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SUMMARY 

 

 
In the present thesis, some stability and boundedness properties for fractional 

differential equation (FDE) are considered. In the second chapter, some necessary 

definitions and facts on fractional calculus, on initial value problem of FDE are 

given. A comparison theorem demand only continuity as an assumption instead of 

local Hölder continuity or 𝐶𝑞 continuity used in the literature is presented and 

Caputo fractional Dini derivative is given in the third chapter. Then, fractional 

extension of comparison method via Lyapunov function and scalar FDE is applied to 

obtain sufficient conditions on some stability, boundedness for FDE. However, some 

stability and boundedness with initial time difference for FDE are introduced and 

studied since it is not possible to keep measurements with the expected initial time in 

real world applications. Comparison results for scalar FDE with parameter relative to 

ITD are obtained in the fourth chapter. In these framework, sufficient conditions on 

some stability and boundedness are obtained. The behavior of solution of perturbed 

system that differs in initial position and initial time with respect to original 

unperturbed system are investigated in fifth chapter. Finally, obtained results on 

some stability and boundedness in previous chapter are generalized by using the 

notion of two measures. 

 

 

 

 

 

 

 

 

 

 

 

Key Words: Stability, Boundedness , Initial Time Difference (ITD), Fractional 
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ÖZET 

 

 
Bu tezde, kesirli türevli diferansiyel denklemler için bazı kararlılık ve sınırlılık 

özellikleri ele alınmıştır. İkinci bölümde, fraksiyonel analiz ve kesirli türevli 

diferansiyel denklemler’in başlangıç değer problemi hakkında gerekli tanımlar 

verildi. Üçüncü bölümde literatürdeki Hölder süreklilik ya da 𝐶𝑞 süreklilik yerine 

koşul olarak sadece süreklilik gerektiren mukayese teoremi ve Caputo fraksiyonel 

Dini türev verildi. Kesirli türevli diferansiyel denklemler’in bazı kararlılık ve 

sınırlılılığı üzerine yeterli koşullar belirlemek için mukayese metodunun fraksiyonel 

genişlemesi Lyapunov fonksiyonu ve skaler kesirli türevli diferansiyel denklemler 

aracılığıyla uygulandı. Bununla birlikte gerçek hayat uygulamalarında ölçümleri 

beklenen zamanda tutmak mümkün olmadığından başlangıç zaman farkı ile birlikte 

bazı kararlılık ve sınırlılık kesirli türevli diferansiyel denklemler için tanıtıldı ve 

çalışıldı. Dördüncü bölümde parametre içeren skaler kesirli türevli diferansiyel 

denklemler için mukayese sonuçları başlangıç zaman farkına göre elde edildi. Bazı 

kararlılık ve sınırlılık için yeterli koşullar bu sonuçlar çerçevesinde elde edildi. 

Orijinal pertörb olmayan sisteme göre hem başlangıç pozisyonu hem de başlangıç 

zamanı farklı olan pertörb sistemin çözümünün davranışı beşinci bölümde incelendi. 

Son olarak bir önceki bölümde bazı kararlılık ve sınırlılık için elde edilen sonuçlar 

iki ölçü kavramı kullanılarak genelleştirildi. 
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1. INTRODUCTION 

 

One of the main problems in the qualitative theory of differential equations is 

stability of the solutions. It is well known that the theory of stability in the sense of 

Lyapunov has been successfully investigated to understand qualitative properties of 

dynamic systems for many years [1]-[6]. However, the concept of boundedness has 

played a significant role in the existence of periodic and almost periodic solutions 

which has many applications in biological population management and control [7]-

[8]. In real world processes, it is realized that a system may be stable or 

asymptotically stable in theory, but it is actually unstable in practice because of the 

stable domain or domain of attraction may be so small that desired deviation to 

cancel out is not allowed. Whereas, the desired state of a system may be 

mathematically unstable, but the system may oscillate sufficiently near this state so 

that the performance is considered acceptable. To deal with such phenomena, the 

concept of practical stability is introduced in [9] and a systematic study is presented 

in [10]. Briefly stated, practical stability is essentially based on the pre-specified 

bounds for the perturbation of initial conditions response and the allowable 

perturbation of the system response [10]. In nonlinear systems, Lyapunov’s direct 

method (also called the Lyapunov’s second method) allows us to obtain sufficient 

conditions for the stability, practical stability and boundedness of a system without 

explicitly solving given equations. The method generalizes the idea which shows that 

the system is stable if there are some Lyapunov function candidates for the system 

[4]-[6].  

Fractional calculus is the theory of integral and derivative of arbitrary non-

integer order, which unifies and generalizes the concepts of integer order derivative 

and integral. The subject is as old as the classical calculus and goes back to the 17th 

century. Although there are several possible generalizations of ordinary 

differentiation and integration of a function, the most commonly used definitions are 

Riemann-Liouville (RL), Grünwald-Letnikov (GL) and Caputo fractional 

derivatives. For more details on the basic theory of fractional calculus, one can see 

the monographs [11]-[16]. In chapter 2, we present some basic definitions and facts, 

available in literature [11]-[16], about fractional calculus and fractional differential 

equations (FDE) for further development of the work.  
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Only a few decades ago, it was realized that the fractional differential 

equations (FDE) which involves fractional derivative provides an attractive tool for 

modelling properly the anomalous dynamics of various processes [17] related to 

complex systems in a variety of disciplines from physics, chemistry, biology and 

engineering such as viscoelasticity, electrochemistry, diffusion processes, control 

theory, heat conduction, electricity, mechanics, chaos and fractals [11], [15], [18]-

[20]. Therefore, the qualitative theory of FDE has received increasingly attentions 

[21]. The existence and uniqueness of solutions of initial and boundary value 

problems for nonlinear FDE have been extensively studied by monotone iterative 

technique or fixed point method [22]-[28] and the references therein. Among them 

[16], [22]-[23] have investigated the basic theory of initial value problems (IVP), 

including fractional differential and integral inequalities, comparison result, local and 

global existence of solutions, for FDE involving RL and the Caputo derivatives of 

order 0 < 𝑞 < 1. They followed the classical approach of the theory of differential 

equations of integer order, in order to compare and contrast the differences as well as 

the intricacies that might result in development [3]-[4]. In addition to existence and 

uniqueness result, the authors have investigated in particular the dependence of the 

solution for RL type FDE on the order of the equation and on the initial condition in 

[27]. Generalization of Gronwall inequality for the RL type of fractional integral 

equation are obtained in [28]. As an application of this result, uniqueness and 

continuous dependence of the solution of the RL type FDE are proved. 

Recently, fractional calculus was introduced to the stability analysis of FDE 

and stability of FDE has attracted increasing interest. In 1996, the author in [29] 

firstly studied the stability of linear FDE with the Caputo derivative. Since then, 

further studies on the stability of linear FDE have been done [30]-[31]. Whereas, the 

stability analysis of the nonlinear FDE is much more difficult and only a few are 

available. In the base of Lyapunov’s second method, sufficient conditions on stability 

for nonlinear FDE and nonlinear time-delayed FDE has been discussed in several 

papers [32]-[38]. Among them in [32]-[33], the authors proposed fractional 

Lyapunov’s second method and firstly extended the exponential stability of ordinary 

differential equations (ODE) to the Mittag-Leffler stability and generalized Mittag-

Leffler stability of FDE, respectively. The authors in [35]-[36] have applied the 

fractional comparison principle to discussing the asymptotic stability and Mittag-

Leffler stability of FDE with RL derivative, respectively. Very recently, a stability 
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criterion for autonomous and non-autonomous nonlinear fractional differential 

system with Caputo derivative is derived in [37]-[38], respectively. In 

aforementioned papers, sufficient conditions are established by application of the 

Caputo derivative of continuously differentiable Lyapunov function. Besides, there is 

another approach in which the authors [39]-[40] have defined Caputo fractional Dini 

derivative of continuous Lyapunov function in an appropriate way. Motivated by the 

known fact that the stability or asymptotic stability are neither necessary nor 

sufficient to assure practical stability [10] and the concept of boundedness is valid 

even the studied FDE has no zero solution, we have investigated practical stability, 

boundedness and Lagrange stability for FDE by using fractional comparison method 

via Caputo fractional Dini derivative of continuous Lyapunov function in Chapter 3. 

The statement of the problem and relation between stability and boundedness is 

presented in section 3.2. Then, in section 3.3 natural relationship between the Dini 

derivative of Lyapunov function for classical case (𝑞 = 1) and Caputo fractional 

Dini derivative is given by appropriate examples. Some comparison results demand 

only continuity as an assumption instead of local Hölder continuity or 𝐶𝑞 continuity 

used in the literature [16], [23], [41] is presented in section 3.4. Then, comparison 

method via Lyapunov function and a scalar FDE is applied to obtain sufficient 

conditions on some stability and boundedness for system of FDE in section 3.5. 

Finally some examples are given as an application of the obtained results. 

In practical situations, it is possible to have not only a change in initial position 

but also in initial time because of all kinds of disturbed factors. So it is reasonable to 

study the solutions of the differential equation with variation in the initial time. 

When we do consider such a deviation in initial time, it causes measuring the 

difference between any two different solutions starting with different initial times. 

We call this type of stability analysis, initial time difference stability analysis. An 

investigation of IVP of differential equations where the initial time changes with 

each solution in addition to the initial position was initiated by [42]-[43]. There are 

two ways of comparing and measuring the difference of two solutions. In [44]-[45], 

the method of variation of parameters is used to discuss such situations in one 

direction. In [46]-[49], the authors have obtained various types of some stability and 

boundedness results relative to initial time difference (ITD) for ODE by employing 

the construction of various types of Lyapunov functions with differential inequalities 

technique.  
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In Chapter 4, we have investigated stability, practical stability, boundedness 

and Lagrange stability with ITD for nonlinear FDE by using fractional extension of 

comparison principle. In section 4.2, main definitions and concepts with ITD for 

FDE with Caputo derivative are introduced and the differences between classical 

notion of stability and the notion of stability with ITD are discussed, respectively. 

Then, in section 4.3 natural relationship between the Dini derivative of Lyapunov 

function with ITD for classical case (𝑞 = 1) and the introduced Caputo fractional 

Dini derivative with ITD is shown by appropriate examples. Then, comparison 

results relative to ITD are obtained in section 4.4. Comparison method via Lyapunov 

function and scalar FDE with parameter is applied to obtain several sufficient 

conditions on stability, practical stability, boundedness and Lagrange stability with 

ITD for system of FDE in section 4.5. Finally some examples are given as an 

application of the obtained results.  

Determining which stability properties of a particular differential system are 

preserved under sufficiently small perturbations is another important problem in 

stability theory. This problem was investigated in several ways in [1]-[6]. The author 

in [50] investigated the problem of determining the behavior of the solutions of a 

perturbed differential equation with respect to the solutions of the original 

unperturbed differential equation. The principal mathematical technique employed is 

a modification of Lyapunov’s direct method which is applied to the difference of the 

solutions of perturbed and unperturbed system where the initial positions are 

sufficiently close. In [51], the authors applied variational Lyapunov method (VLM), 

combines the method of variation of parameters and the method of Lyapunov, to 

connect the solutions of perturbed and unperturbed system with initial time 

unchanged. However, the possibility of making error in initial time as well as in 

initial position when we deal with real world problems needs to be considered. So 

far, several studies have been made on this problem for ODE to explore the ITD 

stability, boundedness, etc. criteria by using generalized variation of parameters and 

comparison method via Lyapunov functions in [52], [53] and references therein. 

However, there are a few results for FDE. In [52], VLM is applied to connect 

between the solutions of system of perturbed and unperturbed FDE that have the 

same initial time. On the other hand sufficient conditions on stability with ITD are 

obtained in [54]. In chapter 5, we have investigated stability, practical stability, 

boundedness and Lagrange stability for system of nonlinear perturbed FDE with ITD 
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by using fractional comparison method via Lyapunov function and scalar FDE with 

parameter. We begin with section 5.2 which includes the necessary some stability 

and boundedness definitions of system of perturbed FDE relative to unperturbed 

FDE with ITD and Caputo fractional Dini derivative of Lyapunov function with 

respect to the system of perturbed FDE and unperturbed FDE in relation with 

definition in [55]-[56]. In section 5.3, firstly we present a comparison result which 

uses Lyapunov function to connect the solutions of the perturbed and the unperturbed 

systems in terms of solution of a scalar FDE. We have obtained some sufficient 

conditions for ITD stability, boundedness and Lagrange stability of nonlinear system 

of perturbed FDE.  

There are many stability concepts are presented in the literature such as the 

partial stability, eventual stability, conditional stability, Lipschitz stability, relative 

stability and so on. In 1960, [57] introduced the concept of stability in terms of two 

measures which unified the foregoing stability concepts. Then, the theories of the 

stability in terms of two measures have been successfully developed in [58] and 

some stability and boundedness results are obtained by means of various types of 

Lyapunov functions for several kinds of differential equations in [59]-[61] and 

references therein. We have investigated some stability and boundedness in terms of 

two measures for system of perturbed FDE with ITD in chapter 6. We begin with 

section 6.2 which includes the necessary definitions of stability, practical stability, 

boundedness and Lagrange stability in terms of two measures with ITD. Then, we 

have generalized the main results obtained in previous chapter 5 by using the notion 

of two measures.  
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2.  FRACTIONAL CALCULUS: BASIC THEORY 

AND RESULTS 

 

Fractional calculus is the branch of mathematics that generalizes the derivative 

and the integral of a function to a non-integer (arbitrary) order. The subject is as old 

as the classical calculus and goes back to the 17th century. For the first time in a 

letter dated 30th september 1695, Leibniz proposed the following question to 

L’Hospital: “Can the meaning of derivatives with integer order be generalized to 

derivatives with non-integer orders?”. Since then, several mathematicians studied  

this question, using their own notation and methodology, among them RL, Caputo, 

Weyl, GL and Erdelyi-Kober, etc. The most commonly used definitions are RL, GL 

and Caputo fractional derivatives. Fractional derivatives possess memorizing 

properties, which makes fractional derivative more suitable than integer-order to 

describe the properties of various materials. The physical and geometric 

interpretation of fractional integral and derivative was discussed in [62].  

Only a few decades ago, it was realized that fractional calculus provides an 

attractive tool for modelling the real world problems. The idea of fractional calculus 

has been a subject of interest not only among mathematicians, but also among 

physicists and engineers. There are many books that provide broad and deep 

understanding of the theory and applications of fractional calculus and FDE [11]-

[15], [19]-[21].  

In this chapter, we present some basic definitions and facts, available in 

literature [12], [14]-[15], [63]-[65], about fractional calculus and FDE for further 

development of the work. One can see more detailed information about this chapter 

in [12], [14]-[15], [63]-[65]. The organization of this chapter as follows. In 2.1, we 

give definitions and the properties of the special functions that are important in 

fractional calculus. In 2.2, we give the necessary definitions, some properties of RL, 

Caputo and GL fractional derivatives. Then, the initial value problem for FDE and 

some basic results on existence and uniqueness from literature are given. 
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2.1. Special Functions 

 

Here, we give definitions and the simplest properties of some special symbols 

and related special functions that are important in fractional calculus. One can see 

more detailed information about this part in the book [12], [14].  

 

 The Pochhammer symbol (𝑧)𝑛 with integer 𝑛 is defined by 

 

(𝑧)𝑛 = 𝑧(𝑧 + 1). . . (𝑧 + 𝑛 − 1), 𝑛 = 1,2, . . . ,      (𝑧)₀ = 1. (2.1) 

 

It is easy to see that 

 

(𝑧)𝑛 = (−1)𝑛(1 − 𝑛 − 𝑧)𝑛,   (1)𝑛 = 𝑛!, 

 
(2.2) 

(𝑧)𝑛 =
𝛤(𝑧 + 𝑛)

𝛤(𝑧)
 (2.3) 

 

where 𝛤(𝑧) is given by (2.7). Equation (2.3) can be used for introducing the symbol 

(z)n with complex n.  

 

 Binomial coefficients are defined by the formula 

 

(
𝛼

𝑛
) =

(−1)𝑛(−𝛼)𝑛
𝑛!

=
(−1)𝑛−1𝛼𝛤(𝑛 − 𝛼)

𝛤(1 − 𝛼)𝛤(𝑛 + 1)
. (2.4) 

 

In particular when 𝛼 = 𝑚, 𝑚 = 1,2, …, we have (𝑚
𝑛
) =

𝑚!

𝑛!(𝑚−𝑛)!
  𝑖𝑓 𝑚 ≥ 𝑛 and 

(𝑚
𝑛
) = 0 𝑖𝑓 0 ≤ 𝑚 < 𝑛. We also have the following relations 

 

(−1)𝑗 (
𝛼

𝑗
) = (

𝑗 − 𝛼 − 1

𝑗
), (2.5) 
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and  

∑(
𝛼

𝑗
) (

𝛽

𝑘 − 𝑗
) =

𝑘

𝑗=0

(
𝛼 + 𝛽

𝑘
). (2.6) 

 

 The Gamma function 𝛤(𝑧) is defined by the integral 

 

𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡 

∞

0

 (2.7) 

 

which converges in the right half of the complex plane 𝑅𝑒(𝑧) > 0. Indeed, we have   

 

𝛤(𝑥 + 𝑖𝑦) = ∫ 𝑒−𝑡𝑡𝑥−1+𝑖𝑦𝑑𝑡 = ∫ 𝑒−𝑡𝑡𝑥−1𝑒𝑖𝑦𝑙𝑛(𝑡)𝑑𝑡 

∞

0

 

∞

0

 

                                                        = ∫ 𝑒−𝑡𝑡𝑥−1[𝑐𝑜𝑠(𝑦𝑙𝑛(𝑡)) + 𝑠𝑖𝑛(𝑦𝑙𝑛(𝑡))]𝑑𝑡.

∞

0

 

(2.8) 

 

The expression in the square brackets in (2.8) is bounded for all 𝑡 and convergence at 

infinity. It is provided by 𝑒−𝑡 and we must have 𝑥 = 𝑅𝑒(𝑧) > 0 for the convergence 

at 𝑡 = 0. The ‘beauty’ of the gamma function can be found in its properties. An 

integration by parts yields the functional equation for 𝛤(𝑧) as follow  

 

              𝛤(𝑧 + 1) = 𝑧𝛤(𝑧),   𝑅𝑒(𝑧) > 0. (2.9) 

 

More generally, when 𝑛 is a positive integer, 

 

𝛤(𝑧 + 𝑛) = (𝑧 + 𝑛 − 1)(𝑧 + 𝑛 − 2)…𝑧𝛤(𝑧),    𝑅𝑒(𝑧) > 0. (2.10) 

 

By putting 𝑧 = 1 in (2.10), 𝛤(𝑛 + 1) = 𝑛! is obtained. Therefore, this function is a 

generalization of the factorial. The Gamma function is extended to the half-plane 
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𝑅𝑒(𝑧) ≤ 0, 𝑧 ≠ 0,−1,−2,… ,  by analytic continuation of the integral (2.7). Then 

(2.10) yields the equality 

 

𝛤(𝑧) =
𝛤(𝑧 + 𝑛)

(𝑧)𝑛
=

𝛤(𝑧 + 𝑛)

𝑧(𝑧 + 1)… (𝑧 + 𝑛 − 1)
  (2.11) 

 

where 𝑅𝑒(𝑧) > −𝑛, 𝑛 = 1,2, …, 𝑧 ≠ 0,−1,−2,…, which allows to carry out such an 

analytic continuation into the half-plane 𝑅𝑒(𝑧) > −𝑛 with any 𝑛. Figure 2.1 

demonstrates the Gamma function at and around zero.  

 

                                                

 

      Figure 2.1: Gamma function. 

 

 The Beta function, Euler integral of the first kind, is defined by 

 

𝐵(𝑧, 𝑤) = ∫𝑡𝑧−1(1 − 𝑡)𝑤−1𝑑𝑡  ,   (𝑅𝑒(𝑧) > 0,   𝑅𝑒(𝑤) > 0).  

1

0

 (2.12) 

 

The Beta function is important in relationship in fractional calculus. In many cases, it 

is more convenient to use instead of certain combination of values of the Gamma 

function. It is connected with the Gamma function by the relation  

 

     𝐵(𝑧, 𝑤) =
𝛤(𝑧)𝛤(𝑤)

𝛤(𝑤 + 𝑧)
= 𝐵(𝑤, 𝑧). (2.13) 

 



10 
 

 The standard definition of the Mittag-Leffler is given in [12]-[15] 

 

𝐸𝛼(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 1)

∞

𝑘=0

   (𝛼 > 0). (2.14) 

 

The Mittag-Leffler function is an important function that finds widespread use in the 

world of fractional calculus. Just as the exponential naturally arises out of the 

solution to integer order differential equations, the Mittag-Leffler function plays an 

analogous role in the solution of non-integer order differential equations. The 

function 𝐸𝛼(𝑧) was defined and studied by Mittag-Leffler in the year 1903. It is a 

direct generalization of the exponential series i.e. for 𝛼 = 1, 𝐸1(𝑧) = 𝑒
𝑧. 

A two parameter function of the Mittag-Leffler type is defined by  

 

𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘 + 𝛽)

∞

𝑘=0

     (𝛼 > 0,    𝛽 > 0). (2.15) 

 

The function defined by (2.15) is a generalization of (2.14). 

Now, we give the following propositions which include Laplace transform and 

monotonicity of the Mittag-Leffler functions. The proofs of the following results can 

be found in [14]-[15].  

 

Proposition 2.1: For 𝜆 > 0, 𝑞 > 0, we have for 𝑡 > 0 

 

             
𝑑

𝑑𝑡
𝐸𝑞,1(−𝜆𝑡

𝑞) = −𝜆𝑡𝑞−1𝐸𝑞,𝑞(−𝜆𝑡
𝑞). (2.16) 

 

Proposition 2.2: For any 𝑞 ∈ (0,1) the function 𝐸𝑞,1(−𝑡) is completely monotone for 

𝑡 ≥ 0, i.e. (−1)𝑛
𝑑𝑛

𝑑𝑡
𝐸𝑞,1(−𝑡) ≥ 0. In particular, it holds that for any 𝑡 ≥ 0, 

𝐸𝑞,1(−𝑡) > 0 and 𝐸𝑞,𝑞(−𝑡) ≥ 0. 
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Proposition 2.3: Laplace transform of the function 𝑡β−1𝐸𝛼,β( 𝜆𝑡
𝛼

−
+ ) is given  

 

ℒ{𝑡β−1𝐸𝛼,β( 𝜆𝑡
𝛼

−
+ )} =

𝑠𝛼−𝛽

(𝑠𝛼 𝜆+
− )

,       𝑅𝑒(𝑠) > |𝜆|1/𝛼. (2.17) 

 

2.2. Definitions and Properties of Fractional Integral and 

Derivatives 
 

Although there are several possible generalizations of  
𝑑𝑛𝑓

𝑑𝑡𝑛
, the most commonly 

used definitions are RL, GL and Caputo fractional derivatives. The concept of RL 

fractional derivative is historically the first and the theory about this concept has 

been studied comprehensively very well in [11]-[15]. But applied problems require 

definitions of fractional derivatives allowing the utilization of physically 

interpretable initial conditions, which contain 𝑓(𝑎), 𝑓′(𝑎), 𝑒𝑡𝑐.  Unfortunately, the 

the initial conditions for FDE with RL derivative contain the limit values of the RL 

fractional derivative at the lower terminal. In order to overcome this difficulty 

Caputo fractional derivative is defined. The main advantage of Caputo’s approach is 

that the initial conditions for FDE with Caputo derivative take on the same form as 

for ODE.  

 

2.2.1. Riemann-Liouville Fractional Integral and Derivative 

 

The idea of fractional integration is closely connected with Abel’s integral 

equation. Thus, it is reasonable to start from the solution of this equation. In this 

context, fractional differentiation is constructed as an operation inverse to fractional 

integration. Proceeding from this idea, the corresponding definitions and results are 

given from [12]. The integral equation  

 

          
1

𝛤(𝑞)
∫

𝜑(𝑠)𝑑𝑡

(𝑡 − 𝑠)1−𝑞
= 𝑓(𝑡), 𝑡 > 𝑎    

𝑡

𝑎

 (2.18) 
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where 0 < 𝑞 < 1, is called Abel’s equation. (2.18) may be solved by changing 𝑥 to 𝑡 

and 𝑡 to 𝑠; respectively, multiplying both sides (𝑥 − 𝑡)−𝑞 and integrating, it follows  

 

      ∫𝜑(𝑠)𝑑𝑠 =
1

𝛤(1 − 𝑞)
  

𝑡

𝑎

∫
𝑓(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞
.

𝑡

𝑎

 (2.19) 

 

One can see more detailed information and calculations about this part from chapter 

1 in [12]. Hence after differentiation (2.20) is obtained 

 

𝜑(𝑡) =
1

𝛤(1 − 𝑞)

𝑑

𝑑𝑡
∫
𝑓(𝑠)𝑑𝑡

(𝑡 − 𝑠)𝑞

𝑡

𝑎

. (2.20) 

 

So if (2.18) has a solution, this solution is necessarily given by (2.20) and therefore it 

is unique.  

 

 On the solvability of the Abel’s equation in the space of integrable function 

Under what conditions on 𝑓(𝑡) the Abel’s equation is solvable is needed to be 

clarified. In order to formulate the main result, the following notation is introduced  

 

𝑓1−𝑞(𝑡) =
1

𝛤(1 − 𝑞)
∫
𝑓(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞

𝑡

𝑎

. (2.21) 

 

Then 𝑓(𝑡) ∈ 𝐿1(𝑎, 𝑏) implies that 𝑓1−𝑞 ∈ 𝐿1(𝑎, 𝑏), see in [12].  

 

Theorem 2.1: Abel’s equation (2.18) with 0 < 𝑞 < 1 is solvable in 𝐿1(𝑎, 𝑏) if and 

only if 𝑓1−𝑞(𝑡) ∈ 𝐴𝐶([𝑎, 𝑏]) and 𝑓1−𝑞(𝑎) = 0. 

 

For proof of Theorem 2.1, please see in [12]. 
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The criterion of solvability for Abel’s equation is given in Theorem 2.1 in terms of 

the auxiliary function 𝑓1−𝑞(𝑡). However, the following lemma and corollary give a 

simple sufficient condition in terms of the function 𝑓(𝑡) itself.  

 

Lemma 2.1: If 𝑓(𝑡) ∈ 𝐴𝐶([𝑎, 𝑏]), then 𝑓1−𝑞(𝑡) ∈ 𝐴𝐶([𝑎, 𝑏]).  

 

For the proof Lemma 2.1 see in [12].  

 

Corollary 2.1: If 𝑓(𝑡) ∈ 𝐴𝐶([𝑎, 𝑏]), then Abel’s equation (2.18) is solvable in 

𝐿1(𝑎, 𝑏) and its solution (2.20) may herein be represented in the form  

 

𝜑(𝑡) =
1

𝛤(1 − 𝑞)
[
𝑓(𝑎)

(𝑡 − 𝑎)𝑞
+ ∫

𝑓′(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞

𝑡

𝑎

] (2.22) 

 

 Definition of Fractional Integrals and Derivatives 

There is a well-known formula  

 

∫𝑑𝑡1∫ 𝑑𝑡2… ∫ 𝜑(𝑡𝑛)𝑑𝑡𝑛 =
1

(𝑛 − 1)!
∫

𝜑(𝑠)𝑑𝑠

(𝑡 − 𝑠)1−𝑛
  

𝑡

𝑎

𝑡𝑛−1

𝑎

𝑡1

𝑎

𝑡

𝑎

 (2.23) 

 

for an 𝑛-fold integral. The right-hand side of (2.23) may have a meaning for non-

integer values of 𝑛 since (𝑛 − 1)! = 𝛤(𝑛). So it is natural to define the integration of 

a non-integer order as follows. 

 

Definition 2.1: ([12]) Let 𝜑(𝑡) ∈ 𝐿1(𝑎, 𝑏). The fractional integral of order 𝑞 > 0 is 

defined as 

 

𝐼𝑎 𝑡
𝑞𝜑(𝑡) =

1

𝛤(𝑞)
∫

𝜑(𝑠)𝑑𝑠

(𝑡 − 𝑠)1−𝑞
  ,

𝑡

𝑎

 𝑡 > 𝑎 (2.24) 
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where 𝑎 and 𝑡 limit of the operation. The accepted name for the integral (2.24) is the 

RL fractional integral. In some other references [14], [16] the notation 𝒟𝑡
−𝑞

𝑎 𝜑(𝑡) can 

also be used for RL fractional integral. For 𝑎 = 0, the fractional integral (2.24) can 

be written as 𝐼0 𝑡
𝑞𝜑(𝑡) = 𝜑(𝑡) ∗ 𝜓𝑞(𝑡) where 𝜓𝑞(𝑡) =

𝑡𝑞−1

𝛤(𝑞)
 for 𝑡 > 0 and 𝜓𝑞(𝑡) = 0 

for 𝑡 ≤ 0. To simplify the notations we will use Ι𝑎
𝑞
 instead of 𝐼𝑎 𝑡

𝑞
.  

Fractional integration has the semigroup property as follow:  

 

 Ι𝑎
𝛼Ι𝑎
𝛽
𝜑 = Ι𝑎

𝛼+𝛽
𝜑,         𝛼 > 0, 𝛽 > 0. 

 

In view of the inversion of Abel’s equation (2.20) which was obtained above, it is 

natural to introduce fractional differentiation as an operation inverse to fractional 

integration.  

 

Definition 2.2: ([12]) The RL fractional derivative of order 𝑞, 0 < 𝑞 < 1, for an 

integrable function 𝑓(𝑡) defined on  the interval [a,b], is defined as  

 

𝒟𝑡
𝑞

𝑎 𝑓(𝑡) =
1

𝛤(1 − 𝑞)

𝑑

𝑑𝑡
∫
𝑓(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞

𝑡

𝑎

. (2.25) 

 

Note that we have defined fractional integral for any 𝑞 > 0, while fractional 

derivative are for now introduced only for order 0 < 𝑞 < 1. It should be noted that 

use of half-order derivative and integral lead to a formulation of certain real world 

problems in different areas [11]. Before passing to the case 𝑞 ≥ 1, we give a simple 

and sufficient condition for the existence of fractional derivatives.  

 

Lemma 2.2: ([12]) Let 𝑓(𝑡) ∈ 𝐴𝐶([𝑎, 𝑏]), then 𝒟𝑎
𝑞𝑓(𝑡) exist almost everywhere for 

0 < 𝑞 < 1. Moreover 𝐷𝑎
𝑞
𝑓 ∈ 𝐿𝑟(𝑎, 𝑏), 1 ≤ 𝑟 ≤

1

𝑞
 , and  

 

   𝒟𝑡
𝑞

𝑎 𝑓(𝑡) =
1

𝛤(1 − 𝑞)
[
𝑓(𝑎)

(𝑡 − 𝑎)𝑞
+∫

𝑓′(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞

𝑡

𝑎

]. (2.26) 
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Now we can define fractional derivative for large order 𝑞 ≥ 1. We will use the 

notations: [𝑞] stands for the largest integer not greater than 𝑞 and {𝑞} meaning 

“fractional’’ part, 0 ≤ {𝑞} < 1, so that 𝑞 = [𝑞] + {𝑞}.  

Let 𝑞 > 0 be any real number. It is natural to introduce 𝒟𝑡
𝑞

𝑎 𝑓(𝑡) by the 

relation 

 

𝒟𝑡
𝑞

𝑎 𝑓(𝑡):= (
𝑑

𝑑𝑡
)

[𝑞]

𝒟𝑡
{𝑞}

𝑎 𝑓(𝑡) = (
𝑑

𝑑𝑡
)

[𝑞]+1

𝛪𝑎
1−{𝑞} 𝑓(𝑡). (2.27) 

 

Definition 2.3: ([12]) The RL fractional derivative of order 𝑞, 𝑛 − 1 ≤ 𝑞 < 𝑛  , for 

𝑓(𝑡) defined on  the interval [a,b], is given as  

 

𝒟𝑡
𝑞

𝑎 𝑓(𝑡) =
1

𝛤(𝑛 − 𝑞)
(
𝑑

𝑑𝑡
)
𝑛

∫
𝑓(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞−𝑛+1

𝑡

𝑎

, 𝑛 = [𝑞] + 1. (2.28) 

 

To simplify the notations we will use 𝒟𝑎
𝑞
 instead of 𝒟𝑡

𝑞
𝑎 . Now we recall some of the 

properties of the RL fractional derivative of order 𝑛 − 1 ≤ 𝑞 < 𝑛 as follow [63]: 

 

 𝒟𝑎
𝑞(𝑡 − 𝑎)𝜗 =

𝛤(1+𝜗)

𝛤(1+𝜗−𝑞)
(𝑡 − 𝑎)𝜗−𝑞 where 𝑞 ∈ ℝ+, 𝜗 > −1. 

 𝒟𝑎
𝑝 (𝒟𝑎

𝑞𝑓(𝑡)) = 𝒟𝑎
𝑝+𝑞𝑓(𝑡) − ∑ [𝒟𝑎

𝑞−𝑗
𝑓(𝑡)]

𝑡=𝑎

(𝑥−𝑎)−𝑝−𝑗

𝛤(1−𝑝−𝑗)
𝑛
𝑗=1 , where 𝑝, 𝑞 ∈ ℝ.  

 𝒟𝑎
𝑞(Ι𝑎

𝑞𝑓(𝑡)) = 𝑓(𝑡). 

 Ι𝑎
𝑞(𝒟𝑎

𝑞𝑓(𝑡)) = 𝑓(𝑡) − ∑ [𝒟𝑎
𝑞−𝑗

𝑓(𝑡)]
𝑡=𝑎

(𝑡−𝑎)𝑞−𝑗

𝛤(𝑞−𝑗+1)
𝑛
𝑗=1 . 

 𝒟𝑎
𝑞𝐶 =

𝐶(𝑡−𝑎)−𝑞

𝛤(1−𝑞)
 where 𝐶 is an any constant.  

 

Also, the Laplace transform of the RL fractional derivative is 

 

 ℒ{𝒟0
𝑞𝑓(𝑡)} = 𝑠𝑞𝐹(𝑠) − ∑ 𝑠𝑘[𝒟0

𝑞−𝑘−1𝑓(𝑡)]
𝑡=0

𝑛−1
𝑘=0 . 
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 IVP for Fractional Differential Equation with RL Derivative 

A fractional differential equation is an equation which contains fractional 

derivative. The IVP for FDE with RL derivative of order 𝑛 − 1 < 𝑞 < 𝑛 has the 

form  

 

  {
𝒟𝑡0
𝑞 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

       𝒟𝑡0
𝑞−𝑘𝑥(𝑡)|

𝑡=𝑡0
= 𝑏𝑘,   (𝑘 = 1,2, … , 𝑛)

 (2.29) 

 

where 𝑛 = [𝑞] + 1 and 𝑏𝑘 are given constants. The notation        𝒟𝑡0
𝑞−𝑘𝑥(𝑡)|

𝑡=𝑡0
 

means that the limit is taken at almost all points of the right-sided neighborhood 

(𝑡0, 𝑡0 + 𝜖) of 𝑡0 as follows 

 

{
[𝒟𝑡0

𝑞−𝑘𝑥(𝑡)]
𝑡=𝑡0

= lim
𝑡→𝑡0+

𝒟𝑡0
𝑞−𝑘𝑥(𝑡) , (1 ≤ 𝑘 ≤ 𝑛 − 1)

[𝒟𝑡0
𝑞−𝑛𝑥(𝑡)]

𝑡=𝑡0
= lim

𝑡→𝑡0+
𝐼𝑡0
𝑛−𝑞𝑥(𝑡)

 (2.30) 

 

where 𝐼𝑡0
𝑛−𝑞

 is the RL fractional integral of order 𝑛 − 𝑞 defined by (2.22). IVP (2.29) 

is equivalent to the following fractional integral equation 

 

𝑥(𝑡) = ∑
𝑏𝑘(𝑡 − 𝑡0)

𝑞−𝑘

𝛤(𝑞 − 𝑘 + 1)

𝑛

𝑘=1

+
1

𝛤(𝑞)
∫
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

(𝑡 − 𝑠)1−𝑞
.

𝑡

𝑡0

 (2.31) 

 

In the case when 0 < 𝑞 < 1, the (2.29) takes the following form  

 

{
𝒟𝑡0
𝑞 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

[𝐼𝑡0
1−𝑞𝑥(𝑡)]

𝑡=𝑡0
= 𝑏  

 (2.32) 

 

And this problem can be rewritten as the weighted Cauchy type problem [11]-[16] 
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{
𝒟𝑡0
𝑞
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

lim
𝑡→𝑡0+

Γ(𝑞)𝑥(𝑡)(𝑡 − 𝑡0)
1−𝑞 = 𝑥0.     

 (2.33) 

 

The corresponding Volterra integral equation to IVP (2.33) is  

 

𝑥(𝑡) =
𝑥0(𝑡 − 𝑡0)

𝑞−1

𝛤(𝑞)
+

1

𝛤(𝑞)
∫
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

(𝑡 − 𝑠)1−𝑞
   

𝑡

𝑡0

 (2.34) 

 

and it is valid for the functions 𝑥(𝑡) ∈ 𝐶𝑝([𝑡0, 𝑇], ℝ), 𝑝 = 1 − 𝑞 where 

𝐶𝑝([𝑡0, 𝑇], ℝ) = {𝑥(𝑡): 𝑥(𝑡) ∈ 𝐶[(𝑡0, 𝑇], ℝ] 𝑎𝑛𝑑 𝑥(𝑡)(𝑡 − 𝑡₀)
1−𝑞 ∈ 𝐶([𝑡0, 𝑇], ℝ)} 

 

Definition 2.4: ([16], [41]) A function 𝑥(𝑡) is called a solution of (2.33) if  

𝑥(𝑡) ∈  𝐶𝑝([𝑡0, 𝑡0 + 𝑎], ℝ), 𝒟𝑡0
𝑞 𝑥(𝑡) exists and continuous on [𝑡0, 𝑡0 + 𝑎] and 𝑥(𝑡) 

satisfies (2.33).  

 

As an example we consider linear FDE including homogeneous and non-

homogeneous, respectively [14].  

 

Example 2.1: ([14]) A generalization of an equation solved in [11] 

 

{
𝒟0
1/2
𝑥(𝑡) + 𝑎𝑥(𝑡) = 0,     𝑡 > 0

[𝐼0
1/2
𝑥(𝑡)]

𝑡=0
= 𝐶 

 (2.35) 

 

By applying the Laplace transform 𝑋(𝑠) =
𝐶

𝑠1/2+𝑎
 is obtained and the inverse 

transform with the help of (2.17) gives the solution of (2.35) as 

𝑥(𝑡) = 𝐶𝑡−
1

2𝐸1
2
,
1

2

(−𝑎√𝑡).  
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Example 2.2: ([14]) Let us consider the following IVP for a non-homogeneous FDE 

under non-zero initial conditions  

 

{
𝒟0
𝑞𝑥(𝑡) + 𝜆𝑥(𝑡) = ℎ(𝑡),     𝑡 > 0

[𝒟0
𝑞−𝑘𝑥(𝑡)]

𝑡=0
= 𝑏𝑘, (𝑘 = 1,2, … , 𝑛)  

 (2.36) 

 

where 𝜆 ∈ ℝ is a constant.  

Problem (2.36) was analytically solved in [12] by the iteration method. With the help 

of Laplace transform and formula the same solution is obtained directly and more 

quickly. The Laplace transform of equation (2.36) yields by taking into account 

initial conditions  

 

𝑠𝑞𝑋(𝑠) −∑𝑏𝑘𝑠
𝑘−1

𝑛

𝑘=1

− 𝜆𝑋(𝑠) = 𝐻(𝑠) 

                                                                    𝑋(𝑠) =
𝐻(𝑠)

𝑠𝑞 − 𝜆
+∑𝑏𝑘

𝑠𝑘−1

𝑠𝑞 − 𝜆
.

𝑛

𝑘=1

 

(2.37) 

 

The inverse transform by using Proposition 2.3 gives the solution  

 

𝑥(𝑡) =  ∑𝑏𝑘𝑡
𝑞−𝑘

𝑛

𝑘=1

𝐸𝑞,𝑞−𝑘+1(𝜆𝑡
𝑞) + ∫(𝑡 − 𝑠)𝑞−1 𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)

𝑞)ℎ(𝑠)𝑑𝑠.  

𝑡

0

 (2.38) 

 

In the case when 0 < 𝑞 < 1 the solution (2.38) has the following form 𝑥(𝑡) =

𝑏1𝑡
𝑞−1𝐸𝑞,𝑞(𝜆𝑡

𝑞) + ∫ (𝑡 − 𝑠)𝑞−1 𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)
𝑞)ℎ(𝑠)𝑑𝑠.  

𝑡

0
 

 

Applied problems require definitions of fractional derivatives allowing the 

utilization of physically interpretable initial conditions, which contain 𝑓(𝑎), 𝑓′(𝑎),

𝑒𝑡𝑐. Unfortunately, the RL approach leads to initial conditions containing the limit 

values of the RL fractional derivatives at the lower terminal 𝑡 = 𝑡0. However, the 

IVP (2.29) can be successfully solved mathematically [12], [14], their solutions are 

practically useless, because there is no known physical interpretation for such types 
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of initial conditions. This problem does not exist in the Caputo definition which is 

sometimes called smooth fractional derivative in literature.  

 

2.2.2. Caputo Fractional Derivative 

 

The definition (2.28) of the fractional differentiation of the RL type played an 

important role in the development of the theory of fractional derivatives and 

integrals, so called fractional calculus. However, the demands of modern technology 

require a certain revision of the well-established pure mathematical approach. A 

certain solution to this demand was proposed by Caputo.  

The Caputo fractional derivative of order 𝑞 > 0 can be written as (Caputo, 

1967):  

 

𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝐼𝑡0

𝑛−𝑞 [
𝑑𝑛

𝑑𝑡𝑛
𝑥(𝑡)] =

1

𝛤(𝑛 − 𝑞)
∫

𝑥𝑛(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞−𝑛+1

𝑡

𝑡0

 (2.39) 

 

where 𝑛 − 1 < 𝑞 < 𝑛. In special case when 0 < 𝑞 < 1, (2.39) takes the form 

 

 𝒟𝑞𝑡0
𝐶 𝑥(𝑡) =

1

𝛤(1−𝑞)
∫

𝑥′(𝑠)𝑑𝑠

(𝑡−𝑠)𝑞

𝑡

𝑡0
. 

 

Under the natural condition on the function 𝑥(𝑡) as 𝑞 → 𝑛, the Caputo derivative 

becomes the conventional 𝑛-th derivative of 𝑥(𝑡) [14]. The main advantage of 

Caputo’s approach is that the initial conditions for FDE with Caputo derivative take 

on the same form as for ODE. 

Now we recall some of the properties of the Caputo fractional derivative below 

[63]: 

 

 𝒟𝑞𝑡0
𝐶 Ι𝑡0

𝑞 𝑥(𝑡) = 𝑥(𝑡). 

 Ι𝑡0
𝑞  𝒟𝑞𝑡0

𝐶 𝑥(𝑡) = 𝑥(𝑡) − ∑
(𝑡−𝑡0)

𝑘

𝛤(𝑘+1)
𝑥(𝑘)(𝑡0)

𝑛−1
𝑘=0 .  

 ℒ{ 𝒟𝑞𝑡0
𝐶 𝑥(𝑡)} = 𝑠𝑞𝑋(𝑠) − ∑ 𝑠𝑞−𝑘−1𝑛−1

𝑘=0 𝑥(𝑘)(𝑡0).  

 𝒟𝑞𝑡0
𝐶 𝐶 = 0 where 𝐶 is any constant. 
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Also there exist relations between RL and the Caputo fractional derivative: 

 

 𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝒟𝑡0

𝑞 𝑥(𝑡) − ∑
(𝑡−𝑡0)

𝑘−𝑞

𝛤(𝑘−𝑞+1)
𝑥(𝑘)(𝑡0)

𝑛−1
𝑘=0 .  

 If 𝑥(𝑡0) = 𝑥
′(𝑡0) = ⋯ = 𝑥(𝑛−1)(𝑡0) = 0, then 𝒟𝑞𝑡0

𝐶 𝑥(𝑡) = 𝒟𝑡0
𝑞 𝑥(𝑡).  

 In the case 0 < 𝑞 < 1,   𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝒟𝑡0

𝑞 𝑥(𝑡) −
𝑥(𝑡0)

𝛤(1−𝑞)
(𝑡 − 𝑡0)

−𝑞 .  

 If 𝑥(𝑡0) = 0, then 𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝒟𝑡0

𝑞 𝑥(𝑡).  

 

Contrary to the Laplace transform of the RL fractional derivative, only integer order 

derivatives of function 𝑥(𝑡) appears in the Laplace transform of the Caputo fractional 

derivative.  

 

 IVP for Fractional Differential Equation with Caputo Derivative 

The IVP of Caputo FDE is given by 

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0  
 (2.40) 

 

where 0 < 𝑞 < 1, 𝑓 ∈ 𝐶[ℝ+ × ℝ,ℝ]. The corresponding Volterra integral equation 

to IVP (2.40) is  

 

𝑥(𝑡) = 𝑥0 +
1

𝛤(𝑞)
∫
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

(𝑡 − 𝑠)1−𝑞
 .  

𝑡

𝑡0

 (2.41) 

 

The first result is an existence result on IVP (2.40) that corresponds to the classical 

Peano existence theorem for first order ordinary differential equations.  

 

Theorem 2.2: ([64]) Let the function 𝑓: 𝐺 → ℝ be continuous and bounded by 𝑀 

where 𝐺 = {(𝑡, 𝑥): 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, |𝑥 − 𝑥0| ≤ 𝐾}, 𝑥0 ∈ ℝ, 𝐾 > 0 and 𝑎 > 0. Then 

there exist a solution 𝑥(𝑡) ∈ 𝐶[𝑡₀, 𝑡₀ + 𝛼] where 𝛼 = 𝑚𝑖𝑛[𝑎, (
𝐾𝛤(𝑞+1)

𝑀
)
1

𝑞]. 

 

Proof of Theorem 2.2, please see in [64]. 
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Now we will give the basic existence and uniqueness result with the Lipschitz 

condition, extension of previous result to vector-valued functions, by using 

contraction mapping theorem.  

 

Theorem 2.3: ([16]) Assume that  

 

i) 𝑓 ∈ 𝐶[𝑅,ℝ𝑛]𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦 𝑀 𝑜𝑛 𝑅 𝑤ℎ𝑒𝑟𝑒 𝑅 = {(𝑡, 𝑥): 𝑡0 ≤ 𝑡 ≤ 𝑡0 +

𝑎, ‖𝑥 − 𝑥0‖ ≤ 𝑏}; 

ii) ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖, 𝐿 > 0, (𝑡, 𝑥) ∈ 𝑅 where the inequalities are 

componentwise. 

 

Then there exists a unique solution 𝑥(𝑡) = 𝑥(𝑡, 𝑡₀, 𝑥₀) 𝑜𝑛 [𝑡₀, 𝑡₀ + 𝛼] where 𝛼 =

𝑚𝑖𝑛[𝑎, (
𝑏𝛤(𝑞+1)

𝑀
)
1

𝑞].  

 

Proof of Theorem 2.3, please see in [16]. 

 

We give some sufficient conditions for global existence of solutions.  

 

Theorem 2.4: ([16]) Assume that there exists the function 𝑔 ∈ 𝐶 ∈ [ℝ+ × ℝ+, ℝ+] 

and non-decreasing with respect to second argument such that  

 

|𝑓(𝑡, 𝑥)| ≤ 𝑔(𝑡, |𝑥|). (2.42) 

 

If the maximal solution of the initial value problem  

 

{
𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = 𝑔(𝑡, 𝑢(𝑡))

𝑢(𝑡0) = 𝑢₀
 (2.43) 

 

exists in [𝑡₀,∞). Then the largest existence of any solution of (2.40) such that 

|𝑥₀| ≤ 𝑢₀ is [𝑡₀,∞). 

 

Proof of Theorem 2.4, please see in [16].  
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Theorem 2.5: ([65]) Assume that there exists a continuous function 𝐹: [𝑡₀,∞) → ℝ+ 

such that |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐹(𝑡)|𝑥 − 𝑦| for all 𝑡 ≥ 𝑡0, 𝑥, 𝑦 ∈ ℝ𝑛. Then, (2.40) 

has a unique solution defined in [𝑡0, ∞). 

 

Proof of Theorem 2.5, please see in [64].  

 

Example 2.3: ([14]) Let us consider non-homogeneous linear scalar FDE with 

Caputo derivative 

 

{
𝒟𝑞0
𝐶 𝑥(𝑡) + 𝜆𝑥(𝑡) = ℎ(𝑡),    ( 𝑡 > 0)

𝑥(0) = 𝑥0   
 (2.44) 

 

where 𝜆 > 0 is a constant. The solution of (2.44) was obtained by applying 

successive approximations in [16]. With the help of Laplace transform the same 

solution is obtained directly and more quickly. The Laplace transform of equation 

(2.44) yields by taking into account initial condition 

 

𝑠𝑞𝑋(𝑠) − 𝑠𝑞−1𝑥0  − 𝜆𝑋(𝑠) = 𝐻(𝑠) 

                                                                              𝑋(𝑠) =
𝐻(𝑠)

𝑠𝑞 − 𝜆
+

𝑠𝑞−1

𝑠𝑞 − 𝜆
. 

(2.45) 

 

The inverse transform by using Proposition 2.3 gives the solution 𝑥(𝑡) =

𝑥0𝐸𝑞(−𝜆𝑡
𝑞) + ∫ (𝑡 − 𝑠)𝑞−1 𝐸𝑞,𝑞(−𝜆(𝑡 − 𝑠)

𝑞)ℎ(𝑠)𝑑𝑠.
𝑡

0
  

 

2.2.3. Other Approach 

 

Unlike the RL approach, which derives its definition from the repeated 

integral, the Grünwald-Letnikov formulation approaches the problem from the 

derivative side. For this, let us consider the continuous function 𝑓(𝑡). Its first 

derivative can be expressed as [14] 

 

𝑓′(𝑡) =
𝑑𝑓

𝑑𝑡
= lim

ℎ→0

𝑓(𝑡) − 𝑓(𝑡 − ℎ)

ℎ
. (2.46) 
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Applying this definition twice gives the second order derivative, 

 

𝑓′′(𝑡) =
𝑑2𝑓

𝑑𝑡2
= 𝑙𝑖𝑚

ℎ→0

𝑓′(𝑡) − 𝑓′(𝑡 − ℎ)

ℎ
 

                                                                 = lim
ℎ→0

𝑓(𝑡) − 2𝑓(𝑡 − ℎ) + 𝑓(𝑡 − 2ℎ)

ℎ2
. 

(2.47) 

 

Using (2.46) and (2.47) it follows that  

 

𝑓′′′(𝑡) =
𝑑3𝑓

𝑑𝑡3
= 𝑙𝑖𝑚

ℎ→0

𝑓(𝑡) − 3𝑓(𝑡 − ℎ) + 3𝑓(𝑡 − 2ℎ) − 𝑓(𝑡 − 3ℎ)

ℎ3
 (2.48) 

 

and by induction 

 

𝑓(𝑛)(𝑡) =
𝑑𝑛𝑓

𝑑𝑡𝑛
= 𝑙𝑖𝑚

ℎ→0

1

ℎ𝑛
∑(−1)𝑟 (

𝑛

𝑟
) 𝑓(𝑡 − 𝑟ℎ)

𝑛

𝑟=0

 (2.49) 

 

where  

 

(
𝑛

𝑟
) =

𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑟 + 1)

𝑟!
 (2.50) 

 

is the usual notation for the binomial coefficients. Now, consider the following 

expression generalizing the fractions in (2.46) - (2.49),  

 

𝑓ℎ
(𝑞)(𝑡) =

1

ℎ𝑞
∑(−1)𝑟 (

𝑞

𝑟
) 𝑓(𝑡 − 𝑟ℎ)

𝑛

𝑟=0

 (2.51) 

 

where 𝑞 is an arbitrary integer number and 𝑛 is also an integer. Because from (2.50) 

all the coefficients in the numerator after (𝑞
𝑞
) are equal to 0, the following 
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𝑙𝑖𝑚
ℎ→0

 𝑓ℎ
(𝑞)(𝑡) = 𝑓(𝑞) =

𝑑𝑞𝑓

𝑑𝑡𝑞
 for 𝑞 ≤ 𝑛 is obviously satisfied. In the case of negative 

value 𝑞 it follows that 

 

(
−𝑞

𝑟
) =

−𝑞(−𝑞 − 1)(−𝑞 − 2)… (−𝑞 − 𝑟 + 1)

𝑟!
= (−1)𝑟 [

𝑞

𝑟
] (2.52) 

 

where [𝑞
𝑟
] is defined as  

 

[
𝑞

𝑟
] =

𝑞(𝑞 + 1)(𝑞 + 2)… (𝑞 + 𝑟 − 1)

𝑟!
. (2.53) 

 

Now replacing 𝑞 in (2.51) with – 𝑞, then  𝑓ℎ
(−𝑞)(𝑡) =

1

ℎ−𝑞
∑ [𝑞

𝑟
]𝑓(𝑡 − 𝑟ℎ)𝑛

𝑟=0 , where 𝑞 

is a positive integer number. If 𝑛 is fixed, then 𝑓ℎ
(−𝑞)(𝑡) tends to the uninteresting 

limit 0 as ℎ → 0. To arrive at a non-zero limit, it is needed to suppose that 𝑛 → ∞ as 

ℎ → 0. Here 𝑛 =
𝑡−𝑡0

ℎ
 can be taken where 𝑡0 is a real constant, and consider the limit 

value, either finite or infinite, of 𝑓ℎ
(−𝑞)(𝑡), which will be denoted as  

 

𝑙𝑖𝑚
ℎ→0

𝑓ℎ
(−𝑞)(𝑡) = 𝒟𝑡0

−𝑞𝑓(𝑡). (2.54) 

 

Here 𝒟𝑡0
−𝑞𝑓(𝑡) denotes a certain operation performed on the function 𝑓(𝑡) with 𝑡0 

and 𝑡 are the limits relating to this operation. After observing the particular case 

𝑞 = 1,2,3…, following expression is followed  

 

𝒟𝑡0
−𝑞𝑓(𝑡) = 𝑙𝑖𝑚

ℎ→0
 ℎ𝑞∑[

𝑞

𝑟
] 𝑓(𝑡 − 𝑟ℎ) =

1

(𝑞 − 1)!
∫

𝑓(𝑡)

(𝑡 − 𝑠)1−𝑞
𝑑𝑠.  

𝑡

𝑎

𝑛

𝑟=0

 (2.55) 

 

As result [14] obtained general expression which represents the derivative of order 𝑚 

if 𝑞 = 𝑚 and the 𝑚-fold integral if 𝑞 = −𝑚. This observation naturally leads to the 

idea of a generalization of the notions of differentiation and integration by allowing 

𝑞 in (2.48) to be an arbitrary real number.  
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Definition 2.3: ([14]) The Grünwald-Letnikov derivative of the function 𝑓(𝑡) is given 

by  

 

𝒟𝑡0
𝑞𝐺𝐿 𝑓(𝑡) = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝑞
∑ (−1)𝑟 (

𝑞

𝑟
) 𝑓(𝑡 − 𝑟ℎ)

[
𝑡−𝑡0
ℎ

]

𝑟=0

 (2.56) 

 

where (𝑞
𝑟
) =

Γ(1+𝑞)

r!Γ(1+𝑞−𝑚)
.  

Also the following formula was obtained in [14] for 𝑚 − 1 < 𝑞 < 𝑚 

 

𝒟𝑡0
𝑞𝐺𝐿 𝑓(𝑡) = ∑

(𝑡 − 𝑡0)
𝑘−𝑞

𝛤(𝑘 − 𝑞 + 1)
𝑓(𝑘)(𝑡0) +

𝑚−1

𝑘=0

1

𝛤(−𝑞 +𝑚)
∫

𝑓(𝑚)(𝑠)𝑑𝑠

(𝑡 − 𝑠)𝑞−𝑚+1
  

𝑡

𝑎

 (2.57) 

 

under the conditions that the function 𝑓(𝑡) is 𝑚 − 1- times continuously 

differentiable and  𝑓(𝑚)(𝑡) is integrable . 

In the case when 0 < 𝑞 < 1 i.e. 𝑥(𝑡) is continuous and 𝑥′(𝑡) is integrable RL and 

GL derivatives have the following relation  

 

𝒟𝑡0
𝑞 𝑓(𝑡) = 𝒟𝑡0

𝑞𝐺𝐿 𝑓(𝑡) =
𝑥(𝑡₀)(𝑡−𝑡0)

−𝑞

𝛤(1−𝑞)
+

1

𝛤(1−𝑞)
∫

𝑥′(𝑠)𝑑𝑠

(𝑡−𝑠)𝑞

𝑡

𝑡0
. (2.58) 

 

Finally, Caputo, RL and GL fractional derivatives have the relation 

 

𝒟𝑡0
𝑞𝐶 𝑓(𝑡) = 𝒟𝑡0

𝑞 [𝑓(𝑡) − 𝑓(𝑡₀)] = 𝒟𝑡0
𝑞𝐺𝐿 [𝑓(𝑡) − 𝑓(𝑡₀)]. (2.59) 
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3. SOME STABILITY AND BOUNDEDNESS 

PROPERTIES FOR FRACTIONAL 

DIFFERENTIAL EQUATIONS  
 

3.1. Introduction 

 

Fractional calculus deals with the generalization of differentiation and 

integration of non-integer order [11]. It is a mathematical field goes back to the 17th 

century almost as old as the calculus itself. It is realized and approved with 

experimental studies that various processes with anomalous dynamics in science and 

engineering can be more properly formulated by using fractional differential 

operators due to its memory and hereditary properties [11]-[15], [18]-[21]. For 

instance, the anomalous diffusion (subdiffusion, superdiffusion, non-Gaussian 

diffusion) phenomena show many different aspects from classical diffusion processes 

[17]-[18].  

Stability analysis is one of the most fundamental and important issues for 

qualitative theory of differential equations, for instance control systems. Many 

different types of stability are defined and studied in the literature. However, the 

concept of boundedness has played a significant role in the existence of periodic [7] 

and almost periodic solutions [8] which has many applications in biological 

population management and control. In real world processes, there is a realization 

that a system may be stable or asymptotically stable in theory, but it is actually 

unstable in practice because of the stable domain or domain of attraction may be so 

small that desired deviation to cancel out is not allowed. Whereas, the desired state 

of a system may be mathematically unstable, but the system may oscillate 

sufficiently near this state so that the performance is considered admissible. To deal 

with such phenomena, the concept of practical stability is introduced in [9] and a 

systematic study is presented in [10]. Briefly stated, practical stability is essentially 

based on the pre-specified bounds for the perturbation of initial conditions response 

and the allowable perturbation of the system response.  

Recently, fractional calculus was introduced to the stability analysis of FDE. 

However, Lyapunov method in dealing with ODE (𝑞 = 1) cannot be simply 

extended to FDE since fractional differential operators are nonlocal and have weakly 
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singular kernels. In literature there are some approaches to stability analysis of FDE 

without or with delay via application of differentiable or continuously differentiable 

Lyapunov functions, see [32]-[38]. Sufficient conditions on stability, asymptotical 

stability, Mittag-Leffler stability, generalized Mittag-Leffler stability are established 

by application of the Caputo derivative of Lyapunov functions in aforementioned 

papers. Besides, there is another approach in which the authors [39]-[40] have 

defined Caputo fractional Dini derivative of continuous Lyapunov function in an 

appropriate way. Motivated by the fact that the stability or asymptotic stability are 

neither necessary nor sufficient to assure practical stability [10] and the concept of 

practical stability and boundedness are valid even the studied FDE has no zero 

solution, we have investigated asymptotically stability, practical stability, 

boundedness and Lagrange stability for FDE by using fractional comparison method 

via Caputo fractional Dini derivative of continuous Lyapunov function. The 

statement of the problem and relation between stability and boundedness is presented 

in section 3.2. Then, in section 3.3 natural relationship between the Dini derivative of 

Lyapunov function for classical case (𝑞 = 1) and Caputo fractional Dini derivative 

is given by appropriate examples [39]-[40]. Some comparison results demand only 

continuity as an assumption instead of local Hölder continuity or 𝐶𝑞 continuity used 

in the literature [16], [23], [41] is presented in section 3.4. Then, comparison method 

via Lyapunov function and a scalar FDE is applied to obtain sufficient conditions on 

some stability and boundedness for system of FDE in section 3.5. Finally some 

examples are given as an application of the obtained results. 

 

3.2. Preliminary Notes and Definitions 

 

3.2.1. Definitions of Some Stability and Boundedness  
 

Consider the following IVP for the system of FDE for 0 < 𝑞 < 1  

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0  
 (3.1) 
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where 𝑡0 ∈ ℝ+, 𝑥, 𝑥₀ ∈ ℝ
𝑛 , 𝑓 ∈ 𝐶[ℝ+ × ℝ

𝑛, ℝ𝑛]. Denote the solution of (3.1) by 

𝑥(𝑡) = 𝑥(𝑡; 𝑡₀, 𝑥₀) ∈ 𝐶𝑞([𝑡₀,∞), ℝ𝑛). Some sufficient conditions for global 

existence of solutions of (3.1) can be seen in [16], [64]-[65].  

The main goal of this chapter is to study the practical stability, boundedness 

and Lagrange stability properties for the system of FDE (3.1) via fractional 

comparison principle in which Lyapunov function and scalar FDE is employed. 

When (3.1) has a zero solution, i.e. 𝑓(𝑡, 0) = 0 we shall use the following stability 

definition.  

 

Definition 3.1: The zero solution 𝑥(𝑡) ≡ 0 of (3.1) is said to be:  

 

S1) stable if given 𝜖 > 0 and 𝑡0 ∈ ℝ+ there exist 𝛿 = 𝛿(𝑡0, 𝜖) > 0 such that for any 

initial position 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ < 𝛿 implies ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 

𝑡 ≥ 𝑡0, where 𝑥(𝑡; 𝑡0, 𝑥0) is any solution of (3.1); 

S2) uniformly stable, if 𝛿 in S1) is independent of 𝑡0;  

S3) attractive if for given 𝜖 > 0 and 𝑡0 ∈ ℝ+ there exist 𝛿0 = 𝛿0(𝑡0) > 0 and 

𝑇 = 𝑇(𝑡0, 𝜖) > 0 such that for any initial position 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ < 𝛿₀ 

implies ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇;  

S4) uniformly attractive, if 𝛿0 and 𝑇 in S3) are independent of  𝑡0; 

S5) asymptotically stable, if it is stable and attractive; 

S6) uniformly asymptotically stable, if it is uniformly stable and attractive. 

 

Definition 3.2: Let a couple of real numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given. The 

system of FDE (3.1) is said to be:  

 

PS1) practically stable w.r.t. (𝜆, 𝐴) if there exists 𝑡0 ≥ 0 such that for any initial 

position 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ < 𝜆 implies ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝐴 for 𝑡 ≥ 𝑡0; 

PS2) uniformly practically stable if PS1) holds for all 𝑡0 ∈ ℝ+; 

PS3) practically quasi-stable w.r.t. (𝜆, 𝐴, 𝑇) if there exists 𝑡₀ ≥ 0 such that for any 

initial position 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ < 𝜆 implies ‖𝑥(𝑡; 𝑡0, 𝑥0‖ < 𝐴 for 

𝑡 ≥ 𝑡0 + 𝑇; 

PS4) uniformly practically quasi stable w.r.t. (𝜆, 𝐴) if PS3) holds for all 𝑡0 ∈ ℝ+. 
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Remark 3.1: Unlike the concept of stability the assumption on the existence of the 

zero solution i.e. 𝑓(𝑡, 0) ≡ 0 is not essential for the concepts of boundedness and  

practical stability.  

 

The following Lemma is given for future use.  

 

Lemma 3.1: For 0 < 𝑞 < 1 and 𝛾 > 0, we have  

 

∫(𝑡 − 𝜏)𝑞−1 𝐸𝑞,𝑞(−𝛾(𝑡 − 𝜏)
𝑞)𝑑𝑠 =

𝑡

𝑡0

1

𝛾
(1 − 𝐸𝑞(−𝛾(𝑡 − 𝑡0)

𝑞)). (3.2) 

 

Proof 3.1: By applying change of variable in the integral (3.2) and using  

Preposition 2.1, we have  

 

∫(𝑡 − 𝜏)𝑞−1 𝐸𝑞,𝑞(−𝛾(𝑡 − 𝜏)
𝑞)𝑑𝑠 

𝑡

𝑡0

 

                = ∫ 𝑧𝑞−1 𝐸𝑞,𝑞(−𝛾𝑧
𝑞)𝑑𝑧 = −

1

𝛾
∫

𝑑

𝑑𝑧
 (𝐸𝑞(−𝛾𝑧

𝑞))𝑑𝑧

𝑡−𝑡0

0

𝑡−𝑡0

0

 

                                                                                    =
1

𝛾
(1 − 𝐸𝑞(−𝛾(𝑡 − 𝑡0)

𝑞)).  ■ 

(3.3) 

 

Example 3.1: To illustrate the idea in Remark 3.1, consider the following IVP for 

fractional relaxation equation   𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = −𝑢(𝑡) + 𝜇𝑠𝑖𝑛𝑡,    𝑢(𝑡0) = 𝛼, where 

𝛼 > 𝜇 > 0. It is obvious that above FDE has no zero solution and solution is given 

by  

 

𝑢(𝑡) = 𝛼𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) + 𝜇 ∫(𝑡 − 𝜏)𝑞−1

𝑡

𝑡0

𝐸𝑞,𝑞(−(𝑡 − 𝜏)
𝑞)[𝑠𝑖𝑛𝜏]𝑑𝜏. (3.4) 

By Lemma 3.1 with 𝛾 = 1, we obtain the following estimate for the solution  
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|𝑢(𝑡)| ≤ 𝛼𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) + 𝜇(1 − 𝐸𝑞(−(𝑡 − 𝑡0)

𝑞)),   𝑡 ≥ 𝑡0. (3.5) 

 

Then we have the following results:  

 

 in view of estimate (3.5) and 0 < 𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) < 1 the solution satisfies 

|𝑢(𝑡)| ≤ 𝛼, 𝑡 ≥ 𝑡0, i.e. the solution is bounded, uniformly in 𝑡0. Besides, we can 

find a better bound 𝑁 with 𝛼 > 𝑁 > 𝜇, it is called ultimate bound, after a 

transient period passed by taking into consideration of the decaying property of 

Mittag-Leffler function. Indeed, |𝑢(𝑡; 𝑡0, 𝑢0)| ≤ 𝑁  for 𝑡 ≥ 𝑡0 + 𝑇 where 𝑇 =

(−𝐿𝑞(
𝑁−𝜇

𝛼−𝜇
))

1

𝑞 , 𝐿𝑞(𝑧) is the inverse function of the Mittag-Leffler function 𝐸𝑞(𝑧)  

defined as the solution of the equation 𝐿𝑞 (𝐸𝑞(𝑧)) = 𝑧 (see [66]).  

 consider the fractional relaxation equation with 𝑢(𝑡0) = 𝑢0 and let a couple of 

real numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given. Then |𝑢0| < 𝜆 implies 

|𝑢(𝑡; 𝑡0, 𝑢0)| < 𝐴, i.e. fractional relaxation equation is uniformly practically 

stable w.r.t. (𝜆, 𝐴). Besides, PS4) holds with (𝜆, 𝐴, 𝑇) where  𝑇 = (−𝐿𝑞(
𝐴−𝜇

𝜆−𝜇
))

1

𝑞. 

Figure 3.1 shows that the exact solution for classical case (𝑞 = 1) and 

approximate solutions of fractional relaxation equation with 𝜇 = 0.5, 𝛼 = 3 and 

different choices of 𝑞 = 0.5, 𝑞 = 0.8 and 𝑞 = 0.9.  
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Figure 3.1: Approximate solutions with 𝜇 = 0.5, 𝛼 = 3 and 𝑞 = 0.5, 𝑞 = 0.8, 

𝑞 = 0.9.  
 

Corresponding to different types of stability, the concept of boundedness and 

Lagrange stability can be defined [3], [4], [6]-[8].  

 

Definition 3.3: The system of FDE (3.1) is said to be:  

 

B1) equi-bounded, if given 𝛼 > 0 and 𝑡0 ∈ ℝ+, there exists a 𝛽 = 𝛽(𝑡0, 𝛼) > 0 such 

that any initial value 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ ≤ 𝛼 implies ‖𝑥(𝑡; 𝑡0, 𝑥0‖ < 𝛽 for 

𝑡 ≥ 𝑡0; 

B2) uniformly bounded, if 𝛽 in B1) is independent of 𝑡₀; 

B3) ultimately bounded, if given 𝛼 > 0 and 𝑡0 ∈ ℝ+, there exist 𝑁 > 0 and 𝑇 =

𝑇(𝑡0, 𝛼) > 0 such that any initial value 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ ≤ 𝛼 implies 

‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝑁,   𝑡 ≥ 𝑡0 + 𝑇; 

B4) uniformly ultimately bounded if 𝑇 in B3) is independent of 𝑡0; 

A1) attractive in the large if, for each 𝜖 > 0, 𝛼 > 0 there exists a 𝑇 = 𝑇(𝑡0, 𝜖, α, ) >

0 such that any initial value 𝑥0 ∈ ℝ
𝑛 the inequality ‖𝑥0‖ ≤ 𝛼 implies 

‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖  for  𝑡 ≥ 𝑡0 + 𝑇; 

A2) uniformly attractive in the large, if 𝑇 in A1) is independent of 𝑡0; 

L1) Lagrange stable if B1) and A1) hold together; 

L2) uniformly Lagrange stable if B2) and A2) hold together. 
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Proposition 3.1: In the case when  (𝑖) 𝑓(𝑡, 0) = 0 and (𝑖𝑖) 𝛽 → 0 as 𝛼 → 0 then the 

definitions B1), B2) imply S1), S2). 

 

Proof 3.1: Suppose that the zero solution is not stable. Then there exists a 𝜖∗ > 0 

such that ∀𝛿 > 0 such that ‖𝑥0‖ ≤ 𝛿 implies  ‖𝑥(𝑡; 𝑡0, 𝑥0‖ > 𝜖∗ for 𝑡 ≥ 𝑡0. On the 

other hand from B1) with the choice of 𝛼 = 𝛿 we get the inequality 𝜖∗ <

‖𝑥(𝑡; 𝑡0, 𝑥0‖ < 𝛽 which contradicts the property of 𝛽. Therefore, zero solution is 

stable. ■ 

 

In order to employ the fractional order extension of Lyapunov method, 

following scalar FDE is used  

 

{
𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = 𝐺(𝑡, 𝑢(𝑡))

𝑢(𝑡0) = 𝑢0
 (3.6) 

 

where 𝑢, 𝑢0 ∈ ℝ, 𝐺 ∈ 𝐶[ℝ × ℝ,ℝ]. We denote the solution of the IVP for the scalar 

FDE (3.6) by 𝑢(𝑡; 𝑡0, 𝑢0) ∈ 𝐶
𝑞([𝑡0, ∞), ℝ). In case of the solution is not unique we 

will assume the existence of a maximal one.  

Corresponding to the Definitions (3.1) - (3.3) given above, we need to recall 

definitions of stability, practical stability, boundedness and Lagrange stability for the 

scalar FDE (3.6).  

 

Definition 3.4: The zero solution of (3.6) is called:  

 

S*1) stable if given 𝜖 > 0 and 𝑡0 ∈ ℝ+, there exist 𝛿 = 𝛿(𝑡0, 𝜖) > 0 such that for 

any initial position 𝑢0 ∈ ℝ the inequality |𝑢0| < 𝛿 implies  |𝑢(𝑡; 𝑡0, 𝑢0)| < 𝜖  for 

 𝑡 ≥ 𝑡0, where 𝑢(𝑡; 𝑡0, 𝑢0) is a solution of (3.6).   

 

Definition 3.5: Let a couple of real numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given. The 

scalar FDE (3.6) is called: 
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PS*1) practically stable w.r.t. (𝜆, 𝐴) if there exists 𝑡0 ≥ 0 such that for any initial 

position 𝑢0 ∈ ℝ the inequality |𝑢0| < 𝜆 implies  |𝑢(𝑡; 𝑡0, 𝑢0)| < 𝐴 for  𝑡 ≥ 𝑡0, where 

𝑢(𝑡; 𝑡0, 𝑢0) is a solution of (3.6).  

 

Definition 3.6: The scalar FDE (3.6) is called 

 

B*1) equi-bounded, if given 𝛼 > 0 and 𝑡0 ∈ ℝ+ there exist 𝛽 = 𝛽(𝑡0, 𝛼) > 0 such 

that for any initial position 𝑢0 ∈ ℝ the inequality |𝑢0| < 𝛼 implies  |𝑢(𝑡; 𝑡0, 𝑢0)| < 𝛽 

for 𝑡 ≥ 𝑡0, where 𝑢(𝑡; 𝑡0, 𝑢0) is a solution of (3.6); 

 

We note that the definitions S∗2) - PS∗4) and B∗2) - L∗2) can be formulated 

similarly. It should also be noted that 𝐺(𝑡, 0) ≡ 0 is not required in Definition (3.5) –

Definition (3.6).  

 

3.3. Lyapunov Functions and its Caputo Fractional Dini 

Derivative 
 

Our aim is to establish the connection between practical stability, boundedness 

and Lagrange stability of the scalar FDE (3.6) and given system of FDE (3.1) by 

employing the fractional order extension of Lyapunov method. Hence, the class 𝛬 of 

Lyapunov-like functions are given.  

 

Definition 3.7: Let 𝐼 ⊂ ℝ+ and 𝛥 ⊂ ℝ𝑛. We will say that the function 𝑉(𝑡, 𝑥): 𝐼 ×

𝛥 → ℝ+ belongs to class Λ(𝐼, 𝛥) if: 

 

i) 𝑉(𝑡, 𝑥) is continuous and locally Lipschitzian with respect to its second 

argument on 𝐼 × 𝛥 and 𝑉(𝑡, 0) ≡ 0 for 𝑡 ∈ 𝐼.  

 

It is convenient to introduce certain class of monotone functions to characterize 

Lyapunov-like functions.  

 

Definition 3.8: ([6]) A continuous function 𝜑: [0, 𝜌) → ℝ+ is said to belong to the 

class K if it is strictly increasing and 𝜑(0) = 0. It is said to belong to 𝐾∞ if 𝜌 = ∞ 

and 𝜑(𝑟) → ∞ as 𝑟 → ∞. 
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Example 3.2: ([6]) 𝜑(𝑟) = 𝑡𝑎𝑛−1(𝑟)  is strictly increasing since 𝜑′(𝑟) =
1

1+𝑟²
> 0. 

It belongs to class 𝐾, but not to class 𝐾∞ since lim𝑟→∞ 𝜑(𝑟) = 𝜋/2. 

 

Example 3.3: ([6]) 𝜑(𝑟) = 𝑟𝑐, for any positive real number 𝑐, is strictly increasing 

since 𝜑′(𝑟) = 𝑐𝑟𝑐−1 > 0. Moreover lim𝑟→∞ 𝜑(𝑟) = ∞, thus it belongs to class 𝐾∞. 

 

Definition 3.9: ([6]) 𝑉(𝑡, 𝑥) ∈ 𝛬 is said to be positive definite if there exists a 

function 𝜑 ∈ 𝐾 such that 𝜑(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥).  

 

Definition 3.10: ([6]) 𝑉(𝑡, 𝑥) ∈ 𝛬 is said to be decrescent if there exists a function 

𝜓 ∈ 𝐾 such that 𝑉(𝑡, 𝑥) ≤ 𝜓(‖𝑥‖).  

 

Definition 3.11: ([41]) 𝑚(𝑡) is said to be 𝐶𝑞 continue i.e., 𝑚(𝑡) ∈ 𝐶𝑞([𝑡0, 𝑇], ℝ), if 

and only if the Caputo derivative of 𝒟𝑞𝑡0
𝐶 𝑚(𝑡) exists and satisfies 𝒟𝑞𝑡0

𝐶 𝑚(𝑡) =

1

𝛤(1−𝑞)
∫

𝑚′(𝑠)

(𝑡−𝑠)𝑞
𝑑𝑠

𝑡

𝑡0
.  

 

Definition 3.12: ([41]) GL fractional Dini derivative is given by  

 

      𝒟+
𝑞

𝑡0
𝐺𝐿 𝑚(𝑡) = lim 𝑠𝑢𝑝

ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟 (

𝑞

𝑟
)𝑚(𝑡 − 𝑟ℎ)

[
𝑡−𝑡0
ℎ

]

𝑟=0

 (3.7) 

 

where (𝑞
𝑟
) is the Binomial coefficients and [

t−𝑡0

ℎ
] means the integer part of 

t−𝑡0

ℎ
 . 

From the relation between the Caputo, the GL fractional derivative and (3.7), 

the Caputo fractional Dini derivative is defined as [39]-[40] 

 

        𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡) = 𝒟+

𝑞[𝑚(𝑡) − 𝑚(𝑡0)]𝑡0
𝐺𝐿  (3.8) 

 

i.e.  
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𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡) = 

         lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞

[
 
 
 

𝑚(𝑡) −𝑚(𝑡0) − ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑚(𝑡 − 𝑟ℎ) − 𝑚(𝑡0))

[
𝑡−𝑡0
ℎ

]

𝑟=1
]
 
 
 

. 
(3.9) 

 

Remark 3.2: ([39]-[40]) If 𝑚(𝑡) ∈ 𝐶𝑞([𝑡0, 𝑇], ℝ), then 𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡) =  𝒟𝑞𝑡0

𝐶 𝑚(𝑡).  

 

Lyapunov second method enables us to study some stability and boundedness 

properties in which the appropriate definition of the derivative of Lyapunov function 

along the studied any type of differential equation is required. In this context, there is 

an approach to stability analysis of FDE without or with delay via application of 

continuously differentiable Lyapunov functions in literature [32]-[38]. Besides, there 

is another approach in which the authors [39]-[40] have investigated stability and 

practical stability with ITD via application of continuous Lyapunov function which 

could be not continuously differentiable. For this purpose Caputo fractional Dini 

derivative of a function 𝑚(𝑡) given by (3.9) is used and Caputo fractional Dini 

derivative of the function 𝑉(𝑡, 𝑥) ∈ 𝛬(𝐼, 𝛥) is defined along the solutions of the 

system of FDE (3.1) as follow  

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) 

                     = lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞

[
 
 
 

𝑉(𝑡, 𝑥) − 𝑉(𝑡0, 𝑥0)

− ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑥 − ℎ𝑞(𝑓(𝑡, 𝑥)) − 𝑉(𝑡0, 𝑥0))

[
𝑡−𝑡0
ℎ

]

𝑟=1
]
 
 
 

 

(3.10) 

 

where 𝑡, 𝑡0 ∈ 𝐼, 𝑥, 𝑥0 ∈ 𝛥.  

In Example 4.5, Corollary 4.2 and Example 4.6, Caputo fractional Dini 

derivative relative to ITD, which is a generalization of (3.10), is introduced and 

applied to some Lyapunov function. In this context, the following examples from 

[39] are special case of it with 𝜂 = 0 and we omit the details.  
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Example 3.4: Let the Lyapunov function does not depend on the time variable, i.e. 

𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) for 𝑥 ∈ ℝ. Then, Caputo fractional Dini derivative for the considered 

Lyapunov function by applying formula (3.10) is  

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) = lim 𝑠𝑢𝑝

ℎ→0+

𝑉(𝑥) − 𝑉(𝑥 − ℎ𝑞(𝑓(𝑡, 𝑥))

ℎ𝑞
 

                                                                                  +[𝑉(𝑥) − 𝑉(𝑥0)]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
. 

(3.11) 

 

Corollary 3.1: Let 𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) = 𝑥² for 𝑥 ∈ ℝ. According to Example 3.4 the 

following expression for the quadratic scalar Lyapunov function is given  

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) 

                 = lim 𝑠𝑢𝑝
ℎ→0+

𝑥2 − (𝑥 − ℎ𝑞(𝑓(𝑡, 𝑥))2

ℎ𝑞
+ [𝑥2 − 𝑥0

2]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
  

                                                                         = 2𝑥𝑓(𝑡, 𝑥) + [𝑥2 − 𝑥0
2]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
. 

(3.12) 

 

Remark 3.3: In the case when 𝑞 → 1 the equality (3.12) coincides with the known 

Dini derivative 𝒟+𝑉(𝑡, 𝑥) = 2𝑥𝑓(𝑡, 𝑥) [3]-[4].  

 

Example 3.5: Let 𝑉(𝑡, 𝑥) = 𝑚²(𝑡)𝑥² for 𝑥 ∈ ℝ where 𝑚 ∈ 𝐶1(ℝ+, ℝ). Then, Caputo 

fractional Dini derivative (3.10) becomes the following expression 

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) = 2𝑥𝑚

2(𝑡)𝑓(𝑡, 𝑥) 

                                                +𝑥2 𝒟𝑞 [𝑚2(𝑡)] + (𝑥2 − 𝑥0
2)
𝑚2(𝑡0)(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
.𝑡0

𝐶  
(3.13) 

 

It is well known that the Dini derivative of 𝑉(𝑡, 𝑥) = 𝑚²(𝑡)𝑥²  for classical case 

(𝑞 = 1) is 

 

                            𝒟+𝑉(𝑡, 𝑥) = 2𝑥𝑚2(𝑡)𝑓(𝑡, 𝑥) + 𝑥2
𝑑

𝑑𝑡
[𝑚2(𝑡)]. (3.14) 
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3.4. Fractional Order Extension of Differential Inequalities 

and Comparison Results  
 

Lemma 3.2: ([39]-[40]) Let 𝑚 ∈ 𝐶([𝑡0, 𝑡0 + 𝜃], ℝ), 𝜃 > 0, and there exists 𝑡∗ ∈

(𝑡0, 𝑡0 + 𝜃] such that 𝑚(𝑡∗) = 0 and 𝑚(𝑡) < 0 for 𝑡0 ≤ 𝑡 < 𝑡∗. Then if the Caputo 

fractional Dini derivative (3.10) exists for 𝑚(𝑡∗) then the inequality  𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡∗) > 0 

holds.  

 

Proof 3.2: From (3.7), 𝑚(𝑡∗) = 0 and the inequalities 𝑟 − 𝑞 > 0 for 𝑟 = 1,2,…, and  

0 < 𝑞 < 1 follows  

 

          𝒟+
𝑞[𝑚(𝑡∗)] = lim 𝑠𝑢𝑝

ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟 (

𝑞

𝑟
)

[
𝑡∗−𝑡0
ℎ

]

𝑟=0

𝑚(𝑡∗ − 𝑟ℎ)𝑡0
𝐺𝐿 = 𝑚(𝑡∗) + 

 

       lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟

𝑞(𝑞 − 1)… (𝑞 − 𝑟 + 1)

𝑟!

[
𝑡∗−𝑡0
ℎ

]

𝑟=1

𝑚(𝑡∗ − 𝑟ℎ) 
(3.15) 

           = lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟

𝑞(1 − 𝑞). . . (𝑟 − 1 − 𝑞)

𝑟!

[
𝑡∗−𝑡0
ℎ

]

𝑟=1

−𝑚(𝑡∗ − 𝑟ℎ) > 0. 

 

 

From the relation (3.8) 

 

𝒟+
𝑞[𝑚(𝑡∗)] =𝑡0

𝐶 𝒟+
𝑞[𝑚(𝑡∗)] −𝑡0

𝐺𝐿
𝑚(𝑡0)(𝑡

∗ − 𝑡0)
−𝑞

𝛤(1 − 𝑞)
. (3.16) 

 

From inequalities 𝑚(𝑡0) < 0, 𝑡∗ > 𝑡0, 𝛤(1 − 𝑞) > 0 for 0 < 𝑞 < 1 and (3.16), the 

claim of Lemma 3.2 is obtained. ■ 

 

The most commonly used technique in the theory of dynamic equations is 

concerned with estimating a function satisfying a dynamic inequality by the extremal 

solutions of the related dynamic equation. The assumption with locally Hölder 
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continuity is weakened to 𝐶1, 𝐶𝑞 continuity in [52], [67], respectively. For the sake 

of completeness we will present fractional comparison theorem in which assumption 

for 𝐶1 or 𝐶𝑞 continuity is weakened to 𝐶, i.e. continuity by employing Lemma 3.2. 

Here some calculations and steps in the proof are given from [39]-[40].  

 

Lemma 3.3: Assume the following conditions are satisfied:  

 

i) The function 𝐺 ∈ 𝐶[[𝑡0, 𝑡0 + 𝜃] × ℝ,ℝ] and 𝐻 > 0 be such that for any 

𝜖 ∈ [0, 𝐻] and 𝑣0 ∈ ℝ the scalar FDE  

 

𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = 𝐺(𝑡, 𝑢(𝑡)) + 𝜖,    𝑢(𝑡0) = 𝑣0 (3.17) 

has a solution 𝑢(𝑡; 𝑡0, 𝑣0, 𝜖) ∈ 𝐶
𝑞([𝑡0, 𝑡0 + 𝜃], ℝ). 

ii) The function 𝑚(𝑡) ∈ 𝐶([𝑡0, 𝑡0 + 𝜃], ℝ+) so that the inequality  

 

𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡) ≤ 𝐺(𝑡,𝑚(𝑡)),    𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] (3.18) 

 

holds.  

 

Then 𝑚(𝑡0) ≤ 𝑢0 implies the validity of inequality 𝑚(𝑡) ≤ 𝑢∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] 

where 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0) is the maximal solution of IVP for scalar FDE (3.17) for 

𝑣0 = 𝑢0 and 𝜖 = 0.  

 

Proof 3.3: Consider the IVP for the scalar FDE (3.17) with 𝑣0 = 𝑢0 + 𝜖 where 

𝜖 ∈ [0, 𝐻] is an arbitrary fixed number. According to i) the IVP for the scalar FDE 

(3.17) has a solution 𝑢𝜖(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢₀ + 𝜖, 𝜖). Note that 𝑢𝜖(𝑡) satisfy the following 

integral equation corresponding to IVP (3.17) 

 

𝑢𝜖(𝑡) = 𝑢0 + 𝜖 +
1

𝛤(𝑞)
∫
[𝐺(𝑠, 𝑥(𝑠)) + 𝜖]𝑑𝑠

(𝑡 − 𝑠)1−𝑞
   

𝑡

𝑡0

 (3.19) 

 

for  𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. We now prove that  
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𝑚(𝑡) < 𝑢𝜖(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. (3.20) 

 

Note that the inequality (3.20) holds for 𝑡 = 𝑡0 since 𝑚(𝑡0) ≤ 𝑢0 < 𝑢𝜖(𝑡0). Suppose 

inequality (3.20) is not true for 𝑡 ∈ (𝑡0, 𝑡0 + 𝜃]. Then there exists a point 𝑡∗ such that 

𝑚(𝑡∗) = 𝑢𝜖(𝑡
∗), 𝑚(𝑡) < 𝑢𝜖(𝑡) for 𝑡 ∈ [𝑡0, 𝑡

∗). Applying Lemma 3.2 to the 

difference 𝑚(𝑡) − 𝑢𝜖(𝑡) yields 𝒟+
𝑞[𝑚(𝑡∗) − 𝑢𝜖(𝑡

∗)]𝑡0
𝐶 > 0, i.e. 𝒟+

𝑞𝑚(𝑡∗)𝑡0
𝐶 >

𝐺(𝑡∗, 𝑢𝜖(𝑡
∗)) + 𝜖 > 𝐺(𝑡∗, 𝑚(𝑡∗)). The obtained inequality above contradicts with 

the ii) for 𝑡 = 𝑡∗. Therefore the inequality (3.20) holds on [𝑡0, 𝑡0 + 𝜃] and any 

𝜖 ∈ (0, 𝐻]. We now show if  0 < 𝜖2 < 𝜖1 ≤ 𝐻 then  

 

𝑢𝜖2(𝑡) < 𝑢𝜖1(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. (3.21) 

 

Since 𝑢𝜖2(𝑡0) = 𝑢₀ + 𝜖2 < 𝑢₀ + 𝜖1 = 𝑢𝜖1(𝑡₀), the inequality (3.21) holds for 𝑡 = 𝑡0. 

Assume that inequality (3.21) is not true. Then there exists a 𝑡∗ ∈ (𝑡0, 𝑡0 + 𝜃] such 

that 𝑢𝜖2(𝑡
∗) < 𝑢𝜖1(𝑡

∗), 𝑢𝜖2(𝑡) < 𝑢𝜖1(𝑡) for 𝑡0 ≤ 𝑡 < 𝑡∗. According to Lemma 3.2 

applied to 𝑢𝜖2(𝑡) − 𝑢𝜖1(𝑡), we obtain 𝒟+
𝑞[𝑢𝜖2(𝑡

∗) − 𝑢𝜖1(𝑡
∗)]𝑡0

𝐶 > 0. On the other 

hand by using Remark 3.2 yields 

 

𝒟+
𝑞[𝑢𝜖2(𝑡

∗) − 𝑢𝜖1(𝑡
∗)]𝑡0

𝐶  

                         > 𝐺 (𝑡∗, 𝑢𝜖2(𝑡
∗)) + 𝜖2 − (𝐺 (𝑡

∗, 𝑢𝜖1(𝑡
∗)) + 𝜖1) 

                                                                                                                = 𝜖2 − 𝜖1 < 0. 

(3.22) 

 

which is a contradiction implies the validity of (3.21). Now 0 < 𝜖 ≤ 𝐻, (3.21) yields 

that the the family of solutions {𝑢𝜖(𝑡)}, 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] of (3.17) is uniformly 

bounded i.e. there exists 𝐾 > 0 with |𝑢𝜖(𝑡)| ≤ 𝐾 for (𝑡, 𝜖) ∈ [𝑡0, 𝑡0 + 𝜃] × [0, 𝐻]. 

Let 𝑀 = 𝑠𝑢𝑝{|𝐺(𝑡, 𝑢)|: (𝑡, 𝑢) ∈ [𝑡0, 𝑡0 + 𝜃] × [−𝐾,𝐾]}. Take a decreasing sequence 

of positive numbers {𝜖𝑗}𝑗=0
∞ , 0 < 𝜖0 ≤ 𝐻 such that lim𝑗→∞ 𝜖𝑗 = 0 and consider the 

corresponding sequence of solutions 𝑢𝜖𝑗(𝑡). Now for 𝑡1, 𝑡2 ∈  [𝑡0, 𝑡0 + 𝜃], 𝑡1 < 𝑡2, 

using the inequalities 𝑎𝑞 − 𝑏𝑞 ≤ 2(𝑎 − 𝑏)𝑞 for 𝑎 ≥ 𝑏 ≥ 0, (𝑡1 − 𝑠)
𝑞 ≤ (𝑡2 − 𝑠)

𝑞 
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for 𝑠 ∈ [𝑡0, 𝑡1] and ∫ ((𝑡2 − 𝑠)
𝑞−1 − (𝑡1 − 𝑠)

𝑞−1)
𝑡1

𝑡0
𝑑𝑠 =

1

𝑞
((𝑡2 − 𝑡0)

𝑞 −

(𝑡1 − 𝑡0)
𝑞 − (𝑡2 − 𝑡1)

𝑞) ≤
(𝑡2−𝑡1)

𝑞

𝑞
, we get an estimate for |𝑢𝜖𝑗(𝑡2) − 𝑢𝜖𝑗(𝑡1)| as 

 

|𝑢𝜖𝑗(𝑡2) − 𝑢𝜖𝑗(𝑡1)| 

               ≤
1

𝑞
|∫((𝑡2 − 𝑠)

𝑞−1 − (𝑡1 − 𝑠)
𝑞−1) (𝐺 (𝑠, 𝑢𝜖𝑗(𝑠)) + 𝜖𝑗)

𝑡1

𝑡0

𝑑𝑠| 

                                                  + |∫((𝑡2 − 𝑠)
𝑞−1) (𝐺 (𝑠, 𝑢𝜖𝑗(𝑠)) + 𝜖𝑗)

𝑡2

𝑡1

𝑑𝑠| 

                                                                                                ≤
2(𝑀 + 𝐻)

𝛤(1 + 𝑞)
(𝑡2 − 𝑡1)

𝑞. 

(3.23) 

 

Thus, the family {𝑢𝜖𝑗(𝑡)} is equi-continuous on [𝑡0, 𝑡0 + 𝜃]. The Arzela-Ascoli 

Theorem yields that there exists a subsequence {𝑢𝜖𝑗𝑘
(𝑡)} that is uniformly 

convergent in the interval [𝑡0, 𝑡0 + 𝜃]. Let 𝑙𝑖𝑚𝑘→∞ 𝑢𝜖𝑗𝑘
(𝑡) = �̅�(𝑡). By taking limit in 

(3.19) with 𝜖 = 𝜖𝑗𝑘  as 𝑘 → ∞, we see �̅�(𝑡) satisfies the IVP (3.18) for 𝑡 ∈  [𝑡0, 𝑡0 +

𝜃], i.e. �̅�(𝑡)is solution IVP for scalar FDE (3.17) for 𝑣0 = 𝑢0 and 𝜖 = 0. Finally, we 

have 𝑚(𝑡) ≤ �̅�(𝑡) ≤ 𝑢∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] by taking limit in (3.20) for 𝜖 = 𝜖𝑗𝑘  as 

𝑘 → ∞. ■ 

 

Remark 3.4: Note that in the case of 𝑚(𝑡) is continuously differentiable, i.e. 𝑚(𝑡) is 

belong to class 𝐶𝑞, Lemma 3.3 generalizes and unifies the comparison results in 

[41], [67] in view of Remark 3.2.  

 

The following Lemma 3.4 is a comparison result which establish a relationship 

between Lyapunov functions, system of FDE (3.1) and scalar FDE (3.6). The 

following Lemma 3.4 and its generalization with ITD are given in [39]-[40], 

respectively. We will give the proof of ITD version of Lemma 3.4 in the next 

chapter.  
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Lemma 3.4: Assume the following conditions are satisfied:  

 

i) The function 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) ∈ 𝐶
𝑞([𝑡0, 𝑡0 + 𝜃], 𝛥) is a solution of (3.1).  

ii) The function 𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥), 𝐺 ∈ 𝐶[[𝑡0, 𝑡0 + 𝜃] × ℝ,ℝ] such that for 

𝑡 ∈ (𝑡0, 𝑡0 + 𝜃] the inequality  

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥(𝑡); 𝑡0, 𝑥0) ≤ 𝐺(𝑡, 𝑉(𝑡, 𝑥(𝑡))) (3.24) 

        

       holds.  

 

Then 𝑉(𝑡0, 𝑥0) ≤ 𝑢0 implies the validity of inequality 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑢∗(𝑡) for 

𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] where 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0) is the maximal solution of IVP for scalar 

FDE (3.6).  

 

In the case when 𝐺(𝑡, 𝑢) = 𝛾𝑢, 𝛾 ∈ ℝ is a constant, we deduce the following 

Corollary from Lemma 3.4.  

 

Corollary 3.2: Let the condition i), ii) of Lemma 3.4 be satisfied and the function 

𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥) be such that the inequality 𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥(𝑡); 𝑡0, 𝑥0) ≤ 𝛾𝑉(𝑡, 𝑥) 

holds for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃].  

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] the inequality 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑉(𝑡0, 𝑥0)𝐸𝑞(𝛾(𝑡 − 𝑡0)
𝑞) 

holds. 

 

Proof 3.2: The proof of Corollary 3.2 follows from the fact that corresponding IVP 

for scalar FDE (3.6) with 𝐺(𝑡, 𝑢) = 𝛾𝑢, 𝑢0 = 𝑉(𝑡0, 𝑥0), i.e.  𝒟𝑞 𝑢(𝑡) =𝑡0
𝐶 𝛾𝑢(𝑡) has 

a unique solution 𝑢(𝑡) = 𝑉(𝑡0, 𝑥0)𝐸𝑞(𝛾(𝑡 − 𝑡0)
𝑞) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. ■ 

 

In the case when 𝐺(𝑡, 𝑢) = 0, the following Corollary is deduced from Lemma 3.4.  

 

Corollary 3.3: Let the condition i), ii) of Lemma 3.4 be satisfied and the function 

𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥) be such that the inequality 𝒟+
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥(𝑡); 𝑡0, 𝑥0) ≤ 0 holds for 

𝑡 ∈ [𝑡0, 𝑡0 + 𝜃].  

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] the inequality 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑉(𝑡0, 𝑥0) holds. 
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Proof 3.3: The proof of Corollary 3.3 follows from the fact that corresponding IVP 

for scalar FDE (3.6) with 𝐺(𝑡, 𝑢) = 0, 𝑢0 = 𝑉(𝑡0, 𝑥0), i.e. 𝒟𝑞 𝑢(𝑡) =𝑡0
𝐶 0 has a 

unique solution 𝑢(𝑡) = 𝑉(𝑡0, 𝑥0) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. ■ 

 

The Caputo fractional Dini derivative (3.10), Lemma 3.3, 3.4, Corollary 3.2, 

Corollary 3.3 demand just continuity property from the candidate Lyapunov 

function. For the sake of completeness it is noted that if Lyapunov function 𝑉(𝑡, 𝑥) is 

continuously differentiable, comparison results in terms of the Caputo fractional 

derivative used in the literature [32]-[38] can be given.  

 

Lemma 3.5: Assume the following conditions are satisfied:  

 

i) The condition i) of Lemma 3.4 holds.  

ii) The function 𝑉: [𝑡0, 𝑡0 + 𝜃] × 𝛥 → ℝ+ is continuously differentiable such that 

the inequality 

 

𝒟𝑞(3.1)
𝐶 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝐺(𝑡, 𝑉(𝑡, 𝑥(𝑡))) (3.25) 

 

holds.  

 

Then 𝑉(𝑡0, 𝑥0) ≤ 𝑢0 implies the validity of inequality 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑢∗(𝑡) for 

𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] where 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0) is the maximal solution of IVP for scalar 

FDE (3.6).  

 

Proof 3.5: Let the function 𝑚(𝑡) ∈ 𝐶1([𝑡0, 𝑡0 + 𝜃], ℝ+) be defined by 𝑚(𝑡) =

𝑉(𝑡, 𝑥(𝑡)). Then, the desired result follows from Lemma 3.4 and Remark 3.2. ■ 

 

3.5. Main Results  

 

We will obtain sufficient conditions for practical stability, boundedness and 

Lagrange stability by using continuous Lyapunov-like functions from 𝛬 class and 

Caputo fractional Dini derivative defined by (3.10). Such a stability result is given in 

[39], we give this result for the sake of completeness. Unlike the result on 
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asymptotically stability [39], we give the same result with comparison principle, i.e. 

using asymptotically stability of scalar FDE.  

 

Theorem 3.1: Assume that 𝑓(𝑡, 0) ≡ 0, 𝑡 ∈ ℝ+ and there exists a function 𝑉 ∈

𝛬(ℝ+, ℝ
𝑛), 𝑉(𝑡, 0) = 0 for 𝑡 ∈ ℝ+ such that 

 

𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛 (3.26) 

and the inequality  

 

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) ≤ 𝐺(𝑡, 𝑉(𝑡, 𝑥)) (3.27) 

 

holds for any 𝑡, 𝑡0 ∈ ℝ+, 𝑡 > 𝑡0 and 𝑥, 𝑥0 ∈ ℝ
𝑛, where 𝐺 ∈ 𝐶[ℝ+ × ℝ,ℝ], 𝐺(𝑡, 0) ≡

0 and 𝑏 ∈ 𝐾. Then,  

 

A) the stability of zero solution of scalar FDE (3.6) implies stability of zero 

solution of system of FDE (3.1).  

 

B) the asymptotically stability of zero solution of scalar FDE (3.6) implies 

asymptotically stability of zero solution of system of FDE (3.1). 

 

Proof 3.1: A) Let the zero solution of scalar FDE (3.6) be stable. According to 

Definition 3.4 for given 𝑏(𝜖) > 0 there exists 𝛿0 = 𝛿0(𝑡0, 𝜖) such that  |𝑢0| < 𝛿₀ 

implies  

 

|𝑢(𝑡; 𝑡0, 𝑢0)| < 𝑏(𝜖)  for 𝑡 ≥ 𝑡0 (3.28) 

 

where 𝑢(𝑡; 𝑡0, 𝑢0) is a solution of scalar FDE (3.6). From the properties of the 

function 𝑉(𝑡, 𝑥), it follows that there exists a 𝛿 = 𝛿(𝑡0, 𝜖) > 0 such that if 𝑥 ∈

ℝ𝑛: ‖𝑥‖ ≤ 𝛿 then 𝑉(𝑡0, 𝑥) ≤ 𝛿0. Choose an initial position 𝑥0 ∈ ℝ
𝑛: ‖𝑥0‖ < 𝛿 and 

consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE (3.1) with the chosen 

initial data (𝑡0, 𝑥0). Now let 𝑢0
∗ = 𝑉(𝑡0, 𝑥0). From Lemma 3.4 with 𝛥 = ℝ𝑛 and 𝜃 =

∞ it follows that 
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𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗)  for 𝑡 ≥ 𝑡0. (3.29) 

 

Then from condition (3.26), inequalities (3.28), (3.29) and 𝑢0
∗ = 𝑉(𝑡0, 𝑥0) < 𝛿0 we 

get to the inequalities 

 

𝑏(‖𝑥(𝑡; 𝑡0, 𝑥0)‖) ≤ 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗) < 𝑏(𝜖) (3.30) 

 

from which it follows that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝑡0. This proves the stability of 

the zero solution of system of FDE (3.1). 

B) Let the zero solution of scalar FDE (3.6) be asymptotically stable. It follows from 

A) that the zero solution of (3.1) is stable. We need to show that S3) holds. Since 𝑆∗3) 

holds, for given 𝑏(𝜖) > 0, 𝑡0 ∈ ℝ₊ there exists 𝛿∗ = 𝛿∗(𝑡0, 𝜖) and 𝑇 = 𝑇(𝑡0, 𝜖) such 

that |𝑢0| < 𝛿∗ implies  

 

|𝑢(𝑡; 𝑡0, 𝑢0)| < 𝑏(𝜖) for 𝑡 ≥ 𝑡0 + 𝑇. (3.31) 

 

From the properties of the function 𝑉, it follows that there exists a 𝛿0 = 𝛿0(𝑡0, 𝜖) 

such that if 𝑥 ∈ ℝ𝑛: ‖𝑥‖ ≤ 𝛿0 then 𝑉(𝑡0, 𝑥) ≤ 𝛿∗. Choose an initial position 

𝑥0 ∈ ℝ
𝑛: ‖𝑥0‖ < 𝛿0 and consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE 

(3.1) with the chosen initial data (𝑡0, 𝑥0). Now let 𝑢0
∗ = 𝑉(𝑡0, 𝑥0). Then from 

condition (3.26), inequalities (3.29), (3.31) and 𝑢0
∗ = 𝑉(𝑡0, 𝑥0) < 𝛿∗ we get to the 

inequalities for 𝑡 ≥ 𝑡0 + 𝑇  

 

𝑏(‖𝑥(𝑡; 𝑡0, 𝑥0)‖) ≤ 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗) < 𝑏(𝜖) (3.32) 

 

from which it follows that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇. This proves 

asymptotically stability of system of FDE (3.1). ■ 

 

Theorem 3.2: Suppose that the assumptions of Theorem 3.1 hold except that (3.26) is 

replaced by 
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𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖)  for  (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛. (3.33) 

 

If the zero solution of scalar FDE (3.6) is uniformly stable (uniformly asymptotically 

stable), then zero solution of system of FDE (3.1) is uniformly stable (uniformly 

asymptotically stable).  

 

Proof 3.2: Since similar arguments are used from the proof of Theorem 3.1 except 

that choosing 𝑢0
∗ = 𝑎(‖𝑥0‖) and 𝛿 = 𝑎⁻¹(𝛿0), we omit it. ■ 

 

Remark 3.5: Let the conditions of Theorem 3.2 be satisfied and the inequality (3.27) 

is replaced by 𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) ≤ −𝑐(‖𝑥‖). Then zero solution of system of FDE 

(3.1) is uniformly asymptotically stable.  

 

Proof 3.5: By choosing 𝑉(𝑡, 𝑥) = ‖𝑥‖, it follows that the corresponding IVP for 

scalar FDE (3.6) is  𝒟𝑞 𝑢(𝑡) =𝑡0
𝐶 − 𝑐𝑢(𝑡). According to Corollary 3.2 zero solution 

of scalar FDE is asymptotically stable. Then zero solution of system of FDE (3.1) is 

uniformly asymptotically stable from Theorem 3.2. ■ 

 

Theorem 3.3: Assume that there exists a function 𝑉 ∈ 𝛬(ℝ+, ℝ
𝑛) such that 

 

𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛, (3.34) 

 

and the inequality (3.33) holds for any 𝑡, 𝑡0 ∈ ℝ+, 𝑡 > 𝑡0 and 𝑥, 𝑥0 ∈ ℝ
𝑛, where 

𝐺 ∈ 𝐶[ℝ+ ×ℝ,ℝ] and 𝑎, 𝑏 ∈ 𝐾. Then,  

 

A) the practically stability (uniform practical stability) w.r.t. (𝑎(𝜆), 𝑏(𝐴)) of 

scalar FDE (3.6) implies practical stability (uniform practical stability) w.r.t. 

(𝜆, 𝐴) of system of FDE (3.1) where the positive constants 𝜆, 𝐴:  𝜆 < 𝐴, 𝑎(𝜆) <

𝑏(𝐴) are given.  
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B) the practically quasi-stability (uniform practically quasi-stability) w.r.t. 

(𝑎(𝜆), 𝑏(𝐴), 𝑇) of scalar FDE (3.6) implies practically quasi-stability (uniform 

practically quasi-stability) w.r.t. (𝜆, 𝐴, 𝑇) of system of FDE (3.1). 

 

Proof 3.3: A). Let the scalar FDE (3.6) be practically stable with respect to 

(𝑎(𝜆), 𝑏(𝐴)) with 0 < 𝜆 < 𝐴, 𝑎(𝜆) < 𝑏(𝐴). According to Definition 3.5 there exists 

a point 𝑡0 ≥ 0 such that |𝑢0| < 𝑎(𝜆) implies 

 

               |𝑢(𝑡; 𝑡0, 𝑢0)| < 𝑏(𝐴)  for  𝑡 ≥ 𝑡0 (3.35) 

 

where 𝑢(𝑡; 𝑡0, 𝑢0) is a solution of scalar FDE (3.6). Choose an initial position 

𝑥0 ∈ ℝ
𝑛: ‖𝑥0‖ < 𝜆 and consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE 

(3.1) with the chosen initial data (𝑡0, 𝑥0). Now let 𝑢0
∗ = 𝑉(𝑡0, 𝑥0). From the 

inequality (3.34) it follows 𝑢0
∗ = 𝑉(𝑡0, 𝑥0) < 𝑎(‖𝑥0‖) < 𝑎(𝜆), i.e. 𝑢0

∗ < 𝑎(𝜆). 

Therefore the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0
∗) ∈ 𝐶𝑞([𝑡0, ∞), ℝ) of FDE (3.6) 

satisfies inequality (3.35). From Lemma 3.4 with 𝛥 = ℝ𝑛 and 𝜃 = ∞ it follows that 

 

𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗)  for  𝑡 ≥ 𝑡0. (3.36) 

 

Then from condition (3.34) and inequalities (3.35), (3.36) we get to the inequalities 

 

             𝑏(‖𝑥(𝑡; 𝑡0, 𝑥0)‖) ≤ 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗) < 𝑏(𝐴) (3.37) 

 

from which it follows that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝐴 for 𝑡 ≥ 𝑡0. Thus, system of FDE (3.1) is   

practically stable. Similarly, uniform practically stability w.r.t. (𝜆, 𝐴) of system of 

FDE (3.1) can be proved.  

We omit the proof of claims B) since similar arguments from the proof of A) are 

used. ■ 

 

Corollary 3.4: Suppose that the assumptions of Theorem 3.2 and Theorem 3.3 hold 

except that the inequality (3.27) is replaced by 𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) ≤ 0. Then the 

system of FDE (3.1) is uniformly stable and uniformly practically stable w.r.t. (𝜆, 𝐴).  
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Proof 3.4: The proof follows directly from the fact that the corresponding scalar 

FDE 𝒟𝑞 𝑢(𝑡) =𝑡0
𝐶 0 has a constant solution which is uniformly stable and uniformly 

practically stable w.r.t. (𝑎(𝜆), 𝑏(𝐴)). ■ 

 

Corollary 3.5: Suppose that the assumptions of Theorem 3.2 and Theorem 3.3 hold 

except that the inequality (3.33) is replaced by 𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) ≤ −𝛾𝑉(𝑡, 𝑥), 

𝛾 > 0. Then the system of FDE (3.1) is uniformly asymptotically stable and 

uniformly practically quasi stable w.r.t. (𝜆, 𝐴, 𝑇).  

 

Proof 3.5: The proof follows directly from the fact that the solution 𝑢(𝑡) =

𝑢0𝐸𝑞(−𝛾(𝑡 − 𝑡0)
𝑞) of the corresponding scalar FDE 𝒟𝑞 𝑢(𝑡) =𝑡0

𝐶 − 𝛾𝑢(𝑡), 𝑢(𝑡0) =

𝑢0 is uniformly practically quasi stable w.r.t. (𝜆, 𝐴, 𝑇), where 𝑇 = (−
1

𝛾
𝐿𝑞 (

𝑏(𝐴)

𝑎(𝜆)
))

1

𝑞. 

According to Corollary 3.4 and 𝑢(𝑡) → ∞ as 𝑡 → ∞, zero solution of corresponding 

scalar FDE is uniformly asymptotically stable. ■ 

 

Theorem 3.4: Assume that there exists a function 𝑉 ∈ 𝛬 such that 

 

𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛 (3.38) 

 

and the inequality (3.26) holds for any 𝑡, 𝑡0 ∈ ℝ+, 𝑡 > 𝑡0 and 𝑥, 𝑥0 ∈ ℝ
𝑛, where 

𝐺 ∈ 𝐶[ℝ+ ×ℝ,ℝ] and 𝑏 ∈ 𝐾 with 𝑏(𝑟) → ∞ as 𝑟 → ∞. Then,  

 

A) the equi-boundedness of scalar FDE (3.6) implies equi-boundedness of system 

of FDE (3.1).  

 

B) the ultimately boundedness of scalar FDE (3.6) implies ultimately boundedness 

of system of FDE (3.1).  

 

Proof 3.4: Let 𝛼 > 0 and 𝑡0 ∈ ℝ+. Consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of 

system of FDE (3.1) for which ‖𝑥0‖ ≤ 𝛼. Initially, we consider the first case A) that 

is the scalar FDE (3.6) is equi-bounded. From the properties of the function 𝑉, it 

follows that there exists a constant 𝛾1 = 𝛾1(𝑡0, 𝛼) such that if 𝑥 ∈ ℝ𝑛: ‖𝑥‖  ≤ 𝛼 then 
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𝑉(𝑡0, 𝑥) ≤ 𝛾1. Since 𝐵∗1) holds, given 𝛾1 = 𝛾1(𝑡0, 𝛼) > 0 and 𝑡0 ∈ ℝ+ there exists a 

𝛽1 = 𝛽1(𝑡0, 𝛾1) > 0 such that |𝑢0| < 𝛾1 implies 

 

|𝑢(𝑡; 𝑡0, 𝑢0)| < 𝛽1  for  𝑡 ≥ 𝑡0. (3.39) 

 

Choose 𝑈0 = 𝑉(𝑡0, 𝑥0) and 𝛽 = 𝛽(𝑡0, 𝛼) > 0 so that 𝑏(𝛽) ≥ 𝛽1 since for the 

function 𝑏 ∈ 𝐾 with 𝑏(𝑟) → ∞ as 𝑟 → ∞. Then from condition (3.38), Lemma 3.4 

and inequality (3.39) we get to the inequalities 

 

   𝑏(‖𝑥(𝑡; 𝑡0, 𝑥0)‖) ≤ 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑈0) < 𝛽1 < 𝑏(𝛽) (3.40) 

 

from which it follows that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝛽 for 𝑡 ≥ 𝑡0. Thus we deduce that the 

system of FDE (3.1) is equi-bounded. 

It should be noted that the claim B) is proved by the same arguments used in the 

proof of A), so we omit the details here. ■ 

 

Corollary 3.6: Suppose that the assumptions of Theorem 3.4 hold except that (3.38) 

is replaced by (3.26). If scalar FDE (3.7) is uniformly bounded, then the system of 

FDE (3.1) is uniformly bounded.  

 

Proof 3.6: Since proofs are essentially repetitions of the arguments used in the proof 

of Theorem 3.4 except that choosing 𝑢0
∗ = 𝑎(‖𝑥0‖) and 𝛾1 = 𝑎(𝛼), we omit it. ■ 

 

Corollary 3.7: Let 𝐺(𝑡, 𝑢) = 0 in Corollary 3.6, i.e. the inequality   

𝒟+
𝑞

(3.1)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) ≤ 0 holds. Then the system of FDE (3.1) is uniformly bounded.  

 

Proof 3.7: The proof follows directly from the fact that the corresponding scalar 

FDE 𝒟𝑞 𝑢 =𝑡0
𝐶 0 has a constant solution which is uniformly bounded. ■ 
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The following theorem present the conclusion of Corollary 3.6 with weaker 

assumption. Let 𝑆𝑐(𝜌) denote the set 𝑆𝑐(𝜌) = {𝑥 ∈ ℝ𝑛: ‖𝑥‖ ≥ 𝜌}.  

 

Theorem 3.5: Assume that there exists a function 𝑉 ∈ 𝛬(ℝ+, ℝ
𝑛) such that 

 

𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖)  for (𝑡, 𝑥) ∈ ℝ+ × 𝑆
𝑐(𝜌) (3.41) 

 

and the inequality (3.27) holds for any 𝑡, 𝑡0 ∈ ℝ+, 𝑡 > 𝑡0 and 𝑥, 𝑥0 ∈ ℝ
𝑛, where 

𝐺 ∈ 𝐶[ℝ+ ×ℝ,ℝ] and 𝑎, 𝑏 ∈ 𝐾.  

 

A) the uniformly boundedness of scalar FDE (3.6) implies uniformly boundedness 

of system of FDE (3.1).  

 

B) the uniformly ultimately boundedness of scalar FDE (3.6) implies uniformly  

ultimately boundedness of system of FDE (3.1).  

 

Proof 3.5: At first, we consider the first case A) that is the scalar FDE (3.6) is 

uniformly bounded . Let 𝛼 > 0 be given, it can be considered as 𝛼 ≥ 𝜌. Consider the 

solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE (3.1) for which ‖𝑥0‖ ≤ 𝛼. Since 𝐵∗1) 

holds, given 𝛼1 = 𝑎(𝛼) > 0 there exist 𝛽1 = 𝛽1(𝛼) > 0 such that  

 

|𝑢0| ≤ 𝛼1  implies  𝑢(𝑡; 𝑡0, 𝑢0) < 𝛽1 , 𝑡 ≥ 𝑡0. (3.42) 

 

We shall prove that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝛽 for 𝑡 ≥ 𝑡0, where 𝛽 = 𝛽(𝛼) > 0 verifying 

𝑏(𝛽) ≥ 𝛽1 since 𝑏(𝑟) → ∞ as 𝑟 → ∞. Assume that this is not true. Therefore, there 

would exist points 𝑡1 > 𝑡∗ > 𝑡0 such that  

 

{
‖𝑥(𝑡∗, 𝑡0, 𝑥0)‖ = 𝛼, ‖𝑥(𝑡1, 𝑡0, 𝑥0)‖ = 𝛽 𝑎𝑛𝑑

𝜌 < 𝛼 ≤ ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ ≤ 𝛽   𝑓𝑜𝑟      𝑡∗ ≤ 𝑡 ≤ 𝑡1.
 (3.43) 

 

By using (3.43), condition (3.41) and Lemma 3.4 we obtain the following estimate 

 

𝑉(𝑡, �̅�(𝑡; 𝑡∗, 𝑥0
∗)) ≤ 𝑢(𝑡; 𝑡∗, 𝑢0),      𝑡

∗ ≤ 𝑡 ≤ 𝑡1 (3.44) 
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where 𝑢0 = 𝑉(𝑡
∗, 𝑥0

∗) with 𝑥0
∗ = 𝑥(𝑡∗, 𝑡0, 𝑥0) and �̅�(𝑡, 𝑡∗, 𝑥0

∗) is a solution of (3.1) 

through (𝑡∗, 𝑥0
∗). On the other hand, (3.44) is also valid for 𝑥(𝑡; 𝑡0, 𝑥0) because of 

the inclusion (𝑡, 𝑥(𝑡)) ∈ 𝑆𝑐(𝜌) in the interval 𝑡 ∈ [𝑡∗, 𝑡1]. Finally, in view of the 

relations (3.42) - (3.44), condition (3.41) and 𝑢0 = 𝑉(𝑡
∗, 𝑥0

∗) ≤ 𝑎(‖𝑥0
∗‖) = 𝑎(𝛼) =

𝛼1 we obtain 

 

𝑏(𝛽) = 𝑏(‖𝑥(𝑡1, 𝑡0, 𝑥0)‖) ≤ 

                                                    𝑉(𝑡1, 𝑥(𝑡1, 𝑡0, 𝑥0)) ≤ 𝑢(𝑡1, 𝑡
∗, 𝑢0) < 𝛽1 ≤ 𝑏(𝛽). 

(3.45) 

 

The obtained contradiction shows that the claim is right, namely the system of FDE 

(3.1) is uniformly bounded. For 𝛼 < 𝜌, we can choose 𝛽 = 𝛽(𝛼) = 𝛽(𝜌) which also 

implies B2). This completes the proof of A).  

Next we consider the second case B) that is the scalar FDE (3.6) is uniformly 

ultimately bounded, which follows from A) that system of FDE (3.1) is uniformly 

bounded. Namely, there exist numbers 𝐵0 for 𝛼 = 𝜌 such that ‖𝑥0‖ ≤ 𝜌 implies 

‖𝑥(𝑡, 𝑡0, 𝑥0)‖ < 𝐵0 for 𝑡 ≥ 𝑡0. In order to prove B4), let 𝛼 > 𝜌 be such that 

𝜌 ≤  ‖𝑥0‖ ≤ 𝛼. Since 𝐵∗4) holds i.e. for 𝛼1 = 𝑎(𝛼) > 0 there exist positive numbers 

𝑁1 and 𝑇 = 𝑇(𝛼) such that  

 

|𝑢₀| ≤ 𝛼1 implies  |𝑢(𝑡, 𝑡0, 𝑢0)| < 𝑁1 , 𝑡 ≥ 𝑡0 + 𝑇. (3.46) 

 

Now we will prove that B6) holds with 𝑇 and 𝑁∗, where 𝑁∗ = 𝑚𝑎𝑥(𝐵0, 𝑁) and 

𝑏(𝑁) ≥ 𝑁1 from 𝑏 ∈ 𝐾∞. Suppose that is not true. Therefore, there exist a sequence 

{𝑡(𝑛)},  𝑡(𝑛) > 𝑡0 + 𝑇, 𝑡
(𝑛) → ∞ as 𝑛 → ∞ and a solution 𝑥(𝑡, 𝑡0, 𝑥0) of (3.1) with 

𝜌 ≤ ‖𝑥0‖ ≤ 𝛼 such that 

 

‖𝑥(𝑡(𝑛), 𝑡0, 𝑥0)‖ ≥ 𝑁∗. (3.47) 

 

Here it should be note that the solutions 𝑥(𝑡, 𝑡0, 𝑥0) with ‖𝑥₀‖ ≤ 𝜌 satisfy 

‖𝑥(𝑡, 𝑡₀, 𝑥₀)‖ < 𝑁∗ from the choice of 𝑁∗ above. Finally, in view of the relations 

(3.46), (3.47), condition (3.41), the choice of {𝑡(𝑛)} and 𝑢0 = 𝑎(‖𝑥0‖) ≤ 𝑎(𝛼) = 𝛼1 

we obtain  
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𝑏(𝑁∗) ≤ 𝑉(𝑡(𝑛), 𝑥(𝑡(𝑛), 𝑡0, 𝑥0)) ≤ 𝑢(𝑡(𝑛), 𝑡0, 𝑢0) < 𝑁1 ≤ 𝑏(𝑁) (3.48) 

which contradicts with the choice of 𝑁∗. Thus B4) holds, i.e. the system of FDE (3.1) 

is uniformly ultimately bounded. ■ 

 

Theorem 3.6: Assume that there exists a function 𝑉 ∈ 𝛬(ℝ+, ℝⁿ) such that 

 

𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) for (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛 (3.49) 

 

and the inequality (3.33) holds for any 𝑡, 𝑡0 ∈ ℝ+, 𝑡 > 𝑡0 and 𝑥, 𝑥0 ∈ ℝⁿ, where 

𝐺 ∈ 𝐶[ℝ+ ×ℝ,ℝ] and 𝑏 ∈ 𝐾 with 𝑏(𝑟) → ∞ as 𝑟 → ∞.  

If scalar FDE (3.6) is Lagrange stable, then the system of FDE (3.1) is Lagrange 

stable.  

 

Proof 3.6: Let the scalar FDE (3.6) is Lagrange stable which implies that system of 

FDE (3.1) is equi-bounded by applying Theorem 3.4. In order to prove L1) holds, we 

need to show A1) holds. Let 𝜖 > 0, 𝛼 > 0 be given. Consider the solution 𝑥(𝑡) =

𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE (3.1) for which ‖𝑥0‖ ≤ 𝛼. From the properties of the 

function 𝑉, it follows that there exists a constant 𝛾1 = 𝛾1(𝑡0, 𝛼) such that if 𝑥 ∈

ℝ𝑛:  ‖𝑥‖  ≤ 𝛼 then 𝑉(𝑡0, 𝑥) ≤ 𝛾1. Since 𝐴∗1) holds i.e. for 𝑏(𝜖) > 0 and 𝛾1 =

𝛾1(𝑡0, 𝛼) there exists a 𝑇 = 𝑇(𝑡0, 𝜖, 𝛼) such that |𝑢0| ≤ 𝛾1 implies 

 

|𝑢(𝑡, 𝑡0, 𝑢0)| < 𝑏(𝜖) , 𝑡 ≥ 𝑡0 + 𝑇. (3.50) 

 

Now we claim that A1) holds, i.e. ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇 provided that 

‖𝑥0‖ ≤ 𝛼. In the sequel from (3.50), Lemma 3.4 and choosing 𝑈0 = 𝑉(𝑡0, 𝑥0) ≤ 𝛾1 

we obtain for 𝑡 ≥ 𝑡0 + 𝑇  

 

𝑏(‖𝑥(𝑡; 𝑡0, 𝑥0)‖) ≤ 𝑉(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0)) ≤ 𝑢(𝑡; 𝑡0, 𝑈0) < 𝑏(𝜖) (3.51) 

 

from which it follows that ‖𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖  for 𝑡 ≥ 𝑡0 + 𝑇 whenever ‖𝑥0‖ ≤ 𝛼. ■ 
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Corollary 3.7: Suppose that the assumptions of Theorem 3.6 hold except that (3.49) 

is replaced by (3.33). If scalar FDE (3.6) is uniformly Lagrange stable, then the 

system of FDE (3.1) is uniformly Lagrange stable.  

 

Proof 3.7: Since proofs are essentially repetitions of the arguments used in the proof 

of Theorem 3.6 except that choosing 𝑈0 = 𝑎(‖𝑥0‖) and 𝛾1 = 𝑎(𝛼), we omit it. ■ 

 

3.5. Applications 

 

We consider the following examples as an application of our main results.  

 

Example 3.6: Consider the following FDE with order 0 < 𝑞 < 1,  

 

𝒟𝑞𝑡0 
𝐶 𝑥(𝑡) = (−

𝑒1/𝑡

2𝛤(1 − 𝑞)
− 𝑠𝑖𝑛2(𝑡)) 𝑥(𝑡) (3.52) 

 

for 𝑡 > 𝑡0 with 𝑥(𝑡0) = 𝑥0. Consider 𝑉(𝑡, 𝑥) = 𝑥² and choose 𝑎, 𝑏 ∈ 𝐾 such that 

𝑎(𝑠) = 2𝑠, 𝑏(𝑠) =
1

2
𝑠 for the validity of the condition (3.34). From the obtained 

formula (3.13) in Corollary 3.1 we have 

 

𝒟+
𝑞

(3.52)
𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) 

                = 2𝑥 (−
𝑒1/𝑡

2𝛤(1 − 𝑞)
𝑥 − 𝑠𝑖𝑛2(𝑡)𝑥) + [𝑥2 − 𝑥0

2]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
 

                                       ≤ (−
𝑒1/𝑡

𝛤(1 − 𝑞)
𝑥2 − 2𝑠𝑖𝑛2(𝑡)𝑥2) +

𝑒1/𝑡

𝛤(1 − 𝑞)
𝑥2 ≤ 0. 

(3.53) 

 

Then, we have following results:  

 

 the zero solution of FDE (3.52) is uniformly stable according to Corollary 3.4.  

 the FDE (3.52) is uniformly practically stable with respect to (𝜆, 𝐴): 0 < 𝜆 < 𝐴 

according to Corollary 3.4.  

 the FDE (3.52) is uniformly bounded according to Corollary 3.6.  
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Figure 3.2 shows that the approximate solutions of the FDE (3.52) with 𝑞 = 0.5,

𝑞 = 0.8, 𝑞 = 0.9 and 𝑢(1) = 5 as expected from the analytical analysis already 

presented in Example 3.6.  

 

      

 

 

Figure 3.2: Approximate solutions with 𝑞 = 0.5, 0.8 and 𝑞 = 0.9.  

  

Example 3.7: Consider the following system of FDE with 0 < 𝑞 < 1 

 

{
 
 

 
 𝒟𝑞𝑡0
𝐶 𝑥1(𝑡) = −(1 +

𝑒1/𝑡

2𝛤(1 − 𝑞)
) 𝑥1(𝑡) − 𝑠𝑖𝑛

2(𝑡)𝑥₂(𝑡)   

𝒟𝑞𝑡0
𝐶 𝑥2(𝑡) = −(1 +

𝑒1/𝑡

2𝛤(1 − 𝑞)
)𝑥2(𝑡) + 𝑠𝑖𝑛

2(𝑡)𝑥1(𝑡)  

 (3.54) 

 

with initial condition 𝑥0 = (𝑥01, 𝑥02)  ∈ ℝ² where 𝑥1(𝑡0) = 𝑥01 and 𝑥2(𝑡0) = 𝑥02. 

Consider 𝑉(𝑡, 𝑥) = 𝑥1
2 + 𝑥2

2 for 𝑥 = (𝑥1, 𝑥2)  ∈ ℝ² and choose 𝑎, 𝑏 ∈ 𝐾 such that 

𝑎(𝑠) = 2𝑠, 𝑏(𝑠) =
1

2
𝑠 for the validity of the condition (3.34). According to formula 

(3.13) in Corollary 3.1, we have  
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{
 
 
 
 
 

 
 
 
 
 𝒟+

𝑞
(3.54)

𝐶 𝑉(𝑡, 𝑥; 𝑡0, 𝑥0) = 2𝑥1 (−(1 +
𝑒1/𝑡

2𝛤(1 − 𝑞)
𝑥1) − 𝑠𝑖𝑛

2(𝑡)𝑥2)

+2𝑥2 (−(1 +
𝑒1/𝑡

2𝛤(1 − 𝑞)
𝑥2) + 𝑠𝑖𝑛

2(𝑡)𝑥1)

+[𝑥1
2 + 𝑥2

2 − 𝑥01
2 − 𝑥02

2 ]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)

≤ −(𝑥1
2 + 𝑥2

2) (2 +
𝑒1/𝑡

𝛤(1 − 𝑞)
) +

𝑒1/𝑡

𝛤(1 − 𝑞)
(𝑥1

2 + 𝑥2
2)

= −2(𝑥1
2 + 𝑥2

2) = −2𝑉(𝑡, 𝑥)   

 (3.55) 

 

According to (3.55) the corresponding IVP for scalar FDE is  

 

{
𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = −2𝑢(𝑡)

𝑢(𝑡0) = 𝑢0
 (3.56) 

 

where 𝑢0 ∈ ℝ. The solution of IVP (3.56) is given by 𝑢(𝑡) =  𝑢0𝐸𝑞(−2(𝑡 − 𝑡0)
𝑞). 

Then, we have following results:  

 

 in view of Corollary 3.5 the zero solution of system of FDE (3.54) is uniformly 

asymptotically stable.  

 scalar FDE (3.56) is uniformly practically stable w.r.t. (2𝜆,
𝐴

2
) : 0 < 𝜆 <

𝐴

4
 and 

uniformly practical quasi-stable w.r.t. (2𝜆,
𝐴

2
, 𝑇), where 𝑇 = (−

1

2
𝐿𝑞(

𝐴

4𝜆
))

1

𝑞 . 

According to Theorem 3.3 and Corollary 3.5, the system of FDE (3.54) is 

uniformly practically stable w.r.t. (𝜆, 𝐴) and uniformly practically quasi stable 

w.r.t (𝜆, 𝐴, 𝑇), respectively. 

 scalar FDE (3.56) is uniformly bounded with the choice of 𝛽 = 𝛼 and uniformly 

attractive in the large with  𝑇 = (−
1

2
𝐿𝑞(

𝜖

4𝛼
))

1

𝑞. According to Corollary 3.7 the 

system of FDE (3.54) is uniformly Lagrange stable.  

 

 

 

 

 



55 
 

4. SOME STABILITY AND BOUNDEDNESS 

CRITERIA FOR FRACTIONAL DIFFERENTIAL 

EQUATIONS WITH INITIAL TIME 

DIFFERENCE 
 

4.1. Introduction 

 

The problem of stability of solutions is one of the major problems in the theory  

of differential equations. It is well known that the theory of stability in the sense of 

Lyapunov has been successfully investigated to understand qualitative properties of 

dynamic systems for many years [1]-[5]. In nonlinear systems, Lyapunov’s direct 

method (also called the Lyapunov’s second method) allows us to obtain sufficient 

conditions for the stability of a system without explicitly solving the differential 

equations. The method generalizes the idea which shows that the system is stable if 

there are some Lyapunov functions candidates for the system.  

It is only a few decades ago, it was realized that fractional calculus provide an 

attractive tool for modelling the real world problems. The differentiation and 

integration of arbitrary order has found its applications in diverse fields of science 

and engineering [11]-[21]. Therefore, the qualitative theory of FDE has received 

much attention by many researchers.  

Recently, fractional calculus was introduced to the stability analysis of FDE. 

Some studies on the stability of linear FDE have been done in [29]-[31]. Whereas, 

the stability analysis of the nonlinear FDE is much more difficult and only a few are 

available. In the based on Lyapunov’s second method, sufficient conditions on 

stability for nonlinear FDE and nonlinear time-delayed FDE has been discussed in 

[32]-[38]. Among them in [32]-[33], the authors proposed fractional Lyapunov’s 

second method and firstly extended the exponential stability of ODE to the Mittag-

Leffler stability and generalized Mittag-Leffler stability of FDE, respectively. The 

authors in [35]-[36] have applied the fractional comparison principle to discussing 

the asymptotic stability and Mittag-Leffler stability of FDE with RL derivative, 

respectively. Very recently, a stability criterion for autonomous and non-autonomous 

nonlinear FDE with Caputo derivative is derived in [37]-[38], respectively. In these 

foregoing works, stability of FDE is studied with changing initial position but initial 
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time unchanged. In practical situations, it is possible to have not only a change in 

initial position but also in initial time because of all kinds of disturbed factors. When 

we consider such a deviation in initial time, it causes measuring the difference 

between any two different solutions starting with different initial time [42]-[43]. In 

this context, we have investigated stability, practical stability, boundedness and 

Lagrange stability with ITD for nonlinear FDE by using fractional extension of 

comparison principle relative to ITD. In section 4.2, main definitions and concepts 

with ITD for FDE with Caputo derivative are introduced and the differences between 

classical notion of stability and the notion of stability with ITD are discussed, 

respectively. Then, in section 4.3 natural relationship between the Dini derivative of 

Lyapunov function with ITD for classical case (𝑞 = 1) and the introduced Caputo 

fractional Dini derivative with ITD is shown by appropriate examples. Then, 

comparison results relative to ITD are obtained in section 4.4. Comparison method 

via Lyapunov function and scalar FDE with parameter is applied to obtain several 

sufficient conditions on stability, practical stability, boundedness and Lagrange 

stability with ITD for system of FDE in section 4.5. Finally some examples are given 

as an application of the obtained results. 

 

4.2. Statement of the Problem 

 

4.2.1. Main Definitions and Concepts with ITD for FDE  

 

Consider the following IVP for the system of FDE with order 0 < 𝑞 < 1,  

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0  
 (4.1) 

 

where 𝑡0 ∈ ℝ+, 𝑥, 𝑥0  ∈ ℝ
𝑛 , 𝑓 ∈ 𝐶[ℝ+ ×ℝ

𝑛, ℝ𝑛]. Denote the solution of (4.1) by 

𝑥(𝑡; 𝑡0, 𝑥0) ∈ 𝐶
𝑞([𝑡0, ∞),ℝ

𝑛). Let 𝜏0 ∈ ℝ+, 𝜏0 ≠ 𝑡0 be a different initial time.  
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Consider also the IVP (4.1) at a different initial data, i.e. 𝑦(𝜏0) = 𝑦0  

 

{
𝒟𝑞𝜏0
𝐶 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡))

𝑦(𝜏0) = 𝑦0  
 (4.2) 

 

where 𝑦, 𝑦0  ∈ ℝ
𝑛. Denote the solution of (4.2)  by 𝑦(𝑡; 𝜏0, 𝑦0) ∈ 𝐶

𝑞([𝜏0, ∞), ℝ
𝑛).  

We give a lemma which is necessary for future use [40].  

 

Lemma 4.1: Let the function 𝑥(𝑡) ∈ 𝐶𝑞(ℝ+, ℝ
𝑛) be solution of the following IVP for 

FDE  

 

{
𝒟𝑞𝑎
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑎) = 𝑥0  
 (4.3) 

 

Then the function �̃�(𝑡) = 𝑥(𝑡 + 𝜂) satisfies the following IVP for the FDE 

 

{
𝒟𝑞𝑏
𝐶 �̃�(𝑡) = 𝑓(𝑡 + 𝜂, �̃�(𝑡))

�̃�(𝑏) = 𝑥0  
 (4.4) 

 

where  𝑎, 𝑏 ∈ ℝ, 𝜂 = 𝑎 − 𝑏.  

 

Proof 4.1: The function 𝑥(𝑡) is a solution of (4.3) if it satisfies the Volterra integral 

equation [63] 

 

𝑥(𝑡) = 𝑥0 +
1

𝛤(𝑞)
∫
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

(𝑡 − 𝑠)1−𝑞
   

𝑡

𝑎

, 𝑡 ≥ 𝑎. (4.5) 

 

The function �̃�(𝑡) satisfies the initial condition of (4.4), i.e. �̃�(𝑏) = 𝑥0. Change the 

variable in the integral (4.5) with 𝑠 = 𝜉 + 𝜂. Then 𝑑𝑠 = 𝑑𝜉, 𝜉 = 𝑏 for 𝑠 = 𝑎 and 

𝜉 = 𝑡 − 𝜂 for 𝑠 = 𝑡. Therefore, from (4.5) we obtain 
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𝑥(𝑡) = 𝑥0 +
1

𝛤(𝑞)
∫

𝑓(𝜉 + 𝜂, 𝑥(𝜉 + 𝜂))𝑑𝜉

(𝑡 − 𝜂 − 𝜉)1−𝑞
   

𝑡−𝜂

𝑏

 (4.6) 

 

or 

 

�̃�(𝑡) = 𝑥(𝑡 + 𝜂) = 𝑥0 +
1

𝛤(𝑞)
∫
𝑓(𝜉 + 𝜂, �̃�(𝜉))𝑑𝜉

(𝑡 − 𝜉)1−𝑞
   

𝑡

𝑏

. (4.7) 

 

Therefore �̃�(𝑡) satisfies (4.7), i.e. �̃�(𝑡) = 𝑥(𝑡 + 𝜂) is a solution of IVP (4.4). ■ 

 

The relation between (4.1) and (4.2) is given by the following result.  

 

Corollary 4.1: If 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) is a solution of (4.2), then�̃�(𝑡) = 𝑦(𝑡 + 𝜂) is a 

solution of IVP for FDE 

 

{
𝒟𝑞𝑡0
𝐶 �̃�(𝑡) = 𝑓(𝑡 + 𝜂, �̃�(𝑡))

�̃�(𝑡0) = 𝑦0  
 (4.8) 

 

where 𝜂 = 𝜏0 − 𝑡0.  

 

The main goal of the present chapter is studying the stability, practical stability 

[40], boundedness and Lagrange stability with ITD of the system of Caputo FDE 

(4.1), i.e. comparing the behavior of two solution with different initial data, both 

initial time 𝜏0 ≠ 𝑡0 and initial position 𝑦0 ≠ 𝑥0.  

We shall introduce the following definitions of stability and practical stability 

with ITD.  

 

Definition 4.1: The solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of (4.1) is said to be: 

 

S1) stable with ITD if given 𝜖 > 0 there exist 𝛿 = 𝛿(𝑡0, 𝜖) > 0 and 𝜎 = 𝜎(𝑡0, 𝜖) > 0 

such that for any initial position 𝑦0 ∈ ℝ
𝑛 and any initial time 𝜏0 ∈ ℝ+ the 
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inequalities ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜏0 − 𝑡0| < σ imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < ϵ 

for 𝑡 ≥ 𝑡0, where 𝑦(𝑡) = 𝑦(𝑡; 𝜏₀, 𝑦₀) is a solution of (4.2) and 𝜂 = 𝜏₀ − 𝑡₀;  

S2) attractive with ITD if for given 𝜖 > 0 there exist 𝛿0 = 𝛿0(𝑡0) > 0, σ0 =

σ0(𝑡0) > 0 and 𝑇 = 𝑇(𝑡0, 𝜖) > 0 such that if ‖𝑦0 − 𝑥0‖ < 𝛿₀ and |𝜏0 − 𝑡0| < σ0 

imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇; 

S3) asymptotically stable with ITD, if S1) and S2) hold simultaneously;  

PS1) practically stable with ITD w.r.t. (𝜆, 𝐴), if there exists a number σ =

σ(𝑡0, 𝜆, 𝐴) > 0 such that for any initial position 𝑦0 ∈ ℝ
𝑛 and any initial time 

𝜏0 ∈ ℝ+ the inequalities ‖𝑦0 − 𝑥0‖ < 𝜆 and |𝜏0 − 𝑡0| < σ imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) −

 𝑥∗(𝑡)‖ < A for 𝑡 ≥ 𝑡0, where a couple of real numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be 

given;  

PS2) attractive practically stable with ITD w.r.t. (𝜆, 𝐴, 𝑇) if there exist σ =

σ(𝑡0, 𝜆, 𝐴) > 0 and 𝑇 = 𝑇(𝑡0, 𝜆, 𝐴) > 0 such that the inequalities ‖𝑦0 − 𝑥0‖ < 𝜆 

and |𝜏0 − 𝑡0| < σ imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < 𝐴 for 𝑡 ≥ 𝑡0 + 𝑇; 

 

Definition 4.2: The system of FDE of (4.1) is said to be:  

 

US1) uniformly stable with ITD, if given 𝜖 > 0 there exist 𝛿 = 𝛿(𝜖) > 0 and 

𝜎 = 𝜎(𝜖) > 0 such that for any initial positions 𝑥0, 𝑦0 ∈ ℝ
𝑛 and any initial times 

𝜏0, 𝑡0 ∈ ℝ+ the inequalities ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜏0 − 𝑡0| < σ imply ‖𝑦(𝑡 +

𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < ϵ for 𝑡 ≥ 𝑡0, where 𝑥(𝑡; 𝑡0, 𝑥0), 𝑦(𝑡; 𝜏0, 𝑦0) are 

solutions of (4.1), (4.2), respectively;  

US2) uniformly attractive with ITD, if for given 𝜖 > 0 there exist 𝛿₀ > 0, σ₀ > 0 

and 𝑇 = 𝑇(𝜖) > 0 such that if ‖𝑦
0
− 𝑥0‖ < 𝛿₀ and |𝜏0 − 𝑡0| < σ₀ imply ‖𝑦(𝑡 +

𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇;  

US3) uniformly asymptotically stable with ITD, if it is uniformly stable and 

uniformly attractive;  

UPS1) uniformly practically stable with ITD w.r.t. (𝜆, 𝐴), if there exists a number 

𝜎 = 𝜎(𝜆, 𝐴) > 0 such that for any initial positions 𝑥0, 𝑦0 ∈ ℝ
𝑛 and any initial times 

𝑡0, 𝜏0 ∈ ℝ+ the inequalities ‖𝑦
0
− 𝑥0‖ < 𝜆 and |𝜏0 − 𝑡0| < 𝜎 imply ‖𝑦(𝑡 +

𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < A for 𝑡 ≥ 𝑡0;  

UPS2) uniformly attractive practically stable with ITD w.r.t. (𝜆, 𝐴, 𝑇) if there exist 

𝜎 = 𝜎(𝜆, 𝐴) > 0 and 𝑇 = 𝑇(𝜆, 𝐴) > 0 such that for any initial position 𝑥0, 𝑦0 ∈ ℝ
𝑛 
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and any initial time 𝑡0, 𝜏0 ∈ ℝ+ the inequalities ‖𝑦
0
− 𝑥0‖ < 𝜆 and |𝜏0 − 𝑡0| < 𝜎 

imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝐴 for 𝑡 ≥ 𝑡0 + 𝑇;  

 

Remark 4.1: The concept of stability, asymptotic stability (practical stability) with 

ITD generalizes stability, asymptotic stability of the zero solution [39] (practical 

stability of (4.1)) in the literature if 𝑥∗(𝑡) ≡ 0 and 𝜏0 = 𝑡0.  

 

Corresponding to the different types of stability with ITD we can define the 

concepts of boundedness and Lagrange stability with ITD.  

 

Definition 4.3: The system of FDE (4.1) is said to be:  

 

B1) equi-bounded with ITD if given 𝛼 > 0 and 𝑡0 ∈ ℝ+, there exist 𝜎 = 𝜎(𝑡0, 𝛼) >

0 and 𝛽 = 𝛽(𝑡0, 𝛼) > 0 such that for any initial position 𝑥0, 𝑦0 ∈ ℝ
𝑛 and any initial 

times 𝑡0, 𝜏0 ∈ ℝ+ the inequalities ‖𝑦0 − 𝑥0‖ ≤ 𝛼 and |𝜏0 − 𝑡0| < 𝜎 imply ‖𝑦(𝑡 +

𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝛽, 𝑡 ≥ 𝑡₀; 

B2) uniformly bounded with ITD if B1) holds with 𝛽 and 𝜎 independent of 𝑡₀; 

B3) ultimately bounded with ITD if given 𝛼 > 0 and 𝑡0 ∈ ℝ+, there exist 𝑁 > 0,

𝜎0 = 𝜎0( 𝑡0, 𝛼) > 0 and 𝑇 = 𝑇(𝑡0, 𝛼) > 0 such that for any initial positions 

𝑥₀, 𝑦₀ ∈ ℝ𝑛 and any initial times 𝑡₀, 𝜏₀ ∈ ℝ+ the inequalities ‖𝑦0 − 𝑥0‖ ≤ 𝛼 and 

|𝜏0 − 𝑡0| < 𝜎0 imply ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝑁,   𝑡 ≥ 𝑡0 + 𝑇; 

B4) uniformly ultimately bounded with ITD, if B3) holds with 𝜎₀ and 𝑇  independent 

of 𝑡0; 

A1) attractive in the large if for each 𝜖 > 0 and each 𝛼 > 0 there exist 𝜎 =

𝜎(𝑡0, 𝜖, α, ) > 0 and 𝑇 = 𝑇(𝑡0, 𝜖, α, ) > 0 such that ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜏0 − 𝑡0| <

𝜎 implies ‖𝑦(𝑡 + 𝜂; 𝜏0, 𝑦0) −  𝑥(𝑡; 𝑡0, 𝑥0)‖ < 𝜖  for  𝑡 ≥ 𝑡0 + 𝑇;  

A2) uniformly attractive with ITD, if 𝜎 and 𝑇 in A1) are independent of 𝑡0; 

L1) Lagrange stable if B1) and A1) hold together; 

L2) uniformly Lagrange stable if B2) and A2) hold simultaneously. 
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We will illustrate the introduced concepts in the following example.  

 

Example 4.1: Consider the following IVP for FDE with 0 < 𝑞 < 1,  

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = −𝑥(𝑡) + ℎ(𝑡)

𝑥(𝑡0) = 𝑥0  
 (4.9) 

 

where ℎ(𝑡) ∈ 𝐶(ℝ+, ℝ) and satisfy Lipschitz condition with constant 𝐿 > 0.  

 

The solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of (4.9) satisfy 𝑥(𝑡) = 𝑥0𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) +

∫ (𝑡 − 𝜏)𝑞−1
𝑡

𝑡0
𝐸𝑞,𝑞(−(𝑡 − 𝜏)

𝑞)ℎ(𝜏)𝑑𝜏. Let 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) be another solution of 

IVP (4.9) at a different data (𝜏0, 𝑦0), 𝜏0 ≠ 𝑡0. According to Corollary 4.1 �̃�(𝑡) =

𝑦(𝑡 + 𝜂) satisfy 𝒟𝑞𝑡0
𝐶 �̃�(𝑡) = −�̃�(𝑡) + ℎ(𝑡 + 𝜂), �̃�(𝑡0) = 𝑦0. Now consider 𝑧(𝑡) =

�̃�(𝑡) − 𝑥(𝑡) which satisfy 𝒟𝑞𝑡0
𝐶 𝑧(𝑡) = −𝑧(𝑡) + ℎ(𝑡 + 𝜂) − ℎ(𝑡), 𝑧(𝑡0) = 𝑦0 − 𝑥0. 

Then difference of solutions satisfy �̃�(𝑡) − 𝑥(𝑡) = (𝑦0 − 𝑥0)𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) +

∫ (𝑡 − 𝜏)𝑞−1
𝑡

𝑡0
𝐸𝑞,𝑞(−(𝑡 − 𝜏)

𝑞)[ℎ(𝜏 + 𝜂) − ℎ(𝜏)]𝑑𝜏. Then we have the following 

estimate |�̃�(𝑡) − 𝑥(𝑡)| ≤ |𝑦0 − 𝑥0| + 𝐿|𝜂|  for 𝑡 ≥ 𝑡0. Then,  

 

 (US1) is satisfied with 𝛿 =
𝜖

2
 and 𝜎 =

𝜖

2𝐿
.  

 (UPS1) is satisfied with σ =
𝐴−𝜆

𝐿
.  

 (B2) is satisfied with 𝛽 = 2𝛼 and σ =
𝛼

𝐿
.  

 

Figure 4.1 shows that the approximate solutions 𝑥(𝑡), �̃�(𝑡) = 𝑦(𝑡 + 𝜂) with 

ℎ(𝑡) = sin (𝑡), 𝑡0 = 0, 𝜏0 = 0.2, 𝑥0 = 2, 𝑦0 = 2.3 and 𝐿 = 1.  
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Figure 4.1: Approximate solutions with ℎ(𝑡) = sin (𝑡), 𝑡0 = 0, 𝜏0 = 0.2, 𝑥0 = 2, 

𝑦0 = 2.3 and 𝐿 = 1. 

 

In order to employ the fractional order extension of Lyapunov method with 

ITD, following scalar FDE is used  

 

{
𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = 𝑔(𝑡, 𝑢(𝑡), 𝜂)

𝑢(𝑡0) = 𝑢0
 (4.10) 

 

where 𝑢, 𝑢0 ∈ ℝ, 𝑔 ∈ 𝐶[ℝ+ × ℝ× ℝ,ℝ] and 𝜂 ∈ ℝ is a parameter. We denote the 

solution of the IVP for the scalar FDE (4.10) by 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) ∈ 𝐶
𝑞([𝑡0,∞), ℝ).  

Corresponding to the stability with ITD notions given above, we need to 

introduce necessary definitions of stability with respect to parameter for the scalar 

FDE (4.10). When (4.10) has a zero solution, i.e. 𝑔(𝑡, 0,0) ≡ 0 we shall use the 

following stability definition. 

 

Definition 4.4: The zero solution of scalar FDE (4.10) is said to be 

 

S*1) stable with respect to parameter if given 𝜖 > 0 and 𝑡0 ∈ ℝ+, there exist 

𝛿 = 𝛿(𝑡0, 𝜖) > 0 and 𝜎 = 𝜎(𝑡0, 𝜖) such that the inequalities |𝑢0| < 𝛿 and  |𝜂| < 𝜎  

imply  |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝜖 for  𝑡 ≥ 𝑡₀, where 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) is a solution of (3.2);  

S*2) uniformly stable w.r.t. parameter if 𝑆∗1) holds with 𝛿 and 𝜎 independent of 𝑡0; 
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S*3) attractive w.r.t. parameter, if given 𝜖 > 0 and 𝑡0 ∈ ℝ+, there exist 𝛿₀ =

𝛿₀(𝑡0) > 0, 𝜎0 = 𝜎0(𝑡0) > 0 and 𝑇 = 𝑇(𝑡0, 𝜖) > 0 such that the inequalities 

|𝑢₀| < 𝛿 and  |𝜂| < 𝜎  imply  |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇;  

S*4) uniformly attractive w.r.t. parameter if 𝛿0, 𝜎0 and 𝑇 in 𝑆∗3) is independent of 

𝑡₀; 

S*5) asymptotically stable w.r.t. parameter if it is stable and attractive;  

S*6) uniformly asymptotically stable w.r.t. parameter, if it is uniformly stable and 

uniformly attractive; 

 

Definition 4.5: Let a couple of real numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given. The 

scalar FDE (4.10) is said to be 

 

PS*1) parametrically practically stable w.r.t. (𝜆, 𝐴), if there exist 𝜎 = 𝜎(𝑡0, 𝜆, 𝐴) > 0 

such that for any |𝜂| < 𝜎 the inequality |𝑢0| < 𝜆  imply  |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝐴  for 

 𝑡 ≥ 𝑡0. 

 

We note that the definitions PS∗2) - PS∗4) can be formulated similarly. In 

order to avoid repetition we omit it. To the different types of stability with ITD 

defined in Definition 4.4, there correspond different types of boundedness.  

 

Definition 4.6: The scalar FDE (4.10) is said to be 

 

B*1) bounded w.r.t. parameter if given 𝛼 > 0 and 𝑡0 ∈ ℝ+ there exist 𝛽 =

𝛽(𝑡0, 𝛼) > 0 and 𝜎 = 𝜎(𝑡0, 𝛼) such that the inequality inequalities |𝑢0| ≤ 𝛼 and 

 |𝜂| < 𝜎  imply  |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝛽 for 𝑡 ≥ 𝑡0; 

B*2) uniformly bounded w.r.t. parameter if 𝐵∗1) holds with 𝛽 independent of 𝑡0; 

B*3) ultimately bounded w.r.t. parameter if 𝐵∗1) holds and given 𝛼 > 0 and 𝑡0 ∈ ℝ₊, 

there exist 𝑁 and 𝑇 = 𝑇(𝑡0, 𝛼) > 0 such that the inequality |𝑢0| ≤ 𝛼 implies 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑁,  𝑡 ≥ 𝑡0 + 𝑇;  

B*4) uniformly ultimately bounded w.r.t. parameter if 𝐵∗2) and 𝐵∗3) hold with 𝑇 in 

𝐵∗3) is independent of 𝑡0; 
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A*1) attractive in the large w.r.t. parameter if for given 𝜖 > 0, 𝛼 > 0 there exist 

𝜎 = 𝜎(𝑡0, 𝜖, 𝛼) and 𝑇 = 𝑇(𝑡0, 𝜖, 𝛼) such that |𝑢0| ≤ 𝛼 and |𝜂| < 𝜎 imply 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| <  𝜖, 𝑡 ≥ 𝑡0 + 𝑇;  

A*2) uniformly attractive in the large w.r.t. parameter if 𝑇 and 𝜎 in 𝐴∗1) is 

independent of 𝑡0; 

L*1) Lagrange stable w.r.t. parameter if 𝐵∗1) and 𝐴∗1) hold together;  

L*2) uniformly Lagrange stable w.r.t. parameter if 𝐵∗2) and 𝐴∗2) hold 

simultaneously. 

 

Example 4.2: Consider the scalar FDE (4.10) with 𝑔(𝑡, 𝑢(𝑡), 𝜂) = −𝜇𝑢(𝑡) + 𝐶𝜂, 

 

𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = −𝜇𝑢(𝑡) + 𝐶𝜂  (4.11) 

 

where 𝐶 and 𝜇 > 0 are constants, 𝜂 is a parameter. The equation (4.11) with initial 

condition 𝑢(𝑡0) = 𝑢0 has the following solution  

 

𝑢(𝑡) = 𝑢0𝐸𝑞(−𝜇(𝑡 − 𝑡0)
𝑞) + ∫(𝑡 − 𝜏)𝑞−1

𝑡

𝑡0

𝐸𝑞,𝑞(−𝜇(𝑡 − 𝜏)
𝑞)𝐶𝜂𝑑𝜏. (4.12) 

 

From (4.12) and Lemma 3.1 we obtain the following estimate 

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| ≤ |𝑢0| +
1

𝜇
|𝐶𝜂|,   𝑡 ≥ 𝑡0. (4.13) 

 

Then,  

 

 𝑆∗2) is satisfied with 𝛿 =
𝜖

2
 and 𝜎 =

𝜖𝜇

2|𝐶|
.  

 𝑃𝑆∗2) is satisfied with 𝜎 =
𝜇(𝐴−𝜆)

|𝐶|
, i.e. |𝑢0| < 𝜆 and |𝜂| < 𝜎 imply 

 |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝐴  for  𝑡 ≥ 𝑡0, where (𝜆, 𝐴) is given with 0 < 𝜆 < 𝐴.  

 𝐵∗2) is satisfied with 𝛽 = 2𝛼 and 𝜎 =
𝛼𝜇

|𝐶|
.  
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Remark 4.2: For the concepts 𝑃𝑆∗1)- 𝐵∗4) to hold, the assumption 𝑔(𝑡, 0,0) ≡ 0 is 

not necessary.  

 

Example 4.3: To motivate the idea, consider the following IVP for scalar FDE 

 

𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = −𝑢(𝑡) + 𝜂𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠𝑡,         𝑢(𝑡0) = 𝑢0 (4.14) 

 

where 𝑔(𝑡, 0,0) ≠ 0 and solution of (4.14) is given by 

 

𝑢(𝑡) = 𝑢0𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) 

                                           + ∫(𝑡 − 𝜏)𝑞−1
𝑡

𝑡0

𝐸𝑞,𝑞(−(𝑡 − 𝜏)
𝑞)[𝜂𝑠𝑖𝑛 𝜏 + 𝑐𝑜𝑠𝜏]𝑑𝜏. 

(4.15) 

 

The solution has following estimate  

 

|𝑢(𝑡)| ≤ |𝑢0|𝐸𝑞(−(𝑡 − 𝑡0)
𝑞) + (|𝜂| + 1)[1 − 𝐸𝑞(−(𝑡 − 𝑡0)

𝑞)]. (4.16) 

 

From (4.16) we have |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| ≤ |𝑢₀| + |𝜂| + 1 for 𝑡 ≥ 𝑡0. Then 𝐵∗2) is 

satisfied with 𝛽 =
3𝛼

2
+ 1 and  𝜎 =

𝛼

2
. 𝑃𝑆∗2) is also satisfied with 𝜎 = 𝐴 − 𝜆 − 1 

with 𝐴 − 𝜆 > 1.  

 

4.2.2. Stability versus Stability with ITD 

 

In the real situations, it is often not possible to keep measurements with the 

expected initial time. So, when we study the influence of parameters, sometimes we 

need to consider two solutions which have not only different initial points, but also 

different initial time. The stability with ITD gives us an opportunity to compare 

solutions of FDE which both initial time and position are different. As a connected 

with Remark 4.1, we will give a brief overview between the introduced stability with 

ITD and the known stability of a nonzero solution in the sense of Lyapunov [1]-[6].  
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 Stability of a solution in the sense of Lyapunov 

Let 𝑥(𝑡)= 𝑥(𝑡, 𝑡0, 𝑥0)  be the solution of (4.1). To study the stability of 𝑥(𝑡) we 

consider another solution 𝑌(𝑡) = 𝑌(𝑡, 𝑡0, 𝑦0) of (4.1). The difference between both 

solutions 𝑧(𝑡) = 𝑌(𝑡) − 𝑥(𝑡) is a solution of the following IVP  

 

{
𝒟𝑞𝑡0
𝐶 𝑧 = 𝐹(𝑡, 𝑧)

𝑧(𝑡0) = 𝑦0 − 𝑥0  
 (4.17) 

 

with 𝐹(𝑡, 𝑧) = 𝑓(𝑡, 𝑧 + 𝑥(𝑡)) − 𝑓(𝑡, 𝑥(𝑡)), which has a zero solution and study of 

stability properties of 𝑥(𝑡) of (4.1) are reduced to the stability of the zero solution of 

transformed system (4.17).  

 

 Stability with initial time difference 

Study the stability with ITD of 𝑥(𝑡). Consider the solution of (4.1) with 

different initial data as 𝑦(𝑡) = 𝑦(𝑡, 𝜏0, 𝑦0). Then the difference 𝑧(𝑡) = 𝑦(𝑡 + 𝜂) −

𝑥(𝑡) is a solution of  

 

{
𝒟𝑞𝑡0
𝐶 𝑧 = 𝐹(𝑡, 𝑧; 𝜂)

𝑧(𝑡0) = 𝑦0 − 𝑥0  
 (4.18) 

 

where 𝐹(𝑡, 𝑧; 𝜂) = 𝑓(𝑡 + 𝜂, 𝑧 + 𝑥(𝑡)) − 𝑓(𝑡, 𝑥(𝑡)). In the non-autonomous case, 

i.e. 𝑓(𝑡, 𝑥) ≠ 𝑓(𝑥), the IVP (4.18) has no zero solution since 𝐹(𝑡, 0; 𝜂) =

𝑓(𝑡 + 𝜂, 𝑥(𝑡)) − 𝑓(𝑡, 𝑥(𝑡)) ≠ 0. Therefore, study of stability with ITD of 𝑥(𝑡) could 

not be reduced to the study of stability of the zero solution in this case.  

 

Example 4.4: To illustrate the idea presented above, consider IVP (4.9) with 

𝑓(𝑡, 𝑥(𝑡)) = −𝑥(𝑡) + ℎ(𝑡) in Example 4.1. Difference of solutions 𝑧(𝑡) = 𝑦(𝑡 +

𝜂) − 𝑥(𝑡) satisfy 𝒟𝑞𝑡0
𝐶 𝑧(𝑡) = −𝑧(𝑡) + ℎ(𝑡 + 𝜂) − ℎ(𝑡), 𝑧(𝑡0) = 𝑦0 − 𝑥0 which has 

no zero solution.  

 

 



67 
 

4.3. Lyapunov functions and its Caputo fractional Dini 

derivative with ITD 

 

Our aim is to establish the connection between the stability, practical stability, 

boundedness and Lagrange stability of the scalar FDE (4.10) and given system of 

FDE (4.1) via fractional order extension of Lyapunov method relative to ITD. The 

concept of stability with ITD requires a new definition of derivative of Lyapunov-

like functions and a new type of comparison results. In this context, we define 

Caputo fractional Dini derivative of the function 𝑉(𝑡, 𝑥) ∈ 𝛬(𝐼, 𝛥) along solutions of 

the system of FDE (4.1) relative to ITD as follow [40]:  

 

{
  
 

  
 𝒟(4.1)

𝑞
𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) = lim 𝑠𝑢𝑝

ℎ→0+

1

ℎ𝑞
[𝑉(𝑡, 𝑦 − 𝑥) − 𝑉(𝑡0, 𝑦0 − 𝑥0)

− ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑦 − 𝑥 − ℎ𝑞(𝑓(𝑡 + 𝜂, 𝑦)   − 𝑓(𝑡, 𝑥))

[
𝑡−𝑡0
ℎ

]

𝑟=1

−𝑉(𝑡0, 𝑦0 − 𝑥0))]

 (4.19) 

 

where 𝑡, 𝑡0 ∈ 𝐼, 𝑦 − 𝑥, 𝑦0 − 𝑥0 ∈ 𝛥.  

Now we will consider the introduced Caputo fractional Dini derivative (4.19), 

which is generalization of (3.10) with respect to ITD, for some particular Lyapunov 

functions. The following examples are obtained in [40].  

 

Example 4.5: Let the Lyapunov function does not depend on the time variable, i.e. 

𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) for 𝑥 ∈ ℝ. Then, applying formula (4.19)  
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑥0) =

lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
[𝑉(𝑦 − 𝑥) − 𝑉(𝑦0 − 𝑥0) −

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑥 − ℎ𝑞(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥)) − 𝑉(𝑡0, 𝑥0))]

[
𝑡−𝑡0
ℎ

]

𝑟=1

= lim 𝑠𝑢𝑝
ℎ→0+

𝑉(𝑦 − 𝑥) − 𝑉(𝑦 − 𝑥 − ℎ𝑞(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥))

ℎ𝑞

−𝑉(𝑦0 − 𝑥0)lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟 (

𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=0

+

 lim 𝑠𝑢𝑝
ℎ→0+

[𝑉(𝑦 − 𝑥 − ℎ𝑞(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥))]
1

ℎ𝑞
∑ (−1)𝑟 (

𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=0

 (4.20) 

 

By using 𝑙𝑖𝑚𝑁→∞∑ (−1)𝑟(𝑞
𝑟
)𝑁

𝑟=0 = 0, where 𝑁 is a natural number,  

𝑙𝑖𝑚 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
∑ (−1)𝑟(𝑞

𝑟
)

[
𝑡−𝑡0
ℎ
]

𝑟=0 = 𝒟𝑞 [1]𝑡0
𝐺𝐿 = 𝒟𝑞 [1]𝑡0 =

(𝑡−𝑡0)
−𝑞

𝛤(1−𝑞)
 and  

 

𝑙𝑖𝑚 𝑠𝑢𝑝
ℎ→0+

∑ (−1)𝑟(𝑞
𝑟
) = −1

[
𝑡−𝑡0
ℎ
]

𝑟=1 , then it follows that the following formula 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) 

                = lim 𝑠𝑢𝑝
ℎ→0+

𝑉(𝑦 − 𝑥) − 𝑉(𝑥 − ℎ𝑞(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥))

ℎ𝑞
 

                                                                    +[ 𝑉(𝑦 − 𝑥) − 𝑉(𝑦0 − 𝑥0)]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
. 

(4.21) 

 

Here the expression with limit in the right hand side of (4.21) is coincides with the 

fractional derivative of 𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) used in [55].  

 

Corollary 4.2: Let 𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) = 𝑥² for 𝑥 ∈ ℝ. Then according to Example 4.5 

we obtain the following expression for the quadratic scalar Lyapunov function as 
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𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) 

   = 2(𝑦 − 𝑥)(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥)) + [ (𝑦 − 𝑥)2 − (𝑦0 − 𝑥0)
2]
(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
. 

(4.22) 

 

Remark 4.3: In the case when 𝑞 → 1 the formula (4.22) is coincide with the known 

Dini derivative with ITD of 𝑉(𝑡, 𝑥) = 𝑥² i.e. 𝒟+𝑉(𝑡, 𝑦 − 𝑥) = 2(𝑦 − 𝑥)(𝑓(𝑡 +

𝜂, 𝑦) − 𝑓(𝑡, 𝑥)) [52]-[53], [60].  

 

We will compare the introduced Caputo fractional Dini derivative given by 

(4.19) and classical derivative (𝑞 = 1) with ITD of Lyapunov function.  

 

Example 4.6: Let 𝑉(𝑡, 𝑥) = 𝑚²(𝑡)𝑥² for 𝑥 ∈ ℝ where 𝑚 ∈ 𝐶1(ℝ+, ℝ). Then, Caputo 

fractional Dini derivative of the function 𝑉(𝑡, 𝑥):  

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) 

               = 2(𝑦 − 𝑥)𝑚2(𝑡)(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥)) + ((𝑦 − 𝑥)2 × 

                             𝒟𝑞 [𝑚2(𝑡)]) + [ (𝑦 − 𝑥)2 − (𝑦0 − 𝑥0)
2]
𝑚2(𝑡0)(𝑡 − 𝑡0)

−𝑞

𝛤(1 − 𝑞)
.𝑡0

𝐶  

(4.23) 

 

On the other hand, it is well known that the Dini derivative of Lyapunov function 

with ITD for classical case (𝑞 = 1) is 

 

𝒟+𝑉(𝑡, 𝑦 − 𝑥) = 2(𝑦 − 𝑥)𝑚2(𝑡)(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 𝑥)) 

                                                                                                   +(𝑦 − 𝑥)2
𝑑

𝑑𝑡
[𝑚2(𝑡)]. 

(4.24) 

 

It is noteworthy that the derivative of 𝑚(𝑡) in (4.24) is replaced by the fractional 

derivative in (4.23), which shows that formula (4.19) is a natural generalization of 

the classical case (𝑞 = 1) to fractional case (0 < 𝑞 < 1).  
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4.4. Comparison Results with ITD for Scalar FDE  
 

Now we will give a comparison theorem which gives us a relationship between 

Lyapunov functions, system of FDE (4.1) and scalar FDE (4.10).  

 

Lemma 4.2: Assume the following conditions are satisfied:  

 

i) The function 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) ∈ 𝐶
𝑞([𝑡0, 𝑡0 + 𝜃], ℝ

𝑛) and 𝑦(𝑡) =

𝑦(𝑡; 𝜏0, 𝑦0) ∈ 𝐶
𝑞([𝜏0, 𝜏0 + 𝜃], ℝ

𝑛) are solutions of system of FDE (4.1), (4.2) 

respectively, 𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡) ∈ 𝛥 where 𝜂∗ = 𝜏0 − 𝑡0, 𝛥 ∈ ℝ𝑛 and 𝜃 is a given 

number.  

ii) The function 𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥), 𝑔 ∈ 𝐶[[𝑡0, 𝑡0 + 𝜃] × ℝ × ℝ,ℝ] such that 

for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] the inequality  

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦(𝑡 + 𝜂∗), 𝜂∗, 𝑥0, 𝑦0) 

                                                                   ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)), 𝜂∗) 
(4.25) 

 

holds.  

 

Then 𝑉(𝑡0, 𝑦0 − 𝑥0) ≤ 𝑢0 implies 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ 𝑢∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 +

𝜃] where 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂
∗) is the maximal solution of IVP for scalar FDE 

(4.10)  with 𝜂 = 𝜂∗.  

 

Proof 4.2: Let the function 𝑚(𝑡) ∈ 𝐶([𝑡0, 𝑡0 + 𝜃], ℝ₊) be defined by 𝑚(𝑡) =

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)). Then from Remark 3.2 we obtain for 𝑡 ∈ (𝑡0, 𝑡0 + 𝜃] the 

equality lim 𝑠𝑢𝑝
ℎ→0+

1

ℎ𝑞
(𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡) − (𝑦0 − 𝑥0) −  𝑆(𝑦(𝑡 + 𝜂

∗), 𝑥∗(𝑡), ℎ)) =

𝑓(𝑡 + 𝜂∗, 𝑦(𝑡 + 𝜂∗)) − 𝑓(𝑡, 𝑥∗(𝑡)),  

where 𝑆(𝑦(𝑡 + 𝜂∗), 𝑥∗(𝑡), ℎ) = ∑ (−1)𝑟+1(𝑞
𝑟
)

[
𝑡−𝑡0
ℎ
]

𝑟=1 [𝑦(𝑡 + 𝜂∗ − 𝑟ℎ) − 𝑥∗(𝑡 − 𝑟ℎ) −

(𝑦0 − 𝑥0)]. Therefore 𝑆(𝑦(𝑡 + 𝜂∗), 𝑥∗(𝑡), ℎ) = 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡) − (𝑦0 − 𝑥0) −

ℎ𝑞(𝑓(𝑡 + 𝜂∗, 𝑦(𝑡 + 𝜂∗)) − 𝑓(𝑡, 𝑥∗(𝑡))) − 𝜖(ℎ𝑞) or 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡) −

ℎ𝑞(𝑓(𝑡 + 𝜂∗, 𝑦(𝑡 + 𝜂∗)) − 𝑓(𝑡, 𝑥∗(𝑡))) = 𝑆(𝑦(𝑡 + 𝜂∗), 𝑥∗(𝑡), ℎ) + (𝑦0 − 𝑥0) +

𝜖(ℎ𝑞) with 
𝜖(ℎ𝑞)

ℎ𝑞
 as ℎ → 0+. Then for any 𝑡 ∈  (𝑡0, 𝑡0 + 𝜃] using (3.9) we obtain  
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

𝑚(𝑡) − 𝑚(𝑡0) −

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑚(𝑡 − 𝑟ℎ) − 𝑚(𝑡0))

[
𝑡−𝑡0
ℎ

]

𝑟=1
]
 
 
 

= 𝑉(𝑡, 𝑧(𝑡)) − 𝑉(𝑡0, 𝑧0) − ∑ (−1)𝑟+1 (
𝑞

𝑟
) ×

[
𝑡−𝑡0
ℎ

]

𝑟=1

[𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡) − 𝑧0 − ℎ
𝑞 (𝑓(𝑡 + 𝜂∗, 𝑦(𝑡 + 𝜂∗)) − 𝑓(𝑡, 𝑥∗(𝑡)))

−𝑉(𝑡0, 𝑧0)] +

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) ×

[
𝑡−𝑡0
ℎ

]

𝑟=1

(𝑉(𝑡 − 𝑟ℎ, 𝑆(𝑦(𝑡 + 𝜂∗), 𝑥∗(𝑡), ℎ) + 𝑧0 + 𝜖(ℎ
𝑞)))]

−

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡 − 𝑟ℎ)))

[
𝑡−𝑡0
ℎ

]

𝑟=1
]
 
 
 

 (4.26) 

 

where 𝑧(𝑡) = 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡), 𝑧0 = 𝑦0 − 𝑥0 and 𝜂∗ is defined in i). After 

arrangement in the expression (4.25) via 𝑉 is locally Lipschitzian in its second 

argument with a Lipschitz constant 𝐿 > 0 we obtain 
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) [𝑉(𝑡 − 𝑟ℎ, 𝑆(𝑦(𝑡 + 𝜂∗), 𝑥∗(𝑡), ℎ) + 𝑧0 + 𝜖(ℎ

𝑞))

[
𝑡−𝑡0
ℎ

]

𝑟=1

−𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡 − 𝑟ℎ))]

≤ 𝐿 ‖‖ ∑ (
𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=1

∑ (−1)𝑗+1 (
𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝑡0
ℎ

]

𝑟=1

− ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑧(𝑡 − 𝑟ℎ) − 𝑧0)

[
𝑡−𝑡0
ℎ

]

𝑟=1

‖‖ + 𝐿𝜖(ℎ𝑞) ∑ (
𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=1

= 𝐿‖‖ ∑ (−1)𝑟+1 (
𝑞

𝑟
) ∑ (−1)𝑗+1 (

𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝑡0
ℎ

]

𝑗=1

[
𝑡−𝑡0
ℎ

]

𝑗=0

‖‖

+𝐿𝜖(ℎ𝑞) ∑ (
𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=1

.

 (4.27) 

 

Substitute (4.26) in (4.25), divide both sides by ℎ𝑞, take a limit as ℎ → 0+, use (4.21), 

(3.11), ii) and ∑ (𝑞
𝑟
)

[
𝑡−𝑡0
ℎ
]

𝑟=0 𝑧𝑟 = (1 + 𝑧)𝑞 if |𝑧| ≤ 1 we obtain for any 𝑡 ∈ (𝑡0, 𝑡0 + 𝜃] 

the inequality  

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝒟+
𝑞

𝑡0
𝐶 𝑚(𝑡) ≤ 𝒟(4.1)

𝑞
𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦(𝑡 + 𝜂∗), 𝜂∗, 𝑥0, 𝑦0)

+𝐿 lim
ℎ→0+

𝑠𝑢𝑝 ‖‖ ∑
1

ℎ𝑞
(−1)𝑗+1 (

𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝑡0
ℎ

]

𝑗=1

∑ (−1)𝑟+1 (
𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=0

‖‖

+𝐿 lim
ℎ→0+

𝑠𝑢𝑝
𝜖(ℎ𝑞)

ℎ𝑞
lim
ℎ→0

𝑠𝑢𝑝 ∑ (
𝑞

𝑟
)

[
𝑡−𝑡0
ℎ

]

𝑟=1

= 𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦(𝑡 + 𝜂∗), 𝜂∗, 𝑥0, 𝑦0)

≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡), 𝜂∗) = 𝑔(𝑡,𝑚(𝑡), 𝜂∗).

 (4.28) 
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Finally, we get 𝑚(𝑡) = 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤  𝑢(𝑡; 𝑡0, 𝑢0, 𝜂
∗) for 𝑡 ∈ [𝑡0, 𝑡0 +

𝜃] by applying Lemma 3.3. ■ 

 

Corollary 4.3: Let the condition i) of Lemma 4.2 be satisfied and the function 

𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥) be such that the inequality 

 𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦(𝑡 + 𝜂∗), 𝜂∗, 𝑥0, 𝑦0) ≤ 0 holds for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃].  

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] the inequality 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ 𝑉(𝑡0, 𝑦0 − 𝑥0) 

holds.  

 

Proof 4.3: The proof of Corollary 4.3 follows directly from the fact that 

corresponding IVP for scalar FDE 𝒟𝑞 𝑢 =𝑡0
𝐶 0  with 𝑢0 = 𝑉(𝑡0, 𝑦0 − 𝑥0) has a 

unique solution 𝑢(𝑡) = 𝑉(𝑡0, 𝑦0 − 𝑥0) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. ■ 

 

Corollary 4.4: Let the condition i) of Lemma 4.2 be satisfied and the function 

𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥) be such that the inequality 

 𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦(𝑡 + 𝜂∗), 𝜂∗, 𝑥0, 𝑦0) ≤ −𝛾𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) + 𝐶𝜂∗ holds 

for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃], where 𝛾 > 0 and 𝐶 ∈ 𝑅 are constants.  

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] the inequality 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ [𝑉(𝑡0, 𝑦0 − 𝑥0) −

1

𝜇
𝐶𝜂∗]𝐸𝑞(−𝛾(𝑡 − 𝑡0)

𝑞) +
1

𝜇
𝐶𝜂∗ holds.  

 

Proof 4.4: The proof of Corollary 4.4 follows directly from the fact that 

corresponding IVP for scalar FDE with 𝑔(𝑡, 𝑢, 𝜂∗) = −𝜇𝑢 + 𝐶𝜂∗, 𝑢0 = 𝑉(𝑡0, 𝑦0 −

𝑥0), i.e. 𝒟𝑞 𝑢 =𝑡0
𝐶 − 𝜇𝑢 + 𝐶𝜂∗ has a unique solution 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂

∗) = [𝑉(𝑡0, 𝑦0 −

𝑥0) −
1

𝜇
𝐶𝜂∗]𝐸𝑞(−𝛾(𝑡 − 𝑡0)

𝑞) +
1

𝜇
𝐶𝜂∗ for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃]. ■ 

 

The result of Lemma 4.2 is also true on the half line. 

 

Lemma 4.3: Let the conditions of Lemma 4.2 are satisfied for 𝜃 = ∞, i.e. for 𝑡 ≥ 𝑡0 

and 𝑡 ≥ 𝜏0 respectively. Then 𝑉(𝑡0, 𝑦0 − 𝑥0) ≤ 𝑢₀ implies 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) −

𝑥∗(𝑡)) ≤ 𝑢∗(𝑡) for 𝑡 ≥ 𝑡0.  
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In the case when the Lyapunov function 𝑉(𝑡, 𝑥) is continuously differentiable we 

also give comparison results in terms of the Caputo fractional derivative used in the 

literature [32]-[38].  

 

Lemma 4.4: Assume the following conditions are satisfied:  

 

i)  The condition i) of Lemma 4.2 holds. 

ii) The function 𝑉 ∈ 𝛬([𝑡0, 𝑡0 + 𝜃], 𝛥) is continuously differentiable such that the 

inequality 

 

𝒟𝑞𝑡0
𝐶 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡))) (4.29) 

 

holds.  

 

Then 𝑉(𝑡0, 𝑦0 − 𝑥0) ≤ 𝑢0 implies the validity of inequality 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) −

𝑥∗(𝑡)) ≤ 𝑢∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝜃] 𝑢
∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂

∗) is the maximal solution of 

IVP for scalar FDE (4.10) with 𝜂 = 𝜂∗. 

 

Proof 4.4: Let the function 𝑚(𝑡) ∈ 𝐶1([𝑡0, 𝑡0 + 𝜃], ℝ+) be defined by 𝑚(𝑡) =

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)). Then, the desired result follows from Lemma 3.5 and 

Remark 3.2. ■ 

 

4.5. Main Results 

 

In this part, we will obtain sufficient conditions on stability, practical stability, 

boundedness and Lagrange stability with ITD. We will use Lyapunov-like functions 

from class Λ. The proof is based on the fractional order extension of Lyapunov 

method combined with comparison result with ITD for scalar FDE with parameter.  

 

4.5.1. Stability and Practical Stability Criteria with ITD 

 

Firstly, we will give sufficient conditions on stability, asymptotically stability 

with ITD.  
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Theorem 4.1: Let the following conditions be satisfied:  

 

A1) The function 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) ∈ 𝐶
𝑞([𝑡0, ∞), ℝ

𝑛) is a solution of system of    

FDE (4.1), where 𝑡0 ∈ ℝ+, 𝑥0 ∈ ℝ
𝑛 are given points.  

A2) The function 𝑔 ∈ 𝐶[[𝑡0,∞) × ℝ× ℝ,ℝ], 𝑔(𝑡, 0,0) ≡ 0 and for any 𝜂, 𝑢0 ∈ ℝ, 

the IVP for scalar FDE (4.10) has a solution 𝑢(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) ∈

𝐶𝑞([𝑡0, ∞), ℝ).  

A3) There exists a function 𝑉 ∈ 𝛬([𝑡0, ∞),ℝ
𝑛) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any 𝑦, 𝑦0 ∈ ℝ
𝑛, 𝑡 > 𝑡₀ the inequality 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥∗(𝑡)), 𝜂) (4.30) 

 

holds.  

A4) The zero solution of scalar FDE (4.10) is stable (attractive) w.r.t. parameter.  

 

Then the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) is stable (attractive) 

with ITD.  

 

Proof 4.1: Initially, we consider the first case of A4) that is the zero solution of the 

scalar FDE (4.10) is stable w.r.t. parameter. Since 𝑆∗1) holds, given 𝑏(𝜖) > 0, there 

exist 𝛿1 = 𝛿1(𝑡0, 𝜖) > 0 and 𝜎 = 𝜎(𝑡0, 𝜖) such that for |𝑢0| < 𝛿1 and  |𝜂| < 𝜎  we 

have  

 

      |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝜖)   , 𝑡 ≥ 𝑡0  (4.31) 

 

where 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) is a solution of (4.10). Choose arbitrary points 𝑦0 ∈ ℝ
𝑛 and 

𝜏₀ ∈ ℝ+ such that ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜂∗| < 𝜎 where 𝛿 < 𝑎⁻¹(𝛿1) and 𝜂∗ = 𝜏0 −

𝑡0. Consider a solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.2) with the chosen 

initial data (𝜏0, 𝑦0). Let 𝑈0 = 𝑉(𝑡0, 𝑦0 − 𝑥0). From Condition A3) i) and choice of 𝛿 

it follows 𝑈0 = 𝑉(𝑡0, 𝑦0 − 𝑥0) < 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛿) < 𝛿1. Therefore, the 

maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑈0, 𝜂
∗) ∈ 𝐶𝑞([𝑡0, ∞), ℝ) of FDE (4.10) satisfies 
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inequality (4.31). The conditions of Lemma 4.2 are satisfied for 𝛥 = ℝ𝑛, 𝜃 = ∞.  

According to Lemma 4.2 the inequality 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥
∗(𝑡)) ≤ 𝑢(𝑡; 𝑡0, 𝑈0, 𝜂

∗), 𝑡 ≥ 𝑡0. (4.32) 

 

is valid. Consequently, in view of the relations (4.30), (4.31), condition A3) and the 

choice of 𝑈0 we obtain 

 

𝑏(𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)) ≤ 𝑢∗(𝑡) < 𝑏(𝜖) (4.33) 

 

which implies that ‖𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < 𝜖 for 𝑡 ≥ 𝑡0. Therefore, according 

to Definition 4.1 the solution 𝑥∗(𝑡) is  stable with ITD.  

Secondly, consider the other case of A4) that is zero solution of (4.10) is attractive 

w.r.t. parameter. Since 𝑆∗3) holds, given 𝑏(𝜖) > 0, there exists a 𝛿0 = 𝛿0(𝑡0) > 0, 

𝜎0 = 𝜎0(𝑡0) and 𝑇 = 𝑇(𝑡0, 𝜖) such that for |𝑢0| < 𝛿0 and  |𝜂| < 𝜎0  we have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝜖)   , 𝑡 ≥ 𝑡0 + 𝑇.  (4.34) 

 

Choose arbitrary points 𝑦0 ∈ ℝ
𝑛 and 𝜏0 ∈ ℝ+ such that ‖𝑦0 − 𝑥0‖ < 𝛿1 and 

|𝜂∗| < 𝜎0 where 𝛿1 < 𝑎⁻¹(𝛿0). Consider a solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of 

FDE (4.2) with the chosen initial data (𝜏0, 𝑦0). Let 𝑈0 = 𝑉(𝑡0, 𝑦0 − 𝑥0). After 

applying similar step in previous proof, we have  

 

𝑏(𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≤ 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)) ≤ 𝑢∗(𝑡) < 𝑏(𝜖) (4.35) 

 

for 𝑡 ≥ 𝑡0 + 𝑇. It follows that ‖𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < 𝜖 for 𝑡 ≥ 𝑡0 + 𝑇. 

Therefore, according to Definition 4.1 the solution 𝑥∗(𝑡) is attractive with ITD. ■ 

 

Corollary 4.5: Suppose that the A1) - A3) of Theorem 4.1 hold.  

If the zero solution of scalar FDE (4.10) is asymptotically stable w.r.t. parameter, 

then the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) asymptotically 

stable with ITD.  
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Theorem 4.2: Let the following conditions be satisfied: 

 

A1) The condition A2) of Theorem 4.1 is satisfied.  

A2) There exists a function 𝑉 ∈ 𝛬([𝑡0, ∞), 𝑆(𝜌)) such that  

(i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖)  for (𝑡, 𝑥) ∈ ℝ+ × 𝑆(𝜌) where 𝑎, 𝑏 ∈ 𝐾. 

(ii) for any 𝑡 > 𝑡0 ∈ ℝ+,𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(𝜌), 𝑦0 − 𝑥0 ∈ 𝑆(𝜌) the 

inequality 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (4.35) 

 

holds.  

A3) The zero solution of scalar FDE (4.10) is uniformly stable (uniformly 

asymptotically stable) w.r.t. parameter.  

 

Then the system of FDE (4.1) is uniformly stable (uniformly asymptotically stable) 

with ITD. 

 

Proof 4.2: First consider the first case of A3) that is the zero solution of the scalar 

FDE (4.10) is uniformly stable w.r.t. parameter. Let 𝜖 > 0 be a number, 𝜖 ≤ 𝜌. Since 

𝑆∗2) holds, given 𝑏(𝜖) > 0, there exists a 𝛿₁ = 𝛿₁(𝜖) > 0 and 𝜎 = 𝜎(𝜖) such that 

for |𝑢₀| < 𝛿1 and  |𝜂| < 𝜎  we have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝜖)   , 𝑡 ≥ 𝑡0. (4.36) 

 

Now let points 𝑥0, 𝑦0 ∈ ℝ
𝑛   and 𝜏0, 𝑡0 ∈ ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝛿 and 

|𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0 and 𝛿 < 𝑎⁻¹(𝛿1). Consider any solutions 𝑥(𝑡) =

 𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.1) and (4.2) 

correspondingly with the chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively. Let 

𝑈0 = 𝑎(‖𝑦0 − 𝑥0‖). From Condition A2) i) and choice of 𝛿 it follows 𝑈0 = 𝑎(‖𝑦0 −

𝑥0‖) < 𝑎(𝛿) < 𝛿1. Therefore, the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, 𝑈₀, 𝜂
∗) ∈

𝐶𝑞([𝑡0, ∞), ℝ) of FDE (4.10) satisfies inequality (4.36). Then we claim that 
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‖𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)‖ < 𝜖   for 𝑡 ≥ 𝑡0. (4.37) 

 

If the inequality (4.37) is not true there would exist a 𝑡∗ > 𝑡0 such that ‖𝑦(𝑡∗ +

𝜂∗) − 𝑥(𝑡)‖ = 𝜖 and ‖𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)‖ < 𝜖 for 𝑡0 ≤ 𝑡 < 𝑡∗. Therefore the 

inclusion (𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)) ∈ 𝑆(𝜌) is valid for 𝑡 ∈ [𝑡0, 𝑡
∗]. By using (4.35), and 

applying Lemma 4.2  for 𝛥 = ℝ𝑛, 𝜃 = 𝑡∗ − 𝑡0 we obtain the following estimate 

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)) ≤ 𝑢∗(𝑡), 𝑡0 ≤ 𝑡 < 𝑡∗. (4.38) 

 

In the sequel from the relations (4.36), (4.38), condition A2) and the choice of 𝑡∗, we 

obtain 

 

𝑏(𝜖) ≤ 𝑏(‖𝑦(𝑡∗ + 𝜂∗) − 𝑥(𝑡∗)‖) 

                                                       ≤ 𝑉(𝑡∗, 𝑦(𝑡∗ + 𝜂∗) − 𝑥(𝑡∗)) ≤ 𝑢∗(𝑡)  < 𝑏(𝜖). 
(4.39) 

 

Obtained contradiction proves the validity of (4.37), i.e. the system of FDE (4.1) is 

uniformly stable with ITD. Secondly, consider the other case of A3) that is scalar 

FDE (4.10) is asymptotically stable w.r.t. parameter. From the first part of the proof 

it follows that of system of FDE (4.1) is uniformly stable with ITD. Consequently, 

from the definition US1) there exist 𝛿0 = 𝛿0(𝜌) and 𝜎0 = 𝜎0(𝜌) for 𝜖 = 𝜌 such that 

 

{
‖𝑦0 − 𝑥0‖ < 𝛿0 𝑎𝑛𝑑   |𝜏0 − 𝑡0| < 𝜎0   𝑖𝑚𝑝𝑙𝑦

‖𝑦(𝑡 + 𝜂, 𝜏0, 𝑦0) − 𝑥(𝑡, 𝑡0, 𝑥0)‖ <  𝜌 , 𝑡 ≥ 𝑡0
 (4.40) 

 

In order to prove asymptotically stability with ITD, let 𝜖 > 0 be a number, 𝜖 < 𝜌. 

Since 𝑆∗3) holds, given 𝑏(𝜖) > 0, there exists a 𝛿1 > 0, 𝜎1 > 0 and 𝑇 = 𝑇(𝜖) such 

that for |𝑢0| < 𝛿1 and  |𝜂| < 𝜎1  we have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝜖)   , 𝑡 ≥ 𝑡0 + 𝑇.  (4.41) 

 

Now let points 𝑥0, 𝑦0 ∈ ℝ
𝑛 and 𝜏0, 𝑡0 ∈ ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜂∗| < 𝜎 

where 𝜂∗ = 𝜏0 − 𝑡0, 𝛿 = 𝑚𝑖𝑛(𝛿0, 𝑎⁻¹(𝛿1)) and 𝜎 = 𝑚𝑖𝑛(𝜎0, 𝜎1). Consider any 
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solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.1) and 

(4.2) correspondingly with the chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively. 

On the other hand the estimate (4.38) is valid for all 𝑡 ≥ 𝑡0 by using (4.40), condition 

A2) and Lemma 4.2 with 𝛥 = 𝑆(𝜌), 𝜃 = ∞. We will prove that if ‖𝑦0 − 𝑥0‖ <

𝛿  𝑎𝑛𝑑 |𝜏0 − 𝑡0| < 𝜎  are satisfied then 

 

‖𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)‖ < 𝜖   for 𝑡 ≥ 𝑡0 + 𝑇. (4.42) 

 

Assume the opposite, i.e. there exist a sequence {𝑡(𝑛)}, 𝑡(𝑛) ≥ 𝑡0 + 𝑇, 𝑡
(𝑛) → ∞ as 

𝑛 → ∞ such that  

 

‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖ ≥ 𝜖 (4.43) 

 

with ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜂∗| < 𝜎. Finally, in view of the relations (4.41), (4.42), 

(4.43), condition A2), the choice of 𝑡(𝑛) and 𝑢0 = 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛿) < 𝛿1  we 

obtain  

 

𝑏(𝜖) > 𝑢∗(𝑡(𝑛)) ≥ 𝑉 (𝑡(𝑛), 𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))) 

                                                                  ≥ 𝑏(‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖) ≥ 𝑏(𝜖). 
(4.44) 

 

The obtained contradiction proves validity of inequality (4.42) which implies US2) 

holds. Consequently, system of FDE (4.1) is uniformly stable and uniformly 

attractive with ITD i.e. uniformly asymptotically stable with ITD. ■ 

 

In this part we will give sufficient conditions on practical stability, attractive 

practical stability with ITD [40].  

 

 

Theorem 4.3: Let the conditions A1), A2) of Theorem 4.1 be satisfied and A3), A4) 

are replaced by as follow: 
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A3) There exists a function 𝑉 ∈ 𝛬([𝑡0, ∞),ℝ
𝑛) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any 𝑦, 𝑦0 ∈ ℝ
𝑛 and 𝜂 ∈ 𝐵𝐻 , 𝑡 > 𝑡0 the inequality 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦, 𝜂∗, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥∗(𝑡)), 𝜂) (4.45) 

 

holds, where 𝑔(𝑡, 0,0) ≡ 0 is not required.  

A4) The scalar FDE (4.10) is parametrically practically stable with respect to 

(𝑎(𝜆), 𝑏(𝐴)), where the constant 𝜆, 𝐴 are given such that 𝜆 ∈ (0, 𝐴) and 

𝑎(𝜆) < 𝑏(𝐴).  

 

Then the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) is practically stable 

with ITD with respect to (𝜆, 𝐴).  

 

Proof 4.3: From condition A3) according to Definition 4.5 there exists a positive 

number 𝜎 = 𝜎(𝑡0, 𝜆, 𝐴) < 𝐻 such that for 𝑢0 ∈  ℝ : |𝑢0| < 𝑎(𝜆) and 𝜂: |𝜂| < 𝜎 we 

have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝐴)   , 𝑡 ≥ 𝑡0  (4.46) 

 

where 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) is a solution of (4.10). Now let points 𝑥0, 𝑦0 ∈  ℝ
𝑛 and 𝜏0, 𝑡0 ∈

 ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝜆 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Consider any 

solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.1) and 

(4.2) correspondingly with the chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively. 

Let �̃�₀ = 𝑉(𝑡0, 𝑦0 − 𝑥0). From Condition A3) i) it follows �̃�₀ = 𝑉(𝑡0, 𝑦0 − 𝑥0) <

𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝜆). Therefore, the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡₀, �̃�₀, 𝜂∗) ∈

𝐶𝑞([𝑡0, ∞), ℝ) of FDE (4.10) satisfies inequality (4.46). The conditions of Lemma 

4.2 are satisfied for 𝛥 = ℝ𝑛, 𝜃 = ∞. According to Lemma 4.2 the inequality  

 

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥
∗(𝑡)) ≤ 𝑢(𝑡; 𝑡0, �̃�₀ , 𝜂

∗), 𝑡 ≥ 𝑡0 (4.47) 

 

is valid. Consequently, in view of the relations (4.46), (4.47), condition A3) and the 

choice of �̃�₀ we obtain  
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 𝑏(𝐴) > 𝑢(𝑡; 𝑡0, �̃�0 , 𝜂
∗) ≥ 𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) ≥ 𝑏(𝑦(𝑡 + 𝜂∗) − 𝑥∗(𝑡)) (4.48) 

 

which implies that ‖𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥
∗(𝑡)‖ < 𝐴 for 𝑡 ≥ 𝑡0. Therefore, according 

to Definition 4.1 the solution 𝑥∗(𝑡) is practically stable with ITD. ■ 

 

Theorem 4.4: Let the following conditions be satisfied: 

 

A1) The conditions A1), A2) of Theorem 4.1 be satisfied  

A2) The scalar FDE (4.10) is attractive parametrically practically stable with 

respect to (𝑎(𝜆), 𝑏(𝐴)), where the constant 𝜆, 𝐴 are given such that 𝜆 ∈ (0, 𝐴) 

and 𝑎(𝜆) < 𝑏(𝐴).  

A3) The condition A3) of Theorem 4.3 is satisfied where inequality (4.45) holds 

for 𝑡 ≥ 𝑡0 + 𝑇 with 𝑇 > 0 from A2).  

 

Then the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) is attractive 

practically stable with ITD with respect to (𝜆, 𝐴).  

 

Proof 4.4: The proof of Theorem 4.4 is similar the one of Theorem 4.3 and we omit 

it. ■ 

 

Corollary 4.6: The function 𝑔(𝑡, 𝑢, 𝜂) = 0 is admissible in Theorem 4.4.  

 

Theorem 4.5: Let the conditions of Theorem 4.3 be satisfied and A3), A4) are 

replaced by as follow:  

 

A3) There exists a function 𝑉 ∈ 𝛬(ℝ+, 𝑆(𝐴)) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ × 𝑆(𝐴) where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any 𝑡 > 𝑡0 ∈ ℝ+,𝑥, 𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(𝐴), 𝑦0 − 𝑥0 ∈ 𝑆(𝐴) and 

       𝜂 ∈ 𝐵𝐻 the inequality 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (4.49) 

 

holds.  
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A4) The scalar FDE (4.10) is uniformly parametrically practically stable 

(𝑎(𝜆), 𝑏(𝐴)), where the constant 𝜆, 𝐴 are given such that 𝜆 ∈ (0, 𝐴) and 

𝑎(𝜆) < 𝑏(𝐴). 

 

Then the system of FDE (4.1) is uniformly practically stable with ITD with respect to 

(𝜆, 𝐴).  

 

Proof 4.5: From condition A4) according to Definition 4.5 there exists a positive 

number 𝜎 = 𝜎(𝜆, 𝐴) < 𝐻 such that for 𝑢0 ∈  ℝ: |𝑢0| < 𝑎(𝜆) and 𝜂: |𝜂| < 𝜎 we have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝐴) , 𝑡 ≥ 𝑡0  (4.50) 

 

where 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂) is a solution of (4.10). Choose arbitrary points 𝑦0 ∈ ℝ
𝑛 and 

𝜏₀ ∈ ℝ+ such that ‖𝑦0 − 𝑥0‖ < 𝜆 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Consider a 

solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.2) with the chosen initial data 

(𝜏0, 𝑦0). Let �̃�₀ = 𝑉(𝑡0, 𝑦0 − 𝑥0). From Condition A3) i) it follows �̃�₀ = 𝑉(𝑡0, 𝑦₀ −

𝑥₀) < 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝜆).  

Therefore, the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝑡0, �̃�₀, 𝜂
∗) ∈ 𝐶𝑞([𝑡0, ∞), ℝ) of FDE 

(4.10) satisfies inequality (4.50). Then we claim that 

 

‖𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)‖ < 𝐴  for 𝑡 ≥ 𝑡0. (4.51) 

 

Assume the opposite, i.e. there exists a point 𝑡1 > 𝑡0 such that ‖𝑦(𝑡1 + 𝜂
∗) −

𝑥(𝑡)‖ = 𝐴 and ‖𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)‖ < 𝐴 for 𝑡0 ≤ 𝑡 < 𝑡1. Therefore the inclusion 

(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)) ∈ 𝑆(𝐴) is valid for 𝑡 ∈ [𝑡0, 𝑡1]. By using (4.49) and applying 

Lemma 4.2  for 𝛥 = 𝑆(𝐴), 𝜃 = 𝑡1 − 𝑡0 we obtain the following estimate 

𝑉(𝑡, 𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)) ≤ 𝑢∗(𝑡), 𝑡0 ≤ 𝑡 < 𝑡1. (4.52) 

 

From the choice of 𝑡1, condition A3) and inequalities (4.50), (4.51), (4.52) we obtain 

 

𝑏(𝐴) = 𝑏(‖𝑦(𝑡1 + 𝜂
∗) − 𝑥(𝑡1)‖) 

                                                      ≤ 𝑉(𝑡1, 𝑦(𝑡
∗ + 𝜂∗) − 𝑥(𝑡1)) ≤ 𝑢∗(𝑡1) < 𝑏(𝐴). 

(4.53) 
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The obtained contradiction proves the validity of inequality (4.51). Therefore, 

according to Definition 4.1 the system of FDE (4.1) is uniformly practically stable 

with ITD w.r.t. (𝜆, 𝐴). ■ 

 

Corollary 4.7: If the inequality (4.35), (4.49) are  satisfied with 𝑔(𝑡, 𝑢, 𝜂) = −𝜇𝑢 +

𝐶𝜂 in Theorem 4.2 and Theorem 4.5, then the system of FDE (4.1) is uniformly stable 

and uniformly practically stable with ITD.  

 

Proof 4.7: In this case the corresponding scalar FDE (4.10) reduces to 𝒟𝑞 𝑢𝑡0
𝐶 =

−𝜇𝑢 + 𝐶𝜂, 𝑢(𝑡0) = 𝑢0. For any parameter 𝜂, 𝑢0 ∈ ℝ the above scalar FDE has a 

solution 𝑢(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)  ∈ 𝐶
𝑞([𝑡0,∞),ℝ) which is uniformly stable and 

uniformly parametrically stable w.r.t parameter from Example 4.2. Hence, system of 

FDE (4.1) is uniformly stable and practically stable with ITD by using Theorem 4.2 

and Theorem 4.5. ■ 

 

4.5.2. Boundedness and Lagrange Stability Criteria with ITD  

 

In this part we will give sufficient conditions on boundedness and Lagrange 

stability with ITD. 

 

Theorem 4.6: Let the conditions A1), A2) of Theorem 4.1 be satisfied and A3), A4) 

are replaced by as follow: 

 

A3) There exists a function 𝑉 ∈ 𝛬([𝑡0, ∞),ℝ
𝑛) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖)  for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where  𝑎, 𝑏 ∈ 𝐾∞. 

ii) for any 𝑡 > 𝑡0 ∈ ℝ+, and 𝑥, 𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛 the inequality 

 

𝒟(4.1)
𝑞

𝑡0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (4.54) 

 

holds.  

(A4) The scalar FDE (4.10) is equi-bounded (ultimately bounded) w.r.t. 

parameter.  
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Then the system of FDE (4.1) is equi-bounded (quasi-ultimately bounded) with ITD.   

 

Proof 4.6: Let 𝛼 > 0 and 𝑡0 ∈ ℝ+. Consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of 

system of FDE (4.1). Initially, we consider the first case of A4) that is the scalar FDE 

(4.10) is equi-bounded w.r.t. parameter. Since 𝐵∗1) holds, given 𝛾1 = 𝑎(𝛼) > 0 and 

𝑡0 ∈ ℝ+ there exist 𝛽1 = 𝛽1(𝑡0, 𝛾1) > 0 and 𝜎 = 𝜎(𝑡0, 𝛾₁) such that |𝑢0| < 𝛾1 and 

|𝜂| < 𝜎 imply 

 

|𝑢(𝑡; 𝑡0, 𝑢₀, 𝜂)| < 𝛽1  for 𝑡 ≥ 𝑡0. (4.55) 

 

Now let point 𝑦0 ∈  ℝ
𝑛 and 𝑡0 ∈ ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜂∗| < 𝜎 where 

𝜂∗ = 𝜏0 − 𝑡0. Consider a solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.2) with the 

chosen initial data (𝜏0, 𝑦0). Choose �̃�₀ = 𝑉(𝑡0, 𝑦0 − 𝑥0) and 𝛽 = 𝛽(𝑡0, 𝛼) > 0 such 

that �̃�₀ = 𝑉(𝑡0, 𝑦0 − 𝑥0) < 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛼) = 𝛾1 and 𝑏(𝛽) ≥ 𝛽₁ since for the 

function 𝑏 ∈ 𝐾 we have 𝑏(𝑟) → ∞ as 𝑟 → ∞, respectively. Then from condition (A3), 

Lemma 4.2 and (4.54), (4.55) we get to the inequalities 

 

𝑏(𝑦(𝑡 + 𝜂∗) − 𝑥(𝑡)) ≤ 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑢∗(𝑡) < 𝛽1 < 𝑏(𝛽) (4.56) 

 

which implies that ‖𝑦(𝑡 + 𝜂∗, 𝜏0, 𝑦0) − 𝑥(𝑡)‖ < 𝛽 for 𝑡 ≥ 𝑡0.  

Next we consider the second case of A4) that is the scalar FDE (4.10) is equi-

ultimately bounded w.r.t. parameter. In order to prove B3), let 𝛼 > 0 and 𝑡0 ∈ ℝ+. 

Consider the solution 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of system of FDE (4.1). Since 𝐵∗3) holds 

i.e. for 𝛼₁ = 𝑎(𝛼) > 0 there exist positive numbers 𝑁, 𝜎 = 𝜎(𝑡0, 𝛼) > 0 and 

𝑇 = 𝑇(𝑡0, 𝛼) such that |𝑢0| < 𝛼1 and |𝜂| < 𝜎 imply |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑁, 𝑡 ≥ 𝑡₀ +

𝑇. Now let point 𝑦0 ∈  ℝ
𝑛 and 𝜏0 ∈ ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜂∗| < 𝜎 

where 𝜂∗ = 𝜏0 − 𝑡0. Consider a solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.2) 

with the chosen initial data (𝜏0, 𝑦0). We claim that B3) holds with 𝑇, 𝜎 and 𝑁∗, 

where 𝑏(𝑁∗) ≥ 𝑁. Suppose that is not true. Therefore, there exist a sequence 

{𝑡(𝑛)},  𝑡(𝑛) > 𝑡0 + 𝑇, 𝑡
(𝑛) → ∞ as 𝑛 → ∞ such that  

 

‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖ ≥ 𝑁∗ (4.57) 
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with ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜂∗| < 𝜎. Finally, in view of the relation (4.57), condition 

A3), the choice of 𝑡(𝑛) and �̃�₀ = 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛼) < 𝛼1  we obtain  

 

𝑏(𝑁∗) ≥ 𝑁 > 𝑢∗(𝑡(𝑛)) ≥ 𝑉 (𝑡(𝑛), 𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))) 

                                                               ≥ 𝑏(‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖) ≥ 𝑏(𝑁∗). 
(4.58) 

 

The obtained contradiction proves that B3) holds. Thus, the system of FDE (4.1) is 

ultimately bounded with ITD. ■ 

 

Corollary 4.8: Let the conditions of Theorem 4.6 hold except A4). If the scalar FDE 

(4.10) is uniformly bounded (uniformly quasi-ultimately bounded), then the system of 

FDEs (4.1) is uniformly bounded (uniformly quasi-ultimately bounded) with ITD.  

 

Corollary 4.9: If the inequality (4.54) is satisfied with 𝑔(𝑡, 𝑢, 𝜂) = −𝜇𝑢 + 𝐶𝜂 in 

Theorem 4.6, then the system of FDE (4.1) is uniformly bounded with ITD.  

 

Proof 4.9: In this case the corresponding scalar FDE (4.10) reduces to 𝒟𝑞 𝑢𝑡0
𝐶 =

−𝜇𝑢 + 𝐶𝜂, 𝑢(𝑡0) = 𝑢0. For any parameter 𝜂, 𝑢0 ∈ ℝ, the above scalar FDE has a 

solution 𝑢(𝑡) = 𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)  ∈ 𝐶
𝑞([𝑡0,∞),ℝ) which is uniformly bounded w.r.t 

parameter from Example 4.2. Hence, system of FDE (4.1) is uniformly bounded with 

ITD by using Theorem 4.6. ■ 

 

Theorem 4.7: Let the conditions of Theorem 4.6 hold except A4). If the scalar FDE 

(4.10) is Lagrange stable (uniformly Lagrange stable) w.r.t. parameter, then the 

system of FDE (4.1) is Lagrange stable (uniformly Lagrange stable) with ITD.  

 

Proof 4.7: Let the scalar FDE (4.10) is Lagrange stable w.r.t. parameter which 

implies that system of FDE (4.1) is equi-bounded with ITD by applying Theorem 4.6.  

In order to prove L1) holds, we need to show A1) holds. Let 𝜖 > 0, 𝛼 > 0 be given. 

Since 𝐴∗1) holds i.e. for 𝑏(𝜖) > 0 and 𝛼1 = 𝑎(𝛼) > 0 there exists a 𝑇 = 𝑇(𝑡0, 𝜖, 𝛼) 

and 𝜎 = 𝜎(𝑡0, 𝛼, 𝜖) > 0 such that |𝑢0| < 𝛼1 and |𝜂| < 𝜎 imply |𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| <

𝑏(𝜖), 𝑡 ≥ 𝑡0 + 𝑇. Now let point 𝑦0 ∈  ℝ
𝑛 and 𝜏0 ∈  ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝛼 

and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Consider a solution 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system 
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of FDE (4.2) with the chosen initial data (𝜏0, 𝑦0). We claim that A1) holds with 𝑇, 𝜎. 

Suppose that is not true. Therefore, there exist a sequence {𝑡(𝑛)},  𝑡(𝑛) > 𝑡0 + 𝑇,

𝑡(𝑛) → ∞ as 𝑛 → ∞ such that  

 

‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖ ≥ 𝜖 (4.59) 

 

with ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜂∗| < 𝜎. Finally, in view of the relation (4.59), condition 

A3), the choice of 𝑡(𝑛) and �̃�0 = 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛼) < 𝛼1  we obtain  

 

𝑏(𝜖) > 𝑢∗(𝑡(𝑛)) ≥ 𝑉 (𝑡(𝑛), 𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))) 

                                                                  ≥ 𝑏(‖𝑦(𝑡(𝑛) + 𝜂∗) − 𝑥(𝑡(𝑛))‖) ≥ 𝑏(𝜖). 
(4.60) 

 

which implies that A1) holds. Since Theorem 4.6 implies that is equi-bounded with 

ITD, then system of FDE (4.1) is Lagrange stable with ITD. ■ 

 

Theorem 4.1 - Theorem 4.7 require using Caputo fractional Dini derivative 

with ITD for Lyapunov functions, i.e. they require only continuity property for 

Lyapunov function. In the case of differentiable Lyapunov function V(t, x) we 

generalize the stability results of [32]-[38] to stability, practical stability, 

boundedness and Lagrange stability with ITD by using Caputo fractional derivative 

of Lyapunov functions. The proofs of the next theorems are similar to those in the 

proof of Theorem 4.1 – Theorem 4.7 where Lemma 4.4 can be used instead of 

Lemma 4.2.  

 

Theorem 4.8: Let the conditions A1), A2) of Theorem 4.1 be satisfied and A3), A4) 

are replaced by as follow: 

 

A3) There exists a function 𝑉 ∈ 𝛬([𝑡0, ∞),ℝ
𝑛) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any solution 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.2) such that 𝜂 = 𝜏0 − 𝑡0 ∈

     𝐵𝐻 the inequality 
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𝒟𝑞𝑡0
𝐶 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)), 𝜂) (4.61) 

 

holds for 𝑡 ≥ 𝑡0+T.  

A4) The scalar FDE (4.10) is parametrically practically stable, attractive 

practically stable.  

 

Then if 𝑇 = 0 the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) is 

practically stable with ITD otherwise it is attractive practically stable with ITD.  

 

Proof 4.8: The proof is similar to those in the proof of Theorem 4.1 – Theorem 4.7 in 

which Lemma 4.2 should be used with replacing Caputo fractional derivative in 

Lemma 4.2. ■ 

 

Theorem 4.9: Let the conditions A1) of Theorem 4.1 be satisfied and A2), A3) are 

replaced by as follow: 

 

A2) There exists a function (𝑉 ∈ 𝛬(ℝ+, 𝑆(𝐴))) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any solutions 𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡; 𝜏0, 𝑦0) of systems of 

 FDE(4.1) and (4.2) such that 𝑦(𝑡 + 𝜂) − 𝑥(𝑡) ∈ 𝑆(𝐴) the inequality 

 

𝒟𝑞𝑡0
𝐶 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)), 𝜂) (4.62) 

 

holds for 𝑡 ≥ 𝑡0.  

A3) The scalar FDE (4.10) is uniformly stable w.r.t parameter (uniformly 

parametrically practically stable).  

 

Then the solution 𝑥∗(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) of the system of FDE (4.1) is uniformly stable, 

(uniformly practically stable) with ITD.  

 

Remark 4.4: It should be noted that similar results for other introduced concepts in 

this chapter can be stated.  
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4.6. Applications 

 

Now we will illustrate the application of the defined concepts with ITD and the 

obtained above sufficient conditions on examples [40].  

 

Example 4.7: Consider the following IVP for the system of FDE with 0 < 𝑞 < 1,  

 

{
𝒟𝑞𝑡0
𝐶 𝑥1(𝑡) = −𝑥1(𝑡) − 𝑥₂(𝑡) + ℎ1(𝑡) 

𝒟𝑞    𝑡0
𝐶 𝑥2(𝑡) = −𝑥2(𝑡) + 𝑥1(𝑡) + ℎ2(𝑡)  

 (4.63) 

 

for 𝑡 > 𝑡0 with 𝑥1(𝑡0) = 𝑥0
1 and 𝑥2(𝑡0) = 𝑥0

2 where the functions ℎ1, ℎ2 ∈ 𝐶(ℝ+, ℝ) 

satisfy Lipschitz condition with 𝐿1, 𝐿2 > 0, respectively. Consider 𝑉(𝑡, 𝑥) = 𝑥𝑇𝑥 =

𝑥1
2 + 𝑥2

2  for 𝑥 = (𝑥1, 𝑥2)  ∈ ℝ
2 and choose 𝑎, 𝑏 ∈ 𝐾 such that 𝑎(𝑠) = 2𝑠, 𝑏(𝑠) =

1

2
𝑠 for the validity of the condition A3) i) of Theorem 4.1.  

Let a couple of real numbers (𝜆, 𝐴) with 0 < 𝜆 <
𝐴

4
 be given. Now, let 𝑥(𝑡) =

𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) be solutions of system of FDE (4.1) and (4.2) 

respectively such that 𝑦(𝑡 + 𝜂) − 𝑥(𝑡) ∈ 𝑆(𝐴) where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)), 

𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡)), 𝑥0 = (𝑥0
1, 𝑥0

2) and 𝑦0 = (𝑦0
1, 𝑦0

2). By using Corollary 4.1, 

Remark 1 [38], linearity of Caputo derivative, Lipschitz property of ℎ1(𝑡), ℎ2(𝑡) we 

get the following inequality for the Caputo fractional derivative of candidate 

Lyapunov function 𝑉(𝑡, 𝑥) = 𝑥𝑇𝑥 as follow 

 

{
 
 
 
 
 

 
 
 
 
 

𝒟𝑞𝑡0
𝐶 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡))

≤ 2(𝑦(𝑡 + 𝜂) − 𝑥(𝑡))
𝑇
𝒟𝑞𝑡0
𝐶 𝑦(𝑡 + 𝜂) − 𝑥(𝑡) = −2(𝑦1(𝑡 + 𝜂) − 𝑥1(𝑡))

2

−2(𝑦2(𝑡 + 𝜂) − 𝑥2(𝑡))
2
+ 2(𝑦1(𝑡 + 𝜂) − 𝑥1(𝑡))(ℎ1(𝑡 + 𝜂) − ℎ1(𝑡))

+2(𝑦2(𝑡 + 𝜂) − 𝑥2(𝑡))(ℎ2(𝑡 + 𝜂) − ℎ2(𝑡))

≤ −2 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥(𝑡)) + 2𝐴𝐿𝜂

 (4.64) 

 

where 𝐿 = 𝑚𝑎𝑥{𝐿1, 𝐿2}. According to (4.64), the corresponding IVP for scalar FDE  
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{
𝒟𝑞𝑡0
𝐶 𝑢(𝑡) = −2𝑢(𝑡) + 𝐶𝜂

𝑢(𝑡0) = 𝑢0
 (4.65) 

 

where 𝑢, 𝑢0 ∈ ℝ 𝑎𝑛𝑑 𝐶 = 2𝐴𝐿.  According to Example 4.2 with 𝜇 = 2 scalar FDE 

(4.65) is uniformly parametrically stable w.r.t. (2𝜆,
𝐴

2
) and uniformly stable w.r.t. 

parameter. Then the system of FDE (4.63) is uniformly practically stable with ITD, 

uniformly stable with ITD by using Theorem 4.9. Figure 4.2 shows that the 

approximate solutions 𝑥(𝑡), 𝑦(𝑡 + 𝜂) with ℎ1(𝑡) = sin (𝑡), ℎ2(𝑡) = cos(𝑡), 𝑡0 = 0, 

𝜏0 = 0.2, 𝑥0 = (2, 3), 𝑦0 = (2.3, 3.2) and 𝐿 = 1. 

 

 

 

Figure 4.2: Approximate solutions with ℎ1(𝑡) = 𝑠𝑖𝑛 (𝑡),  ℎ2(𝑡) = cos(𝑡), 𝑡0 = 0, 

𝜏0 = 0.2 and 𝐿 = 1. 

 

Example 4.8: Consider the following FDE with 0 < 𝑞 < 1,  

 

𝒟𝑞𝑡0 
𝐶 𝑥(𝑡) = 𝑥(𝑡)(1 − 0.1𝑡) (4.66) 

 

for 𝑡 > 𝑡0 with 𝑥(𝑡0) = 𝑥0. The IVP (4.66) has a zero solution 𝑥∗(𝑡) ≡ 0 with 

𝑥(0) = 0. Consider the quadratic function 𝑉(𝑡, 𝑥) = 𝑥2. The condition A3) i) of 

Theorem 4.1 is satisfied for 𝑎, 𝑏 ∈ 𝐾 such that 𝑎(𝑠) = 2𝑠, 𝑏(𝑠) =
1

2
𝑠. Let a couple of 

real numbers (𝜆, 𝐴) with 0 < 𝜆 <
𝐴

4
 be given. Now, let 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) be a 
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solution of FDE 𝒟𝑞 𝜏0
𝐶 𝑦(𝑡) = 𝑦(𝑡)(1 − 0.1𝑡), 𝑡 > 𝜏0 with 𝑦(𝜏0) = 𝑦0 where 

𝜂 = 𝜏0 ∈ 𝐵𝐻, 𝐻 > 0 is a given constant. According to Corollary 4.1 the function 

𝑦(𝑡 + 𝜂) is a solution of 𝒟𝑞0 
𝐶 𝑦 = 𝑦(1 − 0.1(𝑡 + 𝜂)), 𝑡 > 0 with 𝑦(0) = 𝑦0. Then 

apply Remark 1 [38] and get the following inequality for the Caputo fractional 

derivative of the Lyapunov function 𝑉(𝑡, 𝑥) = 𝑥²  

 

𝒟𝑞0
𝐶 𝑉(𝑡, 𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)) 

                                              ≤ 2𝑦(𝑡 + 𝜂) 𝒟𝑞0
𝐶 (𝑦(𝑡 + 𝜂)) = 𝑔(𝑡, 𝜂)(𝑦(𝑡 + 𝜂))

2
  

(4.67) 

 

where the function 𝑔(𝑡, 𝜂) = 2(1 − 0.1(𝑡 + 𝜂)). Then 𝑔(𝑡, 𝜂) ≤ 0 for 𝑡 > 11 with 

the choice of 𝐻 = 1. According to Theorem 4.8 the zero solution 𝑥∗(𝑡) ≡ 0 of FDE 

(4.66) is attractive practically stable and the inequality ‖𝑦(𝑡 + 𝜂) − 𝑥∗(𝑡)‖ < 𝐴 for 

𝑡 > 11 holds whenever ‖𝑦0 − 𝑥0‖ < 𝜆. Now use the Lyapunov function 𝑉(𝑡, 𝑥) =

𝑚2(𝑡)𝑥². From (4.20), Example 4.6 we get  

 

{
 
 
 
 

 
 
 
 

𝒟(4.66)
𝑞

0
𝐶 𝑉(𝑡, 0, 𝑦, 𝜂, 0, 𝑦0)

= 2(𝑦 − 0)2𝑚2(𝑡)(𝑓(𝑡 + 𝜂, 𝑦) − 𝑓(𝑡, 0))

+(𝑦 − 0)2 𝒟𝑞 [𝑚2(𝑡)] + ((𝑦 − 0)2 − (𝑦0 − 0)
2)
𝑚2(0)𝑡−𝑞

𝛤(1 − 𝑞)0
𝐶

≤ 𝑦2(2𝑚2(𝑡) ((1 − 0.1(𝑡 + 𝜂))) + 𝒟𝑞 [𝑚2(𝑡)] +
𝑚2(0)𝑡−𝑞

𝛤(1 − 𝑞)0
𝐶

 (4.68) 

 

Choose the function 𝑚²(𝑡) such that it satisfy the scalar fractional linear inequality 

𝒟𝑞 𝑢(𝑡) ≤ −2𝑢(𝑡)0
𝐶 (1 − 0.1(𝑡 + 𝜂)) −

𝑡−𝑞

𝛤(1−𝑞)
 for 𝑡 ≥ 𝑇, 𝑇 > 0. Let, for example, 

𝑚(𝑡) =
1

1+𝑡
. Then for 𝑞 = 0.5, we have 𝒟

𝑞
[

1

(1+𝑡)2
]0

𝐶 =
−4𝑡0.5₂𝐹₁(1,3;1.5;−𝑡)

𝛤(0.5)
 where 

₂𝐹₁(1,3; 1.5; −𝑡) is the hypergeometric function. Then the inequality 𝑀(𝑡, 𝜂) =

2𝑚2(𝑡)(1 − 0.1(𝑡 + 𝜂)) + 𝒟𝑞 [𝑚2(𝑡)]𝑡0
𝐶 +

𝑡−0.5

𝛤(0.5)
≤ 0 is satisfied for 𝑡 ≥ 𝑇 where 

𝑇 > 0 depends on 𝜂, see Figure 4.3. From Figure 4.4 it can be seen 𝑇 = 5.5 for 

𝜂 = 𝜏0 ≤ 1. Therefore, 𝒟(4.66)
𝑞

0
𝐶 𝑉(𝑡, 𝑥∗(𝑡), 𝑦, 𝜂, 0, 𝑦0) ≤ 0 for 𝑡 > 5.5 and according 

to Corollary 4.6 the (4.66) is attractive practically stable with ITD, where the 
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interval 𝑡 > 11 is substituted by 𝑡 > 5.5. Therefore, in this case the application of 

the introduced formula (4.20) gives us better result than the application of Caputo 

fractional derivative of Lyapunov function. 

 

 

 

Figure 4.3: Graph of 𝑀(𝑡, 𝜂) for various 𝜂.  
 

 

 

 

Figure 4.4: Graph of 𝑀(𝑡, 𝜏0) for various 𝜏0.  
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5. STABILITY AND BOUNDEDNESS OF 

PERTURBED FRACTIONAL DIFFERENTIAL 

EQUATION WITH INITIAL TIME DIFFERENCE 
 

5.1. Introduction 

 

The concept of a Lyapunov function has been employed with great success in a 

wide variety of investigations to understand qualitative and quantitative properties of 

dynamic systems for many years. Lyapunov' s second method is a standard technique 

used in the study of the qualitative behavior of differential systems along with a 

comparison result that allows the prediction of behavior of a differential system 

when the behavior of the null solution of a comparison system is known. The 

application of Lyapunov' s second method in stability and boundedness theory [3]-

[4] has the advantage of not requiring knowledge of solutions.  

An important problem in stability theory is to determine which stability 

properties of a particular differential system are preserved under sufficiently small 

perturbations. This problem was investigated in several ways in [1-6]. The author in 

[50] investigated the problem of determining the behavior of the solutions of a 

perturbed differential equation with respect to the solutions of the original 

unperturbed differential equation. The principal mathematical technique employed is 

a modification of Lyapunov’s direct method which is applied to the difference of the 

solutions of perturbed and unperturbed system where the initial positions are 

sufficiently close. In [51], the authors applied variational Lyapunov method (VLM), 

combines the method of variation of parameters and the method of Lyapunov, to 

connect the solutions of perturbed and unperturbed system with initial time 

unchanged. 

However, the possibility of making error in initial time as well as in initial 

position when we deal with real world problems needs to be considered. We call this 

type of stability analysis, initial time difference stability analysis [42]-[49], [52]-[56]. 

A significant difference between ITD stability of perturbed system and the classical 

notions of stability is that the classical notions of stability are with respect to the null 

solution, but ITD stability of perturbed system is with respect to the unperturbed 

differential system. So far, several studies have been made on this problem for ODE 
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to explore the ITD stability, boundedness, etc. criteria by using generalized variation 

of parameters and comparison method via Lyapunov functions in [52], [53] and 

references therein. However, there are a few results for FDE. In [52], VLM is applied 

to connect between the solutions of system of perturbed and unperturbed FDE that 

have the same initial time. On the other hand sufficient conditions on stability with 

ITD are obtained in [54]. In chapter 5, we have investigated stability, practical 

stability, boundedness and Lagrange stability for system of nonlinear perturbed FDE 

with ITD by using fractional comparison method via Lyapunov function and scalar 

FDE with parameter. We begin with section 5.2 which includes the necessary some 

stability and boundedness definitions of system of perturbed FDE relative to 

unperturbed FDE with ITD and Caputo fractional Dini derivative of Lyapunov 

function with respect to the system of perturbed FDE and unperturbed FDE in 

relation with definition in [55]-[56]. In section 5.3, firstly we present a comparison 

result which uses Lyapunov function to connect the solutions of the perturbed and 

the unperturbed systems in terms of solution of a scalar FDE. We have obtained 

some sufficient conditions for ITD stability, boundedness and Lagrange stability of 

nonlinear system of perturbed FDE. 

 

5.2. Statement of the problem 

 

Consider the following IVP for the system of FDE for 0 < 𝑞 < 1 

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0  
 (5.1) 

 

where 𝑡0 ∈ ℝ+, 𝑓 ∈ 𝐶[ℝ+ × ℝ
𝑛, ℝ𝑛]. Denote the solution of (5.1) by 𝑥(𝑡; 𝑡0, 𝑥0) ∈

𝐶𝑞([𝑡0, ∞), ℝ
𝑛). Let 𝜏0 ∈ ℝ+, 𝜏0 ≠ 𝑡0 be a different initial time. In addition to (5.1), 

we also consider the associated system of perturbed FDE with different initial data  

 

{
𝒟𝑞𝜏0
𝐶 𝑦(𝑡) = 𝐹(𝑡, 𝑦(𝑡)

𝑦(𝜏0) = 𝑦0  
 (5.2) 
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where 𝐹(𝑡, 𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) + 𝑅(𝑡, 𝑦(𝑡)) and 𝑅 ∈ 𝐶[ℝ+ × ℝ
𝑛, ℝ𝑛] is called the 

perturbation term.  

We shall introduce the following definitions of stability, practical stability of 

system of perturbed FDE (5.2) relative to unperturbed system (5.1) with ITD.  

 

Definition 5.1: The solution 𝑦(𝑡, 𝜏0, 𝑦0) of system of perturbed FDE (5.2) is said to be  

 

S1) equi-stable with ITD relative to (5.1) if given 𝜖 > 0, there exist 𝛿 = 𝛿(𝜏0, 𝜖) > 0 

and 𝜎 = 𝜎(𝜏0, 𝜖) > 0 such that the inequalities ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜏0 − 𝑡0| < 𝜎 

imply ‖𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝜏0, where 𝑥(𝑡, 𝑡0, 𝑥0) is a solution 

of (5.1) and 𝜂 = 𝜏0 − 𝑡0;  

S2) uniformly stable with ITD, if 𝛿 and σ in S1) is independent of 𝜏0; 

S3) attractive with ITD if for given 𝜖 > 0 and there exist 𝛿0 = 𝛿0(𝜏0) > 0, σ0 =

σ0(𝜏0) > 0 and a 𝑇 = 𝑇(𝜏0, 𝜖) > 0 such that the inequalities ‖𝑦0 − 𝑥0‖ < 𝛿0 and 

|𝜏0 − 𝑡0| < σ0 imply ‖𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝜏0 + 𝑇; 

S4) uniformly attractive if 𝛿₀, 𝜎0 and 𝑇 in S3) is independent of 𝜏0; 

S5) asymptotically stable with ITD if S1) and S3) hold simultaneously;  

S6) uniformly asymptotically stable with ITD, if S2) and S4) hold simultaneously;  

PS1) practically stable with ITD w.r.t. (𝜆, 𝐴), if there exists a number σ =

σ(𝜏0, 𝜆, 𝐴) > 0 such that the inequalities ‖𝑦0 − 𝑥0‖ < 𝜆 and |𝜏0 − 𝑡0| < σ imply 

‖𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)‖ < 𝜖 for 𝑡 ≥ 𝜏0, where a couple of real numbers 

(𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given;  

PS2) uniformly practical stable with ITD w.r.t. (𝜆, 𝐴) if σ = σ(𝜆, 𝐴) > 0 in PS1); 

PS3) attractive practical stable with ITD w.r.t. (𝜆, 𝐴, 𝑇) if there exist σ =

σ(𝜏0, 𝜆, 𝐴) > 0 and 𝑇 = 𝑇(𝜏0, 𝜆, 𝐴) > 0 such that the inequalities ‖𝑦0 − 𝑥0‖ < 𝜆 

and |𝜏0 − 𝑡0| < σ imply ‖𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)‖ < A for 𝑡 ≥ 𝑡0 + 𝑇;  

PS4) uniformly attractive practically stable with ITD w.r.t. (𝜆, 𝐴) if σ(𝜆, 𝐴) > 0 and 

𝑇 = 𝑇(𝜆, 𝐴) > 0 in PS3);  

 

Remark 5.1: It should be note that the definitions S1) - PS4) are equivalent to the 

statement that a solution of system of perturbed FDE (5.2) which start sufficiently 

close to the initial data of the unperturbed solution respectively remain close to it or 

eventually approach it.  
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Remark 5.2: All of the above definitions are independent of the behavior of the 

solutions of the system of unperturbed FDE (5.1).  

 

In connection with Remark 5.2, we specifically indicate that the solution of the 

system of unperturbed FDE (5.1) may be stable, asymptotically stable or even 

unstable. To motivate the idea, we give the following example.  

 

Example 5.1: Consider the following fractional differential equation  

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = −𝑎𝑥(𝑡),     𝑎 > 0,   

𝑥(𝑡0) = 𝑥0  
 (5.3) 

 

It can be seen from Example 3.7 that solution of (5.3) is given by 𝑥∗(𝑡) =

𝑥(𝑡, 𝑡0, 𝑥0) = 𝑥0𝐸𝑞(−𝑎(𝑡 − 𝑡0)
𝑞). We also know that solution 𝑥∗(𝑡) is uniformly 

asymptotically stable and uniformly practically stable in the sense of Lyapunov 

studied in Chapter 3. On the other hand, consider the associated perturbed FDE  

 

{
𝒟𝑞𝜏0
𝐶 𝑦(𝑡) = −(𝑎 + 𝑏)𝑦(𝑡),     

𝑦(𝜏0) = 𝑦0  
 (5.4) 

 

whose solution is 𝑦(𝑡, 𝜏0, 𝑦0) = 𝑦0𝐸𝑞(−(𝑎 + 𝑏)(𝑡 − 𝜏0)
𝑞). Under the idea of 

Definition 5.1 we are interested in the difference of solutions as follow 

 

𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0) = 

                                                𝑦0𝐸𝑞(−(𝑎 + 𝑏)(𝑡 − 𝜏0)
𝑞) − 𝑥0𝐸𝑞(−𝑎(𝑡 − 𝜏0)

𝑞)). (5.5) 

 

Now we consider the cases that is possible here.  

 

 Case-1  

Let 𝑎 + 𝑏 > 0. Then the difference of solutions (5.5) approaches 0 as 𝑡 → ∞. 

Thus the perturbed FDE (5.4) is asymptotically stable relative to (5.3) with ITD.  
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 Case-2  

Let 𝑎 + 𝑏 < 0. Then the perturbed FDE (4.4) is unstable relative to (4.1) with 

ITD.  

 

Corresponding to the different types of stability defined above, we can define 

the concepts of boundedness and related Lagrange stability of system of perturbed 

FDE (5.2) relative to unperturbed system (5.1) with ITD. 

 

Definition 5.2: The system of perturbed FDE (5.2) is said to be  

 

B1) equi-bounded with ITD if given 𝛼 > 0, there exist 𝜎 = 𝜎(𝜏0, 𝛼) > 0 and 

𝛽 = 𝛽(𝜏0, 𝛼) > 0 such that ‖𝑦0 − 𝑥0‖ ≤ 𝛼 and |𝜏0 − 𝑡0| < 𝜎  imply ‖𝑦(𝑡, 𝜏0, 𝑦0) −

𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)‖ < 𝛽, 𝑡 ≥ 𝜏0; 

B2) uniformly bounded with ITD, if B1) holds with 𝛽 and 𝜎 independent of 𝜏0; 

B3) ultimately bounded with ITD if for each 𝛼 > 0 there exist 𝑁 > 0, 𝜎 =

𝜎( 𝜏0, 𝛼) > 0 and 𝑇 = 𝑇(𝜏0, 𝛼) > 0 such that inequalities ‖𝑦0 − 𝑥0‖ ≤ 𝛼 and 

|𝜏0 − 𝑡0| < 𝜎 imply ‖𝑦(𝑡 + 𝜂, 𝜏0, 𝑦0) − 𝑥(𝑡, 𝑡0, 𝑥0)‖ < 𝑁,   𝑡 ≥ 𝜏0 + 𝑇; 

B4) uniformly ultimately bounded with ITD, if 𝜎 and 𝑇 in B3) is independent of 𝜏0; 

B5) ultimately bounded with ITD, if B1) and B3) hold simultaneously;  

B6) uniformly ultimately bounded with ITD, if B2) and B4) hold simultaneously;  

A1) attractive in the large with ITD if for each 𝜖 > 0, 𝛼 > 0 there exist 𝜎 =

𝜎( 𝜏0, 𝜖, 𝛼) > 0 and 𝑇 = 𝑇(𝜏0, 𝜖, 𝛼) > 0 such that ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜏0 − 𝑡0| < 𝜎 

imply ‖𝑦(𝑡 + 𝜂, 𝜏0, 𝑦0) − 𝑥(𝑡, 𝑡0, 𝑥0)‖ < 𝜖 for  𝑡 ≥ 𝜏0 + 𝑇; 

A2) uniformly attractive with ITD, if 𝜎 and 𝑇 in A1) are independent of 𝜏0;  

L1) Lagrange stable if B1) and A1) hold together; 

L2) uniformly Lagrange stable if B2) and A2) hold together. 

 

In our further investigations we will use scalar FDE (4.10) and related 

Definition (4.4) – Definition (4.6) as in Chapter 4. We will study the connection 

between stability, practical stability, boundedness and Lagrange stability of the scalar 

FDE (4.10) and corresponding stability, practical stability, boundedness and 

Lagrange stability of system of perturbed FDE (5.2) relative to unperturbed system 

(5.1) with ITD. The principal mathematical technique employed is a fractional order 
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extension of Lyapunov’s method which is applied to the difference of the solutions 

studied. In this context, we define Caputo fractional Dini derivative of the function 

𝑉(𝑡, 𝑥) ∈ 𝛬(𝐼, 𝛥) with ITD along solutions of the system (5.1) and (5.2) ITD as 

follow 

 

{
  
 

  
 𝒟+

𝑞
𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) = lim 𝑠𝑢𝑝

ℎ→0+

1

ℎ𝑞
[𝑉(𝑡, 𝑦 − 𝑥) − 𝑉(𝜏0, 𝑦0 − 𝑥0)

− ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑦 − 𝑥 − ℎ𝑞(𝐹(𝑡, 𝑦)   − 𝑓(𝑡 − 𝜂, 𝑥))

[
𝑡−𝜏0
ℎ

]

𝑟=1

−𝑉(𝜏0, 𝑦0 − 𝑥0))]

 (5.6) 

 

where 𝐹(𝑡, 𝑦) = 𝑓(𝑡, 𝑦) + 𝑅(𝑡, 𝑦), 𝑡, 𝜏0 ∈ 𝐼, 𝑦 − 𝑥, 𝑦0 − 𝑥0 ∈ 𝛥.  

Now we will apply the introduced Caputo fractional Dini derivative (5.6) for some 

Lyapunov functions with generalization relative to perturbed system and ITD. In 

order to avoid repetitions of arguments used in Example 4.5, Corollary 4.2 and 

Example 4.6 we state the formulas directly.  

 

Example 5.2: Let the Lyapunov function does not depend on the time variable, i.e. 

𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) 𝑓𝑜𝑟 𝑥 ∈ ℝ. Then, applying formula (5.6) we obtain 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) 

                = lim 𝑠𝑢𝑝
ℎ→0+

𝑉(𝑦 − 𝑥) − 𝑉(𝑦 − 𝑥 − ℎ𝑞(𝐹(𝑡, 𝑦) − 𝑓(𝑡 − 𝜂, 𝑥))

ℎ𝑞
 

                                                                   +[ 𝑉(𝑦 − 𝑥) − 𝑉(𝑦0 − 𝑥0)]
(𝑡 − 𝜏0)

−𝑞

𝛤(1 − 𝑞)
. 

(5.7) 

 

Corollary 5.1: Let 𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥) = 𝑥² for 𝑥 ∈ ℝ. We deduce the following 

expression from Example 5.2  

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) = 2(𝑦 − 𝑥)((𝐹(𝑡, 𝑦) − 𝑓(𝑡 − 𝜂, 𝑥))) 

                                                                   +[ (𝑦 − 𝑥)2 − (𝑦0 − 𝑥0)
2]
(𝑡 − 𝜏0)

−𝑞

𝛤(1 − 𝑞)
. 

(5.8) 
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Remark 5.3: In the case when 𝑞 → 1 the equality (5.8) is coincide with the known 

Dini derivative 𝒟+𝑉(𝑡, 𝑦 − 𝑥) = 2(𝑦 − 𝑥)(𝐹(𝑡, 𝑦) − 𝑓(𝑡 − 𝜂, 𝑥)).  

 

Example 5.3: Let 𝑉(𝑡, 𝑥) = 𝑚²(𝑡)𝑥² for 𝑥 ∈ ℝ where 𝑚 ∈ 𝐶1(ℝ+, ℝ). Firstly, using 

the definition (5.6) we obtain Caputo fractional Dini derivative of the function 

𝑉(𝑡, 𝑥):  

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) 

               = 2(𝑦 − 𝑥)𝑚2(𝑡)(𝐹(𝑡, 𝑦) − 𝑓(𝑡 − 𝜂, 𝑥)) + ((𝑦 − 𝑥)2 × 

                             𝒟𝑞 [𝑚2(𝑡)]) + [ (𝑦 − 𝑥)2 − (𝑦0 − 𝑥0)
2]
𝑚2(𝜏0)(𝑡 − 𝜏0)

−𝑞

𝛤(1 − 𝑞)
.𝜏0

𝐶  

(5.9) 

 

In the case 𝑚(𝑡) = 1, the formula (5.9) is reduced to (5.8). On the other hand the 

Dini derivative of Lyapunov function with ITD for classical case (𝑞 = 1) is 

 

𝒟+𝑉(𝑡, 𝑦 − 𝑥) = 2(𝑦 − 𝑥)𝑚2(𝑡)(𝐹(𝑡, 𝑦) − 𝑓(𝑡 − 𝜂, 𝑥)) 

                                                                                                   +(𝑦 − 𝑥)2
𝑑

𝑑𝑡
[𝑚2(𝑡)]. 

(5.10) 

 

Notice that first derivative of 𝑚(𝑡) in (5.10) is replaced by the fractional derivative 

in (5.9).  

 

5.3. Main Results 

 

In this part, we give a comparison theorem which establish a relation between 

the solutions of (5.1), (5.2) and scalar FDE with parameter (4.10). Then, we will 

obtain sufficient conditions for some stability and boundedness of system of 

perturbed FDE (5.2) relative to unperturbed system (5.1) with ITD. The proof is 

based on the second method of Lyapunov which is applied to the difference of the 

solutions of (5.1) and (5.2) where not only initial position but also initial time are 

different.  
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5.3.1. Comparison Results with ITD for Scalar FDE 

 

Now we give a comparison theorem which establishes a relation between the 

solutions of (5.1), (5.2) and scalar FDE with parameter (4.10).  

 

Lemma 5.1: Assume the following conditions are satisfied:  

 

i) The function 𝑥(𝑡) = 𝑥(𝑡; 𝑡0, 𝑥0) ∈ 𝐶
𝑞([𝑡0, 𝜏0 + 𝜃], ℝ

𝑛) and 𝑦(𝑡) =

𝑦(𝑡; 𝜏0, 𝑦0) ∈ 𝐶
𝑞([𝜏0, 𝜏0 + 𝜃], ℝⁿ) are solutions of system of FDE (5.1), (5.2) 

respectively, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗) ∈ 𝛥 where 𝜂∗ = 𝜏0 − 𝑡0, 𝛥 ∈ ℝ𝑛 and 𝜃 is a given 

number.  

ii) The function 𝑉 ∈ 𝛬([𝜏0, 𝜏0 + 𝜃], 𝛥), 𝑔 ∈ 𝐶[[𝜏0, 𝜏0 + 𝜃] × ℝ ×ℝ,ℝ] such that 

for 𝑡 ∈ (𝜏0, 𝜏0 + 𝜃] the inequality  

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥(𝑡 − 𝜂∗), 𝑦(𝑡), 𝜂∗, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂

∗)), 𝜂∗) (5.11) 

 

holds.  

 

Then 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑢0 implies 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ≤ 𝑢∗(𝑡) for 𝑡 ∈ [𝜏0, 𝜏0 +

𝜃] where 𝑢∗(𝑡) = 𝑢(𝑡; 𝜏0, 𝑢0, 𝜂
∗) is the maximal solution of IVP for scalar FDE 

(4.10) with 𝜂 = 𝜂∗. 

 

Proof 5.1: Let the function 𝑚(𝑡) ∈ 𝐶([𝜏0, 𝜏0 + 𝜃], ℝ+) be defined by 𝑚(𝑡) =

𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)). Then from Remark 3.2 we obtain for 𝑡 ∈ (𝜏0, 𝜏0 + 𝜃] the 

equality lim 𝑠𝑢𝑝
ℎ→0

1

ℎ𝑞
(𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗) − (𝑦0 − 𝑥0) −  𝑆(𝑦(𝑡), 𝑥(𝑡 − 𝜂

∗), ℎ)) =

𝐹(𝑡, 𝑦(𝑡)) − 𝑓(𝑡 − 𝜂∗, 𝑥(𝑡 − 𝜂∗)), 

 where 𝑆(𝑦(𝑡), 𝑥(𝑡 − 𝜂∗), ℎ) = ∑ (−1)𝑟+1(𝑞
𝑟
)

[
𝑡−𝜏0
ℎ
]

𝑟=1 [𝑦(𝑡 − 𝑟ℎ) − 𝑥(𝑡 − 𝜂∗ − 𝑟ℎ) −

(𝑦0 − 𝑥0)]. Therefore 𝑆(𝑦(𝑡), 𝑥(𝑡 − 𝜂∗), ℎ) = 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗) − (𝑦0 − 𝑥0) −

ℎ𝑞(𝐹(𝑡, 𝑦(𝑡)) − 𝑓(𝑡 − 𝜂∗, 𝑥(𝑡 − 𝜂∗))) − 𝜖(ℎ𝑞) 

 or 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗) − ℎ𝑞(𝐹(𝑡, 𝑦(𝑡)) − 𝑓(𝑡 − 𝜂∗, 𝑥(𝑡 − 𝜂∗))) = 𝑆(𝑦(𝑡), 𝑥(𝑡 −

𝜂∗), ℎ) + (𝑦0 − 𝑥0) + 𝜖(ℎ
𝑞) with 

𝜖(ℎ𝑞)

ℎ𝑞
 as ℎ → 0+. Then for any 𝑡 ∈  (𝜏0, 𝜏0 + 𝜃] 

using (3.9) and (3.10) we obtain  
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝑚(𝑡) − 𝑚(𝜏0) −

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑚(𝑡 − 𝑟ℎ) − 𝑚(𝜏0))

[
𝑡−𝜏0
ℎ

]

𝑟=1
]
 
 
 

= 𝑉(𝑡, 𝑧(𝑡)) − 𝑉(𝜏0, 𝑧0) − ∑ (−1)𝑟+1 (
𝑞

𝑟
) ×

[
𝑡−𝜏0
ℎ

]

𝑟=1

[𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡) − 𝑧0 − ℎ
𝑞 (𝐹(𝑡, 𝑦(𝑡)) − 𝑓(𝑡 − 𝜂∗, 𝑥(𝑡 − 𝜂∗)))

−𝑉(𝜏0, 𝑧0)] +

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑆(𝑧(𝑡), ℎ) + 𝑧0 + 𝜖(ℎ

𝑞)))

[
𝑡−𝜏0
ℎ

]

𝑟=1
]
 
 
 

−

[
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡 − 𝑟ℎ)))

[
𝑡−𝜏0
ℎ

]

𝑟=1
]
 
 
 

 (5.12) 

 

where 𝑧(𝑡) = 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗), 𝑧0 = 𝑦0 − 𝑥0 and 𝜂∗ is defined in i). After 

arrangement in the expression (5.12) via 𝑉 is locally Lipschitzian in its second 

argument with a Lipschitz constant 𝐿 > 0 we obtain 
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

∑ (−1)𝑟+1 (
𝑞

𝑟
) [𝑉(𝑡 − 𝑟ℎ, 𝑆(𝑦(𝑡), 𝑥(𝑡 − 𝜂∗), ℎ) + 𝑧₀ + 𝜖(ℎ𝑞))

[
𝑡−𝜏0
ℎ

]

𝑟=1

−𝑉(𝑡 − 𝑟ℎ, 𝑧(𝑡 − 𝑟ℎ))]

≤ 𝐿 ‖‖ ∑ (
𝑞

𝑟
)

[
𝑡−𝜏0
ℎ

]

𝑟=1

∑ (−1)𝑗+1 (
𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝜏0
ℎ

]

𝑟=1

− ∑ (−1)𝑟+1 (
𝑞

𝑟
) (𝑧(𝑡 − 𝑟ℎ) − 𝑧0)

[
𝑡−𝜏0
ℎ

]

𝑟=1

‖‖ + 𝐿𝜖(ℎ𝑞) ∑ (
𝑞

𝑟
)

[
𝑡−𝜏0
ℎ

]

𝑟=1

= 𝐿‖‖ ∑ (−1)𝑟+1 (
𝑞

𝑟
) ∑ (−1)𝑗+1 (

𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝜏0
ℎ

]

𝑗=1

[
𝑡−𝜏0
ℎ

]

𝑗=0

‖‖

+𝐿𝜖(ℎ𝑞) ∑ (
𝑞

𝑟
)

[
𝑡−𝜏0
ℎ

]

𝑟=1

 (5.13) 

 

Substitute (5.13) in (5.12), divide both sides by ℎ𝑞, take a limit as ℎ → 0+, use (5.6), 

ii) and ∑ (𝑞
𝑟
)

[
𝑡−𝜏0
ℎ
]

𝑟=0 𝑧𝑟 = (1 + 𝑧)𝑞 if |𝑧| ≤ 1 we obtain for any 𝑡 ∈ (𝜏0, 𝜏0 + 𝜃] the 

inequality  

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝒟+
𝑞

𝜏0
𝐶 𝑚(𝑡) ≤ 𝒟+

𝑞
𝜏0
𝐶 𝑉(𝑡, 𝑥(𝑡 − 𝜂∗), 𝑦(𝑡), 𝜂∗, 𝑥0, 𝑦0)

+𝐿 lim
ℎ→0+

𝑠𝑢𝑝 ‖‖ ∑
1

ℎ𝑞
(−1)𝑗+1 (

𝑞

𝑗
) (𝑧(𝑡 − 𝑗ℎ) − 𝑧0)

[
𝑡−𝜏0
ℎ

]

𝑗=1

∑ (−1)𝑟+1 (
𝑞

𝑟
)

[
𝑡−𝜏0
ℎ

]

𝑟=0

‖‖

+𝐿 lim
ℎ→0+

𝑠𝑢𝑝
𝜖(ℎ𝑞)

ℎ𝑞
lim
ℎ→0

𝑠𝑢𝑝 ∑ (
𝑞

𝑟
)

[
𝑡−𝜏0
ℎ

]

𝑟=1

= 𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥(𝑡 − 𝜂∗), 𝑦(𝑡), 𝜂∗, 𝑥0, 𝑦0)

≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗), 𝜂∗) = 𝑔(𝑡,𝑚(𝑡), 𝜂∗).

 (5.14) 
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Finally, we get 𝑚(𝑡) = 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗) ≤  𝑢∗(𝑡) for 𝑡 ∈ [𝜏0, 𝜏0 + 𝜃] by 

applying Lemma 3.3. ■ 

 

The result of Lemma 5.1 is also true on the half line. 

 

Lemma 5.2: Let the conditions of Lemma 5.1 are satisfied for 𝜃 = ∞, i.e. for 𝑡 ≥ 𝑡0 

and 𝑡 ≥ 𝜏0 respectively. Then 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑢₀ implies 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ≤

𝑢∗(𝑡)  for  𝑡 ≥ 𝜏0. 

 

Corollary 5.2: Let the conditions of Lemma 5.2 be satisfied and the inequality  

 𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥(𝑡 − 𝜂∗), 𝑦(𝑡), 𝜂∗, 𝑥0, 𝑦0) ≤ 0 holds for 𝑡 > 𝜏0.  

Then the estimate 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ≤ 𝑉(𝜏0, 𝑦0 − 𝑥0) holds for 𝑡 ≥ 𝜏0. 

 

Proof 5.2: The proof follows directly from the fact that corresponding IVP for scalar 

FDE  𝒟𝑞 𝑢(𝑡) =𝜏0
𝐶 0, 𝑢(𝜏0) = 𝑉(𝜏0, 𝑦0 − 𝑥0) has a unique solution 𝑢(𝑡) =

𝑉(𝜏0, 𝑦0 − 𝑥0) for 𝑡 ≥ 𝜏0. ■ 

 

Corollary 5.3: Let the condition of Lemma 5.2 be satisfied and the inequality 

 𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥(𝑡 − 𝜂∗), 𝑦(𝑡), 𝜂∗, 𝑥0, 𝑦0) ≤ −𝛾𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂

∗)) + 𝐶𝜂∗ holds for 

𝑡 > 𝜏0, where 𝛾 > 0 and 𝐶 ∈ ℝ are constants.  

Then the inequality 𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ≤ [𝑉(𝜏0, 𝑦0 − 𝑥0) −
1

𝜇
𝐶𝜂∗]𝐸𝑞(−𝛾(𝑡 −

𝜏0)
𝑞) +

1

𝜇
𝐶𝜂∗ holds  for 𝑡 ≥ 𝜏0.  

 

Proof 5.3: The proof of Corollary 5.3 follows directly from the fact that 

corresponding IVP for scalar FDE  𝒟𝑞 𝑢 =𝜏0
𝐶 − 𝜇𝑢 + 𝐶𝜂∗, 𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0) has 

a unique solution 𝑢(𝑡) = [𝑉(𝜏0, 𝑦0 − 𝑥0) −
1

𝜇
𝐶𝜂∗]𝐸𝑞(−𝛾(𝑡 − 𝜏0)

𝑞) +
1

𝜇
𝐶𝜂∗ for 

𝑡 ≥ 𝜏0. ■ 
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5.3.2. Some Stability and Boundedness Criteria  

 

Theorem 5.1: Let the following conditions be satisfied: 

 

A1) The function 𝑔 ∈ 𝐶[ℝ+ × ℝ ×ℝ,ℝ], 𝑔(𝑡, 0,0) ≡ 0 and for any 𝜂, 𝑢0 ∈ ℝ, 

the IVP for scalar FDE (4.10) has a solution 𝑢(𝑡) = 𝑢(𝑡; 𝜏0, 𝑢0, 𝜂)  ∈

𝐶𝑞([𝜏0, ∞), ℝ).  

A2) There exists a function 𝑉 ∈ 𝛬([ℝ+, 𝑆(𝜌)) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ × 𝑆(𝜌) where 𝑎, 𝑏 ∈ 𝐾. 

ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(𝜌), 𝑦0 − 𝑥0 ∈ 𝑆(𝜌) 

      the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (5.15) 

 

holds.  

 

Then the stability properties of zero solution of the scalar FDE (4.10) imply the 

corresponding stability properties of system of perturbed FDE (5.2) relative to 

unperturbed system (5.1) with ITD.  

 

Proof 5.1: Initially, we assume that the zero solution of scalar FDE (4.10) is 

uniformly stable w.r.t parameter. Let 𝜖 > 0 be a number, 𝜖 < 𝜌. Then by definition 

𝑆∗1) for given 𝑏(𝜖) > 0 there exist  𝛿1 = 𝛿1(𝜖) > 0 and 𝜎 = 𝜎(𝜖) > 0 such that 

|𝑢0| < 𝛿1 and |𝜂| < 𝜎 imply  

 

 |𝑢(𝑡; 𝜏0, 𝑢0, 𝜂)| < 𝑏(𝜖)  for 𝑡 ≥ 𝜏0 (5.16) 

 

where 𝑢(𝑡, 𝜏0, 𝑢0, 𝜂) is any solution of (4.10). From the condition i) of A2) the 

inequalities  

 

‖𝑦0 − 𝑥0‖ ≤ 𝛿, 𝑎(‖𝑦0 − 𝑥0‖) ≤ 𝛿1 (5.17) 
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holds together with 𝛿 = 𝑎⁻¹(𝛿1). Now let points 𝑥0, 𝑦0 ∈  ℝ
𝑛 and 𝜏0, 𝑡0 ∈ ℝ+ be 

such that ‖𝑦0 − 𝑥0‖ < 𝛿 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏₀ − 𝑡₀. Consider any solutions 

𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (5.1) and (5.2) with the 

chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0), respectively. Let 𝑢0
∗ = 𝑉(𝜏0, 𝑦0 − 𝑥0). From 

condition A2) i) and choice of 𝛿 it follows 𝑢0
∗ = 𝑉(𝜏0, 𝑦0 − 𝑥0) < 𝑎(‖𝑦0 − 𝑥0‖) <

𝑎(𝛿) < 𝛿1. Therefore, the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝜏0, 𝑢0
∗ , 𝜂∗) ∈

𝐶𝑞([𝜏0, ∞), ℝ) of FDE (4.10) satisfies inequality (5.16). We claim that  

 

‖𝑦(𝑡; 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂
∗, 𝑡0, 𝑥0)‖ < 𝜖  for 𝑡 ≥ 𝜏0. (5.18) 

 

Suppose inequality (5.18) is not true. Therefore, there would exist a point 𝑡1 > 𝜏0 

and a solution 𝑦(𝑡, 𝜏0, 𝑦0) of (5.2) such that 

 

{
‖𝑦(𝑡1, 𝜏0, 𝑦0) − 𝑥(𝑡1 − 𝜂

∗, 𝑡0, 𝑥0)‖ = 𝜖 𝑎𝑛𝑑

 ‖𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂
∗, 𝑡0, 𝑥0)‖ < 𝜖 𝑓𝑜𝑟   𝜏0 ≤ 𝑡 < 𝑡1.

 (5.19) 

 

After now in order not to repeat, we use 𝑦(𝑡), 𝑥(𝑡 − 𝜂∗) instead of 𝑦(𝑡, 𝜏0, 𝑦0),

𝑥(𝑡 − 𝜂∗, 𝑡0, 𝑥0) respectively. In view of (5.20), the inclusion (𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ∈

𝑆(𝜌) is valid for 𝑡 ∈ [𝜏0, 𝑡1 ]. By using (5.15) and applying Lemma 5.1 for 𝛥 = 𝑆(𝜌), 

𝜃 = 𝑡1 − 𝜏0 we have  

 

𝑉(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ≤ 𝑢(𝑡; 𝑡0, 𝑢0
∗ , 𝜂∗), 𝑡 ∈ [𝜏0, 𝑡1 ].  (5.20) 

 

Consequently, in view of the relations (5.16), (5.18), (5.20), condition A2), the choice 

of 𝑡1 and 𝑢0
∗  we obtain 

 

𝑏(𝜖) ≤ 𝑏(‖𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)‖) 

                                                  ≤ 𝑉(𝑡1 , 𝑦(𝑡1 ) − 𝑥(𝑡1  − 𝜂
∗)) ≤ 𝑢∗(𝑡1 ) < 𝑏(𝜖). 

(5.21) 

 



105 
 

The obtained contradiction proves the validity of inequality (5.18) which proves that 

system of perturbed FDE (5.2) is uniformly stable with ITD relative to unperturbed 

system (5.1).  

Secondly, we assume that the scalar FDE (4.10) is uniformly asymptotically 

stable w.r.t parameter. From the first part of the proof it follows that system of 

perturbed FDE (5.2) is stable with ITD relative to unperturbed system (5.1). 

Therefore, from the definition S1) there exist 𝛿0 = 𝛿0(𝜌) and 𝜎0 = 𝜎0(𝜌) for 𝜖 = 𝜌 

such that 

 

{
‖𝑦0 − 𝑥0‖ < 𝛿0 𝑎𝑛𝑑   |𝜏0 − 𝑡0| < 𝜎0   𝑖𝑚𝑝𝑙𝑦

‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂)‖ <  𝜌 , 𝑡 ≥ 𝜏0
 (5.22) 

 

In order to prove S3), we let 0 < 𝜖 < 𝜌. Since 𝑆∗3) holds under assumption, given 

𝑏(𝜖) > 0 there exist 𝛿1
∗ > 0, 𝜎1

∗ > 0 and 𝑇 = 𝑇(𝜖)  > 0 such that |𝑢₀| < 𝛿1
∗ and 

 |𝜂| < 𝜎1
∗ imply  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝜖)   , 𝑡 ≥ 𝜏0 + 𝑇. (5.23) 

 

Now let points 𝑥0, 𝑦0 ∈ ℝ
𝑛  and 𝜏0, 𝑡0 ∈ ℝ+  be such that ‖𝑦0 − 𝑥0‖ < 𝛿 and 

|𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0, 𝛿 = 𝑚𝑖𝑛(𝛿0, 𝑎⁻¹(𝛿1
∗)) and 𝜎 = 𝑚𝑖𝑛(𝜎0, 𝜎1

∗). Consider 

any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (4.1) and 

(4.2) with the chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively.  

On the other hand the estimate (5.20) is valid for all 𝑡 ≥ 𝜏0 by using (5.22), 

condition A2) and Lemma 5.1 with 𝛥 = 𝑆(𝜌), 𝜃 = ∞. We will prove that  

 

‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)‖ < 𝜖   for 𝑡 ≥ 𝜏0 + 𝑇. (5.24) 

 

Assume the opposite, i.e. there exist a sequence {𝑡(𝑛)}, 𝑡(𝑛) ≥ 𝜏0 + 𝑇, 𝑡
(𝑛) → ∞ as 

𝑛 → ∞ such that  

 

‖𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)‖ ≥ 𝜖. (5.25) 
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Finally, in view of the relations (5.23) - (5.25), condition A2), the choice of 𝑡(𝑛) and 

𝑢0 = 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛿) < 𝛿1
∗ we obtain  

 

𝑏(𝜖) > 𝑢∗(𝑡(𝑛)) ≥ 𝑉 (𝑡(𝑛), 𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)) 

                                                                  ≥ 𝑏(‖𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)‖) ≥ 𝑏(𝜖). 
(5.26) 

 

The obtained contradiction proves validity of inequality (5.24) which implies S4) 

holds, i.e. system of perturbed FDE (5.2) is asymptotically stable with ITD relative to 

unperturbed system (5.1). ■ 

 

Theorem 5.2: Let the conditions A1) of Theorem 5.1 be satisfied and A2) is replaced 

by as follow: 

 

A2) There exists a function 𝑉 ∈ 𝛬([ℝ+, 𝑆(𝐴)) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ × 𝑆(𝐴) where  𝑎, 𝑏 ∈ 𝐾. 

ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(𝐴), 𝑦0 − 𝑥0 ∈ 𝑆(𝐴) 

      the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (5.27) 

 

holds.  

 

Then the parametrically practically stability properties of the scalar FDE (4.10) with 

respect to (𝑎(𝜆), 𝑏(𝐴)) imply the corresponding practical stability properties w.r.t. 

(𝜆, 𝐴) of system of perturbed FDE with ITD relative to unperturbed system (5.1).  

 

Proof 5.2: From condition A2) according to Definition 4.5 there exists a positive 

number 𝜎 = 𝜎(𝜆, 𝐴) > 0 such that for 𝑢0 ∈  ℝ: |𝑢0| < 𝑎(𝜆) and 𝜂: |𝜂| < 𝜎 we have  

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝑏(𝐴) , 𝑡 ≥ 𝜏0. (5.28) 

 

Now let points 𝑥0, 𝑦0 ∈ ℝ
𝑛 and 𝜏0, 𝑡0 ∈ ℝ+ be such that ‖𝑦0 − 𝑥0‖ < 𝑎(𝜆) and 

|𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Consider any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 
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𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (5.1) and (5.2) correspondingly with the chosen 

initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively. Let �̃�0 = 𝑉(𝜏0, 𝑦0 − 𝑥0). From 

condition A2) i) it follows �̃�0 = 𝑉(𝜏0, 𝑦0 − 𝑥0) < 𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝜆). Therefore, 

the maximal solution 𝑢∗(𝑡) = 𝑢(𝑡; 𝜏0, �̃�0, 𝜂
∗) ∈ 𝐶𝑞([𝜏0,∞), ℝ) of FDE (4.10) 

satisfies inequality (5.28). Then we claim that ‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)‖ < 𝐴 for 𝑡 ≥ 𝜏0. 

Assume the opposite, i.e. there exists a point 𝑡1 > 𝜏₀ such that ‖𝑦(𝑡1 ) − 𝑥(𝑡1  −

𝜂∗)‖ = 𝐴 and ‖𝑦(𝑡 ) − 𝑥(𝑡 − 𝜂∗)‖ < 𝐴 for 𝜏0 ≤ 𝑡 < 𝑡1. Therefore the inclusion 

(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ∈ 𝑆(𝐴) is valid for 𝑡 ∈ [𝜏0, 𝑡1]. By using (5.27) and applying 

Lemma 5.1 for 𝛥 = 𝑆(𝐴), 𝜃 = 𝑡1 − 𝜏0 we obtain (5.20). From the choice of 𝑡1, 

condition A2) and  (5.18), (5.20) we obtain 

 

𝑏(𝐴) = 𝑏(‖𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)‖) 

                                                      ≤ 𝑉(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) ≤ 𝑢∗(𝑡1) < 𝑏(𝐴). 

(5.29) 

 

The obtained contradiction proves the system of perturbed FDE (5.2) is uniformly 

practically stable with ITD relative to (5.1) w.r.t. (𝜆, 𝐴). ■ 

 

Now we give boundedness and Lagrange stability criteria for system of 

perturbed FDE (5.2) with ITD relative to unperturbed system (5.1).  

 

Theorem 5.3: Let the conditions of conditions A1) of Theorem 5.1 be satisfied and 

A2) is replaced by as follow:  

 

A2) There exists a function 𝑉 ∈  𝛬([ℝ+, ℝ
𝑛) such that  

i) 𝑏(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑎(‖𝑥‖) for (𝑡, 𝑥) ∈ ℝ+ ×ℝ
𝑛 where 𝑎, 𝑏 ∈ 𝐾∞. 

ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛 the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (5.30) 

 

holds.  
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If scalar FDE (4.10) is uniformly equi-bounded (uniformly Lagrange stable) w.r.t. 

parameter, then the system of perturbed FDE (5.2) is uniformly equi-bounded 

(uniformly Lagrange stable) with ITD relative to unperturbed system (5.1).  

 

Proof 5.3: Initially, we consider the first case of our assumption that is the FDE 

(4.10) is uniformly equi-bounded w.r.t. parameter. Let 𝛼 > 0 be given. Since 𝐵∗1) 

holds, given 𝛼1 = 𝑎(𝛼) > 0 there exist 𝛽1 = 𝛽1(𝛼1) > 0 and 𝜎 = 𝜎(𝛼1) > 0 such 

that |𝑢0| < 𝛼1 and |𝜂| < 𝜎 imply 

 

|𝑢(𝑡; 𝑡0, 𝑢0, 𝜂)| < 𝛽1  for 𝑡 ≥ 𝜏0. (5.31) 

 

Choose 𝑢0 = 𝑎(‖𝑦0 − 𝑥0‖) and 𝛽 = 𝛽(𝛼) > 0, where 𝑏(𝛽) ≥ 𝛽1 since 𝑏 ∈ 𝐾∞. 

Consider solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE 

(5.1) and (5.2) such that ‖𝑦0 − 𝑥0‖ ≤ 𝛼 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. With 

𝛽 = 𝛽(𝛼) > 0 we claim that B2) holds i.e. ‖𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)‖ < 𝛽, 𝑡 ≥ 𝜏0 holds. 

Assume the claim is not true. Therefore, there exist a point 𝑡∗ > 𝜏0 such that 

‖𝑦(𝑡∗) − 𝑥(𝑡∗ − 𝜂)‖ = 𝛽. Since 𝑢0 = 𝑎(‖𝑦0 − 𝑥0‖) ≤ 𝑎(𝛼) = 𝛼1, we get by (5.30), 

(5.31), condition A2) and Lemma 5.1  

 

𝑏(𝛽) ≤ 𝑉(𝑡∗, 𝑦(𝑡∗) − 𝑥(𝑡∗ − 𝜂)) ≤ 𝑢∗(𝑡∗) < 𝛽1 ≤ 𝑏(𝛽). (5.32) 

 

This contradiction shows that the perturbed system (5.2) is uniformly equi-bounded 

with ITD relative to unperturbed system (5.1).  

Next we consider the second case of the assumption of Theorem 5.3 that is the FDE 

(4.10) is uniformly Lagrange stable w.r.t. parameter, which implies that perturbed 

system (5.2) is uniformly equi-bounded with ITD relative to unperturbed system (5.1) 

from the first part. In order to prove L2), we need to show A2) holds. Let 𝜖 > 0, 

𝛼 > 0 be given. Since 𝐴∗1) holds, given 𝛼1 = 𝑎(𝛼) > 0 and 𝑏(𝜖) > 0 there exist 

𝜎 = 𝜎(𝜖, 𝛼) and 𝑇 = 𝑇(𝜖, 𝛼) such that |𝑢0| < 𝛼1 and |𝜂| < 𝜎 imply 

|𝑢(𝑡; 𝜏0, 𝑢0, 𝜂)| < 𝑏(𝜖), 𝑡 ≥ 𝜏0 + 𝑇. Now let points 𝑥0, 𝑦0 ∈ ℝ
𝑛 and 𝜏0, 𝑡0 ∈ ℝ+ be 

such that ‖𝑦0 − 𝑥0‖ < 𝛼 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Consider any solutions 

𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (5.1) and (5.2) 
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correspondingly with the chosen initial data (𝜏0, 𝑦0) and (𝑡0, 𝑥0) respectively. We 

claim that A2) holds with 𝑇, 𝜎. Suppose that is not true. Therefore, there exist a 

sequence {𝑡(𝑛)},  𝑡(𝑛) > 𝜏0 + 𝑇, 𝑡
(𝑛) → ∞ as 𝑛 → ∞ such that  

 

‖𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)‖ ≥ 𝜖∗. (5.33) 

 

Finally, in view of the relation (5.33), condition A2), the choice of 𝑡(𝑛) and 𝑢0 =

𝑎(‖𝑦0 − 𝑥0‖) < 𝑎(𝛼) < 𝛼1  we obtain  

 

𝑏(𝜖) > 𝑢∗(𝑡(𝑛)) ≥ 𝑉 (𝑡(𝑛), 𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)) 

                                                                  ≥ 𝑏(‖𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)‖) ≥ 𝑏(𝜖) 
(5.34) 

 

which implies that A2) holds. Then system of perturbed FDE (5.2) is Lagrange stable 

with ITD relative to (5.1)  since B2) and A2) holds together. ■ 
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6. SOME STABILITY AND BOUNDEDNESS OF 

SYSTEM OF PERTURBED FRACTIONAL 

DIFFERENTIAL EQUATION WITH INITIAL 

TIME DIFFERENCE IN TERMS OF TWO 

MEASURES 
 

6.1. Introduction 

 

There are many stability concepts presented in the literature such as the partial 

stability, eventual stability, conditional stability, Lipschitz stability, relative stability 

and so on. In 1960, [57] introduced the concept of stability in terms of two measures 

which unified the foregoing stability concepts. Then, the theories of the stability in 

terms of two measures have been successfully developed in [58] and some stability 

and boundedness results are obtained by means of various types of Lyapunov 

functions for several kinds of differential equations in [59]-[61] and references 

therein. We have investigated some stability and boundedness in terms of two 

measures for system of perturbed FDE with ITD relative to system of unperturbed 

FDE in this chapter. We begin with section 6.2 which includes the necessary 

definitions of stability, practical stability, boundedness and Lagrange stability in 

terms of two measures with ITD. Then, we have generalized the main results 

obtained in previous chapter 5 by using the notion of two measures.  

 

6.2. Main Definitions and Concepts with Two Measures 

 

Consider the following IVP for the system of FDE for 0 < 𝑞 < 1, 

 

{
𝒟𝑞𝑡0
𝐶 𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))

𝑥(𝑡0) = 𝑥0  
 (6.1) 

 

where 𝑡0 ∈ ℝ+, 𝑓 ∈ 𝐶[ℝ+ × ℝ
𝑛, ℝ𝑛]. Denote the solution of (6.1) by 𝑥(𝑡; 𝑡0, 𝑥0) ∈

𝐶𝑞([𝑡0, ∞), ℝⁿ). Let 𝜏0 ∈ ℝ₊, 𝜏0 ≠ 𝑡0 be a different initial time. In addition to (6.1), 

we also consider the associated system of perturbed FDE with different initial data  
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{
𝒟𝑞𝜏0
𝐶 𝑦(𝑡) = 𝐹(𝑡, 𝑦(𝑡))

𝑦(𝜏0) = 𝑦0  
 (6.2) 

 

where 𝐹(𝑡, 𝑦(𝑡)) = 𝑓(𝑡, 𝑦(𝑡)) + 𝑅(𝑡, 𝑦(𝑡)), 𝑅 ∈ 𝐶[ℝ+ ×ℝ
𝑛, ℝⁿ] is called the 

perturbation term. 

We give the following set of measures for future use. 

 

Definition 6.1: ([58]) A function ℎ ∈ 𝐶[ℝ+ ×ℝ
𝑛, ℝ+] is said to belong to the class Γ 

if inf𝑥∈ℝ𝑛 ℎ(𝑡, 𝑥) = 0  for all 𝑡 ∈ ℝ+.  

 

Before giving our main definitions on stability, practical stability, boundedness and 

Lagrange stability in terms of two measures with ITD, we recall the definition of 

stability in terms of two measures for (6.1) which can be found in literature [16], 

[58].  

 

Definition 6.2: Let ℎ, ℎ₀ ∈ 𝛤. Then system (6.1) is said to be 

 

S1) (ℎ0, ℎ)-equistable if for each  𝜖 > 0 and 𝑡0 ∈ ℝ+, there exists 𝛿 = 𝛿(𝑡0, 𝜖) > 0  

such that ℎ0(𝑡0, 𝑥0) < 𝛿  implies   ℎ(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0)) < 𝜖 ,   𝑡 ≥ 𝑡0; 

S2) (ℎ₀, ℎ)-uniformly stable, if S1) holds with 𝛿 independent of  𝑡0 ∈ ℝ+. 

 

Remark 6.1: ([58]) Stability in terms of two measures enable us to unify a variety of 

stability notions found in the literature. When we endow ℎ₀, ℎ with explicit form, the 

(ℎ₀, ℎ)-stability reduces to the other stability such as:  

 

1) set ℎ₀(𝑡, 𝑥) = ℎ(𝑡, 𝑥) = ‖𝑥‖, then (ℎ₀, ℎ)-stability means the corresponding 

Lyapunov stability of the zero solution; 

2) set ℎ₀(𝑡, 𝑥) = ℎ(𝑡, 𝑥) =  ‖𝑥 − 𝑥∗‖, then (ℎ₀, ℎ)-stability means the corresponding 

Lyapunov stability of solution 𝑥∗; 

3) set ℎ₀(𝑡, 𝑥) = ‖𝑥‖, ℎ(𝑡, 𝑥) = |𝑥|𝑠, 1 ≤ 𝑠 < 𝑛, then (ℎ₀, ℎ)-stability means the 

corresponding partial stability of the trivial solution; 

4) set ℎ₀(𝑡, 𝑥) = ℎ(𝑡, 𝑥) = 𝑑(𝑥, 𝐴), where 𝐴 ⊂ ℝ𝑛, then (ℎ₀, ℎ)-stability means the 

corresponding stability of an invariant set 𝐴; 
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5) set ℎ₀(𝑡, 𝑥) = 𝑑(𝑥, 𝐴), ℎ(𝑡, 𝑥) = 𝑑(𝑥, 𝐵), where 𝐴 ⊂ 𝐵 ⊂ ℝ𝑛, then (ℎ₀, ℎ)-

stability means the corresponding stability of a conditionally invariant set 𝐵 with 

respect to 𝐴. 

 

We shall introduce the following definitions of stability, practical stability in 

terms of two measures (ℎ₀, ℎ), in short (ℎ₀, ℎ)-stability, of system of perturbed FDE 

(6.2) with ITD relative to unperturbed system (6.1).  

 

Definition 6.3: The solution 𝑦(𝑡, 𝜏0, 𝑦0) of system of perturbed FDE (6.2) is said to 

be:  

 

S1) (ℎ0, ℎ)-equistable with ITD relative to (6.1) if given 𝜖 > 0 and 𝜏0 ∈ ℝ+, there 

exist 𝛿 = 𝛿(𝜏0, 𝜖) > 0 and 𝜎 = 𝜎(𝜏0, 𝜖) > 0 such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛿 and 

|𝜏0 − 𝑡0| <  𝜎 imply  ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)) < 𝜖 for 𝑡 ≥ 𝜏0, where 

𝑥(𝑡, 𝑡0, 𝑥0) is a solution of (6.1) and 𝜂 = 𝜏0 − 𝑡0; 

S2) (ℎ0, ℎ)-uniformly stable with ITD, if S1) holds with 𝛿 and 𝜎 independent of 

𝜏0 ∈ ℝ+; 

S3) (ℎ0, ℎ)-asymptotically stable with ITD, if S1) holds and given 𝜖 > 0 and 

𝜏0 ∈ ℝ+, there exist 𝛿0 = 𝛿0(𝜏0) > 0, 𝜎0 = 𝜎0(𝜏0) > 0 and  𝑇 = 𝑇(𝜏0, 𝜖) > 0 such 

that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛿0 and |𝜏0 − 𝑡0| < 𝜎0 imply ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 −

𝜂, 𝑡0, 𝑥0)) < 𝜖 for 𝑡 ≥ 𝜏0 + 𝑇; 

S4) (ℎ0, ℎ)-uniformly asymptotically stable with ITD, S2) and S3) hold with 𝛿0, 𝜎0 

and 𝑇 in S3) are independent of 𝜏0; 

PS1) (ℎ0, ℎ)-practically stable with ITD w.r.t. (𝜆, 𝐴), if there exists a σ =

σ(𝜏0, 𝜆, 𝐴) > 0 such that the inequalities ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝜆 and |𝜏0 − 𝑡0| < σ 

imply ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)) < 𝐴 for 𝑡 ≥ 𝜏0, where a couple of real 

numbers (𝜆, 𝐴) with 0 < 𝜆 < 𝐴 be given; 

PS2) (ℎ0, ℎ)-uniformly practically stable with ITD if σ = σ(𝜆, 𝐴) > 0 in PS1) is 

independent of 𝜏0; 

PS3) (ℎ0, ℎ)-attractive practically stable with ITD w.r.t. (λ, A, T) if there exist 

σ = σ(𝜏0, 𝜆, 𝐴) > 0 and 𝑇 = 𝑇(𝜏0, 𝜆, 𝐴) > 0 such that the inequalities ℎ0(𝜏0, 𝑦0 −

𝑥0) < 𝜆  and |𝜏0 − 𝑡0| < σ imply ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)) < 𝐴  for 𝑡 ≥ 𝜏0 +

𝑇;  
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PS4) (ℎ0, ℎ)-uniformly attractive practically stable with ITD if σ(𝜆, 𝐴) > 0 and 

𝑇 = 𝑇(𝜆, 𝐴) > 0 in PS3) is independent of 𝜏0.  

 

Remark 6.2: We note that in the case when ℎ₀(𝑡, 𝑥) = ‖𝑥‖ the (ℎ₀, ℎ)-stability and 

practically stability properties with ITD reduces to stability and practically stability 

properties with ITD studied in previous chapter 5. 

 

Corresponding to the different types of (ℎ0, ℎ)-stability with ITD defined 

above, we can define the concepts of (ℎ0, ℎ)-boundedness and related (ℎ0, ℎ)-

Lagrange stability with ITD.  

 

Definition 6.4: The system of perturbed FDE (6.2) is said to be: 

 

B1) (ℎ0, ℎ)-equi-bounded with ITD if given 𝛼 > 0 and 𝜏0 ∈ ℝ+ there exist 𝜎 =

𝜎(𝜏0, 𝛼) > 0 and 𝛽 = 𝛽(𝜏0, 𝛼) > 0 such that ℎ0(𝜏0, 𝑦0 − 𝑥0) ≤ 𝛼 and |𝜏0 − 𝑡0| <

 𝜎 imply ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)) < 𝛽 for 𝑡 ≥ 𝜏0; 

B2) (ℎ0, ℎ)-uniformly bounded with ITD, if (B1) holds with 𝛽 and 𝜎 independent of 

𝜏0 ∈ ℝ+; 

A1) (ℎ0, ℎ)-attractive in the large with ITD, if for each 𝜖 > 0, 𝛼 > 0 there exist 𝜎 =

𝜎(𝜏0, 𝜖, α) > 0 and 𝑇 = 𝑇(𝜏0, 𝜖, 𝛼) > 0 such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛼 and |𝜏0 −

𝑡0| <  𝜎 imply ℎ(𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂, 𝑡0, 𝑥0)) < 𝜖  for  𝑡 ≥ 𝜏0 + 𝑇; 

A2) (ℎ0, ℎ)-uniformly attractive with ITD, if 𝜎 and T in A1) are independent of 

𝜏0 ∈ ℝ+; 

L1) (ℎ0, ℎ)- Lagrange stable if B1) and A1) hold; 

L2) (ℎ0, ℎ)- uniformly Lagrange stable if B2) and A2) hold simultaneously. 

 

Remark 6.3: We note that in the case when ℎ₀(𝑡, 𝑥) = ‖𝑥‖ the (ℎ₀, ℎ)-boundedness 

and Lagrange stability with ITD reduces to boundedness and Lagrange stability with 

ITD studied in previous chapter.  

 

In our further investigations we will use scalar FDE (4.10) and related 

Definition 4.4 – Definition 4.6 as in Chapter 5. We will study the connection 

between stability, practical stability, boundedness and Lagrange stability of the scalar 
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FDE (4.10) and corresponding (ℎ0, ℎ)-stability, (ℎ0, ℎ)-practical stability, (ℎ0, ℎ)-

boundedness and (ℎ0, ℎ)-Lagrange stability of system of perturbed FDE (6.2) 

relative to unperturbed system (6.1) with ITD. 

It is convenient to give following definition from [58] to characterize 

Lyapunov functions.  

 

Definition 6.5: Let ℎ ∈ 𝛤. The function 𝑉(𝑡, 𝑥) ∈ 𝛬 is said to be 

 

i) h-positive definite if there exists a 𝜌 > 0 and a function 𝑏 ∈ 𝐾 such that   

ℎ(𝑡, 𝑥) < 𝜌  implies  𝑏(ℎ(𝑡, 𝑥)) ≤ 𝑉(𝑡, 𝑥);  

ii) h-descrescent if there exists a 𝜌 > 0 and a function 𝑎 ∈ 𝐾 such that         

ℎ(𝑡, 𝑥) < 𝜌 implies 𝑉(𝑡, 𝑥)  ≤ 𝑎(ℎ(𝑡, 𝑥)); 

 

We will use a property of the functions from class 𝛤 in the following definition from 

[58]. 

 

Definition 6.6: Let ℎ₀, ℎ ∈ 𝛤. Then ℎ₀ is called uniformly finer than ℎ if there exists a 

 𝜌 > 0 and a function 𝜑 ∈ 𝐾 such that ℎ₀(𝑡, 𝑥) < 𝜌 implies ℎ(𝑡, 𝑥) ≤ 𝜑(ℎ₀(𝑡, 𝑥)); 

 

6.3. Main Results 

 

In this part, we will obtain sufficient conditions for (ℎ₀, ℎ)-stability, practical 

stability, boundedness and Lagrange stability of system of perturbed FDE (6.2) with 

ITD relative to unperturbed system (6.1). The obtained results generalize the main 

results in chapter 5.  

 

Theorem 6.1: Let the following conditions be satisfied: 

 

A1) The function 𝑔 ∈ 𝐶[ℝ × ℝ × ℝ,ℝ], 𝑔(𝑡, 0,0) ≡ 0 and for any 𝜂, 𝑢0 ∈ ℝ, the 

IVP for scalar FDE (4.10) has a solution 𝑢(𝑡) = 𝑢(𝑡; 𝜏0, 𝑢0, 𝜂) ∈ 𝐶
𝑞([𝜏0,∞), ℝ).  

A2) ℎ0, ℎ ∈ 𝛤 and ℎ0 is uniformly finer than ℎ. 

A3) There exists a function 𝑉 ∈ 𝛬([ℝ+, 𝑆(ℎ, 𝜌)) such that  

i) 𝑉 is ℎ-positive definite, ℎ0-decrescent. 
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ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(ℎ, 𝜌), 𝑦0 − 𝑥0 ∈ 𝑆(ℎ, 𝜌)  

       the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (6.3) 

 

holds, where 𝑆(ℎ, 𝜌) = {(𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛: ℎ(𝑡, 𝑥) < 𝜌}.  

 

Then the stability w.r.t parameter properties of the zero solution of scalar FDE 

(4.10) imply the corresponding (ℎ₀, ℎ)-stability properties of system of perturbed 

FDE (6.2) with ITD relative to (6.1).  

 

Proof 6.1: Since V is ℎ-positive definite from condition i) of A3), there exist a 

𝜆 ∈ (0, 𝜌] and 𝑏 ∈ 𝐾 such that  

 

𝑏(ℎ(𝑡, 𝑥)) ≤ 𝑉(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝑆(ℎ, 𝜆). (6.4) 

 

Let 𝜖 > 0 be a number, 𝜖 ≤ 𝜆. Initially, we assume that zero solution of the scalar 

FDE (4.10) is uniformly stable w.r.t. parameter. Then, given 𝑏(𝜖) > 0 and 𝜏0 ∈ ℝ+, 

there exist a 𝛿1 = 𝛿1(𝜖) > 0 and 𝜎 = 𝜎(𝜖) > 0 such that |𝑢0| < 𝛿1 and |𝜂| < 𝜎 

imply that  

 

   |𝑢(𝑡, 𝜏0, 𝑢0, 𝜂)| < 𝑏(𝜖)  for  𝑡 ≥ 𝜏0. (6.5) 

 

On the other hand, there exist a 𝜆0 = 𝜑⁻¹(𝜆) > 0 and a function 𝑎 ∈ 𝐾 such that  

 

ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝜆  and  𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑎(ℎ₀(𝜏0, 𝑦0 − 𝑥0)) (6.6) 

 

for (𝜏0, 𝑦0 − 𝑥0) ∈ 𝑆(ℎ0, 𝜆0) by using V is ℎ0-decrescent and ℎ0 is uniformly finer 

than ℎ in view of condition A3). Then we have the following inequality from (6.4)-

(6.6)  
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𝑏(ℎ(𝜏0, 𝑦0 − 𝑥0)) ≤ 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑎(ℎ₀(𝜏0, 𝑦0 − 𝑥0)) (6.7) 

 

for (𝜏0, 𝑦0 − 𝑥0) ∈ 𝑆(ℎ0, 𝜆0). Now, choose 𝛿 = 𝛿(𝜖) satisfying 𝛿 ∈ (0, 𝜆0] and 

𝑎(𝛿) < 𝛿1. Consider any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of 

system of FDE (6.1) and (6.2) such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛿 and |𝜂∗| < 𝜎 where 

𝜂∗ = 𝜏₀ − 𝑡₀. Then from the inequality (6.5), (6.7) and the choice of 𝛿 follows that  

 

𝑏(ℎ(𝜏0, 𝑦0 − 𝑥0)) ≤ 𝑎(ℎ(𝜏0, 𝑦0 − 𝑥0)) < 𝑎(𝛿) < 𝛿1 < 𝑏(𝜖) (6.8) 

 

i.e. we get ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝜖. We claim that ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) < 𝜖 holds for 

𝑡 ≥ 𝜏0. Assume that the claim is not true, then there exists a point 𝑡1 > 𝜏0 such that 

 

ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) = 𝜖  and  ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) < 𝜖 (6.9) 

 

for 𝜏0 ≤ 𝑡 < 𝑡1 in view of the fact that ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝜖 whenever ℎ0(𝜏0, 𝑦0 −

𝑥0) < 𝛿. Therefore the inclusion (𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ∈ 𝑆(ℎ, 𝜆) is valid for 

𝑡 ∈ [𝜏0, 𝑡1]. Hence, by using (6.3), A1) and Lemma 5.1, we have  

 

𝑉(𝑡, 𝑦(𝑡, 𝜏0, 𝑦0) − 𝑥(𝑡 − 𝜂
∗, 𝑡0, 𝑥0)) ≤ 𝑢(𝑡, 𝜏₀, 𝑢0, 𝜂

∗),   𝜏0 ≤ 𝑡 ≤ 𝑡1 (6.10) 

 

where 𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0). Consequently, in view of the relations (6.4), (6.9), 

(6.10), condition A4), the choice of 𝑡1 and 𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑎(ℎ(𝜏0, 𝑦0 −

𝑥0)) < 𝑎(𝛿) < 𝛿1 we obtain 

 

𝑏(𝜖) = 𝑏 (ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗))) 

                                                    ≤ 𝑉(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) ≤ 𝑢∗(𝑡1 ) < 𝑏(𝜖). 

(6.11) 

 

The obtained contradiction proves the validity of the claim which implies that system 

of perturbed FDE (6.2) is (ℎ0, ℎ)-uniformly stable with ITD relative to unperturbed 

system (6.1).  
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Secondly, we assume that the zero solution of scalar FDE (4.10) is uniformly 

asymptotically stable w.r.t. parameter. From the first part of the proof it follows that 

system of perturbed FDE (6.2) is (ℎ0, ℎ)-uniformly stable relative to unperturbed 

system (6.1) with ITD. Therefore, from the definition S1) there exist 𝛿0 = 𝛿0(𝜆) and 

𝜎0 = 𝜎0(𝜆) for 𝜖 = 𝜆 such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛿₀ and |𝜏0 − 𝑡0| < 𝜎0 imply 

ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂)) < 𝜆, 𝑡 ≥ 𝜏0. In order to prove S4), we let 0 < 𝜖 < 𝜆. Since 

𝑆∗4) holds under assumption, given 𝑏(𝜖) > 0 there exist 𝛿1
∗ = 𝛿1

∗(𝜖) > 0, 𝜎1
∗ =

𝜎1
∗(𝜖) > 0 and 𝑇 = 𝑇(𝜖)  > 0 such that |𝑢0| < 𝛿1

∗ and |𝜂| < 𝜎1
∗ 

 

   |𝑢(𝑡, 𝜏0, 𝑢0, 𝜂)| < 𝑏(𝜖)   𝑓𝑜𝑟  𝑡 ≥ 𝜏0 + 𝑇. (6.12) 

 

On the other hand the estimate (6.10) holds for 𝑡 ≥ 𝜏0 because of the inclusion 

(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂)) ∈ 𝑆(ℎ, 𝜆) is valid for all 𝑡 ≥ 𝜏0. Now choose 𝛿 = 𝑚𝑖𝑛(𝛿0, 𝛿1
∗) 

with 𝑎(𝛿0
∗) < 𝛿1

∗ and 𝜎 = 𝑚𝑖𝑛(𝜎0, 𝜎1
∗). Consider any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) 

and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE (6.1) and (6.2) such that ℎ0(𝜏0, 𝑦0 − 𝑥0) <

𝛿 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. We claim that ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) < 𝜖 for 

𝑡 ≥ 𝜏0 + 𝑇. Assume the claim is not true. Therefore, there exist a sequence 

{𝑡(𝑛)}, 𝑡(𝑛) ≥ 𝜏0 + 𝑇, 𝑡
(𝑛) → ∞ as 𝑛 → ∞ such that  

 

ℎ(𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)) ≥ 𝜖. (6.13) 

 

Finally from the choice of 𝑡(𝑛), condition A2), inequalities (6.12), (6.13) and 

𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤ 𝑎(ℎ(𝜏0, 𝑦0 − 𝑥0)) < 𝑎(𝛿) < 𝛿1
∗ we obtain  

 

𝑏(𝜖) ≤ 𝑏(ℎ(𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)) 

                        ≤ 𝑉(𝑡(𝑛), 𝑦(𝑡(𝑛)) − 𝑥(𝑡(𝑛) − 𝜂∗)) ≤ 𝑢∗(𝑡(𝑛), 𝜏0, 𝑢0, 𝜂
∗) < 𝑏(𝜖) 

(6.14) 

 

which proves that the claim is right, namely system of perturbed FDE (6.2) is 

(ℎ0, ℎ)-uniformly asymptotically stable with ITD relative to unperturbed system 

(6.1). ■ 
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Theorem 6.2: Let the conditions A1) of Theorem 6.1 be satisfied and A2), A3) are  

replaced by as follow:  

 

A2) ℎ0, ℎ ∈ 𝛤 and ℎ0 is uniformly finer than ℎ, i.e. ℎ(𝑡, 𝑥) ≤ 𝜑(ℎ0(𝑡, 𝑥)), 𝜑 ∈ 𝐾, 

whenever ℎ0(𝑡, 𝑥) < 𝜆.  

A3) There exists a function 𝑉 ∈ 𝛬([ℝ+, 𝑆(ℎ, 𝐴)) such that  

i) V is ℎ-positive definite, ℎ0-decrescent. 

ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛: 𝑦 − 𝑥 ∈ 𝑆(ℎ, 𝐴), 𝑦0 − 𝑥0 ∈ 𝑆(ℎ, 𝐴) 

       the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (6.15) 

 

holds, where 𝑆(ℎ, 𝐴) = {(𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛: ℎ(𝑡, 𝑥) < 𝐴}.  

 

Then the parametrically practically stability properties of scalar FDE (4.10) with 

respect to (𝑎(𝜆), 𝑏(𝐴)) imply the corresponding (ℎ₀, ℎ)-practically stability 

properties w.r.t. (𝜆, 𝐴) of system of  perturbed FDE (6.2) with ITD relative to (6.1), 

where the constants (𝜆, 𝐴) are given such that 𝜑(𝜆) < 𝐴.  

 

Proof 6.2: We assume that the scalar FDE (4.10) is uniformly parametrically 

practically stable w.r.t. (𝑎(𝜆), 𝑏(𝐴)). Then, there exists a 𝜎 = 𝜎(𝜆, 𝐴) > 0 such that 

for 𝑢0 ∈  ℝ: |𝑢0| < 𝑎(𝜆) and 𝜂: |𝜂| < 𝜎 we have  

 

|𝑢(𝑡, 𝜏0, 𝑢0, 𝜂)| < 𝑏(𝐴) , 𝑡 ≥ 𝜏0.  (6.16) 

 

Consider any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE 

(6.1) and (6.2) such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝜆 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. Let 

�̃�0 = 𝑉(𝜏0, 𝑦0 − 𝑥0). From condition i) of A3) i.e. ℎ0-decrescent it follows �̃�0 =

𝑉(𝜏0, 𝑦0 − 𝑥0) < 𝑎(ℎ0(𝜏0, 𝑦0 − 𝑥0)) < 𝑎(𝜆). We claim that ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 −

𝜂∗)) < 𝐴 holds for 𝑡 ≥ 𝜏0. We have ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝜑(ℎ0(𝜏0, 𝑦0 − 𝑥0)) < 𝜑(𝜆) <

𝐴 i.e. desired inequality above holds at 𝑡 = 𝜏0. Assume that the claim is not true, 

then there exists a point 𝑡1 > 𝜏0 such that 
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ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) = 𝐴  and  ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) < 𝐴 (6.17) 

 

for 𝜏0 ≤ 𝑡 < 𝑡1 in view of the fact that ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝐴 whenever ℎ0(𝜏0, 𝑦0 −

𝑥0) < 𝜆. Therefore the inclusion (𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) ∈ 𝑆(ℎ, 𝐴) is valid for 

𝑡 ∈ [𝜏0, 𝑡1]. Hence, by using (6.15), (6.17), A1) and Lemma 5.1, we have (6.10). 

Consequently, in view of the relations (6.10), (6.15)-(6.17), condition A3), the choice 

of 𝑡1 and �̃�0 we obtain 

 

𝑏(𝐴) = 𝑏 (ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗))) 

                                                   ≤ 𝑉(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) ≤ 𝑢∗(𝑡1 ) < 𝑏(𝐴). 

(6.18) 

 

The obtained contradiction proves the validity of the claim which implies that system 

of perturbed FDE (6.2) is (ℎ0, ℎ)-uniformly practically stable with ITD relative to 

unperturbed system (6.1). The proof of attractive practical stability of system (6.2) 

can be done with arguments used in the proof of Theorem 6.2. ■ 

 

Theorem 6.3: Let the conditions A1), A2) of Theorem 6.2 be satisfied and A3) is  

replaced by as follow:  

 

A3) There exists a function 𝑉 ∈ 𝛬([ℝ+, ℝ
𝑛) such that  

i) V is ℎ-positive definite and ℎ0-decrescent with 𝑎, 𝑏 ∈ 𝐾∞, respectively.  

ii) for any 𝑡 > 𝜏0 ∈ ℝ+, 𝑥,𝑦, 𝑥0, 𝑦0  ∈ ℝ
𝑛 the inequality 

 

𝒟+
𝑞

𝜏0
𝐶 𝑉(𝑡, 𝑥, 𝑦, 𝜂, 𝑥0, 𝑦0) ≤ 𝑔(𝑡, 𝑉(𝑡, 𝑦 − 𝑥), 𝜂) (6.19) 

 

holds.  

 

Then Lagrange stability w.r.t parameter of the scalar FDE (4.10) imply the 

corresponding (ℎ0, ℎ)- Lagrange stability with ITD of system of perturbed FDE (6.2) 

relative to (6.1).  
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Proof 6.3: Assume that the scalar FDE (4.10) is Lagrange stable w.r.t. parameter i.e. 

𝐵∗1) and 𝐴∗1) are satisfied. Let 𝛼 > 0 be given. Since 𝐵∗1) holds, given 𝛼1 =

𝑎(𝛼) > 0 there exist 𝛽1 = 𝛽1(𝛼1) > 0 and 𝜎 = 𝜎(𝛼1) > 0 such that |𝑢0| < 𝛼1 and 

|𝜂| < 𝜎 imply 

 

|𝑢(𝑡, 𝜏0, 𝑢0, 𝜂)| < 𝛽1  for 𝑡 ≥ 𝜏0. (6.20) 

 

Consider any solutions 𝑥(𝑡) =  𝑥(𝑡; 𝑡0, 𝑥0) and 𝑦(𝑡) = 𝑦(𝑡; 𝜏0, 𝑦0) of system of FDE 

(6.1) and (6.2) such that ℎ0(𝜏0, 𝑦0 − 𝑥0) < 𝛼 and |𝜂∗| < 𝜎 where 𝜂∗ = 𝜏0 − 𝑡0. 

From the condition i) of A3) and ℎ₀(𝜏0, 𝑦0 − 𝑥0) ≤ 𝛼 it follows that 𝑏(ℎ(𝜏0, 𝑦0 −

𝑥0)) ≤ 𝑎(𝛼) = 𝛼1 < 𝛽1. Then we get ℎ(𝜏0, 𝑦0 − 𝑥0) < 𝛽 by choosing 𝛽 = 𝑏⁻¹(𝛽1). 

We will prove that ℎ(𝑡, 𝑦(𝑡) − 𝑥(𝑡 − 𝜂∗)) < 𝛽 for 𝑡 ≥ 𝜏0. Assume the opposite, i.e. 

there exists a point 𝑡1 > 𝜏0 such that ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗)) = 𝛽. We also have 

(6.10) for 𝑡 ≥ 𝜏0 with 𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0). Consequently, in view of the relations 

(6.10), (6.20), condition A3), the choice of 𝑡1 and 𝑢0 = 𝑉(𝜏0, 𝑦0 − 𝑥0) ≤

𝑎(ℎ(𝜏0, 𝑦0 − 𝑥0)) < 𝑎(𝛼) = 𝛼₁ we obtain 

 

𝑏(𝛽) = 𝑏 (ℎ(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂
∗))) ≤ 𝑉(𝑡1, 𝑦(𝑡1) − 𝑥(𝑡1 − 𝜂

∗)) 

                                                       ≤ 𝑢∗(𝑡1, 𝜏0, 𝑉(𝜏0, 𝑦0 − 𝑥0), 𝜂
∗) < 𝛽1 = 𝑏(𝛽). 

(6.21) 

 

The obtained contradiction proves the validity of the claim which implies that system 

of perturbed FDE (6.2) is (ℎ0, ℎ)-equi-bounded with ITD relative to (6.1), i.e. B1) 

holds. On the other hand, the proof of A1) can be done with the arguments used 

above, we omit it. Hence, L1) holds, i.e. system of perturbed FDE (6.2) is (ℎ0, ℎ)-

Lagrange stable with ITD relative to (6.1). ■ 
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