ML, Bayes and the empirical Bayes
estimates of the shape parameter based on lower record values with known scale
parameter were derived by [Jaheen, 2004]]. Also, prediction bounds for future lower
record values was obtained by using Bayes and empirical Bayes techniques. The Bayes
estimates of the shape and scale parameters and Bayesian prediction for future lower
record values were considered by [Madi and Ragab, |2007]. The Bayesian estimates
of the parameters with respect to quadratic loss function using uniform priors for both
parameters were obtained by [Sarhan and Tadj, 2008]]. Recently, the frequentist and

Bayesian estimation of the parameters based on lower record values were obtained
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by [Dey et al., [2013]]. The Bayesian estimates were derived by using symmetric and
asymmetric loss functions when the parameters have gamma priors. Also, the Bayesian

interval and Bayesian prediction intervals of the future record values were discussed.

3.3. Estimation of The Parameters Based on Records and
Inter-Record Times

When the underlying distribution is exponential, estimation of the mean
parameter by using record values and their corresponding inter-record times was
obtained by [Samaniego and Whitaker, 1986] under random sampling and inverse
sampling scheme. The optimal random sampling plan and associated cost analysis
for exponential distribution were studied by [Doostparast and Balakrishnan, 2010].
Non-Bayesian and Bayesian estimates were derived by [Doostparast, 2009] for the two
parameters exponential distribution based on record values and their corresponding
inter-record times under the inverse sampling scheme. The optimal confidence
intervals and uniformly most powerful tests for the one-sided alternatives were derived
by [Doostparast and Balakrishnan, 2011]] when the underlying distribution is two
parameter exponential. Also, they obtained the generalized likelihood ratio test,
uniformly unbiased and invariant tests for a two-sided alternative. The optimal
statistical procedure including point and interval estimation as well as most powerful
tests based on record data from a two-parameter Pareto model were obtained by
[Doostparast and Balakrishnan, [2013]]. When the underlying distribution is lognormal,
non-Bayesian and Bayesian point estimates as well as asymptotic confidence intervals
for the unknown parameters were obtained by [Doostparast et al., [2013]].

In this section, the parameter estimations for GE distribution are obtained by
using upper record values and their corresponding inter-record times under the classical
and Bayesian frameworks. The Lindley approximation and MCMC technique are
proposed to obtain the Bayesian estimates under different loss functions. Moreover, the
estimates of the parameters only by using the upper record values (without considering
inter-record times) are also obtained. Finally, the two approaches are compared
by using Monte Carlo simulations to see the effect of the inter-record times in the

estimation.
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3.3.1. ML Estimation

Let X4, Xo,... be 1.1.d. random variables, coming from a population with cdf
and pdf F'(.) and f(.), respectively. Then the likelihood function associated with the
sequence { Ry, K1, ..., Ry, K,,} is given by [Hofmann and Nagaraja, 2003] as

L(r, k) = [ [FO) {F0r)Y ™ oy (i), (3.5)
i=1
where g = —o0, k,, = 1 and I4(x) is the indicator function of the set A. From

equations (3.1I), (3.2)and(3.5]), we have

L(a, A\ k) = exp{ )\Zn + Z ak; —1)In(1 M")} , (3.6)

where —oo < r; < ... < 1y, and so the log-likelihood function is
(o, hr, k) =m(Ina+In)) = A> ri+ > (ak;— )n(l—e ™). (3.7
The ML estimates of « and \ are given by

a =

m
— 3.8
7 (3.8)

where Uy = — Y. K;In(1 —e %) and \ is the solution of the following non-linear

equation
m - i m
X—ZrﬁZ—l_e_m(lUAA) 0. (3.9)
i=1 i=1

Therefore, A can be obtained as the solution of the non-linear equation of the form

h(\) = X where

o T kirie M om
h(A) =m [Z T Zl T— e T, (3.10)
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Since, ) is a fixed point solution of the non-linear equation , its value can be

obtained using an iterative scheme as A(; ;1) = h(A(;)) where \(;) is the jth iterate of

\. The iteration procedure should stopped when ‘)\(j) — )\(jﬂ)‘ is sufficiently small.
Next, the existence and uniqueness of the ML estimates of the parameters are

proved. Following limits and inequalities are used in the proof.

Lemma 3.1: For A > 0
k T i e m kir?e—/\n‘
(; ﬁ) (Z k; 1I1 )) (Z m) < 0. (3.11)

Proof 3.1: It is known that the Cauchy—Schwarz inequality is (>, xiyi)Q <

(T (0", 1), Let 1 = VEie™ 5 and y; = /Eirie™ 5 /(1 — 74 then we by

the Cauchy-Schwarz inequality we have

) E) o

=1 i=1

It can be shown that kie ™" < —k;In(1 —e "), i =1,...,mfor A > 0. Let f(\) =
kie i + k;iIn(1 — e=). It is clear that limy_,o f(\) = —00, limy_, f(A) = 0 and
f(X) > 0. Then, f is an increasing function and therefore f()\) < 0 for every A > 0.
The proof is completed by using this inequality in equation (3.12). B

The existence and uniqueness of the ML estimates of t@rameters of a general
class of exponentiated distributions based on a complete sample are proved by [Ghitany
et al., 2013]. The following results are used from [Ghitany et al., 2013] to prove the

existence-and uniqueness of the ML estimates.

Lemma 3.2:limy o (1/t —1/(1—e€7%) = —1/2, limyyote /(1 — ") = 1,
limy_yo ¢ [In(1 — e7")| = 0 and lim; o [In(1 — e7*)| /e~ = 1.
Lemma 3.3:

i) Forallt >0, tfe™" < (1 —e™)* k=1,2,

it) Forall — 1 <a; <1,and —oo <b; <oo,i=1,2,...,n
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n 2 n n
(Z aibi) <> (1 —a})] > 07 (3.13)
=1

i=1 =1

Theorem 3.1: The ML estimates of the parameters o and \ are unique and are given

by o = m/Us; where )\ is the solution of the non-linear equation:

m m

i kirie AT
G =23 oy g, (3.14)

A 1 — e Ari <1 - e i Uy

1= 1=

Proof 3.1} The limit of G()) is considered as X — 0 and X\ — oo. Let t; = Ary,
1 =1,...,m. Then, by using parts of (i)-(iii) of Lemma 1 in [Ghitany et al., |2015|],

A—0 t;—0 tz 1-— e_ti

limG/()) = G(0) = i”“m <l i )

=1

- tie " m
+) kilim | — - . (3.15)
70 (1 - 6_“) > im (ki /i) limy, 0 (=13 In(1 — 7))

1 m m
D) ri + m 3 kz = OQ.
2 Z Zi:l(k:i/ri) hmti_ﬂ) (—ti ln(l — @_ti)) ZZI
Moreover, using part of (iv) of Lemma 1 in [Ghitany et al., (2013|], we have
; . m T T
Jim G(A) = G(e0) = lim (X - Zl 1_—€_M>

" kine—’\” m
li 3.16
== 1= e i =30 kiIn(1 — e A7) (5.16)

1=

- D DN R -
i=1 1= i=1
Hence, we obtain that limy_,o G(\) = oo and limy_,oo G(\) < 0. By the intermediate

value theorem G(\) has at least one root in (0, 00). If it can be shown that G' (\) < 0

then the proof will be completed. It is easily obtain that
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’ . 1 mG2<)\>)\2
CWETe { S k(e } oo
where
N T
A)=m — —_—t 3.18
Gl( ) m ZZI (1 — @_>\7'i)27 ( )

2
L ke “ N

Go(N) =)y ——— kiln(l —e —— . @319

=3 (S )+ (S0 s

G1(\) > 0 is obtained by using part (i) of Lemma 2 in [Ghitany et al., 2013|] and
G2(X) < 0 from Lemma 3.1. Therefore, G/(/\) < 0.

Finally, we will show that the ML estimates of (a,)\) maximizes the

log-likelihood function l(«, \;r, k). Let H(c, \) be the Hessian matrix of l(«, A;r, k)

at (v, \). It is clear that Hyy (@, \) < 0 and the determinant of the Hessian matrix

= —Gi(A) = Go(N) > 0. (3.20)

Hence, (Q, /):) is the local maximum of l(a, A\;r, k). Since there is no singular point
of l(a, A\;r, k) and it has a single critical point then, it is enough to show that the
absolute maximum of the function is indeed the local maximum. Assume that there
exist a \g in the domain in which 1*(Ng) > I*(\), where I*(\) = 1(@, A\; 1, k). Since A
is the local maximum there should be some point )\, in the neighborhood of \ such that
) > (). Let k(A) = 1*(A) — I*(X) then k(Xo) > 0, k(A1) < 0 and k(\) = 0.
This implies that \1 is a local minimum of the [*(\), but \ is the only critical point so

it is a contradiction. Therefore, (Qi, \) is the absolute maximum of [(ca, A;r, k). W

3.3.1.1. ML Estimation When )\ Is Known

Without loss of generality, the parameter \ is assumed to be known, say A = 1.

Then, from equation (3.6)
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L(a,1;r, k) = a™exp {— Zri + Z(ak‘i —1)In(1 — e_’"i)} : (3.21)

i=1 =1

where —o00 < ;1 < ... < 7,. In this case, U; is a sufficient statistic for «
and the MLE of « is ap;, = m/U;. The moment generating function of U is
M(t)=1/(1—t/a)™, a > t. By the uniqueness of the moment generating function
Ui, is distributed as Gamma(m, ) and its mean and variance are m/« and m/a?,
respectively. Therefore, E(ay;,) = ma/(m — 1) and an unbiased estimator for
a is given by ay = (m — 1)/U;. Notice that, MSE(ay) < MSE(ay) and
MSE(aQy) — 0asm — oo then &y, and Qy converge to « in mean square.

When the scale parameter A = )\, is known, then U,, is a complete sufficient
statistic for «. The confidence interval of « is constructed based on this statistic.
The distribution of U,, can be easily obtained. We have U,,~Gamma (m,«) and
20Uy, ~X3,,- An equi-tailed 100(1 — )% confidence interval of the shape parameter

« has the form

2 2
Xomy/2 Xom,1—~/2
. . . 3.22
( 2U,, = 2U,, (3-22)

3.3.1.2. Asymptotic Confidence Interval

To obtain the exact confidence interval for the parameters is not easy in every
case, so that their asymptotic behavior constitutes an appealing alternative. In practice,
the observed information matrix is used as a consistent estimator of the Fisher
information matrix. An asymptotic confidence intervals for the parameters o and A
based on the record values and their corresponding inter-record times are obtained by
using the observed information matrix. The observed information matrix J,,(«, ) is

given by

Jm(aw:—{‘% 823]:[‘]11 J”}, (323)
8)\8la a_,\é Jor Iz

where Jn = m/oﬂ, J12 = — Zﬁl(kirie_m)/(l—e_”i) and :]22 = m/>\2—221(1—
ak;)(rie )/ (1 - e‘A”)Q.
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By the asymptotic normality of the MLE, we have [\/m (a@—a), \/E(X - R
Ny(0,I71) for large m, where ~ means approximately distributed and I~ is the
inverse of the observed information matrix. The asymptotic behavior remains valid if
I =lim,, 00 (1/m)J, (@, X) For large m (the number of record values) under inverse
sampling or for large n (the number of observations) under random sampling scheme,
we can construct the approximate 100(1 — )% equi-tailed confidence intervals for «

and \. These are given by

~ J22 N Jll
+ 2 _— d [ AN£2_ _— 3.24
<O{ 21 /2 J11J22 _ J122 > an < <1 v/2 J11J22 I J122 ) ) ( )

where z, /5 is the upper 7/2th quantile of the standard normal distribution.

3.3.2. Bayesian Estimation

In this section, the Bayes estimates of the parameters GE distribution are
obtained by using different loss functions for both A is known and unknown cases

under the inverse sampling scheme.

3.3.2.1. Bayesian Estimation When )\ Is Known

It is assumed that o has a gamma prior with parameters (a1, b;). Then, the
posterior density function of « is «| (r,k) ~ Gamma (m + ay,by + Uy) . Then, the

Bayes estimate of « under the SE loss function, d/pg;, is the mean of the «af (r, k).

Therefore,
—~ m —+ ai
Q = —) 3.25
BS1 = g (3.25)
and the Bayes estimate of « under the LINEX loss function, &gy, 1, is
~ 1 _ m+ a; v
=—InF,; v = In{1 . 3.26
apri =~ I Eajrio(e™™) 5 n< +bl+Ul) (3.26)
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If we use the Jeffrey’s non-informative prior, that is m(«) = 1/«, then we have
al (r,k) ~ Gamma (m,U;). Therefore, the Bayes estimates of « under the SE and

the LINEX loss functions are obtained as

~ m ~ m v
ABs0 = 77 and aprp = o In (1 + 71) , (3.27)
1

respectively. apgo and apy o are the limit of apg 1 and apr 1 as a; — 0 and b; — 0.
Moreover, gy 1 — Qs as v — 0 is satisfied.

Notice that, it is easily seen that if mb; > a,U; then &, > apg; and if
mby < a1Uj then &y < Apg,;1. In the following proposition, the comparison of Bayes

estimates are given under the SE and the LINEX loss functions.

Proposition 3.1:
i) Apr1 < dpgq forv > 0.

i) 3@,1 > aipgy for — (b +Up) <v <0.

Proof 3.1: It is known that

In(1 + z) < x for every x > —1. (3.28)

i) Suppose v > 0. wv/(by + Uy) > 0, when by > 0 add Uy > 0. We
have In (14 v/(by +Uy)) < v/(by + Uy) by the inequality (3.28). Therefore,
apri < Qs

ii) Suppose v < 0 and —(by + Uy) < v, then v/(b] + V) > —1. We have
In(1+v/(by+Uy)) < v/(by + Uy) by the inequality (3.28). Therefore, dpr1 >

apg 1. [ |

3.3.2.2. Bayesian Estimation When o and \ Are Unknown

Assume that the parameters o and A\ have independent gamma priors with
parameters (a1,b;) and (as, by), respectively and densities are denoted by 7(«) and
7(A). The joint posterior density function of « and A is
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L(a A k)m(a)m(A)

(e, Alr, k) = I I Lla, A, k)m(a)w (V) dadA
= I(r,k)omta-t \mta—l (3.29)
exp {—)\ <52 + fjr) —a (b +Un) — ijln(l - e‘”ﬁ')} :
P im1
where
[I(r, )]

_ 0o )\erazfl b + U —m—al
C(m+aq) /0 (o )

exp {—)\ <b2 + Zrl) Zln ) } d\. (3.30)
=1

The Bayes estimate of any function of « and )\, say g(«a, A) under the SE loss function

is

Il g (a, Ay, K)m(a)m(N)dadA

JBs = Ea,kll‘,k( (a >‘)) fo fo ()47 )\, r, k)Tr(Oz)ﬂ'()\)dOéd)\

(3.31)

It is not possible to compute (3.31)) analytically. Two approaches are suggested here
to approximate equation (3.31), namely i) Lindley’s approximation and ii) MCMC

method.

e Lindley’s approximation

For the two parameter case («, A), we have from equation (3.29)
Q=mnI(r,k)+(m+a; —1)lna+ (m+ay—1)In X — \by

A ri—a(b+Uy) - Zln e ). (3.32)
=1

The joint posterior mode is obtained from the equations Q) /da = 0 and 0Q)/OX = 0

as
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~ m+a1—1
R 3.33
“ bl—i-UX ’ ( )

and ) is the solution of the following nonlinear equation

Ar;

m-+as —1 T; m+a; — 1 <= kirie”
— — by — =0. 3.34
A 2 ;1—€_>‘”+ by + Uy ;1—€_>‘” ( )

It can be solved by using the same procedure in equation (3.10). The elements of the

(Q* are given by

. m+a —1 . i
Qll = _T, Q12 = Q21 ; m (3.35)
m-4ay —1 i 7“2 —Ari
59 = ————— + 1—oak)——— 3.36
Qs v ;( gyt (3:36)

and 7;;, i, j = 1,2 are obtained by using equation (3.35)) and (3.36). Moreover,

ok fe AT 2(m+a; —1
Qu = —Z oy @0 =0, Q= : — L e
_ 2(mHtay—1) - r3(e AT 4 em )
Qo = ) ;(1 — ak;) ™ e (3.38)

Therefore, the approximate Bayes estimates of « and A\ under the SE and LINEX loss

functions are obtained as

~ ~ 1
*BS Lind = & F 2 [Qz07i1 + Qua(mamin + 2737) + QoaTorTas] (3.39)
OBL,Lind — O — ; In 1+ 57'11 - 5@12(7'227'11 + 27'21)

v v
—§Q307'121 - 5@037'21722 , (3.40)
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~ <1
ABS,Lind = A + B [Q307127'11 + 3Q 12722721 + Q037'222} 5 (3.41)

~ ~ 1 v
ABS,Lmd =\ - ; In [1 + 5 (U7'22 — Q30T12T11 — 3Q12T22To1 — Q037222)} . (3.42)

Notice that all approximate Bayes estimates are evaluated at (a, X)
If we use the non-informative prior density, that is w(a, A) o< 1/, then the
Bayes estimates of o and A can be computed by using the Lindley’s approximation.

In this case, these estimates are easily obtained from equations (3.39)-(3.42)) using

a1:a2:b1:b2:0.

e MCMC method

In the previous section, we obtain the Bayes estimates of o and A using Lindley’s
approximation under the SE and LINEX loss functions. However, since the exact
probability distributions of these estimates are not known it is difficult to evaluate
HPD credible intervals of parameters. For this reason, the MCMC method is proposed
to compute the Bayes estimates of « and A under the SE and LINEX loss functions
and their corresponding HPD credible intervals.

The MCMC method are considered to generate samples from the posterior
distributions and then the Bayes estimates of « and A under the SE and LINEX loss
functions are computed. The joint posterior of v and ) is given in equation (3.29). It

is easy to see that

al A\, r, k ~Gamma (m + ay,b; + U)) , (3.43)

and

(A a, 1, k) oc A2t exp {—)\ <b2 + Zr1> }
i=1

exp {—aUA ~) In(1- e’\”)} . (3.44)
=1
Therefore, samples of « can be easily generated by using gamma distribution.

However, the posterior distribution of A cannot be reduced analytically to well known
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distribution and therefore it is not possible to sample directly by standard methods.
It is observed that the plot of the posterior distribution of A is similar to Gaussian
distribution. The hybrid Metropolis -Hastings and Gibbs sampling algorithm, which
will be used to solve our problem, is suggested by [Tierney, 1994]. This algorithm
combines the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian

proposal distribution.

e Step 1: Take some initial guess of a and ), say o®) and A\(?).
e Step 2: Sett = 1.
e Step 3: Generate \(¥) from 7(\| o, r, k) using the Metropolis-Hastings algorithm
with the proposal distribution g(\) = N(A¢~Y 1):
-Step 3.1: Let v = A=,
-Step 3.2: Generate w from the proposal distribution gq.

m(w]a® Y r k) q(v) }
m(v] a1 r k) g(w) |

-Step 3.4: Generate u from Uniform(0,1). If v < p(v,w) then accept the

-Step 3.3: Let p(v, w) = min {1,

proposal and set A} = w; otherwise, set A\() = v.

e Step 4: Generate a® from Gamma (m +ay, by — iKi In(1 — e"\mRi)).

e StepS: Sett =t + 1. -

e Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (), A()),
t=1,...,N.

The samples obtained from the algorithm are used to compute the Bayes estimates and
to construct the HPD credible intervals. The Bayes estimator of g = g(a, A) based on

SE and LINEX loss function are given, respectively, by

N—-M
1 . A
~ — F — § (1) () )
9dBS,MH (g9]r,k) N—M g(a™, A\"), (3.45)
=M1
and
1 1 N-M
= - _ - _ () @
gL = ——1n N_M'_EMileXp( v g(a, A, (3.46)

where M is the burn-in period.
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The HPD 100(1 — )% credible intervals of o and A can be obtained by the
method of [Chen and Shao, [1999]. In particular for a:

From MCMC, the sequence of o, aq, ..., ay, are obtained, then it is ordered as
o) < ... < ay). The credible intervals are constructed as (o), aj+va—v))) for
j=1,..., N — [N(1 — 7)] where [z] denotes the largest integer less than or equal to
x. Then, the HPD credible interval of « is that interval which has the shortest length.

Similarly, the HPD credible interval of A can also be constructed.

3.3.3. Simulation Study

In this section, in order to compare the proposed point and interval estimates
for the Bayesian and ML cases, we perform a Monte Carlo simulation studying using
different sample sizes and different priors. All the programs are written in MATLAB
R2010a. All the results are based on 1000 replications. The ER of #, when @ is

estimated by 5, is given by

N
ER(0) = %Z (@- - ei)2 , (3.47)
i=1

under the SE loss function. Moreover, the estimated risk of 6 under the LINEX loss

function is given by

ER(0) = %Z (e”(@—ai) — (@- . el-) . 1) , (3.48)

where NNV is the number of replication.

A simulation study is carried out to investigate the performance of the point
and interval estimation of the GE distribution parameters based on ML and Bayesian
methods. If we use the non-informative prior density, it is known that the Bayes
estimates of o and A are similar to the ML estimates for a large number of observations.
On the other hand, the informative priors are chosen to be gamma distribution with
parameters Prior 1: (a1, b;) = (5,2), (ag, b2) = (10,5) and Prior 2: (ay,b,) = (10, 3),
(ag,be) = (7,1.5) for the parameters (o, \) = (2.5362,2.0154) and (3.3711,4.7148)
in Tables 3.1 and 3.2, respectively. The findings based on ML and Bayesian methods
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are given in the Tables 3.1-3.3 when the sample size m is 5, 8 and 10.

In Tables 3.1 and 3.2, the ML estimates and their corresponding ERs are
presented. Furthermore, a %95 HPD credible intervals and their coverage probabilities
(cp) are presented. Moreover, the Bayes estimates are computed by using Lindley’s
approximation and MCMC method under SE and LINEX (v = —2, —1,1 and 2) loss
functions.

In the MCMC case, five MCMC are run chains with fairly different initial values
and generated 5000 iterations for each chain. To diminish the effect of the starting
distribution, the first half of each sequence are discarded and focus attention on the
second half. To provide relatively independent samples for improvement of prediction
accuracy, the Bayesian MCMC estimates are calculated by the means of every 5
sampled values after discarding the first half of the chains (see [[Gelman et al., 2003]).
In our case, the scale factor value of the MCMC estimators are found below 1.1 which
is an acceptable value for their convergency.

For convenience, the estimates based on the record values and their
corresponding inter-record times are denoted by e and A. On the other hand, estimates
based on just the record values are denoted by o* and \*.

To be able to compare the two methods, the ML and Bayes estimates of the
parameters are also derived based on upper record values (without taking inter-record
times into consideration). In this case, the Bayes estimates are obtained by using
Lindley’s approximation method. The estimates o* and A* and their corresponding
ERs are tabulated in Table 3.3.

The following results are obtained from Tables 3.1-3.3 under the SE loss
function. The average ERs of a and A decrease as the sample size increases in all
cases, as expected. Moreover, the ERs of Bayes estimates under the SE loss function
are smaller than that of ML estimates. Furthermore, the ERs of Bayes estimates for «
and )\ based on Lindley’s approximation and MCMC samples are close to each other.
In general, similar patterns are observed for o* and \*. Finally, the ERs of estimates
for o and A are smaller than that of o* and \*. It is quite natural to see such a result
when more information is available.

The following results are obtained from Tables 3.1-3.3 under the LINEX loss

function. The ERs are smaller than that of ML estimates only for some v, since the
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ERs of Bayes estimates under the LINEX loss function depend on the values of v.
Moreover, the ERs of Bayes estimates for o and A based on Lindley’s approximation
and MCMC samples are close to each other for v > 0. On the other hand, the ERs of
A are close to each other for the two methods when v < 0 for sufficiently large sample
sizes. Furthermore, the ERs for all estimators are decreasing while v is getting close to
zero for positive values of v. On the contrary, they are increasing while v getting away
from zero for negative values of v. Finally, the ERs of a and )\ are generally smaller
than that of o* and \*.

In Tables 3.1 and 3.2, we observe that the average length of the HPD credible
intervals decrease and their cp are comparable with the nominal values as the sample
size increases.

In Table 3.4, the ML and Bayes estimates under SE loss functions and their
corresponding ERs are presented when the true value of o« = 2.4640 and A is known
(A = 1). Since the exact distribution of the MLE of « is known, a %95 confidence
interval is easily constructed. For a comparison, a %95 confidence intervals of the
« under both the asymptotic and exact distributions are tabulated. An approximate
confidence interval for « is obtained by using the ML estimate of A. Moreover, a %95
Bayesian credible interval for « is obtained by using the posterior distribution of « are
also reported.

The following results are obtained from Table 3.4, the average ERs of « decrease
as the sample size increases in all cases, as expected. Moreover, the ERs of Bayes
estimates of o under the SE loss function are smaller than that of ML estimates. Also, it
is observed that the average length of the intervals decrease as the sample size increases
in all cases. Furthermore, the average length of the Bayesian credible intervals are
smaller than that of the other intervals. Finally, cp values for confidence intervals are
closer to the nominal value for m as large as 15.

To generate a large number of record values takes too much time. For this reason,
an approximate confidence interval is reported under two different cases. Firstly,
a %95 confidence intervals for o under both the asymptotic and exact distributions
are tabulated for m = 5,10,15,20 in Table 3.4. Secondly, we only generated a
set of 30 records from G F(2.6236,1.5007) by using gamma prior with parameters

(ay,b1) = (5,2) and (ag, bs) = (10,5). The record values and their inter-record times
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Table 3.4: Results for the true value of v = 2.4640, (ay, b;) = (5,2) and A is known.

MLE Bayes Exact MLE Bayesian Approximate
SE CL credible interval C.L

m =5
2.2313 2.1224 (0.9485,5.9836) (1.1781,4.1971) (0,6.4313)
1.5602 0.8830 0.9720 0.9550 0.8990

m = 10
2.6157 2.3958 (1.2529,4.4639) (1.3499,3.7770) (0.0214,5.7319)
1.3170 0.6401 0.9620 0.9580 0.9420

m = 15
2.5859 2.4313 (1.4453,4.0439) (1.4939,3.6283) (0.1871,5.0795)
0.9273 0.5379 0.9560 0.9500 0.9490

m = 20
24476 2.3529 (1.5185,3.6880) (1.5525,3.4268) (0.2856,4.6510)
0.7796 0.5199 0.9540 0.9520 0.9510
Notes: The first row represents the average estimates and the second row represents
corresponding ERs for each choice of m. However, for the last three columns, the
first row represents a %95 confidence interval and the second row represents their cp’s.

Table 3.5: Data is generated from G E(2.6236, 1.5007).

1 1 2 3 4 5 6 7 8 9 10

R; 0.4440 0.7010 0.7709 0.8751 0.8851 1.1427 1.1933 1.4927 1.6651 1.8378
K, 3 1 1 1 1 3 1 4 1 9

i 11 12 13 14 15 16 17 18 19 20

R; 22633 2.8443 29103 3.1298 3.3530 3.7073 3.7633 3.8257 3.9191 4.0392
K, 5 3 23 4 244 61 170 9 111 42

1 21 22 23 24 25 26 27 28 29 30

R; 4.0528 4.3658 4.4601 4.5889 4.6356 4.9092 5.0858 5.2541 5.4127 7.5152
K; 51 266 382 369 211 77 184 72 21 1

are tabulated in Table 3.5 and then the approximate and HPD credible intervals are
reported in Table 3.6. In Tables 3.4 and 3.6 are mainly obtained to illustrate how the
approximate confidence intervals perform when the number of record values get larger.
From these tables, it can be observed that these confidence intervals and their cp values

are comparable.

3.3.4. Conclusions

This section deals with the ML and Bayesian point estimates as well as

confidence intervals for the unknown parameters when the underlying distribution

91



Table 3.6: Confidence intervals for o and .

Approximate confidence interval HPD credible interval
o) (0.7394,3.7993) (1.1846,3.6846)
(1.1909,1.6342) (1.2455,1.6226)

>

is GE distribution. The ML estimates of the unknown parameters are derived under
inverse sampling scheme. The Lindley’s approximation and MCMC methods are used
to get the Bayes estimates under the SE and the LINEX loss function. Monte Carlo
simulation reveals out that the ERs of the Bayes estimates are smaller than that of ML
estimates under the SE loss function. However, the ERs for the LINEX loss function
depend on the asymmetry parameter v. In particular, the ERs of the estimates are
decreasing while v is getting close to zero for positive values of v and are increasing
while v getting away from zero for negative values of v. The average length of the HPD
credible intervals are smaller than that of the confidence intervals with more reasonable
cp. Finally, it is suggested to use record values and their corresponding inter-record
times instead of just using record values to decrease the ERs of estimates under the SE

and the LINEX loss function.

3.4. Estimation of The Reliability Based on Record Values

The likelihood and Bayesian estimation of the stress-strength reliability based
on lower record values from the GE distribution with known scale parameter were
considered by [Baklizi, 2008]]. Confidence intervals, exact and approximate, as well
as the Bayesian credible sets for the stress-strength reliability were also obtained. An
interval estimates for the stress-strength reliability using lower record data from the
GE distribution with known scale parameter was developed by [Wong and Wu, 2009].
Recently, the ML and Bayesian estimation of the stress-strength reliability based on
lower record values from the GE distribution are considered by [Asgharzadeh et al.,

2014].
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4. STATISTICAL ANALYSIS FOR THE
KUMARASWAMY DISTRIBUTION

4.1. Introduction

Kumaraswamy showed that the well known pdf such as the normal, log-normal,
beta and empirical distributions such as Johson’s and polynomial-transformed-normal,
etc., do not fit well hydrological data, such as daily rainfall, daily stream flow, etc.
and developed-a new probability distribution function known as the sinepower pdf in
[Kumaraswamy, 1976], [Kumaraswamy, 1978]. Furthermore, a more general pdf for
double bounded random processes, which is known as Kumaraswamy’s distribution
was developed by [Kumaraswamy, 1980]. This distribution is applicable to many
natural phenomena whose outcomes have lower and upper bounds, such as the heights
of individuals, scores obtained on a test, atmospheric temperatures, hydrological data,
etc. Also, this distribution could be appropriate in situations where scientists use
probability distributions which have infinite lower and/or upper bounds to fit data,
when in reality the bounds are finite.

If a random variable X follows a Kumaraswamy distribution, denoted by

Kum(a,b), then its cdf and pdf are given by
F(x;a,b) = 1—(1—-29 0<z<1 4.1

f(zia,b) = abz*'(1—a) ' 0<z<1 4.2)

where a, b > 0 are the shape parameters. The mean and the variance of a

Kumaraswamy distribution are given by
1
E(X)=0bB <1 + —,b) , (4.3)
a

and

2
Var(X) = bB (1+§,b) - {bB (1+%,b)} : (4.4)
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where B(x,y) is the Beta function and B(z,y) = I'(z)I'(y)/T'(z + y).

The Kumaraswamy distribution has the same basic shape properties as the beta
distribution, namely: when ¢ > 1 and b > 1 it is unimodal; when ¢ < 1 and b < 1 it
is uniantimodal; when ¢ > 1 and b < 1 it is increasing; when a < 1 and b > 1itis
decreasing; when a = b = 1 it is constant.

In a discussion paper, [Nadarajah, 2008] has pointed out that many papers in the
hydrological literature have used Kumaraswamy’s distribution because it is deemed
as a better alternative to the beta distribution, see [Koutsoyiannis and Xanthopoulos,
1989]]. Over the years, this distribution has received considerable attention by scientists
working in hydrology and related areas, see [Sundar and Subbiah, |1989], [Fletcher
and Ponnamblam, [1996], [Seifi et al., |2000], [Ponnambalam et al., 2001], [Gan;ji
et al., 2006]]. The background and genesis of the Kumaraswamy distribution, and
more importantly, made clear some similarities and differences between the beta and
Kumaraswamy distributions were explored by [Jones, [2009]. He highlighted that the
Kumaraswamy distribution has some advantages over the beta distribution in terms
of tractability. For example, its cdf has a closed form, the quantile functions are
easily obtainable and one can easily generate random variables from Kumaraswamy
distribution. The generalized order statistics of Kumaraswamy distribution was
considered by [Garg, [2009]. A modified ML estimators that are bias-free to second
order were derived by [Lemonte, 2011]] for the Kumaraswamy distribution. New
properties of the Kumaraswamy distribution was derived by [Mitnik, [2013].The
Bayesian and non-Bayesian estimation for the shape parameter of the Kumaraswamy
distribution and the predictive intervals of a future observation under type-II censored
sample was obtained by [Sindhu et al., 2013]. The ML and Bayesian estimation for the
shape parameters, the reliability and the hazard rate functions of the Kumaraswamy
distribution and the prediction for a new observation based on generalized order
statistics were derived by [El-Deen et al., 2014]. Moreover, the Kumaraswamy
distribution has used excessively to construct a new distributions, see [Corderio and
Castro, [2011]], [Paranaiba et al., [2013]], [Gomes et al., 2014].

The rest of this chapter is organized as follows. In Section 4.1,the statistical
inferences for the Kumaraswamy distribution based on record values are considered.

In Section 4.2, the statistical inferences for the Kumaraswamy distribution based on
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record values with their corresponding inter-record times are considered. In Section
4.3, the statistical inferences for the stress-strength reliability of the Kumaraswamy

distribution based on record values are considered.

4.2. Estimation of The Parameters Based on Record Values

When the underlying distribution is the exponential model, the statistical
properties of record values were studied by [[Ahsanullahl 1980], [Awad and Raqab,
2000], they studied four procedures to obtain prediction intervals for the future sth
record value and by means of computer simulation they compared these procedures.
Three types of estimators, ML, minimum variance unbiased and Bayesian estimators
for the one parameter Burr type X distribution based on the record values were derived
by [Ali Mousa, 2001]]. Bayesian estimation for the exponential, Weibull, Pareto and
Burr Type XII distribution based on record values were considered by [Ahmadi and
Doostparast, 2006] when both of the parameters are considered as a random variables.
Based on the record values from the two-parameter Pareto distribution, ML and
Bayes estimators for the unknown parameters and point and interval prediction for
the future record values were obtained by [Ragab et al., [2007]. Statistical analysis of
record values from the geometric distribution was done by [Doostparast and Ahmadi,
2006]]. Furthermore, they derived estimators for the unknown parameter and also
considered the problem of predicting the future record values based on past record
values from a non-Bayesian and Bayesian point of view. Bayes estimators of the
parameter, reliability function and hazard rate for the Rayleigh distribution based on
upper record values were obtained by [Hend: et al., 2007]. The prediction of k-records
from a general class of distributions under balanced type loss functions was studied by
[Ahmadi et al., [2009].

In this section, the estimates for the parameters of the Kumaraswamy distribution
and the prediction of the future record values are obtained under the classical and
Bayesian frameworks. In the Bayesian case, the shape parameters are assumed to be
random variables and estimates of the parameters and for the future sth record value are
obtained under the SE and the LINEX loss function. Finally, the findings are illustrated

with actual and computer generated data.
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4.2.1. ML Estimation

Let Ry,..., R,, be the first m upper record values observed from Kum(a,b).
The likelihood function associated with the sequence { Ry, ..., R,, } is given by [Arnold
et al., [1998]] as

1) = ) TT 250, @s)

i=1

where 0 < r; < ... < 1,,. From equations (4.1)), (4.2) and (#.5), we have

L(a,b;r) = a™b™(1 — rfn)bH = (4.6)
and so the log-likelihood function is
[(a,b;r) =m(Ina+Inb) +bln(l —7rr) + (a — 1) Zlnri - Zln(l —rd). (4.7)
i=1 i=1

Then, the MLEs of a and b are given by

~ m
Y — 4.8
In(1—7r2)’ (4.8)

and @ is a solution of the following non-linear equation

m mre Inr " Inr;
— m M — =0. 4.9
a+(1—rfn)ln(1—r%)+zl—rf 4.9)

i=

Therefore, a can be obtained as a solution of the non-linear equation of the form

h(a) = a where

mr® Inr " Inry
h(a) = — m___ § — . 4.10
) = = e () T2 T (410)

(2
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Since, @ is a fixed point solution of the non-linear equation(.10)), its value can be
obtained using an iterative scheme as like: a(;11) = h(a(j)), where a;) is the jth iterate
of a. The iteration procedure should be stopped when ’a(jﬂ) — a(j)‘ is sufficiently
small. After a is obtained, b can be obtained from equation .

Next, the existence and uniqueness of the ML estimates of the parameters a and

b of the Kumaraswamy distribution based on upper record values are proved.

Theorem 4.1: The ML estimates of the parameters a and b are unique and are given by

~ m
b= ———— 4.11
In(1—r2)’ ( )

where a is the solution of the non-linear equation:

m mre Inr, " Inry B
G<a>_3+(1—rgb)1n(1—rgn)+z_;—1—rg_0‘ (4.12)
Proof H.1} G(a) can be rewritten as
m Go(a)
=— |1 4.1
Gla) =2 |1+ Guta) + 2241 @.13)

where Gi(a) = (1/m)> " Ins;/(1 — s;), Go(a) = sy Insp,/m(1 — s,,), Gs(a) =
In(1 —s,,)/mand s; =ri=1,..,m.

The limit of G(a) is considered as a — 0" and a — oc. It is easily obtained that
lim, 0+ G(a) = oo and lim,_,o, G(a) < 0. By the intermediate value theorem G(a)
has at least one root in (0, 00). If it can be show that G (a) < 0, then the proof will be

completed. Since r; < rpy,, 1/(1 —78) <1/(1—r%),i=1,...m—1fora>0and

G’(a) _—m mré (In 7“7%)2 (re +In(l —7r%)) n i re (lnr;’)2

a? a(1-re)*  (In(1-rg))? g2 (1 — o2
m)_ . (In 7“?,,,)2 (re +In(1 —r2)) 7% (In 7”?,,,)2
< a2 { 14ry, (1 — r;zn>2 (111(1 _ r%))Q (1 _ 7’%)2 4.14)

a

—m  mr? (In Tfil)z { re re }
-y 14 + .
(In( )

a? a?(l —ra)? 1—ra))?  In(l—rg
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According to the order of convergence of the corresponding terms in the last
expression, it can be easily show that G' (a) < 0.

Finally, we will show that the ML estimates of a and b maximizes the
log-likelihood function l(a,b;r). Let H(a,b) be the Hessian matrix of l(a,b;r) at

~

(a,b). It is clear that Hy1(a, b) < 0 and the determinant of the Hessian matrix
D(@,b) = Hi1(@,b) Hn (@, ) — (Ho(@, ))?

—¢'(@) {—(1n(1_7~§n)) } (4.15)

m

~ ~

and D(a,b) > 0. Hence, (a,b) is the local maximum point of l(a,b;r). Since there
is no singular point of l(a, b;r) and it has a single critical point then, it is enough to
show that the absolute maximum of the function is indeed the local maximum. Assume
that there exist a ay in the domain in which l*(ag) > [*(a), where [*(a) = I(a, b; r,).
Since @ is the local maximum there should be some point a, in the neighborhood of a
such that I*(a) > [*(a1). Let k(a) = I*(a) — I*(a) then k(ay) > 0, k(a1) < 0 and
k(@) = 0. This implies that a, is a local minimum of the I*(a), but @ is the only critical

~

point so it is a contradiction. Therefore, (a,b) is the absolute maximum of l(a, b;r). W

4.2.2. Bayesian Estimation

Assume that the parameters a and b have a joint bivariate prior density function

that was first suggested by [Al-Hussaini and Jaheen, [19935] as,
m(a,b) = m(bla)m(a), (4.16)

where

aa+1

. pa,—ba/ o
Mo+ 1)7(1“6 e a>—1, v>0, 4.17)

m(bla) =
is the gamma conjugate prior, was first introduced by [Papadopoulos, 1978]] and was

also used later on by [Al-Hussaini and Jaheen, 1992], and a has gamma prior with
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parameters (9, ),

aéfl

To(a) = We—a/ﬂ, f>0,6>0. (4.18)

From equations (4.6)) and (4.16), the joint posterior density function of a and b is

B L(a,b;r)m(a,b)
m(a,blr) = 15 ) La, b; v)m(a, b)dadb

a5+m+aba+me—a(%—22’;1lnm)e—b(%—ln(l—ri‘n))
= 4.19
D+ D00, 10,0 T (- 78] o

where

o0 t(S—‘,—m—‘,—a—‘,—ce—t(h-i—%—Zy;l In T’i)
v(e,d;h, f) = / ———dt. (4.20)
O I = ) [f 4L~ - )]

If the loss function is the SE loss function, then the Bayes estimates of a and b are the

given by their marginal posterior expectations as

~ _ ¥(1,1,0,0)
s = Blalr) = oo 4.21)
and
N _ ¥(0,2,0,0)
bps = E(b|r) = (m+ o+ 1)—¢(0’ 1.0.0)° (4.22)

respectively. If we use the LINEX loss function, the Bayes estimates of a and b are

given by
o~ 1 — 1 1/](07171}70)
=——"IhE(e®r)=—-In 122" 4.23
Gpr = (e ) = = n(¢(0,1,0,0)>’ (429
and
~ 1 B 1 ¥(1,1,0,v)
bgr = ——InE(e™r)=—=-In(—212"" 4.24
pr = = B == n(w<0,1,o,0>)’ (429
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respectively. It should be point out that equations (#.21))-(4.24) are not in explicit form,
but the practitioner should not be discouraged, there are several numerical methods that

can be used to evaluate those expressions.

4.2.3. Prediction of Future Record Values

In this section, the problem of prediction of the sth (s > m) upper record value

are considered by using non-Bayesian and Bayesian approaches.

4.2.3.1. Non-Bayesian Prediction Approach

When the first m upper record values are observed from a population with pdf
f(z; ), the predictive likelihood function of Y = R, s > m and the parameters 6 is
given by [Basak and Balakrishnan, 2003] as

T S8 [H(y:6) — H(rm:6)] "
L(y,0;r) = H 1— F(r;;0) T'(s—m)

i=1

f(y:0), (4.25)

where 6 = (a,b), r = (rq,...,r,) and H(y;0) = —In(1 — F(y;0)). From equations
(.1), @.2) and (@.25)), we have

Flraber) — @y T In( =) —In(l -y !
(y7 a, ,I') - a)1l-b a’
(1—y2) I'(s —m) 1—r

i=1 @

(4.26)

where y > r,, > r,_1 > ... > r; > 0. Then, the PMLE of a and b and the MLP
of Y = R, are obtained by minimizing the logarithm of the predictive likelihood
function in equation (4.26) with respect to the above mentioned parameters. After

some simplifications these equations are

— (v Iny/(1 = y) — (% Inry) /(1= 15)
- +(s—m—1) In(1 — r2) — In(1 — yo)

ylny = Inn
Iny—(b—1 = 4.27
iy = (=Dl T =0 42D
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S+ In(1 - ") =0, (4.28)

ay® /(1 —y?) a—1 ay® !
In(1 —rg) —In(1 —y*) y 1—ye

(s—m—1) = 0. (4.29)

The above system of three equations can be reduced to a system of two equations by

replacing b = —s/(In(1 — y)) into the equations (4.27)) and (4.29) and obtained as

follows

_— (im0 — ) — () /(0= )
a ts=m-1) In(1—72) —1In(1 —y*)

+1Iny

s y*Iny = Inr;
—+1 = 4.30
+(1n(1—y“)+ )1—y“+i211—r‘? 0, (4.30)

7

(s—=m—1Day* /(1 -9y a-—1 s ay®*
—+1 = 0. 4.31
m(l—rg)—(l—y)  y  \m(i—y9) )Ty *3D

The above non-linear equation system can be easily solved numerically.
4.2.3.2. Bayesian Prediction Approach
The prediction of future records based on a Bayesian approach is considered

under the SE and the LINEX loss functions. The conditional density of ¥ = R,

s > m given the past m records is

[H(y;0) — Hrm; )" f(y]9)

f(y|r>9):

['(s —m) 1—F(rm|0)

s—m _ pa s—m—1 _a,a b a—1
N T

['(s—m) 1—ye l—re ) 1—yo

where 7,, < y < 1. The Bayes predictive density function of Y given r, see [Arnold

et al.,|1998], is given by

h(y|r) = /000 /000 fly|r,a,b)m(a,bl|r)dadb. (4.33)
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Using equations (4.19) and (4.32)), the Bayesian predictive density function of Y = R,

is obtained as follows

S ( somed )@(r,y)

]

h p—
W) = B mm T a T D0, 10,0y

(4.34)

where

1_

00 4k1 (] — ot i n(1 — ot ko €_t(5 lnu—{gllnri)
- [ (1 =)' [~ (1 = ) e
O IO [E-m -] (1w

dt,  (4.35)

ki=0+a+m+ 1,k =s—m—1—iand B(z,y) is the Beta function. Then, the
Bayes point predictor of Y = R, s > m under the SE and the LINEX loss functions

are given by

ysom-t ( som—1 ) L e )y

1
~ 1
Y. = h dy = 4.36
- /Tmy Wiy =~ @36
and )A/me = — (ln E(e™vY |r)) /v where
1
Brele™ o) = [ hiylr)dy
St (0T ety
= . 4.37)

B(S_m7m+a+1>¢<0a17070)

4.2.4. Simulation Study

The two examples are given to illustrate the findings of Section 4.2. The former
is areal data set is obtained from the Shasta reservoir in California while latter example
uses simulated data set. In both examples, the mathematical package MATLAB 7.7.0
is used to obtain the estimates of the parameters a and b and the prediction of future

record value(s).
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The first example deals with the monthly water capacity data from the Shasta
reservoir in California, USA and are taken for the month of February from 1991 to
2010 (see http://cdec.water.ca.gov/reservoir_map.html). The maximum capacity of the
reservoir is 4552000 AF and the data are transformed to the interval [0, 1]. The actual
and transformed data are given in Table 4.1. The 20 values are used to verify that
the transformed data follow Kumaraswamy’s distribution. The Kolmogorov—Smirnov
test shows that indeed the observations follow the double bounded Kumaraswamy’s
distribution (p-value > 0.2). The prediction of the 7th record value based on the first 5
records is computed by using the ML and Bayes prediction approaches.

The parameters of the priors given by equations (4.17) and (4.18)) are estimated

by using the method of moments. From equations (#.17) and (4.18]), we have a ~

Gamma(d, f) and b |a ~ Gamma(a+1,v/a) where @ = 2.4446 is obtained from the
data. Using the method of moments, we have X = §B and Y., 22 /n = §3% + (§3)?

by equating the sample moments with the population moments. 3 and § are obtained

by solving these two equations and are given by

TL 2 . 72 yZ
8= izt Ti/M 6= - (4.38)
X S xi/n—X

Then, these two quantities are used as estimates of the population parameters o and /5.

Similarly, using the third and fourth moments of b [a , we have

%Zﬁ: <%>3(a+1)(a+2)(a+3), (4.39)
%Zﬁ: (%)4(04—1—1)(a+2)(04+3)(04+4). (4.40)

Solving these two equations for v and «, the following non-linear equations are

obtained

= (4.41)

(2) = L Yial/n (a+D(a+2)(@+3) (T, 2d/n)"
a a+43 " ad/n’ (a+4)3 >, zt/n)?

Then again one can use these two quantities as estimates of the population parameters

~v and «. For this data set, the estimated parameters are « = 15.903, § = 0.0659,
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Table 4.1: Monthly capacity for February and proportion of total capacity.

Year Capacity Proportion of Year Capacity Proportion of
total capacity total capacity
1991 1542838 0.338936 2001 3495969  0.768007
1992 1966077 0.431915 2002 3839544  0.843485
1993 3459209 0.759932 2003 3584283 0.787408
1994 3298496  0.724626 2004 3868600  0.849868
1995 3448519 0.757583 2005 3168056  0.695970
1996 3694201 0.811556 2006 3834224  (.842316
1997 3574861 0.785339 2007 3772193 0.828689
1998 3567220  0.783660 2008 2641041 0.580194
1999 3712733 0.815627 2009 1960458 0.430681
2000 3857423 0.847413 2010 3380147 0.742563

Table 4.2: Estimates of a and b and predictors of Ry.

Bayes
Parameter MLE PMLE SEL LINEX(v = 0.2)
a 1.7846 3.1127 3.1877 3.0523
b 5.2496 27521 2.0343 1.9752
R7 - 0.8425 0.9768 0.9771

~v = 0.0970 and 6 = 9.5779. When the actual 7th record value is 0.849868, the ML
prediction for the 7th record value is 0.6663 and the Bayesian point predictor under the
SE loss function is 0.8518.

Several authors such as [Ragab, 2002], [Ahmadi and Doostparast, [2006], [Hendi
et al., 2007] have used simulated data to illustrate their findings. In our second
example, a simulated data is used for demonstration purposes. a = 5.8191 and
b = 1.0515 are generated from the priors by using the valuesof « = 1, 8 =3,y = 2
and 6 = 3. A random sample of 7 record values from the Kumaraswamy distribution
are generated, which are 0.5454,0.6417,0.8723,0.9242, 0.9446, 0.9549,0.9571. The
first 5 will be used to estimate the parameters a and b, and also to predict the 7th record
value. Based on this sample, the ML, PML and Bayes estimates of the parameters
(a,b), and MLP and Bayes point predictor of Y = R; are obtained under the SE and

the LINEX loss functions and results are listed in Table 4.2.
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4.2.5. Conclusion

In this section, the ML and Bayes estimates of two shape parameters of the
Kumaraswamy distribution are obtained. The Bayes estimates are derived under the
SE and LINEX loss function for bivariate prior density function. Non-Bayesian and
Bayesian point predictors of the future record values are obtained. The real life
and computer generated data sets are considered to illustrate the use of the methods
proposed in this section. The examples reveals out that the performance of the Bayes
estimates of the parameters and Bayesian point predictor of the future record values

are better than that of ML case.

4.3. Estimation of The Parameters Based on Records and
Inter-Record Times

In this section, the parameter estimates of Kumaraswamy distribution based on
lower record values and their corresponding inter-record times are obtained under the
classical and Bayesian frameworks. The Lindley approximation and MCMC technique
are used to obtain the Bayes estimates under different loss functions. Finally, a
Monte Carlo simulation is performed to compare the estimates of the parameters. The
non-Bayesian and Bayesian point predictors and the Bayesian prediction interval for
future lower record values are obtained based on the observed lower record values
with their corresponding inter-record times. To see the effect of the inter-record times
in parameter estimates, the estimates based on lower record values with inter-record
times and upper records which are obtained from the same random sample of the
Kumaraswamy distribution are constructed. Finally, the two approach are compared

by using Monte Carlo simulations.

4.3.1. ML Estimation

Let X;, X5, ... be1i1.d. random variables, coming from a population with the cdf
and the pdf F'(.) and f(.), respectively. Then the likelihood function associated with
the sequence { Ry, K1, ..., Ry, K, } is given by [Samaniego and Whitaker, 1986] as
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_ H ) {1 = For) Y I s (), (4.42)

where ry = 00, k,,, = 1 and I 4(z) is the indicator function of the set A. From equations

@.1), @.2) and (@.42), we have
L(a,b;r,K) = a™b™ exp {(a —1)) Inri+ ) (bk;—1)In(1 - rg)} o (4.43)
=1 i=1
where r; > ... > r,, and so the log-likelihood function is

l(a,bir,k) =ma+mnb+(a—1)Y Inri+ > (bk; — 1)In(1 —rf). (4.44)

i=1 i=1

The MLEs of a and b are given by

~ m

b= — 4.45

o (445)

where T, = — > " k;In(1 — r¥) and @ is the solution of the following non-linear

equation

m " Inry m ~— kird lnn

o - - 4.46

a+z::1—r Tal1 1—7" ( )

%

Therefore, @ can be obtained as the solution of the non-linear equation of the form

h(a) = a where

m ~= kiréInr; " Inr;
h(a) = — - - : 4.47
(a) =m Ta; e > ; (4.47)
Since, @ is a fixed point solution of the non-linear equation (4.47), its value can be
obtained using an iterative scheme as like: a(jy1) = h(aj)), where a(;) is the jth

iterate of @. After @ is obtained, b can be obtained from equation |l The iteration

procedure should stopped when |a(;) — a(;41)| 18 sufficiently small.
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Next, the existence and uniqueness of the ML estimates of the parameters a and b
of the Kumaraswamy distribution based on lower record values and their corresponding

inter-record times are proved.

Theorem 4.2: The MLEs of the parameters a and b are unique and given by b=m e

where a is the solution of the non-linear equation:

moom e kird Inr; " Inry
G(a)_g—igw—i—z —O (448)

Proof B.2] It is clear that

~om om oyt (kg nrg/ (1= 1)) " Inry
G(a>_a+ Zzlklln(l—rf) +Z]_—ra

(Y kilnr O
S i kilnr +3 . (4.49)

Then, we have

. . m Z:zl k’z hl r; " L
G(0) = limG(a) > lim (Z T Tg)) ) n=oe, @50)

and G(0) = oo. Moreover,

_ _ m mY. " (krtInr/ (1-19) < Inry
=1 =1 — = : —_—
Go0) = Jlim Ga) = lim. < P T Y G ) R Z 1—re

_ i M2z R/ (L= 1)) (/) S (4.51)
=1

e ST Ki(In(1 — r%) /)

m

= Z(lnri —Inry) <0.

=1

Hence, we obtain that lim, .o G(a) = oo and lim,_,, G(a) < 0. By the intermediate

value theorem G (a) has at least one root in (0, 00). If it can be shown that 0G(a) /0a <
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0 then the proof will be completed. It is easily obtained that

0G(a) _ _lz Cha) - —— mGs(a) | (4.52)
da a (O ity kiln(1 —rf))
where
Grla) = — 3o (e Y (453)
1la)=m - r; 1— 7“? ) :

2
m In r¢ 2 m 7 k’i’l“th?"q
Gala) = k! (1 —~ ;q) (Z ke In(1 — rg)> + (Z T) . (4.54)
; v =1

i=1 i
It is easily obtained that Gi(a) > 0, because f(x) = z(lnz)*/(1 — x)* = €
(0,1) is an increasing function on (0,1) and lim, ¢ f(z) = 0, lim,; f(z) = L
Therefore, f(x) < 1 for x € (0,1). Moreover, Go(a) < 0 is obtained by using
the Cauchy-Schwarz inequality and x < —In(1 — x), x € (0,1). Notice that
g(x) = x+1In(l —x), x € (0,1) then g(x) is a decreasing function on (0,1) and
g(z) < 0 forx € (0,1). Since G1(a) > 0 and Gy(a) < 0, we have 0G(a)/0a < 0
from equation ({.52).

Finally, we will show that the MLEs of (a,b) maximizes the log-likelihood
function l(a,b;r,k). Let H(a,b) be the Hessian matrix of l(a,b;r,k) at (a,b). It

is clear that

. m R 1 ; 2
(@, ):—Gl(a)—bzmg< al > <0, (4.55)
=1

1-— 7’?
and the determinant of the Hessian matrix
o~ o~ A a2
D(CL, b) = HH(CL, b)HQQ((I, b) — (ng(a, b))

_mG@) @y o (4.56)

ab?

-~

Hence, (a,b) is the local maximum of l(a,b;r, k). Since there is no singular point

of l(a,b;r,k) and it has a single critical point then, it is enough to show that the
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absolute maximum of the function is indeed the local maximum. Assume that there
exist a ay in the domain in which l*(ay) > 1*(a), where I*(a) = l(a,E; r, k). Since a is
the local maximum there should be some point a; in the neighborhood of a such that
[*(@) > I*(ay). Let k(a) = I*(a) — I*(a) then k(ay) > 0, k(a;) < 0 and k(a) = 0.
This implies that a, is a local minimum of the [*(a), but @ is the only critical point so

-~

it is a contradiction. Therefore, (a,b) is the absolute maximum of [(a, b;r, k). W

4.3.2. ML Estimation When « Is Known

Without loss of generality, we assume that @ = ao. Then, by (4.43)

Loy, B;1,K) = al'b™ exp {(ao 1)) I+ > (bk;—1)In(1 - rfﬂ)} . (4.57)
=1 =1

where 71 > ... > r,,. In this case, T,,, = — Y .~ k; In(1 — r{°) is a sufficient statistic
for b and the MLE of b is /b\M . = m/T,,. The moment generating function of 7y, is
M(t) =1/(1 —t/b)™,b > t. By the uniqueness of the moment generating function,
T,, is distributed as Gamma(m, 1/b) and its mean and variance are m/b and m/?,
respectively. Therefore, E(EML) = (m/(m — 1))b and an unbiased estimator for b
is by = (m — 1)/T,,. Notice that, MSE(by) < MSE(by1) and MSE(by1) — 0

as m — oo then by, and by converge to b in mean square. Moreover, we have

20T, ~ X3, and the exact 100(1 — 1)% confidence interval of b is

2 2
(Xam,m X?myl—nﬂ) ‘ (4.58)

2T, ' 2T,

4.3.3. Asymptotic Confidence Interval

In practice, the observed information matrix is used as a consistent estimator of
the Fisher information matrix. An asymptotic confidence intervals for the parameters
a and b based on lower record values and their corresponding inter-record times are
obtained by using the observed information matrix. The observed information matrix
J.n(a,b) is given by
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I (a,b) = — {g_;l 82_}[6} = {J“ J”} : (4.59)
% 8_b£ J21 J22

where

m o Inm; 2 i kirdInr, m
Ji = @"’Z(bki_l)ﬁ ( ) 12 = Jog = Z o Joz = = (4.60)

1—7r¢
=1 g i=1 %

By the asymptotic normality of the MLE, we have [\/E(EM L —a), vm(by —b)|
Ny(0,I71) for large m, where ~ means approximately distributed and I~ is the
inverse of the Fisher information matrix. If the likelihood equations have a unique
solution 5,“ then (/9\,1 is consistent, asymptotically normal and efficient, see [Lehmann
and Casella, 1998]]. Since our likelihood equations have a unique solution, these results
are satisfied for our estimates. The observed information matrix J,, (@, L,ZM L)/mis
a consistent estimator for I,,,(a,b)/m under the regularity conditions, see [Lawless,
2003|]. Therefore, we use the observed information matrix in the asymptotic normality
of the MLE. For large m (the number of record values) under inverse sampling, we can

construct the approximate 100(1 — 7)% equi-tail confidence intervals for a and b as

- J22 ~ Ji1
+ - db by £ - 4.61
NS <&ML & Ty Ty — J122 ) and 0 € ( ML T C Ti1 oy — J122 ) ) ( )

where ¢ = z_,/5 and 2, is the upper nth quantile of the standard normal distribution.

4.3.4. Bayes Estimation

In this section, we consider the Bayes estimates of the Kumaraswamy

distribution parameters under different loss functions for the inverse sampling scheme.

4.3.4.1. Bayesian Estimation When « Is Known

When the parameter a is assumed to be known, say a = ay, we use the gamma

conjugate prior density for the parameter b, was used in section 4.2, i.e.
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a+1
Qg

"= Mot e

bre b0/ b >0 (> —1,7 > 0). (4.62)
Then, the posterior density function of b is readily obtained from equations (4.57) and

@.62) as

bl (r, k) ~ Gamma (m + a + 1, (ag/y + Tay) ). (4.63)

The Bayes estimate of a under the SE loss function, /b\BS,l, is the mean of the b| (r, k).

Therefore

m+a-+1

bps1 = —_—, 4.64
B S T T (4.64)
and the Bayes estimate of b under the LINEX loss function, ZB L1,18
~ 1 m+a+1 v
bpri=—-IEyue™) = ———mIn(1+—— . 4.65
BL,1 ’ bl(r.k) (€7) ” < Py Tao) (4.65)
If we use the Jeffrey’s non-informative prior, that is m(b) = 1/b, then we have

b| (r,k) ~ Gamma (m,1/T,,). Therefore, the Bayes estimates of b under the SE

and the LINEX loss functions are obtained as

" andbpro = —In (1 n i) : (4.66)
v

bpso =
ao TCLO

respectively.
The 100(1 — n)% Bayesian credible interval can be easily constructed by using

the posterior density function of b. It is clear that 2(aqg /v + T4, )b| (r, k) ~ X%(

m+a+1)°
Therefore, a Bayesian credible interval for b is given by
X%(m+a+1)(n/2) X%(eraJrl)(l - n/2) (4 67)
20a0/v+Tay) ~ 2(a0/y+To) ) '

In the following proposition the comparison of Bayes estimates are given under

the SE and the LINEX loss functions.
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Proposition 4.1:

’L) /b\BL,l < /b\BSJfOI"U > 0.

i) by > bpsa for — (ao)y + Tay) < v < 0.

Proof 4.11t is known that

In(1+ z) < x for every x > —1. (4.68)

i) Suppose v > 0. v/ (ap/y+ Ty,) > 0, when ag/y > 0 and T,, > 0. We have
In(1+v/(ag/y+Ts)) < v/(ao/y+T,,) by the inequality (;;8]). Therefore,

bpr1 < bps;

ii) Suppose v < 0 and —(ao/y + To,) < v, then v/ (ap/y + Taof > —1. We have
In(1+v/(ao/y+Tu)) < v/(ao/y+ Ta,) by the inequality (#768). Therefore,

3BL,l > BBS,I- u
4.3.4.2. Bayesian Estimation When ¢ and b Are Unknown

We consider the Bayes estimates of a and b when the parameters a and b are both
unknown and random variables. We assume that a and b have a joint bivariate density

function, say 7(a, b), which is used in section 4.2
m(a,b) = m(bla)m(a), (4.69)

where

aa+1

mi(bla) = Tl + 1)yort

b b >0 (a > —1,7 > 0), (4.70)

and a has gamma distribution with parameters (0, 3). From equations (4.43)) and
(4.69), the joint posterior density function of ¢ and b can be rewritten as

m(a,b|r,k) = I(r, k)amtoropmte

exp {—b (g + Ta) —a (1 — Zlnn) — Zln(l — rf)} . (4.71)
v e i=1
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where

— —m—a—1
[I(r7 k)] 1 _o© O[m+a+6 g _I_ T
m+a+1) ° vy

exp {—a <% — Zln ri> - Zln(l — rf)} da. (4.72)
i=1 i=1

The Bayes estimate of a given measurable function of a and b, say g(a, b), under the

SE loss function is

~ foo foog(a’ b)L(CL, b;rjk)ﬂ(a,b)dadb
B, b)) = 2o_Jo IN i 4.73
9Bs brk(g(a, b)) fo fo L(a,b;r,k)m(a,b)dadb @73

It is not possible to compute equation (4.73) analytically. Two approaches are
suggested here to approximate equation (4.73), namely Lindley’s approximation and

MCMC method.

e Lindley’s approximation

For the two parameter case (a, b), we have from equation (4.71])

Qzlﬂ](r,k)+(m+a+5)lna+(m+a)lnb—b(E—i—Ta)
~

—a (% — ;lnn) - len(l —rd). (4.74)

The joint posterior mode is the obtained from the equations 0@ /0a = 0 and 0Q)/0b =

0 as

~ m+a
b= ——, 4.75
a/y+Ts (75)

and a is the solution of the nonlinear equation

m

m+a+0 m+ « 1 kirdInr; 1 " Inry
_ - M B I =0. 4.76
a a/7+Ta<7+izl 1—7"?) B+le—r“ ( )




It can be solved by using the same procedure in equations (4.45) and (#.47). The

elements of the ()* are

., mtatd & Inr; \?
e D DL (1_T), (4.77)
N . 1 kird Inr; m+ «
Q= Q3 =~ + Zl_a,%— = (4.78)

=1

and 7;;, ¢, 7 = 1,2 are obtained by using equations (4.77) and (4.78). Moreover, we

have

|
Q12 =0, Qo1 = — Zkr (1117“1) Qo3—wy 4.79)

2 ) & Inr; \°
Qu = 2t td) >—Z<bki—1>r$<1+r3>( ri) @30

a3

Therefore, the approximate Bayes estimates of a and b under the SE and the LINEX

loss functions are

N 1
aBS,Lind = @ + B [Q307'121 + 3Q21T11Ti2 + Q037'217'22] ; (4.81)

~ ~ 1 )
ABL.Lind — @ — ; In [1 + 5 (717'11 - Q307'121 —3Q21T11Ti2 — Q037217'22)] ,  (4.82)

~ ~ 1

bps.Lina = b+ 5 [Q307'127'11 + Q21 (11722 + 27’122) + Q037222} ) (4.83)
—~ ~ 1 v? v
bpr,Lind = b — > In {1 + 572~ 5@21(T11722 +272)

v v
—§Q307'127'11 - 5@037'222 . (4.84)

Notice that all approximate Bayes estimates are evaluated at (’d,g).

o MCMC method
In the previous subsection, the Bayes estimates of a and b are obtained under

the SE and the LINEX loss functions by using the Lindley’s approximation. Since
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the exact probability distributions of these estimates are not known, it is difficult to
evaluate HPD credible intervals of parameters. For this reason, the MCMC method
are used to compute the Bayes estimates of a and b under the SE and the LINEX loss
functions as well the HPD credible intervals.

The MCMC method are considered to generate samples from the posterior
distributions and then compute the Bayes estimates of a and b under the SE and the
LINEX loss functions. The joint posterior density of a and b is given by equation

(4.71). It is easy to see that
bla,r,k ~Gamma (m +a+ 1,a/vy +T,) (4.85)

and

m(a|b,r, k) ox a™ 0 exp {—b (2 + Ta)
g

—a (% — len ri> - zln(l - rf)} . (4.86)

Therefore, samples of b can be generated by using the gamma distribution. However,
the posterior distribution of a cannot be reduced analytically to well known distribution
and therefore it is not possible to sample directly by standard methods. If the
posterior density of @ is unimodal and roughly symmetric then it is often convenient
to approximate it by a normal distribution centered at the mode (see, [[Gelman et
al., [2003]]). Since the posterior density of a is log-concave density (so unimodal)
and the posterior density of a is roughly symmetric with respect to mode (by
experimentation), we use the Metropolis-Hasting algorithm with the normal proposal
distribution to generate a random sample from the posterior density of a. The
hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be used to
solve our problem, is suggested by [Tierney, 1994]. This algorithm combines
the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian proposal

distribution.

e Step 1: Take some initial guess of a and b, say a(*) and b(®),
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e Step 2: Sett = 1.

e Step 3: Generate a') from 7(a| b, r, k) using the Metropolis-Hastings algorithm

with the proposed value distribution ¢(a) = N(a,V;) where @ is a mode of

w(al b4, r,k) and V, = (—d2(Inx(a| b*V, r, k))/da?) " :
-Step 3.1: Let v = alt= 1),

-Step 3.2: Generate w from the proposal distribution gq.

m(w[ bV r k) q(v)
"(v[ b0 e k) g(w) |

-Step 3.4: Generate u from Uniform(0,1). If u < p(v,w) then accept the

-Step 3.3: Let p(v,w) = min {1

proposal and set a¥) = w; otherwise, set a'!) = v.

e Step 4: Generate b®) from Gamma (m +a+1la/y—>0" kin(l— rf(t))>.
e Step5: Sett =1¢+ 1.

e Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (a?), b)),
i=1,...,N.

The samples obtained from the algorithm are used to compute the Bayes
estimates and to construct the HPD credible intervals. The Bayes estimator of
g = g(a,b) based on the SE and the LINEX loss function are given, respectively,
by

1 . .

-~ _ _ § (&) 1)
9BS,MH = E(g|r7k) - N — M g(a’ 7b )’ (487)

i=M-+1
and
1 1 N—M

-~ _ _ = _ (@) 1)

Goram ==~ | 0 ‘—%16}{1)( vg(a b)), (4.88)

where M is the burn-in period.
The HPD 100(1 — )% credible intervals of a and b can be obtained by the
method of [Chen and Shao, [1999]. In particular for a:
From MCMC, the sequence ay,...,ay, are obtained, and ordered as a(;) <
. < a(n). The credible intervals are constructed as (agj), a¢j+va—v)) for j =
1,.... N — [N(1 — ~)] where [z] denotes the largest integer less than or equal to x.
Then, the HPD credible interval of a is that interval which has the shortest length.

Similarly, the HPD credible interval of b can also be constructed.
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4.3.5. Prediction of Future Record Values

In this section, we consider the problem of prediction and prediction interval for

the s th (s > m) record value using non-Bayesian and Bayesian approaches.

4.3.5.1. Non-Bayesian Prediction

When the first m lower record values are observed, the predictive likelihood
function of Y = R, s > m and the parameters 6 is given by [Basak and Balakrishnan,

2003]] as

Fri;0) [H(y;0) — H(rm; 0))"
F(r:;0) T(s —m)

f(y:0), (4.89)

where 0 = («o,08), r = (r,..,rm) and H(y;0) = —InF(y;0). Moreover,
the likelihood function associated with the sequence {R;, Ki,..., R, K.} is
given by [Samaniego and Whitaker, 1986] in equation (4.42). Similarly, the
predictive likelihood function for the future record R, based on the sequence

{Ry, K1, ..., Ry, Ky, Rs} is derived in section 2.3 as

Ly, 0;x,%) =1y f(ris0) {1 = F(ri;0)}" " I, (1)

[H(y:6) — H(rm:0))"
[(s—m)

f(y;0). (4.90)

Notice that, K,, = 1 is defined for convenience, when the inverse sampling is
employed (see [Samaniego and Whitaker, 1986]). The PMLE of (a, b) and the MLP
of Y = R, are obtained by maximizing the logarithm of the predictive likelihood
function in equation (4.90) with respect to mentioned parameters. For a special case,

when s =m + 1,the MLP of Y = R,,, 1, say }A/MLP, is obtained as

~

. apyr — 1 1/apmr
Yvrp = ( — ) . 4.91)
apyrbpyr — 1
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Notice that }A/M p 18 an increasing function with respect to @p;;, when apy;;, > 1 and
XA/M Lp 1s a decreasing function with respect to /b\p M When /b\p wmr > 1. It can be seen
that ?M Lp 1S very big compared to the last record values which violates }A/ML p < Tm.

Hence, we will not list the SA/M r.p in Tables 4.5 and 4.7.

4.3.5.2. Bayesian Prediction

In this subsection, we consider the problem of prediction and prediction interval
of future records based on a Bayesian approach using the SE and the LINEX loss
functions by using the bivariate prior in equation (#.69). The conditional density

function of Y = R, s > m given the past m records is

[H(y) = Hrm)]"™ " f(y)
['(s—m) F(rm)

R ) B T s W PN PR
T L(s—m)F(r,) & ( j )( 1 [In E(y)]” [In F ()] , (4.92)

j=

where 0 < y < r,,. The Bayes predictive density function Y is given by

h(y|r,k) = /000 /OOO f(y|r,a,b)r(a,b| r,k)dadb. (4.93)

It is clear that h(y|r, k) cannot be expressed in closed form and hence it cannot be
computed analytically.

The consistent estimator of h(y|r,k) is constructed by using the hybrid
Metropolis-Hastings and Gibbs sampling procedure as described in MCMC case.
Suppose that {(a;,b;), i =1,..., N} are MCMC samples obtained from 7(a, b|r, k)
using the hybrid Metropolis -Hastings and Gibbs sampling technique. The consistent

estimator of h(y|r, k) based on the simulation can be obtained as

N

-~ 1
Wyl k) = 5> Fylraib), (4.94)

=1
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and a consistent estimator of the predictive distribution of ¥ = R, based on the

simulation, say H(y|r, k), can be obtained as

N
1
(y|r, k) _NZ y|r,a;,b;), (4.95)

and F*(y|r,a,b) denotes the distribution function corresponding to the density

function f(y|r,a,b) and
Yy
F*(y|r,a,b) = / f(tlr,a,b)dt
0

S—

2 s —m— 1\ I F () " TG+ 1, — In Fy)
> ( j ) T(s—m)F(ry) S

Jj=
where I'(z, y) is the incomplete Gamma function, i.e. I'(z,y) = [ ~'e~'dt. Tt
should be noted that the same MCMC samples {(a;,b;), i = 1,..., N} can be used to
compute /ﬁ(y| r, k) or H (y| r, k) for all y. Then, the point predictor of Y = R, under

the SE loss function is

Tm N Tm
Ys:/ yh(y|r,k)d E / yf(ylr,a;,b;)dy
O :

W) F(ryian b)) ]
RO o ey IO

The point predictor of Y = R, under the LINEX loss function is

N
~ 1 1 meo e f(y;r, aq, by)
Vo= ——l{ >
L v H{N, /0 I'(s —m)F(rm.aq,b;)

F(rm;ai, )\ \*
In| —— dy ». (498
(n(F(y%ai>bi))) y} (#99
For a special case, when s = m+1, the conditional density functionof Y = R,,s > m
givenris f(y|r,a,b) = f(y)/F(r,). Hence, the distribution function of f(y|r,a,b)
is given by
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1-(1—y"’

F*(y|r,a,b) = )
(vlrah) = ==

(4.99)

Therefore, /f;( y|r,k), H(y|r,k), Ys and Y;, are obtained from equations 1D , l) ,
@.97) and (#.98), respectively by using f(y|r,a,b) and F*(y|r,a,b).

Moreover, a symmetric 100n% prediction interval for Y, can be obtained by

solving the following non-linear equations, for the lower bound L and upper bound U,

1 1
%:P(Y>L|r,k):1—H(L|r,k);»H(L|r,k)=T", (4.100)
1 1

T”:P(Y> U|r,k):1—H(U|r,k):H(U|r,k):¥. (4.101)

These equations can be easily solved by using the Newton-Raphson method.

4.3.6. Simulation Study

In this section, we present some numerical results to compare the performance of
the different methods for different sample sizes and different priors. The performances
of the point estimators and predictors are compared by using ERs and MSPEs,
respectively. The performances of the confidence, credible and prediction intervals
are compared by using average confidence lengths and cps. The ER of 4, when @ is

estimated by 5, is given by

1L 2
ER(O) = > (92- - ei) , (4.102)
=1

under the SE loss function. Moreover, the estimated risk of 6 under the LINEX loss

function is given by

ER(0) = %Z (e“(@‘—ai) v (@- - 9,-) - 1) , (4.103)
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Table 4.3: Results for the true value of b = 2.8545, («,v) = (1,4) and a is known.

Bayes estimates
LINEX Exact MLE Bayesian
MLE SEL v=-2 v=-1 w=1 wv=2 confidenceinterval credible interval

m=>5
3.8549 3.0277 4.6575 3.5362 2.6931 24472 (1.3242,8.3535) (1.2343,5.7272)
6.1387 1.5483 1.4888 0.2401 0.1582 0.5332  7.0293/0.9347 4.4932/0.9527
m="17
3.6323 3.0306 4.1218 3.4216 2.7537 2.5407 (1.4604,6.7765) (1.3858,5.3080)
4.1676 1.2032 09735 0.1784 0.1295 0.4574  5.3162/0.9483 3.9222/0.9560
m = 10
3.3350 29634 3.6384 3.2380 2.7527 2.5822 (1.5992,5.6977) (1.5312,4.8605)
2.2451 0.9010 0.6113 0.1281 0.1001 0.3660  4.0985/0.9513 3.3292/0.9553
m =12
3.1984 29161 3.4460 3.1414 27366 2.5876 (1.6527,5.2459) (1.5943,4.6304)
1.5528 0.7788 0.4823 0.1090 0.0883 0.3246  3.5933/0.9533 3.0362/0.9533
m =15
3.1576 2.9234 33502 3.1104 27696 2.6390 (1.7673,4.9448) (1.7030,4.4682)
1.2799 0.6526 0.4120 0.0896 0.0753 0.2813 3.1775/0.9440 2.7652/0.9503

Notes: The first row represents the average estimates and the second row represents corresponding ERs
for each choice of m. The last two columns, the first row represents a 95% confidence interval and the
second row represents their lengths and cp’s.

where NV is the number of replication. Similarly, the MSPEs can be computed with
respect to the SE and the LINEX loss functions. All of the computations are performed
by using Matlab R2010a. All the results are based on 3000 replications.

In Table 4.3, the ML and Bayes estimates under the SE and the LINEX (v =
—2,—1,1 and 2) loss functions with their corresponding ERs are listed when a is
known (a = 3), the true value of b = 2.8545 and the prior parameters of b are chosen
to be (a,7) = (1,4). Since the exact distribution of the MLE of b is known, the
95% exact confidence intervals are easily constructed. Moreover, the 95% Bayesian
credible interval for b which is obtained by using the posterior distribution of b are
listed. From Table 4.3, the average ERs of b decrease as the sample size increases in
all cases, as expected. The Bayes estimates under the SE and the LINEX loss functions
have smaller ER than that of MLEs. The average lengths of the intervals decrease as
the sample size increases. The lengths of the Bayesian credible intervals are smaller
than that of the exact confidence intervals. Also, the coverage probabilities are quite
close to the nominal level 95%.

In Tables 4.4 and 4.5, the ML and Bayes estimates under the SE and the LINEX

loss functions with their corresponding ERs are listed for ¢ and b whena = 3, b = 5
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and the prior parameters are Prior 1: (9, 5) = (0.5,4) and («,y) = (3,2). The point
predictors and the 95% prediction interval for Y = R,,,; by using Bayesian (with
respect to the SE and the LINEX loss functions) method are also listed. Moreover,
the 95% asymptotic and HPD credible intervals with their coverage probabilities are
listed. The Bayes point estimates are computed by using Lindley’s approximation and
MCMC method under the SE and the LINEX (v = —2, —1, 1 and 2) loss functions.

From Table 4.4, the average ERs of a and b generally decrease as the sample size
increases. The ERs of Bayes estimates under the SE and the LINEX loss functions
are smaller than that of MLEs. On the other hand, the ERs of the Bayes estimates
for a based on the Lindley’s approximation and MCMC methods are close to each
other under the SE and the LINEX loss functions. However, the ERs of the Bayes
estimates for b based on the Lindley’s approximation and MCMC methods are close
to each other under both the SE and the LINEX loss functions when v > 0. The
ERs of the Bayes estimates for b based on the Lindley’s approximation and MCMC
methods close each other under the LINEX loss function as the sample size increases
when v < 0. Furthermore, the average lengths of the intervals decrease as the sample
size increases. The average lengths of the HPD credible intervals are smaller than
that of the asymptotic confidence intervals but the cp values of asymptotic confidence
intervals are more close to the nominal value.

From Table 4.5, the average MSPEs of the point predictors decrease as the
sample size increases in all cases. Also, the average lengths of the prediction intervals
decrease as the sample size increases and their coverage probabilities are quite close
to the nominal value.

In Tables 4.6 and 4.7, the ML and Bayes estimates under the SE and the LINEX
loss functions with their corresponding ERs are listed for a and b when a = 10,0 = 4.5
and the prior parameters are Prior 2: (9, 5) = (5,2) and (a,y) = (6,5). The point
predictors and the 95% prediction interval for Y = R,,,; by using Bayesian (with
respect to the SE and the LINEX loss functions) method are also listed. Moreover,
the 95% asymptotic and HPD credible intervals with their coverage probabilities are
listed. The Bayes point estimates are computed by using Lindley’s approximation and
MCMC method under the SE and the LINEX (v = —2, —1, 1 and 2) loss functions.

From Table 4.6, the average ERs of a and b generally decrease as the sample size
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Table 4.5: Predictions based on lower records with inter-record times using Prior 1.

Bayes point predictors
Tm LINEX Prediction interval
Trnt1 SEL v=-2 v=-1 v=1 wov=2 length/cp
m=25
0.1170 0.0838 0.0845 0.0842 0.0835 0.0831 (0.0264,0.1159)
0.0707 0.0013 0.0026  0.0006 0.0007 0.0027 0.0895/0.9480
m="7
0.0610 0.0443 0.0445 0.0444 0.0442 0.0441 (0.0149,0.0605)
0.0366 0.0004 0.0008 0.0002 0.0002 0.0008 0.0455/0.9403
m = 10
0.0361 0.0264 0.0265 0.0265 0.0264 0.0264 (0.0093,0.0357)
0.0230 0.0001 0.0002 0.0001 0.0001 0.0002 0.0264/0.9633

m =12
0.0338 0.0249 0.0249 0.0249 0.0249 0.0248 (0.0089,0.0335)
0.0222 0.0001 0.0002 0 0 0.0002 0.0246/0.9603
m =15
0.0310 0.0229 0.0229 0.0228 0.0228 0.0228 (0.0083,0.0307)
0.0215 0.0001 0.0001 0 0 0.0001 0.0224/0.9717

Notes: First column: The first row represents the average of the 7, th record values and
second row represents the average of the true values (7,,+1) which we want to predict.
Last column, the first row represents a 95% PI and second row represents their lengths
and cp’s. For the others, the first row represents the average predictors and second row
represents corresponding MSPEs for each choice of m.

increases. The ERs of Bayes estimates under the SE and the LINEX loss functions
are smaller than that of MLEs. On the other hand, the ERs of the Bayes estimates
for a and b based on the Lindley’s approximation and MCMC methods are generally
close to each other under both the SE and the LINEX loss functions except for some
cases. Furthermore, the average lengths of the intervals decrease as the sample size
increases. The average lengths of the HPD credible intervals are smaller than that of
the asymptotic confidence intervals. The HPD credible interval is preferable to the
asymptotic confidence interval with respect to length and the cp value.

From Table 4.7, the average MSPEs of the point predictors decrease as the
sample size increases in all cases. Also, the average lengths of the prediction intervals
decrease and their coverage probabilities close to the nominal value as the sample size
increases.

In Tables 4.8-4.11, to observe the effect of the inter-record times in parameter

estimates, we generate lower and upper records by using the following procedure.
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Table 4.7: Predictions based on lower records with inter-record times using Prior 2.

Bayes point predictors
Tm LINEX Prediction interval
Trnt1 SEL v=-2 v=-1 v=1 wov=2 length/cp

m=25

0.5245 0.4728 0.4750 0.4739 0.4716 0.4704 (0.3485,0.5231)

0.4485 0.0041 0.0078 0.0020 0.0021 0.0087 0.1746/0.9297
m="7

0.4307 0.3891 0.3905 0.3898 0.3884 0.3876 (0.2896,0.4295)

0.3677 0.0029 0.0056 0.0014 0.0015 0.0061 0.1399/0.9160
m = 10

0.3676 0.3328 0.3338 0.3333 0.3323 0.3317 (0.2495,0.3666)

0.3172 0.0019 0.0036 0.0009 0.0010 0.0039 0.1171/0.9273
m =12

0.3600 0.3261 0.3270 0.3265 0.3256 0.3251 (0.2450,0.3590)

0.3131 0.0017 0.0032 0.0008 0.0008 0.0034 0.1140/0.9280
m = 15

0.3509 0.3181 0.3190 0.3186 0.3177 0.3172 (0.2396,0.3500)

0.3089 0.0013 0.0026 0.0006 0.0007 0.0027 0.1104/0.9417

Notes: First column: The first row represents the average of the 7, th record values and
second row represents the average of the true values (7,,+1) which we want to predict.
Last column, the first row represents a 95% PI and second row represents their lengths
and cp’s. For the others, the first row represents the average predictors and second row
represents corresponding MSPEs for each choice of m.

e Step 1: A random sample are generated from the Kumaraswamy distribution with
parameters (a, b) and sample size 7.

e Step 2: The lower record values with their corresponding inter-record times and
the upper record values are saved. Notice that the sample sizes of the lower and the
upper record values can be different. Moreover, the number of recod values in a
random sample with size n is approximately In(n).

e Step 3: The estimates of a and b are computed based on lower record values with
their corresponding inter-record times.

e Step 4: The estimates of a and b are also computed based on only upper record
values.

e Step 5: Repeat Steps 1-4, 3000 times and obtain the samples (a;, b;).

In Tables 4.8 and 4.9, the ML and Bayes estimates under the SE and the LINEX

loss functions with their corresponding ERs for a and b are listed when a = 4, b = 10
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and the prior parameters are Prior 3: (J, 5) = (8,0.5) and («,7y) = (4, 7). Moreover,
the 95% asymptotic and HPD credible intervals with their coverage probabilities are
listed. The Bayes point estimates are computed by using Lindley’s approximation and
MCMC method under the SE and the LINEX (v = —2, —1, 1 and 2) loss functions.

From Tables 4.8 and 4.9, the average ERs of a and b generally decrease as the
sample size increases except for some cases. Moreover, the average lengths of the
intervals decrease as the sample size increases. The ERs of a which are obtained by
using lower records with their corresponding inter-record times are smaller than the
one based on only upper record values. The average lengths of the intervals for a
which are obtained by using lower records with their corresponding inter-record times
are shorter than the one based on only upper record values. However, the cp values for
upper record case are more close to the nominal value than that of lower record case.
The ERs of b which are obtained by using lower records with their corresponding
inter-record times are smaller than the one based on only upper record values except
for some LINEX cases. The results for the asymptotic intervals of b is similar to the
interval results of a. The HPD credible intervals of b which are obtained by using upper
record values have a good results with respect to lower record case.

In Tables 4.10 and 4.11, the ML and Bayes estimates under the SE and the
LINEX loss functions with their corresponding ERs for a and 0 are listed when
a = 2,b = 3 and the prior parameters are Prior 4: (,5) = (2,1) and (o) =
(2,1.5). Moreover, the 95% asymptotic and HPD credible intervals with their coverage
probabilities are listed. The Bayes point estimates are computed by using Lindley’s
approximation and MCMC method under the SE and the LINEX (v = —2,—1,1 and
2) loss functions.

From Tables 4.10 and 4.11, the average ERs of a and b generally decrease as
the sample size increases except for some cases. Moreover, the average lengths of the
intervals generally decrease as the sample size increases. The comparison of the lower
records with their corresponding inter-record times and upper records are almost same
in Tables 6 and 7. Moreover, it is observed that the cp values of HPD credible intervals
of a and b are around the nominal value.

In the all MCMC case, we run three MCMC chains with fairly different initial

values and generated 10000 iterations for each chain. To diminish the effect of the
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starting distribution, we generally discard the first half of each sequence and focus
on the second half. To provide relatively independent samples for improvement of
prediction accuracy, we calculate the Bayesian MCMC estimates by the means of
every 5" sampled values after discarding the first half of the chains (see[Gelman
et al., [2003]]). The scale reduction factor estimate \/}_3L = 4/ V%(w is used to
monitor convergence of MCMC simulations where 1) is the estimand of interest,
Var(y) = "T’IW + %B with the iteration number n for each chain, the between-
and within- sequence variances B and W (see [Gelman et al., 2003]). It is observed
that the scale factor value of the MCMC estimators are found below 1.1 which is an

acceptable value for their convergency for all cases in Tables 4.4, 4.6 and 4.8-4.11.

4.3.7. Conclusion

In this paper, firstly we consider the non-Bayesian and Bayesian point estimates
as well as confidence intervals for the unknown parameters of the Kumaraswamy
distribution based on lower record values with their corresponding inter-record times.
The ML estimates of the unknown parameters are derived under the inverse sampling
scheme. The Lindley’s approximation and MCMC methods are used to get the Bayes
estimates under the SE and the LINEX loss function for the bivariate prior. Monte
Carlo simulation reveals out that the ERs of the Bayes estimates are smaller than that
of MLEs under the SE and the LINEX loss functions. The average length of the
HPD credible intervals are smaller than that of the asymptotic intervals. Moreover,
the Bayesian point predictors as well as prediction intervals for the future lower record
values are considered. The point predictors and prediction intervals of the future lower
record values are computed based on the lower record values with their corresponding
inter-record times. The result of the point predictors and prediction intervals are
satisfactory when it is compared to the real values.

Secondly, a random sample generating from the Kumaraswamy distribution
is allocated lower records with correspondig inter-record times and upper records,
non-Bayesian and Bayesian parameter estimates are considered by using these record
values. Therefore, we can see the effect of considering the inter-record times in the

parameter estimates. We obtain that using the inter-record times generally decreases
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the ERs of the parameter estimates. As a result, we suggest using lower record values
with their corresponding inter-record times instead of just using upper record values to

get the parameter estimates when these records are obtained from the common sample.

4.4. Estimation of The Reliability Based on Record Values

The problem of estimating of R on random samples has been extensively studied
under various distributional assumptions on X and Y. A comprehensive account of
this topic is presented by [Kotz et al., 2003]. It is provided an excellent review of
the development of the stress-strength reliability under classical and Bayesian point of
views up to the year 2003. For most recent results on the topic see [Kundu and Gupta,
2005]], [Mokhlis,, [2005]], [Baklizi, 2008, [Rezaei et al., 2010], [Nadar et al., [2014] and
the references therein.

The main purpose of this section is to improve inference procedures for the
stress-strength model based on upper record values when the measurements follow
the Kumaraswamy distribution with the first shape parameters are same. Different
estimators of I? are obtained, namely, ML, UMVU and Bayesian and empirical
Bayesian estimates under the SE and the LINEX loss functions corresponding to
conjugate and non informative priors. Moreover, exact, asymptotic and Bayesian

credible intervals of R are also obtained.

4.4.1. Estimation of R When ¢ Is Common and Unknown
The ML estimates, its existence and uniqueness, asymptotic confidence intervals,

as well as Bayes estimates and Bayesian credible interval for R are obtained when the

first shape parameter is common for the distributions of X and Y.

4.4.1.1. ML Estimation of R

Let X ~ Kum(a,b;) and Y ~ Kum(a,bs) are independent random variables.

Then, the reliability R is

133



R=P(X <Y) =/0 FrW)P(X <Y |Y = y)dy

b+ by

(4.104)

The estimate of R are considered based on upper record data on both variables. Let
Ry,..., R, be a set of upper record values from Kum(a,b;) and Si,...,S,, be a
set of upper records from Kum(a, bs) independently from the first sample. The joint
likelihood function of (by, be, a) given (r, s) based on records is given by, see [Arnold

et al., 1998

L(by, by, alr,s) = hi(r; a)hy(s; a)a™mprbprebili(rnia) g=baTa(smia) (4.105)

where 1 = (r1,...,7), 8 = (S1,--+,8m), T1(rp;a) = —In(1 — r?), To(sm;a) =

—In(1 — %) and

(4.106)

Then, the joint log-likelihood function is

l(by,ba,alr,s) =Inhi(r;a) + Inhy(s;a) + (n+m)lna
+nlnb +minby + —b1T1(rn; a) — boaTo(Sm;a). (4.107)

The ML estimates of by, by and a, say 31, 52 and a respectively, are given by

~ n
b= ——F—— 4.108
1 1n(1 _ T,?L)’ ( )
~ m
S - 4.1
b = ) (4.109)
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and @ is the solution of the following non-linear equation

n+m " lnr nrelnr,
2

~+
a —1-r (I —=7%)In(1l —re)

3

Ins; ms® In s,,
N =0. (4.110
+Zl—s (1—s2)In(1l —s2) ( )

Therefore, @ can be obtained as a solution of the non-linear equation of the form

h(a) = a where

" Inry nrélnr,
ha) = =(n+m) ; 1—re * (1 —=7r2)In(1 —ra)

= Ins; ms® In s,,
o . (4111
+Zl—3?+(1—3%)ln(1—sg@) ( )

j=1

Since, a is a fixed point solution of the non-linear equation , its value can be
obtained using an iterative scheme as: a(;+1) = h(a(;) ), where a; is the jth iterate of
a. The iteration procedure should be stopped when }a(jﬂ) — a(j)| is sufficiently small.
After @ is obtained, by and by can be obtained from equations and ,
respectively. Therefore, the MLE of R, say }A% 18

~

by
by + by

R=

4.112)

Next, the existence and uniqueness of the ML estimates of the parameters by, by

and a are proved.

Theorem 4.3: The ML estimates of the parameters by, by and a are unique and given by

by = —n/In(1 = 18), by = —m/In(1 — s&) where @ is the solution of the non-linear
equation
n+m " Inry nrélnr,
G(a) = -
(a) a +le—rf+(1—rg)ln(1—rg)

135



= Ins; ms® 1n s,,
L =0. (4.113
+Zl—s‘-‘+(1—sa)ln(1—sa) ( )
j=1 J m m

Proof ' G(a) can be rewritten as

n

G(a)

{1 +Gy(a) + ] + = {1 + (o) + 22| (4.114)

a

1 <~ Ilnv; lv,Inv, 1
Gi(a) ==~ - Cala) =~ Gsla) =—In(l—v,), (4115

1 <~ Inw 1wy, Inw 1
H = — I H == T H = —1In(1 —w,, 4.116
0= D P ) = P ) = 1 ). (4110
vi=rfi=1,...,nand w; = s}, j = 1,...,m. The limit of G(a) is considered as

a — 0% and a — oc. It is obtained that lim,_,q+ G(a) = 0o and lim,_,., G(a) < 0.
By the intermediate value theorem G(a) has at least one root in (0,00). If it can be
shown that G’ (a) < 0, then the proof will be completed. Since r; < ry,, 1/(1 —1?) >
1/(1=rf),i=1,...,n—1lands; < sy, 1/(1=s7,) > 1/(1=5),j=1,...,m—1

fora > 0,

) —(n4+m) nré (Inre 2'1 ré +In(1 —r%)
a? T2 - (In(1 — r2))*

ms®, ((Ins® \?[. = s% +In(l—s2)
1+ 5
(In(1 — s7,))

_—(ntm) o ( Inwv, )2 [1 . U?Jénflq;ﬁgq @.117)

e ) o s

n m

136



where

B Inz \° z+In(l —x)

It can be easily shown that h(x) is a monotone increasing function and h(x) < 0 for
all 0 < x < 1. Hence, G (a) < 0 is obtained.

Finally, we will show that the MLEs of (b1, by, a) maximizes the log-likelihood
function 1(by,by,a|r,s). Let H(by,bs,a) be the Hessian matrix of 1(by,by,alr,s)
at (by,be,a). It is clear that if det(H) # 0 for the critical point (by,bs,a) and
det(H;) < 0, det(Hs) > 0, det(Hs) < 0 at (by,be, a) then it is a local maximum

of l(by,be,alr, s), where

0%l

H =~
1 (%f’

Foadl 921
Hy=( % %% Hy= Handl=1(by,byalr,s). (4.119)
db2dby OB

It can be easily seen that

V)2
det(H, (b, b2, 0)) = —(In1 = 1)) <0, (4.120)

n

a2 _a 2
det(Hy(by, s, @) = (ln(l;rn)) (In(1 ms’”)) S0, (4121

and

2

/

(In(1 =) (In(1 — s7,))

n m

< 0. (4.122)

det(H (b, b2, @) = G (@)
Hence, (?)\1,32,5) is the local maximum of (by, by, a|r, s). Since there is no singular
point of 1(by,be,al|r,s) and it has a single critical point then, it is enough to show
that the absolute maximum of the function is indeed the local maximum. Assume that
there exist an ay in the domain in which I*(ay) > [*(a), where I*(a) = 1(51,32, alr,s).
Since a is the local maximum there should be some point ay in the neighborhood of
a such that I*(a1) < I*(a). Let K(a) = l*(a) — [*(a) then K(ay) > 0, K(a;) < 0
and K (a) = 0. This implies that a; is a local minimum of the I*(a), but @ is the only

critical point so it is a contradiction. Therefore, (b, bs, @) is the absolute maximum of

l(blab27a|2a§)' n
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4.4.1.2. Asymptotic Distribution and Confidence Intervals For R

The Fisher information matrix of (b1, bo, a) as I = I(by, by, a) is given by

o(5) £k £l
le 825;2 61;12?11 Iy Ly Iis
I==1F (31?23‘71) 2 <<‘9_b§> B ghs0a = |l lo Iz |, (4.123)
2 2 2 I _[ ]
9l 071 821 31 132 133
E (8(181)1) E <8a6b2> E (W)

where [1; = n/b%, Iy = m/bé, Lo =15 =0, I13 = I31, I3 = I3

! 1
I, s® In sy,
Iis :/ n SR, (Tn)dry, Ios :/ 9s,,, (Sm)dsm, (4.124)
0

1—ra o 1—s%

where fr, (r,) is a pdf of nth upper record value from Kum(a,b;) and gs,, (s,,) is a

pdf of mth upper record value from Kum/(a, by),

m

n 1 IHT‘Z' 1 Ins. n-—+m
I35 = — Z/ 7"?(1 )2 fr,(ri)dri — Z/ 5?(1 L )95, (sj)ds; + —
i=1 70 I 0 — ¢

j=1 j

1 1 . 1 1 "
+ by / P ()2 f (1) + b / S0 ()20 ($) S, (4.125)
o L—rg 0 1 —sg,

where fg,(r;) is a pdf of ith upper record value from Kum(a, b1) and gs,(s;) is a pdf
of jth upper record value from Kum(a,by). After making suitable transformations, it

is obtained that

b = 1 1 1
Ls=—23 - _ 4.12
BT g i{(bl—l—i)" (bl—i—z'—l)"]’ (4.126)

by o= 1 1 1
L% __{ o ] 4.127
e R AR CEN R T @120

n+m 2 [~ n
I3 = 2 2 [Z by Ai(by) — b A (by)
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+3 b]B;(by) = b3 Bo(bo) | | (4.128)
j=1

where

<1 1 1 "1
Ailb) = [; k+1 ((b1 +k—1) (b +k)i) (qz 5)] ’ (4129

and

> 1 1 1 "1
Bi(b2) = Lgkﬂ <(b2+k— 17 (bg+k)j> (; 5)] ’ (4.130)

see [Gradshteyn and Ryzhik, [1994] (formula 1.516(1), 4.272(6)).
Theorem 4.4: As n — oo and m — oo and n/m — p then

o~ A~

= b)), v/m(bs — by), /(@ — a)] = N3(0,U (b1, boya)),  (4.131)

where
uir 0 ugs
U(bl, bg, CL) = 0 U292 U23 s (4132)
U3z Uz2 U3z
and wyy = limy e (I11/n), ws = uz = Lm0 (l13/0), U =

liInn,m—wo (I2Q/m) , W23 = U3z = hmn,m—wo(\/ﬁjzg/n); Uzz = hmn,m—mo (133/71)

Proof {4} The proof follows from the asymptotic normality of MLE. W

Theorem 4.5: As n — oo and m — oo and n/m — p then

~

Vn(R — R) — N(0,0%), (4.133)
where

o2 = bip(uryuss — uis) — 2b1by\/purzuss + b5 (uzatizs — u3) (4.134)
- k‘(bl + b2)4 7 |
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and k = U711 U22U33 — UT1U23U32 — U13U22U3] -

Proof ' \/ﬁﬁ is asymptotically normal with mean \/nR and variance

2 : —1
o' = dm nd D G an (4.135)

where Iigl is the (i,j) th element of the inverse of the I, see [Rao, |1965]. Since
OR/0bs = OR/0a = 0,

OROR _, OROR OR OR
2 _ 7 oo, , onhdh . 4 .4\ OhOlt .,
o= m n {6191 ab i o, )+ g 8b2]22}

~ fim { (4.136)

n,m—00

b3 (111133 — I75) — 2b1bo 13103 + b3(Ia 133 — [223)}
(by + bo) (I11 a0 l33 — I1113; — Inol%)

n®*m a suitable form is obtained,

When this expression is multiplied by —;
n*m

considering n/m — p as n — oo and m — oo, the desired result is obtained. M

Remark 4.1: Theorem 4.5 can be used to construct the asymptotic confidence interval
of R. The variance o® needs to be estimated to compute the confidence interval of
R. The empirical Fisher information matrix and the MLEs of by, by and a are used to

estimate o* as follows Uy, = 1/b%, Uy = 1/b3

1 1 1
Uiy = =Y = |= —— : (4.137)
na<=v|(by+i)» (bh+i—1)"
(=] 1 1
s = RSN -~ , (4.138)
noa <=7 b+ (be+j—1)m

(4.139)
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4.4.1.3. Bayes Estimation of i

Assume that all parameters by, b, and a are unknown and have independent
gamma priors with parameters («y, 3;), ¢ = 1,2, 3, respectively. The density function
of a gamma random variable X with the shape and scale parameters o and [,

respectively, is

fo) = e, 550, 0,8 > 0. (4.140)

The joint prior density function of by, by and a is 7(by, be,a) = 7(by)m(by)7w(a), and

the joint posterior density function of by, by and a given (r, s) is

ha(r; a)hs(s; a)by T oy teelgrimtas

I'(n+ oq)I(m + aqg)o(r, s)

™ (b17b27a |£7§) =

exp{—b1(B1 + T1(rn; a)) — ba(B2 + Ta(sm;a)) —aBs}, (4.141)

where

) an+m+a371h1(,’m a)hg(S' a)efaﬁs
I _ L @)N2}5; da. 4.142
O(EJ §) A (61 + Tl(Tn;a))n+a1 (/82 + TQ(Sm;G))m+a2 a ( )

Then, the Bayes estimate of a given measurable function of by, by and a, say u(by, by, a)

under the SE loss function is

aBZ/ / / u(by, bg, a)m(by, by, a|r, s )dbidbada
o Jo Jo

fo fo fO b17627 L<blab27a |£7§)W(b17b2)a)dbldb2da
fo fo fo b17b27a ’£7§)7T<bla b27a)dbldb2da .

(4.143)

The ratio of two integrals equation (#.143)) cannot be solved analytically. We may use
a numerical integration method to calculate the integrals or use approximate methods
such as the approximate form due to Lindley [Lindley, 1980] or that of Tierney

and Kadane [Tierney and Kadane, [1986]. Lindley has proposed approximations for
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moments that capture the first-order error terms of the normal approximation. This
is generally accurate enough, but, as Lindley points out, the required evaluation of
third derivatives of the posterior can be rather tedious, especially, in problems with
several parameters. Moreover, the error of Tierney and Kadane’s approximate is of
the order O(n~2) while the error in using Lindley’s approximate form is of the order
O(n~1). Therefore, the Tierney-Kadane approximation is preferred for our case. The
regularity condition required for using Tierney-Kadane’s form is that the posterior
density function should be unimodal.

To show that the posterior density function is unimodal, it suffices to show that
the function Q(by,be,a) = Inm (b, by, a|r, s) has the unique mode. The extremum

points of Q(by, by, a) are given by

7 q1 =~ q2
by = — b= ——— 4.144
Y B4 Ti(resa) ? T Bo+ Tasm; ) ( )

and a is the solution of the non-linear equation

6 arnr /(1= 1) ashInse/(1— )
a B+ T1(rn; a) B + To(Sm; a)

P(a) = —B3=0.  (4.145)

P(a) can be rewritten as

— 1 _ q1Vn lnvn/(l B Un) . q2Wm, 1nwm/(1 - wm) .
Pla) =~ 14 B —In(l—v,) By —Tn(1—w.) Bs.  (4.146)

where v, =1, w, =st. g =n+a;—1,¢ag=m+ay—landgs =n+m+az—1.
It is easily seen that lim, ,o+ P(a) = oo and lim,_,~, P(a) < 0. If it can be shown
that P(a) is monotone decreasing for all a, then the equation P(a) = 0 has a unique

solution in (0, c0).

lnwm 2 1 W
st (7250 ) 5~ e }] 4D

142



1
= (g3 4+ qihi(vn) + g2hy(wn)]

where

wer == (125) (i - Gromamar): @

where 0 < = < 1. Let fi(z) = /1 — In(1 — ) — z, then f1(0) > 0 and fi(x) is a
monotone increasing function for all 0 < = < 1. It can be easily shown that hy(z) > 0
for all 0 < = < 1, by noticing hy(z) = z (Inz/(1 — z))* (f1(z) /(61 — In(1 — z))?).
Hence, P'(a) < 0 is obtained. Now, we want to show that the function Q(by, by, a)
is the maximum at the point (51,62,5). Let H*(by,be,a) be the Hessian matrix of
Q(b1, be, a). We obtain that

(B —In(1 —r7))?

det(H; (by, by, @) = — a1 <0 (4.149)

B —In(1 —r))? (B — In(1 — s7,))”

det(H;‘(gthaa)) = ( n+a;—1 m+ag —1

>0, (4.150)

and

Br—In(1 —r))? (B2 — In(1 — s7,))”

det(H*(glvg2aa)>:Pl(a)( n+a1—1 m"‘OCQ_l

<0. (4.151)

Therefore, (QQ(by,bs,a) has unique mode and so the posterior density function is
unimodal. Consequently, Tierney and Kadane’s approximation can be applied to our
case.

The posterior mean of the u(by, by, a), equation (4.143)), can be rewritten as
o o ke e 0129 b, dbyda

E[u(bi, by, a) |1, 5] = = = [ oo by dbyda (4.152)

where

A(by, by, a) = [In(L(by, b, a ‘Lé),z + 111(7(5171927@))]’ (4.153)
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and

1
A" (b1, b2, a) = A(b1, b, a) + n In(u(by, by, a)). (4.154)

Following the [Tierney and Kadanel [1986], equation (#.152)) can be approximated in

the form

det X*
det 2

1/2 o o
Uy, by, a) = [ } exp (n [A*(b*{,b;,a’*)—A(bl,bQ,Zi)]), (4.155)

where (E’{,Z;, a*) and (31,52,6) maximize A*(by, be, a) and A(by, bs, a), respectively,
and X* and ¥ are the negatives of the inverse Hessians of A*(by, by, a) and A(by, by, )
at (b7, b3,a*) and (by, by, @), respectively.

In our case, we have

1
A(bl,bg,a) = ﬁ [l(bl,bg,alf,§) —|—1HC+ (041 — 1) h’lbl + (CYQ — 1) h’le

(a3 —1)Ina — b1 — baffo — afs], (4.156)

where C' = 581852832 /(I'(ay )T (a2)T (i3 )). (by, b, @) can be obtained by solving the

following equations

8A(b1, bg, CL) 8A(b1, bg, CL) aA(bl, b2, CL)
AN=——7"—"—=0, Ay = =0, A= ———=0, 4.157
and are given by
~ -1 ~ —1
b n+ o , m —+ Qo (4.158)

B B+ Ti(rn;a)’ - Ba + To(sm;a)’

and a is the solution of the non-linear equation

n

C]3+Z Inr _Qﬂ’lenrn/(l_T?L)

a 1 —rf B+ Ti(rn; a)

i=1

m

Ins;  @q2s% Ins,,/(1—s%)
- = . — B3 =0. (4.159
+Z 1—8? 62+T2(Sm;a> 63 ( )

j=1
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The fixed point method is applied as in the MLE of a. The units of the Hessian matrix

of A(by, be, a) are obtained as

_ 82/\(51,527@) 1 82A(b1,b2,a) _ T4

A = = Ay = = 4.160
11 (%f nb% ) 22 @b% nb% 9 ( )
0?A(by,by,a)  —rPlnr
Ao=Ay1 =0, Ajs5=Aq; = L = n_— " 4.161
12 21 =0, A3 31 b, da (L —ray’ ( )
O?AN(by,by,a)  —s%1Ins
Aow = Any — 02, 0) =y In 5w 4.162
2 52 0bs0a n(l—s2)’ ( )
A O?*A(by,bg,a) 1| =@ ~—= ,( Inm; 2 . [ Inmy, 2
5= 52 —ale t2iime) Tl
i—1 i n
+2m:sa s \* e (5w ) (4.163)
i\ T s 2w\ —ge ) |0
7j=1 J m
Hence,
1
A 0 Ay
Y= 0 Ay Aos , (4.164)
A1z Aoz Asz

and the determinant of ¥ is evaluated at (b, by, ).

The Bayes estimate of R under the SE loss function is obtained by using

u(by, be,a) = R. Equation (4.154) takes the form
1
BSA* (bl, bg, Cl) = A(b1, bz, (I) + H In R. (4165)

The maximum value of the function ggA*(by, by, a), say at (BSE{,ngg,BS a*), is a

solution of the non-linear equation system

n—+oa — 1 b2
by b 1(rn; ) by (b1 + b2) ( )
m+ oy —1 1
= By =T (Sm; =0, 4.167
by B b(Sm;a) + br + by ( )
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and

"L Inry " Ins; bir®Inr,  bys® Ins,,
@+Z nr +Z ns;  orpInr,  0esy,Ins By = 0. (4.168)

a — 1 —rf 11—3? 1—ra 1-—s2

The solution of the system can be obtained by using the fixed point method. The
Hessian matrix of ggA*(by, by, a) can be computed following the same arguments as in
the first case. Therefore, the value of det(ps%*) at (psb?, s b}, 55 @) is obtained. The
Bayes estimate of R under the SE loss function is obtained by using equation (4.155)

and is given by

deth D

1/2 _ _ o
e } exp (1 | psA" (psbions Byops @) = Ay, b, )] ) . (4.169)

R — [

If we choose u(by, by, a) = e~ "%, the Bayes estimate of R is obtained under the LINEX

loss function. Similar to the SE loss function case, we get

BLA*<bla bg,a) = A(bl,bz,a) — @, (4170)

n

from equation (4.154). The maximum value of the function g, A*(by, by, a), say at

(Brbi,pL b5, 5 a*), is a solution of the non-linear equation system

n+a —1 vby
— b/ —Ti(rp;a) — ——— = 0, 4.171
by B 1(rn; @) (b + by)2 ( )

m+ oy — 1 vby
————— — By — T5(Sy; — = 0, 4.172
by Bo — To(sm; a) + (b + bs)? ( )

and
q3 " Inry " In 55 birdInr,  bys? Ins,,

= g g — — — B3 =0. 4.173
a+i:11—r§+j:11—s;? 1— s B ( )

The Bayes estimate of R under the LINEX loss function is obtained by using equation

(4.155) and is given by

detBL >

Har = { det X

1/2 _ _ o
} exp (n [ (2B B @) — Ay Bo)]) . @174)
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4.4.2. Estimation of K When a Is Common and Known

The estimation of R is considered when the parameter a is assumed to be known,
say a = 1. Let Ry, ..., R, be a set of upper records from Kum(1,b;) and Sy, ...,S,,

be an independent set of upper records from Kum(1,bs).

4.4.2.1. ML Estimation and Confidence Intervals of R
Based on the above samples, the MLE of R, say }A%M LE, 1S

A B b, _ nin(l — s,,)
MEE = b4+, nhn(l—s,)+mn(l—r,)

(4.175)

It is easy to see that —2b; In(1 — 7,,) ~ x?(2n) and —2by In(1 — s,,,) ~ x?(2m).

A
F* = ( i > _He , (4.176)
1-R Ryie

is an F' distributed random variable with (2n,2m) degrees of freedom. The pdf of

Therefore,

Ryr1E 1s as follows;

1;7")7%1

1 nln " (
5 = r 4.177
fRMLE(T) r2B(m,n) <mb2) (1 n nbl(l—r)>”+m’ ( )

mbor
where 0 < r < 1. The 100(1 — «)% confidence interval for R can be obtained as

1 1
1+ FQm,2n;% (m) 1+ FQm,le_% (_11§MLE>

RyLE RyLE

(4.178)

where Fgmm;% and FQm,Qn;l,% are the lower and upper Sth percentile points of a F’
distribution with (2m, 2n) degrees of freedom.
On the other hand, the approximate confidence interval of R can be easily

obtained by using the Fisher information matrix. The Fisher information matrix of
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(bl, b2) is

921 921
o B (a_bf) E <6b18b2> _(n/b} 0 4.179
E 621 E 62[ 0 m/b2 N ( . )
() () 2

By the asymptotic properties of the MLE, Rup is approximately distributed as

normal with mean R and variance

OROR
o? = — I (4.180)
22 G, an,

where I;; !is the (4, j) th element of the inverse of the I, see [Rao, [1965]. Then, an

approximate 100(1 — /)% confidence interval for R is

<§MLE — Cza/2§MLE(1 — Ruwe), Ry + CZa/zéMLE(l - EMLE)) ,  (4.181)

where 2,2 is the upper $th percentile points of a standard normal distribution and

c=+/(1/n) + (1/m).

4.4.2.2. UMVUE of R

When the first shape parameter a = 1, the joint likelihood function is
L(by, b, alr,s) = hi(r)ha(s)bybyre T e ~baTalem), (4.182)

where hq(r) =, 1/(1 — r;), ha(s) =7, 1/(1 —s;), Ti(r,) = —In(1 —r,) and
To(sm) = —In(1 — s,,,). Tt is clear that (7' (r,), T2(s.,)) is a sufficient statistic for
(b1, by). It can be shown that it is also a complete sufficient statistic by using Theorem

10-9 in [Arnold, [1990]. Let us define

1 ifR <S5

Ry, S)) = . 4183
o(f1, 51) {0 if R, > S, (4.183)
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Then, E (¢(R;,S1)) = R so it is an unbiased estimator of R. Let P, = —In(1 — Ry)
and P, = —In(1 — S;). The UMVUE of R, say Ry, can be obtained by using the
Rao-Blackwell and the Lehmann-Scheffe’s Theorems, (see [Arnold, |1990])

EU =F (¢(P1; P2) |(T1,T2))
= / o(Pr, P2) f(p1,p2 |11, T2 )dprdps (4.184)
Py J P

_ / Py, Po) fryizs (91 T fougra (0 [ To ) dprdp,
Py J P

where (T1,T3) = (T1(rn), T2(sm))s f(p1, p2 |T1, T») is the conditional pdf of (P, P»)
given (71, 75). Using the joint pdf of (Ry, R,,) and (51, S,,) and after making a simple

transformation, we obtain the fp |1, (p1 |11) and fp,im, (p2 |12 ), and are given by

t — n—2
fryr (o1 |Th) = (n—l)%, 0<p <t, (4.185)
1
to — m—2
fP2|T2(p2 |T2) = (m — 1)%, 0< P < to. (4186)
2

Therefore,

EU = //fP1|T1 (p1 |T1)fP2|T2(p2 T )dp1dps

Pi<P>

1 _1 _ n—=2 _ m—2
” ftZ (n )(m )t —p1)" 2 (t2 — p2) dpadpy  ifts >t

0 Jp1 t?fltgnfl
= ) , (4.187)
n—1)m—1)(t1 —p1)" “(ta — p2)™" )
OtQ 0 ( ) )§n11tm1)1 (2~ p2) dpadpr  if b2 <ty
1 b2
o gFl(l,l—m,n,tl/tQ) lftQZtl
B 1— Fl(l,l—n,m,tg/tl) iftyg < tg ’
where oF(.,.;.;.) is Gauss hypergeometric function, (see formula 3.196(1) in

[Gradshteyn and Ryzhik} [ 1994]).
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4.4.2.3. Bayesian Estimation of R

Assume that the parameter b; and b, have independent gamma priors with the
parameters («;, 3;), ¢ = 1,2. Then, the joint posterior density function of b; and b,

given (r, s) is

AT
7 (b, ba |z,§)zr( L2 _phi=lple=lo=bidip=bods (4.188)

91)[(d)

where Ay = 81 +T1(r), Ao = Bo+Ta(8m), 01 = n+ aq, 02 = m + ay. The posterior

pdf of R can be obtained by using the joint posterior density function and is given by

A;‘lAg? roi(1 — )2t
r)= , 0<r<1. (4.189)
T = 5, 60) (rAs+ (1 —7)Ag) %

After making a suitable transformations and simplifications by using formula 3.197(3)
in [Gradshteyn and Ryzhik, |1994], the Bayes estimate of R, say ]:?BS, under the SE

loss function is

. al(3) o Fi(e], 1+ e + 151 = 31) if A < A
Rps = ) (4.190)
c1(32)% o Fi(c}, 00 65 + 1,1 — 32) if Ao < Ny

where cl = 51/6{, CT = 51 + 62.
The Bayes estimate of R under the LINEX loss function, say ﬁB L, 1S EB L =
{—InEg(e™)} /v, where Ep(.) denotes posterior expectation with respect to the

posterior density of 1. It can be easily obtained that

(22)% @y (81, ¢, ¢5, 1 — 2, —v)  HEA < Ao
B = L @191

(32)% e ®1(da, ¢f, ¢, 1 —32,0) if A < N
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where ®4(., ., ., ., .) is confluent hypergeometric series of two variables, (see formulas

3.385 and 9.261(1) in [Gradshteyn and Ryzhik, 1994]). Therefore,

1 <cz +1n [@1(51,0;,c;, -, —v)]) i < Ay
Ry = L (4192)
—1 <03 +1In [@1(52,01,01, 1- ’\Q,U)D if A <\

where Co = 51 ln()\l/)\g) and C3 = (52 ln()\g/)\l) — .
If we use the Jeffrey’s non informative prior which is given by /det I(by, by),
then the joint prior density function is 7 (by, by) oc 1/b1b,. Therefore, the joint posterior

density function of b, and by given (r, s) is

Ty ()™ (To(5m))™ i 1 bt tr) —boTo(s
(b1, b \f,ﬁ)z( 1<F>(21)§<i7(®) ) pr g Le i Tilrn) o —beTo(om) (4.193)

and the posterior pdf of R is given by

(Ti(r)" (Ta(su)™ v (1 =)™

fa(r) = B(n,m) (FT1(rn) + (1 — 1) Ta(5))7 ™

0<r<1 (4.194)

The Bayes estimate of R under the SE and the LINEX loss function, say E’l‘g g and

R7%; , respectively, are

C(%)n 2F1<C*,n+1,0*+1,1—%) lfT1 <T2
Ry = , (4.195)
c(T—2) oFy(c*,m;c* +1;1 — ) ity <T)

and

—% (C4+ln [CI)l(n,c*,c 1—— —U)D if T < T
Ry, = . (4.196)
—%(05—1—110[(1) (m, c*, c* 1—T,U)D it <T)

where c = n/c*, ¢ =n+m, ¢y = nn(Ty/Ts), cs = mIn(Ty/T) — v, Ty = Ti(ry)
and Ty = To(sp,).
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Alternatively, the Bayes estimate of R under the SE and the LINEX loss
functions can be obtained approxiametly by using the Lindley’s approximation. The
approximate Bayes estimate of R under the SE and LINEX loss functions, say

RBs Lindiey and RBr, Lindiey, T€SPECtively, are

~ ~ (1-— R)2 R(1—-R)
. _ 1 _
Rps vindiey = I ( + n+a;—1 m4as—1)"

(4.197)

and

~ -~ 1 Ri(l1—R)(wR—2) RRi(v—vR+2
RBL,Lmdley:R——ln<1+R1< R)(wR—2) RRi(v—vR+ ))7(4.198)

v 2(n+a; — 1) 2(m+ay — 1)

where R = b /(by + by), Ry = vR(1 — R), by = (n+ oy — 1)/(B81 + Ti(r,)) and
by = (m+ az = 1)/(B2 + Ta(sm)).

If we use the Jeffrey’s non informative prior, then the approximate Bayes
estimate of /2 under the SE and the LINEX loss functions, say ﬁb*Bs,Lmdley and

~ _
RB1 Lindiey» TESPECtively, are

=~ ~ 1-R? R(1-R
gS,Lindley =R (1 + ( ) - ( )> ) (4199)

n—1 m—1

and

= 1 <+§1<1 ~R)wWR—-2) RRi(v—vR+2)

RY, ;o = R—— 4.2
RBL,Lmdley R 2<n _ 1) 2(m _ 1) ) ) ( 00)

<

where R = 51/(31 +by), Ry = vR(1—R), by = (n — 1)/Ty(r,) and by = (m —
1)/T5(sm)-

4.4.2.4. Empirical Bayes Estimation of R

The Bayes estimates of R are obtained by using two different ways. It is clear

that these estimators depend on the parameters of the prior distributions of b; and
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b,. However, the Bayes estimators can be also obtained independently of the prior
parameters.

These prior parameters could be estimated by means of an empirical Bayes
procedure, see [Lindley, |1969], [Awad and Gharraf, 1986]]. Let R;,..., R, and
S1,..., S, be two independent random samples from Kum(1,b;) and Kum(1,by),
respectively. For fixed r, the function L(by, 1|r) of b; can be considered as a gamma
density with parameters (n + 1,71 (r,,)). Therefore, it is proposed to estimate the prior
parameters «; and (3; from the samples as n + 1 and T} (r,,), respectively. Similarly,
ay and [ could be estimated from the samples as m + 1 and 75(s,,), respectively.
Hence, the empirical Bayes estimate of 12 with respect to the SE and the LINEX loss

functions, say EE Bs and ﬁEB 1, respectively, could be given as

N CeCt 2F1((313, 2n + 27 Cc13 + 1, Cg) if T1 < TQ
Reps = (4.201)
cecs 2 F1(c13,2m + 15013 + 1;¢10) i1 < T

and

1
—; ((2’/'L + 1) hl(Tl/TQ) + In 011) if T < Ty
Rppr = : L (4202)
—5 ((2m+1) lH(TQ/Tl) —v—l—ln012) lfT2 STl

where Ce = (2n + 1)/(2n +2m + 2), Cr = (Tl/T2)2n+1, Cg = (TQ/T1)2m+17 Cg =
1 —(Th/1s), c1o = 1 — (T2/Th), c11 = ®1(2n + 1, ¢13, ¢13, Co, —), C12 = P1(2m +

1, c13, ¢13, c10,v) and ¢13 = 2n 4+ 2m + 2.

4.4.2.5. Bayesian Credible Intervals for R

It is known that by [r ~ Gamma(dy, A1) and by |s ~ Gamma(da, A2). Then,
2061 + Tu(ra))bil 7 ~ x*(2(n + a1)) and 2(By + To(sm))ba| s ~ x*(2(m + az)).

Therefore,

~2(B2 + Ta(8m))ba | 5/2(m + )

Y B+ ()bt [ 2/2(n + )

(4.203)
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is an F distributed random variable with (2(m + a2), 2(n + «;)) degrees of freedom

and the 100(1 — a))% Bayesian credible interval for R can be obtained as

1 1
1+ Cl (FQ(m+a2),2(n+a1);%) 1+ CVl <F2(m+a2),2(n+a1);17%>

(4.204)

where C] = A1 /01 Mg, Fg(m+a2)’2(n+a1);% and Fg(m+a2),2(n+a1);1_% are the lower and
upper $th percentile points of a /' distribution with (2(m 4 a), 2(n + a1)) degrees of
freedom.

Moreover, this interval can be obtained independently of these parameters by
using the empirical method. In this case, the posterior distributions of b; and b
have gamma distributions with parameters (2n + 1,27} (r,,)) and (2m + 1,275(s,,)),

respectively and the 100(1 — «)% Bayesian credible interval for R can be obtained as

1 1
, (4.205)
14+ Cy <F(4m+2),(4n+2);%> 1+ Cy (F(4m+2),(4n+2);1—g)
where Co = ((4m+2)T1(r)) / ((4n +2)Ta(sm))s  Flam+2),@nt2)e  and

F(4m+2),(4n+2);1,% are the lower and upper $th percentile points of a /" distribution

with (4m + 2, 4n + 2) degrees of freedom.

4.4.3. Simulation Study

In this section, the results of simulation study are presented for comparing the
risk of different estimators based on Monte Carlo simulation. All of the computations
are performed by using MATLAB R2007a. All the results are based on 2500
replications.

We consider two cases separately to draw inference on R, namely when the
common first shape parameter a is unknown and known. Without loss of generality,
we take a = 1 when a is known. In both cases, we generate the record values
with the sample sizes; (n,m) = (5,5), (8,8), (10, 10), (12,12) from Kumaraswamy

distribution.
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In Table 4.12, the estimate of a is computed by using the iterative algorithm.
The initial estimate of a is taken 1 and the iterative process stops when the difference

between the two consecutive iterates are less than 107, Once the estimate of a is

obtained, the estimate of b; and b, are obtained by using equations (4.108)) and (4.109),
respectively. Finally, the MLE of R is obtained by using equation (4.112). The Bayes

estimates under the SE and the LINEX (v = 1) loss functions are obtained by using the
Tierney and Kadane approximation. Prior 1: (aq, as, a3, 1, B2, B3) = (8,10, 5,4,5,5)
and Prior 2: (a1, ag, as, B1, B2, B3) = (9,5,7,1,6,5) are used for the true values of R
are 0.501731 and 0.908896 and their results are tabulated in Table 4.12. Moreover, the
average length of approximate confidence intervals and their cps are computed based
on the asymptotic distribution of R and is denoted by L Le. The nominal o value is
0.05.

From Table 4.12, it is observed that as the sample size increases in all the cases
the average ERs of the estimators decrease, as expected. It verifies the consistency
properties of all the estimates. The average length of the approximate confidence
intervals also decrease as the sample size increases while the coverage probability is
around 0.95. It is observed that the ER of Bayes estimate is smaller than that of ML
estimate. Heuristically, in the Bayes approach we have extra information or data based
on accumulated knowledge about the parameters as opposed to the MLE approach,
therefore the Bayes estimate to be better than the MLE, in the sense that it has smaller

ER.

In Table 4.13, the ML, UMVU and Bayesian estimates of R and their
corresponding ERs are listed when a is known (¢ = 1). The Bayes estimates are
computed under the SE and the LINEX (v = 1) loss functions for different prior
parameters. The first two Bayes estimates are based on series expansion and the
other two based on Lindley’s approximation for the conjugate prior distributions. In
addition, the empirical Bayes estimates are also obtained. Prior 3: («ay, ag, 51, f2) =
(6,8,3,5) and Prior 4: (ay, aw, B1, f2) = (10,6, 1, 8) are used for the true values of
R are 0.548264 and 0.925025, respectively. Furthermore, the approximate and the
exact confidence intervals for R are obtained by using equations {.181) and {.178).
Finally, the Bayesian credible intervals are also obtained by using equations (4.205).

The average length of the interval, denoted by fBayes, and average length of exact
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confidence interval, denoted by LyLe along with their cp’s are reported in Table 4.13

From Table 4.13, the average ERs decrease as the sample size increases in all
the cases. The Bayes estimate of R has the smallest ER. The Bayes estimates for
series expansion and Lindley’s methods are very close to each other. From this, we
can infer that when the Bayes estimation can not be obtained in the closed form, the
Lindley approximation is a good alternative. When the true value of R is 0.548264, we
have ER(Rps) < ER(Rpps) < ER(Rye) < ER(Ry). On the other hand, when
the true value of R is 0.925025, we have ER(Rps) < ER(Ry) < ER(Ruyip) <
ER(EEBS). Moreover, it is observed that the average confidence interval lengths
decrease as the sample size increases. When the true values of R are 0.548264
and 0.925025, we have Lyre < Layre and Layrp < ZMLE, respectively, while
the cp is around 0.95. The Bayesian intervals have the smallest cp and is far from
0.95. Sometimes, the cp for the Bayesian interval based on equation (#.204) is not
reasonable, because it contains prior parameters. That is why, they are not reported in

the table.

Table 4.12: Estimates of 12 using the Priors 1-2 when «a is unknown.

(n,m) R R Rps Rpl Clamie
(5,5 0501731 0.505022 0.501740 0.608414 (0.226617,0.783427)
0.013672 0.007156 0.016118  0.556810/0.942400

(8.,8) 0.501802 0.505712 0.605696 (0.275885,0.727719)
0.009306 0.006937 0.015867  0.451834/0.964000

(10,10) 0.503607 0.508404 0.603941 (0.300070,0.707145)
0.007870 0.006655 0.015828  0.407074/0.958400

(12,12) 0.500559 0.509592 0.603050 (0.313687,0.687430)

0.006952 0.006593 0.015653  0.373742/0.967200
(5,5 0.908896 0.874885 0.892723 0.410055 (0.737286,1.012484)
0.007655 0.001766 0.106927  0.275197/0.887600

(8.,8) 0.878471 0.888055 0.411905 (0.771516,0.985427)
0.004302 0.001676 0.106247  0.213910/0.942000

(10,10) 0.882239 0.886410 0.412547 (0.789373,0.975104)
0.003039 0.001604 0.106019  0.185731/0.950800

(12,12) 0.885163 0.885177 0.413023 (0.802291,0.968034)

0.002315 0.001570 0.105845  0.165743/0.959200

Notes: The first row represents the average estimates and the second row represents
corresponding ERsfor each choice of m. The last two columns, the first row represents
a 95% confidence interval and the second row represents their lengths and cp’s.
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In Table 4.14, the Bayes estimates of IR are also obtained for the non informative
prior case. The ML, UMVU, Bayes estimaties and confidence intervals of R are
computed for R = 0.25, 0.33, 0.5, 0.7, 0.90, 0.92. The Bayes estimaties under the
SE and the LINEX (v = 1) loss functions are obtained by using both series expansion
and Lindley’s methods as in Table 4.14. Moreover, the average length of approximate
and exact confidence intervals and their cps of R are evaluated.

From Table 4.14, the ERs decrease for all the estimates when the sample size
increases, as expected. It is clear that the Bayes estimates for the Jeffrey’s non
informative prior case are very similar to the corresponding MLEs. More specifically,
the Bayes estimate given in equation (4.199)) is very close to the ML estimate after
some algebraic operation in which they have suitable form for comparison. For
R = 0.25,0.33, 0.5, 0.7 the UMVUE has the greatest ER and we have ER(@BS) <
ER(Ryr) < ER(Ry). For R = 0.90,0.92, we have ER(Ry) < ER(Ryp) <
E R(ﬁ Bs). Moreover, the average lengths of the intervals also decrease as the sample
size increases. When E*BS < EMLE < R, this is the case for bigger values of
R such as 0.90, 092, it can be shown that ER(ﬁMLE) < ER(EBS) for n = m. When
R = 0.25,0.90,0.92, we have Lyr < Lyre. On the other hand, when R = 0.33,
0.50,0.70, we have Lavie > Lyrge. The cp for exact and approximate is around

0.95.
4.4.4. Conclusion

In this section, the different methods of estimations of R = P(X < Y) are
compared when X and Y are two independent Kumaraswamy distributions with the
common first shape parameters.

When the first shape parameter is unknown, it is observed that the Bayesian
estimators have a smaller ER. And this result does not change for the different values
of the prior parameters. Nominal coverage probabilities are attained for the asymptotic
confidence intervals.

When the first shape parameter is known, the different estimates, namely MLE,
UMVUE with Bayes and empirical Bayes estimates are compared. The Bayesian

estimates of R are obtained by using series expansion and Lindley’s approximation
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method for both conjugate and non informative prior cases. Under both of these
methods the ER are quite similar. The different confidence intervals of R, namely
approximate, exact and Bayesian are compared. Even though, the prior parameters are
not known it is observed that the Bayesian interval discussed in equation is
quite satisfactory.

The ML, UMVU, Bayesian estimates as well as confidence interval for R
are invariant with respect to a monotone transformation on (X,Y’), see [Kotz et
all 2003]. If X is Kumaraswamy then —In X is the two parameter generalized
exponential distribution. Therefore, all the estimates for R, mentioned above, under the
Kumaraswamy distribution is the same as the two parameter generalized exponential
distribution.

The ML, UMVU, Bayesian estimates of 12 in random samples depends on all the
observation, but in record case they only depend on the last record value. Moreover, we
considered the non informative case (a is known) when the number of random samples
and the number of record values are taken to be equal as in the work of [Ahmadi and
Arghami, 2001]]. In this case, Monte Carlo simulation reveals out that the record case
produces smaller ER for the Bayes estimation of R (when cps are similar) for the large
sample sizes.

On the other hand, we may use Theorem 3.1 in [Ahmadi and Arghami, 2001]
to say that (Fisher) information in record values is no different from that of random
samples case under the assumption of X;, ¢ = 1,...,nand Y}, j = 1, ..., m distributes
as Kum(1,b), and the number of record values are the same as the number of
random samples. When distribution involves more than one parameters, comparing

the information in records with random samples is a subject of future studies.
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5. CONCLUSIONS

The estimation problem of the parameters of the distribution and stress-strength
reliability are considered in this dissertation. The different methods of estimation
based on record values or record values with their corresponding inter-record times
are obtained when the underlying distribution is the Burr Type XII, the generalized
exponential and the Kumaraswamy. Moreover, the prediction problem of the future
record values is considered for some cases. The comparison of all obtained estimates
is demonstrated by simulation study and real life examples. Detailed findings of the
simulation results on inferences based on each distribution considered in this thesis are

described at the end of each section.
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