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SUMMARY

In this dissertation, the methods of statistical inference of record values are

considered for the Burr Type XII, the generalized exponential and the Kumaraswamy

distributions. This includes estimates of the distribution parameters, the stress-strength

reliability and prediction of the future record values. Both frequentist and Bayesian

techniques, namely maximum likelihood, uniformly minimum variance unbiased,

Bayesian and empirical Bayesian estimates are used for the unknown parameters

and stress-strength reliability of the distributions. All these estimates are obtained

based on record values or based on record values with their corresponding inter-record

times. Furthermore, the asymptotic confidence interval using Fisher information or

observed information matrix, Bayesian credible, highest probability density credible

intervals and the exact confidence interval, when it is available, are constructed. In

order to draw a statistical inference a simulation study is carried out for each of these

distributions. The performance of all these estimates are compared by using the Monte

Carlo simulation. A numerical findings of the estimates are presented for the generated

data in every case and a real life data when it is available.

Keywords: Record Values, Stress-Strength Reliability, Bayesian Estimation,

Prediction, Lindley’s Approximation, Markov Chain Monte Carlo (MCMC)

Method.
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ÖZET

Bu tezde, Burr XII, genelleştirilmiş üstel ve Kumaraswamy dağılımları için rekor

değerlerin istatistiksel çıkarım methodları ele alınmıştır. Bu methodlar dağılımların

parametreleri, güvenilirlik ve gelecek rekor değerlerin kestrimi tahminlerini

içermektedir. Klasik ve Bayes tekniklerinden en çok olabilirlik, düzgün en küçük

varyanslı yansız, Bayes ve empirik Bayes tahmin edicileri kullanılmıştır. Tüm

bu tahmin ediciler rekor değerler veya rekor değerler ve onların rekor zamanları

kullanılarak elde edilmiştir. Ayrıca, Fisher bilgisi veya gözlemlenmiş bilgi matrisi

kullanılarak asimptotik güven aralığı, Bayes güven aralıkları ve mümkün olduğunda

kesin güven aralığı oluşturulmuştur. Bu dağılımların herbiri için istatistiksel

çıkarım elde etmek amacıyla simülasyon çalışması yapılmıştır. Bu tahmin edicilerin

performansları Monte Carlo simülasyon yöntemi ile karşılaştırılmıştır. Her durum için

üretilmiş veriler ve mümkün olduğunda gerçek hayat verileri kullanılarak bahsedilen

tahmin ediciler için nümerik sonuçlar sunulmuştur.

Anahtar Kelimeler: Rekor Değerler, Stres-Dayanıklılık Güvenilirliği, Bayes

Tahmin Edicisi, Kestirim, Lindley Yaklaşımı, Markov Zinciri Monte Carlo

(MCMC) Methodu.
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1. INTRODUCTION

1.1. Overview and Motivation

Record values and the associated statistics are of interest in many real life

applications. For example, predicting the flood level of a river that is greater than the

previous ones is of importance to climatologists and a hydrologist, while predicting the

magnitude of an earthquake which has a greater magnitude than the previous ones, in

a given region, is of importance to seismologists. A meteorologist may want to know

how much flooding will occur the next time the current rainfall record is broken. The

statistician must estimate the next record value of rainfall from a data set consisting of

past record values. In industry and reliability studies, many products may fail under

stress. For example, a wooden beam breaks when sufficient perpendicular force is

applied to it, an electronic component ceases to function in an environment of too

high temperature, and a battery dies under the stress of time. But the precise breaking

stress or failure point varies even among identical items. Hence, in such experiments,

measurements may be made sequentially and only values smaller (or larger) than all

previous ones are recorded. This type data is called record data or records. Thus,

the number of measurements made is considerably smaller than the complete sample

size. Therefore, the measurement saving can be important when the measurements of

these experiments are costly or the entire sample is very big or destroyed. For more

examples, see [Gulati and Padgett, 1994].

The theory of record values was first introduced by [Chandler, 1952] and it has

been extensively studied in the literature since then. A number of statisticians have

worked on interesting problems about the records. The distributions of lower records

and inter-record times for independent and identically distributed sequences of random

variables were studied by [Chandler, 1952]. The theory of the limiting distributions

concerning the random variables, which was constituted by the index of the record

values, were studied by [Rényi, 1962]. Record values, inter-record times and their

limiting properties were studied by many authors. These studies were summarized

by [Glick, 1978]. A likelihood function for estimating unknown parameters based on

record samples was given by [Arnold et al., 1998]. A predictive likelihood function
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for future record values was given by [Basak and Balakrishnan, 2003].More details

and references can be found in [Ahsanullah, 1995], [Arnold et al., 1998], [Nevzorov,

2001].

1.2. Definitions

• Definition of Record Values and Record Times

Suppose thatX1, X2, ... be a sequence of independent and identically distributed

(i.i.d.) random variables from a continuous distribution. An observation Xj is called

an upper record value and j is called upper record time if Xj exceeds that of than

all preceding observations. That is Xj is an upper record value if Xj > Xi for all

i < j. The record times are the indices at which record values occur. The record time

sequence for upper record values {U(n), n ≥ 1} is defined in the following manner:

U(1) = 1 with probability 1 and nth record time, for n > 1

U(n) = min
{
j : j > U(n− 1), Xj > XU(n−1)

}
. (1.1)

Then, the nth upper record value is XU(n). Similarly, Xj is called a lower record value

if its value is smaller than all preceding observations. The record time sequence for

lower record values is denoted by L(n). It is clear that X1 is a lower (upper) record

value and U(1) = L(1) = 1 by definitions.

Let ∆r = U(r + 1) − U(r) and ∆(r) = L(r + 1) − L(r), r = 1, 2, .... ∆r

and ∆(r) are called upper and lower inter-record times, respectively. Inter-record times

correspond roughly to the number of non-record observations between record values.

• Distributions of Record Values and Record Times

Let X1, X2, ... be a sequence of i.i.d. random variables with continuous

cumulative distribution function (cdf) F and probability density function (pdf) f . The

pdf of nth upper record value XU(n) ,say fn(x), is

fn(x) =
(R(x))n−1

(n− 1)!
f(x), −∞ < x <∞ (1.2)

2



where R(x) = − lnF (x), 0 < F (x) < 1 and F (x) = 1 − F (x). Then the joint pdf

f(x1, x2, ..., xn) of n upper record values XU(1), XU(2), ..., XU(n) is given by

f(x1, x2, ..., xn) = r(x1)r(x2)...r(xn−1)f(xn)

= f(xn)
n∏
i=1

f(xi)

1− F (xi)
, (1.3)

for −∞ < x1 < x2 < ... < xn−1 < xn < ∞ where r(x) = dR(x)/dx = f(x)/(1 −

F (x)), 0 < F (x) < 1 and r(x) is known as hazard rate function.

The pdf of nth lower record value XL(n), say f(n)(x), is

f(n)(x) =
(H(x))n−1

(n− 1)!
f(x), −∞ < x <∞ (1.4)

and the joint pdf of n lower record values XL(1), XL(2), ..., XL(n) is given by

f(1),...,(n)(x1, x2, ..., xn) = h(x1)h(x2)...h(xn−1)f(xn)

= f(xn)
n∏
i=1

f(xi)

F (xi)
, (1.5)

for −∞ < xn < xn−1 < ... < x1 < ∞ where H(x) = − lnF (x), 0 < F (x) < 1 and

h(x) = −dH(x)/dx = f(x)/F (x).

An important question that the number of record values among the sequence

of observations X1, X2, ..., Xn. Let Mn be the number of record values among the

sequence X1, X2, ..., Xn. [Rényi, 1962] showed that the mean and variance of Mn are

E(Mn) =
n∑
i=1

1

i
and V ar(Mn) =

n∑
i=1

1

i

(
1− 1

i

)
. (1.6)

Moreover, the mean and variance approximately equal to log n + γ and log n + γ −

(π2/6), respectively, where γ is Euler’s constant 0.5772... and log is used for the

natural logarithm (see [Arnold et al., 1998]). Therefore, record values are clearly not

common. A sequence of n i.i.d. continuous random variables only about log n records

are expected.

3



For all n ≥ 1, ∆n and ∆(n) are identically distributed. [Nevzorov, 2001] shows

that the inter-record times are conditionally independent given the record values, and

the nth inter-record time has probability mass function

P (∆n = k
∣∣XU(1), XU(2), ...) = (1− F (Xu(n−1)))

(
F (XU(n−1))

)k−1
, (1.7)

for k = 1, 2, ... and n = 1, 2, 3, .... Thus, the nth inter-record time follows a geometric

distribution. The pdfs of ∆n and ∆(n) are independent of the parent distribution F (x)

and are given as

P (∆n = k) = P (∆(n) = k) =
k−1∑
i=0

(
k − 1
i

)
(−1)i

1

(2 + i)n
. (1.8)

Moreover,

E(∆n

∣∣XU(n) = xn ) =
1

1− F (xn)
, V ar(∆n

∣∣XU(n) = xn ) =
F (xn)

(1− F (xn))2 , (1.9)

E(∆(n)

∣∣XL(n) = x(n) ) =
1

F (x(n))
, V ar(∆(n)

∣∣XL(n) = x(n) ) =
1− F (x(n))(
F (x(n))

)2 .(1.10)

The various probabilities of the record times can be easily obtained by using the

probability of the inter-record times. It is known that the record times are independent

from [Rényi, 1962]. Then, the joint probability mass function of the first n record

times is

P (U(2) = j2, U(3) = j3, ..., U(n) = jn) =
1

(j2 − 1)(j3 − 1)...(jn − 1)jn
, (1.11)

for 1 = j1 < j2 < ... < jn.

When the consider the sample which consists of the record values and their

corresponding inter-record times, we have two sampling schemes for generating record

data known as inverse sampling and random sampling schemes. Let Ki is the number

of trials required to obtain a new record value, namely Ki = ∆i (or ∆(i)). Under the

inverse sampling scheme, units are taken sequentially and sampling is terminated when

4



themth maximum (or minimum) is observed. In this case, the total number of sampled

unit is a random number, and Km is defined to be one for convenience, while under

the random sampling scheme, a random sample X1, . . . , Xn is examined sequentially

and successive maximum (minimum) values are recorded. In this setting the number

of records N (n) obtained is a random and
∑N(n)

i=1 Ki = n.

The distribution of Ki given the past upper records and inter-record times is

P (Ki = k
∣∣XU(i) = xi ) = (1− F (xi)) (F (xi))

k−1 , (1.12)

for k = 1, 2, .... It follows that the joint pdf or likelihood function associated with the

sequence
{
XU(1), K1, . . . , XU(m), Km

}
under the inverse sampling scheme is given by

[Samaniego and Whitaker, 1986] as

L(x,k) =
m∏
i=1

f(xi) {F (xi)}ki−1 I(xi−1,∞)(xi), (1.13)

where x0 ≡ −∞, km ≡ 1 and IA(x) is the indicator function of the set A. Similarly,

the distribution of Ki given the past lower records and inter-record times is

P (Ki = k
∣∣XL(i) = xi ) = F (xi) (1− F (xi))

k−1 , (1.14)

for k = 1, 2, .... It follows that the joint pdf or likelihood function associated with the

sequence
{
XL(1), K1, . . . , XL(m), Km

}
under the inverse sampling scheme is

L(x,k) =
m∏
i=1

f(xi) {1− F (xi)}ki−1 I(−∞,xi−1)(xi), (1.15)

where x0 ≡ ∞ and km ≡ 1.

• Definition of The Stress-Strength Reliability

Let X and Y be independent random variables, the quantity of R = P (X < Y )

is commonly referred as stress-strength parameter or reliability. In the simplest terms

this can be described as an assessment of reliability of a component in terms of random

5



variables X representing stress experienced by the component and Y representing the

strength of the component available to overcome the stress. If the stress exceeds the

strength, i.e. X > Y , then the component will fail.

Assume that a random vector (X, Y ) has pdf f(x, y |θ ) with an unknown scalar

or vector-valued parameter θ ∈ Θ. The aim is to estimateR on the basis of observations

(X1, Y1), ..., (Xn, Yn). Note that if X and Y are independent with the pdf of the form

f(x, y |θ ) = f(x |θ )f(y |θ ) the number of observations for X and Y need not be the

same.

The reliability R can be calculated as

R =

∫ ∞
−∞

∫ ∞
−∞

f(x, y |θ )I(x < y)dxdy. (1.16)

If X and Y are independent with the pdfs f(x |θ ) and f(y |θ ) and the cdfs FX(x |θ )

and FY (y |θ ), respectively, equation (1.16) can be rewritten as

R =

∫ ∞
−∞

FX(z |θ )fY (z |θ )dz =

∫ ∞
−∞

(1− FY (z |θ )) fX(z |θ )dz. (1.17)

The main idea was introduced by [Birnbaum, 1956] and developed by [Birnbaum

and McCarty, 1958]. The problem of estimating of R on random samples has

been extensively studied under various distributional assumptions on X and Y . A

comprehensive account of this topic is presented by [Kotz et al., 2003]. It is provided

an excellent review of the development of the stress-strength under classical and

Bayesian point of views up to the year 2003. For most recent results on the topic

see [Kundu and Gupta, 2005], [Mokhlis, 2005], [Baklizi, 2008], [Rezaei et al., 2010],

[Nadar et al., 2014] and the references therein.

• Inferential Methods For Bayesian Analysis

In Bayesian methods, to evaluate various characteristics of posterior and

predictive distributions, especially their densities, means and variances are very

important. When the problem under consideration does not involve a conjugate prior

likelihood pair, these tasks can not be obtained in closed form. In this case, an

analytical or a numerical approximation methods are needed. Because the Lindley
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approximation, the Tierney-Kadane approximation and Markov Chain Monte Carlo

(MCMC) methods are used frequently in this thesis, the summary of these methods

using [Press, 2002], [Gelman et al., 2003], [Tierney and Kadane, 1986], [Lindley,

1980], [Soliman et al., 2011] are given below.

• The Lindley Approximation

Let u(θ) be a smooth, positive function on the parameter space. The posterior

mean of u(θ) for given data x = (x1, ..., xn) can be written as

E(u(θ) |x) =

∫
u(θ)el(θ)+ρ(θ)dθ∫
el(θ)+ρ(θ)dθ

, (1.18)

where l(θ) is the logarithm of the likelihood function, ρ(θ) is the logarithm of the

prior density of θ and θ = (θ1, ..., θm) is a parameter. The Lindley approximation is

developed by [Lindley, 1980] and is given in the following theorem.

Theorem 1.1: For n sufficiently large and l(θ) defined in equation (1.18) concentrates

around a unique maximum likelihood estimator θ̂ = (θ̂1, ..., θ̂m) for θ, the ratio of

integrals in equation (1.18) is given by approximately as

E(u(θ) |x) =

[
u+

1

2

m∑
i=1

m∑
j=1

(uij + 2uiρj)σij

+
1

2

m∑
i=1

m∑
j=1

m∑
k=1

m∑
k=1

Lijkσijσklul

]
θ̂

(1.19)

where ui = ∂u(θ)/∂θi, uij = ∂2u(θ)/∂θi∂θj , Lijk = ∂3l(θ)/∂θi∂θj∂θk, ρj =

∂ρ(θ)/∂θj , and σij = (i, j)th element in the inverse of the matrix {−Lij} all evaluated

at the MLE of the parameters.

Proof 1.1: For the proof of theorem see [Lindley, 1980]. �

Remark 1.1: The first term in equation (1.19) is O(1); the other terms are O(1/n) and

are called correction terms. The overall approximation in the Theorem 1.1 is O(1/n),

so the first term neglected is O(1/n2).
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Remark 1.2: When m = 3, equation (1.19) reduces to

E(u(θ) |x) = u+ (u1c1 + u2c2 + u3c3 + c4 + c5) +
A

2
(u1σ11 + u2σ12 + u3σ13)

+
B

2
(u1σ21 + u2σ22 + u3σ23) +

C

2
(u1σ31 + u2σ32 + u3σ33), (1.20)

evaluated at θ̂ = (θ̂1, θ̂2, θ̂3) where

ci = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3, (1.21)

c4 = u12σ12 + u13σ13 + u23σ23, (1.22)

c5 =
1

2
(u11σ11 + u22σ22 + u33σ33), (1.23)

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ23L231 + σ22L221 + σ33L331, (1.24)

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ23L232 + σ22L222 + σ33L332, (1.25)

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ23L233 + σ22L223 + σ33L333. (1.26)

Remark 1.3: When m = 2, the following notations in [Jaheen, 2005] are used

E(u(θ) |x) = u+
1

2
[B +Q30B12 +Q21C12 +Q12C21 +Q03B21] , (1.27)

where B =
∑2

i=1

∑2
j=1 uijτij , Qij = ∂i+jQ/∂iθ1∂

jθ2, for i, j = 0, 1, 2, 3 and i+ j =

3, ui = ∂u(θ)/∂θi, uij = ∂2u(θ)/∂θi∂θj for i, j = 1, 2 and Bij = (uiτii + ujτij)τii

and Cij = 3uiτiiτij + uj(τiiτij + 2τ 2
ij) for i 6= j, where τij is the (i, j)th element in the

inverse of the matrix Q∗ = (−Q∗ij), i, j = 1, 2 such that Q∗ij = ∂2Q/∂θi∂θj , Q is the

logarithm of the posterior density function of θ except for the normalizing constant.

The equation (1.27) is to be evaluated at (θ̂1, θ̂2), the mode of the posterior density

density function of θ.
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• The Tierney-Kadane Approximation

Another analytical approximation result for evaluation of Bayesian integrals is

Tierney-Kadane approximation. It is developed by [Tierney and Kadane, 1986] and is

given in Theorem 1.2.

Theorem 1.2: For n sufficiently large, if the posterior distribution of u(θ) (given the

data) is concentrated on the positive (or negative) half-line, and if (l(θ)+ρ(θ)), defined

in equation (1.18), concentrates around a unique maximum, under suitable regularity

conditions the ratio of integrals in equation (1.18) is given approximately by

E(u(θ) |x) =

[
det Σ∗

det Σ

]1/2

exp
(
n
[
Λ∗(θ̃∗)− Λ(θ̃)

])
, (1.28)

where nΛ(θ) = l(θ) + ρ(θ), nΛ∗(θ) = lnu(θ) + l(θ) + ρ(θ), θ̃∗ maximizes Λ∗(θ), θ̃

is the posterior mode and therefore maximizes l(θ), and Σ∗ and Σ are the negatives of

the inverse Hessians of Λ∗(θ̃∗) and Λ(θ̃), respectively.

Remark 1.4: The terms omitted in the approximation in equation (1.28) are O(1/n2),

as in the results in equation (1.19).

• MCMC Method

The MCMC method is a general simulation method for sampling from posterior

distributions. The MCMC methods sample successively from a target distribution.

A Markov chain is generated by sampling the current point based on the previous

one. The MCMC method works successfully in Bayesian computing. The analytical

forms of the posterior distributions can only be recognized in the simplest models.

Most posterior densities are computationally intensive to work with directly. With

the MCMC method, it is possible to generate samples from the posterior distribution

and to use these samples to approximate expectations of quantities of interest. In

addition, the simulation algorithm can be easily extensible to models with a large

number of parameters or high complexity. The MCMC techniques, including the

Metropolis–Hastings algorithm and the Gibbs sampler have become very popular in

recent years as methods for generating a sample from a complicated model. Details of

the MCMC method can be found in [Gelman et al., 2003].
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• The Gibbs Sampling Algorithm

The Gibbs sampler is a special case of an MCMC algorithm. It generates

a sequence of samples from the full conditional probability distributions of two or

more random variables. Gibbs sampling requires decomposing the joint posterior

distributions into full conditional distributions for each parameter in the model and

then sampling from them. The sampler can be efficient when the full conditional

distributions are easy to sample from. Suppose that θ1, ..., θk denote some grouping

(blocking) of θ and π∗1(θ1| θ2, ..., θk, x), ..., π∗k(θk| θ1, ..., θk−1, x) denote the associated

conditional densities, often called the full conditional densities. After having derived

the full conditional posterior distributions for the parameters θ1, ..., θk, the Gibbs

sampler works as follows:

• Step 1: Begin with some initial values θ(0) = (θ
(0)
1 , ..., θ

(0)
k ).

• Step 2: Set j = 1.

• Step 3: Generate θ(j)
1 from conditional distribution π∗1(θ1| θ2, ..., θk, x).

• Step 4: Generate θ(j)
2 from conditional distribution π∗2(θ2| θ1, ..., θk, x).

• Step 5: Generate θ(j)
k from conditional distribution π∗k(θk| θ1, ..., θk−1, x).

• Step 6: Set j = j + 1 and repeats steps 3-5, j = 1, 2, ..., N .

• The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a very general MCMC method. It can be

used to obtain random samples from any arbitrarily complicated target distribution of

any dimension that is known up to a normalizing constant. In fact, the Gibbs sampler is

just a special case of the Metropolis-Hastings algorithm. For specificity, suppose that

the full conditional density π∗1(θ1| θ2, ..., θk, x) is intractable. Let q(θ∗1| θ2, ..., θk, x)

denote a proposal density that generates a candidate θ∗1. The Metropolis-Hastings

algorithm for intractable π∗1(θ1| θ2, ..., θk, x) can be summarized as follows:

• Step 1: Specify an initial value θ(0) = (θ
(0)
1 , ..., θ

(0)
k ).

• Step 2: Propose a value for θ1 by drawing θ∗ ∼ q(θ∗1| θ
(j−1)
2 , ..., θ

(j−1)
k , x).

• Step 3: Calculate the acceptance probability

ρ(θ
(j−1)
1 , θ∗) = min

1,
π∗1(θ∗1| θ

(j−1)
2 , .., θ

(j−1)
k , x)q(θ

(j−1)
1

∣∣∣ θ(j−1)
2 , .., θ

(j−1)
k , x)

π∗1(θ
(j−1)
1

∣∣∣ θ(j−1)
2 , .., θ

(j−1)
k , x)q(θ∗1| θ

(j−1)
2 , .., θ

(j−1)
k , x)

 .(1.29)
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• Step 4: Generate U ∼ Uniform(0, 1).

• Step 5: If U ≤ ρ(θ
(j−1)
1 , θ∗), accept the proposal and set θ(j)

1 = θ∗. Otherwise,

reject the proposal and set θ(j)
1 = θ

(j−1)
1 .

• Step 6: Set j = j + 1 and repeats steps 1-4, j = 1, 2, ..., N.

If the proposal distribution is symmetric, then we have ρ(θ(t−1)
∣∣ θ∗) = ρ(θ∗| θ(t−1)),

so that the acceptance probability is given by

ρ(θ
(j−1)
1 , θ∗) = min

1,
π∗1(θ∗1| θ

(j−1)
2 , ..., θ

(j−1)
k , x)

π∗1(θ
(j−1)
1

∣∣∣ θ(j−1)
2 , ..., θ

(j−1)
k , x)

 . (1.30)

A similar approach is used to sample θ2, ..., θk.

1.3. The Aim of The Thesis

In recent years, the record values and the stress-strength reliability models are

getting more popular among the statisticians. Many authors have investigated the

statistical inferences of the record values and the stress-strength reliability models

for the different distributions. However, the estimation of the unknown distribution

parameters based on record values with their corresponding inter-record times and

the estimation of the stress-strength reliability based on record values have not paid

much attention in the literature. Hence, we basically concentrate on these subjects in

this thesis when the underlying distributions are the Burr Type XII, the generalized

exponential and the Kumaraswmay.

11



2. STATISTICAL ANALYSIS FOR THE BURR
TYPE XII DISTRIBUTION

2.1. Introduction

The Burr system of distributions includes twelve types of cumulative distribution

functions which yield a variety of density shapes and were listed in,[Burr, 1942]. It

has applied in business, chemical engineering, quality control, medical and reliability

studies. The Burr XII distribution is one of the different distributions introduced by

[Burr, 1942] for modeling data.

If a random variable X follows a Burr Type XII distribution, denoted by

Burr(α, β), then its pdf and cdf are given by

F (x;α, β) = 1− (1 + xα)−β, x > 0, (α > 0, β > 0) (2.1)

f(x;α, β) = αβxα−1(1 + xα)−(β+1), x > 0 (2.2)

α, β > 0 are the shape parameters. The mean and variance of a Burr Type XII

distribution are given by

E(X) = βB

(
β − 1

α
, 1 +

1

α

)
, (2.3)

and

V ar(X) = βB

(
β − 2

α
, 1 +

2

α

)
−
{
βB

(
β − 1

α
, 1 +

1

α

)}2

. (2.4)

The Burr Type XII distribution is unimodal and its mode xmode =

(α− 1/(αβ + 1))1/α if α > 1. If α > 1, its pdf increases on (0, xmode] and decreases

on [xmode,∞). If α ≥ 1, its pdf is strictly decreasing.

The Burr Type XII distribution has been studied by many authors. For example,

the Bayes estimates of the shape parameter and reliability function were derived

by [Papadopoulos, 1978] when the other shape parameter was known. The Bayes

estimates of the parameters, the reliability and failure rate functions based on a Type-2

12



censored sample were obtained by [Al-Hussaini and Jaheen, 1992]. The Bayesian

prediction bounds for certain order statistics were considered by [Al-Hussaini and

Jaheen, 1995]. The maximum likelihood (ML) estimates of the parameters based

on randomly right censored data were obtained by [Ghitany and Al-Awadhi, 2002].

The ML and Bayes estimates of the parameters based on generalized order statistics

were derived by [Jaheen, 2005]. The ML and Bayes estimates for some life time

parameters (reliability and hazard functions) as well as the shape parameters based on

progressively Type-II censored samples were obtained by [Soliman, 2005].

The rest of this chapter is organized as follows. In Section 2.1, the statistical

inferences for the Burr Type XII distribution based on record values are mentioned. In

Section 2.2, the statistical inferences for the Burr Type XII distribution based on record

values with their corresponding inter-record times are considered. In Section 2.3, the

statistical inferences for the stress-strength reliability of the Burr Type XII distribution

based on record values are considered.

2.2. Estimation of The Parameters Based on Record Values

The Bayesian estimates for the two shape parameter of the Burr Type XII

distribution based on upper record values were obtained by [Ahmadi and Doostparast,

2006] using the symmetric loss function. Bayesian prediction bounds for future upper

record values was also derived. When the first shape parameter was known, the Bayes

and empirical Bayes estimates for the unknown shape parameter of the Burr Type XII

distribution based on upper record values were considered by [Wang and Shi, 2010].

The Bayesian and empirical Bayesian prediction bounds for future upper record values

were also obtained. The frequentist and Bayesian point estimates for the two shape

parameters based on upper record values were derived by [Nadar and Papadopoulos,

2011] using the asymmetric loss function. The prediction for the future record values

was also obtained by using non-Bayesian and Bayesian approach.
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2.3. Estimation of the Parameters Based on Records and
Inter-Record Times

When the underlying distribution is exponential, estimation of the mean

parameter by using record values and their corresponding inter-record times was

obtained by [Samaniego and Whitaker, 1986] under random sampling and inverse

sampling schemes. The optimal random sampling plan and associated cost analysis

for the exponential distribution were studied by [Doostparast and Balakrishnan, 2010].

Non-Bayesian and Bayesian estimates were derived by [Doostparast, 2009] for the

two parameters of the exponential distribution based on record values and their

corresponding inter-record times under the inverse sampling scheme. The optimal

confidence intervals, uniformly most powerful tests for one-sided alternatives were

derived by [Doostparast and Balakrishnan, 2011] when the underlying distribution

is the two-parameter exponential distribution. Also, they obtained as generalized

likelihood ratio test, uniformly unbiased and invariant tests for a two-sided alternative.

The optimal statistical procedures including point and interval estimation as well as

most powerful tests based on record data from a two-parameter Pareto model were

obtained by [Doostparast and Balakrishnan, 2013]. When the underlying distribution

is lognormal, non-Bayesian and Bayesian point estimates as well as asymptotic

confidence intervals for the unknown parameters were obtained by [Doostparast et

al., 2013].

Prediction of future records becomes a problem of great interest. For example,

while studying the record rainfalls or snowfalls, having observed the record values

until the present time, we will be naturally interested in predicting the amount of

rainfall or snowfall that is to be expected when the present record is broken for the

first time in future. Let R1, ..., Rm be the first m lower record values observed from a

specific distribution. Then, we may be interested in predicting (either point or interval

prediction) the value of the next record (Rm+1), or, more generally, the value of the

s-th record (Rs) for some s > m (see [Arnold et al., 1998]). Prediction of future

records has been studied by many authors such that [Ahmadi and Doostparast, 2006],

[Soliman et al., 2006], [Raqab et al., 2007].

In this section, the parameter estimates of Burr Type XII distribution based on

lower record values and their corresponding inter-record times are obtained under
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the classical and Bayesian frameworks. The Lindley approximation and MCMC

technique are used to obtain the Bayes estimates under different loss functions. The

non-Bayesian and Bayesian point predictors and the Bayesian prediction interval of

future lower record values are obtained based on the observed lower record values

with their corresponding inter-record times. Also, the Bayesian point predictors and

the Bayesian prediction interval of future lower record values are constructed based on

just the lower record values. Finally, the two approach are compared by using Monte

Carlo simulations to see the effect of the inter-record times in prediction.

2.3.1. ML Estimation

LetX1, X2, . . . be i.i.d. random variables, coming from a population with the cdf

and the pdf F (.) and f(.), respectively. Then, the likelihood function associated with

the sequence {R1, K1, . . . , Rm, Km} is given by [Samaniego and Whitaker, 1986] as

L(r,k) =
m∏
i=1

f(ri) {1− F (ri)}ki−1 I(−∞,ri−1)(ri), (2.5)

where r0 ≡ ∞, km ≡ 1 and IA(x) is the indicator function of the setA. From equations

(2.1), (2.2) and (2.5), we have

L(α, β; r,k) = αmβm exp

{
(α− 1)

m∑
i=1

ln ri −
m∑
i=1

(βki + 1) ln(1 + rαi )

}
, (2.6)

where r1 > . . . > rm and so the log-likelihood function is

l(α, β; r,k) = m(lnα + ln β) + (α− 1)
m∑
i=1

ln ri −
m∑
i=1

(βki + 1) ln(1 + rαi ). (2.7)

The ML estimates of α and β are given by

β̂ =
m

Tα
, (2.8)

where Tα =
∑m

i=1 ki ln(1 + rαi ) and α̂ is the solution of the following non-linear

equation
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m

α
+

m∑
i=1

ln ri −
m∑
i=1

(
ki
m

Tα
+ 1

)
rαi ln ri
1 + rαi

= 0. (2.9)

Therefore, α̂ can be obtained as the solution of the non-linear equation of the form

h(α) = α where

h(α) = m

[
m

Tα

m∑
i=1

kir
α
i ln ri

1 + rαi
−

m∑
i=1

ln ri
1 + rαi

]−1

. (2.10)

Since, α̂ is a fixed point solution of the non-linear equation (2.10), its value can be

obtained using an iterative scheme as: α(j+1) = h(α(j)), where α(j) is the jth iterate of

α̂. The iteration procedure should stopped when
∣∣α(j) − α(j+1)

∣∣ is sufficiently small.

After α̂ is obtained, β̂ can be obtained from equation (2.8).

Next, we establish the existence and uniqueness of the maximum likelihood

estimation (MLE) of the parameters α and β of the Burr Type XII distribution based on

lower record data. Similar result has been obtained by [Ghitany and Al-Awadhi, 2002]

for the Burr Type XII distribution using randomly right censored data. We present the

following lemma that will be used in the proof of Theorem 2.1.

Lemma 2.1: Let

wm(x1, ..., xm) =

{
m∑
i=1

ki ln(1 + xi)

}2

−

{
m∑
i=1

kiξ(xi)

}2

+
m∑
i=1

ki ln(1 + xi)
m∑
i=1

ki
ξ2(xi)

xi
, (2.11)

where ξ(x) = x lnx/(1 + x), x ≥ 0. Then, wm(x1, ..., xm) ≥ 0 for all xi ≥ 0 and

ki ≥ 1 ,i = 1, ...,m.

Proof 2.1: For a proof, one may refer to [Ghitany and Al-Awadhi, 2002]. �

Theorem 2.1: The ML estimates of the parameters α and β are unique and given by
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β̂ = m/Tα̂ where α̂ is the solution of the non-linear equation:

G(α) =
m

α
− m

Tα

m∑
i=1

kir
α
i ln ri

1 + rαi
+

m∑
i=1

ln ri
1 + rαi

= 0. (2.12)

Proof 2.1: We have

G(0) ≡ lim
α→0

G(α) = lim
α→0

m

α
− m

2 ln 2

∑m
i=1 ki ln ri∑m

i=1 ki
+

1

2

m∑
i=1

ln ri =∞. (2.13)

The limit of G(α) as α→∞ is considered in four cases.

i) If at least one record value is greater than unity, then

G(∞) ≡ lim
α→∞

G(α) = lim
α→∞

(
m

α
− m

Tα

m∑
i=1

kir
α
i ln ri

1 + rαi
+

m∑
i=1

ln ri
1 + rαi

)

= −m lim
α→∞

∑m
i=1(ri<1)(kir

α
i ln ri/(1 + rαi )) +

∑m
i=1(ri>1)(kir

α
i ln ri/(1 + rαi ))∑m

i=1(ri<1) ki ln(1 + rαi ) +
∑m

i=1(ri>1) ki ln(1 + rαi )

+ lim
α→∞

 m∑
i=1(ri<1)

ln ri
1 + rαi

+
m∑

i=1(ri>1)

ln ri
1 + rαi

 (2.14)

=
m∑

i=1(ri<1)

ln ri < 0.

ii) If at least one record value is less than unity, then

G(∞) =
m∑

i=1(ri<1)

ln ri < 0. (2.15)

iii) If all record values are less than unity, that is ri < 1, i = 1, ...,m, then (ri/r1) <

1, limα→∞ (ri/r1)α = 0 and limα→∞(ln(1 + rαi ))/rα1 = 0, i = 2, ...,m. By using

these limits and dividing the numerator and denominator of the second term ofG(α)
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by rα1 , then we obtain

G(∞) = −m lim
α→∞

∑m
i=1(ki ln ri/(1 + rαi ))(ri/r1)α∑m

i=1 ki(ln(1 + rαi )/rα1 )
+ lim

α→∞

m∑
i=1

ln ri
1 + rαi

= −mk1 ln r1

k1

+
m∑
i=1

ln ri =
m∑
i=1

(ln ri − ln r1) < 0. (2.16)

iv) If all record values are greater than unity, that is ri > 1, i = 1, ...,m, then

G(∞) = −m lim
α→∞

∑m
i=1 ki ln ri(r

α
i /(1 + rαi ))∑m

i=1 ki ln(1 + rαi )
+ lim

α→∞

m∑
i=1

ln ri
1 + rαi

<
m∑
i=1

ln ri lim
α→∞

(
1

(1 + rαm)
− 1

ln (1 + rαm)

)
< 0. (2.17)

Hence, we obtain that limα→0G(α) =∞ and limα→∞G(α) < 0. By the intermediate

value theorem G(α) has at least one root in (0,∞). If it can be shown that

∂G(α)/∂α < 0 then the proof will be completed. It is easily obtained that

∂G(α)

∂α
= − 1

α2

[
m+

m∑
i=1

rαi

(
ln rαi

1 + rαi

)2

+
m

T 2
α


m∑
i=1

kir
α
i

(
ln rαi

1 + rαi

)2 m∑
i=1

ki ln(1 + rαi )−

(
m∑
i=1

kir
α
i ln rαi

1 + rαi

)2

 (2.18)

= − 1

α2

[
m∑
i=1

ξ2(rαi )

rαi
+
m

T 2
α

wm(rα1 , ..., r
α
m)

]
.

It is clear that ∂G(α)/∂α < 0 by using Lemma 1.

Finally, we will show that the ML estimates of (α, β) maximizes the

log-likelihood function l(α, β; r,k). Let H(α, β) be the Hessian matrix of l(α, β; r,k)

at (α, β). It is clear that H11(α̂, β̂) < 0 and the determinant of the Hessian matrix
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D(α̂, β̂) = H11(α̂, β̂)H22(α̂, β̂)−
(
H12(α̂, β̂)

)2

=
1

α̂2

[
m

β̂2

m∑
i=1

ξ2(rα̂i )

rα̂i
+ wm(rα̂1 , ..., r

α̂
m)

]
, (2.19)

and D(α̂, β̂) > 0 by Lemma 2.1. Hence, (α̂, β̂) is the local maximum of l(α, β; r,k).

Since there is no singular point of l(α, β; r,k) and it has a single critical point then,

it is enough to show that the absolute maximum of the function is indeed the local

maximum. Assume that there exist a α̂0 in the domain in which l∗(α̂0) > l∗(α̂), where

l∗(α̂) = l(α̂, β̂; r,k). Since α̂ is the local maximum there should be some point α1 in

the neighborhood of α̂ML such that l∗(α̂) > l∗(α1). Let k(α) = l∗(α) − l∗(α̂) then

k(α̂0) > 0, k(α1) < 0 and k(α̂) = 0. This implies that α1 is a local minimum of the

l∗(α), but α̂ is the only critical point so it is a contradiction. Therefore, (α̂, β̂) is the

absolute maximum of l(α, β; r,k). �

2.3.1.1. ML Estimation When α Is Known

Without loss of generality, the parameter α is assumed to be known, say α = α0.

Then, by equation (2.6)

L(α0, β; r,k) = αm0 exp

{
(α0 − 1)

m∑
i=1

ln ri −
m∑
i=1

(βki + 1) ln(1 + rα0
i )

}
, (2.20)

where r1 > . . . > rm. In this case, Tα0 is a sufficient statistic for β and the

MLE of β is β̂ML = m/Tα0 . The moment generating function of Tα0 is M(t) =

1/(1 − t/β)m, β > t. By the uniqueness of the moment generating function, Tα0

is distributed as Gamma(m, 1/β) and its mean and variance are m/β and m/β2,

respectively. Therefore, E(β̂ML) = (m/(m− 1))β and an unbiased estimator for β is

β̂U = (m− 1)/Tα0 . Notice that, MSE(β̂U) < MSE(β̂ML) and MSE(β̂ML)→ 0 as

m→∞ then β̂ML and β̂U converge to β in mean square.
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2.3.1.2. Asymptotic Confidence Interval

In practice, the observed information matrix is used as a consistent estimator of

the Fisher information matrix. An asymptotic confidence intervals for the parameters

α and β based on the record values and their corresponding inter-record times are

obtained by using the observed information matrix. The observed information matrix

Jm(α, β) is given by

Jm(α, β) = −

[
∂2l
∂α2

∂2l
∂α∂β

∂2l
∂β∂α

∂2l
∂β2

]
=

[
J11 J12

J21 J22

]
, (2.21)

where J11 = (m/α2) +
∑m

i=1(βki + 1)rαi (ln ri/(1 + rαi ))2 , J12 = J21 =∑m
i=1 (kir

α
i ln ri) / (1 + rαi ) and J22 = m/β2.

By the asymptotic normality of the MLE, we have[√
m(α̂ML − α),

√
m(β̂ML − β)

]
a∼ N2(0, I−1) for large m, where a∼ means

approximately distributed and I−1 is the inverse of the Fisher information matrix.

If the likelihood equations have a unique solution θ̂n, then θ̂n is consistent,

asymptotically normal and efficient, see [Lehmann and Casella, 1998]. When

the likelihood equations have a unique solution, the observed information matrix

Jm(α̂ML, β̂ML)/m is a consistent estimator for Im(α, β)/m (see Appendix C in

[Lawless, 2003]). Therefore, the observed information matrix can be used in the

asymptotic normality of the MLE. For large m (the number of record values) under

inverse sampling, the approximate 100(1 − γ)% equi-tail confidence intervals for α

and β are constructed as

(
α̂ML ± z1−γ/2

√
J22

J11J22 − J2
12

)
and

(
β̂ML ± z1−γ/2

√
J11

J11J22 − J2
12

)
, (2.22)

where zγ is the upper γth quantile of the standard normal distribution.
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2.3.2. Bayesian Estimation

In the Bayesian inference, the most commonly used loss function is the squared

error (SE) loss, L(θ∗, θ) = (θ∗ − θ)2, where θ∗ is an estimate of θ. This loss function

is symmetrical and gives equal weight to overestimation as well as underestimation.

It is well known that the use of symmetric loss functions may be inappropriate in

many circumstances, particularly when positive and negative errors have different

consequences. A useful asymmetric loss function is the linear-exponential (LINEX)

loss, L(θ∗, θ) = ev(θ∗−θ) − v(θ∗ − θ) − 1, v 6= 0, introduced by [Varian, 1975]. The

sign and magnitude of v represents the direction and degree of asymmetry, respectively.

For v close to zero, the LINEX loss is approximately equal to the SE loss and therefore

almost symmetric.

In this section, the Bayes estimates of the parameters Burr Type XII distribution

are obtained by using different loss functions for both α is known and unknown cases

under the inverse sampling scheme.

2.3.2.1. Bayesian Estimation When α Is Known

When the parameter α is assumed to be known, say α = α0, the gamma

conjugate prior density is used for the parameter β, that was first used by

[Papadopoulos, 1978], i.e.

π(β) =
ba1+1

1

Γ(a1 + 1)
βa1e−βb1 , β > 0. (2.23)

The posterior density function of β is readily obtained from equations (2.20) and (2.23)

as β| (r,k) ∼ Gamma (m+ a1 + 1, (b1 + Tα0)
−1). Then, the Bayes estimate of α

under the SE loss function, β̂BS,1, is the mean of the β| (r,k). Therefore

β̂BS,1 =
m+ a1 + 1

b1 + Tα0

, (2.24)

and the Bayes estimate of β under the LINEX loss function, β̂BL,1, is given by

β̂BL,1 = −1

v
lnEβ|(r,k)(e

−vβ) =
m+ a1 + 1

v
ln

(
1 +

v

b1 + Tα0

)
. (2.25)
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If we use the Jeffrey’s non-informative prior, that is π(β) = 1/β, then we have

β| (r,k) ∼ Gamma (m, 1/Tα0). Therefore, the Bayes estimates of α under the SE

and the LINEX loss functions are obtained as

β̂BS,0 =
m

Tα0

and α̂BL,0 =
m

v
ln

(
1 +

v

Tα0

)
, (2.26)

respectively. Notice that, β̂BS,0 and β̂BL,0 are the limit of β̂BS,1 and β̂BL,1 as a1 → 0

and b1 → 0. Moreover, β̂BL,1 → β̂BS,1 as v → 0 is satisfied. The Bayesian credible

interval can be easily constructed by using the posterior density function of β. It is

clear that 2(b1 + Tα0)β| (r,k) ∼ χ2
2(m+a1+1). Therefore, a Bayesian credible interval

for β is given by

(
χ2

2(m+a1+1)(γ/2)

2(b1 + Tα0)
,
χ2

2(m+a1+1)(1− γ/2)

2(b1 + Tα0)

)
. (2.27)

In the following proposition, the comparison of Bayes estimates are given under

the SE and the LINEX loss functions.

Proposition 2.1:

i) β̂BL,1 ≤ β̂BS,1 for v > 0.

ii) β̂BL,1 ≥ β̂BS,1 for − (b1 + Tα0) < v < 0.

Proof 2.1: It is known that

ln(1 + x) ≤ x for every x > −1. (2.28)

i) Suppose v > 0. v/(b1 + Tα0) > 0, when b1 > 0 and Tα0 > 0. We have

ln (1 + v/(b1 + Tα0)) ≤ v/(b1 + Tα0) by the inequality (2.28). Therefore, β̂BL,1 ≤

β̂BS,1.

ii) Suppose v < 0 and −(b1 + Tα0) < v, then v/(b1 + Tα0) > −1. We have

ln (1 + v/(b1 + Tα0)) ≤ v/(b1 + Tα0) by the inequality (2.28). Therefore, β̂BL,1 ≥

β̂BS,1. �
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2.3.2.2. Bayesian Estimation When α and β Are Unknown

Assume that the parameters α and β have a joint bivariate density function,

suggested by [Al-Hussaini and Jaheen, 1992]. The parameters α and β follow the

joint bivariate density function

π(α, β) = π1(β |α)π2(α), (2.29)

where

π1(β |α) =
αa1+1

Γ(a1 + 1)ba1+1
1

βa1e−αβ/b1 , β > 0 (a1 > −1, b1 > 0), (2.30)

and α has gamma distribution with parameters (a2, b2). From equations (2.6) and

(2.29), the joint posterior density function of α and β is

π(α, β| r,k) = I(r,k)αm+a1+a2βm+a1

exp

{
−β
(
α

b1

+ Tα

)
− α

(
1

b2

−
m∑
i=1

ln ri

)
−

m∑
i=1

ln(1 + rαi )

}
, (2.31)

where

[I(r,k)]−1

Γ(m+ a1 + 1)
=

∫ ∞
0

αm+a1+a2

(
α

b1

+ Tα

)−m−a1−1

exp

{
−α

(
1

b2

−
m∑
i=1

ln ri

)
−

m∑
i=1

ln(1 + rαi )

}
dα. (2.32)

The Bayes estimator of a given measurable function of α and β, say g(α, β) under the

SE loss function is

ĝBS = Eα,β|r,k(g(α, β)) =

∫∞
0

∫∞
0
g(α, β)L(α, β; r,k)π(α, β)dαdβ∫∞

0

∫∞
0
L(α, β; r,k)π(α, β)dαdβ

. (2.33)
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It is not possible to compute equation (2.33) analytically. Two approaches are

suggested here to approximate equation (2.33), namely Lindley’s approximation and

MCMC method.

• Lindley’s approximation
For the two parameter case (α, β), we have from equation (2.31)

Q = ln I(r,k) + (m+ a1 + a2) lnα + (m+ a1) ln β

− β
(
α

b1

+ Tα

)
− α

(
1

b2

−
m∑
i=1

ln ri

)
−

m∑
i=1

ln(1 + rαi ). (2.34)

The joint posterior mode is obtained from the equations ∂Q/∂α = 0 and ∂Q/∂β = 0

as

β̃ =
m+ a1

(α̃/b1) + Tα̃
, (2.35)

and α̃ is the solution of the nonlinear equation

m+ a1 + a2

α
− m+ a1

α̃
b1

+ Tα̃

(
1

b1

+
m∑
i=1

kir
α
i ln ri

1 + rαi

)
− 1

b2

+
m∑
i=1

ln ri
1 + rαi

= 0. (2.36)

It can be solved by using the same procedure in equation (2.10). The elements of the

Q∗

Q∗11 =
m+ a1 + a2

α2
+

m∑
i=1

(βki + 1)rαi

(
ln ri

1 + rαi

)2

, (2.37)

Q∗12 = Q∗21 =
1

b1

+
m∑
i=1

kir
α
i ln ri

1 + rαi
, Q∗22 =

m+ a2

β2
, (2.38)

and τij, i, j = 1, 2 are obtained by using equations (2.37) and (2.38). Moreover,

Q12 = 0, Q21 = −
m∑
i=1

kir
α
i

(
ln ri

1 + rαi

)2

, Q03 =
2 (m+ a1)

β3
, (2.39)

Q30 =
2 (m+ a1 + a2)

α3
−

m∑
i=1

(βki + 1)(1− rαi )rαi

(
ln ri

1 + rαi

)3

. (2.40)
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Therefore, the approximate Bayes estimates of α and β under the SE and the LINEX

loss functions are

α̂BS,Lind = α̃ +
1

2

[
Q30τ

2
11 + 3Q21τ11τ12 +Q03τ21τ22

]
, (2.41)

α̂BL,Lind = α̃− 1

v
ln
[
1 +

v

2

(
vτ11 −Q30τ

2
11 − 3Q21τ11τ12 −Q03τ21τ22

)]
, (2.42)

β̂BS,Lind = β̃ +
1

2

[
Q30τ12τ11 +Q21(τ11τ22 + 2τ 2

12) +Q03τ
2
22

]
, (2.43)

β̂BL,Lind = β̃ − 1

v
ln 1 +

v2

2
τ22 −

v

2
Q30τ12τ11

− v

2
Q21(τ11τ22 + 2τ 2

12)− v

2
Q03τ

2
22 (2.44)

Notice that all approximate Bayes estimates are evaluated at (α̃, β̃).

• MCMC method

In the previous section, the Bayes estimates of α and β are obtained under the SE

and the LINEX loss functions by using the Lindley’s approximation. Since the exact

probability distributions of these estimates are not known, it is difficult to evaluate

HPD credible intervals of parameters. For this reason, the MCMC method are used to

compute the Bayes estimates of α and β under the SE and the LINEX loss functions

as well the HPD credible intervals.

The MCMC method are considered to generate samples from the posterior

distributions and then the Bayes estimates of α and β under the SE and the LINEX loss

functions are computed. The joint posterior density of α and β is given by equation

(2.31). It is easy to see that

β|α, r,k ∼Gamma (m+ a1 + 1, (α/b1) + Tα) , (2.45)

25



and

π(α| β, r,k) ∝ αm+a1+a2 exp

{
−β
(
α

b1

+ Tα

)}

exp

{
−α

(
1

b2

−
m∑
i=1

ln ri

)
−

m∑
i=1

ln(1 + rαi )

}
. (2.46)

Therefore, the samples of β can be generated by using the gamma distribution.

However, the posterior distribution of α cannot be reduced analytically to well known

distribution and therefore it is not possible to sample directly by standard methods.

If the posterior density of α is unimodal and roughly symmetric then it is often

convenient to approximate it by a normal distribution centered at the mode, (see

[Gelman et al., 2003]). Since the posterior density of α is log-concave density

(so unimodal) and the posterior density of α is roughly symmetric with respect to

mode (by experimentation), we use the Metropolis-Hasting algorithm with the normal

proposal distribution to generate a random sample from the posterior density of α.

The hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be used

to solve our problem, is suggested by [Tierney, 1994]. This algorithm combines

the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian proposal

distribution.

• Step 1: Take some initial guess of α and β, say α(0) and β(0).

• Step 2: Set t = 1.

• Step 3: Generate α(t) from π(α| β, r,k) using the Metropolis-Hastings algorithm

with the proposal distribution q(α) ≡ N(α̃, Vα̃) where α̃ is a mode of

π(α| β(t−1), r,k) and Vα =
(
−d2(lnπ(α| β(t−1), r,k))/dα2

)−1
:

-Step 3.1: Let v = α(t−1).

-Step 3.2: Generate w from the proposal distribution q.

-Step 3.3: Let p(v, w) = min

{
1,
π(w| β(t−1), r,k) q(v)

π(v| β(t−1), r,k) q(w)

}
.

-Step 3.4: Generate u from Uniform(0, 1). If u ≤ p(v, w) then accept the

proposal and set α(t) = w; otherwise, set α(t) = v.

• Step 4: Generate β(t) fromGamma
(
m+ a1 + 1, (α/b1) +

∑m
i=1 ki ln(1 + r

α(t)
i )

)
.

• Step 5: Set t = t+ 1.
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• Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (α(i), β(i)),

i = 1, . . . , N .

The samples obtained from the algorithm are used to compute the Bayes

estimates and to construct the HPD credible intervals. The Bayes estimator of

g ≡ g(α, β) based on the SE and the LINEX loss function are given, respectively,

by

ĝBS,MH = E(g| r,k) =
1

N −M

N−M∑
i=M+1

g(α(i), β(i)), (2.47)

and

ĝBL,MH = −1

v
ln

[
1

N −M

N−M∑
i=M+1

exp
(
−v g(α(i), β(i))

)]
, (2.48)

where M is the burn-in period.

The HPD 100(1 − γ)% credible intervals of α and β can be obtained by the

method of [Chen and Shao, 1999]. In particular for α:

From MCMC, the sequence α1, . . . , αN , are obtained, and ordered as α(1) <

. . . < α(N). The credible intervals are constructed as
(
α(j), α(j+[N(1−γ)])

)
for j =

1, ..., N − [N(1 − γ)] where [x] denotes the largest integer less than or equal to x.

Then, the HPD credible interval of α is that interval which has the shortest length.

Similarly, the HPD credible interval of β can also be constructed.

2.3.3. Prediction of Future Record Values

In this section, the problem of prediction and prediction interval for the s th (s >

m) lower record value are considered using non-Bayesian and Bayesian approaches.

2.3.3.1. Non-Bayesian Prediction Approach

When the first m lower record values are observed, the predictive likelihood

function of Y = Rs, s > m and the parameters θ is given by [Basak and Balakrishnan,

2003] as
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L(y, θ; r) =
m∏
i=1

f(ri; θ)

F (ri; θ)

[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)
f(y; θ). (2.49)

where θ = (α, β), r = (r1, .., rm) and H(y; θ) = − lnF (y; θ). Moreover, the

likelihood function associated with the sequence {R1, K1, . . . , Rm, Km} is given by

[Samaniego and Whitaker, 1986] in equation (2.5). Similarly, the predictive likelihood

function for the future record Rs based on the sequence {R1, K1, . . . , Rm, Km, Rs} is

derived, we have

L(y, θ; r,k) =
m∏
i=1

f(ri; θ) {1− F (ri; θ)}ki−1 I(−∞,ri−1)(ri)

[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)
f(y; θ). (2.50)

Notice that, Km ≡ 1 is defined for convenience, when the inverse sampling is

employed (see [Samaniego and Whitaker, 1986]). The predictive maximum likelihood

estimator (PMLE) of (α, β) and the maximum likelihood predictor (MLP) of Y = Rs

are obtained by maximizing the logarithm of the predictive likelihood function in

equation (2.50) with respect to mentioned parameters.

2.3.3.2. Bayesian Prediction Approach

The prediction and prediction interval of future records based on a Bayesian

approach are considered under the SE and the LINEX loss functions. The conditional

density function of Y = Rs, s > m given the past m records is

f(y| r, α, β) =
[H(y)−H(rm)]s−m−1

Γ(s−m)

f(y)

F (rm)

=
s−m−1∑
j=0

(
s−m− 1

j

)
(−1)jf(y) [lnF (y)]j

Γ(s−m)F (rm) [lnF (rm)]−s+m+1+j , (2.51)

where 0 < y < rm. The Bayes predictive density function Y is given by
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h(y| r,k) =

∫ ∞
0

∫ ∞
0

f(y| r, α, β)π(α, β| r,k)dαdβ. (2.52)

It is clear that h(y| r,k) cannot be expressed in closed form and hence it cannot be

computed analytically.

The consistent estimator of h(y| r,k) is constructed by using the hybrid

Metropolis-Hastings and Gibbs sampling procedure as described in MCMC case.

Suppose that {(αi, βi), i = 1, ..., N} are MCMC samples obtained from π(α, β| r,k)

using the hybrid Metropolis -Hastings and Gibbs sampling technique. The consistent

estimator of h(y| r,k) based on the simulation can be obtained as

ĥ(y| r,k) =
1

N

N∑
i=1

f(y| r, αi, βi), (2.53)

and a consistent estimator of the predictive distribution of Y = Rs based on the

simulation, say H(y| r,k), can be obtained as

Ĥ(y| r,k) =
1

N

N∑
i=1

F ∗(y| r,αi, βi), (2.54)

and F ∗(y| r,α, β) denotes the distribution function corresponding to the density

function f(y| r, α, β) and

F ∗(y| r,α, β) =

∫ y

0

f(t| r, α, β)dt

=
s−m−1∑
j=0

(
s−m− 1

j

)
[lnF (rm)]s−m−1−j Γ(j + 1,− lnF (y))

Γ(s−m)F (rm)
, (2.55)

where Γ(x, y) is an incomplete Gamma function, i.e. Γ(x, y) =
∫∞
y
tx−1e−tdt. It

should be noted that the same MCMC samples {(αi, βi), i = 1, ..., N} can be used to

compute ĥ(y| r,k) or Ĥ(y| r,k) for all y.
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Then, the point predictor of Y = Rs under the SE loss function is

ŶS =

∫ rm

0

yĥ(y| r,k)dy =
1

N

N∑
i=1

∫ rm

0

yf(y| r, αi, βi)dy

=
1

N

N∑
i=1

∫ rm

0

yf(y| ;αi, βi)
Γ(s−m)F (rm;αi, βi)

[
ln

(
F (rm;αi, βi)

F (y;αi, βi)

)]s−m−1

dy. (2.56)

The point predictor of Y = Rs under the LINEX loss function is

ŶL = −1

v
ln

{
1

N

N∑
i=1

∫ rm

0

e−vyf(y;αi, βi)

Γ(s−m)F (rm;αi, βi)

(
ln

(
F (rm;αi, βi)

F (y;αi, βi)

))s−m−1

dy

}
. (2.57)

For a special case, when s = m + 1, the conditional density function of Y =

Rs, s > m given r is f(y| r, α, β) = f(y)/F (rm). Hence, the distribution function of

f(y| r, α, β) is given by

F ∗(y| r,α, β) =

(
1 + rαm
1 + yα

)β
(1 + yα)β − 1

(1 + rαm)β − 1
. (2.58)

Therefore, ĥ(y| r,k), Ĥ(y| r,k), ŶS and ŶL are obtained from equations (2.53), (2.54),

(2.56) and (2.57), respectively by using equations (2.51) and (2.55).

Moreover, a symmetric 100γ% prediction interval for Y , can be obtained by

solving the following non-linear equations, for the lower bound L and upper bound U ,

1 + γ

2
= P (Y > L| r,k) = 1−H(L| r,k)⇒ H(L| r,k) =

1− γ
2

, (2.59)

1− γ
2

= P (Y > U | r,k) = 1−H(U | r,k)⇒ H(U | r,k) =
1 + γ

2
. (2.60)

These equations can be easily solved by using the Newton-Raphson method.
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2.3.4. Simulation Study

In this section, some numerical results are presented to compare the performance

of the different methods for different sample sizes and different priors. The

performances of the point estimators and predictors are compared by using the

estimated risk (ER) and mean square predictor error (MSPE), respectively. The

performances of the confidence, credible and prediction intervals are compared by

using average confidence lengths and cps. The ER of θ, when θ is estimated by θ̂, is

given by

ER(θ) =
1

N

N∑
i=1

(
θ̂i − θi

)2

, (2.61)

under the SE loss function. Moreover, the estimated risk of θ under the LINEX loss

function is given by

ER(θ) =
1

N

N∑
i=1

(
ev(θ̂i−θi) − v

(
θ̂i − θi

)
− 1
)
, (2.62)

where N is the number of replication. Similarly, the MSPEs can be computed with

respect to SE and LINEX loss functions. All of the computations are performed by

using Matlab R2010a. All the results are based on 5000 replications.

In Table 2.1, the ML and Bayes estimates under the SE and the LINEX (v =

−2,−1, 1 and 2) loss functions with their corresponding ERs are listed for β when

α is known (α = 2), β = 2.0092 and the prior parameters of β are chosen to be

(a1, b1) = (3, 2). Since the exact distribution of the MLE of β is known, the 95%

exact confidence intervals are easily constructed. Moreover, the 95% Bayesian credible

interval for β which is obtained by using the posterior distribution of β are listed. From

Table 2.1, the average ERs of β decrease as the sample size increases in all cases,

as expected. The Bayes estimates under the SE and the LINEX loss functions have

smaller ER than that of MLEs. The average lengths of the intervals decrease as the

sample size increases. The lengths of the Bayesian credible intervals are smaller than

that of exact confidence intervals. Also, the coverage probabilities are quite close to

nominal level 95%.
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In Tables 2.2 and 2.3, the ML and Bayes estimates under the SE and LINEX

loss functions with their corresponding ERs are listed for α and β when (α, β) =

(5.0381, 1.0564), (5.9303, 1.4606), respectively. In the Bayesian case, two different

bivariate priors are considered as follows: Prior 1: (a1, b1) = (0.2, 2), (a2, b2) = (5, 1)

and Prior 2: (a1, b1) = (1, 3), (a2, b2) = (6, 1).The Bayes estimates are computed

by using Lindley’s approximation and MCMC method under SE and LINEX (v =

−2,−1, 1 and 2) loss functions for different prior parameters. Moreover, the 95%

asymptotic and HPD credible intervals with their coverage probabilities are listed.

From Tables 2.2 and 2.3, the average ERs of α and β generally decrease as the sample

size increases. The ERs of Bayes estimates under the SE loss function are smaller

than that of MLEs. But under the LINEX loss function ERs of the Bayes and ML

estimates can not be compared. On the other hand, the ERs of the Bayes estimates

for α and β based on the Lindley’s approximation and MCMC methods are close to

each other under the SE and the LINEX loss functions when v > 0. The ERs of the

Bayes estimates under the LINEX loss function close each other as the sample size

increases when v < 0. The average lengths of the intervals decrease as the sample

size increases. Furthermore, the average lengths of the Bayesian credible intervals are

smaller than that of the asymptotic confidence intervals.

Table 2.1: Results for the true value of β = 2.0092, (a1, b1) = (3, 2) and α is known.

Bayes estimates
LINEX Exact MLE Bayesian

MLE SEL v = −2 v = −1 v = 1 v = 2 confidence interval credible interval
m = 5

2.8388 2.1144 3.0982 2.4603 1.8802 1.7063 (0.927,5.8147) (0.9668,3.7032)
5.4084 0.5554 2.0372 0.3545 0.2307 0.8004 0.9406 0.9438

m = 10
2.3723 2.0860 2.5902 2.2948 1.9255 1.7961 (1.1376,4.0530) (1.1404,3.3124)
1.0663 0.3572 0.9697 0.2046 0.1586 0.5731 0.9432 0.9464

m = 15
2.1987 2.0400 2.3663 2.1838 1.9216 1.8215 (1.2306,3.4431) (1.2282,3.0544)
0.5330 0.2654 0.7007 0.1497 0.1198 0.4372 0.9464 0.9496

m = 20
2.1454 2.0295 2.2761 2.1415 1.9338 1.8505 (1.3105,3.1828) (1.3003,2.9184)
0.3249 0.1890 0.4378 0.1007 0.0886 0.3318 0.9464 0.9528

Notes: The first row represents the average estimates and the second row represents corresponding ERs for each choice

of m. The last two columns, the first row represents a 95% confidence interval and the second row represents their cp’s.
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In the MCMC case, five MCMC chains are run with fairly different initial values

and generated 10000 iterations for each chain. To diminish the effect of the starting

distribution, the first half of each sequence are discarded and focus on the second half.

To provide relatively independent samples for improvement of prediction accuracy, the

Bayesian MCMC estimates are calculated by the means of every 5th sampled values

after discarding the first half of the chains (see [Gelman et al., 2003]). In our case, the

scale factor value of the MCMC estimators are found below 1.1 which is an acceptable

value for their convergency.

In Tables 2.4-2.7, the point predictors for Y = Rm+1 which are computed

(based on 5000 replications) by using non-Bayesian and Bayesian (with respect to

the SE and LINEX loss functions) methods and the 95% prediction intervals are

listed when (α, β) = (5, 1). In the Bayesian case, two different bivariate priors are

considered as follows: Prior 1: (a1, b1) = (0.2, 2), (a2, b2) = (5, 1) and Prior 3:

(a1, b1) = (0.005, 2.4/1.005), (a2, b2) = (2, 2.5). To observe the sensitivity of the

predictors with respect to different informative priors, these priors are chosen with

same means but different variances. Notice that the variances of the Prior 1 are smaller

than that of Prior 3. Moreover, to observe the effect of the inter-record times, the

point predictors and prediction intervals are also obtained based on only lower record

values (without taking inter-record times into consideration). The results based on

only lower record values are given in Tables 2.5 and 2.7. From Tables 2.4-2.7, the

average MSPEs of the point predictors decrease as the sample size increases in all

cases. Also, the average lengths of the prediction intervals decrease as the sample

size increases and their coverage probabilities are quite close to nominal level 95%.

Moreover, the MSPEs of the Bayesian point predictors which are obtained by using

lower record values and lower record values with their inter-record times are almost the

same. However, the average lengths of the prediction intervals based on lower record

values with their inter-record times are smaller than the one based on only lower record

values. Furthermore, Prior 1 can be considered as a good informative prior, because

its variance smaller than Prior 3. The MSPEs and the average lengths of the prediction

intervals using Prior 1 in almost all cases are smaller than those using Prior 3 based

on lower record values with their inter-record times. Similar results based on just

lower record values are observed only for sufficiently large m (m ≥ 12). Therefore,
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Table 2.4: Predictions based on lower records with inter-record times using Prior 1.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 Length/cp

m = 5
0.3738 0.304272 0.307671 0.306013 0.302443 0.300522 (0.157121,0.37166)
0.2755 0.006420 0.012191 0.003129 0.003290 0.013475 0.214545/0.9314

m = 7
0.2518 0.206737 0.208197 0.207479 0.205972 0.205181 (0.111397,0.250464)
0.1867 0.003001 0.005747 0.001468 0.001534 0.006270 0.139067/0.9276

m = 12
0.1635 0.135226 0.135801 0.135516 0.134929 0.134627 (0.075340,0.162595)
0.1238 0.001083 0.002114 0.000535 0.000548 0.002217 0.087255/0.9272

m = 15
0.1607 0.133240 0.133782 0.133513 0.132961 0.132677 (0.074895,0.159849)
0.1242 0.000890 0.001741 0.000440 0.000450 0.001818 0.084953/0.9394

Notes: First column: The first row represents the average of the rm th record values and second row
represents the average of the true values (rm+1) which we want to predict. Last column, the first row
represents a 95% prediction interval (PI) and second row represents their lengths and cp’s. For the
others, the first row represents the average predictors and second row represents corresponding
MSPEs for each choice of m.

from these results we can infer that using the record values with their corresponding

inter-record times is preferable to the results based on only record values. On the other

hand, we empirically see that the MLP of Y = Rm+1 is very big compared to the last

record values which violates ŶMLP < rm. Hence, the MLP of Y was not listed when

the true values of α > 3 and β < 25 (contains the case in Tables 2.4-2.7).

A real-life data set which the amount of rainfall (in inches) recorded at the

Los Angeles Civic Center in February from 1943 to 2006 (see the website of Los

Angeles Almanac: www.laalmanac.com/weather/we08aa.htm) are given in Table

2.8. To see if the underlying distribution follows the Burr Type XII, we compute

the Kolmogorov-Smirnov distances between the empirical distribution and the fitted

distribution functions based on the complete data set. These distances are 0.1112,

0.1572 and 0.1567 based on parameter estimations by using ML and Bayes (Lindley

approximation and MCMC method under SE loss function) estimates, respectively.

The associated p values for the Bayes cases are 0.1 < p < 0.2 and for the ML

case p value is greater than 0.2. This indicates that Burr Type XII model provides

an adequate fit for data. The first 7 lower records (among 8 lower record values)

with their corresponding inter-record times are used for the estimates of (α, β) and
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Table 2.5: Predictions based on only lower records using Prior 1.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 length/cp

m = 5
0.3738 0.304120 0.307625 0.305937 0.302191 0.300212 (0.150699,0.371640)
0.2755 0.006759 0.012722 0.003278 0.003482 0.014346 0.220941/0.9315

m = 7
0.2518 0.198408 0.200342 0.199436 0.197325 0.196321 (0.090187,0.250146)
0.1867 0.002964 0.005662 0.001448 0.001518 0.006216 0.159958/0.9480

m = 12
0.1635 0.119685 0.120807 0.120257 0.119101 0.118519 (0.042573,0.161937)
0.1238 0.000999 0.001960 0.000495 0.000504 0.002036 0.119365/0.9610

m = 15
0.1607 0.115616 0.116762 0.116192 0.115030 0.114429 (0.038611,0.159088)
0.1242 0.000896 0.001752 0.000443 0.000453 0.001831 0.120477/0.9648

Notes: First column: The first row represents the average of the rm th record values and second row
represents the average of the true values (rm+1) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

Table 2.6: Predictions based on lower records with inter-record times using Prior 3.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 length/cp

m = 5
0.3738 0.303292 0.306801 0.305090 0.301402 0.299415 (0.153746,0.371641)
0.2755 0.006454 0.012241 0.003143 0.003310 0.013569 0.217895/0.9340

m = 7
0.2518 0.206606 0.208076 0.207353 0.205835 0.205038 (0.110915,0.250461)
0.1867 0.003005 0.005753 0.001470 0.001536 0.006279 0.139546/0.9274

m = 12
0.1635 0.135279 0.135853 0.135569 0.134984 0.134683 (0.075452,0.162597)
0.1238 0.001085 0.002118 0.000536 0.000549 0.002222 0.087145/0.9272

m = 15
0.1607 0.133310 0.133850 0.133583 0.133033 0.132750 (0.075057,0.159852)
0.1242 0.000892 0.001745 0.000441 0.000451 0.001822 0.084794/0.9384

Notes: First column: The first row represents the average of the rm th record values and second row
represents the average of the true values (rm+1) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

prediction of R8. In the Bayesian case, we need to determine the hyperparameters.

The method of moments are used as in Section 4.2.4 to obtain hyperparameters a1, a2,
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Table 2.7: Predictions based on only lower records using Prior 3.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 length/cp

m = 5
0.3738 0.300983 0.304911 0.303292 0.298323 0.296371 (0.140628,0.371344)
0.2755 0.006793 0.12753 0.003289 0.003508 0.014474 0.230715/0.9348

m = 7
0.2518 0.194859 0.197305 0.196724 0.192646 0.191954 (0.082255,0.249968)
0.1867 0.002953 0.005623 0.001434 0.001526 0.006230 0.167713/0.9502

m = 12
0.1635 0.116909 0.118231 0.117754 0.116003 0.115493 (0.037944,0.161798)
0.1238 0.001039 0.002029 0.000510 0.000530 0.002133 0.123854/0.9616

m = 15
0.1607 0.112941 0.114185 0.113578 0.112291 0.111652 (0.034418,0.158947)
0.1242 0.000956 0.001865 0.000472 0.000484 0.001959 0.124529/0.9644

Notes: First column: The first row represents the average of the rm th record values and second row
represents the average of the true values (rm+1) which we want to predict. Last column, the first row
represents a 95% PI and second row represents their lengths and cp’s. For the others, the first row
represents the average predictors and second row represents corresponding MSPEs for each choice
of m.

b1 and b2. Therefore, the hyperparameters are obtained as a1 = 1.1685, a2 = 0.9543,

b1 = 0.7750 and b2 = 0.9985. The Bayes estimates of the parameters, Bayes

point predictors and Bayesian prediction interval of R8 are obtained by using MCMC

method. The findings based on these approaches are listed in Table 2.9. It can be

observed that the prediction of R8 are satisfactory under Bayesian approach.

Table 2.8: Record data from a set of rainfall data during February from 1943 to 2006.

i 1 2 3 4 5 6 7 8
Ri 3.07 1.52 0.86 0.63 0.33 0.15 0.11 0.08
Ki 3 1 5 1 8 6 1 -

2.3.5. Conclusions

In this section, firstly the non-Bayesian and Bayesian point estimates as well as

confidence intervals for the unknown parameters of Burr Type XII distribution are

considered based on the lower record values with their corresponding inter-record

times. The ML estimates of the unknown parameters are derived under the inverse
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Table 2.9: Results by using bivariate prior for α and β.

Method α β Point Predictor of R8

MLE 1.4089 0.5991 -
PMLE/MLP 1.3910 0.6743 0.3164
SEL 1.4524 0.6655 0.0634
LINEX(v = −2) 1.6127 0.7191 0.0643
LINEX(v = −1) 1.5257 0.6910 0.0638
LINEX(v = 1) 1.3877 0.6423 0.0629
LINEX(v = 2) 1.3293 0.6211 0.0624
HPD credible Int. (0.7186,2.1370) (0.2921,1.1150) -
Prediction Int. - - (0.0058,0.1080)

sampling scheme. The Lindley’s approximation and MCMC methods are used to get

the Bayes estimates under the SE and LINEX loss function for bivariate prior case.

Monte Carlo simulation reveals out that the ERs of the Bayes estimates are smaller

than that of MLEs under the SE loss function. However, the ERs for the LINEX

loss function depend on the asymmetry parameter v. The average length of the HPD

credible intervals are smaller than that of the asymptotic intervals.

Secondly, non-Bayesian and Bayesian point predictors as well as prediction

intervals for the future lower record values are considered. The point predictors

and prediction intervals of the future lower record values are computed based on

only the lower record values and the lower record values with their corresponding

inter-record times. Therefore, we can see the effect of considering the inter-record

times for the predictors. It is observed that using the inter-record times in the prediction

case decrease the average lengths of the prediction intervals with reasonable coverage

probabilities. On the other hand, the MSPEs of the point predictors are almost the

same for both cases. As a result, using the record values with their corresponding

inter-record times instead of just using the record values is suggested.

2.4. Estimation of The Reliability Based on Record Values

In the literature, many papers are available for an estimate of the reliability based

on a random sample or records sample. When theX and Y are independent and follow

the Burr Type III, X and XII, generalized exponential, Weibull, generalized logistic

and Kumaraswamy distributions, the estimation of R based on a random sample were
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studied by [Mokhlis, 2005], [Ahmad et al., 1997], [Awad and Gharraf, 1986], [Kundu

and Gupta, 2005], [Kundu and Gupta, 2006], [Asgharzadeh et al., 2013], [Nadar et

al., 2014], respectively. When the X and Y are independent and follow the one and

two parameters generalized exponential, Weibull, exponentiated gumbel, one and two

parameters exponential distributions, the classical and Bayesian estimates of R based

on records were considered by [Baklizi, 2008], [Asgharzadeh et al., 2014], [Baklizi,

2012], [Tarvirdizade, 2013], [Baklizi, 2014], respectively.

The ML, uniformly minimum variance unbiased (UMVU) and Bayes estimates

of the stress-strength reliability based on complete sample were obtained by [Awad

and Gharraf, 1986] when the second shape parameter is common. They used the

gamma priors for the first shape parameters and constant number for the common

shape parameter in the Bayesian case. Recently, the ML, UMVU and Bayes estimates

of the stress-strength reliability were discussed by [Panahi and Asadi, 2010] when the

second shape parameter is common and known. The multicomponent stress-strength

reliability was considered by [Web 1, 2015]. However, the statistical inference for the

stress-strength reliability of the Burr Type XII distribution based on record values has

not been considered up to now.

The main purpose of this section is to improve the inference procedures for the

stress-strength reliability based on upper record values while the measurements follow

the two-parameter Burr Type XII distribution when the first shape parameters are

common. When the first shape parameter α is unknown, the ML and Bayes estimates,

as well as asymptotic confidence and HPD credible intervals are derived. When α is

known, different estimates, namely ML, UMVU, Bayes and empirical Bayes estimates,

are obtained. The Bayes estimates of R under the SE and LINEX loss functions are

derived in closed forms for informative and non informative prior cases. It is also

obtained by using Lindley’s approximation and MCMC method. The exact and other

Bayes estimates are compared in terms of ER by the Monte Carlo simulations. Also,

the exact and asymptotic confidence intervals, as well as Bayesian, empirical Bayesian

and HPD credible intervals are constructed for R.
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2.4.1. Estimation of R When α Is Common and Unknown

The ML estimates, its existence and uniqueness, asymptotic confidence intervals,

as well as Bayes estimates and Bayesian credible interval for R are obtained when the

first shape parameter α is common for the distributions of X and Y .

2.4.1.1. ML Estimation of R

Let X ∼ Burr(α, β1) and Y ∼ Burr(α, β2) are independent random variables.

Then, the reliability R = P (X < Y ) is

R = P (X < Y ) =

∫ ∞
0

fY (y)P (X < Y | Y = y)dy

=
β1

β1 + β2

. (2.63)

The estimate of R are considered based on upper record data on both variables.

Let R1, . . . , Rn be a set of upper records from Burr(α, β1) and S1, . . . , Sm be a set of

upper records from Burr(α, β2) independently from the first sample. The likelihood

functions based on records are given by, see [Arnold et al., 1998],

L1(β1, α |r ) = f(rn;α, β1)
n−1∏
i=1

f(ri;α, β1)

1− F (ri;α, β1)
, 0 < r1 < . . . < rn, (2.64)

L2(β2, α |s) = g(sm;α, β2)
m−1∏
j=1

g(sj;α, β2)

1−G(sj;α, β2)
, 0 < s1 < . . . < sm, (2.65)

where r = (r1, . . . , rn), s = (s1, . . . , sm), f and F are the pdf and cdf of X follows

Burr(α, β1), respectively and g and G are the pdf and cdf of Y follows Burr(α, β2),

respectively. Then, the joint likelihood function of (β1, β2, α) given (r, s) is given by

L(β1, β2, α |r, s) = h1(r;α)h2(s;α)αn+mβn1 β
m
2 e
−β1T1(rn;α)e−β2T2(sm;α), (2.66)
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where

h1(r;α) =
n∏
i=1

rα−1
i

1 + rαi
, h2(s;α) =

m∏
j=1

sα−1
j

1 + sαj
, (2.67)

T1(rn;α) = ln(1 + rαn), T2(sm;α) = ln(1 + sαm). (2.68)

The joint log-likelihood function is

l(β1, β2, α |r, s) = lnh1(r;α) + lnh2(s;α) + (n+m) lnα

+ n ln β1 +m ln β2 − β1T1(rn;α)− β2T2(sm;α). (2.69)

The ML estimates of β1, β2 and α, say β̂1, β̂2 and α̂, are given by

β̂1 =
n

T1(rn; α̂)
, (2.70)

β̂2 =
m

T2(sm; α̂)
, (2.71)

and α̂ is the solution of the following non-linear equation

n+m

α
+

n∑
i=1

ln ri
1 + rαi

− nrαn ln rn/(1 + ran)

ln(1 + rαn)

+
m∑
j=1

ln sj
1 + sαj

− msαm ln sm/(1 + sαm)

ln(1 + sαm)
= 0. (2.72)

Therefore, α̂ can be obtained as a solution of the non-linear equation of the form

h(α) = α where

h(a) = −(n+m)

[
n∑
i=1

ln ri
1 + rαi

− nrαn ln rn/(1 + ran)

ln(1 + rαn)

+
m∑
j=1

ln sj
1 + sαj

− msαm ln sm/(1 + sαm)

ln(1 + sαm)

]−1

. (2.73)
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Since, α̂ is a fixed point solution of the non-linear equation (2.73), its value can be

obtained using an iterative scheme as: α(j+1) = h(α(j)), where α(j) is the jth iterate of

α̂. The iteration procedure should be stopped when
∣∣α(j+1) − α(j)

∣∣ is sufficiently small.

After α̂ is obtained, β̂1 and β̂2 can be obtained from (2.70) and (2.71), respectively.

Therefore, the MLE of R, say R̂, is given as

R̂ =
β̂1

β̂1 + β̂2

. (2.74)

Next, the existence and uniqueness of the ML estimates of the parameters β1, β2 and α

are established. We present the following lemma that will be used in proof of Theorem

2.2.

Lemma 2.2: Let

w(x) = [ln(1 + x)]2 + ξ2(x)

[
ln(1 + x)

x
− 1

]
, (2.75)

where ξ(x) = x ln(x)/(1 + x). Then w(x) ≥ 0 for x ≥ 0.

Proof 2.2: For a proof, one may refer to [Ghitany and Al-Awadhi, 2002]. �

Theorem 2.2: The ML estimates of the parameters β1, β2 and α are unique, with β̂1 =

n/T1(rn; α̂), β̂2 = m/T2(sm; α̂) where α̂ is the solution of the non-linear equation

G(α) ≡ n+m

α
+

n∑
i=1

ln ri
1 + rαi

− nrαn ln rn/(1 + ran)

ln(1 + rαn)

+
m∑
j=1

ln sj
1 + sαj

− msαm ln sm/(1 + sαm)

ln(1 + sαm)
= 0, (2.76)

if at least one of the ri, i = 1, ..., n (or sj, j = 1, ...,m) is less than unity.

Proof 2.2: We have, G(0) ≡ limα→0G(α),

G(0) = lim
α→0

n+m

α
+

n∑
i=1

ln ri
2

+
m∑
j=1

ln sj
2
− n ln rn

2 ln 2
− m ln sm

2 ln 2
=∞. (2.77)
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Let

G1(α; r) =
n

α
+

n∑
i=1

ln ri
1 + rαi

− nrαn ln rn/(1 + ran)

ln(1 + rαn)
, (2.78)

and

G2(α; s) =
m

α
+

m∑
j=1

ln sj
1 + sαj

− msαm ln sm/(1 + sam)

ln(1 + sαm)
. (2.79)

Then, G(α) = G1(α; r) + G2(α; s). Firstly, the limit of G1(α; r) as α → ∞ is

considered.

i) If rn is less than unity, that is ri < 1, i = 1, ..., n, then, G1(∞; r) ≡

limα→∞G1(α; r),

G1(∞; r) = lim
α→∞

(
n

α
+

n∑
i=1

ln ri
1 + rαi

− n ln rn/(1 + rαn)

ln(1 + rαn)/rαn

)
(2.80)

=
n∑
i=1

(ln ri − ln rn) < 0. (2.81)

ii) If only rn is greater than or equal to unity, that is rn ≥ 1 and ri < 1, i =

1, ..., n− 1, then

G1(∞; r) = lim
α→∞

(
n

α
+

n−1∑
i=1

ln ri
1 + rαi

+
ln rn

1 + rαn
− nrαn ln rn/(1 + rαn)

ln(1 + rαn)

)
(2.82)

=
n−1∑
i=1

ln ri < 0. (2.83)

iii) If rn and some ri record values are greater than unity and some ri record values

are less than unity, that is rn > 1 and ri > 1, i = p, ..., t, 1 < p ≤ t < n, then

G1(∞; r) = lim
α→∞

n

α
+

n∑
i=1(ri<1)

ln ri
1 + rαi

+
n∑

i=1(ri>1)

ln ri
1 + rαi

+
n∑

i=1(ri>1)

ln ri
1 + rαi

− nrαn ln rn/(1 + rαn)

ln(1 + rαn)

 =
n∑

i=1(ri<1)

ln ri < 0. (2.84)
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When the conditions given in i)-iii) holds for sj, j = 1, ...,m,G2(α; s) < 0 as α→∞.

So that, the limit of G(α) = G1(α; r) + G2(α; s) < 0 as α→∞ when ri, i = 1, ..., n

and sj, j = 1, ...,m satisfy any of the conditions given in i)-iii).

Next, we need to show the limit of G(α) < 0 as α→∞ for sj > 1, j = 1, ...,m

and when the conditions given i)-iii) holds for ri, i = 1, ..., n (or ri > 1, i = 1, ..., n

and when the conditions given i)-iii) holds for sj, j = 1, ...,m). In particular, when

sj > 1, j = 1, ...,m and the conditions given i) holds for ri, i = 1, ..., n, we can take

α large enough, such that G2(α; s) → 0+ and G1(α; r) + G2(α; s) < 0 as α → ∞.

Other cases can be obtained similarly.

Finally, we need to show that there is no solution if all records are greater than

unity, that is ri > 1, i = 1, ..., n and sj > 1, j = 1, ...,m. If ri > 1, i = 1, ..., n, then

G1(α; r) <
n

α
+ n ln rn

[
1

1 + rα1
− rαn

(1 + rαn)2

]
→ 0+ as α→∞. (2.85)

Similarly, G2(α; s)→ 0+ as α→∞. Therefore, G(α)→ 0+ as α→∞.

Except all records are greater than unity, we obtain that limα→0G(α) =∞ and

limα→∞G(α) < 0. By the intermediate value theorem G(α) has at least one root in

(0,∞). If it can be shown that G(α) is decreasing, then the proof will be completed. It

is easily obtained that

∂G1(α; r)

∂α
= − 1

α2

[
n+

n∑
i=1

ξ2(rαi )

rαi
+

nξ2(rαn)

ln(1 + rαn)

(
1

rαn
− 1

ln(1 + rαn)

)]

= − 1

α2

[
n∑
i=1

ξ2(rαi )

rαi
+

n

(ln(1 + rαn))2w(rαn)

]
. (2.86)

Similarly,

∂G2(α; s)

∂α
= − 1

α2

[
m∑
j=1

ξ2(sαj )

sαj
+

n

(ln(1 + sαm))2w(sαm)

]
. (2.87)

It is clear that ∂G1(α; r)/∂α < 0 and ∂G2(α; s)/∂α < 0 by using Lemma 2.2.

Therefore, ∂G(α)/∂α < 0.
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Finally, we will show that the ML estimates of (β1, β2, α) maximizes the

log-likelihood function l(β1, β2, α |r, s). Let H(β1, β2, α) be the Hessian matrix of

l(β1, β2, α |r, s) at (β1, β2, α). It is clear that if det(H) 6= 0 for the critical point

(β1, β2, α) and det(H1) < 0, det(H2) > 0 and det(H3) < 0 at (β1, β2, α) then it is a

local maximum of l(β1, β2, α |r, s), where

H1 =
∂2l

∂β2
1

, H2 =

(
∂2l
∂β2

1

∂2l
∂β1∂β2

∂2l
∂β2∂β1

∂2l
∂β2

2

)
, H3 = H and l = l(β1, β2, α |r, s). (2.88)

It can be easily seen that

det(H1(β̂1, β̂2, α̂)) = −
(
ln(1 + rα̂n)

)2

n
< 0, (2.89)

det(H2(β̂1, β̂2, α̂)) =

(
ln(1 + rα̂n)

)2

n

(
ln(1 + sα̂m)

)2

m
> 0, (2.90)

and

det(H2(β̂1, β̂2, α̂)) =
∂G(α̂)

∂α

(
ln(1 + rα̂n)

)2

n

(
ln(1 + sα̂m)

)2

m
< 0. (2.91)

Hence, (β̂1, β̂2, α̂) is the local maximum of l(β1, β2, α |r, s). Since there is no singular

point of l(β1, β2, α |r, s) and it has a single critical point then, it is enough to show that

the absolute maximum of the function is indeed the local maximum. Assume that there

exist a α̂0 in the domain in which l∗(α̂0) > l∗(α̂), where l∗(α̂) = l(β̂1, β̂2, α̂ |r, s).

Since α̂ is the local maximum there should be some point α1 in the neighborhood of

α̂ such that l∗(α̂) > l∗(α1). Let k(α) = l∗(α) − l∗(α̂) then k(α̂0) > 0, k(α1) < 0

and k(α̂) = 0. This implies that α1 is a local minimum of the l∗(α), but α̂ is the only

critical point so it is a contradiction. Therefore, (β̂1, β̂2, α̂) is the absolute maximum

of l(β1, β2, α |r, s). �

Remark 2.1: In case all records are greater than one, we can still get a unique solution

of the parameters when we divide the record values, say by rn ( or by sm or divide ri

by rn and divide sj by sm ) as long as the transformed observations follow from Burr

Type XII.
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2.4.1.2. Asymptotic Distribution and Confidence Intervals For R

The Fisher information matrix I ≡ I(β1, β2, α) is given by

I = −

 E( ∂
2l

∂β2
1
) E( ∂2l

∂β1∂β2
) E( ∂2l

∂β1∂α
)

E( ∂2l
∂β2∂β1

) E( ∂
2l

∂β2
2
) E( ∂2l

∂β2∂α
)

E( ∂2l
∂α∂β1

) E( ∂2l
∂α∂β2

) E( ∂
2l

∂α2 )

 =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (2.92)

where I11 = n/β2
1 , I22 = m/β2

2 ,

I13 = E

(
Rn lnRn

1 +Rα
n

)
=
βn1ψ1(n, β1)

αΓ(n)
, (2.93)

I23 = E

(
Sm lnSm
1 + Sαm

)
=
βm2 ψ1(m,β2)

αΓ(m)
, (2.94)

I33 =
n+m

α2
+

n∑
i=1

βi1ψ2(i, β1)

α2Γ(i)
+

m∑
j=1

βj2ψ2(j, β2)

α2Γ(j)

+
βn+1

1 ψ2(n, β1)

α2Γ(n)
+
βm+1

2 ψ2(m,β2)

α2Γ(m)
, (2.95)

ψ1(a, b) =

∫ ∞
0

x lnx(ln(1 + x))a−1

(1 + x)b+2
dx, (2.96)

ψ2(a, b) =

∫ ∞
0

x (lnx)2 (ln(1 + x))a−1

(1 + x)b+3
dx. (2.97)

By the asymptotic properties of the MLE, R̂ is asymptotically normal with mean R

and asymptotic variance

σ2
R =

3∑
j=1

3∑
i=1

∂R

∂βi

∂R

∂βj
I−1
ij , (2.98)

where β3 ≡ α and I−1
ij is the (i, j)th element of the inverse of the I(β1, β2, α), see

[Rao, 1965]. Then,

σ2
R =

(
∂R

∂β1

)2

I−1
11 + 2

∂R

∂β1

∂R

∂β2

I−1
12 +

(
∂R

∂β2

)2

I−1
22 , (2.99)
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where ∂R/∂β1 = β2/(β1 + β2)2 and ∂R/∂β2 = −β1/(β1 + β2)2. Therefore, the

asymptotic 100(1− γ)% confidence interval of R is

(
R̂− zγ/2σ̂R, R̂ + zγ/2σ̂R

)
, (2.100)

where zγ is the upper γth quantile of the standard normal distribution and σ̂R is the

value of σR at the MLE of the parameters.

If the likelihood equations have a unique solution θ̂n, then θ̂n is consistent,

asymptotically normal and efficient, see [Lehmann and Casella, 1998]. When

the likelihood equations have a unique solution, the observed information matrix

Jm(β̂1, β̂2, α̂)/m is a consistent estimator for Im(β1, β2, α)/m (see Appendix C in

[Lawless, 2003]). The observed information matrix J(β1, β2, α) is given by

J(β1, β2, α) = −


∂2l
∂β2

1

∂2l
∂β1∂β2

∂2l
∂β1∂α

∂2l
∂β2∂β1

∂2l
∂β2

2

∂2l
∂β2∂α

∂2l
∂α∂β1

∂2l
∂α∂β2

∂2l
∂α2

 =

J11 J12 J13

J21 J22 J23

J31 J32 J33

 , (2.101)

where

J11 =
n

β2
1

, J12 = J21 =
rαn ln rn
1 + ran

, J22 =
m

β2
2

, J23 = J32 =
sαm ln sm
1 + sαm

, (2.102)

J33 =
n+m

α2
+

n∑
i=1

rαi

(
ln ri

1 + rαi

)2

+
m∑
j=1

sαj

(
ln sj

1 + sαj

)2

+ β1r
α
n

(
ln rn

1 + ran

)2

+ β2s
α
m

(
ln sm

1 + sαm

)2

. (2.103)

Therefore, an asymptotic 100(1 − γ)% confidence interval of R can be obtained

following from equation (2.100) by replacing I with J in equation (2.99).

2.4.1.3. Bayes Estimation of R

We assume that all parameters β1, β2 and α are unknown and have independent

gamma prior distributions with parameters (ai, bi), i = 1, 2, 3, respectively. The

density function of a gamma random variable X with parameters (a, b) is
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f(x) =
ba

Γ(a)
xa−1e−xb, x > 0, a, b > 0. (2.104)

Then, the joint posterior density function of β1, β2 and α is

π (β1, β2, α |r, s) = I(r, s)h1(r;α)h2(s;α)αn+m+a3−1βn+a1−1
1 βm+a2−1

2

exp {−αb3 − β1 (b1 + T1(rn;α))− β2 (b2 + T2(sm;α))} , (2.105)

where

[I(r, s)]−1 =

∫ ∞
0

Γ(n+a1)Γ(m+a2)h1(r;α)h2(s;α)αn+m+a3−1e−αb3

(b1+T1(rn;α))n+a1 (b2+T2(sm;α))m+a2
dα. (2.106)

Then, the Bayes estimate of a given measurable function of β1, β2 and α, say

u(β1, β2, α) under the SE loss function is

ûB =

∫ ∞
0

∫ ∞
0

∫ ∞
0

u(β1, β2, α)π(β1, β2, α |r, s)dβ1dβ2dα. (2.107)

It is not possible to compute equation (2.107) analytically. Two approaches can be

applied to approximate equation (2.107), namely Lindley’s approximation and MCMC

method.

• Lindley’s approximation

For the three parameter case (β1, β2, α), we have L11 = −n/β2
1 , L22 = −m/β2

2 ,

L13 = L31 = −rαn ln rn/(1 + ran), L23 = L32 = −sαm ln sm/(1 + sαm)

L33 = −n+m

α2
−

n∑
i=1

rαi

(
ln ri

1 + rαi

)2

−
m∑
j=1

sαj

(
ln sj

1 + sαj

)2

− β1r
α
n

(
ln rn

1 + ran

)2

− β2s
α
m

(
ln sm

1 + sαm

)2

, (2.108)

ρ1 = ((a1 − 1)/β1)− b1, ρ2 = ((a2 − 1)/β2)− b2, ρ3 = ((a3 − 1)/α)− b3, σij, i, j =

1, 2, 3 are obtained by using Lij, i, j = 1, 2, 3 and L111 = 2n/β3
1 , L222 = 2m/β3

2 ,
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L133 = L331 = −rαn
(

ln rn
1 + ran

)2

, L233 = L322 = −sαm
(

ln sm
1 + sαm

)2

, (2.109)

L333 =
2(n+m)

α3
−

m∑
i=1

rαi (1− rαi )(ln ri)
3

(1 + rαi )3
−

m∑
j=1

sαj (1− sαj )(ln sj)
3

(1 + sαj )3

− β1r
α
n(1− rαn)(ln rn)2

(1 + rαn)2
− β2s

α
m(1− sαm)(ln sm)2

(1 + sαm)2
. (2.110)

Moreover, A = σ11L111 + σ33L331, B = σ22L222 + σ33L332 and C = 2σ13L133 +

2σ23L233 + σ33L333. To obtain the Bayes estimate of R under the SE loss function,

we take u(β1, β2, α) = R = β1/(β1 + β2). Then, u3 = u13 = u23 = u33 = 0,

u1 = β2/(β1 + β2)2, u2 = −β1/(β1 + β2)2, u12 = u21 = (β1 − β2)/(β1 + β2)3, u11 =

−2β2/(β1 + β2)3, u22 = 2β1/(β1 + β2)3 and c4 = u12σ12, c5 = (u11σ11 + u22σ22)/2.

Hence, the Bayes estimate of R under the SE loss function is

R̂BS,Lindley = R + [u1c1 + u2c2 + c4 + c5] +
1

2
{A [u1σ11 + u2σ12]

B [u1σ21 + u2σ22] + C [u1σ31 + u2σ32]} . (2.111)

Notice that all parameters are evaluated at (β̂1, β̂2, α̂).

For the Bayes estimate ofR under the LINEX loss function, u(β1, β2, α) = e−vR

are taken. Then, u3 = u13 = u23 = u33 = 0, u1 = −vβ2e
−vR/(β1 + β2)2, u2 =

vβ1e
−vR/(β1 + β2)2

u12 = −v
2e−vRβ1β2

(β1 + β2)4
− ve−vR(β1 − β2)

(β1 + β2)3
, (2.112)

u11 =
ve−vR(vβ2

2 + 2β1β2 + 2β2
2)

(β1 + β2)4
, u22 =

ve−vR(vβ2
1 − 2β1β2 − 2β2

1)

(β1 + β2)4
, (2.113)

and c4 = u12σ12, c5 = 1
2
(u11σ11 + u22σ22). Then, the Bayes estimate of R under the

LINEX loss function is R̂BL,Lindley = −
(
lnE(e−vR)

)
/v where
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E(e−vR) = e−vR + [u1c1 + u2c2 + c4 + c5] +
1

2
{A [u1σ11 + u2σ12]

B [u1σ21 + u2σ22] + C [u1σ31 + u2σ32]} . (2.114)

Notice that all parameters are evaluated at (β̂1, β̂2, α̂).

• MCMC method

In the previous section, the Bayes estimate of R are obtained by using the

Lindley’s approximation under the SE and the LINEX loss functions. Since the exact

probability distribution of R are not known, it is difficult to evaluate Bayesian credible

interval of R. For this reason, the MCMC method are used to compute the Bayes

estimate R under the SE and the LINEX loss functions as well as the HPD credible

interval.

The MCMC method are considered to generate samples from the posterior

distributions and then compute the Bayes estimate of R under the SE and the LINEX

loss functions. The joint posterior density of α and β is given by equation (2.105). It

is easy to see that the posterior density functions of β1, β2 and α are

β1 |α, r, s ∼ Gamma(n+ a1, b1 + T1(rn;α)), (2.115)

β2 |α, r, s ∼ Gamma(m+ a2, b2 + T2(sm;α)), (2.116)

and

π(α |β1, β2, r, s) ∝ αn+m+a3−1 exp {−αb3 − β1T1(rn;α)− β2T2(sm;α)}

exp

{
−

n∑
i=1

ln(1 + rαi ) + α

(
n∑
i=1

ln ri +m
j=1 ln sj

)
−

m∑
j=1

ln(1 + sαj )

}
. (2.117)

Therefore, samples of β1 and β2 can be generated by using the gamma distribution.

However, the posterior distribution of α cannot be reduced analytically to well known

distribution and therefore it is not possible to sample directly by standard methods.
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If the posterior density of α is unimodal and roughly symmetric then it is often

convenient to approximate it by a normal distribution (see [Gelman et al., 2003]).

Since the posterior density of α is log-concave density (so unimodal) and it is roughly

symmetric (by experimentation), we use the Metropolis-Hasting algorithm with the

normal proposal distribution to generate a random sample from the posterior density

of α. The hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be

used to solve our problem, is suggested by [Tierney, 1994]. This algorithm combines

the Metropolis-Hastings with Gibbs sampling scheme under the normal proposal

distribution.

• Step 1: Start with initial guess α(0).

• Step 2: Set i = 1.

• Step 3: Generate β(i)
1 from Gamma(n+ a1, T1(rn;α(i−1)) + b1).

• Step 4: Generate β(i)
2 from Gamma(m+ a2, T2(sm;α(i−1)) + b2).

• Step 5: Generate α(i) from π(α |β1, β2, r, s) using the Metropolis-Hastings

algorithm with the proposal distribution q(α) ≡ N(α(i−1), 1) :

-Step 5.1: Let v = α(i−1).

-Step 5.2: Generate w from the proposal distribution q.

-Step 5.3: Let p(v, w) = min

1,
π(w

∣∣∣β(i)
1 , β

(i)
2 , r, s) q(v)

π(v
∣∣∣β(i)

1 , β
(i)
2 , r, s) q(w)

.

-Step 5.4: Generate u from Uniform(0, 1). If u ≤ p(v, w) then accept the

proposal and set α(i) = w; otherwise, set α(i) = v.

• Step 6: Compute the R(i) = β
(i)
1 /(β

(i)
1 + β

(i)
2 ).

• Step 7. Set i = i+ 1.

• Step 8. Repeat Steps 2-7, N times, and obtain the posterior sample R(i), i =

1, ..., N .

This sample are used to compute the Bayes estimate and to construct the HPD

credible interval for R. The Bayes estimate of R under the SE and the LINEX loss

function are given as

R̂BS,MCMC =
1

N −M

N−M∑
i=M+1

R(i), (2.118)
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R̂BL,MCMC = −1

v
lnE(e−vR) = −1

v
ln

(
1

N −M

N−M∑
i=M+1

e−vR
(i)

)
, (2.119)

where M is the burn-in period.

The HPD 100(1 − γ)% credible interval of R is obtained by the method of

[Chen and Shao, 1999]. From MCMC, the sequence R(1), . . . , R(N), are obtained,

and ordered as R(1) < . . . < R(N). The credible intervals are constructed as(
R(j), R(j+[N(1−γ)])

)
for j = 1, ..., N− [N(1−γ)] where [x] denotes the largest integer

less than or equal to x. Then, the HPD credible interval of R is that interval which has

the shortest length.

2.4.2. Estimation of R When α Is Common and Known

The estimation of R are considered when α is known, say α = α0. Let

R1, . . . , Rn be a set of upper records from Burr(α0, β1) and S1, . . . , Sm be an

independent set of upper records from Burr(α0, β2).

2.4.2.1. ML Estimation and Confidence Intervals of R

Based on the above samples, the MLE of R, say R̂MLE , is

R̂MLE =
β̂1

β̂1 + β̂2

=
nT2(sm;α0)

nT2(sm;α0) +mT1(rn;α0)
, (2.120)

where T1(rn;α0) = ln(1 + rα0
n ), T2(sm;α0) = ln(1 + sα0

m ).

It is easy to see that 2β1 ln(1 + rα0
n ) ∼ χ2(2n) and 2β2 ln(1 + sα0

m ) ∼ χ2(2m).

Therefore,

F ∗ =

(
R

1−R

)(
1− R̂MLE

R̂MLE

)
(2.121)

is an F distributed random variable with (2n, 2m) degrees of freedom. The pdf of

R̂MLE is as follows;
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fR̂MLE
(r) =

1

r2B(m,n)

(
nβ1

mβ2

)n (1−r
r

)n−1(
1 + nβ1(1−r)

mβ2r

)n+m , (2.122)

where 0 < r < 1. The 100(1 − γ)% exact confidence interval for R can be obtained

as  1

1 + F2m,2n; γ
2

(
1−R̂MLE

R̂MLE

) , 1

1 + F2m,2n;1− γ
2

(
1−R̂MLE

R̂MLE

)
 , (2.123)

where F2m,2n; γ
2

and F2m,2n;1− γ
2

are the lower and upper γ
2
th percentile points of a F

distribution with (2m, 2n) degrees of freedom.

On the other hand, the approximate confidence interval of R can be easily

obtained by using the Fisher information matrix. The Fisher information matrix of

(β1, β2) is

I = −

 E
(
∂2l
∂β2

1

)
E
(

∂2l
∂β1∂β2

)
E
(

∂2l
∂β1∂β2

)
E
(
∂2l
∂β2

2

)  =

(
n/β2

1 0
0 m/β2

2

)
. (2.124)

By the asymptotic properties of the MLE, R̂MLE is asymptotically normal with mean

R and asymptotic variance

σ2
R =

2∑
j=1

2∑
i=1

∂R

∂βi

∂R

∂βj
I−1
ij (2.125)

where I−1
ij is the (i, j) th element of the inverse of the I , (see [Rao, 1965]). Then, the

asymptotic 100(1− γ)% confidence interval for R is

(
R̂MLE − zγ/2σ̂R, R̂MLE + zγ/2σ̂R

)
, (2.126)

where zγ is the upper γth percentile points of a standard normal distribution, σ2
R =

R2(1−R)2 (1/n+ 1/m) and σ̂R is the value of σR at the MLE of the parameters.
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2.4.2.2. UMVUE of R

When the first shape parameter α is known, (T1(rn;α0), T2(sm;α0)) is a

sufficient statistics for (β1, β2). It can be shown that it is also a complete sufficient

statistic by using Theorem 10-9 in [Arnold, 1990]. Let us define

φ(R1, S1) =

{
1 if R1 < S1

0 if R1 ≥ S1

. (2.127)

Then E (φ(R1, S1)) = R so it is an unbiased estimator of R. Let P1 = ln(1 + Rα0
1 )

and P2 = ln(1 + Sα0
1 ). The UMVUE of R, say R̂U , can be obtained by using the

Rao-Blackwell and the Lehmann-Scheffe’s Theorems, (see [Arnold, 1990]),

R̂U = E (φ(P1, P2) | (T1, T2))

=

∫
P2

∫
P1

φ(P1, P2)fP1|T1(p1 |T1 )fP2|T2(p2 |T2 )dp1dp2, (2.128)

where (T1, T2) = (T1(rn;α0), T2(sm;α0)), f(p1, p2 |T1, T2 ) is the conditional pdf of

(P1, P2) given (T1, T2). Using the joint pdf of (R1, Rn) and (S1, Sm) and after making

a simple transformation, we obtain the fP1|T1(p1 |T1 ) and fP2|T2(p2 |T2 ), and are given

by

fP1|T1(p1 | T1) = (n− 1)
(t1 − p1)n−2

tn−1
1

, 0 < p1 < t1, (2.129)

fP2|T2(p2 | T2) = (m− 1)
(t2 − p2)m−2

tm−1
2

, 0 < p2 < t2. (2.130)

Therefore,

R̂U =

∫ ∫
P1<P2

fP1|T1(p1 | T1)fP2|T2(p2 | T2)dp1dp2
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=


∫ t1

0

∫ t2
p1

(n− 1)(m− 1)(t1 − p1)n−2(t2 − p2)m−2

tn−1
1 tm−1

2

dp2dp1 if t2 ≥ t1

∫ t2
0

∫ p2
0

(n− 1)(m− 1)(t1 − p1)n−2(t2 − p2)m−2

tn−1
1 tm−1

2

dp1dp2 if t2 < t1

(2.131)

=

{
2F1(1, 1−m;n; t1/t2) if t2 ≥ t1

1−2 F1(1, 1− n;m; t2/t1) if t2 < t1
,

where 2F1(., .; .; .) is Gauss hypergeometric function, (see formula 3.196(1) in

[Gradshteyn and Ryzhik, 1994]).

2.4.2.3. Bayes Estimation of R

Assume that the parameters β1 and β2 are random variables and have independent

gamma prior distributions with parameters (ai, bi), i = 1, 2, respectively. Then, the

joint posterior density function of β1 and β2 is

π (β1, β2 |α0, r, s) =
λδ11 λ

δ2
2

Γ(δ1)Γ(δ2)
βδ1−1

1 βδ2−1
2 e−β1λ1e−β2λ2 , (2.132)

where λ1 = b1 + T1(rn;α0), λ2 = b2 + T2(sm;α0), δ1 = n + a1, δ2 = m + a2. The

posterior pdf of R can be obtained by using the joint posterior density function and is

given by

fR(r) =
λδ11 λ

δ2
2

B(δ1, δ2)

rδ1−1(1− r)δ2−1

(rλ1 + (1− r)λ2)δ1+δ2
, 0 < r < 1. (2.133)

After making suitable transformations and simplifications by using formula 3.197(3)

of [Gradshteyn and Ryzhik, 1994], the Bayes estimate of R, say R̂BS, under the SE

loss function is

R̂BS =


c
(
λ1
λ2

)δ1
2F1(c∗, δ1 + 1; c∗ + 1; 1− λ1

λ2
) if λ1 < λ2

c
(
λ2
λ1

)δ2
2F1(c∗, δ2; c∗ + 1; 1− λ2

λ1
) if λ2 ≤ λ1

, (2.134)

where c = δ1/c
∗ and c∗ = δ1 + δ2.
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The Bayes estimate of R under the LINEX loss function, say R̂BL, is R̂BL =

−
{

lnER(e−vR)
}
/v, where ER(.) denotes posterior expectation with respect to the

posterior density of R. It can be easily obtained that

E(e−vR) =


(
λ1
λ2

)δ1
Φ1(δ1, c

∗, c∗, 1− λ1
λ2
,−v) if λ1 < λ2(

λ2
λ1

)δ2
e−vΦ1(δ2, c

∗, c∗, 1− λ2
λ1
, v) if λ2 ≤ λ1

, (2.135)

where Φ1(., ., ., ., .) is confluent hypergeometric series of two variables, (see formulas

3.385 and 9.261(1) in [Gradshteyn and Ryzhik, 1994]). Therefore,

R̂BL =


−1

v

(
c1 + ln

[
Φ1(δ1, c

∗, c∗, 1− λ1
λ2
,−v)

])
if λ1 < λ2

−1

v

(
c2 + ln

[
Φ1(δ2, c

∗, c∗, 1− λ2
λ1
, v)
])

if λ2 ≤ λ1

, (2.136)

where c1 = δ1 ln(λ1
λ2

) and c2 = δ2 ln(λ2
λ1

)− v.

If we use the Jeffrey’s non informative prior, is given by
√

det I , then the joint

prior density function is π(β1, β2) ∝ 1/β1β2. Therefore, the joint posterior density

function of β1 and β2 is

π(β1, β2 |α0, r, s) =
T n1 T2

m

Γ(n)Γ(m)
βn−1

1 βm−1
2 e−β1T1e−β2T2 , (2.137)

and the posterior pdf of R is given by

fR(r) =
T n1 T2

m

B(n,m)

rn−1(1− r)m−1

(rT1 + (1− r)T2)n+m
, 0 < r < 1, (2.138)

where T1 = T1(rn;α0) and T2 = T2(sm;α0). The Bayes estimate of R under the SE

and the LINEX loss function, say R̂∗BS and R̂∗BL respectively, are

R̂∗BS =


c3

(
T1
T2

)n
2F1(c∗3, n+ 1; c∗3 + 1; 1− T1

T2
) if T1 < T2

c3

(
T2
T1

)m
2F1(c∗3,m; c∗3 + 1; 1− T2

T1
) if T2 ≤ T1

, (2.139)
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and

R̂∗BL =


−1

v

(
c4 + ln

[
Φ1(n, c∗3, c

∗
3, 1−

T1

T2

,−v)

])
if T1 < T2

−1

v

(
c5 − v + ln

[
Φ1(m, c∗3, c

∗
3, 1−

T2

T1

, v)

])
if T2 ≤ T1

, (2.140)

where c3 = n/c∗3, c
∗
3 = n+m, c4 = n ln(T1/T2) and c5 = m ln(T2/T1).

The Bayes estimates are not always derived in the closed forms. However, for

our case the Bayes estimates are obtained in the closed form. These estimates can be

obtained by using alternative methods such as Lindley’s approximation and MCMC

method. The purpose of applying all these two methods is to see how good the

approximate methods compared with the exact one. If these result are close, then

it will be encouraging to use the approximate methods when the exact form can not

be obtained as in the case of α unknown. These estimators will be compared in the

simulation study section. Next, the Bayes estimates of R are given by using Lindley’s

approximation and MCMC method.

• Lindley’s approximation

The approximate Bayes estimate of R under the SE and the LINEX loss

functions for the informative prior case, say R̂BS,Lindley and R̂BL,Lindley respectively,

are

R̂BS,Lindley = R̃

(
1 +

(1− R̃)2

n+ a1 − 1
− R̃(1− R̃)

m+ a2 − 1

)
, (2.141)

and

R̂BL,Lindley = R̃− 1

v
ln

(
1 +

R̃1(1− R̃)(vR̃− 2)

2(n+ a1 − 1)
+
R̃1R̃(v − vR̃ + 2)

2(m+ a2 − 1)

)
, (2.142)

where R̃ = β̃1/(β̃1 + β̃2), R̃1 = vR̃(1− R̃), β̃1 = (n+ a1− 1)/(b1 + T1(rn;α0)) and

β̃2 = (m+ a2 − 1)/(b2 + T2(sm;α0)).

If we use the Jeffrey’s non informative prior, the approximate Bayes estimate

of R under the SE and the LINEX loss functions, say R̂∗BS,Lindley and R̂∗BL,Lindley

respectively, are
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R̂∗BS,Lindley = R̃

(
1 +

(1− R̃)2

n− 1
− R̃(1− R̃)

m− 1

)
, (2.143)

and

R̂∗BL,Lindley = R̃− 1

v
ln

(
1 +

R̃1(1− R̃)(vR̃− 2)

2(n− 1)
+
R̃1R̃(v − vR̃ + 2)

2(m− 1)

)
, (2.144)

where R̃ = b̃1/(̃b1 + b̃2), R̃1 = vR̃(1 − R̃), b̃1 = (n − 1)/T1(rn;α0) and b̃2 =

(m− 1)/T2(sm;α0).

• MCMC method

It is clear from equation (2.132), the marginal posterior densities of β1 and

β2 are gamma distribution with the parameters (δ1, λ1) and (δ2, λ2), respectively. A

samples are generate by using Gibss sampling from these distributions. The following

algorithm are used.

• Step 1: Set i = 1.

• Step 2: Generate β(i)
1 from Gamma(δ1, λ1).

• Step 3: Generate β(i)
2 from Gamma(δ2, λ2).

• Step 4: Compute the R(i) = β
(i)
1 /(β

(i)
1 + β

(i)
2 ).

• Step 5: Set i = i+ 1.

• Step 6: Repeat Steps 2-5, N times, and obtain the posterior sample R(i), i =

1, ..., N .

This sample is used to compute the Bayes estimate and to construct the HPD

credible interval for R. The Bayes estimate of R under the SE and the LINEX loss

functions are given as

R̂BS,MCMC =
1

N

N∑
i=1

R(i), (2.145)

R̂BL,MCMC = −1

v
lnE(e−vR) = −1

v
ln

(
1

N

N∑
i=1

e−vR
(i)

)
. (2.146)

The HPD 100(1− γ)% credible interval of R can be obtained by the method of [Chen

and Shao, 1999].

59



2.4.2.4. Empirical Bayes Estimation of R

The Bayes estimates of R are obtained by using three different ways. It is clear

that these estimates depend on the prior parameters. However, the Bayes estimates can

be also obtained independently of the prior parameters.

These prior parameters could be estimated by means of an empirical Bayes

procedure, (see [Lindley, 1969], [Awad and Gharraf, 1986]). Let R1, . . . , Rn and

S1, . . . , Sm be two independent random samples fromBurr(α0, β1) andBurr(α0, β2),

respectively. For fixed r, the functionL1(β1 |α0, r ) of β1 can be considered as a gamma

density with parameters (n + 1, T1(rn;α0)). Therefore, it is proposed to estimate the

prior parameters α1 and β1 from the samples as n + 1 and T1(rn;α0), respectively.

Similarly, α2 and β2 could be estimated from the samples as m + 1 and T2(sm;α0),

respectively. Hence, the empirical Bayes estimate of R with respect to SE and LINEX

loss functions, say R̂EBS and R̂EBL, respectively, could be given as

R̂EBS =

 c6c7 2F1(c13, 2n+ 2; c13 + 1; c9) if T1 < T2

c6c8 2F1(c13, 2m+ 1; c13 + 1; c10) if T2 ≤ T1

, (2.147)

and

R̂EBL =


− 1
v

(
(2n+ 1) ln(T1

T2
) + ln c11

)
if T1 < T2

− 1
v

(
(2m+ 1) ln(T2

T1
)− v + ln c12

)
if T2 ≤ T1

. (2.148)

where c6 = (2n + 1)/c13, c7 = (T1/T2)2n+1, c8 = (T2/T1)2m+1, c9 = 1 − (T1/T2),

c10 = 1 − (T2/T1), c11 = Φ1(2n + 1, c13, c13, c9,−v) and c12 = Φ1(2m +

1, c13, c13, c10, v), c13 = 2n+ 2m+ 2.

2.4.2.5. Bayesian Credible Intervals For R

It is known that β1 |α0, r ∼ Gamma(δ1, λ1) and β2 |α0, s ∼ Gamma(δ2, λ2).

Then, 2λ1β1 |α0, r ∼ χ2(2(n+ a1)) and 2λ2β2 |α0, s ∼ χ2(2(m+ a2)). Therefore,

W =
2λ2β2 |α0, s /2(m+ a2)

2λ1β1 |α0, r /2(n+ a1)
(2.149)
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is an F distributed random variable with (2(m + a2), 2(n + a1)) degrees of freedom

and the 100(1− γ)% Bayesian credible interval for R can be obtained as

(
1

1 + CF2(m+a2),2(n+a1); γ
2

,
1

1 + CF2(m+a2),2(n+a1);1− γ
2

)
(2.150)

where C = δ2λ1/δ1λ2, F2(m+a2),2(n+a1); γ
2

and F2(m+a2),2(n+a1);1− γ
2

are the lower and

upper γ
2
th percentile points of a F distribution with (2(m+ a2), 2(n+ a1)) degrees of

freedom.

Moreover, this interval can be obtained independently of these parameters by

using the empirical method. In this case, the posterior distributions of β1 and β2 have

gamma distributions with parameters (2n+1, 2T1(rn;α0)) and (2m+1, 2T2(sm;α0)),

respectively and the 100(1− γ)% Bayesian credible interval for R can be obtained as

(
1

1 + C1F(4m+2),(4n+2); γ
2

,
1

1 + C1F(4m+2),(4n+2);1− γ
2

)
(2.151)

where C1 = ((4m+ 2)T1(rn;α0)) / ((4n+ 2)T2(sm;α0)), F(4m+2),(4n+2); γ
2

and

F(4m+2),(4n+2);1− γ
2

are the lower and upper γ
2
th percentile points of a F distribution

with (4m+ 2, 4n+ 2) degrees of freedom.

2.4.3. Numerical Experiments

In this section, firstly the Monte Carlo simulations for the comparison of the

derived estimates are presented, then two real life data sets are analysed.

2.4.3.1. Simulation Study

In this section, some numerical results are presented to compare the performance

of the different estimates for different sample sizes and different priors. The

performances of the point estimates are compared by using ERs. The performances of

the confidence and credible intervals are compared by using average interval lengths

and cps. All of the computations are performed by using MATLAB R2010a. All the
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results are based on 3000 replications.

We consider two cases separately to draw inference on R, namely when the

common first shape parameter α is unknown and known. In both cases, the upper

record values are generated from the Burr Type XII distribution with the sample sizes;

(n,m) = (5, 5), (8, 8), (10, 10), (12, 12), (15, 15).

In Table 2.10, the ML and Bayes estimates of R and their corresponding ERs

are listed when α is unknown. The Bayes estimates are computed by using Lindley’s

approximation and MCMC method under the SE and the LINEX (v = −1 and 1) loss

functions for different prior parameters. In the Bayesian case, Prior 1: (a1, b1) = (4, 2),

(a2, b2) = (4, 2), (a3, b3) = (3, 3), Prior 2: (a1, b1) = (5, 1), (a2, b2) = (3, 3/2),

(a3, b3) = (3, 3/2) and Prior 3: (a1, b1) = (5, 1/2), (a2, b2) = (3, 3), (a3, b3) =

(3, 3/2), are used forR = 0.5006, 0.7145 and 0.9095, respectively. Moreover, the 95%

asymptotic confidence intervals, which are computed based on Fisher information and

observation matrices, and HPD credible intervals with their cps are listed. From Table

2.10, the ERs of all estimates decrease as the sample sizes increase in all cases, as

expected. The Bayes estimates under the SE and LINEX loss functions generally have

smaller ER than that of ML estimates. Moreover, the ERs of the Bayes estimates based

on Lindley’s approximation are smaller than that of MCMC method. These estimates

are close to each other as the sample sizes increase. The average lengths of the intervals

decrease as the sample sizes increase. The asymptotic confidence intervals based on

Fisher information and observation matrices are very similar, as expected. The average

lengths of the HPD Bayesian credible intervals are smaller than that of the asymptotic

confidence intervals.

In Tables 2.11 and 2.12, the ML, UMVU and Bayesian estimates of R and

their corresponding ERs are listed when α is known (α = 3). In this case, the

Bayes estimates are evaluated analytically under the SE and the LINEX (v = −1

and 1) loss functions for different prior parameters. Moreover, it is also computed by

using Lindley’s approximation and MCMC method. In the Bayesian case, Prior 4:

(a1, b1) = (6, 5/2), (a2, b2) = (4, 2), Prior 5: (a1, b1) = (12, 2), (a2, b2) = (3, 3/2)

and Prior 6: (a1, b1) = (15, 5/4), (a2, b2) = (2, 2) are used for R = 0.5484,

0.7506 and 0.9165, respectively. In addition, the empirical Bayes estimates are

obtained. All point estimates of R are listed in Table 2.11. The exact and asymptotic
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confidence intervals are computed from equations (2.123) and (2.126). The Bayesian

and empirical Bayesian credible intervals are computed from equations (2.150) and

(2.151). The HPD credible interval is constructed by using the MCMC samples. All

interval estimates of R are listed in Table 2.12.

From Table 2.11, the ERs of all estimates decrease as the sample sizes increase

in all cases, as expected. The Bayes estimates with their corresponding ERs based

on Lindley’s approximation and MCMC method are very close to the exact values.

The ERs of the ML, UMVU, Bayes and empiric Bayes (under the SE loss function)

estimates are ordered as ER(R̂BS) < ER(R̂EBS) < ER(R̂MLE) < ER(R̂U) when

R = 0.5484, 0.7506 and ER(R̂BS) < ER(R̂U) < ER(R̂MLE) < ER(R̂EBS) when

R = 0.9165. Moreover, the ERs of the Bayes estimates under the LINEX loss function

have smaller than that of ML estimates. From Table 2.12, the average lengths of the

intervals decrease as the sample sizes increase. The average lengths of the empirical

Bayesian credible intervals are smallest, but their cps are not preferable. The HPD

Bayesian credible intervals are more suitable than others in terms of the average lengths

and cps.

In the MCMC case, three MCMC chains are run with fairly different initial

values and generated 10000 iterations for each chain. To diminish the effect of the

starting distribution, the first half of each sequence are discarded and focus on the

second half. To provide relatively independent samples for improvement of prediction

accuracy, the Bayesian MCMC estimates are calculated by the means of every 5th

sampled values after discarding the first half of the chains (see [Gelman et al., 2003]).

In our case, the scale factor value of the MCMC estimates are found below 1.1 which

is an acceptable value for their convergency.

In Table 2.13, the ML, UMVU and Bayesian estimates of R and their

corresponding ERs are listed when α is known (α = 3). In this case, the Bayes

estimates are evaluated analytically and by using the Lindley’s approximation under

the SE and the LINEX (v = −1 and 1) loss functions for the non informative prior.

Moreover, the exact and asymptotic confidence intervals are computed from equations

(2.123) and (2.126). The point and interval estimates are computed for R = 0.25,

0.33, 0.50, 0, 70, 0.90 and 0.92 when (β1, β2) = (2, 6), (2, 4), (2, 2), (7, 3), (18, 2) and

(23, 2), respectively. From Table 2.13, the ERs of all estimates decrease as the sample
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Table 2.12: Confidence intervals of R when α is known (α = 3).

(n,m) R Exact C.I. Asymptotic C.I. Bayes Credible I. HPD Bayes C.I. Empiric Bayes C.I.
(5,5) 0.5484 (0.2855,0.7877) (0.2895,0.8055) (0.3461,0.7476) (0.3508,0.7483) (0.3704,0.7145)

0.5023/0.9500 0.5160/0.8940 0.4014/0.9473 0.3975/0.9450 0.3441/0.8173
(8,8) (0.3351,0.7456) (0.3386,0.7568) (0.3722,0.7220) (0.3761,0.7227) (0.4019,0.6864)

0.4104/0.9427 0.4182/0.9023 0.3498/0.9440 0.3466/0.9407 0.2845/0.8067
(10,10) (0.3507,0.7240) (0.3531,0.7323) (0.3808,0.7066) (0.3840,0.7068) (0.4102,0.6700)

0.3732/0.9527 0.3792/0.9240 0.3257/0.9497 0.3228/0.9463 0.2598/0.8203
(12,12) (0.3683,0.7110) (0.3709,0.7182) (0.3922,0.6973) (0.3953,0.6979) (0.4226,0.6617)

0.3427/0.9463 0.3473/0.9223 0.3051/0.9457 0.3026/0.9470 0.2391/0.8207
(15,15) (0.3839,0.6948) (0.3861,0.7005) (0.4026,0.6845) (0.4050,0.6847) (0.4326,0.6502)

0.3109/0.9460 0.3144/0.9303 0.2819/0.9440 0.2797/0.9437 0.2175/0.8207
(5,5) 0.7506 (0.4760,0.8997) (0.5253,0.9441) (0.5877,0.8828) (0.6015,0.8910) (0.5712,0.8554)

0.4237/0.9497 0.4189/0.8860 0.2951/0.9460 0.2895/0.9497 0.2842/0.8043
(8,8) (0.5429,0.8789) (0.5762,0.9090) (0.6105,0.8681) (0.6215,0.8748) (0.6129,0.8424)

0.3360/0.9463 0.3328/0.9070 0.2576/0.9470 0.2533/0.9493 0.2295/0.8180
(10,10) (0.5632,0.8678) (0.5905,0.8929) (0.6177,0.8593) (0.6272,0.8652) (0.6244,0.8339)

0.3046/0.9533 0.3024/0.9190 0.2416/0.9483 0.2380/0.9417 0.2095/0.8160
(12,12) (0.5791,0.8579) (0.6020,0.8789) (0.6243,0.8521) (0.6329,0.8574) (0.6336,0.8261)

0.2787/0.9423 0.2769/0.9200 0.2278/0.9390 0.2246/0.9377 0.1925/0.8077
(15,15) (0.6035,0.8524) (0.6226,0.8700) (0.6373,0.8470) (0.6448,.08518) (0.6511,0.8237)

0.2489/0.9470 0.2474/0.9333 0.2098/0.9433 0.2070/0.9417 0.1726/0.8297
(5,5) 0.9165 (0.7433,0.9697) (0.8033,0.9952) (0.8394,0.9676) (0.8508,0.9733) (0.8115,0.9540)

0.2264/0.9540 0.1918/0.8933 0.1282/0.9613 0.1225/0.9527 0.1425/0.8057
(8,8) (0.7945,0.9631) (0.8309,0.9851) (0.8494,0.9614) (0.8582,0.9662) (0.8395,0.9498)

0.1686/0.9447 0.1541/0.9227 0.1121/0.9473 0.1080/0.9500 0.1103/0.8150
(10,10) (0.8105,0.9594) (0.8394,0.9776) (0.8531,0.9582) (0.8610,0.9625) (0.8481,0.9469)

0.1489/0.9497 0.1382/0.9363 0.1050/0.9493 0.1016/0.9547 0.0988/0.8303
(12,12) (0.8199,0.9558) (0.8438,0.9715) (0.8551,0.9551) (0.8620,0.9591) (0.8527,0.9439)

0.1360/0.9410 0.1277/0.9457 0.1001/0.9350 0.0970/0.9473 0.0912/0.8127
(15,15) (0.8315,0.9523) (0.8506,0.9653) (0.8578,0.9516) (0.8640,0.9552) (0.8594,0.9412)

0.1208/0.9250 0.1147/0.9423 0.0937/0.8953 0.0912/0.9097 0.0818/0.7570

Notes: The first row represents a 95% confidence interval and the second row represents their lengths and cp’s.

sizes increase in all cases, as expected. The Bayes estimates under the SE loss function

with their corresponding ERs are close to their response in the ML case. Moreover,

the Bayes estimates with their corresponding ERs based on Lindley’s approximation

are very close the exact values. The ERs of the ML, UMVU and Bayes (under the SE

loss function) estimates are ordered as ER(R̂∗BS) < ER(R̂MLE) < ER(R̂U) when

R = 0.25, 0.33, 0.50, 0.70 and ER(R̂U) < ER(R̂MLE) < ER(R̂∗BS) when R = 0.90,

0.92. The ERs of ML and Bayes estimates have larger values when the true value

of R is around 0.5 and it decreases as the true value of R approaches the extremes.

Furthermore, the average lengths of the intervals decrease as the sample sizes increase.

When R = 0.25, 0.90 and 0.92 the lengths of the asymptotic confidence intervals are

smaller than that of exact confidence intervals, but for R = 0.33, 0.50 and 0, 70 it is

other way around.
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2.4.3.2. Real Examples

The two real life data sets, lifetime data for insulation specimens and lifetime

data for steel specimens, are considered to illustrate the use of the methods proposed

in this paper.

• Lifetime data for insulation specimens

The results of a life test experiment in which specimens of a type of electrical

insulating fluid were subjected to a constant voltage stress was given in [Nelson, 1972].

The length of time until each specimen failed, or "broke down," was observed. The

results for seven groups of specimens, tested at voltages ranging from 26 to 38 kilovolts

(kV) were presented. The data sets for 36kV and 38 kV, reported in [Lawless, 2003],

are considered and corresponding upper record values are given in Table 2.14. We fit

the Burr Type XII distribution to the two data sets. The Kolmogorov-Smirnov (K-S)

distances between the fitted and the empirical distribution functions and corresponding

p-values, the parameters and the reliability (R) estimates are computed. All these

results are presented in Table 2.15. It is observed that the Burr Type XII distribution

provides an adequate fit for both the data sets.

Table 2.14: Upper record values from 36kV and 38kV data sets.

i 1 2 3 4
r 1.97 2.58 2.71 25.50
s 0.47 0.73 1.40 2.38

• Lifetime data for steel specimens

The lifetimes of steel specimens tested at 14 different stress levels was given

in [Crowder, 2000]. The data sets for 38.5 and 36 stress levels are considered and

corresponding upper record values are given in Table 2.16. Since all record values

are greater than unity, we encounter the problem for the uniqueness of the ML

estimates of the parameters. To overcome this situation, these data sets are divided

by the corresponding maximum values. Then, we compute the K-S distances between

the fitted and the empirical distribution functions. The K-S and the corresponding

p-values, the parameters and the reliability (R) estimates are presented in Table 2.17.
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Table 2.15: K-S values and estimates for Table 2.14 when α is common.

Kolmogorov-Smirnov and corresponding p values
Data Set K-S(MLE) p-value K-S(Lindley) p-value

r 0.6111 >0.05 0.4796 >0.2
s 0.3879 >0.2 0.4180 >0.2

Parameter and reliability estimates
Parameter MLE Lindley(SEL)

β1 0.5468 0.4227
β2 1.9134 0.4736
α 2.2587 1.9249
R 0.2222 0.3311

Table 2.16: Upper record values from 38.5 and 36 stress levels.

i 1 2 3 4 5
r 60 83 140 − −
s 173 218 288 394 585

It is observed that the Burr Type XII distribution provides an adequate fit for both the

data sets.

Table 2.17: K-S values and estimates when the first shape parameters α is common.

Kolmogorov-Smirnov and corresponding p values
Data Set K-S(MLE) p-value K-S(Lindley) p-value

r 0.5104 >0.2 0.4464 >0.2
s 0.4431 >0.2 0.3098 >0.2

Parameter and reliability estimates
Parameter MLE Lindley(SEL)

β1 4.3281 15.1596
β2 7.2135 14.3937
α 2.0278 4.3117
R 0.3750 0.7283

2.4.4. Conclusion

In this section, the estimates of the stress-strength reliability based on upper

record values are derived when the stress and strength variables follow the Burr

Type XII distribution under the non-Bayesian and Bayesian frameworks. The first

shape parameters of the distributions of the measurements are assumed to be the
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same. When the first shape parameters are unknown, the ML and Bayes estimates are

obtained by using Lindley’s approximation and MCMC method. It is observed that the

performance of the Bayes estimates are better than ML estimates. When the first shape

parameters are known, the Bayes estimates are obtained exactly and approximately by

using the Lindley and MCMC methods for the informative prior case. It is observed

that the performance of the Bayes estimates are better than ML and UMVU. Moreover,

for the non informative prior case, it is observed that the performance of the Bayes

estimates are better than others when the true values of the stress-strength reliability

is not close to the extremes (0 or 1), while near the extremes the UMVU and ML

estimates are better than the Bayes estimates. It is observed that the performance

of the HPD Bayesian credible interval are better than others in all cases. When the

first shape parameter is unknown, it is encouraging to see that the estimates of the

stress-strength reliability are very close for the exact and approximate methods when it

is known. Furthermore, the Bayes estimates based on the Lindley’s approximation and

MCMC method are close to each other. Since the cost of time for the MCMC method

is more than the Lindley’s approximation, the Bayes estimates based on the Lindley’s

approximation are recommended.

To obtain the point and interval estimates of the stress-strength reliability are

difficult due to lack of explicit form of the reliability when the measurements follow

from the Burr Type XII distribution with no common parameters. More work is needed

along that direction.
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3. STATISTICAL ANALYSIS FOR THE
GENERALIZED EXPONENTIAL DISTRIBUTION

3.1. Introduction

The distributions from the gamma and the Weibull families are commonly used

for analyzing a lifetime data as well as a skewed data. The pros and cons of these

distributions were discussed by [Gupta and Kundu, 1999]. They introduced the

generalized exponential distribution and pointed out that many of the properties of

this distribution are similar to those of gamma and the Weibull families.

If a random variable X follows a two-parameter generalized exponential (GE)

distribution, denoted by GE(α, λ), then its pdf and cdf are given by

F (x;α, λ) = (1− e−λx)α, x > 0 (3.1)

f(x;α, λ) = αλe−λx(1− e−λx)α−1, x > 0 (3.2)

where α > 0 and λ > 0 are the shape and scale parameters, respectively. The mean

and variance of a two-parameter generalized exponential distribution are given by

E(X) =
1

λ
{ψ(α + 1)− ψ(1)} , (3.3)

and

V ar(X) =
1

λ2

{
ψ
′
(1)− ψ′(α + 1)

}
, (3.4)

where ψ(x) is the digamma function, ψ′(x) its derivative and ψ(x) = d ln Γ(x)/dx =

Γ
′
(x)/Γ(x).

The density functions of the GE distribution can take different shapes. For α ≤ 1,

it is a decreasing function and for α > 1, it is a unimodal, skewed, right tailed similar

to the Weibull or gamma density function. It is observed that even for very large shape

parameter, it is not symmetric. For λ = 1, the mode is at lnα for α > 1 and for α ≤ 1,

the mode is at 0.
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The GE distribution has a wide range of applications. A comprehensive

amount of research has been done over the years from both frequentist and Bayesian

perspectives. The GE distribution has been studied extensively by many authors.

The properties of the ML estimates of the GE distribution were studied by [Gupta

and Kundu, 1999]. The ML etimates were compared with the other estimators

like method of moment estimators, estimators based on percentiles, least squares

estimators, weighted least squares estimators and the estimators based on the linear

combinations of order statistics by [Gupta and Kundu, 2001]. The ML estimates

of the unknown parameters of the GE distribution for complete sample as well as

censored sample were considered by [Gupta and Kundu, 2002]. An extensive survey

of some recent developments for the GE distribution based on a complete random

sample was provided by [Gupta and Kundu, 2007]. The Bayes estimators of the

unknown parameters of the GE distribution under the assumptions of gamma priors

on both the shape and scale parameters were derived by [Kundu and Gupta, 2008].

The statistical inference of the unknown parameters of the GE distribution in presence

of progressive censoring were considered by [Pradhan and Kundu, 2009]. The analysis

of the hybrid censored data was considered by [Kundu and Pradhan, 2009] when the

lifetime distribution of the individual item was the GE distribution.

3.2. Estimation of The Parameters Based on Record Values

Exact expressions for single and product moments of record statistics and

the best linear unbiased estimators of the location and scale parameters of the GE

distribution were obtained by [Raqab, 2002]. The ML, Bayes and the empirical Bayes

estimates of the shape parameter based on lower record values with known scale

parameter were derived by [Jaheen, 2004]. Also, prediction bounds for future lower

record values was obtained by using Bayes and empirical Bayes techniques. The Bayes

estimates of the shape and scale parameters and Bayesian prediction for future lower

record values were considered by [Madi and Raqab, 2007]. The Bayesian estimates

of the parameters with respect to quadratic loss function using uniform priors for both

parameters were obtained by [Sarhan and Tadj, 2008]. Recently, the frequentist and

Bayesian estimation of the parameters based on lower record values were obtained
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by [Dey et al., 2013]. The Bayesian estimates were derived by using symmetric and

asymmetric loss functions when the parameters have gamma priors. Also, the Bayesian

interval and Bayesian prediction intervals of the future record values were discussed.

3.3. Estimation of The Parameters Based on Records and
Inter-Record Times

When the underlying distribution is exponential, estimation of the mean

parameter by using record values and their corresponding inter-record times was

obtained by [Samaniego and Whitaker, 1986] under random sampling and inverse

sampling scheme. The optimal random sampling plan and associated cost analysis

for exponential distribution were studied by [Doostparast and Balakrishnan, 2010].

Non-Bayesian and Bayesian estimates were derived by [Doostparast, 2009] for the two

parameters exponential distribution based on record values and their corresponding

inter-record times under the inverse sampling scheme. The optimal confidence

intervals and uniformly most powerful tests for the one-sided alternatives were derived

by [Doostparast and Balakrishnan, 2011] when the underlying distribution is two

parameter exponential. Also, they obtained the generalized likelihood ratio test,

uniformly unbiased and invariant tests for a two-sided alternative. The optimal

statistical procedure including point and interval estimation as well as most powerful

tests based on record data from a two-parameter Pareto model were obtained by

[Doostparast and Balakrishnan, 2013]. When the underlying distribution is lognormal,

non-Bayesian and Bayesian point estimates as well as asymptotic confidence intervals

for the unknown parameters were obtained by [Doostparast et al., 2013].

In this section, the parameter estimations for GE distribution are obtained by

using upper record values and their corresponding inter-record times under the classical

and Bayesian frameworks. The Lindley approximation and MCMC technique are

proposed to obtain the Bayesian estimates under different loss functions. Moreover, the

estimates of the parameters only by using the upper record values (without considering

inter-record times) are also obtained. Finally, the two approaches are compared

by using Monte Carlo simulations to see the effect of the inter-record times in the

estimation.
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3.3.1. ML Estimation

Let X1, X2, . . . be i.i.d. random variables, coming from a population with cdf

and pdf F (.) and f(.), respectively. Then the likelihood function associated with the

sequence {R1, K1, . . . , Rm, Km} is given by [Hofmann and Nagaraja, 2003] as

L(r,k) =
m∏
i=1

f(ri) {F (ri)}ki−1 I(ri−1,∞)(ri), (3.5)

where r0 ≡ −∞, km ≡ 1 and IA(x) is the indicator function of the set A. From

equations (3.1), (3.2)and(3.5), we have

L(α, λ; r,k) = αmλm exp

{
−λ

m∑
i=1

ri +
m∑
i=1

(αki − 1) ln(1− e−λri)

}
, (3.6)

where −∞ < r1 < . . . < rm and so the log-likelihood function is

l(α, λ; r,k) = m (lnα + lnλ)− λ
m∑
i=1

ri +
m∑
i=1

(αki − 1) ln(1− e−λri). (3.7)

The ML estimates of α and λ are given by

α̂ =
m

Uλ̂
, (3.8)

where Uλ = −
∑m

i=1Ki ln(1− e−λRi) and λ̂ is the solution of the following non-linear

equation

m

λ
−

m∑
i=1

ri +
m∑
i=1

rie
−λri

1− e−λri

(
ki
m

Uλ
− 1

)
= 0. (3.9)

Therefore, λ̂ can be obtained as the solution of the non-linear equation of the form

h(λ) = λ where

h(λ) = m

[
m∑
i=1

ri
1− e−λri

−
m∑
i=1

kirie
−λri

1− e−λri
m

Uλ

]−1

. (3.10)
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Since, λ̂ is a fixed point solution of the non-linear equation (3.10), its value can be

obtained using an iterative scheme as λ(j+1) = h(λ(j)) where λ(j) is the jth iterate of

λ̂. The iteration procedure should stopped when
∣∣λ(j) − λ(j+1)

∣∣ is sufficiently small.

Next, the existence and uniqueness of the ML estimates of the parameters are

proved. Following limits and inequalities are used in the proof.

Lemma 3.1: For λ > 0

(
m∑
i=1

kirie
−λri

1− e−λri

)2

+

(
m∑
i=1

ki ln(1− e−λri)

)(
m∑
i=1

kir
2
i e
−λri

(1− e−λri)2

)
< 0. (3.11)

Proof 3.1: It is known that the Cauchy-Schwarz inequality is (
∑n

i=1 xiyi)
2 ≤

(
∑n

i=1 x
2
i ) (
∑n

i=1 y
2
i ). Let xi =

√
kie
−λri

2 and yi =
√
kirie

−λri
2 /(1− e−λri) then we by

the Cauchy-Schwarz inequality we have

(
m∑
i=1

kirie
−λri

1− e−λri

)2

≤

(
m∑
i=1

kie
−λri

)(
m∑
i=1

kir
2
i e
−λri

(1− e−λri)2

)
. (3.12)

It can be shown that kie−λri < −ki ln(1− e−λri), i = 1, . . . ,m for λ > 0. Let f(λ) =

kie
−λri + ki ln(1− e−λri). It is clear that limλ→0 f(λ) = −∞, limλ→∞ f(λ) = 0 and

f
′
(λ) > 0. Then, f is an increasing function and therefore f(λ) < 0 for every λ > 0.

The proof is completed by using this inequality in equation (3.12). �

The existence and uniqueness of the ML estimates of the parameters of a general

class of exponentiated distributions based on a complete sample are proved by [Ghitany

et al., 2013]. The following results are used from [Ghitany et al., 2013] to prove the

existence and uniqueness of the ML estimates.

Lemma 3.2: limt→0 (1/t− 1/(1− e−t)) = −1/2, limt→0 te
−t/(1 − e−t) = 1,

limt→0 t |ln(1− e−t)| = 0 and limt→0 |ln(1− e−t)| /e−t = 1.

Lemma 3.3:

i) For all t > 0, tke−t < (1− e−t)k, k = 1, 2,

ii) For all − 1 < ai < 1, and −∞ < bi <∞, i = 1, 2, ..., n

75



(
n∑
i=1

aibi

)2

≤
n∑
i=1

∣∣ln(1− a2
i )
∣∣ n∑
i=1

b2
i . (3.13)

Theorem 3.1: The ML estimates of the parameters α and λ are unique and are given

by α̂ = m/Uλ̂ where λ̂ is the solution of the non-linear equation:

G(λ) =
m

λ
−

m∑
i=1

ri
1− e−λri

+
m∑
i=1

kirie
−λri

1− e−λri
m

Uλ
= 0. (3.14)

Proof 3.1: The limit of G(λ) is considered as λ → 0 and λ → ∞. Let ti = λri,

i = 1, . . . ,m. Then, by using parts of (i)-(iii) of Lemma 1 in [Ghitany et al., 2013],

lim
λ→0

G(λ) = G(0) =
m∑
i=1

ri lim
ti→0

(
1

ti
− 1

1− e−ti

)

+
m∑
i=1

ki lim
ti→0

(
tie
−ti

1− e−ti

)
m∑m

i=1(ki/ri) limti→0 (−ti ln(1− e−ti))
(3.15)

= −1

2

m∑
i=1

ri +
m∑m

i=1(ki/ri) limti→0 (−ti ln(1− e−ti))

m∑
i=1

ki =∞.

Moreover, using part of (iv) of Lemma 1 in [Ghitany et al., 2013], we have

lim
λ→∞

G(λ) = G(∞) = lim
λ→∞

(
m

λ
−

m∑
i=1

ri
1− e−λri

)

+ lim
λ→∞

m∑
i=1

kirie
−λri

1− e−λri
m

−
∑m

i=1 ki ln(1− e−λri)
(3.16)

= −
m∑
i=1

ri +m lim
λ→∞

∑m
i=1 kirie

−λri∑m
i=1 kie

−λri
= −

m∑
i=1

(ri − r1) < 0.

Hence, we obtain that limλ→0G(λ) =∞ and limλ→∞G(λ) < 0. By the intermediate

value theorem G(λ) has at least one root in (0,∞). If it can be shown that G
′
(λ) < 0

then the proof will be completed. It is easily obtain that
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G
′
(λ) = − 1

λ2

{
G1(λ)− mG2(λ)λ2

(
∑m

i=1 ki ln(1− e−λri))2

}
, (3.17)

where

G1(λ) = m−
m∑
i=1

λ2r2
i e
−λri

(1− e−λri)2 , (3.18)

G2(λ) =
m∑
i=1

kir
2
i e
−λri

(1− e−λri)2

(
m∑
i=1

ki ln(1− e−λri)

)
+

(
m∑
i=1

kirie
−λri

1− e−λri

)2

. (3.19)

G1(λ) > 0 is obtained by using part (i) of Lemma 2 in [Ghitany et al., 2013] and

G2(λ) < 0 from Lemma 3.1. Therefore, G
′
(λ) < 0.

Finally, we will show that the ML estimates of (α, λ) maximizes the

log-likelihood function l(α, λ; r,k). Let H(α, λ) be the Hessian matrix of l(α, λ; r,k)

at (α, λ). It is clear that H11(α̂, λ̂) < 0 and the determinant of the Hessian matrix

D(α̂, λ̂) = H11(α̂, λ̂)H22(α̂, λ̂)−
(
H12(α̂, λ̂)

)2

=
m

α̂2λ̂2
G1(λ̂)−G2(λ̂) > 0. (3.20)

Hence, (α̂, λ̂) is the local maximum of l(α, λ; r,k). Since there is no singular point

of l(α, λ; r,k) and it has a single critical point then, it is enough to show that the

absolute maximum of the function is indeed the local maximum. Assume that there

exist a λ̂0 in the domain in which l∗(λ̂0) > l∗(λ̂), where l∗(λ̂) = l(α̂, λ̂; r,k). Since λ̂

is the local maximum there should be some point λ1 in the neighborhood of λ̂ such that

l∗(λ̂) > l∗(λ1). Let k(λ) = l∗(λ) − l∗(λ̂) then k(λ̂0) > 0, k(λ1) < 0 and k(λ̂) = 0.

This implies that λ1 is a local minimum of the l∗(λ), but λ̂ is the only critical point so

it is a contradiction. Therefore, (α̂, λ̂) is the absolute maximum of l(α, λ; r,k). �

3.3.1.1. ML Estimation When λ Is Known

Without loss of generality, the parameter λ is assumed to be known, say λ = 1.

Then, from equation (3.6)
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L(α, 1; r,k) = αm exp

{
−

m∑
i=1

ri +
m∑
i=1

(αki − 1) ln(1− e−ri)

}
, (3.21)

where −∞ < r1 < . . . < rm. In this case, U1 is a sufficient statistic for α

and the MLE of α is α̂ML = m/U1. The moment generating function of U1 is

M(t) = 1/ (1− t/α)m , α > t. By the uniqueness of the moment generating function

U1, is distributed as Gamma(m,α) and its mean and variance are m/α and m/α2,

respectively. Therefore, E(α̂ML) = mα/(m − 1) and an unbiased estimator for

α is given by α̂U = (m − 1)/U1. Notice that, MSE(α̂U) < MSE(α̂ML) and

MSE(α̂ML)→ 0 as m→∞ then α̂ML and α̂U converge to α in mean square.

When the scale parameter λ = λ0 is known, then Uλ0 is a complete sufficient

statistic for α. The confidence interval of α is constructed based on this statistic.

The distribution of Uλ0 can be easily obtained. We have Uλ0∼Gamma (m,α) and

2αUλ0∼χ2
2m. An equi-tailed 100(1 − γ)% confidence interval of the shape parameter

α has the form (
χ2

2m,γ/2

2Uλ0
,
χ2

2m,1−γ/2

2Uλ0

)
. (3.22)

3.3.1.2. Asymptotic Confidence Interval

To obtain the exact confidence interval for the parameters is not easy in every

case, so that their asymptotic behavior constitutes an appealing alternative. In practice,

the observed information matrix is used as a consistent estimator of the Fisher

information matrix. An asymptotic confidence intervals for the parameters α and λ

based on the record values and their corresponding inter-record times are obtained by

using the observed information matrix. The observed information matrix Jm(α, λ) is

given by

Jm(α, λ) = −
[

∂2l
∂α2

∂2l
∂α∂λ

∂2l
∂λ∂α

∂2l
∂λ2

]
=

[
J11 J12

J21 J22

]
, (3.23)

where J11 = m/α2, J12 = −
∑m

i=1(kirie
−λri)/(1−e−λri) and J22 = m/λ2−

∑m
i=1(1−

αki)(r
2
i e
−λri)/

(
1− e−λri

)2.
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By the asymptotic normality of the MLE, we have
[√

m(α̂− α),
√
m(λ̂− λ)

]
a∼

N2(0, I−1) for large m, where a∼ means approximately distributed and I−1 is the

inverse of the observed information matrix. The asymptotic behavior remains valid if

I = limm→∞(1/m)Jm(α̂, λ̂). For large m (the number of record values) under inverse

sampling or for large n (the number of observations) under random sampling scheme,

we can construct the approximate 100(1 − γ)% equi-tailed confidence intervals for α

and λ. These are given by

(
α̂± z1−γ/2

√
J22

J11J22 − J2
12

)
and

(
λ̂± z1−γ/2

√
J11

J11J22 − J2
12

)
, (3.24)

where zγ/2 is the upper γ/2th quantile of the standard normal distribution.

3.3.2. Bayesian Estimation

In this section, the Bayes estimates of the parameters GE distribution are

obtained by using different loss functions for both λ is known and unknown cases

under the inverse sampling scheme.

3.3.2.1. Bayesian Estimation When λ Is Known

It is assumed that α has a gamma prior with parameters (a1, b1). Then, the

posterior density function of α is α| (r,k) ∼ Gamma (m+ a1, b1 + U1) . Then, the

Bayes estimate of α under the SE loss function, α̂BS,1, is the mean of the α| (r,k).

Therefore,

α̂BS,1 =
m+ a1

b1 + U1

, (3.25)

and the Bayes estimate of α under the LINEX loss function, α̂BL,1, is

α̂BL,1 = −1

v
lnEα|(r,k)(e

−vα) =
m+ a1

v
ln

(
1 +

v

b1 + U1

)
. (3.26)
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If we use the Jeffrey’s non-informative prior, that is π(α) = 1/α, then we have

α| (r,k) ∼ Gamma (m,U1). Therefore, the Bayes estimates of α under the SE and

the LINEX loss functions are obtained as

α̂BS,0 =
m

U1

and α̂BL,0 =
m

v
ln

(
1 +

v

U1

)
, (3.27)

respectively. α̂BS,0 and α̂BL,0 are the limit of α̂BS,1 and α̂BL,1 as a1 → 0 and b1 → 0.

Moreover, α̂BL,1 → α̂BS,1 as v → 0 is satisfied.

Notice that, it is easily seen that if mb1 > a1U1 then α̂M > α̂BS,1 and if

mb1 < a1U1 then α̂M < α̂BS,1. In the following proposition, the comparison of Bayes

estimates are given under the SE and the LINEX loss functions.

Proposition 3.1:

i) α̂BL,1 ≤ α̂BS,1 for v > 0.

ii) α̂BL,1 ≥ α̂BS,1 for − (b1 + U1) < v < 0.

Proof 3.1: It is known that

ln(1 + x) ≤ x for every x > −1. (3.28)

i) Suppose v > 0. v/(b1 + U1) > 0, when b1 > 0 and U1 > 0. We

have ln (1 + v/(b1 + U1)) ≤ v/(b1 + U1) by the inequality (3.28). Therefore,

α̂BL,1 ≤ α̂BS,1

ii) Suppose v < 0 and −(b1 + U1) < v, then v/(b1 + U1) > −1. We have

ln (1 + v/(b1 + U1)) ≤ v/(b1 + U1) by the inequality (3.28). Therefore, α̂BL,1 ≥

α̂BS,1. �

3.3.2.2. Bayesian Estimation When α and λ Are Unknown

Assume that the parameters α and λ have independent gamma priors with

parameters (a1, b1) and (a2, b2), respectively and densities are denoted by π(α) and

π(λ). The joint posterior density function of α and λ is
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π(α, λ| r,k) =
L(α, λ; r,k)π(α)π(λ)∫∞

0

∫∞
0
L(α, λ; r,k)π(α)π(λ)dαdλ

= I(r,k)αm+a1−1λm+a2−1 (3.29)

exp

{
−λ

(
b2 +

m∑
i=1

ri

)
− α (b1 + Uλ)−

m∑
i=1

ln(1− e−λri)

}
,

where

[I(r,k)]−1

Γ(m+ a1)
=

∫ ∞
0

λm+a2−1 (b1 + Uλ)
−m−a1

exp

{
−λ

(
b2 +

m∑
i=1

ri

)
−

m∑
i=1

ln(1− e−λri)

}
dλ. (3.30)

The Bayes estimate of any function of α and λ, say g(α, λ) under the SE loss function

is

ĝBS = Eα,λ|r,k(g(α, λ)) =

∫∞
0

∫∞
0
g(α, λ)L(α, λ; r,k)π(α)π(λ)dαdλ∫∞

0

∫∞
0
L(α, λ; r,k)π(α)π(λ)dαdλ

. (3.31)

It is not possible to compute (3.31) analytically. Two approaches are suggested here

to approximate equation (3.31), namely i) Lindley’s approximation and ii) MCMC

method.

• Lindley’s approximation

For the two parameter case (α, λ), we have from equation (3.29)

Q = ln I(r,k) + (m+ a1 − 1) lnα + (m+ a2 − 1) lnλ− λb2

− λ
m∑
i=1

ri − α (b1 + Uλ)−
m∑
i=1

ln(1− e−λri). (3.32)

The joint posterior mode is obtained from the equations ∂Q/∂α = 0 and ∂Q/∂λ = 0

as
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α̃ =
m+ a1 − 1

b1 + Uλ̃
, (3.33)

and λ̃ is the solution of the following nonlinear equation

m+ a2 − 1

λ
− b2 −

m∑
i=1

ri
1− e−λri

+
m+ a1 − 1

b1 + Uλ

m∑
i=1

kirie
−λri

1− e−λri
= 0. (3.34)

It can be solved by using the same procedure in equation (3.10). The elements of the

Q∗ are given by

Q∗11 = −m+ a1 − 1

α2
, Q∗12 = Q∗21 =

m∑
i=1

kirie
−λri

1− e−λri
, (3.35)

Q∗22 = −m+ a2 − 1

λ2
+

m∑
i=1

(1− αki)
r2
i e
−λri

(1− e−λri)2 , (3.36)

and τij, i, j = 1, 2 are obtained by using equation (3.35) and (3.36). Moreover,

Q12 = −
m∑
i=1

kir
2
i e
−λri

(1− e−λri)2 , Q21 = 0, Q30 =
2 (m+ a1 − 1)

α3
, (3.37)

Q03 =
2 (m+ a2 − 1)

λ3
−

m∑
i=1

(1− αki)
r3
i (e
−λri + e−2λri)

(1− e−λri)3 . (3.38)

Therefore, the approximate Bayes estimates of α and λ under the SE and LINEX loss

functions are obtained as

α̂BS,Lind = α̃ +
1

2

[
Q30τ

2
11 +Q12(τ22τ11 + 2τ 2

21) +Q03τ21τ22

]
, (3.39)

α̂BL,Lind = α̃− 1

v
ln

[
1 +

v2

2
τ11 −

v

2
Q12(τ22τ11 + 2τ 2

21)

−v
2
Q30τ

2
11 −

v

2
Q03τ21τ22

]
, (3.40)
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λ̂BS,Lind = λ̃+
1

2

[
Q30τ12τ11 + 3Q12τ22τ21 +Q03τ

2
22

]
, (3.41)

λ̂BS,Lind = λ̃− 1

v
ln
[
1 +

v

2

(
vτ22 −Q30τ12τ11 − 3Q12τ22τ21 −Q03τ

2
22

)]
. (3.42)

Notice that all approximate Bayes estimates are evaluated at (α̃, λ̃).

If we use the non-informative prior density, that is π(α, λ) ∝ 1/αλ, then the

Bayes estimates of α and λ can be computed by using the Lindley’s approximation.

In this case, these estimates are easily obtained from equations (3.39)-(3.42) using

a1 = a2 = b1 = b2 = 0.

• MCMC method

In the previous section, we obtain the Bayes estimates of α and λ using Lindley’s

approximation under the SE and LINEX loss functions. However, since the exact

probability distributions of these estimates are not known it is difficult to evaluate

HPD credible intervals of parameters. For this reason, the MCMC method is proposed

to compute the Bayes estimates of α and λ under the SE and LINEX loss functions

and their corresponding HPD credible intervals.

The MCMC method are considered to generate samples from the posterior

distributions and then the Bayes estimates of α and λ under the SE and LINEX loss

functions are computed. The joint posterior of α and λ is given in equation (3.29). It

is easy to see that

α|λ, r,k ∼Gamma (m+ a1, b1 + Uλ) , (3.43)

and

π(λ|α, r,k) ∝ λm+a2+1 exp

{
−λ

(
b2 +

m∑
i=1

ri

)}

exp

{
−αUλ −

m∑
i=1

ln(1− e−λri)

}
. (3.44)

Therefore, samples of α can be easily generated by using gamma distribution.

However, the posterior distribution of λ cannot be reduced analytically to well known
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distribution and therefore it is not possible to sample directly by standard methods.

It is observed that the plot of the posterior distribution of λ is similar to Gaussian

distribution. The hybrid Metropolis -Hastings and Gibbs sampling algorithm, which

will be used to solve our problem, is suggested by [Tierney, 1994]. This algorithm

combines the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian

proposal distribution.

• Step 1: Take some initial guess of α and λ, say α(0) and λ(0).

• Step 2: Set t = 1.

• Step 3: Generate λ(t) from π(λ|α, r,k) using the Metropolis-Hastings algorithm

with the proposal distribution q(λ) ≡ N(λ(t−1), 1):

-Step 3.1: Let v = λ(t−1).

-Step 3.2: Generate w from the proposal distribution q.

-Step 3.3: Let p(v, w) = min

{
1,
π(w|α(t−1), r,k) q(v)

π(v|α(t−1), r,k) q(w)

}
.

-Step 3.4: Generate u from Uniform(0, 1). If u ≤ p(v, w) then accept the

proposal and set λ(t) = w; otherwise, set λ(t) = v.

• Step 4: Generate α(t) from Gamma

(
m+ a1, b1 −

m∑
i=1

Ki ln(1− e−λ(t)Ri)
)

.

• Step 5: Set t = t+ 1.

• Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (α(i), λ(i)),

i = 1, . . . , N .

The samples obtained from the algorithm are used to compute the Bayes estimates and

to construct the HPD credible intervals. The Bayes estimator of g ≡ g(α, λ) based on

SE and LINEX loss function are given, respectively, by

ĝBS,MH = E(g| r,k) =
1

N −M

N−M∑
i=M+1

g(α(i), λ(i)), (3.45)

and

ĝBL,MH = −1

v
ln

[
1

N −M

N−M∑
i=M+1

exp
(
−v g(α(i), λ(i))

)]
, (3.46)

where M is the burn-in period.
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The HPD 100(1 − γ)% credible intervals of α and λ can be obtained by the

method of [Chen and Shao, 1999]. In particular for α:

From MCMC, the sequence of α, α1, . . . , αN , are obtained, then it is ordered as

α(1) < . . . < α(N). The credible intervals are constructed as
(
α(j), α(j+[N(1−γ)])

)
for

j = 1, ..., N − [N(1 − γ)] where [x] denotes the largest integer less than or equal to

x. Then, the HPD credible interval of α is that interval which has the shortest length.

Similarly, the HPD credible interval of λ can also be constructed.

3.3.3. Simulation Study

In this section, in order to compare the proposed point and interval estimates

for the Bayesian and ML cases, we perform a Monte Carlo simulation studying using

different sample sizes and different priors. All the programs are written in MATLAB

R2010a. All the results are based on 1000 replications. The ER of θ, when θ is

estimated by θ̂, is given by

ER(θ) =
1

N

N∑
i=1

(
θ̂i − θi

)2

, (3.47)

under the SE loss function. Moreover, the estimated risk of θ under the LINEX loss

function is given by

ER(θ) =
1

N

N∑
i=1

(
ev(θ̂i−θi) − v

(
θ̂i − θi

)
− 1
)
, (3.48)

where N is the number of replication.

A simulation study is carried out to investigate the performance of the point

and interval estimation of the GE distribution parameters based on ML and Bayesian

methods. If we use the non-informative prior density, it is known that the Bayes

estimates of α and λ are similar to the ML estimates for a large number of observations.

On the other hand, the informative priors are chosen to be gamma distribution with

parameters Prior 1: (a1, b1) = (5, 2), (a2, b2) = (10, 5) and Prior 2: (a1, b1) = (10, 3),

(a2, b2) = (7, 1.5) for the parameters (α, λ) = (2.5362, 2.0154) and (3.3711, 4.7148)

in Tables 3.1 and 3.2, respectively. The findings based on ML and Bayesian methods
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are given in the Tables 3.1-3.3 when the sample size m is 5, 8 and 10.

In Tables 3.1 and 3.2, the ML estimates and their corresponding ERs are

presented. Furthermore, a %95 HPD credible intervals and their coverage probabilities

(cp) are presented. Moreover, the Bayes estimates are computed by using Lindley’s

approximation and MCMC method under SE and LINEX (v = −2,−1, 1 and 2) loss

functions.

In the MCMC case, five MCMC are run chains with fairly different initial values

and generated 5000 iterations for each chain. To diminish the effect of the starting

distribution, the first half of each sequence are discarded and focus attention on the

second half. To provide relatively independent samples for improvement of prediction

accuracy, the Bayesian MCMC estimates are calculated by the means of every 5th

sampled values after discarding the first half of the chains (see [Gelman et al., 2003]).

In our case, the scale factor value of the MCMC estimators are found below 1.1 which

is an acceptable value for their convergency.

For convenience, the estimates based on the record values and their

corresponding inter-record times are denoted by α and λ. On the other hand, estimates

based on just the record values are denoted by α∗ and λ∗.

To be able to compare the two methods, the ML and Bayes estimates of the

parameters are also derived based on upper record values (without taking inter-record

times into consideration). In this case, the Bayes estimates are obtained by using

Lindley’s approximation method. The estimates α∗ and λ∗ and their corresponding

ERs are tabulated in Table 3.3.

The following results are obtained from Tables 3.1-3.3 under the SE loss

function. The average ERs of α and λ decrease as the sample size increases in all

cases, as expected. Moreover, the ERs of Bayes estimates under the SE loss function

are smaller than that of ML estimates. Furthermore, the ERs of Bayes estimates for α

and λ based on Lindley’s approximation and MCMC samples are close to each other.

In general, similar patterns are observed for α∗ and λ∗. Finally, the ERs of estimates

for α and λ are smaller than that of α∗ and λ∗. It is quite natural to see such a result

when more information is available.

The following results are obtained from Tables 3.1-3.3 under the LINEX loss

function. The ERs are smaller than that of ML estimates only for some v, since the
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ERs of Bayes estimates under the LINEX loss function depend on the values of v.

Moreover, the ERs of Bayes estimates for α and λ based on Lindley’s approximation

and MCMC samples are close to each other for v > 0. On the other hand, the ERs of

λ are close to each other for the two methods when v < 0 for sufficiently large sample

sizes. Furthermore, the ERs for all estimators are decreasing while v is getting close to

zero for positive values of v. On the contrary, they are increasing while v getting away

from zero for negative values of v. Finally, the ERs of α and λ are generally smaller

than that of α∗ and λ∗.

In Tables 3.1 and 3.2, we observe that the average length of the HPD credible

intervals decrease and their cp are comparable with the nominal values as the sample

size increases.

In Table 3.4, the ML and Bayes estimates under SE loss functions and their

corresponding ERs are presented when the true value of α = 2.4640 and λ is known

(λ = 1). Since the exact distribution of the MLE of α is known, a %95 confidence

interval is easily constructed. For a comparison, a %95 confidence intervals of the

α under both the asymptotic and exact distributions are tabulated. An approximate

confidence interval for α is obtained by using the ML estimate of λ. Moreover, a %95

Bayesian credible interval for α is obtained by using the posterior distribution of α are

also reported.

The following results are obtained from Table 3.4, the average ERs of α decrease

as the sample size increases in all cases, as expected. Moreover, the ERs of Bayes

estimates of α under the SE loss function are smaller than that of ML estimates. Also, it

is observed that the average length of the intervals decrease as the sample size increases

in all cases. Furthermore, the average length of the Bayesian credible intervals are

smaller than that of the other intervals. Finally, cp values for confidence intervals are

closer to the nominal value for m as large as 15.

To generate a large number of record values takes too much time. For this reason,

an approximate confidence interval is reported under two different cases. Firstly,

a %95 confidence intervals for α under both the asymptotic and exact distributions

are tabulated for m = 5, 10, 15, 20 in Table 3.4. Secondly, we only generated a

set of 30 records from GE(2.6236, 1.5007) by using gamma prior with parameters

(a1, b1) = (5, 2) and (a2, b2) = (10, 5). The record values and their inter-record times
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Table 3.4: Results for the true value of α = 2.4640, (a1, b1) = (5, 2) and λ is known.

MLE Bayes Exact MLE Bayesian Approximate
SE C.I. credible interval C.I.

m = 5
2.2313 2.1224 (0.9485,5.9836) (1.1781,4.1971) (0,6.4313)
1.5602 0.8830 0.9720 0.9550 0.8990

m = 10
2.6157 2.3958 (1.2529,4.4639) (1.3499,3.7770) (0.0214,5.7319)
1.3170 0.6401 0.9620 0.9580 0.9420

m = 15
2.5859 2.4313 (1.4453,4.0439) (1.4939,3.6283) (0.1871,5.0795)
0.9273 0.5379 0.9560 0.9500 0.9490

m = 20
2.4476 2.3529 (1.5185,3.6880) (1.5525,3.4268) (0.2856,4.6510)
0.7796 0.5199 0.9540 0.9520 0.9510

Notes: The first row represents the average estimates and the second row represents
corresponding ERs for each choice of m. However, for the last three columns, the
first row represents a %95 confidence interval and the second row represents their cp’s.

Table 3.5: Data is generated from GE(2.6236, 1.5007).

i 1 2 3 4 5 6 7 8 9 10
Ri 0.4440 0.7010 0.7709 0.8751 0.8851 1.1427 1.1933 1.4927 1.6651 1.8378
Ki 3 1 1 1 1 3 1 4 1 9
i 11 12 13 14 15 16 17 18 19 20
Ri 2.2633 2.8443 2.9103 3.1298 3.3530 3.7073 3.7633 3.8257 3.9191 4.0392
Ki 5 3 23 4 244 61 170 9 111 42
i 21 22 23 24 25 26 27 28 29 30
Ri 4.0528 4.3658 4.4601 4.5889 4.6356 4.9092 5.0858 5.2541 5.4127 7.5152
Ki 51 266 382 369 211 77 184 72 21 1

are tabulated in Table 3.5 and then the approximate and HPD credible intervals are

reported in Table 3.6. In Tables 3.4 and 3.6 are mainly obtained to illustrate how the

approximate confidence intervals perform when the number of record values get larger.

From these tables, it can be observed that these confidence intervals and their cp values

are comparable.

3.3.4. Conclusions

This section deals with the ML and Bayesian point estimates as well as

confidence intervals for the unknown parameters when the underlying distribution
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Table 3.6: Confidence intervals for α and λ.

Approximate confidence interval HPD credible interval
α (0.7394,3.7993) (1.1846,3.6846)
λ (1.1909,1.6342) (1.2455,1.6226)

is GE distribution. The ML estimates of the unknown parameters are derived under

inverse sampling scheme. The Lindley’s approximation and MCMC methods are used

to get the Bayes estimates under the SE and the LINEX loss function. Monte Carlo

simulation reveals out that the ERs of the Bayes estimates are smaller than that of ML

estimates under the SE loss function. However, the ERs for the LINEX loss function

depend on the asymmetry parameter v. In particular, the ERs of the estimates are

decreasing while v is getting close to zero for positive values of v and are increasing

while v getting away from zero for negative values of v. The average length of the HPD

credible intervals are smaller than that of the confidence intervals with more reasonable

cp. Finally, it is suggested to use record values and their corresponding inter-record

times instead of just using record values to decrease the ERs of estimates under the SE

and the LINEX loss function.

3.4. Estimation of The Reliability Based on Record Values

The likelihood and Bayesian estimation of the stress-strength reliability based

on lower record values from the GE distribution with known scale parameter were

considered by [Baklizi, 2008]. Confidence intervals, exact and approximate, as well

as the Bayesian credible sets for the stress-strength reliability were also obtained. An

interval estimates for the stress-strength reliability using lower record data from the

GE distribution with known scale parameter was developed by [Wong and Wu, 2009].

Recently, the ML and Bayesian estimation of the stress-strength reliability based on

lower record values from the GE distribution are considered by [Asgharzadeh et al.,

2014].
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4. STATISTICAL ANALYSIS FOR THE
KUMARASWAMY DISTRIBUTION

4.1. Introduction

Kumaraswamy showed that the well known pdf such as the normal, log-normal,

beta and empirical distributions such as Johson’s and polynomial-transformed-normal,

etc., do not fit well hydrological data, such as daily rainfall, daily stream flow, etc.

and developed a new probability distribution function known as the sinepower pdf in

[Kumaraswamy, 1976], [Kumaraswamy, 1978]. Furthermore, a more general pdf for

double bounded random processes, which is known as Kumaraswamy’s distribution

was developed by [Kumaraswamy, 1980]. This distribution is applicable to many

natural phenomena whose outcomes have lower and upper bounds, such as the heights

of individuals, scores obtained on a test, atmospheric temperatures, hydrological data,

etc. Also, this distribution could be appropriate in situations where scientists use

probability distributions which have infinite lower and/or upper bounds to fit data,

when in reality the bounds are finite.

If a random variable X follows a Kumaraswamy distribution, denoted by

Kum(a, b), then its cdf and pdf are given by

F (x; a, b) = 1− (1− xa)b, 0 < x < 1 (4.1)

f(x; a, b) = abxa−1(1− xa)b−1, 0 < x < 1 (4.2)

where a, b > 0 are the shape parameters. The mean and the variance of a

Kumaraswamy distribution are given by

E(X) = bB

(
1 +

1

a
, b

)
, (4.3)

and

V ar(X) = bB

(
1 +

2

a
, b

)
−
{
bB

(
1 +

1

a
, b

)}2

, (4.4)
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where B(x, y) is the Beta function and B(x, y) = Γ(x)Γ(y)/Γ(x+ y).

The Kumaraswamy distribution has the same basic shape properties as the beta

distribution, namely: when a > 1 and b > 1 it is unimodal; when a < 1 and b < 1 it

is uniantimodal; when a > 1 and b ≤ 1 it is increasing; when a ≤ 1 and b > 1 it is

decreasing; when a = b = 1 it is constant.

In a discussion paper, [Nadarajah, 2008] has pointed out that many papers in the

hydrological literature have used Kumaraswamy’s distribution because it is deemed

as a better alternative to the beta distribution, see [Koutsoyiannis and Xanthopoulos,

1989]. Over the years, this distribution has received considerable attention by scientists

working in hydrology and related areas, see [Sundar and Subbiah, 1989], [Fletcher

and Ponnamblam, 1996], [Seifi et al., 2000], [Ponnambalam et al., 2001], [Ganji

et al., 2006]. The background and genesis of the Kumaraswamy distribution, and

more importantly, made clear some similarities and differences between the beta and

Kumaraswamy distributions were explored by [Jones, 2009]. He highlighted that the

Kumaraswamy distribution has some advantages over the beta distribution in terms

of tractability. For example, its cdf has a closed form, the quantile functions are

easily obtainable and one can easily generate random variables from Kumaraswamy

distribution. The generalized order statistics of Kumaraswamy distribution was

considered by [Garg, 2009]. A modified ML estimators that are bias-free to second

order were derived by [Lemonte, 2011] for the Kumaraswamy distribution. New

properties of the Kumaraswamy distribution was derived by [Mitnik, 2013].The

Bayesian and non-Bayesian estimation for the shape parameter of the Kumaraswamy

distribution and the predictive intervals of a future observation under type-II censored

sample was obtained by [Sindhu et al., 2013]. The ML and Bayesian estimation for the

shape parameters, the reliability and the hazard rate functions of the Kumaraswamy

distribution and the prediction for a new observation based on generalized order

statistics were derived by [El-Deen et al., 2014]. Moreover, the Kumaraswamy

distribution has used excessively to construct a new distributions, see [Corderio and

Castro, 2011], [Paranaiba et al., 2013], [Gomes et al., 2014].

The rest of this chapter is organized as follows. In Section 4.1,the statistical

inferences for the Kumaraswamy distribution based on record values are considered.

In Section 4.2, the statistical inferences for the Kumaraswamy distribution based on
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record values with their corresponding inter-record times are considered. In Section

4.3, the statistical inferences for the stress-strength reliability of the Kumaraswamy

distribution based on record values are considered.

4.2. Estimation of The Parameters Based on Record Values

When the underlying distribution is the exponential model, the statistical

properties of record values were studied by [Ahsanullah, 1980], [Awad and Raqab,

2000], they studied four procedures to obtain prediction intervals for the future sth

record value and by means of computer simulation they compared these procedures.

Three types of estimators, ML, minimum variance unbiased and Bayesian estimators

for the one parameter Burr type X distribution based on the record values were derived

by [Ali Mousa, 2001]. Bayesian estimation for the exponential, Weibull, Pareto and

Burr Type XII distribution based on record values were considered by [Ahmadi and

Doostparast, 2006] when both of the parameters are considered as a random variables.

Based on the record values from the two-parameter Pareto distribution, ML and

Bayes estimators for the unknown parameters and point and interval prediction for

the future record values were obtained by [Raqab et al., 2007]. Statistical analysis of

record values from the geometric distribution was done by [Doostparast and Ahmadi,

2006]. Furthermore, they derived estimators for the unknown parameter and also

considered the problem of predicting the future record values based on past record

values from a non-Bayesian and Bayesian point of view. Bayes estimators of the

parameter, reliability function and hazard rate for the Rayleigh distribution based on

upper record values were obtained by [Hendi et al., 2007]. The prediction of k-records

from a general class of distributions under balanced type loss functions was studied by

[Ahmadi et al., 2009].

In this section, the estimates for the parameters of the Kumaraswamy distribution

and the prediction of the future record values are obtained under the classical and

Bayesian frameworks. In the Bayesian case, the shape parameters are assumed to be

random variables and estimates of the parameters and for the future sth record value are

obtained under the SE and the LINEX loss function. Finally, the findings are illustrated

with actual and computer generated data.
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4.2.1. ML Estimation

Let R1, . . . , Rm be the first m upper record values observed from Kum(a, b).

The likelihood function associated with the sequence {R1, ..., Rm} is given by [Arnold

et al., 1998] as

L(r) = f(rm)
m−1∏
i=1

f(ri)

1− F (ri)
, (4.5)

where 0 < r1 < ... < rm. From equations (4.1), (4.2) and (4.5), we have

L(a, b; r) = ambm(1− ram)b
m∏
i=1

ra−1
i

1− rai
, (4.6)

and so the log-likelihood function is

l(a, b; r) = m(ln a+ ln b) + b ln(1− ram) + (a− 1)
m∑
i=1

ln ri −
m∑
i=1

ln(1− rai ). (4.7)

Then, the MLEs of a and b are given by

b̂ = − m

ln(1− râm)
, (4.8)

and â is a solution of the following non-linear equation

m

a
+

mram ln rm
(1− ram) ln(1− ram)

+
m∑
i=1

ln ri
1− rai

= 0. (4.9)

Therefore, â can be obtained as a solution of the non-linear equation of the form

h(a) = a where

h(a) = −m

[
mram ln rm

(1− ram) ln(1− ram)
+

m∑
i=1

ln ri
1− rai

]−1

. (4.10)
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Since, â is a fixed point solution of the non-linear equation(4.10), its value can be

obtained using an iterative scheme as like: a(j+1) = h(a(j)),where a(j) is the jth iterate

of â. The iteration procedure should be stopped when
∣∣a(j+1) − a(j)

∣∣ is sufficiently

small. After â is obtained, b̂ can be obtained from equation (4.8).

Next, the existence and uniqueness of the ML estimates of the parameters a and

b of the Kumaraswamy distribution based on upper record values are proved.

Theorem 4.1: The ML estimates of the parameters a and b are unique and are given by

b̂ = − m

ln(1− râm)
, (4.11)

where â is the solution of the non-linear equation:

G(a) =
m

a
+

mram ln rm
(1− ram) ln(1− ram)

+
m∑
i=1

ln ri
1− rai

= 0. (4.12)

Proof 4.1: G(a) can be rewritten as

G(a) =
m

a

[
1 +G1(a) +

G2(a)

G3(a)

]
, (4.13)

where G1(a) = (1/m)
∑m

i=1 ln si/(1 − si), G2(a) = sm ln sm/m(1 − sm), G3(a) =

ln(1− sm)/m and si = rai , i = 1, ...,m.

The limit of G(a) is considered as a→ 0+ and a→∞. It is easily obtained that

lima→0+ G(a) = ∞ and lima→∞G(a) < 0. By the intermediate value theorem G(a)

has at least one root in (0,∞). If it can be show that G
′
(a) < 0, then the proof will be

completed. Since ri < rm, 1/(1− rai ) < 1/(1− ram), i = 1, ...,m− 1 for a > 0 and

G
′
(a) =

−m
a2

+
mram (ln ram)2

a2 (1− ram)2

(ram + ln(1− ram))

(ln(1− ram))2 +
m∑
i=1

rai (ln rai )
2

a2 (1− rai )
2

<
m

a2

{
−1 + ram

(ln ram)2

(1− ram)2

(ram + ln(1− ram))

(ln(1− ram))2 +
ram (ln ram)2

(1− ram)2

}
(4.14)

=
−m
a2

+
mram (ln ram)2

a2(1− ram)2

{
1 +

ram
(ln(1− ram))2 +

ram
ln(1− ram)

}
.
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According to the order of convergence of the corresponding terms in the last

expression, it can be easily show that G
′
(a) < 0.

Finally, we will show that the ML estimates of a and b maximizes the

log-likelihood function l(a, b; r). Let H(a, b) be the Hessian matrix of l(a, b; r) at

(a, b). It is clear that H11(â, b̂) < 0 and the determinant of the Hessian matrix

D(â, b̂) = H11(â, b̂)H22(â, b̂)− (H12(â, b̂))2

= G
′
(â)

{(
ln(1− râm)

)2

m

}
, (4.15)

and D(â, b̂) > 0. Hence, (â, b̂) is the local maximum point of l(a, b; r). Since there

is no singular point of l(a, b; r) and it has a single critical point then, it is enough to

show that the absolute maximum of the function is indeed the local maximum. Assume

that there exist a â0 in the domain in which l∗(â0) > l∗(â), where l∗(â) = l(â, b̂; r,).

Since â is the local maximum there should be some point a1 in the neighborhood of â

such that l∗(â) > l∗(a1). Let k(a) = l∗(a) − l∗(â) then k(â0) > 0, k(a1) < 0 and

k(â) = 0. This implies that a1 is a local minimum of the l∗(a), but â is the only critical

point so it is a contradiction. Therefore, (â, b̂) is the absolute maximum of l(a, b; r). �

4.2.2. Bayesian Estimation

Assume that the parameters a and b have a joint bivariate prior density function

that was first suggested by [Al-Hussaini and Jaheen, 1995] as,

π(a, b) = π1(b |a)π2(a), (4.16)

where

π1(b |a) =
aα+1

Γ(α + 1)γα+1
bαe−ba/γ, α > −1, γ > 0, (4.17)

is the gamma conjugate prior, was first introduced by [Papadopoulos, 1978] and was

also used later on by [Al-Hussaini and Jaheen, 1992], and a has gamma prior with
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parameters (δ, β),

π2(a) =
aδ−1

Γ(δ)βδ
e−a/β, β > 0, δ > 0. (4.18)

From equations (4.6) and (4.16), the joint posterior density function of a and b is

π (a, b |r) =
L(a, b; r)π(a, b)∫∞

0

∫∞
0
L(a, b; r)π(a, b)dadb

=
aδ+m+αbα+me−a(

1
β
−
∑m
i=1 ln ri)e−b(

a
γ
−ln(1−ram))

Γ(m+ α + 1)ψ(0, 1, 0, 0)
∏m

i=1(1− rai )
, (4.19)

where

ψ(c, d, h, f) =

∫ ∞
0

tδ+m+α+ce−t(h+ 1
β
−
∑m
i=1 ln ri)∏m

i=1(1− rti)
[
f + t

γ
− ln(1− rtm)

]m+α+d
dt. (4.20)

If the loss function is the SE loss function, then the Bayes estimates of a and b are the

given by their marginal posterior expectations as

âBS = E(a |r) =
ψ(1, 1, 0, 0)

ψ(0, 1, 0, 0)
, (4.21)

and

b̂BS = E(b |r) = (m+ α + 1)
ψ(0, 2, 0, 0)

ψ(0, 1, 0, 0)
, (4.22)

respectively. If we use the LINEX loss function, the Bayes estimates of a and b are

given by

âBL = −1

v
lnE(e−av |r) = −1

v
ln

(
ψ(0, 1, v, 0)

ψ(0, 1, 0, 0)

)
, (4.23)

and

b̂BL = −1

v
lnE(e−bv |r) = −1

v
ln

(
ψ(1, 1, 0, v)

ψ(0, 1, 0, 0)

)
, (4.24)
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respectively. It should be point out that equations (4.21)-(4.24) are not in explicit form,

but the practitioner should not be discouraged, there are several numerical methods that

can be used to evaluate those expressions.

4.2.3. Prediction of Future Record Values

In this section, the problem of prediction of the sth (s > m) upper record value

are considered by using non-Bayesian and Bayesian approaches.

4.2.3.1. Non-Bayesian Prediction Approach

When the first m upper record values are observed from a population with pdf

f(x; θ), the predictive likelihood function of Y = Rs, s > m and the parameters θ is

given by [Basak and Balakrishnan, 2003] as

L(y, θ; r) =
m∏
i=1

f(ri; θ)

1− F (ri; θ)

[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)
f(y; θ), (4.25)

where θ = (a, b), r = (r1, ..., rm) and H(y; θ) = − ln(1 − F (y; θ)). From equations

(4.1), (4.2) and (4.25), we have

L(y, a, b; r) =
am+1bsya−1

(1− ya)1−b
[ln(1− ram)− ln(1− ya)]s−m−1

Γ(s−m)

m∏
i=1

ra−1
i

1− rai
, (4.26)

where y > rm > rm−1 > ... > r1 > 0. Then, the PMLE of a and b and the MLP

of Y = Rs are obtained by minimizing the logarithm of the predictive likelihood

function in equation (4.26) with respect to the above mentioned parameters. After

some simplifications these equations are

m+ 1

a
+ (s−m− 1)

(ya ln y/(1− ya))− (ram ln rm) /(1− ram)

ln(1− ram)− ln(1− ya)

+ ln y − (b− 1)
ya ln y

1− ya
+

m∑
i=1

ln ri
1− rai

= 0, (4.27)
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s

b
+ ln(1− ya) = 0, (4.28)

(s−m− 1)
aya−1/(1− ya)

ln(1− ram)− ln(1− ya)
+
a− 1

y
− (b− 1)

aya−1

1− ya
= 0. (4.29)

The above system of three equations can be reduced to a system of two equations by

replacing b = −s/(ln(1 − ya)) into the equations (4.27) and (4.29) and obtained as

follows

m+ 1

a
+ (s−m− 1)

(ya ln y/(1− ya))− (ram ln rm) /(1− ram)

ln(1− ram)− ln(1− ya)
+ ln y

+

(
s

ln(1− ya)
+ 1

)
ya ln y

1− ya
+

m∑
i=1

ln ri
1− rai

= 0, (4.30)

(s−m− 1)aya−1/(1− ya)
ln(1− ram)− ln(1− ya)

+
a− 1

y
+

(
s

ln(1− ya)
+ 1

)
aya−1

1− ya
= 0. (4.31)

The above non-linear equation system can be easily solved numerically.

4.2.3.2. Bayesian Prediction Approach

The prediction of future records based on a Bayesian approach is considered

under the SE and the LINEX loss functions. The conditional density of Y = Rs,

s > m given the past m records is

f(y |r , θ) =
[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)

f(y |θ)
1− F (rm |θ )

=
abs−m

Γ(s−m)

[
ln

(
1− ram
1− ya

)]s−m−1(
1− ya

1− ram

)b
ya−1

1− ya
, (4.32)

where rm < y < 1. The Bayes predictive density function of Y given r, see [Arnold

et al., 1998], is given by

h(y |r) =

∫ ∞
0

∫ ∞
0

f(y |r , a, b)π(a, b |r)dadb. (4.33)
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Using equations (4.19) and (4.32), the Bayesian predictive density function of Y = Rs

is obtained as follows

h(y |r) =

∑s−m−1
i=0

(
s−m− 1

i

)
ξi(r, y)

B(s−m,m+ α + 1)ψ(0, 1, 0, 0)y
, (4.34)

where

ξi(r, u) =

∫ ∞
0

tk1 [ln(1− rtm)]
i
[− ln(1− ut)]k2 e−t(

1
β
−lnu−mi=1ln ri)∏m

i=1(1− rti)
[
t
γ
− ln(1− ut)

]s+α+1

(1− ut)
dt, (4.35)

k1 = δ + α +m+ 1, k2 = s−m− 1− i and B(x, y) is the Beta function. Then, the

Bayes point predictor of Y = Rs, s > m under the SE and the LINEX loss functions

are given by

ŶSEL =

∫ 1

rm

yh(y |r)dy =

∑s−m−1
i=0

(
s−m− 1

i

)∫ 1

rm
ξi(r, y)dy

B(s−m,m+ α + 1)ψ(0, 1, 0, 0)
, (4.36)

and ŶLinex = −
(
lnE(e−vY |r)

)
/v where

EY |r (e−vY |r) =

∫ 1

rm

e−vY h(y |r)dy

=

∑s−m−1
i=0

(
s−m− 1

i

)∫ 1

rm
e−vy−ln yξi(r, y)dy

B(s−m,m+ α + 1)ψ(0, 1, 0, 0)
. (4.37)

4.2.4. Simulation Study

The two examples are given to illustrate the findings of Section 4.2. The former

is a real data set is obtained from the Shasta reservoir in California while latter example

uses simulated data set. In both examples, the mathematical package MATLAB 7.7.0

is used to obtain the estimates of the parameters a and b and the prediction of future

record value(s).
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The first example deals with the monthly water capacity data from the Shasta

reservoir in California, USA and are taken for the month of February from 1991 to

2010 (see http://cdec.water.ca.gov/reservoir_map.html). The maximum capacity of the

reservoir is 4552000 AF and the data are transformed to the interval [0, 1]. The actual

and transformed data are given in Table 4.1. The 20 values are used to verify that

the transformed data follow Kumaraswamy’s distribution. The Kolmogorov–Smirnov

test shows that indeed the observations follow the double bounded Kumaraswamy’s

distribution (p-value > 0.2). The prediction of the 7th record value based on the first 5

records is computed by using the ML and Bayes prediction approaches.

The parameters of the priors given by equations (4.17) and (4.18) are estimated

by using the method of moments. From equations (4.17) and (4.18), we have a ∼

Gamma(δ, β) and b |â ∼ Gamma(α+1, γ/â) where â = 2.4446 is obtained from the

data. Using the method of moments, we have X = δβ and
∑n

i=1 x
2
i /n = δβ2 + (δβ)2

by equating the sample moments with the population moments. β and δ are obtained

by solving these two equations and are given by

β =

∑n
i=1 x

2
i /n−X

2

X
, δ =

X
2∑n

i=1 x
2
i /n−X

2 . (4.38)

Then, these two quantities are used as estimates of the population parameters δ and β.

Similarly, using the third and fourth moments of b |â , we have

1

n

n∑
i=1

x3
i =

(γ
â

)3

(α + 1)(α + 2)(α + 3), (4.39)

1

n

n∑
i=1

x4
i =

(γ
â

)4

(α + 1)(α + 2)(α + 3)(α + 4). (4.40)

Solving these two equations for γ and α, the following non-linear equations are

obtained

(γ
â

)
=

1

α + 4

∑n
i=1 x

4
i /n∑n

i=1 x
3
i /n

,
(α + 1)(α + 2)(α + 3)

(α + 4)3
=

(
∑n

i=1 x
3
i /n)

4

(
∑n

i=1 x
4
i /n)

3 . (4.41)

Then again one can use these two quantities as estimates of the population parameters

γ and α. For this data set, the estimated parameters are α = 15.903, β = 0.0659,
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Table 4.1: Monthly capacity for February and proportion of total capacity.

Year Capacity Proportion of Year Capacity Proportion of
total capacity total capacity

1991 1542838 0.338936 2001 3495969 0.768007
1992 1966077 0.431915 2002 3839544 0.843485
1993 3459209 0.759932 2003 3584283 0.787408
1994 3298496 0.724626 2004 3868600 0.849868
1995 3448519 0.757583 2005 3168056 0.695970
1996 3694201 0.811556 2006 3834224 0.842316
1997 3574861 0.785339 2007 3772193 0.828689
1998 3567220 0.783660 2008 2641041 0.580194
1999 3712733 0.815627 2009 1960458 0.430681
2000 3857423 0.847413 2010 3380147 0.742563

Table 4.2: Estimates of a and b and predictors of R7.

Bayes
Parameter MLE PMLE SEL LINEX(v = 0.2)

a 1.7846 3.1127 3.1877 3.0523
b 5.2496 2.7521 2.0343 1.9752
R7 - 0.8425 0.9768 0.9771

γ = 0.0970 and δ = 9.5779. When the actual 7th record value is 0.849868, the ML

prediction for the 7th record value is 0.6663 and the Bayesian point predictor under the

SE loss function is 0.8518.

Several authors such as [Raqab, 2002], [Ahmadi and Doostparast, 2006], [Hendi

et al., 2007] have used simulated data to illustrate their findings. In our second

example, a simulated data is used for demonstration purposes. a = 5.8191 and

b = 1.0515 are generated from the priors by using the values of α = 1, β = 3, γ = 2

and δ = 3. A random sample of 7 record values from the Kumaraswamy distribution

are generated, which are 0.5454, 0.6417, 0.8723, 0.9242, 0.9446, 0.9549, 0.9571. The

first 5 will be used to estimate the parameters a and b, and also to predict the 7th record

value. Based on this sample, the ML, PML and Bayes estimates of the parameters

(a, b), and MLP and Bayes point predictor of Y = R7 are obtained under the SE and

the LINEX loss functions and results are listed in Table 4.2.
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4.2.5. Conclusion

In this section, the ML and Bayes estimates of two shape parameters of the

Kumaraswamy distribution are obtained. The Bayes estimates are derived under the

SE and LINEX loss function for bivariate prior density function. Non-Bayesian and

Bayesian point predictors of the future record values are obtained. The real life

and computer generated data sets are considered to illustrate the use of the methods

proposed in this section. The examples reveals out that the performance of the Bayes

estimates of the parameters and Bayesian point predictor of the future record values

are better than that of ML case.

4.3. Estimation of The Parameters Based on Records and
Inter-Record Times

In this section, the parameter estimates of Kumaraswamy distribution based on

lower record values and their corresponding inter-record times are obtained under the

classical and Bayesian frameworks. The Lindley approximation and MCMC technique

are used to obtain the Bayes estimates under different loss functions. Finally, a

Monte Carlo simulation is performed to compare the estimates of the parameters. The

non-Bayesian and Bayesian point predictors and the Bayesian prediction interval for

future lower record values are obtained based on the observed lower record values

with their corresponding inter-record times. To see the effect of the inter-record times

in parameter estimates, the estimates based on lower record values with inter-record

times and upper records which are obtained from the same random sample of the

Kumaraswamy distribution are constructed. Finally, the two approach are compared

by using Monte Carlo simulations.

4.3.1. ML Estimation

LetX1, X2, . . . be i.i.d. random variables, coming from a population with the cdf

and the pdf F (.) and f(.), respectively. Then the likelihood function associated with

the sequence {R1, K1, . . . , Rm, Km} is given by [Samaniego and Whitaker, 1986] as
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L(r,k) =
m∏
i=1

f(ri) {1− F (ri)}ki−1 I(−∞,ri−1)(ri), (4.42)

where r0 ≡ ∞, km ≡ 1 and IA(x) is the indicator function of the setA. From equations

(4.1), (4.2) and (4.42), we have

L(a, b; r,k) = ambm exp

{
(a− 1)

m∑
i=1

ln ri +
m∑
i=1

(bki − 1) ln(1− rai )

}
, (4.43)

where r1 > . . . > rm and so the log-likelihood function is

l(a, b; r,k) = m ln a+m ln b+ (a− 1)
m∑
i=1

ln ri +
m∑
i=1

(bki − 1) ln(1− rai ). (4.44)

The MLEs of a and b are given by

b̂ =
m

Ta
, (4.45)

where Ta = −
∑m

i=1 ki ln(1 − rai ) and â is the solution of the following non-linear

equation

m

a
+

m∑
i=1

ln ri
1− rai

− m

Ta

m∑
i=1

kir
a
i ln ri

1− rai
= 0. (4.46)

Therefore, â can be obtained as the solution of the non-linear equation of the form

h(a) = a where

h(a) = m

[
m

Ta

m∑
i=1

kir
a
i ln ri

1− rαi
−

m∑
i=1

ln ri
1− rai

]−1

. (4.47)

Since, â is a fixed point solution of the non-linear equation (4.47), its value can be

obtained using an iterative scheme as like: a(j+1) = h(a(j)), where a(j) is the jth

iterate of â. After â is obtained, b̂ can be obtained from equation (4.45). The iteration

procedure should stopped when
∣∣a(j) − a(j+1)

∣∣ is sufficiently small.
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Next, the existence and uniqueness of the ML estimates of the parameters a and b

of the Kumaraswamy distribution based on lower record values and their corresponding

inter-record times are proved.

Theorem 4.2: The MLEs of the parameters a and b are unique and given by b̂ = m/Tâ

where â is the solution of the non-linear equation:

G(a) =
m

a
− m

Ta

m∑
i=1

kir
a
i ln ri

1− rai
+

m∑
i=1

ln ri
1− rai

= 0. (4.48)

Proof 4.2: It is clear that

G(a) =
m

a
+
m
∑m

i=1 (kir
a
i ln ri/ (1− rai ))∑m

i=1 ki ln(1− rai )
+

m∑
i=1

ln ri
1− rai

>
m

a
+

mra1
∑m

i=1 ki ln ri∑m
i=1 ki ln(1− rai )

+
m∑
i=1

ln ri. (4.49)

Then, we have

G(0) ≡ lim
a→0

G(a) > lim
a→0

(
m

a
+

∑m
i=1 ki ln ri∑m

i=1 ki ln(1− rai )

)
+

m∑
i=1

ln ri =∞, (4.50)

and G(0) =∞. Moreover,

G(∞) ≡ lim
a→∞

G(a) = lim
a→∞

(
m

a
+
m
∑m

i=1 (kir
a
i ln ri/ (1− rai ))∑m

i=1 ki ln(1− rai )
+

m∑
i=1

ln ri
1− rai

)

= lim
a→∞

m
∑m

i=1 (ki ln ri/ (1− rai )) (ri/r1)a∑m
i=1 ki(ln(1− rai )/ra1)

+
m∑
i=1

ln ri (4.51)

=
m∑
i=1

(ln ri − ln r1) < 0.

Hence, we obtain that lima→0G(a) =∞ and lima→∞G(a) < 0. By the intermediate

value theoremG(a) has at least one root in (0,∞). If it can be shown that ∂G(a)/∂a <
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0 then the proof will be completed. It is easily obtained that

∂G(a)

∂a
= − 1

a2

[
G1(a)− mG2(a)

(
∑m

i=1 ki ln(1− rai ))
2

]
, (4.52)

where

G1(a) = m−
m∑
i=1

rai

(
ln rai

1− rai

)2

, (4.53)

G2(a) =
m∑
i=1

kir
a
i

(
ln rai

1− rai

)2
(

m∑
i=1

ki ln(1− rai )

)
+

(
m∑
i=1

kir
a
i ln rai

1− rai

)2

. (4.54)

It is easily obtained that G1(a) > 0, because f(x) = x(lnx)2/(1 − x)2, x ∈

(0, 1) is an increasing function on (0, 1) and lima→0 f(x) = 0, lima→1 f(x) = 1.

Therefore, f(x) < 1 for x ∈ (0, 1). Moreover, G2(a) < 0 is obtained by using

the Cauchy-Schwarz inequality and x < − ln(1 − x), x ∈ (0, 1). Notice that

g(x) = x + ln(1 − x), x ∈ (0, 1) then g(x) is a decreasing function on (0, 1) and

g(x) < 0 for x ∈ (0, 1). Since G1(a) > 0 and G2(a) < 0, we have ∂G(a)/∂a < 0

from equation (4.52).

Finally, we will show that the MLEs of (a, b) maximizes the log-likelihood

function l(a, b; r,k). Let H(a, b) be the Hessian matrix of l(a, b; r,k) at (a, b). It

is clear that

H11(â, b̂) = −G1(â)− b̂
m∑
i=1

kir
â
i

(
ln ri

1− râi

)2

< 0, (4.55)

and the determinant of the Hessian matrix

D(â, b̂) = H11(â, b̂)H22(â, b̂)−
(
H12(â, b̂)

)2

=
mG1(â)

â2b̂2
−G2(â) > 0. (4.56)

Hence, (â, b̂) is the local maximum of l(a, b; r,k). Since there is no singular point

of l(a, b; r,k) and it has a single critical point then, it is enough to show that the
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absolute maximum of the function is indeed the local maximum. Assume that there

exist a â0 in the domain in which l∗(â0) > l∗(â), where l∗(â) = l(â, b̂; r,k). Since â is

the local maximum there should be some point a1 in the neighborhood of â such that

l∗(â) > l∗(a1). Let k(a) = l∗(a) − l∗(â) then k(â0) > 0, k(a1) < 0 and k(â) = 0.

This implies that a1 is a local minimum of the l∗(a), but â is the only critical point so

it is a contradiction. Therefore, (â, b̂) is the absolute maximum of l(a, b; r,k). �

4.3.2. ML Estimation When a Is Known

Without loss of generality, we assume that a = a0. Then, by (4.43)

L(α0, β; r,k) = am0 b
m exp

{
(a0 − 1)

m∑
i=1

ln ri +
m∑
i=1

(bki − 1) ln(1− ra0i )

}
, (4.57)

where r1 > . . . > rm. In this case, Ta0 = −
∑m

i=1 ki ln(1− ra0i ) is a sufficient statistic

for b and the MLE of b is b̂ML = m/Ta0 . The moment generating function of Ta0 is

M(t) = 1/(1 − t/b)m, b > t. By the uniqueness of the moment generating function,

Ta0 is distributed as Gamma(m, 1/b) and its mean and variance are m/b and m/b2,

respectively. Therefore, E (̂bML) = (m/(m − 1))b and an unbiased estimator for b

is b̂U = (m − 1)/Ta0 . Notice that, MSE (̂bU) < MSE (̂bML) and MSE (̂bML) → 0

as m → ∞ then b̂ML and b̂U converge to b in mean square. Moreover, we have

2bTa0 ∼ χ2
2m and the exact 100(1− η)% confidence interval of b is

(
χ2

2m,η/2

2Ta0
,
χ2

2m,1−η/2

2Ta0

)
. (4.58)

4.3.3. Asymptotic Confidence Interval

In practice, the observed information matrix is used as a consistent estimator of

the Fisher information matrix. An asymptotic confidence intervals for the parameters

a and b based on lower record values and their corresponding inter-record times are

obtained by using the observed information matrix. The observed information matrix

Jm(a, b) is given by
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Jm(a, b) = −
[
∂2l
∂a2

∂2l
∂a∂b

∂2l
∂b∂a

∂2l
∂b2

]
=

[
J11 J12

J21 J22

]
, (4.59)

where

J11 =
m

a2
+

m∑
i=1

(bki−1)rai

(
ln ri

1− rai

)2

, J12 = J21 =
m∑
i=1

kir
a
i ln ri

1− rαi
, J22 =

m

b2
. (4.60)

By the asymptotic normality of the MLE, we have
[√

m(âML − a),
√
m(̂bML − b)

]
a∼

N2(0, I−1) for large m, where a∼ means approximately distributed and I−1 is the

inverse of the Fisher information matrix. If the likelihood equations have a unique

solution θ̂n, then θ̂n is consistent, asymptotically normal and efficient, see [Lehmann

and Casella, 1998]. Since our likelihood equations have a unique solution, these results

are satisfied for our estimates. The observed information matrix Jm(âML, b̂ML)/m is

a consistent estimator for Im(a, b)/m under the regularity conditions, see [Lawless,

2003]. Therefore, we use the observed information matrix in the asymptotic normality

of the MLE. For largem (the number of record values) under inverse sampling, we can

construct the approximate 100(1− η)% equi-tail confidence intervals for a and b as

a ∈

(
âML ± c

√
J22

J11J22 − J2
12

)
and b ∈

(
b̂ML ± c

√
J11

J11J22 − J2
12

)
, (4.61)

where c = z1−η/2 and zη is the upper ηth quantile of the standard normal distribution.

4.3.4. Bayes Estimation

In this section, we consider the Bayes estimates of the Kumaraswamy

distribution parameters under different loss functions for the inverse sampling scheme.

4.3.4.1. Bayesian Estimation When a Is Known

When the parameter a is assumed to be known, say a = a0, we use the gamma

conjugate prior density for the parameter b, was used in section 4.2, i.e.
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π(b) =
aα+1

0

Γ(α + 1)γα+1
bαe−ba0/γ, b > 0 (α > −1, γ > 0). (4.62)

Then, the posterior density function of b is readily obtained from equations (4.57) and

(4.62) as

b| (r,k) ∼ Gamma (m+ α + 1, (a0/γ + Ta0)
−1). (4.63)

The Bayes estimate of a under the SE loss function, b̂BS,1, is the mean of the b| (r,k).

Therefore

b̂BS,1 =
m+ α + 1

a0/γ + Ta0
, (4.64)

and the Bayes estimate of b under the LINEX loss function, b̂BL,1, is

b̂BL,1 = −1

v
lnE b|(r,k)(e

−vb) =
m+ α + 1

v
ln

(
1 +

v

a0/γ + Ta0

)
. (4.65)

If we use the Jeffrey’s non-informative prior, that is π(b) = 1/b, then we have

b| (r, k) ∼ Gamma (m, 1/Ta0). Therefore, the Bayes estimates of b under the SE

and the LINEX loss functions are obtained as

b̂BS,0 =
m

Ta0
and b̂BL,0 =

m

v
ln

(
1 +

v

Ta0

)
, (4.66)

respectively.

The 100(1 − η)% Bayesian credible interval can be easily constructed by using

the posterior density function of b. It is clear that 2(a0/γ + Ta0)b| (r,k) ∼ χ2
2(m+α+1).

Therefore, a Bayesian credible interval for b is given by

(
χ2

2(m+α+1)(η/2)

2(a0/γ + Ta0)
,
χ2

2(m+α+1)(1− η/2)

2(a0/γ + Ta0)

)
. (4.67)

In the following proposition the comparison of Bayes estimates are given under

the SE and the LINEX loss functions.

111



Proposition 4.1:

i) b̂BL,1 ≤ b̂BS,1 for v > 0.

ii) b̂BL,1 ≥ b̂BS,1 for − (a0/γ + Ta0) < v < 0.

Proof 4.1It is known that

ln(1 + x) ≤ x for every x > −1. (4.68)

i) Suppose v > 0. v/ (a0/γ + Ta0) > 0, when a0/γ > 0 and Ta0 > 0. We have

ln (1 + v/ (a0/γ + Ta0)) ≤ v/ (a0/γ + Ta0) by the inequality (4.68). Therefore,

b̂BL,1 ≤ b̂BS,1

ii) Suppose v < 0 and −(a0/γ + Ta0) < v, then v/ (a0/γ + Ta0) > −1. We have

ln (1 + v/ (a0/γ + Ta0)) ≤ v/ (a0/γ + Ta0) by the inequality (4.68). Therefore,

b̂BL,1 ≥ b̂BS,1. �

4.3.4.2. Bayesian Estimation When a and b Are Unknown

We consider the Bayes estimates of a and b when the parameters a and b are both

unknown and random variables. We assume that a and b have a joint bivariate density

function, say π(a, b), which is used in section 4.2

π(a, b) = π1(b |a)π2(a), (4.69)

where

π1(b |a) =
aα+1

Γ(α + 1)γα+1
bαe−ba/γ, b > 0 (α > −1, γ > 0), (4.70)

and a has gamma distribution with parameters (δ, β). From equations (4.43) and

(4.69), the joint posterior density function of a and b can be rewritten as

π(a, b| r,k) = I(r,k)am+α+δbm+α

exp

{
−b
(
a

γ
+ Ta

)
− a

(
1

β
−

m∑
i=1

ln ri

)
−

m∑
i=1

ln(1− rai )

}
, (4.71)
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where

[I(r,k)]−1

Γ(m+ α + 1)
=∞0 αm+α+δ

(
a

γ
+ Ta

)−m−α−1

exp

{
−a

(
1

β
−

m∑
i=1

ln ri

)
−

m∑
i=1

ln(1− rai )

}
da. (4.72)

The Bayes estimate of a given measurable function of a and b, say g(a, b), under the

SE loss function is

ĝBS = Ea,b|r,k(g(a, b)) =

∫∞
0

∫∞
0
g(a, b)L(a, b; r,k)π(a, b)dadb∫∞

0

∫∞
0
L(a, b; r,k)π(a, b)dadb

. (4.73)

It is not possible to compute equation (4.73) analytically. Two approaches are

suggested here to approximate equation (4.73), namely Lindley’s approximation and

MCMC method.

• Lindley’s approximation

For the two parameter case (a, b), we have from equation (4.71)

Q = ln I(r,k) + (m+ α + δ) ln a+ (m+ α) ln b− b
(
a

γ
+ Ta

)

− a

(
1

β
−

m∑
i=1

ln ri

)
−

m∑
i=1

ln(1− rai ). (4.74)

The joint posterior mode is the obtained from the equations ∂Q/∂a = 0 and ∂Q/∂b =

0 as

b̃ =
m+ α

ã/γ + Tã
, (4.75)

and ã is the solution of the nonlinear equation

m+ α + δ

a
− m+ α

a/γ + Ta

(
1

γ
+

m∑
i=1

kir
a
i ln ri

1− rai

)
− 1

β
+

m∑
i=1

ln ri
1− rai

= 0. (4.76)
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It can be solved by using the same procedure in equations (4.45) and (4.47). The

elements of the Q∗ are

Q∗11 =
m+ α + δ

a2
+

m∑
i=1

(bki − 1)rai

(
ln ri

1− rai

)2

, (4.77)

Q∗12 = Q∗21 =
1

γ
+

m∑
i=1

kir
a
i ln ri

1− rai
, Q∗22 =

m+ α

b2
, (4.78)

and τij, i, j = 1, 2 are obtained by using equations (4.77) and (4.78). Moreover, we

have

Q12 = 0, Q21 = −
m∑
i=1

kir
a
i

(
ln ri

1− rai

)2

, Q03 =
2 (m+ α)

b3
, (4.79)

Q30 =
2 (m+ α + δ)

a3
−

m∑
i=1

(bki − 1)rai (1 + rai )

(
ln ri

1− rai

)3

. (4.80)

Therefore, the approximate Bayes estimates of a and b under the SE and the LINEX

loss functions are

âBS,Lind = ã+
1

2

[
Q30τ

2
11 + 3Q21τ11τ12 +Q03τ21τ22

]
, (4.81)

âBL,Lind = ã− 1

v
ln
[
1 +

v

2

(
vτ11 −Q30τ

2
11 − 3Q21τ11τ12 −Q03τ21τ22

)]
, (4.82)

b̂BS,Lind = b̃+
1

2

[
Q30τ12τ11 +Q21(τ11τ22 + 2τ 2

12) +Q03τ
2
22

]
, (4.83)

b̂BL,Lind = b̃− 1

v
ln

[
1 +

v2

2
τ22 −

v

2
Q21(τ11τ22 + 2τ 2

12)

−v
2
Q30τ12τ11 −

v

2
Q03τ

2
22

]
. (4.84)

Notice that all approximate Bayes estimates are evaluated at (ã, b̃).

• MCMC method

In the previous subsection, the Bayes estimates of a and b are obtained under

the SE and the LINEX loss functions by using the Lindley’s approximation. Since
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the exact probability distributions of these estimates are not known, it is difficult to

evaluate HPD credible intervals of parameters. For this reason, the MCMC method

are used to compute the Bayes estimates of a and b under the SE and the LINEX loss

functions as well the HPD credible intervals.

The MCMC method are considered to generate samples from the posterior

distributions and then compute the Bayes estimates of a and b under the SE and the

LINEX loss functions. The joint posterior density of a and b is given by equation

(4.71). It is easy to see that

b| a, r,k ∼Gamma (m+ α + 1, a/γ + Ta) (4.85)

and

π(a| b, r,k) ∝ am+α+δ exp

{
−b
(
a

γ
+ Ta

)

−a

(
1

β
−

m∑
i=1

ln ri

)
−

m∑
i=1

ln(1− rai )

}
. (4.86)

Therefore, samples of b can be generated by using the gamma distribution. However,

the posterior distribution of a cannot be reduced analytically to well known distribution

and therefore it is not possible to sample directly by standard methods. If the

posterior density of a is unimodal and roughly symmetric then it is often convenient

to approximate it by a normal distribution centered at the mode (see, [Gelman et

al., 2003]). Since the posterior density of a is log-concave density (so unimodal)

and the posterior density of a is roughly symmetric with respect to mode (by

experimentation), we use the Metropolis-Hasting algorithm with the normal proposal

distribution to generate a random sample from the posterior density of a. The

hybrid Metropolis-Hastings and Gibbs sampling algorithm, which will be used to

solve our problem, is suggested by [Tierney, 1994]. This algorithm combines

the Metropolis-Hastings with Gibbs sampling scheme under the Gaussian proposal

distribution.

• Step 1: Take some initial guess of a and b, say a(0) and b(0).
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• Step 2: Set t = 1.

• Step 3: Generate a(t) from π(a| b, r,k) using the Metropolis-Hastings algorithm

with the proposed value distribution q(a) ≡ N(ã, Vã) where ã is a mode of

π(a| b(t−1), r,k) and Va =
(
−d2(ln π(a| b(t−1), r,k))/da2

)−1
:

-Step 3.1: Let v = a(t−1).

-Step 3.2: Generate w from the proposal distribution q.

-Step 3.3: Let p(v, w) = min

{
1,
π(w| b(t−1), r,k) q(v)

π(v| b(t−1), r,k) q(w)

}
.

-Step 3.4: Generate u from Uniform(0, 1). If u ≤ p(v, w) then accept the

proposal and set a(t) = w; otherwise, set a(t) = v.

• Step 4: Generate b(t) from Gamma
(
m+ α + 1, a/γ −

∑m
i=1 ki ln(1− ra(t)

i )
)

.

• Step 5: Set t = t+ 1.

• Step 6: Repeat Steps 3-5, N times, and obtain the posterior samples (a(i), b(i)),

i = 1, . . . , N .

The samples obtained from the algorithm are used to compute the Bayes

estimates and to construct the HPD credible intervals. The Bayes estimator of

g ≡ g(a, b) based on the SE and the LINEX loss function are given, respectively,

by

ĝBS,MH = E(g| r,k) =
1

N −M

N−M∑
i=M+1

g(a(i), b(i)), (4.87)

and

ĝBL,MH = −1

v
ln

[
1

N −M

N−M∑
i=M+1

exp
(
−v g(a(i), b(i))

)]
, (4.88)

where M is the burn-in period.

The HPD 100(1 − γ)% credible intervals of a and b can be obtained by the

method of [Chen and Shao, 1999]. In particular for a:

From MCMC, the sequence a1, . . . , aN , are obtained, and ordered as a(1) <

. . . < a(N). The credible intervals are constructed as
(
a(j), a(j+[N(1−γ)])

)
for j =

1, ..., N − [N(1 − γ)] where [x] denotes the largest integer less than or equal to x.

Then, the HPD credible interval of a is that interval which has the shortest length.

Similarly, the HPD credible interval of b can also be constructed.
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4.3.5. Prediction of Future Record Values

In this section, we consider the problem of prediction and prediction interval for

the s th (s > m) record value using non-Bayesian and Bayesian approaches.

4.3.5.1. Non-Bayesian Prediction

When the first m lower record values are observed, the predictive likelihood

function of Y = Rs, s > m and the parameters θ is given by [Basak and Balakrishnan,

2003] as

L(y, θ; r) =m
i=1

f(ri; θ)

F (ri; θ)

[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)
f(y; θ), (4.89)

where θ = (α, β), r = (r1, .., rm) and H(y; θ) = − lnF (y; θ). Moreover,

the likelihood function associated with the sequence {R1, K1, . . . , Rm, Km} is

given by [Samaniego and Whitaker, 1986] in equation (4.42). Similarly, the

predictive likelihood function for the future record Rs based on the sequence

{R1, K1, . . . , Rm, Km, Rs} is derived in section 2.3 as

L(y, θ; r,k) =m
i=1 f(ri; θ) {1− F (ri; θ)}ki−1 I(−∞,ri−1)(ri)

[H(y; θ)−H(rm; θ)]s−m−1

Γ(s−m)
f(y; θ). (4.90)

Notice that, Km ≡ 1 is defined for convenience, when the inverse sampling is

employed (see [Samaniego and Whitaker, 1986]). The PMLE of (a, b) and the MLP

of Y = Rs are obtained by maximizing the logarithm of the predictive likelihood

function in equation (4.90) with respect to mentioned parameters. For a special case,

when s = m+ 1, the MLP of Y = Rm+1, say ŶMLP , is obtained as

ŶMLP =

(
âPML − 1

âPMLb̂PML − 1

)1/âPML

. (4.91)
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Notice that ŶMLP is an increasing function with respect to âPML when âPML > 1 and

ŶMLP is a decreasing function with respect to b̂PML when b̂PML > 1. It can be seen

that ŶMLP is very big compared to the last record values which violates ŶMLP < rm.

Hence, we will not list the ŶMLP in Tables 4.5 and 4.7.

4.3.5.2. Bayesian Prediction

In this subsection, we consider the problem of prediction and prediction interval

of future records based on a Bayesian approach using the SE and the LINEX loss

functions by using the bivariate prior in equation (4.69). The conditional density

function of Y = Rs, s > m given the past m records is

f(y| r, a, b) =
[H(y)−H(rm)]s−m−1

Γ(s−m)

f(y)

F (rm)

=
f(y)

Γ(s−m)F (rm)

s−m−1∑
j=0

(
s−m− 1

j

)
(−1)j [lnF (y)]j [lnF (rm)]s−m−1−j , (4.92)

where 0 < y < rm. The Bayes predictive density function Y is given by

h(y| r,k) =

∫ ∞
0

∫ ∞
0

f(y| r, a, b)π(a, b| r,k)dadb. (4.93)

It is clear that h(y| r,k) cannot be expressed in closed form and hence it cannot be

computed analytically.

The consistent estimator of h(y| r,k) is constructed by using the hybrid

Metropolis-Hastings and Gibbs sampling procedure as described in MCMC case.

Suppose that {(ai, bi), i = 1, ..., N} are MCMC samples obtained from π(a, b| r,k)

using the hybrid Metropolis -Hastings and Gibbs sampling technique. The consistent

estimator of h(y| r,k) based on the simulation can be obtained as

ĥ(y| r,k) =
1

N

N∑
i=1

f(y| r, ai, bi), (4.94)
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and a consistent estimator of the predictive distribution of Y = Rs based on the

simulation, say H(y| r,k), can be obtained as

Ĥ(y| r,k) =
1

N

N∑
i=1

F ∗(y| r,ai, bi), (4.95)

and F ∗(y| r,a, b) denotes the distribution function corresponding to the density

function f(y| r, a, b) and

F ∗(y| r,a, b) =

∫ y

0

f(t| r, a, b)dt

=
s−m−1∑
j=0

(
s−m− 1

j

)
[lnF (rm)]s−m−1−j Γ(j + 1,− lnF (y))

Γ(s−m)F (rm)
, (4.96)

where Γ(x, y) is the incomplete Gamma function, i.e. Γ(x, y) =
∫∞
y
tx−1e−tdt. It

should be noted that the same MCMC samples {(ai, bi), i = 1, ..., N} can be used to

compute ĥ(y| r,k) or Ĥ(y| r,k) for all y. Then, the point predictor of Y = Rs under

the SE loss function is

ŶS =

∫ rm

0

yĥ(y| r,k)dy =
1

N

N∑
i=1

∫ rm

0

yf(y| r, ai, bi)dy

=
1

N

N∑
i=1

∫ rm

0

yf(y; r, ai, bi)

Γ(s−m)F (rm;ai, bi)

[
ln

(
F (rm; ai, bi)

F (y; ai, bi)

)]s−m−1

dy. (4.97)

The point predictor of Y = Rs under the LINEX loss function is

ŶL = −1

v
ln

{
1

N

N∑
i=1

∫ rm

0

e−vyf(y; r, ai, bi)

Γ(s−m)F (rm;ai, bi)

(
ln

(
F (rm; ai, bi)

F (y; ai, bi)

))s−m−1

dy

}
. (4.98)

For a special case, when s = m+1, the conditional density function of Y = Rs, s > m

given r is f(y| r, a, b) = f(y)/F (rm). Hence, the distribution function of f(y| r, a, b)

is given by
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F ∗(y| r,a, b) =
1− (1− ya)b

1− (1− ram)b
. (4.99)

Therefore, ĥ(y| r,k), Ĥ(y| r,k), ŶS and ŶL are obtained from equations (4.94), (4.95),

(4.97) and (4.98), respectively by using f(y| r, a, b) and F ∗(y| r,a, b).

Moreover, a symmetric 100η% prediction interval for Y , can be obtained by

solving the following non-linear equations, for the lower bound L and upper bound U ,

1 + η

2
= P (Y > L| r,k) = 1−H(L| r,k)⇒ H(L| r,k) =

1− η
2

, (4.100)

1− η
2

= P (Y > U | r,k) = 1−H(U | r,k)⇒ H(U | r,k) =
1 + η

2
. (4.101)

These equations can be easily solved by using the Newton-Raphson method.

4.3.6. Simulation Study

In this section, we present some numerical results to compare the performance of

the different methods for different sample sizes and different priors. The performances

of the point estimators and predictors are compared by using ERs and MSPEs,

respectively. The performances of the confidence, credible and prediction intervals

are compared by using average confidence lengths and cps. The ER of θ, when θ is

estimated by θ̂, is given by

ER(θ) =
1

N

N∑
i=1

(
θ̂i − θi

)2

, (4.102)

under the SE loss function. Moreover, the estimated risk of θ under the LINEX loss

function is given by

ER(θ) =
1

N

N∑
i=1

(
ev(θ̂i−θi) − v

(
θ̂i − θi

)
− 1
)
, (4.103)
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Table 4.3: Results for the true value of b = 2.8545, (α, γ) = (1, 4) and a is known.

Bayes estimates
LINEX Exact MLE Bayesian

MLE SEL v = −2 v = −1 v = 1 v = 2 confidence interval credible interval
m = 5

3.8549 3.0277 4.6575 3.5362 2.6931 2.4472 (1.3242,8.3535) (1.2343,5.7272)
6.1387 1.5483 1.4888 0.2401 0.1582 0.5332 7.0293/0.9347 4.4932/0.9527

m = 7
3.6323 3.0306 4.1218 3.4216 2.7537 2.5407 (1.4604,6.7765) (1.3858,5.3080)
4.1676 1.2032 0.9735 0.1784 0.1295 0.4574 5.3162/0.9483 3.9222/0.9560

m = 10
3.3350 2.9634 3.6384 3.2380 2.7527 2.5822 (1.5992,5.6977) (1.5312,4.8605)
2.2451 0.9010 0.6113 0.1281 0.1001 0.3660 4.0985/0.9513 3.3292/0.9553

m = 12
3.1984 2.9161 3.4460 3.1414 2.7366 2.5876 (1.6527,5.2459) (1.5943,4.6304)
1.5528 0.7788 0.4823 0.1090 0.0883 0.3246 3.5933/0.9533 3.0362/0.9533

m = 15
3.1576 2.9234 3.3502 3.1104 2.7696 2.6390 (1.7673,4.9448) (1.7030,4.4682)
1.2799 0.6526 0.4120 0.0896 0.0753 0.2813 3.1775/0.9440 2.7652/0.9503

Notes: The first row represents the average estimates and the second row represents corresponding ERs
for each choice of m. The last two columns, the first row represents a 95% confidence interval and the
second row represents their lengths and cp’s.

where N is the number of replication. Similarly, the MSPEs can be computed with

respect to the SE and the LINEX loss functions. All of the computations are performed

by using Matlab R2010a. All the results are based on 3000 replications.

In Table 4.3, the ML and Bayes estimates under the SE and the LINEX (v =

−2,−1, 1 and 2) loss functions with their corresponding ERs are listed when a is

known (a = 3), the true value of b = 2.8545 and the prior parameters of b are chosen

to be (α, γ) = (1, 4). Since the exact distribution of the MLE of b is known, the

95% exact confidence intervals are easily constructed. Moreover, the 95% Bayesian

credible interval for b which is obtained by using the posterior distribution of b are

listed. From Table 4.3, the average ERs of b decrease as the sample size increases in

all cases, as expected. The Bayes estimates under the SE and the LINEX loss functions

have smaller ER than that of MLEs. The average lengths of the intervals decrease as

the sample size increases. The lengths of the Bayesian credible intervals are smaller

than that of the exact confidence intervals. Also, the coverage probabilities are quite

close to the nominal level 95%.

In Tables 4.4 and 4.5, the ML and Bayes estimates under the SE and the LINEX

loss functions with their corresponding ERs are listed for a and b when a = 3, b = 5
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and the prior parameters are Prior 1: (δ, β) = (0.5, 4) and (α, γ) = (3, 2). The point

predictors and the 95% prediction interval for Y = Rm+1 by using Bayesian (with

respect to the SE and the LINEX loss functions) method are also listed. Moreover,

the 95% asymptotic and HPD credible intervals with their coverage probabilities are

listed. The Bayes point estimates are computed by using Lindley’s approximation and

MCMC method under the SE and the LINEX (v = −2,−1, 1 and 2) loss functions.

From Table 4.4, the average ERs of a and b generally decrease as the sample size

increases. The ERs of Bayes estimates under the SE and the LINEX loss functions

are smaller than that of MLEs. On the other hand, the ERs of the Bayes estimates

for a based on the Lindley’s approximation and MCMC methods are close to each

other under the SE and the LINEX loss functions. However, the ERs of the Bayes

estimates for b based on the Lindley’s approximation and MCMC methods are close

to each other under both the SE and the LINEX loss functions when v > 0. The

ERs of the Bayes estimates for b based on the Lindley’s approximation and MCMC

methods close each other under the LINEX loss function as the sample size increases

when v < 0. Furthermore, the average lengths of the intervals decrease as the sample

size increases. The average lengths of the HPD credible intervals are smaller than

that of the asymptotic confidence intervals but the cp values of asymptotic confidence

intervals are more close to the nominal value.

From Table 4.5, the average MSPEs of the point predictors decrease as the

sample size increases in all cases. Also, the average lengths of the prediction intervals

decrease as the sample size increases and their coverage probabilities are quite close

to the nominal value.

In Tables 4.6 and 4.7, the ML and Bayes estimates under the SE and the LINEX

loss functions with their corresponding ERs are listed for a and bwhen a = 10, b = 4.5

and the prior parameters are Prior 2: (δ, β) = (5, 2) and (α, γ) = (6, 5). The point

predictors and the 95% prediction interval for Y = Rm+1 by using Bayesian (with

respect to the SE and the LINEX loss functions) method are also listed. Moreover,

the 95% asymptotic and HPD credible intervals with their coverage probabilities are

listed. The Bayes point estimates are computed by using Lindley’s approximation and

MCMC method under the SE and the LINEX (v = −2,−1, 1 and 2) loss functions.

From Table 4.6, the average ERs of a and b generally decrease as the sample size
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Table 4.5: Predictions based on lower records with inter-record times using Prior 1.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 length/cp

m = 5
0.1170 0.0838 0.0845 0.0842 0.0835 0.0831 (0.0264,0.1159)
0.0707 0.0013 0.0026 0.0006 0.0007 0.0027 0.0895/0.9480

m = 7
0.0610 0.0443 0.0445 0.0444 0.0442 0.0441 (0.0149,0.0605)
0.0366 0.0004 0.0008 0.0002 0.0002 0.0008 0.0455/0.9403

m = 10
0.0361 0.0264 0.0265 0.0265 0.0264 0.0264 (0.0093,0.0357)
0.0230 0.0001 0.0002 0.0001 0.0001 0.0002 0.0264/0.9633

m = 12
0.0338 0.0249 0.0249 0.0249 0.0249 0.0248 (0.0089,0.0335)
0.0222 0.0001 0.0002 0 0 0.0002 0.0246/0.9603

m = 15
0.0310 0.0229 0.0229 0.0228 0.0228 0.0228 (0.0083,0.0307)
0.0215 0.0001 0.0001 0 0 0.0001 0.0224/0.9717

Notes: First column: The first row represents the average of the rm th record values and
second row represents the average of the true values (rm+1) which we want to predict.
Last column, the first row represents a 95% PI and second row represents their lengths
and cp’s. For the others, the first row represents the average predictors and second row
represents corresponding MSPEs for each choice of m.

increases. The ERs of Bayes estimates under the SE and the LINEX loss functions

are smaller than that of MLEs. On the other hand, the ERs of the Bayes estimates

for a and b based on the Lindley’s approximation and MCMC methods are generally

close to each other under both the SE and the LINEX loss functions except for some

cases. Furthermore, the average lengths of the intervals decrease as the sample size

increases. The average lengths of the HPD credible intervals are smaller than that of

the asymptotic confidence intervals. The HPD credible interval is preferable to the

asymptotic confidence interval with respect to length and the cp value.

From Table 4.7, the average MSPEs of the point predictors decrease as the

sample size increases in all cases. Also, the average lengths of the prediction intervals

decrease and their coverage probabilities close to the nominal value as the sample size

increases.

In Tables 4.8-4.11, to observe the effect of the inter-record times in parameter

estimates, we generate lower and upper records by using the following procedure.
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Table 4.7: Predictions based on lower records with inter-record times using Prior 2.

Bayes point predictors
rm LINEX Prediction interval
rm+1 SEL v = −2 v = −1 v = 1 v = 2 length/cp

m = 5
0.5245 0.4728 0.4750 0.4739 0.4716 0.4704 (0.3485,0.5231)
0.4485 0.0041 0.0078 0.0020 0.0021 0.0087 0.1746/0.9297

m = 7
0.4307 0.3891 0.3905 0.3898 0.3884 0.3876 (0.2896,0.4295)
0.3677 0.0029 0.0056 0.0014 0.0015 0.0061 0.1399/0.9160

m = 10
0.3676 0.3328 0.3338 0.3333 0.3323 0.3317 (0.2495,0.3666)
0.3172 0.0019 0.0036 0.0009 0.0010 0.0039 0.1171/0.9273

m = 12
0.3600 0.3261 0.3270 0.3265 0.3256 0.3251 (0.2450,0.3590)
0.3131 0.0017 0.0032 0.0008 0.0008 0.0034 0.1140/0.9280

m = 15
0.3509 0.3181 0.3190 0.3186 0.3177 0.3172 (0.2396,0.3500)
0.3089 0.0013 0.0026 0.0006 0.0007 0.0027 0.1104/0.9417

Notes: First column: The first row represents the average of the rm th record values and
second row represents the average of the true values (rm+1) which we want to predict.
Last column, the first row represents a 95% PI and second row represents their lengths
and cp’s. For the others, the first row represents the average predictors and second row
represents corresponding MSPEs for each choice of m.

• Step 1: A random sample are generated from the Kumaraswamy distribution with

parameters (a, b) and sample size n.

• Step 2: The lower record values with their corresponding inter-record times and

the upper record values are saved. Notice that the sample sizes of the lower and the

upper record values can be different. Moreover, the number of recod values in a

random sample with size n is approximately ln(n).

• Step 3: The estimates of a and b are computed based on lower record values with

their corresponding inter-record times.

• Step 4: The estimates of a and b are also computed based on only upper record

values.

• Step 5: Repeat Steps 1-4, 3000 times and obtain the samples (ai, bi).

In Tables 4.8 and 4.9, the ML and Bayes estimates under the SE and the LINEX

loss functions with their corresponding ERs for a and b are listed when a = 4, b = 10

126



and the prior parameters are Prior 3: (δ, β) = (8, 0.5) and (α, γ) = (4, 7). Moreover,

the 95% asymptotic and HPD credible intervals with their coverage probabilities are

listed. The Bayes point estimates are computed by using Lindley’s approximation and

MCMC method under the SE and the LINEX (v = −2,−1, 1 and 2) loss functions.

From Tables 4.8 and 4.9, the average ERs of a and b generally decrease as the

sample size increases except for some cases. Moreover, the average lengths of the

intervals decrease as the sample size increases. The ERs of a which are obtained by

using lower records with their corresponding inter-record times are smaller than the

one based on only upper record values. The average lengths of the intervals for a

which are obtained by using lower records with their corresponding inter-record times

are shorter than the one based on only upper record values. However, the cp values for

upper record case are more close to the nominal value than that of lower record case.

The ERs of b which are obtained by using lower records with their corresponding

inter-record times are smaller than the one based on only upper record values except

for some LINEX cases. The results for the asymptotic intervals of b is similar to the

interval results of a. The HPD credible intervals of bwhich are obtained by using upper

record values have a good results with respect to lower record case.

In Tables 4.10 and 4.11, the ML and Bayes estimates under the SE and the

LINEX loss functions with their corresponding ERs for a and b are listed when

a = 2, b = 3 and the prior parameters are Prior 4: (δ, β) = (2, 1) and (α, γ) =

(2, 1.5). Moreover, the 95% asymptotic and HPD credible intervals with their coverage

probabilities are listed. The Bayes point estimates are computed by using Lindley’s

approximation and MCMC method under the SE and the LINEX (v = −2,−1, 1 and

2) loss functions.

From Tables 4.10 and 4.11, the average ERs of a and b generally decrease as

the sample size increases except for some cases. Moreover, the average lengths of the

intervals generally decrease as the sample size increases. The comparison of the lower

records with their corresponding inter-record times and upper records are almost same

in Tables 6 and 7. Moreover, it is observed that the cp values of HPD credible intervals

of a and b are around the nominal value.

In the all MCMC case, we run three MCMC chains with fairly different initial

values and generated 10000 iterations for each chain. To diminish the effect of the
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starting distribution, we generally discard the first half of each sequence and focus

on the second half. To provide relatively independent samples for improvement of

prediction accuracy, we calculate the Bayesian MCMC estimates by the means of

every 5th sampled values after discarding the first half of the chains (see[Gelman

et al., 2003]). The scale reduction factor estimate
√
R̂ =

√
V ar(ψ)
W

is used to

monitor convergence of MCMC simulations where ψ is the estimand of interest,

V ar(ψ) = n−1
n
W + 1

n
B with the iteration number n for each chain, the between-

and within- sequence variances B and W (see [Gelman et al., 2003]). It is observed

that the scale factor value of the MCMC estimators are found below 1.1 which is an

acceptable value for their convergency for all cases in Tables 4.4, 4.6 and 4.8-4.11.

4.3.7. Conclusion

In this paper, firstly we consider the non-Bayesian and Bayesian point estimates

as well as confidence intervals for the unknown parameters of the Kumaraswamy

distribution based on lower record values with their corresponding inter-record times.

The ML estimates of the unknown parameters are derived under the inverse sampling

scheme. The Lindley’s approximation and MCMC methods are used to get the Bayes

estimates under the SE and the LINEX loss function for the bivariate prior. Monte

Carlo simulation reveals out that the ERs of the Bayes estimates are smaller than that

of MLEs under the SE and the LINEX loss functions. The average length of the

HPD credible intervals are smaller than that of the asymptotic intervals. Moreover,

the Bayesian point predictors as well as prediction intervals for the future lower record

values are considered. The point predictors and prediction intervals of the future lower

record values are computed based on the lower record values with their corresponding

inter-record times. The result of the point predictors and prediction intervals are

satisfactory when it is compared to the real values.

Secondly, a random sample generating from the Kumaraswamy distribution

is allocated lower records with correspondig inter-record times and upper records,

non-Bayesian and Bayesian parameter estimates are considered by using these record

values. Therefore, we can see the effect of considering the inter-record times in the

parameter estimates. We obtain that using the inter-record times generally decreases
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the ERs of the parameter estimates. As a result, we suggest using lower record values

with their corresponding inter-record times instead of just using upper record values to

get the parameter estimates when these records are obtained from the common sample.

4.4. Estimation of The Reliability Based on Record Values

The problem of estimating ofR on random samples has been extensively studied

under various distributional assumptions on X and Y . A comprehensive account of

this topic is presented by [Kotz et al., 2003]. It is provided an excellent review of

the development of the stress-strength reliability under classical and Bayesian point of

views up to the year 2003. For most recent results on the topic see [Kundu and Gupta,

2005], [Mokhlis, 2005], [Baklizi, 2008], [Rezaei et al., 2010], [Nadar et al., 2014] and

the references therein.

The main purpose of this section is to improve inference procedures for the

stress-strength model based on upper record values when the measurements follow

the Kumaraswamy distribution with the first shape parameters are same. Different

estimators of R are obtained, namely, ML, UMVU and Bayesian and empirical

Bayesian estimates under the SE and the LINEX loss functions corresponding to

conjugate and non informative priors. Moreover, exact, asymptotic and Bayesian

credible intervals of R are also obtained.

4.4.1. Estimation of R When a Is Common and Unknown

The ML estimates, its existence and uniqueness, asymptotic confidence intervals,

as well as Bayes estimates and Bayesian credible interval for R are obtained when the

first shape parameter is common for the distributions of X and Y .

4.4.1.1. ML Estimation of R

Let X ∼ Kum(a, b1) and Y ∼ Kum(a, b2) are independent random variables.

Then, the reliability R is
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R = P (X < Y ) =

∫ 1

0

fY (y)P (X < Y | Y = y)dy

=
b1

b1 + b2

. (4.104)

The estimate of R are considered based on upper record data on both variables. Let

R1, . . . , Rn be a set of upper record values from Kum(a, b1) and S1, . . . , Sm be a

set of upper records from Kum(a, b2) independently from the first sample. The joint

likelihood function of (b1, b2, a) given (r, s) based on records is given by, see [Arnold

et al., 1998]

L(b1, b2, a |r, s) = h1(r; a)h2(s; a)an+mbn1b
m
2 e
−b1T1(rn;a)e−b2T2(sm;a) (4.105)

where r = (r1, . . . , rn), s = (s1, . . . , sm), T1(rn; a) = − ln(1 − ran), T2(sm; a) =

− ln(1− sam) and

h1(r; a) =
n∏
i=1

ra−1
i

1− rai
, h2(s; a) =

m∏
j=1

sa−1
j

1− saj
. (4.106)

Then, the joint log-likelihood function is

l(b1, b2, a |r, s) = lnh1(r; a) + lnh2(s; a) + (n+m) ln a

+ n ln b1 +m ln b2 +−b1T1(rn; a)− b2T2(sm; a). (4.107)

The ML estimates of b1, b2 and a, say b̂1, b̂2 and â respectively, are given by

b̂1 = − n

ln(1− rân)
, (4.108)

b̂2 = − m

ln(1− sâm)
, (4.109)
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and â is the solution of the following non-linear equation

n+m

a
+

n∑
i=1

ln ri
1− rai

+
nran ln rn

(1− ran) ln(1− ran)

+
m∑
j=1

ln sj
1− saj

+
msam ln sm

(1− sam) ln(1− sam)
= 0. (4.110)

Therefore, â can be obtained as a solution of the non-linear equation of the form

h(a) = a where

h(a) = −(n+m)

[
n∑
i=1

ln ri
1− rai

+
nran ln rn

(1− ran) ln(1− ran)

+
m∑
j=1

ln sj
1− saj

+
msam ln sm

(1− sam) ln(1− sam)

]−1

. (4.111)

Since, â is a fixed point solution of the non-linear equation (4.110), its value can be

obtained using an iterative scheme as: a(j+1) = h(a(j)), where a(j) is the jth iterate of

â. The iteration procedure should be stopped when
∣∣a(j+1) − a(j)

∣∣ is sufficiently small.

After â is obtained, b̂1 and b̂2 can be obtained from equations (4.108) and (4.109),

respectively. Therefore, the MLE of R, say R̂, is

R̂ =
b̂1

b̂1 + b̂2

. (4.112)

Next, the existence and uniqueness of the ML estimates of the parameters b1, b2

and a are proved.

Theorem 4.3: The ML estimates of the parameters b1, b2 and a are unique and given by

b̂1 = −n/ ln(1 − rân), b̂2 = −m/ ln(1 − sâm) where â is the solution of the non-linear

equation

G(a) ≡ n+m

a
+

n∑
i=1

ln ri
1− rai

+
nran ln rn

(1− ran) ln(1− ran)
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+
m∑
j=1

ln sj
1− saj

+
msam ln sm

(1− sam) ln(1− sam)
= 0. (4.113)

Proof 4.3: G(a) can be rewritten as

G(a) =
n

a

[
1 +G1(a) +

G2(a)

G3(a)

]
+
m

a

[
1 +H1(a) +

H2(a)

H3(a)

]
, (4.114)

where

G1(a) =
1

n

n∑
i=1

ln vi
1− vi

, G2(a) =
1

n

vn ln vn
1− vn

, G3(a) =
1

n
ln(1− vn), (4.115)

H1(a) =
1

m

m∑
j=1

lnwj
1− wj

, H2(a) =
1

m

wm lnwm
1− wm

, H3(a) =
1

m
ln(1− wm), (4.116)

vi = rai , i = 1, . . . , n and wj = saj , j = 1, . . . ,m. The limit of G(a) is considered as

a → 0+ and a → ∞. It is obtained that lima→0+ G(a) = ∞ and lima→∞G(a) < 0.

By the intermediate value theorem G(a) has at least one root in (0,∞). If it can be

shown that G
′
(a) < 0, then the proof will be completed. Since ri < rn, 1/(1 − ran) >

1/(1− rai ), i = 1, . . . , n− 1 and sj < sm, 1/(1− sam) > 1/(1− saj ), j = 1, . . . ,m− 1

for a > 0,

G
′
(a) <

−(n+m)

a2
+
nran
a2

(
ln ran

1− ran

)2 [
1 +

ran + ln(1− ran)

(ln(1− ran))2

]

+
msam
a2

(
ln sam

1− sam

)2 [
1 +

sam + ln(1− sam)

(ln(1− sam))2

]

=
−(n+m)

a2
+
nvn
a2

(
ln vn

1− vn

)2 [
1 +

vn + ln(1− vn)

(ln(1− vn))2

]
(4.117)

+
mwm
a2

(
lnwm

1− wm

)2 [
1 +

wm + ln(1− wm)

(ln(1− wm))2

]

=
n

a2
h(vn) +

m

a2
h(wm),
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where

h(x) = −1 + x

(
lnx

1− x

)2(
1 +

x+ ln(1− x)

(ln(1− x))2

)
, 0 < x < 1. (4.118)

It can be easily shown that h(x) is a monotone increasing function and h(x) < 0 for

all 0 < x < 1. Hence, G
′
(a) < 0 is obtained.

Finally, we will show that the MLEs of (b1, b2, a) maximizes the log-likelihood

function l(b1, b2, a |r, s). Let H(b1, b2, a) be the Hessian matrix of l(b1, b2, a |r, s)

at (b1, b2, a). It is clear that if det(H) 6= 0 for the critical point (b1, b2, a) and

det(H1) < 0, det(H2) > 0, det(H3) < 0 at (b1, b2, a) then it is a local maximum

of l(b1, b2, a |r, s), where

H1 =
∂2l

∂b2
1

, H2 =

(
∂2l
∂b21

∂2l
∂b1∂b2

∂2l
∂b2∂b1

∂2l
∂b22

)
, H3 = H and l = l(b1, b2, a |r, s). (4.119)

It can be easily seen that

det(H1(̂b1, b̂2, â)) =
−
(
ln(1− rân)

)2

n
< 0, (4.120)

det(H2(̂b1, b̂2, â)) =

(
ln(1− rân)

)2

n

(
ln(1− sâm)

)2

m
> 0, (4.121)

and

det(H (̂b1, b̂2, â)) = G
′
(â)

(
ln(1− rân)

)2

n

(
ln(1− sâm)

)2

m
< 0. (4.122)

Hence, (̂b1, b̂2, â) is the local maximum of l(b1, b2, a |r, s). Since there is no singular

point of l(b1, b2, a |r, s) and it has a single critical point then, it is enough to show

that the absolute maximum of the function is indeed the local maximum. Assume that

there exist an â0 in the domain in which l∗(â0) > l∗(â), where l∗(â) = l(̂b1, b̂2, â |r, s).

Since â is the local maximum there should be some point a1 in the neighborhood of

â such that l∗(a1) < l∗(â). Let K(a) = l∗(a) − l∗(â) then K(â0) > 0, K(a1) < 0

and K(â) = 0. This implies that a1 is a local minimum of the l∗(a), but â is the only

critical point so it is a contradiction. Therefore, (̂b1, b̂2, â) is the absolute maximum of

l(b1, b2, a |r, s). �
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4.4.1.2. Asymptotic Distribution and Confidence Intervals For R

The Fisher information matrix of (b1, b2, a) as I ≡ I(b1, b2, a) is given by

I = −


E
(
∂2l
∂b21

)
E
(

∂2l
∂b1∂b2

)
E
(

∂2l
∂b1∂a

)
E
(

∂2l
∂b2∂b1

)
E
(
∂2l
∂b22

)
E
(

∂2l
∂b2∂a

)
E
(

∂2l
∂a∂b1

)
E
(

∂2l
∂a∂b2

)
E
(
∂2l
∂a2

)
 =

I11 I12 I13

I21 I22 I23

I31 I32 I33

 , (4.123)

where I11 = n/b2
1, I22 = m/b2

2, I12 = I21 = 0, I13 = I31, I23 = I32

I13 =

∫ 1

0

ran ln rn
1− ran

fRn(rn)drn, I23 =

∫ 1

0

sam ln sm
1− sam

gSm(sm)dsm, (4.124)

where fRn(rn) is a pdf of nth upper record value from Kum(a, b1) and gSm(sm) is a

pdf of mth upper record value from Kum(a, b2),

I33 = −
n∑
i=1

∫ 1

0

rai (
ln ri

1− rai
)2fRi(ri)dri −

m∑
j=1

∫ 1

0

saj (
ln sj

1− saj
)2gSj(sj)dsj +

n+m

a2

+ b1

∫ 1

0

ran(
ln rn

1− ran
)2fRn(rn)drn + b2

∫ 1

0

sam(
ln sm

1− sam
)2gSm(sm)dsm, (4.125)

where fRi(ri) is a pdf of ith upper record value from Kum(a, b1) and gSj(sj) is a pdf

of jth upper record value from Kum(a, b2). After making suitable transformations, it

is obtained that

I13 =
bn1
a

∞∑
i=1

1

i

[
1

(b1 + i)n
− 1

(b1 + i− 1)n

]
, (4.126)

I32 =
bm2
a

∞∑
j=1

1

j

[
1

(b2 + j)m
− 1

(b2 + j − 1)m

]
, (4.127)

and

I33 =
n+m

a2
− 2

a2

[
n∑
i=1

bi1Ai(b1)− bn+1
1 An(b1)
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+
m∑
j=1

bj2Bj(b2)− bm+1
2 Bm(b2)

]
, (4.128)

where

Ai(b1) =

[
∞∑
k=1

1

k + 1

(
1

(b1 + k − 1)i
− 1

(b1 + k)i

)( k∑
q=1

1

q

)]
, (4.129)

and

Bj(b2) =

[
∞∑
k=1

1

k + 1

(
1

(b2 + k − 1)j
− 1

(b2 + k)j

)( k∑
q=1

1

q

)]
, (4.130)

see [Gradshteyn and Ryzhik, 1994] (formula 1.516(1), 4.272(6)).

Theorem 4.4: As n→∞ and m→∞ and n/m→ p then

[√
n(̂b1 − b1),

√
m(̂b2 − b2),

√
n(â− a)

]
→ N3(0, U−1(b1, b2, a)), (4.131)

where

U(b1, b2, a) =

u11 0 u13

0 u22 u23

u31 u32 u33

 , (4.132)

and u11 = limn,m→∞ (I11/n) , u13 = u31 = limn,m→∞ (I13/n) , u22 =

limn,m→∞ (I22/m) , u23 = u32 = limn,m→∞(
√
pI23/n), u33 = limn,m→∞ (I33/n).

Proof 4.4: The proof follows from the asymptotic normality of MLE. �

Theorem 4.5: As n→∞ and m→∞ and n/m→ p then

√
n(R̂−R)→ N(0, σ2), (4.133)

where

σ2 =
b2

1p(u11u33 − u2
13)− 2b1b2

√
pu13u23 + b2

2(u22u33 − u2
23)

k(b1 + b2)4
, (4.134)
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and k = u11u22u33 − u11u23u32 − u13u22u31.

Proof 4.5:
√
nR̂ is asymptotically normal with mean

√
nR and variance

σ2 = lim
n,m→∞

n

3∑
j=1

3∑
i=1

∂R

∂bi

∂R

∂bj
I−1
ij , (4.135)

where I−1
ij is the (i, j) th element of the inverse of the I , see [Rao, 1965]. Since

∂R/∂b3 = ∂R/∂a = 0,

σ2 = lim
n,m→∞

n

[
∂R

∂b1

∂R

∂b1

I−1
11 +

∂R

∂b2

∂R

∂b1

(
I−1

21 + I−1
12

)
+
∂R

∂b2

∂R

∂b2

I−1
22

]

= lim
n,m→∞

n

[
b2

1(I11I33 − I2
13)− 2b1b2I13I23 + b2

2(I22I33 − I2
23)

(b1 + b2)4(I11I22I33 − I11I2
23 − I22I2

13)

]
. (4.136)

When this expression is multiplied by
1

n2m
n2m a suitable form is obtained,

considering n/m→ p as n→∞ and m→∞, the desired result is obtained. �

Remark 4.1: Theorem 4.5 can be used to construct the asymptotic confidence interval

of R. The variance σ2 needs to be estimated to compute the confidence interval of

R. The empirical Fisher information matrix and the MLEs of b1, b2 and a are used to

estimate σ2 as follows û11 = 1/b̂2
1, û22 = 1/b̂2

2

û13 =
b̂n1
nâ

∞∑
i=1

1

i

[
1

(̂b1 + i)n
− 1

(̂b1 + i− 1)n

]
, (4.137)

û23 =

√
p

n

b̂m2
â

∞∑
j=1

1

j

[
1

(̂b2 + j)m
− 1

(̂b2 + j − 1)m

]
, (4.138)

û33 =
n+m

nâ2
− 2

nâ2

[
n∑
i=1

b̂i1Ai(̂b1)− b̂n+1
1 An(̂b1)

+
m∑
j=1

b̂j2Bj (̂b2)− b̂m+1
2 Bm(̂b2)

]
. (4.139)
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4.4.1.3. Bayes Estimation of R

Assume that all parameters b1, b2 and a are unknown and have independent

gamma priors with parameters (αi, βi), i = 1, 2, 3, respectively. The density function

of a gamma random variable X with the shape and scale parameters α and β,

respectively, is

f(x) =
βα

Γ(α)
xα−1e−xβ, x > 0, α, β > 0. (4.140)

The joint prior density function of b1, b2 and a is π(b1, b2, a) = π(b1)π(b2)π(a), and

the joint posterior density function of b1, b2 and a given (r, s) is

π (b1, b2, a |r, s) =
h1(r; a)h2(s; a)bn+α1−1

1 bm+α2−1
2 an+m+α3−1

Γ(n+ α1)Γ(m+ α2)I0(r, s)

exp {−b1(β1 + T1(rn; a))− b2(β2 + T2(sm; a))− aβ3} , (4.141)

where

I0(r, s) =

∫ ∞
0

an+m+α3−1h1(r; a)h2(s; a)e−aβ3

(β1 + T1(rn; a))n+α1(β2 + T2(sm; a))m+α2
da. (4.142)

Then, the Bayes estimate of a given measurable function of b1, b2 and a, say u(b1, b2, a)

under the SE loss function is

ûB =

∫ ∞
0

∫ ∞
0

∫ ∞
0

u(b1, b2, a)π(b1, b2, a |r, s)db1db2da

=

∫∞
0

∫∞
0

∫∞
0
u(b1, b2, a)L(b1, b2, a |r, s)π(b1, b2, a)db1db2da∫∞

0

∫∞
0

∫∞
0
L(b1, b2, a |r, s)π(b1, b2, a)db1db2da

. (4.143)

The ratio of two integrals equation (4.143) cannot be solved analytically. We may use

a numerical integration method to calculate the integrals or use approximate methods

such as the approximate form due to Lindley [Lindley, 1980] or that of Tierney

and Kadane [Tierney and Kadane, 1986]. Lindley has proposed approximations for
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moments that capture the first-order error terms of the normal approximation. This

is generally accurate enough, but, as Lindley points out, the required evaluation of

third derivatives of the posterior can be rather tedious, especially, in problems with

several parameters. Moreover, the error of Tierney and Kadane’s approximate is of

the order O(n−2) while the error in using Lindley’s approximate form is of the order

O(n−1). Therefore, the Tierney-Kadane approximation is preferred for our case. The

regularity condition required for using Tierney-Kadane’s form is that the posterior

density function should be unimodal.

To show that the posterior density function is unimodal, it suffices to show that

the function Q(b1, b2, a) ≡ ln π (b1, b2, a |r, s) has the unique mode. The extremum

points of Q(b1, b2, a) are given by

b̃1 =
q1

β1 + T1(rn; ã)
, b̃2 =

q2

β2 + T2(sm; ã)
, (4.144)

and ã is the solution of the non-linear equation

P (a) =
q3

a
− q1r

a
n ln rn/(1− ran)

β1 + T1(rn; a)
− q2s

a
m ln sm/(1− sam)

β2 + T2(sm; a)
− β3 = 0. (4.145)

P (a) can be rewritten as

P (a) =
1

a

[
q3 −

q1vn ln vn/(1− vn)

β1 − ln(1− vn)
− q2wm lnwm/(1− wm)

β2 − ln(1− wm)

]
− β3, (4.146)

where vn = ran, wm = sam, q1 = n+α1−1, q2 = m+α2−1 and q3 = n+m+α3−1.

It is easily seen that lima→0+ P (a) = ∞ and lima→∞ P (a) < 0. If it can be shown

that P (a) is monotone decreasing for all a, then the equation P (a) = 0 has a unique

solution in (0,∞).

P
′
(a) = − 1

a2

[
q1vn

(
ln vn

1− vn

)2{
1

β1 − ln(1− vn)
− vn

(β1 − ln(1− vn))2

}

+q3 + q2wm

(
lnwm

1− wm

)2{
1

β2 − ln(1− wm)
− wm

(β2 − ln(1− wm))2

}]
(4.147)
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= − 1

a2
[q3 + q1h1(vn) + q2h1(wm)] ,

where

h1(x) = x

(
lnx

1− x

)2{
1

β1 − ln(1− x)
− x

(β1 − ln(1− x))2

}
, (4.148)

where 0 < x < 1. Let f1(x) = β1 − ln(1 − x) − x, then f1(0) > 0 and f1(x) is a

monotone increasing function for all 0 < x < 1. It can be easily shown that h1(x) > 0

for all 0 < x < 1, by noticing h1(x) = x (lnx/(1− x))2 (f1(x)/(β1 − ln(1− x))2).

Hence, P ′(a) < 0 is obtained. Now, we want to show that the function Q(b1, b2, a)

is the maximum at the point (̃b1, b̃2, ã). Let H∗(b1, b2, a) be the Hessian matrix of

Q(b1, b2, a). We obtain that

det(H∗1 (̃b1, b̃2, ã)) = −(β1 − ln(1− rãn))2

n+ α1 − 1
< 0, (4.149)

det(H∗2 (̃b1, b̃2, ã)) =
(β1 − ln(1− rãn))2

n+ α1 − 1

(β2 − ln(1− sãm))2

m+ α2 − 1
> 0, (4.150)

and

det(H∗(̃b1, b̃2, ã)) = P
′
(ã)

(β1 − ln(1− rãn))2

n+ α1 − 1

(β2 − ln(1− sãm))2

m+ α2 − 1
< 0. (4.151)

Therefore, Q(b1, b2, a) has unique mode and so the posterior density function is

unimodal. Consequently, Tierney and Kadane’s approximation can be applied to our

case.

The posterior mean of the u(b1, b2, a), equation (4.143), can be rewritten as

E [u(b1, b2, a) |r, s ] =

∫∞
0

∫∞
0

∫∞
0
enΛ∗(b1,b2,a)db1db2da∫∞

0

∫∞
0

∫∞
0
enΛ(b1,b2,a)db1db2da

, (4.152)

where

Λ(b1, b2, a) =
[ln(L(b1, b2, a |r, s)) + ln(π(b1, b2, a))]

n
, (4.153)
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and

Λ∗(b1, b2, a) = Λ(b1, b2, a) +
1

n
ln(u(b1, b2, a)). (4.154)

Following the [Tierney and Kadane, 1986], equation (4.152) can be approximated in

the form

ûBT (b1, b2, a) =

[
det Σ∗

det Σ

]1/2

exp
(
n
[
Λ∗(̃b∗1, b̃

∗
2, ã
∗)− Λ(̃b1, b̃2, ã)

])
, (4.155)

where (̃b∗1, b̃
∗
2, ã
∗) and (̃b1, b̃2, ã) maximize Λ∗(b1, b2, a) and Λ(b1, b2, a), respectively,

and Σ∗ and Σ are the negatives of the inverse Hessians of Λ∗(b1, b2, a) and Λ(b1, b2, a)

at (̃b∗1, b̃
∗
2, ã
∗) and (̃b1, b̃2, ã), respectively.

In our case, we have

Λ(b1, b2, a) =
1

n
[l(b1, b2, a |r, s) + lnC + (α1 − 1) ln b1 + (α2 − 1) ln b2

+(α3 − 1) ln a− b1β1 − b2β2 − aβ3] , (4.156)

where C = βα1
1 βα2

2 βα3
3 /(Γ(α1)Γ(α2)Γ(α3)). (̃b1, b̃2, ã) can be obtained by solving the

following equations

Λ1 =
∂Λ(b1, b2, a)

∂b1

= 0, Λ2 =
∂Λ(b1, b2, a)

∂b2

= 0, Λ3 =
∂Λ(b1, b2, a)

∂a
= 0, (4.157)

and are given by

b̃1 =
n+ α1 − 1

β1 + T1(rn; ã)
, b̃2 =

m+ α2 − 1

β2 + T2(sm; ã)
, (4.158)

and ã is the solution of the non-linear equation

q3

a
+

n∑
i=1

ln ri
1− rai

− q1r
a
n ln rn/(1− ran)

β1 + T1(rn; a)

+
m∑
j=1

ln sj
1− saj

− q2s
a
m ln sm/(1− sam)

β2 + T2(sm; a)
− β3 = 0. (4.159)
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The fixed point method is applied as in the MLE of a. The units of the Hessian matrix

of Λ(b1, b2, a) are obtained as

Λ11 =
∂2Λ(b1, b2, a)

∂b2
1

=
−q1

nb2
1

, Λ22 =
∂2Λ(b1, b2, a)

∂b2
2

=
−q2

nb2
2

, (4.160)

Λ12 = Λ21 = 0, Λ13 = Λ31 =
∂2Λ(b1, b2, a)

∂b1∂a
=
−ran ln rn
n(1− ran)

, (4.161)

Λ23 = Λ32 =
∂2Λ(b1, b2, a)

∂b2∂a
=
−sam ln sm
n(1− sam)

, (4.162)

Λ33 =
∂2Λ(b1, b2, a)

∂a2
=

1

n

[
−q3

a2
+

n∑
i=1

rai

(
ln ri

1− rai

)2

− b1r
a
n

(
ln rn

1− ran

)2

+
m∑
j=1

saj

(
ln sj

1− saj

)2

− b2s
a
m

(
ln sm

1− sam

)2
]
. (4.163)

Hence,

Σ = −

Λ11 0 Λ13

0 Λ22 Λ23

Λ13 Λ23 Λ33

−1

, (4.164)

and the determinant of Σ is evaluated at (̃b1, b̃2, ã).

The Bayes estimate of R under the SE loss function is obtained by using

u(b1, b2, a) = R. Equation (4.154) takes the form

BSΛ∗(b1, b2, a) = Λ(b1, b2, a) +
1

n
lnR. (4.165)

The maximum value of the function BSΛ∗(b1, b2, a), say at (BS b̃
∗
1,BS b̃

∗
2,BS ã

∗), is a

solution of the non-linear equation system

n+ α1 − 1

b1

− β1 − T1(rn; a) +
b2

b1(b1 + b2)
= 0, (4.166)

m+ α2 − 1

b2

− β2 − T2(sm; a) +
1

b1 + b2

= 0, (4.167)
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and

q3

a
+

n∑
i=1

ln ri
1− rai

+
m∑
j=1

ln sj
1− saj

− b1r
a
n ln rn

1− ran
− b2s

a
m ln sm

1− sam
− β3 = 0. (4.168)

The solution of the system can be obtained by using the fixed point method. The

Hessian matrix of BSΛ∗(b1, b2, a) can be computed following the same arguments as in

the first case. Therefore, the value of det(BSΣ∗) at (BS b̃
∗
1,BS b̃

∗
2,BS ã

∗) is obtained. The

Bayes estimate of R under the SE loss function is obtained by using equation (4.155)

and is given by

R̂BS =

[
detBS Σ∗

det Σ

]1/2

exp
(
n
[
BSΛ∗(BS b̃

∗
1,BS b̃

∗
2,BS ã

∗)− Λ(̃b1, b̃2, ã)
])
. (4.169)

If we choose u(b1, b2, a) = e−vR, the Bayes estimate ofR is obtained under the LINEX

loss function. Similar to the SE loss function case, we get

BLΛ∗(b1, b2, a) = Λ(b1, b2, a)− vR

n
, (4.170)

from equation (4.154). The maximum value of the function BLΛ∗(b1, b2, a), say at

(BLb̃
∗
1,BL b̃

∗
2,BL ã

∗), is a solution of the non-linear equation system

n+ α1 − 1

b1

− β1 − T1(rn; a)− vb2

(b1 + b2)2
= 0, (4.171)

m+ α2 − 1

b2

− β2 − T2(sm; a) +
vb1

(b1 + b2)2
= 0, (4.172)

and

q3

a
+

n∑
i=1

ln ri
1− rai

+
m∑
j=1

ln sj
1− saj

− b1r
a
n ln rn

1− ran
− b2s

a
m ln sm

1− sam
− β3 = 0. (4.173)

The Bayes estimate of R under the LINEX loss function is obtained by using equation

(4.155) and is given by

R̂BL =

[
detBL Σ∗

det Σ

]1/2

exp
(
n
[
BLΛ∗(BLb̃

∗
1,BL b̃

∗
2,BL ã

∗)− Λ(̃b1, b̃2, ã)
])
. (4.174)

146



4.4.2. Estimation of R When a Is Common and Known

The estimation ofR is considered when the parameter a is assumed to be known,

say a = 1. Let R1, . . . , Rn be a set of upper records from Kum(1, b1) and S1, . . . , Sm

be an independent set of upper records from Kum(1, b2).

4.4.2.1. ML Estimation and Confidence Intervals of R

Based on the above samples, the MLE of R, say R̂MLE, is

R̂MLE =
b̂1

b̂1 + b̂2

=
n ln(1− sm)

n ln(1− sm) +m ln(1− rn)
. (4.175)

It is easy to see that −2b1 ln(1 − rn) ∼ χ2(2n) and −2b2 ln(1 − sm) ∼ χ2(2m).

Therefore,

F ∗ =

(
R

1−R

)(
1− R̂MLE

R̂MLE

)
, (4.176)

is an F distributed random variable with (2n, 2m) degrees of freedom. The pdf of

R̂MLE is as follows;

fR̂MLE
(r) =

1

r2B(m,n)

(
nb1

mb2

)n (1−r
r

)n−1(
1 + nb1(1−r)

mb2r

)n+m , (4.177)

where 0 < r < 1. The 100(1− α)% confidence interval for R can be obtained as

 1

1 + F2m,2n;α
2

(
1−R̂MLE

R̂MLE

) , 1

1 + F2m,2n;1−α
2

(
1−R̂MLE

R̂MLE

)
 , (4.178)

where F2m,2n;α
2

and F2m,2n;1−α
2

are the lower and upper α
2

th percentile points of a F

distribution with (2m, 2n) degrees of freedom.

On the other hand, the approximate confidence interval of R can be easily

obtained by using the Fisher information matrix. The Fisher information matrix of
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(b1, b2) is

I = −

 E
(
∂2l
∂b21

)
E
(

∂2l
∂b1∂b2

)
E
(

∂2l
∂b2∂b1

)
E
(
∂2l
∂b22

)  =

(
n/b2

1 0
0 m/b2

2

)
. (4.179)

By the asymptotic properties of the MLE, R̂MLE is approximately distributed as

normal with mean R and variance

σ2 =
2∑
j=1

2∑
i=1

∂R

∂bi

∂R

∂bj
I−1
ij , (4.180)

where I−1
ij is the (i, j) th element of the inverse of the I, see [Rao, 1965]. Then, an

approximate 100(1− α)% confidence interval for R is

(
R̂MLE − czα/2R̂MLE(1− R̂MLE), R̂MLE + czα/2R̂MLE(1− R̂MLE)

)
, (4.181)

where zα/2 is the upper α
2

th percentile points of a standard normal distribution and

c =
√

(1/n) + (1/m).

4.4.2.2. UMVUE of R

When the first shape parameter a = 1, the joint likelihood function is

L(b1, b2, a |r, s) = h1(r)h2(s)bn1b
m
2 e
−b1T1(rn)e−b2T2(sm), (4.182)

where h1(r) =n
i=1 1/(1 − ri), h2(s) =m

j=1 1/(1 − sj), T1(rn) = − ln(1 − rn) and

T2(sm) = − ln(1 − sm). It is clear that (T1(rn), T2(sm)) is a sufficient statistic for

(b1, b2). It can be shown that it is also a complete sufficient statistic by using Theorem

10-9 in [Arnold, 1990]. Let us define

φ(R1, S1) =

{
1 if R1 < S1

0 if R1 ≥ S1

. (4.183)

148



Then, E (φ(R1, S1)) = R so it is an unbiased estimator of R. Let P1 = − ln(1 − R1)

and P2 = − ln(1 − S1). The UMVUE of R, say R̂U , can be obtained by using the

Rao-Blackwell and the Lehmann-Scheffe’s Theorems, (see [Arnold, 1990])

R̂U = E (φ(P1, P2) |(T1, T2))

=

∫
P2

∫
P1

φ(P1, P2) f(p1, p2 |T1, T2 )dp1dp2 (4.184)

=

∫
P2

∫
P1

φ(P1, P2)fP1|T1(p1 |T1 )fP2|T2(p2 |T2 )dp1dp2,

where (T1, T2) = (T1(rn), T2(sm)), f(p1, p2 |T1, T2 ) is the conditional pdf of (P1, P2)

given (T1, T2). Using the joint pdf of (R1, Rn) and (S1, Sm) and after making a simple

transformation, we obtain the fP1|T1(p1 |T1 ) and fP2|T2(p2 |T2 ), and are given by

fP1|T1(p1 |T1 ) = (n− 1)
(t1 − p1)n−2

tn−1
1

, 0 < p1 < t1, (4.185)

fP2|T2(p2 |T2 ) = (m− 1)
(t2 − p2)m−2

tm−1
2

, 0 < p2 < t2. (4.186)

Therefore,

R̂U =

∫ ∫
P1<P2

fP1|T1(p1 |T1 )fP2|T2(p2 |T2 )dp1dp2

=


∫ t1

0

∫ t2
p1

(n− 1)(m− 1)(t1 − p1)n−2(t2 − p2)m−2

tn−1
1 tm−1

2

dp2dp1 if t2 ≥ t1

∫ t2
0

∫ p2
0

(n− 1)(m− 1)(t1 − p1)n−2(t2 − p2)m−2

tn−1
1 tm−1

2

dp2dp1 if t2 < t1

(4.187)

=

{
2F1(1, 1−m;n; t1/t2) if t2 ≥ t1

1−2 F1(1, 1− n;m; t2/t1) if t2 < t1
,

where 2F1(., .; .; .) is Gauss hypergeometric function, (see formula 3.196(1) in

[Gradshteyn and Ryzhik, 1994]).
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4.4.2.3. Bayesian Estimation of R

Assume that the parameter b1 and b2 have independent gamma priors with the

parameters (αi, βi), i = 1, 2. Then, the joint posterior density function of b1 and b2

given (r, s) is

π (b1, b2 |r, s) =
λδ11 λ

δ2
2

Γ(δ1)Γ(δ2)
bδ1−1

1 bδ2−1
2 e−b1λ1e−b2λ2 , (4.188)

where λ1 = β1 +T1(rn), λ2 = β2 +T2(sm), δ1 = n+α1, δ2 = m+α2. The posterior

pdf of R can be obtained by using the joint posterior density function and is given by

fR(r) =
λδ11 λ

δ2
2

B(δ1, δ2)

rδ1−1(1− r)δ2−1

(rλ1 + (1− r)λ2)δ1+δ2
, 0 < r < 1. (4.189)

After making a suitable transformations and simplifications by using formula 3.197(3)

in [Gradshteyn and Ryzhik, 1994], the Bayes estimate of R, say R̂BS , under the SE

loss function is

R̂BS =

c1(λ1
λ2

)δ1 2F1(c∗1, δ1 + 1; c∗1 + 1; 1− λ1
λ2

) if λ1 < λ2

c1(λ2
λ1

)δ2 2F1(c∗1, δ2; c∗1 + 1; 1− λ2
λ1

) if λ2 ≤ λ1

, (4.190)

where c1 = δ1/c
∗
1, c
∗
1 = δ1 + δ2.

The Bayes estimate of R under the LINEX loss function, say R̂BL, is R̂BL ={
− lnER(e−vR)

}
/v, where ER(.) denotes posterior expectation with respect to the

posterior density of R. It can be easily obtained that

E(e−vR) =

 (λ1
λ2

)δ1 Φ1(δ1, c
∗
1, c
∗
1, 1− λ1

λ2
,−v) if λ1 < λ2

(λ2
λ1

)δ2 e−v Φ1(δ2, c
∗
1, c
∗
1, 1− λ2

λ1
, v) if λ2 ≤ λ1

, (4.191)
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where Φ1(., ., ., ., .) is confluent hypergeometric series of two variables, (see formulas

3.385 and 9.261(1) in [Gradshteyn and Ryzhik, 1994]). Therefore,

R̂BL =


− 1
v

(
c2 + ln

[
Φ1(δ1, c

∗
1, c
∗
1, 1− λ1

λ2
,−v)

])
if λ1 < λ2

− 1
v

(
c3 + ln

[
Φ1(δ2, c

∗
1, c
∗
1, 1− λ2

λ1
, v)
])

if λ2 ≤ λ1

, (4.192)

where c2 = δ1 ln(λ1/λ2) and c3 = δ2 ln(λ2/λ1)− v.

If we use the Jeffrey’s non informative prior which is given by
√

det I(b1, b2),

then the joint prior density function is π(b1, b2) ∝ 1/b1b2. Therefore, the joint posterior

density function of b1 and b2 given (r, s) is

π(b1, b2 |r, s) =
(T1(rn))n (T2(sm))m

Γ(n)Γ(m)
bn−1

1 bm−1
2 e−b1T1(rn)e−b2T2(sm), (4.193)

and the posterior pdf of R is given by

fR(r) =
(T1(rn))n (T2(sm))m

B(n,m)

rn−1(1− r)m−1

(rT1(rn) + (1− r)T2(sm))n+m
, 0 < r < 1. (4.194)

The Bayes estimate of R under the SE and the LINEX loss function, say R̂∗BS and

R̂∗BL, respectively, are

R̂∗BS =

 c(T1
T2

)n 2F1(c∗, n+ 1; c∗ + 1; 1− T1
T2

) if T1 < T2

c(T2
T1

)m 2F1(c∗,m; c∗ + 1; 1− T2
T1

) if T2 ≤ T1

, (4.195)

and

R̂∗BL =


− 1
v

(
c4 + ln

[
Φ1(n, c∗, c∗, 1− T1

T2
,−v)

])
if T1 < T2

− 1
v

(
c5 + ln

[
Φ1(m, c∗, c∗, 1− T2

T1
, v)
])

if T2 ≤ T1

, (4.196)

where c = n/c∗, c∗ = n + m, c4 = n ln(T1/T2), c5 = m ln(T2/T1)− v, T1 = T1(rn)

and T2 = T2(sm).
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Alternatively, the Bayes estimate of R under the SE and the LINEX loss

functions can be obtained approxiametly by using the Lindley’s approximation. The

approximate Bayes estimate of R under the SE and LINEX loss functions, say

R̂BS,Lindley and R̂BL,Lindley, respectively, are

R̂BS,Lindley = R̃

(
1 +

(1− R̃)2

n+ α1 − 1
− R̃(1− R̃)

m+ α2 − 1

)
, (4.197)

and

R̂BL,Lindley = R̃− 1

v
ln

(
1 +

R̃1(1− R̃)(vR̃− 2)

2(n+ α1 − 1)
+
R̃R̃1(v − vR̃ + 2)

2(m+ α2 − 1)

)
, (4.198)

where R̃ = b̃1/(̃b1 + b̃2), R̃1 = vR̃(1 − R̃), b̃1 = (n + α1 − 1)/(β1 + T1(rn)) and

b̃2 = (m+ α2 − 1)/(β2 + T2(sm)).

If we use the Jeffrey’s non informative prior, then the approximate Bayes

estimate of R under the SE and the LINEX loss functions, say R̂∗BS,Lindley and

R̂∗BL,Lindley, respectively, are

R̂∗BS,Lindley = R̃

(
1 +

(1− R̃)2

n− 1
− R̃(1− R̃)

m− 1

)
, (4.199)

and

R̂∗BL,Lindley = R̃− 1

v
ln 1

(
+
R̃1(1− R̃)(vR̃− 2)

2(n− 1)
+
R̃R̃1(v − vR̃ + 2)

2(m− 1)

)
, (4.200)

where R̃ = b̃1/(̃b1 + b̃2), R̃1 = vR̃(1 − R̃), b̃1 = (n − 1)/T1(rn) and b̃2 = (m −

1)/T2(sm).

4.4.2.4. Empirical Bayes Estimation of R

The Bayes estimates of R are obtained by using two different ways. It is clear

that these estimators depend on the parameters of the prior distributions of b1 and
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b2. However, the Bayes estimators can be also obtained independently of the prior

parameters.

These prior parameters could be estimated by means of an empirical Bayes

procedure, see [Lindley, 1969], [Awad and Gharraf, 1986]. Let R1, . . . , Rn and

S1, . . . , Sm be two independent random samples from Kum(1, b1) and Kum(1, b2),

respectively. For fixed r, the function L(b1, 1 |r ) of b1 can be considered as a gamma

density with parameters (n+ 1, T1(rn)). Therefore, it is proposed to estimate the prior

parameters α1 and β1 from the samples as n + 1 and T1(rn), respectively. Similarly,

α2 and β2 could be estimated from the samples as m + 1 and T2(sm), respectively.

Hence, the empirical Bayes estimate of R with respect to the SE and the LINEX loss

functions, say R̂EBS and R̂EBL, respectively, could be given as

R̂EBS =

 c6c7 2F1(c13, 2n+ 2; c13 + 1; c9) if T1 < T2

c6c8 2F1(c13, 2m+ 1; c13 + 1; c10) if T2 ≤ T1

(4.201)

and

R̂EBL =


−1

v
((2n+ 1) ln(T1/T2) + ln c11) if T1 < T2

−1

v
((2m+ 1) ln(T2/T1)− v + ln c12) if T2 ≤ T1

. (4.202)

where c6 = (2n + 1)/(2n + 2m + 2), c7 = (T1/T2)2n+1, c8 = (T2/T1)2m+1, c9 =

1 − (T1/T2), c10 = 1 − (T2/T1), c11 = Φ1(2n + 1, c13, c13, c9,−v), c12 = Φ1(2m +

1, c13, c13, c10, v) and c13 = 2n+ 2m+ 2.

4.4.2.5. Bayesian Credible Intervals for R

It is known that b1 |r ∼ Gamma(δ1, λ1) and b2 |s ∼ Gamma(δ2, λ2). Then,

2(β1 + T1(rn))b1| r ∼ χ2(2(n + α1)) and 2(β2 + T2(sm))b2| s ∼ χ2(2(m + α2)).

Therefore,

W =
2(β2 + T2(sm))b2 | s/2(m+ α2)

2(β1 + T1(rn))b1 | r/2(n+ α1)
(4.203)
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is an F distributed random variable with (2(m + α2), 2(n + α1)) degrees of freedom

and the 100(1− α)% Bayesian credible interval for R can be obtained as

 1

1 + C1

(
F2(m+α2),2(n+α1);α

2

) , 1

1 + C1

(
F2(m+α2),2(n+α1);1−α

2

)
 (4.204)

where C1 = δ2λ1/δ1λ2, F2(m+α2),2(n+α1);α
2

and F2(m+α2),2(n+α1);1−α
2

are the lower and

upper α
2

th percentile points of a F distribution with (2(m+α2), 2(n+α1)) degrees of

freedom.

Moreover, this interval can be obtained independently of these parameters by

using the empirical method. In this case, the posterior distributions of b1 and b2

have gamma distributions with parameters (2n + 1, 2T1(rn)) and (2m + 1, 2T2(sm)),

respectively and the 100(1− α)% Bayesian credible interval for R can be obtained as

 1

1 + C2

(
F(4m+2),(4n+2);α

2

) , 1

1 + C2

(
F(4m+2),(4n+2);1−α

2

)
 (4.205)

where C2 = ((4m+ 2)T1(rn)) / ((4n+ 2)T2(sm)), F(4m+2),(4n+2);α
2

and

F(4m+2),(4n+2);1−α
2

are the lower and upper α
2

th percentile points of a F distribution

with (4m+ 2, 4n+ 2) degrees of freedom.

4.4.3. Simulation Study

In this section, the results of simulation study are presented for comparing the

risk of different estimators based on Monte Carlo simulation. All of the computations

are performed by using MATLAB R2007a. All the results are based on 2500

replications.

We consider two cases separately to draw inference on R, namely when the

common first shape parameter a is unknown and known. Without loss of generality,

we take a = 1 when a is known. In both cases, we generate the record values

with the sample sizes; (n,m) = (5, 5), (8, 8), (10, 10), (12, 12) from Kumaraswamy

distribution.
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In Table 4.12, the estimate of a is computed by using the iterative algorithm.

The initial estimate of a is taken 1 and the iterative process stops when the difference

between the two consecutive iterates are less than 10−6. Once the estimate of a is

obtained, the estimate of b1 and b2 are obtained by using equations (4.108) and (4.109),

respectively. Finally, the MLE of R is obtained by using equation (4.112). The Bayes

estimates under the SE and the LINEX (v = 1) loss functions are obtained by using the

Tierney and Kadane approximation. Prior 1: (α1, α2, α3, β1, β2, β3) = (8, 10, 5, 4, 5, 5)

and Prior 2: (α1, α2, α3, β1, β2, β3) = (9, 5, 7, 1, 6, 5) are used for the true values of R

are 0.501731 and 0.908896 and their results are tabulated in Table 4.12. Moreover, the

average length of approximate confidence intervals and their cps are computed based

on the asymptotic distribution of R̂ and is denoted by LAMLE . The nominal α value is

0.05.

From Table 4.12, it is observed that as the sample size increases in all the cases

the average ERs of the estimators decrease, as expected. It verifies the consistency

properties of all the estimates. The average length of the approximate confidence

intervals also decrease as the sample size increases while the coverage probability is

around 0.95. It is observed that the ER of Bayes estimate is smaller than that of ML

estimate. Heuristically, in the Bayes approach we have extra information or data based

on accumulated knowledge about the parameters as opposed to the MLE approach,

therefore the Bayes estimate to be better than the MLE, in the sense that it has smaller

ER.

In Table 4.13, the ML, UMVU and Bayesian estimates of R and their

corresponding ERs are listed when a is known (a = 1). The Bayes estimates are

computed under the SE and the LINEX (v = 1) loss functions for different prior

parameters. The first two Bayes estimates are based on series expansion and the

other two based on Lindley’s approximation for the conjugate prior distributions. In

addition, the empirical Bayes estimates are also obtained. Prior 3: (α1, α2, β1, β2) =

(6, 8, 3, 5) and Prior 4: (α1, α2, β1, β2) = (10, 6, 1, 8) are used for the true values of

R are 0.548264 and 0.925025, respectively. Furthermore, the approximate and the

exact confidence intervals for R are obtained by using equations (4.181) and (4.178).

Finally, the Bayesian credible intervals are also obtained by using equations (4.205).

The average length of the interval, denoted by LBayes, and average length of exact
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confidence interval, denoted by LMLE , along with their cp’s are reported in Table 4.13

From Table 4.13, the average ERs decrease as the sample size increases in all

the cases. The Bayes estimate of R has the smallest ER. The Bayes estimates for

series expansion and Lindley’s methods are very close to each other. From this, we

can infer that when the Bayes estimation can not be obtained in the closed form, the

Lindley approximation is a good alternative. When the true value of R is 0.548264, we

have ER(R̂BS) < ER(R̂EBS) < ER(R̂MLE) < ER(R̂U). On the other hand, when

the true value of R is 0.925025, we have ER(R̂BS) < ER(R̂U) < ER(R̂MLE) <

ER(R̂EBS). Moreover, it is observed that the average confidence interval lengths

decrease as the sample size increases. When the true values of R are 0.548264

and 0.925025, we have LMLE < LAMLE and LAMLE < LMLE, respectively, while

the cp is around 0.95. The Bayesian intervals have the smallest cp and is far from

0.95. Sometimes, the cp for the Bayesian interval based on equation (4.204) is not

reasonable, because it contains prior parameters. That is why, they are not reported in

the table.

Table 4.12: Estimates of R using the Priors 1-2 when a is unknown.

(n,m) R R̂ R̂BS R̂BL CIAMLE

(5,5) 0.501731 0.505022 0.501740 0.608414 (0.226617,0.783427)
0.013672 0.007156 0.016118 0.556810/0.942400

(8,8) 0.501802 0.505712 0.605696 (0.275885,0.727719)
0.009306 0.006937 0.015867 0.451834/0.964000

(10,10) 0.503607 0.508404 0.603941 (0.300070,0.707145)
0.007870 0.006655 0.015828 0.407074/0.958400

(12,12) 0.500559 0.509592 0.603050 (0.313687,0.687430)
0.006952 0.006593 0.015653 0.373742/0.967200

(5,5) 0.908896 0.874885 0.892723 0.410055 (0.737286,1.012484)
0.007655 0.001766 0.106927 0.275197/0.887600

(8,8) 0.878471 0.888055 0.411905 (0.771516,0.985427)
0.004302 0.001676 0.106247 0.213910/0.942000

(10,10) 0.882239 0.886410 0.412547 (0.789373,0.975104)
0.003039 0.001604 0.106019 0.185731/0.950800

(12,12) 0.885163 0.885177 0.413023 (0.802291,0.968034)
0.002315 0.001570 0.105845 0.165743/0.959200

Notes: The first row represents the average estimates and the second row represents
corresponding ERsfor each choice of m. The last two columns, the first row represents
a 95% confidence interval and the second row represents their lengths and cp’s.
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In Table 4.14, the Bayes estimates of R are also obtained for the non informative

prior case. The ML, UMVU, Bayes estimaties and confidence intervals of R are

computed for R = 0.25, 0.33, 0.5, 0.7, 0.90, 0.92. The Bayes estimaties under the

SE and the LINEX (v = 1) loss functions are obtained by using both series expansion

and Lindley’s methods as in Table 4.14. Moreover, the average length of approximate

and exact confidence intervals and their cps of R are evaluated.

From Table 4.14, the ERs decrease for all the estimates when the sample size

increases, as expected. It is clear that the Bayes estimates for the Jeffrey’s non

informative prior case are very similar to the corresponding MLEs. More specifically,

the Bayes estimate given in equation (4.199) is very close to the ML estimate after

some algebraic operation in which they have suitable form for comparison. For

R = 0.25, 0.33, 0.5, 0.7 the UMVUE has the greatest ER and we have ER(R̂BS) <

ER(R̂MLE) < ER(R̂U). For R = 0.90, 0.92, we have ER(R̂U) < ER(R̂MLE) <

ER(R̂BS). Moreover, the average lengths of the intervals also decrease as the sample

size increases. When R̂∗BS < R̂MLE < R , this is the case for bigger values of

R such as 0.90, 092, it can be shown that ER(R̂MLE) < ER(R̂BS) for n = m. When

R = 0.25, 0.90, 0.92, we have LAMLE < LMLE . On the other hand, when R = 0.33,

0.50, 0.70, we have LAMLE > LMLE . The cp for exact and approximate is around

0.95.

4.4.4. Conclusion

In this section, the different methods of estimations of R = P (X < Y ) are

compared when X and Y are two independent Kumaraswamy distributions with the

common first shape parameters.

When the first shape parameter is unknown, it is observed that the Bayesian

estimators have a smaller ER. And this result does not change for the different values

of the prior parameters. Nominal coverage probabilities are attained for the asymptotic

confidence intervals.

When the first shape parameter is known, the different estimates, namely MLE,

UMVUE with Bayes and empirical Bayes estimates are compared. The Bayesian

estimates of R are obtained by using series expansion and Lindley’s approximation
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method for both conjugate and non informative prior cases. Under both of these

methods the ER are quite similar. The different confidence intervals of R, namely

approximate, exact and Bayesian are compared. Even though, the prior parameters are

not known it is observed that the Bayesian interval discussed in equation (4.205) is

quite satisfactory.

The ML, UMVU, Bayesian estimates as well as confidence interval for R

are invariant with respect to a monotone transformation on (X, Y ), see [Kotz et

al., 2003]. If X is Kumaraswamy then − lnX is the two parameter generalized

exponential distribution. Therefore, all the estimates forR, mentioned above, under the

Kumaraswamy distribution is the same as the two parameter generalized exponential

distribution.

The ML, UMVU, Bayesian estimates ofR in random samples depends on all the

observation, but in record case they only depend on the last record value. Moreover, we

considered the non informative case (a is known) when the number of random samples

and the number of record values are taken to be equal as in the work of [Ahmadi and

Arghami, 2001]. In this case, Monte Carlo simulation reveals out that the record case

produces smaller ER for the Bayes estimation of R (when cps are similar) for the large

sample sizes.

On the other hand, we may use Theorem 3.1 in [Ahmadi and Arghami, 2001]

to say that (Fisher) information in record values is no different from that of random

samples case under the assumption of Xi, i = 1, ..., n and Yj, j = 1, ...,m distributes

as Kum(1, b), and the number of record values are the same as the number of

random samples. When distribution involves more than one parameters, comparing

the information in records with random samples is a subject of future studies.
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5. CONCLUSIONS

The estimation problem of the parameters of the distribution and stress-strength

reliability are considered in this dissertation. The different methods of estimation

based on record values or record values with their corresponding inter-record times

are obtained when the underlying distribution is the Burr Type XII, the generalized

exponential and the Kumaraswamy. Moreover, the prediction problem of the future

record values is considered for some cases. The comparison of all obtained estimates

is demonstrated by simulation study and real life examples. Detailed findings of the

simulation results on inferences based on each distribution considered in this thesis are

described at the end of each section.
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