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SUMMARY 
 

 
Any multi-camera system requires placement decisions for its cameras to 

achieve the best system performance. Automated planning algorithms attempt to find 

the best placement and orientation of the cameras in such systems. This thesis 

proposes an optimization-based approach maximizing the combined visible volume 

in the scene. Calculating the visible volume is a computationally intensive process. 

GPU’s are used to make this calculation practical. Some of the well-known 

optimization methods (stochastic gradient descent, particle swarm optimization, 

artificial bee colony algorithm and their variations) were implemented and tested on 

real world scenarios. Experimental results show that the proposed approach can be 

used in practical applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words: Camera Planning; Camera Placement; Particle Swarm 

Optimization; Artificial Bee Colony Optimization; Gradient Descent.  



 

vi 

ÖZET 
 

 
Çok sayıda kamera içeren her sistem kamera yerlerinin doğru bir şekilde 

belirlenmesine ihtiyaç duyar. Otomatik kamera yeri planlama algoritmaları 

kameraların yerlerini ve konumlarını doğru şekilde tespit etmeye çalışır. Bu 

çalışmada kamera planlaması optimizasyon tabanlı bir yaklaşımla ele alınarak 

sahnedeki toplam görünür hacim maksimize edilmiştir. Görünür hacmin 

hesaplanması oldukça maliyetli bir işlemdir. Bu işlemi hızlandırmak ve kullanılabilir 

hale getirmek için algoritmalar önemli bir oranda GPU üzerinde koşturulmuştur. 

Sıkça kullanılan optimizasyon metodlarının (gradient descent, parçacık sürü 

optimizasyonu, yapay arı kolonisi algoritması ve bunların varyasyonları) bazıları bu 

problemi çözmek için gerçeklenmiş ve gerçekçi senaryolarla test edilmiştir. Deneysel 

sonuçlar bu metodun pratik olarak kullanılabileceğini göstermektedir. 
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1. INTRODUCTION 

Camera planning is important for any multi-camera system as the placement of 

cameras can be a major cause of bad performance. Traditional approaches require an 

expert to make the placement decisions. As the multi-camera systems become more 

widespread finding experts capable of planning with multiple constraints might be 

difficult.  

Automating the planning process can be beneficial for better system 

performance. In very complex systems better results can be obtained when compared 

to the traditional planning methods. Or when some extra constraints are needed, 

automating the camera planning process can yield better results than the traditional 

planning methods.  

1.1. Camera Planning 

This thesis addresses the problem of finding the optimal placement of cameras in 

a three dimensional (3D) volume with a complex shape and in which there are 

obstacles. Given n cameras with limited angles of views, the system tries to place 

those n cameras optimally so that the coverage of the cameras is maximum in terms 

of volume.  

Camera planning can be posed as an optimization problem and its solution can 

be used for camera placement. Given the characteristics of the three dimensional 

(3D) workspace and the parameters of the cameras, the visible volume can be 

maximized. This thesis presents an optimization-based method camera planning 

method that is fast and practical. We first define a cost function defining the 

goodness of the placement of the cameras where 1 represents total visibility of the 

3D volume we want to place the cameras, and 0 means no visibility. This function 

takes the 3D scene, a list of obstacles and a list of cameras as input. Each camera has 

5 parameters (three for the location and two for the pan and tilt angles of the camera). 

The cost function optimized by using well-known optimization algorithms. Gradient 

descent, particle swarm optimization and artificial bee colony optimization 

algorithms and some variations implemented and tested. The tests have shown that 

the cost function can be optimized.  
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We have calculated the visibility of the volume by dividing the workspace into 

cubic voxels and by counting the visible voxels. After finding the number of visible 

volumes we divided that number to the number of total voxels. Which we get is a 

number between 0 and 1 which shows the visibility ratio of the overall 3D volume. 

This is an approximate solution but when the number of voxels increase the result 

converges to exact solution.  

CUDA implementation of this calculation made it possible calculate the cost 

function for real world scenarios much faster than the CPU based implementation. 

Extensive experimental validation has shown that the proposed method is efficient 

and yields good results. 
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2. BACKGROUND 

For a multi-camera system, camera planning places the cameras in a best 

configuration based on a metric. Metric is the maximum coverage. Camera planning 

was studied before both theoretically and practically in computational geometry and 

sensor planning. 

There is a family of problems called art gallery problems (AGP). Studies about 

AGP forms the theoretical part of the studies about camera planning. The simplest 

version of this problem tries to find the minimum number of guards sufficient to see 

every point of the interior of an n-vertex simple polygon. In art gallery problem the 

goal is to place guards that is capable of seeing everywhere around them whereas in 

camera placement problem the goal is to place cameras that has a limited angle of 

view. So camera placement problem can be considered as a specific version of the 

art-gallery problem.   

The method we use is a costly method. We figured out that we can use GPU at 

our system to make it parallel and faster. Many algorithms have been implemented 

on GPU’s in the recent years and these worked several times faster than the CPU 

based versions [1]. Hence, implemented the cost function in GPU in order to make 

the system run faster. 

2.1. Art Gallery Problem 

In 1973 a mathematician called Victor Klee asked the following question [2], 

[3]: What is the minimum number of guards who together can watch an entire art-

gallery?  

Starting with the previous question a family of problems and theorems were 

proposed. Those family of problems are called art-gallery problems [4]. 

Camera placement problem can be regarded as a special version of the art-

gallery problem. Because in art-gallery problem guards assumed to see everywhere 

around themselves but in our case surveillance cameras have a limited angle of view.  

In 1975 Vaclav Chvatal proposed a theorem for the art-gallery problem called the 

art-gallery theorem. That theorem gives an upper bound for the minimum number of 

guards [5]. ⌊𝑛𝑛
3
⌋ guards are sufficient and sometimes necessary for watching an entire 

art-gallery which is a 2D polygon with n vertices. 
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In 1975 Steve Fisk gave a shorter and easier proof of the Chvatal’s art-gallery 

theorem [6]: 

 

Figure 2.1: 2D polygon for the proof of 2D art-gallery problem. 
 

• Step 1: Divide the polygon (art-gallery) into triangles by adding non-crossing 

diagonals. The main point of triangulation is that every triangle will be 

observed by a guard [7]. 

 

Figure 2.2: Triangulation of the polygon given in Figure 2.1 into rectangles. 
 

• Step 2: Start with any of the triangles and label a, b and c to its vertices.  
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Figure 2.3: Starting with a triangle and labeling its vertices. 
 

• Step 3: Continue labeling a, b or c to the vertices of other triangles such that 

each triangle has a, b and c type (or color) of vertices.  

 

Figure 2.4: Complete the labeling of vertices according to Figure 2.3. 
 

• Step 4: Let number of a’s is 𝑛𝑛𝑎𝑎, number of b’s is 𝑛𝑛𝑏𝑏 and number of c’s is 𝑛𝑛𝑐𝑐 at 

the labeled triangle. Let 𝑛𝑛𝑎𝑎 ≤ 𝑛𝑛𝑏𝑏 ≤ 𝑛𝑛𝑐𝑐 (always there will be an ordering). Put 

the guards to the vertices of type a, that is to the one that has the smallest 

number. Then 𝑛𝑛𝑎𝑎  guards are sufficient to protect the gallery. Because each 

triangle has a vertex of type a. So we can say that 𝑛𝑛𝑎𝑎 ≤ ⌊𝑛𝑛
3
⌋. This completes the 

proof. 
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Figure 2.5: Positions of the guards for observing the entire space. 
 
In 1983 it was proved that [8] if the shape of the 2D polygon is orthogonal at 

most ⌊𝑛𝑛
4
⌋ guards are needed to observe each point.  

2.1.1. Art-Gallery Problem in Three Dimensions 

For the 2D version of the problem, it was proved that at most ⌊𝑛𝑛
3
⌋ guards would 

always be more than enough for watching the entire gallery. However, for a 3D art-

gallery problem which is represented as a polyhedron, putting a guard at each vertex 

will not guarantee that each point of the gallery is observed. An example for this is 

the octoplex [3]. Octoplex is constructed as follows. Start with a 20×20×20 cube. 

Remove 12×6×20 rectangular prisms from front and back faces. Remove 20×6×6 

rectangular prisms from top and bottom faces. Remove 3×20×6 prisms from left and 

right faces. What is left is the octoplex (see Figure 2.6).  
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Figure 2.6: At Octoplex point b cannot be observed by any of the guards even if there 
is a guard at each vertex.   

 
Octoplex [3] has 56 corners and 30 walls. Some points in the octoplex cannot be 

observed even if a guard is placed at each vertex. An example of such a point is point 

b at Figure 2.6. Point b, the center of octoplex, is invisible from all vertices. So there 

is no such solution for the 3D version of the problem related to the number of 

vertices like the 2D version of the problem. 

There is a study that proposed a method for finding an upper bound on the 

number of guards for orthogonal polyhedra [9]. The method divides the orthogonal 

polyhedron into rectangular prisms. Each corner of a prism can be a candidate place 

for a guard. Next the number of candidate corners are minimized so that entire 

volume is observed by minimum number of guards. 

Note that although art-gallery problem has many similarities with the camera 

placement problem, techniques for solving art-gallery problem is not enough to solve 

camera placement problem. Actually camera placement problem can be seen as a 

special version of the art-gallery problem. Because at art-gallery problem guards 

assumed to see everywhere around them whereas at camera placement problem 

guards have a limited angle of view. 
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2.2. 2D Version of the Camera Placement Problem 

There is a study that deals with the 2D version of the camera placement problem 

on an orthogonal polygon [10]. The paper proposes a method called rectangular 

algorithm. This method divides the 2D region into a minimum number of rectangles 

each of which in turn is divided into two triangles. Corners of these rectangles 

obtained at Figure 2.7 will be possible camera locations.  

 

Figure 2.7: Dividing the region into minimum number of rectangular regions 
according to Pålsson’s algorithm. 

 
Figure 2.8 below shows the next step after obtaining the rectangles. Each 

rectangle will be divided into triangles and each triangle will be observed by a 

camera. 

 

Figure 2.8: Corners of each rectangle are possible camera locations. If the diagonal 
length is greater than the effective range of the camera, a further division is required. 

Effective range is the distance that the camera can observe. It is a constraint of the 
algorithm.  

 

Figure 2.9 shows the division of a rectangle into 2 so that the new diagonals of 

the new rectangles are within the effective range of the camera. If the diagonal angle 
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𝛼𝛼1 of the triangle is greater than the field of view (FOV) of the camera, a further 

division is required. 

 

Figure 2.9 Further division may be required for effective camera range a) At the left 
rectangle diagonal 𝑑𝑑1 is greater than the effective range of the camera, b) At the right 
rectangle, after the division, diagonal 𝑑𝑑2 is within the effective range of the camera.  

Figure 2.10 below shows the division of a rectangle into so that the diagonal 

angles 𝛼𝛼2 of the new rectangles is less than the FOV of the camera.    

 

Figure 2.10: Further division may be required for convenient camera angle a) At the 
left rectangle diagonal angle 𝛼𝛼1 is greater than the FOV of the camera, b) At the right 

rectangle after the division 𝛼𝛼2 is less than the FOV of the camera. 

 
After dividing the region into rectangles a greedy strategy is used. At each step 

best rectangle corner for improving the coverage is found and added to the system. 

That is at each step a camera is placed at a corner of a rectangle such that coverage 

increase is maximum. 

At the last part of the algorithm redundant cameras are removed by starting to 

check with the camera that has the least coverage. 

Note that this study deals with the 2D version of the camera placement problem 

where we deal with the 3D case. Triangulation or similar methods does not work for 

the 3D case. Because at when a rectangular prism is divided into 2 triangular prisms 

a) b) 

a) b) 
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we cannot observe those triangular prisms with one camera as in the 2D case. We 

need some other methods to observe them.  

2.3. Sensor Planning 

Camera placement problem is also studied as a branch of sensor planning. 

Studies about sensor planning forms the practical part of the studies about camera 

planning. 

There is a study that divides the 2D space into grids and uses linear 

programming to optimize the cost function. Their 2D spaces are simple rectangular 

regions [11]. Their solution tries to ensure that each grid is observed by a camera and 

the minimum number of cameras are used. They deal with simple rectangular spaces. 

There is a study that deals with the 2D camera placement problem for achieving 

maximum coverage of the 2D space [12]. They use greedy search, dual sampling and 

randomized approaches for optimizing their cost function. Study of [12] is a 

simplified and 2D version of our study.  

There is a study that deals with 3D camera placement problem. But their cost 

function does not try to find the maximum coverage but they place 3D cylindrical 

objects randomly and next try to place the cameras so that maximum coverage for 

the cylindrical objects is found [13]. Their cost function is an exact cost function that 

returns the exact visibility of the 3D space. They put some 3D objects to the 3D 

space and their cost functions returns the visibility of those randomly put 3D objects. 

They use simulated annealing for optimizing the cost function. Their system works 

for low dimensional spaces and they tested their system with 2 and 3 cameras.  

There is a study that solves the 2D version of the problem as an optimization 

problem. They divide the 2D area into grids [14]. Next they create camera locations 

and orientations. They then chose n cameras from the previously generated ones 

using a branch and bound strategy. This is a semi-automatic method for camera 

planning. In our study the system finds the locations and orientations automatically. 

Also this method solves the 2D version of the problem whereas we deal with the 3D 

case.   

There is a study that divides the 2D workspace into grids and uses binary integer 

programming for optimizing the cost function [15]. Their workspaces are 2D and 

much simpler than the ones we used. 
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There is a study that deals with the 3D camera placement problem. Their cost 

function is a probabilistic function that is does not find the coverage of the space 

exactly [16]. They use binary integer programming to optimize the cost probabilistic 

cost function. 

There is a study that deals with the 2D camera placement problem. They use 

particle swarm (PSO) optimization to optimize their cost function [17]. Their cost 

function gives more importance to some critical areas. We also used PSO as one of 

our optimization algorithms. However, our space is 3D.  

In summary there are many theoretical work about the art-gallery problem. 

These do not solve the camera placement problem fully. There are also studies about 

sensor planning. These are more practical solutions when compared with the studies 

on AGP. These studies mostly deal with the 2D camera planning problem. There are 

also some sensor planning studies about the 3D camera planning. Their cost 

functions are mostly probabilistic cost functions whereas our cost function is exact. 
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3. METHOD 

A cost function which determines the visibility of a given camera configuration 

for a given 3D space with obstacles is defined. Total visible volume that is seen by 

the cameras is ⋃ 𝑉𝑉𝑐𝑐𝑖𝑖
𝑖𝑖=1
𝑛𝑛 . Here 𝑉𝑉𝑐𝑐𝑖𝑖 is the volume that is observed by camera 𝑖𝑖. This cost 

function will be optimized so that the union of the volumes seen by the cameras is 

visible. Which can be expressed mathematically with the equation below: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 𝑓𝑓(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) =  �𝑉𝑉𝑐𝑐𝑖𝑖(𝜃𝜃𝑖𝑖)
𝑖𝑖=1

𝑛𝑛

 

 

(3.1) 

Here 𝜃𝜃𝑖𝑖  is the parameters of camera 𝑖𝑖. 

When computing the visible volume first the volume is divided into small cubes 

called voxels. A voxel is visible if it is in the field of view of any of the cameras and 

if there is no obstacle between the camera and voxel (see Figure 3.1).   

 

Figure 3.1: A voxel is visible if its center is in FOV of a camera and if there is no 
obstacle between that camera and the voxel. 
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Obstacles are defined as triangular fields. In order to define an obstacle in the 

system 3 points were defined. A wall for example is made up of two triangular 

obstacles. Pseudo code at Table 3.1 summarizes the cost function. 

 

Table 3.1: Calculation of cost function based on the total visible volume. 

Function isVisible(voxel, cameraList, obstacleList): 
 for camera in cameraList : 
  if voxel is in field of view of camera: 
   occlusion=False 
   for obstacle in obstacleList: 
    if obstacle is between camera and voxel: 
     occlusion=True 
     break 
   if not occlusion: 
    return True 
 return False 
 
 
Function costFunction(voxelList, cameraList, obstacleList): 
 numberOfVisibleVoxels=0 
 for voxel in voxelList : 
  if isVisible(voxel, cameraList, obstacleList): 
    numberOfVisibleVoxels++ 
 return numberOfVisibleVoxels/length(voxelList) 
 

Cost function returns a number between 0 and 1. 0 means no voxel is visible and 

1 means all voxels are visible by at least one camera. Cost function takes the list of 

voxels, list of obstacles and list of cameras as parameter. Each camera has 5 

parameters which are x, y, z locations of the camera center and spherical angles of 

the camera orientation. Spherical angles are horizontal (θ) and vertical (φ) [18] (see 

Figure 3.2).  

 

Figure 3.2: Spherical coordinate system used to formulate the optimization problem. 



 

14 

3.1. Details of the Computation 

When computing the visibility of a voxel from a camera point, firstly the axes 

are rotated and translated so that the camera point becomes the origin of the axes and 

the direction of the camera becomes the new x axis. The rotation and translation 

process is as follows [19]:   

 

Figure 3.3: Rotation matrices per each axis. 
 

• Translate the voxel point so that camera point becomes the new origin. That is   

𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑚𝑚. 

• Rotate the voxel point around the z axis. Rotation angle is the horizontal angle of 

the camera. That is 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃 = 𝑅𝑅𝑧𝑧 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃.   

• Rotate the voxel point around the y axis. Rotation angle is the vertical angle of 

the camera. That is 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃 = 𝑅𝑅𝑦𝑦 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃. 

 

After rotation and translation, it is needed to be checked if the point is in the field of 

view of the camera. While computing the visibility of voxels horizontal and vertical 

field of view (FOV) angles assumed to be constant for all the cameras. We used 60˚ 

and 45˚ for horizontal and vertical FOV angles respectively in most of our 

experiments.  
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Figure 3.4: Field of view of a camera a) 2D version, b) 3D version. 
 
In order to decide if a point is in FOV or not we will check the horizontal and 

vertical angles between the voxel and camera. After translation and rotation if voxel 

x is less than 0 it means the voxel is at the back of the camera which means voxel is 

not in the FOV of the camera. Next we computed the horizontal and the vertical 

angles between the voxel and camera. If the angles are less than the half of horizontal 

and vertical FOV angles-that is 30 and 22.5 respectively - the point is in the FOV of 

the camera else, it is not in the FOV. The pseudo code of the above process is seen in 

Table 3.2.  

 

Table 3.2: The code for checking if a voxel is in the camera field of view. 
 

Function isInFOV(voxel,camera): 
 voxel=voxel-camera  # translation 
 voxel= Ry*(Rz*voxel) #rotation 
 if voxel.x < 0: 
  return False 
 x=voxel.y/voxel.x 
 y=voxel.z/voxel.x 
 if abs(x)<=tan30 and abs(y)<= tan22.5 :   
     #30 and 22.5 are half of the FOV angles 
  return True 
 return False 

 

Now the process of finding the occlusions will be explained. We have an 

obstacle which consists of 3 points 𝑉𝑉1,𝑉𝑉2 and 𝑉𝑉3 and a line segment representing the 

camera visibility which starts with camera point 𝑃𝑃0 and ends at voxel 𝑃𝑃1. We want to 

know if [𝑃𝑃0, 𝑃𝑃1] intersects with the triangle 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3. Let’s start with determining if 

there is an intersection between the triangle and line segment. Let n be the normal 

vector of the plane determined by the triangle 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3. Let 

 

𝑃𝑃1 =
𝑛𝑛 ⋅ (𝑉𝑉0 − 𝑃𝑃0)
𝑛𝑛 ⋅ (𝑃𝑃1 − 𝑃𝑃0) (3.2) 

a) b) 
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. If 𝑃𝑃1 ≥ 0 that means line segment and the plane determined by the triangle 

intersects somewhere. Else they don’t intersect and we are done. So now let’s deal 

with the case that there is an intersection between the plane determined by the 

triangle and the line segment. The equation of the plane is given by equation (3.3). 

 

𝑉𝑉(𝑠𝑠, 𝑡𝑡) = 𝑉𝑉0 + 𝑠𝑠(𝑉𝑉1 − 𝑉𝑉0) + 𝑡𝑡(𝑉𝑉2 − 𝑉𝑉0) = 𝑉𝑉0 + 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑃𝑃 

 
(3.3) 

If 𝑠𝑠 + 𝑡𝑡 ≤ 1 that means intersection point is in the triangle else intersection point is 

outside of the triangle. s and t are given by the equations (3.4) and (3.5). 

 

s =
(u ⋅ v)(w ⋅ v) − (𝑃𝑃 ⋅ 𝑃𝑃)(𝑤𝑤 ⋅ 𝑠𝑠)

(u ⋅ v)2 − (𝑠𝑠 ⋅ 𝑠𝑠)(𝑃𝑃 ⋅ 𝑃𝑃)
 

 
(3.4) 

 

t =
(u ⋅ v)(w ⋅ u) − (𝑠𝑠 ⋅ 𝑠𝑠)(𝑤𝑤 ⋅ 𝑃𝑃)

(u ⋅ v)2 − (𝑠𝑠 ⋅ 𝑠𝑠)(𝑃𝑃 ⋅ 𝑃𝑃)
 

 
(3.5) 

So if 𝑠𝑠 + 𝑡𝑡 ≤ 1 that means there is an occlusion and the voxel is not visible by that 

camera [20].    

3.1.1. Parallelization via CUDA 

Counting the number of visible voxels is a process that can be fully parallelized. 

We used CUDA for making the calculations faster. Visibility of each voxel was 

determined by a CUDA thread. CUDA usage greatly improved the performance of 

the system as will be seen later. CUDA implementation worked nearly 20 times 

faster than the CPU implementation.  

3.2. Algorithms Used for Optimizing the Cost Function 

We use Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization 

Algorithm (PSO), Gradient Descent (GD) and some variations of those algorithms to 

optimize the cost function. We compared those algorithms in terms of accuracy of 

the results and time in the experiments section.  
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Our first attempt to optimize the cost function is using the Gradient Descent 

Algorithm. We placed the cameras randomly and gave them random initial angles. 

Next we applied Gradient Descent [21], [22] for reaching to local optima. 

ABC and PSO require a number of initial solutions. At each iteration some of 

the solutions are improved and at the end best solution among the set of solutions is 

the result of the algorithm. GD requires one solution to work on but for more 

comparable results we created a set of initial solutions and chose the best one among 

them and apply GD to that solution. 

Optimization algorithms were run in two ways: First a number of steps and the 

second is a fix time period like 300 seconds. We chose the more convenient one for 

each different test. At some tests we use time as the stop criteria and at some other 

we use number of iterations as the stop criteria. 

3.2.1. Gradient Descent 

Gradient Descent also known as steepest descent is a first-order optimization 

algorithm. It is called a first-order algorithm because the first derivative of the 

function is used.  GD takes steps proportional to the negative direction of the 

gradient and tries to reach the local minima. 

Gradient Descent defines the step from point 𝑚𝑚 to 𝑏𝑏 as follows: 

 

𝑏𝑏 = 𝑚𝑚 − 𝛾𝛾∇𝐹𝐹(𝑚𝑚) 

 
(3.6) 

Where 𝛾𝛾 is a positive number and ∇𝐹𝐹(𝑚𝑚) is the gradient of the function 𝐹𝐹 at point 𝑚𝑚. 

𝛾𝛾 is allowed to change at every step. GD algorithm stops when a maximum CPU 

time exceeded or when a number of steps exceeded or when the improvement 

between two steps is less than a number. 
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Figure 3.5: Gradient Descent steps are shown. At each step solution gets closer to the 
minimum in the center. 

Note that in order to apply Gradient Descent we need 𝐹𝐹 to be defined at 𝑚𝑚 and 

again it needs to be differentiable in a neighborhood of 𝑚𝑚. In order for a function be 

differentiable at a point 𝑚𝑚 it must be continuous at that point. In our case the function 

which we will apply GD is our cost function which returns the visibility of the 

workspace. Our cost function is not a mathematical function. It does not have a 

mathematical expression. Therefore, we used discrete differentiation technique [23].  

That is for differentiating the 𝐹𝐹 with respect to 𝑚𝑚 we used equation () below. 

 

𝜕𝜕
∂x

 F(x, y, z) =
F(x + h, y, z) − F(x, y, z)

h
 

 
(3.7) 

 

Where h is a small real number. We chose different h values for parameters related to 

angles and distances, like π/50 and 0.2 (Angles are expressed in terms of radian and 

distances are expressed in terms of meters.) respectively. 

The cost function we use is not continuous at every point. Because there are 

obstacles in the system. Figure 3.6 shows an example of the discontinuity of the cost 

function. At the left part there is a camera at a side of a room which can observe most 

of the room. At the right part of the figure, the camera location changed slightly and 

the camera sees nothing.  
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Figure 3.6: Discontinuity of cost function. When moving from point a to point c 
visibility suddenly becomes zero.  

Figure 3.7 below shows the change of the value of the cost function in a room 

similar to the one in Figure 3.6. As the location of the camera changes in one 

direction, first the value increases constantly next it decreases to zero suddenly. In 

order to draw this function, we changed the x direction of the camera 0.001 at each 

iteration. As can be seen from the graph cost function is not continuous. 

 

Figure 3.7: Shows value of the cost function as the location of the camera changes in 
one direction like in Figure 3.6 from point b to point c. 

Because the cost function is discontinuous, it is possible to step to a point where 

the visibility of the cost function decreases. For example, at Figure 3.6 suppose 

camera started with the position and GD computed 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑏𝑏)
|𝑎𝑎−𝑏𝑏|

 and saw that the value 

of the cost function decreases as it goes through the point b. So it steps at the 

opposite direction and came to the point c, where 𝐹𝐹(𝑃𝑃) = 0. At the next step it will 

check 𝐹𝐹(𝑐𝑐)−𝐹𝐹(𝑑𝑑)
|𝑐𝑐−𝑑𝑑|

= 0. Therefore, it will not see a need for making a step and stop.  

Because of this problem of ending up with an unwanted point, we needed to 

check both directions when having a new step. That is when we are at point a GD 

computes both 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑏𝑏)
|𝑎𝑎−𝑏𝑏|

 and 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑐𝑐)
|𝑎𝑎−𝑐𝑐|

 and choses the best direction or stops.  
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We run GD in two ways. First one is running the algorithm for a fix amount of 

time and the second one is running it for a certain number of steps. Table 3.3 shows 

the pseudo-code of the GD. 

Table 3.3: Pseudo-code of the Gradient Descent algorithm used in the experiments. 

#Assume F is the cost function 
Function step(x_old): 
 x_temp=x_old.copy() 
 for i in range(size(x_old)): 
  x_temp2=x_old.copy() 
  x_temp3=x_old.copy() 
  x_temp2[i]+=h 
  x_temp3[i]-=h 
  d1,d2,d3=F(x_old),F(x_temp2),F(x_temp3) 
  if d2<=d1 and d2<=d3 : 
   x_temp[i]+=h 
  else if d3<=d1 and d3<=d2 : 
   x_temp[i]-=h 
 return x_temp 
 
   
 
Function GD(x, stepLimit):  
      # Assume x has 2 dimensions 
      x_old=x 
      x_new=step(x_old)  
      numberOfSteps=0 
      while   numberOfSteps< stepLimit: 
           x_old=x_new 
     x_new=step(x_old) 
     numberOfSteps++ 
      return x_new 
 

3.2.1.1. A Modified GD (GD1) 

Consider there are two cameras looking at the same direction from same place as 

in figure below.   

 

Figure 3.8: Cameras looking at the same direction still look at the same direction at 
the after applying GD. 
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In that case, after applying GD cameras will continue looking at the same 

direction. In order to overcome such situations, we modified the GD algorithm 

slightly such that when making a new step it changes the parameters gradually. The 

pseudo-code of this algorithm is shown at Table 3.4. This algorithm gave slightly 

better results than GD (see experiments section).   

Table 3.4: Pseudo-code of the GD1 algorithm used in the experiments. 
 

#Assume F is the cost function 
Function step2(x_old): 
 for i in range(size(x_old)): 
  x_temp2=x_old.copy() 
  x_temp3=x_old.copy() 
  x_temp2[i]+=h 
  x_temp3[i]-=h 
  d1,d2,d3=F(x_old),F(x_temp2),F(x_temp3) 
  if d2<=d1 and d2<=d3: 
   x_old[i]+=h 
  else if d3<=d1 and d3<=d2: 
   x_old[i]-=h 
 return x_old 
 
   
Function GD1(x, stepLimit):  
      # Assume x has 2 dimensions 
      x_old=x 
      x_new=step2(x_old)  
      numberOfSteps=0 
      while   numberOfSteps< stepLimit: 
           x_old=x_new 
     x_new=step2(x_old) 
     numberOfSteps++ 
      return x_new 
 

 

3.2.2. Particle Swarm Optimization 

Particle swarm optimization [24] (PSO) mimics the food searching behavior of a 

group of animals. Each member of the group corresponds to a solution of the 

problem – in our case it is a list of parameters for the cost function which returns the 

visibility of the system. 

Each particle in the system takes steps and tries to improve the quality of the 

current solution. When taking a new step each particle gets somewhat a composition 

of the current velocity, a vector from the current position to the particle’s best 

position achieved that far and another vector from current position to the system’s 

best solution achieved so far. Where these components multiplied with random 
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numbers between 0 and 1. Below is the pseudo-code of the PSO algorithm [25], [26], 

[27]. 

 

𝑃𝑃[𝑖𝑖] = 𝑤𝑤𝑃𝑃[𝑖𝑖] + 𝑃𝑃1 ∗ 𝑃𝑃𝑚𝑚𝑛𝑛𝑑𝑑 ∗ (𝑝𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑡𝑡[𝑖𝑖] − 𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡[𝑖𝑖]) +

𝑃𝑃2 ∗ 𝑃𝑃𝑚𝑚𝑛𝑛𝑑𝑑 ∗ (𝑔𝑔𝑝𝑝𝑚𝑚𝑠𝑠𝑡𝑡[𝑖𝑖] − 𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡[𝑖𝑖]) 
(3.8) 

 

𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡 = 𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡 + 𝑃𝑃 (3.9) 

Table 3.5 Pseudo-code of the PSO algorithm used in the experiments. 
 

Initialize particles 
while not maximumIteration exceeded: 
 for each particle: 
  calculate fitness value 
  if fitness value better than fitness of pBest: #personal best value 
   pBest=particle 
 gBest=best of pBests #global best 
 for each particle : 
  calculate particle velocity according to equation (3.8) 
  update the position of the particle according to equation (3.9) 

 

PSO starts by initializing the particles. Algorithm runs until the maximum 

iteration number is reached. At each iteration, PSO computes the cost values of the 

particles and if the new cost value of a particle is better than the personal best of a 

particle, PSO updates the personal best of the particle. After updating the pBest 

values of the particles, PSO computes gBest. That is the best of the pBest values of 

each particle. Next PSO computes the velocity vector for each particle according to 

Equation (3.8). 𝑃𝑃𝑚𝑚𝑛𝑛𝑑𝑑 is a random number between 0 and 1. 𝑃𝑃1 & 𝑃𝑃2 are constant 

numbers. These can be considered as the parameters of PSO. i parameter at Equation 

(3.8) is the ith parameter of the velocity vector v.  

3.2.2.1. PSO Parameter Selection 

Using nested loops, we checked many values for 𝑤𝑤, 𝑃𝑃1 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃2. We 

experimentally found that 𝑤𝑤 = 0.7, 𝑃𝑃1 = 0.95 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃2 = 0.95 gives better results 

than the other values.    

We also tried dynamic numbers for the 𝑤𝑤 parameter. For example, we started 

with 𝑤𝑤 = 1 and at each iteration of the algorithm, we multiplied 𝑤𝑤 with a number. 

That is 𝑤𝑤 = 𝑤𝑤 ∗ 𝑘𝑘. 𝑘𝑘 is a number like 0.95. Many different k values were tried and 
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we compared the results with constant. The resulting graphs are in the experiments 

section. 

3.2.2.2. A Variation of PSO (PSO1) 

In order to explore the search space more we used global second best and global 

best interchangeably. This modification gave slightly better results than the original 

algorithm. Results are in the experiments section. In this variation of the PSO we 

used global second best and global best randomly at Equation (3.3) above. New form 

of equation is below. 

 

𝑃𝑃[𝑖𝑖] = 𝑤𝑤𝑃𝑃[𝑖𝑖] + 𝑃𝑃1 ∗ 𝑃𝑃𝑚𝑚𝑛𝑛𝑑𝑑 ∗ (𝑝𝑝𝑝𝑝𝑚𝑚𝑠𝑠𝑡𝑡[𝑖𝑖] − 𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡[𝑖𝑖]) + 𝑃𝑃2

∗ 𝑃𝑃𝑚𝑚𝑛𝑛𝑑𝑑 ∗ (𝑔𝑔𝑝𝑝𝑚𝑚𝑠𝑠𝑡𝑡𝑔𝑔𝑃𝑃𝑔𝑔𝑔𝑔𝑚𝑚𝑃𝑃𝑃𝑃𝑛𝑛𝑑𝑑𝑝𝑝𝑚𝑚𝑠𝑠𝑡𝑡[𝑖𝑖]

− 𝑝𝑝𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑛𝑛𝑡𝑡[𝑖𝑖]) 

(3.10) 

3.2.3. Artificial Bee Colony 

Artificial bee colony algorithm [28] mimics a bee colony that searches food in 

the nature. Similar to PSO, ABC starts with a set of solutions and tries to improve 

this set of solutions iteratively. At the end, the best solution achieved that far is the 

result of the algorithm.  

Components of the ABC algorithm are as follows: 

 

• Food Sources: ABC starts with a set of solutions to the problem - in our case 

set of camera configurations - and tries to improve those solutions at each 

iteration. Food sources correspond to the set of the solutions which ABC tries to 

improve. 

• Employed Bees: These are responsible for bringing food sources to the beehive 

and sharing the information about the richness or the quality of the source. In our 

case, a source is considered rich, if it returns a number close to 1 when evaluated 

at the cost function. Number of employed bees are equal to the number of food 

sources. 

• Unemployed Bees: There are two types of unemployed bees. The first one is 



 

24 

the onlooker bees. These wait in the hive, use the information shared by 

employed bees, and try to find new food sources. Second type of unemployed bee 

is the scout bees. These try to find new food sources randomly without using any 

information from employed bees.    

 

Below is a scheme about the elements of the ABC algorithm (see Figure 3.9). In 

our implementation of ABC number of food sources, number of employed bees and 

number of onlooker bees are equal. Outline of ABC is shown in Table 3.6 [29].  

 

Figure 3.9: Elements of the Artificial Bee Colony Algorithm. 

Table 3.6: Outline of the ABC used in the experiments. 
 

Initialization Phase  
REPEAT  
  Employed Bees Phase 
  Onlooker Bees Phase 
  Scout Bees Phase 
  Memorize the best solution achieved so far 
UNTIL(Cycle=Maximum Cycle Number or a Maximum CPU time) 

 

At initialization phase random solutions are created. At employed bees phase 

fitness values of the sources are evaluated. At onlooker bees phase quality of the 

sources are tried to be improved according to Equation (3.11):  
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 𝑃𝑃𝑖𝑖𝑖𝑖 =   𝑚𝑚𝑖𝑖𝑖𝑖 +  𝜑𝜑𝑖𝑖𝑖𝑖( 𝑚𝑚𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑘𝑘𝑖𝑖 ) 

 
(3.11) 

Where only one parameter namely j of the solution  𝑚𝑚𝑖𝑖 is changed and the rest are 

remains unchanged. 𝜑𝜑𝑖𝑖𝑖𝑖 is a random number in [−1,1].  𝑚𝑚𝑘𝑘𝑖𝑖  is the jth parameter of 

solution  𝑚𝑚𝑘𝑘 which is a randomly chosen solution from the solution set.  𝑃𝑃𝑖𝑖  is the 

newly created solution by changing only the jth parameter of solution  𝑚𝑚𝑖𝑖 . 

At scout bees phase source that cannot be improved after a number of tries are 

abandoned and new sources are created instead of those. At the end of each iteration, 

the best solution is saved. Pseudo-code of ABC is shown in Table 3.7 [28]. 

Table 3.7: Pseudo-code of the ABC algorithm used in the experiments. 
 

A set of random solutions is created 
SN=size of solution set 
Failure counters are initialized to 0 
while stopping condition not satisfied: 
  for i=1 to SN: 
    create a new solution v_i for solution x_i according to equation (3.11) 
    calculate fitness value of v_i 
    if fitness(v_i) better than fitness(x_i): 
      x_i=v_i 
      failure_counter_of_x_i=0 
    else: 
      failure_counter_of_x_i+=1 
  Compute the probabilistic values of the sources p_i which will  
  be used by onlooker bees when making a choice of source 
  t,i=0,0 
  while t<SN: 
    if rand()<p_i: 
      create a new solution v_i for solution x_i according to equation 
(3.11) 
      calculate fitness value of v_i 
      if fitness(v_i) better than fitness(x_i): 
        x_i=v_i 
        failure_counter_of_x_i=0 
      else: 
        failure_counter_of_x_i+=1 
      t+=1 
  if max{failure_i}>limit: 
   x_i=create a random solution for x_i 
  Memorize the best solution  
 
 

 

3.2.3.1. A Variation of ABC (ABC1) 

In this variation a different improvement function, Equation (3.12), is used at the 

employed bees stage instead of Equation (3.11) above.  
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 𝑃𝑃𝑖𝑖𝑖𝑖 =   𝑚𝑚𝑖𝑖𝑖𝑖 +  𝜑𝜑𝑖𝑖𝑖𝑖  (3.12) 

 
Here  𝑚𝑚𝑖𝑖 is the ith solution of the solution set.  𝑚𝑚𝑖𝑖𝑖𝑖  is the jth parameter of solution i. 

For parameters that are related to distances 𝜑𝜑𝑖𝑖𝑖𝑖 is a is a random number in [-1,1] and 

for parameters that are related to angles 𝜑𝜑𝑖𝑖𝑖𝑖 is a random number in [-0.1,0.1]. Here 

we have changed all parameters of the solution  𝑚𝑚𝑖𝑖 according to Equation (3.12) not 

only one parameter. 

3.2.4. Run Time Analysis of the Method 

Let a=numberOfVoxels, m=numberOfCameras and n=numberOfObstacles. 

Running time of isInFOV function is constant so isInFOV = Θ(c1). Checking if a 

voxel is occluded by an obstacle takes 𝛰𝛰(𝑃𝑃2) time. So running time of the cost 

function is Equation (3.13).  

 

Θ(𝑚𝑚𝑛𝑛𝑘𝑘)Θ(c1)𝛰𝛰(𝑃𝑃2) = Θ(𝑚𝑚𝑛𝑛𝑘𝑘)  (3.13) 

 

Running time of GD is Equation (3.14). 

 

𝛰𝛰(𝑚𝑚)Θ(𝑚𝑚𝑛𝑛𝑘𝑘)  =  𝛰𝛰(𝑚𝑚2𝑛𝑛𝑘𝑘) 

 
(3.14) 

Running time of PSO will increase relative to the increase in the run time of the cost 

function but same number of iterations will not be enough if the number of cameras 

increases. The same condition is valid for ABC. 
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4. EXPERIMENTS 

The algorithms described in the previous section have been implemented and 

tested on four different scenarios. These scenarios represent difficulty levels ranging 

from a simple rectangular room to more complex environments with obstacles. The 

visible volume of a given configuration is calculated by counting the visible voxels 

and normalizing by the number of voxels such that ‘1’ means a total visibility. The 

run-time performance of this volume calculation depends on the number of voxels, or 

the grid size. We use GPU to make this calculation faster. Figure 4.6 shows the 

performance of a CUDA implementation (running on ZOTAC GTX 780 with 2304 

cores and 3GBmemory) compared against a C++ implementation (running on a 3.50 

GHz CPU with 16GB memory). As expected the GPU implementation clearly 

outperforms the GPU implementation. The cameras used in these experiments have 

60˚ horizontal and 45˚ vertical field-of-view (FOV). We have implemented and 

tested 6 different algorithms. Using the same set of random initializations, we let 

each algorithm run and converge to a state and record the calculated volume. All of 

the graphs and values below are the average values of many tests.  

4.1. Test Scenarios 

Tests were conducted using four different test scenarios as seen below. At the 

left, there is the 2D shape of the test scenario and at the right, there is the 3D shape of 

the test scenario. First scenario, scenario A, is a simple shape with no obstacles in the 

room but the surrounding walls. The dimensions of the room in scenario A is 

14m×4m×3m.  
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Figure 4.1: Test Scenario A for the optimization algorithms, a) 2D version, b) 3D 
version. 

The second one,  scenario B, is a more complex shape which is obtained from a 

real situation where up to four clerks are serving several hundred people a day. The 

camera planning result for this case is used in an application where customer 

satisfaction is measured using a multi-camera system. The dimensions of the room in 

scenario B is 14m×7m×3m. 

 

Figure 4.2: Test Scenario B for the optimization algorithms, a) 2D version, b) 3D 
version. 

The third scenario, scenario C, is a more complex one than the previous ones. 

The dimensions of the room in scenario C is 20m×16m×3m. This scenario has a 

complex shape when compared to the others. Cameras need to be carefully placed to 

observe some parts of this scenario.  

 

a) 

a) 

b) 

b) 
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Figure 4.3: Test Scenario C for the optimization algorithms, a) 2D version, b) 3D 
version. 

The last test scenario, scenario D is a square shaped room with many obstacles 

in it. The dimensions of the room in scenario D is 20m×20m×3m. This scenario is 

created to see the effect of many obstacles in the scene when running our algorithms. 

 

Figure 4.4: Test Scenario D for the optimization algorithms, a) 2D version, b) 3D 
version. 

4.2. CUDA and CPU Speed Comparison 

In Figure 4.5 running times of CPU and GPU are compared for different number 

of voxels for 58 obstacles in total. Y axis shows the running time in terms of 

milliseconds. At each case CPU and GPU based cost functions computed the 

coverage for 100 different camera configurations. The results at the Y-axis are the 

average of those 100 test results. The numbers at the axes are logarithmic numbers. 

For example, 15 at the x axis means 215 ≈ 30000 voxels and 8 at the y axis means 

a) 

a) 

b) 

b) 
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28 ≈ 128 ms. As clearly can be seen from the graph as the number of voxels 

increase the ratio of CPU and GPU running times increases. That is for small number 

of voxels CPU and GPU based cost functions run in closer times where as the 

number of voxels increases GPU based one runs much faster than CPU based one. 

 

Figure 4.5: Speed comparison of CPU and GPU versions of the cost function we use 
at the experiments at scenario C for four cameras. Numbers at both axes logarithmic. 

Figure 4.6 is the running time graphics of the CPU and GPU based cost 

functions for the case we mostly used at the experiments. That is for roughly 

2000000 voxels. For 1000 different camera configurations –where each camera 

configuration includes 4 camera locations and angles- CPU and GPU based cost 

functions were run and average of the test results are used at the graphics. Our 

experiments show that GPU based cost function runs 17.3 times faster than the CPU 

based one.  

 

Figure 4.6: CPU and GPU speed comparison of the cost function for 2000000 voxels 
at scenario C for four cameras. 

0
5

10
15

10 11 12 13 14 15 16 17 18 19 20 21 22

Ti
m

e 
(m

s)

Number of Voxels

GPU and CPU Speed Comparison

GPU CPU

0
200
400
600
800

1000
1200

CPU GPU

Ti
m

e 
(m

s)

CPU and GPU Speed Comparison



 

31 

 

Figure 4.7: Speed ratios of GPU and CPU as the number of voxels increases for 
Figure 4.5. 

As the number of voxels increases, the ratio between the GPU and CPU based 

versions increases. We can expect that this ratio will eventually converge to a limit. 

4.3. Random Initialization and a Better Initialization 

In this section random and a better then random camera initialization techniques 

are compared. When initializing a camera randomly a random point inside the test 

room is chosen. Next the angles of the camera are initialized randomly where 

horizontal angle is a random number in [0,2π] and vertical angle is random number 

in [-π/2, π/2]. At the second Not-Random initialization technique we chose the x, y 

coordinates randomly, set z coordinate equal to 3 and directed the cameras to the 

center of the 3D scene. Second technique produced better initial values for the 

algorithms. Because that decreases the probability of a newly initialized camera 

looking at a wall. At scenario B some walls have the height of 1.5m. In such a case, a 

randomly created camera location at the bottom of the room will have less good 

coverage than a camera location at the top of the room. Table 4.1 shows the 

comparison of the results of the two initialization techniques for different scenarios 

and different number of cameras. The second technique, Not-Random one yields 

much better results than the random initialization technique. 
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Table 4.1: Comparison of random initialization and a Not-Random initialization 
technique for different scenarios and different number of cameras. 

Scenario 
Number of 
 Cameras Random Not Random 

A 1 0.05 0.40 
A 2 0.08 0.61 
B 2 0.05 0.42 
B 3 0.09 0.54 
C 3 0.07 0.29 
C 4 0.09 0.35 
C 5 0.12 0.41 

 

4.4. Tests with Different Scenarios 

In this section, there are visibility graphics for different scenarios and for 

different number of cameras. We have implemented six algorithms and run those 

algorithms equal amounts of times at different test scenarios. We made convergence 

graphics of those algorithms. We used the same set of initial solutions for each of the 

algorithm. PSO and ABC needs a set of initial solutions for working but GD needs 

one solution. Figure 4.8 shows the results of running six algorithms at scenario A for 

one camera. We run each test equal amount of times. In this test, time period is 30 

seconds. We see that algorithms start from a quite good initial point and converge to 

a limit in 10 seconds. We see that ABC and PSO1 are best and the second best 

respectively.  

 

Figure 4.8: Results of running six different algorithms for scenario A with one 
camera for 30 seconds. Figure 4.9 shows results of running six algorithms at scenario 
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A for 2 cameras for 90 seconds. Although four algorithms converged to visibility 
ratio 1 in very short amount of times we see that PSO1 converged first. The tests at 

Figure 4.9 and Figure 4.10 are trivial.  

 

Figure 4.9: Results of running 6 different algorithms for scenario A with 2 cameras 
for 90 seconds. Figure 4.10 shows the results of running six algorithms at scenario B 
for 2 cameras for 150 seconds. We see that ABC and PSO1 are the best and second 

best algorithms for this test respectively. 

 

Figure 4.10: Results of running 6 different algorithms for scenario B with 2 cameras 
for 150 seconds. Figure 4.11 shows the results of running six algorithms at scenario 

B for 3 cameras for 240 seconds. We see that ABC and PSO1 are the best and second 
best algorithms for this test respectively. 

0,95

0,96

0,97

0,98

0,99

1

0 15000 30000 45000 60000 75000 90000

vi
si

bi
lit

y

Time (ms)

GD GD1 ABC ABC1 PSO PSO1

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000

vi
si

bi
lit

y

Time (ms)GD GD1 ABC ABC1 PSO PSO1



 

34 

 

Figure 4.11: Results of running six different algorithms for scenario B with 3 
cameras for 240 seconds. Figure 4.12 shows the results of running six algorithms at 
scenario C for 3 cameras for 600 seconds. We see that ABC and PSO1 are the best 

and second best algorithms for this test respectively. 

 

Figure 4.12: Results of running six different algorithms for scenario C with 3 
cameras for 6000 seconds. Figure 4.13 Shows the results of running six algorithms at 

scenario C for 4 cameras for 900 seconds. We see that ABC and PSO1 are the best 
and second best algorithms for this test respectively. 
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Figure 4.13: Results of running six different algorithms for scenario C with 4 
cameras for 900 seconds. Figure 4.14 shows the results of running six algorithms at 
scenario C for 5 cameras for 900 seconds. We see that ABC and GD1 are the best 

and second best algorithms for this test respectively. 

 

Figure 4.14: Results of running six different algorithms for scenario C with 5 
cameras for 1400 seconds. 

Table 4.2 shows the standard deviations of the results of the above algorithms 

for different scenarios and for different number of cameras. We see that the standard 

deviation of ABC algorithm is nearly always the smallest of the six algorithms.   
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Table 4.2: Standard Deviation of the Results of Algorithms for different scenarios 
and for different number of cameras. 

 

Scenario 

Number 
of 
Cameras GD GD1 ABC ABC1 PSO PSO1 

A 1 0.012 0.006 0.001 0.003 0.005 0.004 
A 2 0.024 0.008 0.0 0.0 0.0 0.0 
B 2 0.012 0.011 0.012 0.006 0.014 0.016 
B 3 0.027 0.024 0.010 0.012 0.040 0.030 
C 3 0.076 0.067 0.012 0.027 0.051 0.069 
C 4 0.071 0.051 0.015 0.037 0.054 0.073 

C 5 0.042 0.047 0.009 0.024 0.046 0.056 
 

4.4.1. Different Voxel Sizes 

Figure 4.15 shows the result of testing the same algorithms with different voxel 

sizes. We used the same set of random numbers for more comparable results. Here 

also we used the same number of algorithm steps not same amount of times because 

when the number of voxels increases algorithm requires more time to complete a 

step. Results are expected they are mostly similar. However precision increases as 

the number of voxels increases. 

 

Figure 4.15: Same tests with different voxel sizes. Number of voxels are logarithmic. 
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decreasing the value of w. We started with w=1 and at each iteration updated the 

value of w before using it by multiplying it with a number k. That is at each iteration 

w=w*k. Figure 4.16 compares constant w and 7 different k values ranging from 0.65 

to 0.95. We figured out that w=0.7 gives better results than dynamic w parameter. 

However, as the value of k increases algorithms gave better results. Therefore, we 

made one more test where the value of k ranges from 0.96 to 0.99. Figure 4.17 shows 

the result of the second test. Constant w=0.7 gives still better results than the 

dynamic w.  

 

Figure 4.16: Constant and dynamic w parameter at PSO. 
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Figure 4.17: Constant and dynamic w parameter at PSO. 

Figure 4.18 shows the change of the w parameter during the tests at Figure 4.17. 

w starts with 1 and at each iteration it is multiplied with a k value except the constant 

one. 

 

Figure 4.18: Value of the w parameter during the tests at Figure 4.17. 
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4.4.3. Mixture of Algorithms 

Although some algorithms give better results than some other in the long run, 

some poor resulting algorithms gives better results in short amount of times. 

Therefore, we decided to combine those algorithms to get better results. We applied 

GD1 to ABC and PSO after running them for some time and compare the result with 

a pure ABC algorithm. We did the same thing for PSO as well. 

Below are the graphs of ABC and ABC+GD1 comparison and PSO and 

PSO+GD1 comparisons for two different test scenarios and for different number of 

cameras. We applied ABC and PSO 3x amount times and at the hybrid algorithm 

applied ABC and PSO 2x amount of time and applied GD1 x amount of time. 

Figure 4.19 shows the results of running ABC and ABC+GD1 and PSO and 

PSO+GD1 for 300 seconds at scenario C for 3 cameras. Hybrid algorithms performs 

better than their pure counterparts in both cases. 

  

Figure 4.19: Shows 2 hybrid algorithms compared to their pure counterparts at 
scenario C for 3 cameras for 300 seconds. Figure 4.20 shows the results of running 

ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds at scenario C. Hybrid 
algorithms performs better than the pure counterparts. 
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Figure 4.20: Shows 2 hybrid algorithms compared to their pure counterparts at 
scenario C for 4 cameras for 500 seconds. Figure 4.21 shows the results of running 
ABC and ABC+GD1 and PSO and PSO+GD1 for 300 seconds at scenario D for 3 

cameras. Hybrid algorithms performs better than the pure counterparts. 

 

Figure 4.21: Shows 2 hybrid algorithms compared to their pure counterparts at 
scenario D for 3 cameras for 300 seconds. Figure 4.22 shows the results of running 
ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds at scenario D for 4 

cameras. Hybrid algorithms performs better than the pure counterparts. 
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Figure 4.22: Shows 2 hybrid algorithms compared to their pure counterparts at 
scenario D for 4 cameras for 500 seconds. 

At all of the tests hybrid algorithms performed better than their pure 

counterparts. The reason of this is some algorithms perform well in short times and 

perform bad in long times and vice versa. Combining the true algorithms give better 

results than all the other algorithms. 

4.4.4. Different Field of Views 

Figure 4.23 shows the results of applying same algorithms at different FOVs to 

the same solution set. FOVs are 45-60, 60-90 and 90-120 degrees. As expected as 

FOV increases algorithms give better results.    

 

Figure 4.23: Results of running same algorithms at different FOVs. 
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4.5. 2D Visualization of the Results 

Figure 4.24, Figure 4.25 and Figure 4.26 show the results of camera planning for 

the first scenarios A, B and C respectively. The left drawing shows the visibility of 

the volume (cross section at height 1m) before applying GD. The camera 

configurations are of the randomly chosen configurations. The visible areas are 

shown in dark gray. The right drawing illustrates the visible volume after the GD 

algorithm is run. As it can be seen, the visibility is increased after the optimization. 

 

 
 
Figure 4.24: 2D visualization of applying GD to the scenario A for 2 cameras a) At 

the left, there is the initial coverage of the cameras, b) At the right there is the 
coverage of the cameras after applying GD. 

 
 

Figure 4.25: 2D visualization of applying GD to the scenario B for 2 cameras a) At 
the left, there is the initial coverage of the cameras, b) At the right there is the 

coverage of the cameras after applying GD. 

 
 

Figure 4.26: 2D visualization of applying GD to the scenario C for four cameras a) 
At the left, there is the initial coverage of the cameras, b) At the right there is the 

coverage of the cameras after applying GD. 
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4.6. Discussion about Experiments 

We tested 6 algorithms on 4 different test scenarios. For more comparable 

results we gave equal amounts of times to the algorithms and the same initial 

solution sets. We tested the effect of GPU usage on the cost function and saw that the 

GPU version of the same cost functions works 20 times faster than the CPU version 

of the function in our test cases. Same GPU and CPU comparison tests were done 

with different voxel sizes as well. As the voxel size decreases and as the number of 

voxels inreases the ratio between the GPU and CPU running times increases. We 

made some tests about the ideal voxel size and ideal number of voxels. We checked 

the precison of the results. It is figured out that 6cm voxel size is both fast and 

precise enough and for our hardware and problem type. Recall that dimensions of the 

rooms are 14m×4m×3m, 14m×7m×3m, 20m×16m×3m and 20m×20m×3m. We used 

6cm voxel size at the rest of the tests. 

It is figured out that in the long run ABC gives better results than the rest of the 

algorithms. PSO1 is the second best algorithm in the long run. PSO1 is better than 

PSO. PSO keeps global best and personal best values but PSO1 keeps global best and 

global second best values as well as personal best values. So keeping glabal second 

best gave better results.  

PSO gets somewhat an average of the personal best, global best and velocity. 

But this does not always guarantee a good solution for our problem type. However 

ABC tries to imrove more promising solutions most and less promising least and 

gives better results. ABC seems a better choice if there are more than one good 

points or good solutions in the problem domain.  

ABC constantly tries to improve the current solutions it has. It randomly changes 

one of the parameters of the solution and keeps the new solution if it is better. Instead 

of changing only one parameter, ABC1 makes a perturbation around the solution. 

That changes all of the parameters slightly. But ABC still gave better results than 

ABC1. Maybe some further studies can be made to improve the improvement 

function of ABC.  

We used to different approaches at the w parameter of the PSO algorithm. First 

approach is to use a constant w value. We chose w=0.7 after triying many possible 

values in a loop. Other approach is to decrease w gradually by multiyplying it with a 

number k. We tried many k values but the first approach gave better results.   
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Some algorithms run good in the short and and some run good in the long run. 

This lead us to mix some algorithms which gave better results than their pure 

counterparts. ABC+GD1 performed better than ABC and PSO+GD1 performed 

better than PSO. Because GD1 performs better in short run. Therefore, before ABC 

and PSO finish running we applied GD1 to the best solution in the solution set of 

ABC and PSO. Hybrid approach gave better results than their pure counterparts.. 

 

 

 

 

   



 

45 

5. CONCLUSION 

In this study camera placement problem is converted to an optimization 

problem. A cost function for evaluating the visibility of a 3D space for the given 

camera configuration is defined. The cost function returns a value between 0 and 1 

which symbolizes the visibility ratio for the given camera configuration. Next by 

using several optimization algorithms, the cost function is optimized.  

Parallel computing using CUDA helped us to run our tests much faster. Without 

CUDA programming it would be really hard to make this study because of too long 

running times of the algorithms. CUDA made our calculations roughly 20 times 

faster. A fast and practical solution to the camera placement problem is proposed and 

a system for evaluating the visibility of a given configuration and some methods for 

automatically proposing camera location is implemented.  

We tried a bunch of algorithms for optimizing the cost function. These 

algorithms are ABC and a variant of it, PSO and a variant of it and Gradient Descent 

and a variant of it. Gradient Descent performs well in the short run but not long. PSO 

variant gives better result than PSO. ABC algorithm yields better results than the 

other algorithms. We also tried some hybrid algorithms. ABC+GD1 algorithm 

performed better than a pure ABC. 

Some addition constraints to the system can be added at the future studies. These 

could be: 

 

• Some points in the surveillance area can be more important than other points. 

An importance factor can be added to the points in the surveillance area. 

• Effective range of a camera constraint can be added so that a point will not be 

considered observed by a camera if it is in the field of view of the camera and if 

it is not in the effective range of the camera. 

• For some applications user of the system may want any point is visible by at 

least k cameras. Such a constraint can easily be added to the system if needed. 

 

Results obtained during the study seem promising. Because in reasonable 

amounts of time (like 5, 10 or 15 minutes) we obtained quite good practical 

solutions.   
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