

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

EFFICIENT CAMERA PLANNING FOR SURVEILLANCE

APPLICATIONS

MEHMET ARİF ŞEKERCİOĞLU

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

GEBZE

2016

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

EFFICIENT CAMERA PLANNING FOR

SURVEILLANCE APPLICATIONS

MEHMET ARİF ŞEKERCİOĞLU

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR

ASSIST. PROF. DR. YAKUP GENÇ

GEBZE

2016

T.C.

GEBZE TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

GÜVENLİK KAMERALARININ

YERLERİNİN ETKİN PLANLANMASI

MEHMET ARİF ŞEKERCİOĞLU

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

DANIŞMANI

YRD. DOÇ. DR. YAKUP GENÇ

GEBZE

2016

v

SUMMARY

Any multi-camera system requires placement decisions for its cameras to

achieve the best system performance. Automated planning algorithms attempt to find

the best placement and orientation of the cameras in such systems. This thesis

proposes an optimization-based approach maximizing the combined visible volume

in the scene. Calculating the visible volume is a computationally intensive process.

GPU’s are used to make this calculation practical. Some of the well-known

optimization methods (stochastic gradient descent, particle swarm optimization,

artificial bee colony algorithm and their variations) were implemented and tested on

real world scenarios. Experimental results show that the proposed approach can be

used in practical applications.

Key Words: Camera Planning; Camera Placement; Particle Swarm

Optimization; Artificial Bee Colony Optimization; Gradient Descent.

vi

ÖZET

Çok sayıda kamera içeren her sistem kamera yerlerinin doğru bir şekilde

belirlenmesine ihtiyaç duyar. Otomatik kamera yeri planlama algoritmaları

kameraların yerlerini ve konumlarını doğru şekilde tespit etmeye çalışır. Bu

çalışmada kamera planlaması optimizasyon tabanlı bir yaklaşımla ele alınarak

sahnedeki toplam görünür hacim maksimize edilmiştir. Görünür hacmin

hesaplanması oldukça maliyetli bir işlemdir. Bu işlemi hızlandırmak ve kullanılabilir

hale getirmek için algoritmalar önemli bir oranda GPU üzerinde koşturulmuştur.

Sıkça kullanılan optimizasyon metodlarının (gradient descent, parçacık sürü

optimizasyonu, yapay arı kolonisi algoritması ve bunların varyasyonları) bazıları bu

problemi çözmek için gerçeklenmiş ve gerçekçi senaryolarla test edilmiştir. Deneysel

sonuçlar bu metodun pratik olarak kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Kamera Planlaması; Parçacık Sürü Optimizasyonu; Yapay

Arı Kolonisi Algoritması; Gradyan İniş Algoritması.

vii

ACKNOWLEDGEMENTS

I want to thank my friends Abdullah Akay, Nurmuhammed Çimen and

Mustafa Tunalı and many others for their help and friendship during my study. I also

like to thank my family for their support and love.

viii

TABLE of CONTENTS

Page

SUMMARY v

ÖZET vi

ACKNOWLEDGEMENTS vii

TABLE OF CONTENTS viii

LIST OF ABBREVIATIONS AND ACRONYMS x

LIST OF FIGURES xi

LIST OF TABLES xv

1. INTRODUCTION 1

1.1. Camera Planning 1

2. BACKROUND 3

2.1. Art Gallery Problem 3

2.1.1. Art-Gallery Problem in Three Dimensions 6

2.2. 2D Version of the Camera Placement Problem 8

2.3. Sensor Planning 10

3. METHOD 12

3.1. Details of the Computation 14

3.1.1. Parallelization via CUDA 16

3.2. Algorithms Used for Optimizing the Cost Function 16

3.2.1. Gradient Descent 17

3.2.2. Particle Swarm Optimization 21

3.2.3. Artificial Bee Colony 23

3.2.4. Run Time Analysis of the Method 26

4. EXPERIMENTS 27

4.1. Test Scenarios 27

4.2. CUDA and CPU Speed Comparison 29

4.3. Random Initialization and a Better Initialization 31

4.4. Tests with Different Scenarios 32

4.4.1. Diffrent Voxel Sizes 36

4.4.2. w Parameter of PSO Algorithm 36

ix

4.4.3. Mixture of Algorithms 39

4.4.4. Different Field of Views 41

4.5. 2D Visualization of the Results 42

4.6. Discussion about Experiments 43

5. CONCLUSION 45

REFERENCES 46

BIOGRAPHY 49

x

LIST of ABBREVIATIONS and ACRONYMS

Abbreviations

and Acronyms

Explanations

2D : 2 dimensional

3D : 3 dimensional

ABC : Artificial Bee Colony Algorithm

CPU : Central processing unit

FOV : Field of view

GD : Gradient Descent

GPU : Graphics processing unit

GTU : Gebze Technical University

ms : millisecond

PSO : Particle Swarm Optimization Algorithm

xi

LIST of FIGURES

Figure No: Page

 2.1: 2D polygon for the proof of 2D art-gallery problem. 4

 2.2: Triangulation of the polygon given in 2.1 into rectangles. 4

 2.3: Starting with a triangle and labeling its vertices. 5

 2.4: Complete the labeling of vertices according to 2.3 5

 2.5: Positions of the guards for observing the entire space. 6

 2.6: At Octoplex point b cannot be observed by any of the guards even if

there is a guard at each vertex. 7

 2.7: Dividing the region into minimum number of rectangular regions

according to Pålsson’s algorithm. 8

 2.8: Corners of each rectangle are possible camera locations. If the diagonal

length is greater than the effective range of the camera, a further

division is required. Effective range is the distance that the camera can

observe. It is a constraint of the algorithm. 8

 2.9: Further division may be required for effective camera range. At the left

rectangle diagonal 𝒅𝒅𝒅𝒅 is greater than the effective range of the camera.

At the right rectangle, after the division, diagonal 𝒅𝒅𝒅𝒅 is within the

effective range of the camera. 9

 2.10: Further division may be required for convenient camera angle. At the

left rectangle diagonal angle 𝜶𝜶𝜶𝜶 is greater than the FOV of the camera.

At the right rectangle after the division 𝜶𝜶𝜶𝜶 is less than the FOV of the

camera. 9

 3.1: A voxel is visible if its center is in FOV of a camera and if there is no

obstacle between that camera and the voxel. 12

 3.2: Spherical coordinate system used to formulate the optimization

problem. 13

 3.3: Rotation matrices per each axis. 14

 3.4: Field of view of a camera (in 2D and 3D). 15

 3.5: Gradient Descent steps are shown. At each step solution gets closer to

the minimum in the center 18

 3.6: Discontinuity of cost function. When moving from point a to point c

xii

visibility suddenly becomes zero. 19

 3.7: Shows value of the cost function as the location of the camera changes

in one direction like in 3.6 from point b to point c. 19

 3.8: Cameras looking at the same direction still look at the same direction at

the after applying GD. 20

 3.9: Elements of the Artificial Bee Colony Algorithm. 24

 4.1: Test Scenario A for the optimization algorithms. 28

 4.2: Test Scenario B for the optimization algorithms. 28

 4.3: Test Scenario C for the optimization algorithms. 29

 4.4: Test Scenario D for the optimization algorithms. 29

 4.5: Speed comparison of CPU and GPU versions of the cost function we

use at the experiments at scenario C for four cameras. Numbers at both

axes logarithmic. 30

 4.6: CPU and GPU speed comparison of the cost function for 2000000

voxels at scenario C for four cameras. 30

 4.7: Speed ratios of GPU and CPU as the number of voxels increases for

4.5. 31

 4.8: Results of running six different algorithms for scenario A with one

camera for 30 seconds. 4.9 shows results of running six algorithms at

scenario A for 2 cameras for 90 seconds. Although four algorithms

converged to visibility ratio 1 in very short amount of times we see that

PSO1 converged first. The tests at 4.9 and 4.10 are trivial. 32

 4.9: Results of running 6 different algorithms for scenario A with 2 cameras

for 90 seconds. 4.10 shows the results of running six algorithms at

scenario B for 2 cameras for 150 seconds. We see that ABC and PSO1

are the best and second best algorithms for this test respectively. 33

 4.10: Results of running 6 different algorithms for scenario B with 2 cameras

for 150 seconds. 4.11 shows the results of running six algorithms at

scenario B for 3 cameras for 240 seconds. We see that ABC and PSO1

are the best and second best algorithms for this test respectively. 33

 4.11: Results of running six different algorithms for scenario B with 3

cameras for 240 seconds. 4.12 shows the results of running six

algorithms at scenario C for 3 cameras for 600 seconds. We see that

xiii

ABC and PSO1 are the best and second best algorithms for this test

respectively. 34

 4.12: Results of running six different algorithms for scenario C with 3

cameras for 6000 seconds. 4.13 Shows the results of running six

algorithms at scenario C for 4 cameras for 900 seconds. We see that

ABC and PSO1 are the best and second best algorithms for this test

respectively. 34

 4.13: Results of running six different algorithms for scenario C with 4

cameras for 900 seconds. 4.14 shows the results of running six

algorithms at scenario C for 5 cameras for 900 seconds. We see that

ABC and GD1 are the best and second best algorithms for this test

respectively. 35

 4.14: Results of running six different algorithms for scenario C with 5

cameras for 1400 seconds. 35

 4.15: Same tests with different voxel sizes. Number of voxels are logarithmic. 36

 4.16: Constant and dynamic w parameter at PSO. 37

 4.17: Constant and dynamic w parameter at PSO. 38

 4.18: Value of the w parameter during the tests at 4.17. 38

 4.19: Shows 2 hybrid algorithms compared to their pure counterparts at

scenario C for 3 cameras for 300 seconds. 4.19 shows the results of

running ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds

at scenario C. Hybrid algorithms performs better than the pure

counterparts. 39

 4.20: Shows 2 hybrid algorithms compared to their pure counterparts at

scenario C for 4 cameras for 500 seconds. 4.20 shows the results of

running ABC and ABC+GD1 and PSO and PSO+GD1 for 300 seconds

at scenario D for 3 cameras. Hybrid algorithms performs better than the

pure counterparts. 40

 4.21: Shows 2 hybrid algorithms compared to their pure counterparts at

scenario D for 3 cameras for 300 seconds. 4.21 shows the results of

running ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds

at scenario D for 4 cameras. Hybrid algorithms performs better than the

pure counterparts. 40

xiv

 4.22: Shows 2 hybrid algorithms compared to their pure counterparts at

scenario D for 4 cameras for 500 seconds. 41

 4.23: Results of running same algorithms at different FOVs. 41

 4.24: 2D visualization of applying GD to the scenario A for 2 cameras. At the

left, there is the initial coverage of the cameras and at the right there is

the coverage of the cameras after applying GD. 42

 4.25: 2D visualization of applying GD to the scenario B for 2 cameras. At the

left, there is the initial coverage of the cameras and at the right there is

the coverage of the cameras after applying GD. 42

 4.26: 2D visualization of applying GD to the scenario C for four cameras. At

the left, there is the initial coverage of the cameras and at the right there

is the coverage of the cameras after applying GD. 42

xv

LIST of TABLES

Table No: Page

 3.1: Calculation of cost function based on the total visible volume. 13

 3.2: The code for checking if a voxel is in the camera field of view. 15

 3.3: Pseudo-code of the Gradient Descent algorithm used in the

experiments. 20

 3.4: Pseudo-code of the GD1 algorithm used in the experiments. 21

 3.5: Pseudo-code of the PSO algorithm used in the experiments. 22

 3.6: Outline of the ABC used in the experiments. 24

 3.7: Pseudo-code of the ABC algorithm used in the experiments. 25

 4.1: Comparison of random initialization and a Not-Random initialization

technique for different scenarios and different number of cameras. 32

 4.2: Standard Deviation of the Results of Algorithms for different

scenarios and for different number of cameras. 36

1

1. INTRODUCTION

Camera planning is important for any multi-camera system as the placement of

cameras can be a major cause of bad performance. Traditional approaches require an

expert to make the placement decisions. As the multi-camera systems become more

widespread finding experts capable of planning with multiple constraints might be

difficult.

Automating the planning process can be beneficial for better system

performance. In very complex systems better results can be obtained when compared

to the traditional planning methods. Or when some extra constraints are needed,

automating the camera planning process can yield better results than the traditional

planning methods.

1.1. Camera Planning

This thesis addresses the problem of finding the optimal placement of cameras in

a three dimensional (3D) volume with a complex shape and in which there are

obstacles. Given n cameras with limited angles of views, the system tries to place

those n cameras optimally so that the coverage of the cameras is maximum in terms

of volume.

Camera planning can be posed as an optimization problem and its solution can

be used for camera placement. Given the characteristics of the three dimensional

(3D) workspace and the parameters of the cameras, the visible volume can be

maximized. This thesis presents an optimization-based method camera planning

method that is fast and practical. We first define a cost function defining the

goodness of the placement of the cameras where 1 represents total visibility of the

3D volume we want to place the cameras, and 0 means no visibility. This function

takes the 3D scene, a list of obstacles and a list of cameras as input. Each camera has

5 parameters (three for the location and two for the pan and tilt angles of the camera).

The cost function optimized by using well-known optimization algorithms. Gradient

descent, particle swarm optimization and artificial bee colony optimization

algorithms and some variations implemented and tested. The tests have shown that

the cost function can be optimized.

2

We have calculated the visibility of the volume by dividing the workspace into

cubic voxels and by counting the visible voxels. After finding the number of visible

volumes we divided that number to the number of total voxels. Which we get is a

number between 0 and 1 which shows the visibility ratio of the overall 3D volume.

This is an approximate solution but when the number of voxels increase the result

converges to exact solution.

CUDA implementation of this calculation made it possible calculate the cost

function for real world scenarios much faster than the CPU based implementation.

Extensive experimental validation has shown that the proposed method is efficient

and yields good results.

3

2. BACKGROUND

For a multi-camera system, camera planning places the cameras in a best

configuration based on a metric. Metric is the maximum coverage. Camera planning

was studied before both theoretically and practically in computational geometry and

sensor planning.

There is a family of problems called art gallery problems (AGP). Studies about

AGP forms the theoretical part of the studies about camera planning. The simplest

version of this problem tries to find the minimum number of guards sufficient to see

every point of the interior of an n-vertex simple polygon. In art gallery problem the

goal is to place guards that is capable of seeing everywhere around them whereas in

camera placement problem the goal is to place cameras that has a limited angle of

view. So camera placement problem can be considered as a specific version of the

art-gallery problem.

The method we use is a costly method. We figured out that we can use GPU at

our system to make it parallel and faster. Many algorithms have been implemented

on GPU’s in the recent years and these worked several times faster than the CPU

based versions [1]. Hence, implemented the cost function in GPU in order to make

the system run faster.

2.1. Art Gallery Problem

In 1973 a mathematician called Victor Klee asked the following question [2],

[3]: What is the minimum number of guards who together can watch an entire art-

gallery?

Starting with the previous question a family of problems and theorems were

proposed. Those family of problems are called art-gallery problems [4].

Camera placement problem can be regarded as a special version of the art-

gallery problem. Because in art-gallery problem guards assumed to see everywhere

around themselves but in our case surveillance cameras have a limited angle of view.

In 1975 Vaclav Chvatal proposed a theorem for the art-gallery problem called the

art-gallery theorem. That theorem gives an upper bound for the minimum number of

guards [5]. ⌊𝑛𝑛
3
⌋ guards are sufficient and sometimes necessary for watching an entire

art-gallery which is a 2D polygon with n vertices.

4

In 1975 Steve Fisk gave a shorter and easier proof of the Chvatal’s art-gallery

theorem [6]:

Figure 2.1: 2D polygon for the proof of 2D art-gallery problem.

• Step 1: Divide the polygon (art-gallery) into triangles by adding non-crossing

diagonals. The main point of triangulation is that every triangle will be

observed by a guard [7].

Figure 2.2: Triangulation of the polygon given in Figure 2.1 into rectangles.

• Step 2: Start with any of the triangles and label a, b and c to its vertices.

5

Figure 2.3: Starting with a triangle and labeling its vertices.

• Step 3: Continue labeling a, b or c to the vertices of other triangles such that

each triangle has a, b and c type (or color) of vertices.

Figure 2.4: Complete the labeling of vertices according to Figure 2.3.

• Step 4: Let number of a’s is 𝑛𝑛𝑎𝑎, number of b’s is 𝑛𝑛𝑏𝑏 and number of c’s is 𝑛𝑛𝑐𝑐 at

the labeled triangle. Let 𝑛𝑛𝑎𝑎 ≤ 𝑛𝑛𝑏𝑏 ≤ 𝑛𝑛𝑐𝑐 (always there will be an ordering). Put

the guards to the vertices of type a, that is to the one that has the smallest

number. Then 𝑛𝑛𝑎𝑎 guards are sufficient to protect the gallery. Because each

triangle has a vertex of type a. So we can say that 𝑛𝑛𝑎𝑎 ≤ ⌊𝑛𝑛
3
⌋. This completes the

proof.

6

Figure 2.5: Positions of the guards for observing the entire space.

In 1983 it was proved that [8] if the shape of the 2D polygon is orthogonal at

most ⌊𝑛𝑛
4
⌋ guards are needed to observe each point.

2.1.1. Art-Gallery Problem in Three Dimensions

For the 2D version of the problem, it was proved that at most ⌊𝑛𝑛
3
⌋ guards would

always be more than enough for watching the entire gallery. However, for a 3D art-

gallery problem which is represented as a polyhedron, putting a guard at each vertex

will not guarantee that each point of the gallery is observed. An example for this is

the octoplex [3]. Octoplex is constructed as follows. Start with a 20×20×20 cube.

Remove 12×6×20 rectangular prisms from front and back faces. Remove 20×6×6

rectangular prisms from top and bottom faces. Remove 3×20×6 prisms from left and

right faces. What is left is the octoplex (see Figure 2.6).

7

Figure 2.6: At Octoplex point b cannot be observed by any of the guards even if there
is a guard at each vertex.

Octoplex [3] has 56 corners and 30 walls. Some points in the octoplex cannot be

observed even if a guard is placed at each vertex. An example of such a point is point

b at Figure 2.6. Point b, the center of octoplex, is invisible from all vertices. So there

is no such solution for the 3D version of the problem related to the number of

vertices like the 2D version of the problem.

There is a study that proposed a method for finding an upper bound on the

number of guards for orthogonal polyhedra [9]. The method divides the orthogonal

polyhedron into rectangular prisms. Each corner of a prism can be a candidate place

for a guard. Next the number of candidate corners are minimized so that entire

volume is observed by minimum number of guards.

Note that although art-gallery problem has many similarities with the camera

placement problem, techniques for solving art-gallery problem is not enough to solve

camera placement problem. Actually camera placement problem can be seen as a

special version of the art-gallery problem. Because at art-gallery problem guards

assumed to see everywhere around them whereas at camera placement problem

guards have a limited angle of view.

8

2.2. 2D Version of the Camera Placement Problem

There is a study that deals with the 2D version of the camera placement problem

on an orthogonal polygon [10]. The paper proposes a method called rectangular

algorithm. This method divides the 2D region into a minimum number of rectangles

each of which in turn is divided into two triangles. Corners of these rectangles

obtained at Figure 2.7 will be possible camera locations.

Figure 2.7: Dividing the region into minimum number of rectangular regions
according to Pålsson’s algorithm.

Figure 2.8 below shows the next step after obtaining the rectangles. Each

rectangle will be divided into triangles and each triangle will be observed by a

camera.

Figure 2.8: Corners of each rectangle are possible camera locations. If the diagonal
length is greater than the effective range of the camera, a further division is required.

Effective range is the distance that the camera can observe. It is a constraint of the
algorithm.

Figure 2.9 shows the division of a rectangle into 2 so that the new diagonals of

the new rectangles are within the effective range of the camera. If the diagonal angle

9

𝛼𝛼1 of the triangle is greater than the field of view (FOV) of the camera, a further

division is required.

Figure 2.9 Further division may be required for effective camera range a) At the left
rectangle diagonal 𝑑𝑑1 is greater than the effective range of the camera, b) At the right
rectangle, after the division, diagonal 𝑑𝑑2 is within the effective range of the camera.

Figure 2.10 below shows the division of a rectangle into so that the diagonal

angles 𝛼𝛼2 of the new rectangles is less than the FOV of the camera.

Figure 2.10: Further division may be required for convenient camera angle a) At the
left rectangle diagonal angle 𝛼𝛼1 is greater than the FOV of the camera, b) At the right

rectangle after the division 𝛼𝛼2 is less than the FOV of the camera.

After dividing the region into rectangles a greedy strategy is used. At each step

best rectangle corner for improving the coverage is found and added to the system.

That is at each step a camera is placed at a corner of a rectangle such that coverage

increase is maximum.

At the last part of the algorithm redundant cameras are removed by starting to

check with the camera that has the least coverage.

Note that this study deals with the 2D version of the camera placement problem

where we deal with the 3D case. Triangulation or similar methods does not work for

the 3D case. Because at when a rectangular prism is divided into 2 triangular prisms

a) b)

a) b)

10

we cannot observe those triangular prisms with one camera as in the 2D case. We

need some other methods to observe them.

2.3. Sensor Planning

Camera placement problem is also studied as a branch of sensor planning.

Studies about sensor planning forms the practical part of the studies about camera

planning.

There is a study that divides the 2D space into grids and uses linear

programming to optimize the cost function. Their 2D spaces are simple rectangular

regions [11]. Their solution tries to ensure that each grid is observed by a camera and

the minimum number of cameras are used. They deal with simple rectangular spaces.

There is a study that deals with the 2D camera placement problem for achieving

maximum coverage of the 2D space [12]. They use greedy search, dual sampling and

randomized approaches for optimizing their cost function. Study of [12] is a

simplified and 2D version of our study.

There is a study that deals with 3D camera placement problem. But their cost

function does not try to find the maximum coverage but they place 3D cylindrical

objects randomly and next try to place the cameras so that maximum coverage for

the cylindrical objects is found [13]. Their cost function is an exact cost function that

returns the exact visibility of the 3D space. They put some 3D objects to the 3D

space and their cost functions returns the visibility of those randomly put 3D objects.

They use simulated annealing for optimizing the cost function. Their system works

for low dimensional spaces and they tested their system with 2 and 3 cameras.

There is a study that solves the 2D version of the problem as an optimization

problem. They divide the 2D area into grids [14]. Next they create camera locations

and orientations. They then chose n cameras from the previously generated ones

using a branch and bound strategy. This is a semi-automatic method for camera

planning. In our study the system finds the locations and orientations automatically.

Also this method solves the 2D version of the problem whereas we deal with the 3D

case.

There is a study that divides the 2D workspace into grids and uses binary integer

programming for optimizing the cost function [15]. Their workspaces are 2D and

much simpler than the ones we used.

11

There is a study that deals with the 3D camera placement problem. Their cost

function is a probabilistic function that is does not find the coverage of the space

exactly [16]. They use binary integer programming to optimize the cost probabilistic

cost function.

There is a study that deals with the 2D camera placement problem. They use

particle swarm (PSO) optimization to optimize their cost function [17]. Their cost

function gives more importance to some critical areas. We also used PSO as one of

our optimization algorithms. However, our space is 3D.

In summary there are many theoretical work about the art-gallery problem.

These do not solve the camera placement problem fully. There are also studies about

sensor planning. These are more practical solutions when compared with the studies

on AGP. These studies mostly deal with the 2D camera planning problem. There are

also some sensor planning studies about the 3D camera planning. Their cost

functions are mostly probabilistic cost functions whereas our cost function is exact.

12

3. METHOD

A cost function which determines the visibility of a given camera configuration

for a given 3D space with obstacles is defined. Total visible volume that is seen by

the cameras is ⋃ 𝑉𝑉𝑐𝑐𝑖𝑖
𝑖𝑖=1
𝑛𝑛 . Here 𝑉𝑉𝑐𝑐𝑖𝑖 is the volume that is observed by camera 𝑖𝑖. This cost

function will be optimized so that the union of the volumes seen by the cameras is

visible. Which can be expressed mathematically with the equation below:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) = �𝑉𝑉𝑐𝑐𝑖𝑖(𝜃𝜃𝑖𝑖)
𝑖𝑖=1

𝑛𝑛

(3.1)

Here 𝜃𝜃𝑖𝑖 is the parameters of camera 𝑖𝑖.

When computing the visible volume first the volume is divided into small cubes

called voxels. A voxel is visible if it is in the field of view of any of the cameras and

if there is no obstacle between the camera and voxel (see Figure 3.1).

Figure 3.1: A voxel is visible if its center is in FOV of a camera and if there is no
obstacle between that camera and the voxel.

13

Obstacles are defined as triangular fields. In order to define an obstacle in the

system 3 points were defined. A wall for example is made up of two triangular

obstacles. Pseudo code at Table 3.1 summarizes the cost function.

Table 3.1: Calculation of cost function based on the total visible volume.

Function isVisible(voxel, cameraList, obstacleList):
 for camera in cameraList :
 if voxel is in field of view of camera:
 occlusion=False
 for obstacle in obstacleList:
 if obstacle is between camera and voxel:
 occlusion=True
 break
 if not occlusion:
 return True
 return False

Function costFunction(voxelList, cameraList, obstacleList):
 numberOfVisibleVoxels=0
 for voxel in voxelList :
 if isVisible(voxel, cameraList, obstacleList):
 numberOfVisibleVoxels++
 return numberOfVisibleVoxels/length(voxelList)

Cost function returns a number between 0 and 1. 0 means no voxel is visible and

1 means all voxels are visible by at least one camera. Cost function takes the list of

voxels, list of obstacles and list of cameras as parameter. Each camera has 5

parameters which are x, y, z locations of the camera center and spherical angles of

the camera orientation. Spherical angles are horizontal (θ) and vertical (φ) [18] (see

Figure 3.2).

Figure 3.2: Spherical coordinate system used to formulate the optimization problem.

14

3.1. Details of the Computation

When computing the visibility of a voxel from a camera point, firstly the axes

are rotated and translated so that the camera point becomes the origin of the axes and

the direction of the camera becomes the new x axis. The rotation and translation

process is as follows [19]:

Figure 3.3: Rotation matrices per each axis.

• Translate the voxel point so that camera point becomes the new origin. That is

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.

• Rotate the voxel point around the z axis. Rotation angle is the horizontal angle of

the camera. That is 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑧𝑧 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.

• Rotate the voxel point around the y axis. Rotation angle is the vertical angle of

the camera. That is 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑦𝑦 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.

After rotation and translation, it is needed to be checked if the point is in the field of

view of the camera. While computing the visibility of voxels horizontal and vertical

field of view (FOV) angles assumed to be constant for all the cameras. We used 60˚

and 45˚ for horizontal and vertical FOV angles respectively in most of our

experiments.

15

Figure 3.4: Field of view of a camera a) 2D version, b) 3D version.

In order to decide if a point is in FOV or not we will check the horizontal and

vertical angles between the voxel and camera. After translation and rotation if voxel

x is less than 0 it means the voxel is at the back of the camera which means voxel is

not in the FOV of the camera. Next we computed the horizontal and the vertical

angles between the voxel and camera. If the angles are less than the half of horizontal

and vertical FOV angles-that is 30 and 22.5 respectively - the point is in the FOV of

the camera else, it is not in the FOV. The pseudo code of the above process is seen in

Table 3.2.

Table 3.2: The code for checking if a voxel is in the camera field of view.

Function isInFOV(voxel,camera):
 voxel=voxel-camera # translation
 voxel= Ry*(Rz*voxel) #rotation
 if voxel.x < 0:
 return False
 x=voxel.y/voxel.x
 y=voxel.z/voxel.x
 if abs(x)<=tan30 and abs(y)<= tan22.5 :
 #30 and 22.5 are half of the FOV angles
 return True
 return False

Now the process of finding the occlusions will be explained. We have an

obstacle which consists of 3 points 𝑉𝑉1,𝑉𝑉2 and 𝑉𝑉3 and a line segment representing the

camera visibility which starts with camera point 𝑃𝑃0 and ends at voxel 𝑃𝑃1. We want to

know if [𝑃𝑃0, 𝑃𝑃1] intersects with the triangle 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3. Let’s start with determining if

there is an intersection between the triangle and line segment. Let n be the normal

vector of the plane determined by the triangle 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3. Let

𝑟𝑟1 =
𝑛𝑛 ⋅ (𝑉𝑉0 − 𝑃𝑃0)
𝑛𝑛 ⋅ (𝑃𝑃1 − 𝑃𝑃0) (3.2)

a) b)

16

. If 𝑟𝑟1 ≥ 0 that means line segment and the plane determined by the triangle

intersects somewhere. Else they don’t intersect and we are done. So now let’s deal

with the case that there is an intersection between the plane determined by the

triangle and the line segment. The equation of the plane is given by equation (3.3).

𝑉𝑉(𝑠𝑠, 𝑡𝑡) = 𝑉𝑉0 + 𝑠𝑠(𝑉𝑉1 − 𝑉𝑉0) + 𝑡𝑡(𝑉𝑉2 − 𝑉𝑉0) = 𝑉𝑉0 + 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡

(3.3)

If 𝑠𝑠 + 𝑡𝑡 ≤ 1 that means intersection point is in the triangle else intersection point is

outside of the triangle. s and t are given by the equations (3.4) and (3.5).

s =
(u ⋅ v)(w ⋅ v) − (𝑣𝑣 ⋅ 𝑣𝑣)(𝑤𝑤 ⋅ 𝑢𝑢)

(u ⋅ v)2 − (𝑢𝑢 ⋅ 𝑢𝑢)(𝑣𝑣 ⋅ 𝑣𝑣)

(3.4)

t =
(u ⋅ v)(w ⋅ u) − (𝑢𝑢 ⋅ 𝑢𝑢)(𝑤𝑤 ⋅ 𝑣𝑣)

(u ⋅ v)2 − (𝑢𝑢 ⋅ 𝑢𝑢)(𝑣𝑣 ⋅ 𝑣𝑣)

(3.5)

So if 𝑠𝑠 + 𝑡𝑡 ≤ 1 that means there is an occlusion and the voxel is not visible by that

camera [20].

3.1.1. Parallelization via CUDA

Counting the number of visible voxels is a process that can be fully parallelized.

We used CUDA for making the calculations faster. Visibility of each voxel was

determined by a CUDA thread. CUDA usage greatly improved the performance of

the system as will be seen later. CUDA implementation worked nearly 20 times

faster than the CPU implementation.

3.2. Algorithms Used for Optimizing the Cost Function

We use Artificial Bee Colony Algorithm (ABC), Particle Swarm Optimization

Algorithm (PSO), Gradient Descent (GD) and some variations of those algorithms to

optimize the cost function. We compared those algorithms in terms of accuracy of

the results and time in the experiments section.

17

Our first attempt to optimize the cost function is using the Gradient Descent

Algorithm. We placed the cameras randomly and gave them random initial angles.

Next we applied Gradient Descent [21], [22] for reaching to local optima.

ABC and PSO require a number of initial solutions. At each iteration some of

the solutions are improved and at the end best solution among the set of solutions is

the result of the algorithm. GD requires one solution to work on but for more

comparable results we created a set of initial solutions and chose the best one among

them and apply GD to that solution.

Optimization algorithms were run in two ways: First a number of steps and the

second is a fix time period like 300 seconds. We chose the more convenient one for

each different test. At some tests we use time as the stop criteria and at some other

we use number of iterations as the stop criteria.

3.2.1. Gradient Descent

Gradient Descent also known as steepest descent is a first-order optimization

algorithm. It is called a first-order algorithm because the first derivative of the

function is used. GD takes steps proportional to the negative direction of the

gradient and tries to reach the local minima.

Gradient Descent defines the step from point 𝑎𝑎 to 𝑏𝑏 as follows:

𝑏𝑏 = 𝑎𝑎 − 𝛾𝛾∇𝐹𝐹(𝑎𝑎)

(3.6)

Where 𝛾𝛾 is a positive number and ∇𝐹𝐹(𝑎𝑎) is the gradient of the function 𝐹𝐹 at point 𝑎𝑎.

𝛾𝛾 is allowed to change at every step. GD algorithm stops when a maximum CPU

time exceeded or when a number of steps exceeded or when the improvement

between two steps is less than a number.

18

Figure 3.5: Gradient Descent steps are shown. At each step solution gets closer to the
minimum in the center.

Note that in order to apply Gradient Descent we need 𝐹𝐹 to be defined at 𝑎𝑎 and

again it needs to be differentiable in a neighborhood of 𝑎𝑎. In order for a function be

differentiable at a point 𝑎𝑎 it must be continuous at that point. In our case the function

which we will apply GD is our cost function which returns the visibility of the

workspace. Our cost function is not a mathematical function. It does not have a

mathematical expression. Therefore, we used discrete differentiation technique [23].

That is for differentiating the 𝐹𝐹 with respect to 𝑥𝑥 we used equation () below.

𝜕𝜕
∂x

 F(x, y, z) =
F(x + h, y, z) − F(x, y, z)

h

(3.7)

Where h is a small real number. We chose different h values for parameters related to

angles and distances, like π/50 and 0.2 (Angles are expressed in terms of radian and

distances are expressed in terms of meters.) respectively.

The cost function we use is not continuous at every point. Because there are

obstacles in the system. Figure 3.6 shows an example of the discontinuity of the cost

function. At the left part there is a camera at a side of a room which can observe most

of the room. At the right part of the figure, the camera location changed slightly and

the camera sees nothing.

19

Figure 3.6: Discontinuity of cost function. When moving from point a to point c
visibility suddenly becomes zero.

Figure 3.7 below shows the change of the value of the cost function in a room

similar to the one in Figure 3.6. As the location of the camera changes in one

direction, first the value increases constantly next it decreases to zero suddenly. In

order to draw this function, we changed the x direction of the camera 0.001 at each

iteration. As can be seen from the graph cost function is not continuous.

Figure 3.7: Shows value of the cost function as the location of the camera changes in
one direction like in Figure 3.6 from point b to point c.

Because the cost function is discontinuous, it is possible to step to a point where

the visibility of the cost function decreases. For example, at Figure 3.6 suppose

camera started with the position and GD computed 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑏𝑏)
|𝑎𝑎−𝑏𝑏|

 and saw that the value

of the cost function decreases as it goes through the point b. So it steps at the

opposite direction and came to the point c, where 𝐹𝐹(𝑐𝑐) = 0. At the next step it will

check 𝐹𝐹(𝑐𝑐)−𝐹𝐹(𝑑𝑑)
|𝑐𝑐−𝑑𝑑|

= 0. Therefore, it will not see a need for making a step and stop.

Because of this problem of ending up with an unwanted point, we needed to

check both directions when having a new step. That is when we are at point a GD

computes both 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑏𝑏)
|𝑎𝑎−𝑏𝑏|

 and 𝐹𝐹(𝑎𝑎)−𝐹𝐹(𝑐𝑐)
|𝑎𝑎−𝑐𝑐|

 and choses the best direction or stops.

0

0,2

0,4

0,6

0,8

1

V
al

ue
 o

f t
he

 C
os

t F
un

ct
io

n

Camera Location Change In One Direction

Value of the Cost Function

20

We run GD in two ways. First one is running the algorithm for a fix amount of

time and the second one is running it for a certain number of steps. Table 3.3 shows

the pseudo-code of the GD.

Table 3.3: Pseudo-code of the Gradient Descent algorithm used in the experiments.

#Assume F is the cost function
Function step(x_old):
 x_temp=x_old.copy()
 for i in range(size(x_old)):
 x_temp2=x_old.copy()
 x_temp3=x_old.copy()
 x_temp2[i]+=h
 x_temp3[i]-=h
 d1,d2,d3=F(x_old),F(x_temp2),F(x_temp3)
 if d2<=d1 and d2<=d3 :
 x_temp[i]+=h
 else if d3<=d1 and d3<=d2 :
 x_temp[i]-=h
 return x_temp

Function GD(x, stepLimit):
 # Assume x has 2 dimensions
 x_old=x
 x_new=step(x_old)
 numberOfSteps=0
 while numberOfSteps< stepLimit:
 x_old=x_new
 x_new=step(x_old)
 numberOfSteps++
 return x_new

3.2.1.1. A Modified GD (GD1)

Consider there are two cameras looking at the same direction from same place as

in figure below.

Figure 3.8: Cameras looking at the same direction still look at the same direction at
the after applying GD.

21

In that case, after applying GD cameras will continue looking at the same

direction. In order to overcome such situations, we modified the GD algorithm

slightly such that when making a new step it changes the parameters gradually. The

pseudo-code of this algorithm is shown at Table 3.4. This algorithm gave slightly

better results than GD (see experiments section).

Table 3.4: Pseudo-code of the GD1 algorithm used in the experiments.

#Assume F is the cost function
Function step2(x_old):
 for i in range(size(x_old)):
 x_temp2=x_old.copy()
 x_temp3=x_old.copy()
 x_temp2[i]+=h
 x_temp3[i]-=h
 d1,d2,d3=F(x_old),F(x_temp2),F(x_temp3)
 if d2<=d1 and d2<=d3:
 x_old[i]+=h
 else if d3<=d1 and d3<=d2:
 x_old[i]-=h
 return x_old

Function GD1(x, stepLimit):
 # Assume x has 2 dimensions
 x_old=x
 x_new=step2(x_old)
 numberOfSteps=0
 while numberOfSteps< stepLimit:
 x_old=x_new
 x_new=step2(x_old)
 numberOfSteps++
 return x_new

3.2.2. Particle Swarm Optimization

Particle swarm optimization [24] (PSO) mimics the food searching behavior of a

group of animals. Each member of the group corresponds to a solution of the

problem – in our case it is a list of parameters for the cost function which returns the

visibility of the system.

Each particle in the system takes steps and tries to improve the quality of the

current solution. When taking a new step each particle gets somewhat a composition

of the current velocity, a vector from the current position to the particle’s best

position achieved that far and another vector from current position to the system’s

best solution achieved so far. Where these components multiplied with random

22

numbers between 0 and 1. Below is the pseudo-code of the PSO algorithm [25], [26],

[27].

𝑣𝑣[𝑖𝑖] = 𝑤𝑤𝑤𝑤[𝑖𝑖] + 𝑐𝑐1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖]) +

𝑐𝑐2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔[𝑖𝑖] − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖])
(3.8)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣 (3.9)

Table 3.5 Pseudo-code of the PSO algorithm used in the experiments.

Initialize particles
while not maximumIteration exceeded:
 for each particle:
 calculate fitness value
 if fitness value better than fitness of pBest: #personal best value
 pBest=particle
 gBest=best of pBests #global best
 for each particle :
 calculate particle velocity according to equation (3.8)
 update the position of the particle according to equation (3.9)

PSO starts by initializing the particles. Algorithm runs until the maximum

iteration number is reached. At each iteration, PSO computes the cost values of the

particles and if the new cost value of a particle is better than the personal best of a

particle, PSO updates the personal best of the particle. After updating the pBest

values of the particles, PSO computes gBest. That is the best of the pBest values of

each particle. Next PSO computes the velocity vector for each particle according to

Equation (3.8). 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a random number between 0 and 1. 𝑐𝑐1 & 𝑐𝑐2 are constant

numbers. These can be considered as the parameters of PSO. i parameter at Equation

(3.8) is the ith parameter of the velocity vector v.

3.2.2.1. PSO Parameter Selection

Using nested loops, we checked many values for 𝑤𝑤, 𝑐𝑐1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2. We

experimentally found that 𝑤𝑤 = 0.7, 𝑐𝑐1 = 0.95 𝑎𝑎𝑛𝑛𝑛𝑛 𝑐𝑐2 = 0.95 gives better results

than the other values.

We also tried dynamic numbers for the 𝑤𝑤 parameter. For example, we started

with 𝑤𝑤 = 1 and at each iteration of the algorithm, we multiplied 𝑤𝑤 with a number.

That is 𝑤𝑤 = 𝑤𝑤 ∗ 𝑘𝑘. 𝑘𝑘 is a number like 0.95. Many different k values were tried and

23

we compared the results with constant. The resulting graphs are in the experiments

section.

3.2.2.2. A Variation of PSO (PSO1)

In order to explore the search space more we used global second best and global

best interchangeably. This modification gave slightly better results than the original

algorithm. Results are in the experiments section. In this variation of the PSO we

used global second best and global best randomly at Equation (3.3) above. New form

of equation is below.

𝑣𝑣[𝑖𝑖] = 𝑤𝑤𝑤𝑤[𝑖𝑖] + 𝑐𝑐1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖] − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖]) + 𝑐𝑐2

∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔[𝑖𝑖]

− 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖])

(3.10)

3.2.3. Artificial Bee Colony

Artificial bee colony algorithm [28] mimics a bee colony that searches food in

the nature. Similar to PSO, ABC starts with a set of solutions and tries to improve

this set of solutions iteratively. At the end, the best solution achieved that far is the

result of the algorithm.

Components of the ABC algorithm are as follows:

• Food Sources: ABC starts with a set of solutions to the problem - in our case

set of camera configurations - and tries to improve those solutions at each

iteration. Food sources correspond to the set of the solutions which ABC tries to

improve.

• Employed Bees: These are responsible for bringing food sources to the beehive

and sharing the information about the richness or the quality of the source. In our

case, a source is considered rich, if it returns a number close to 1 when evaluated

at the cost function. Number of employed bees are equal to the number of food

sources.

• Unemployed Bees: There are two types of unemployed bees. The first one is

24

the onlooker bees. These wait in the hive, use the information shared by

employed bees, and try to find new food sources. Second type of unemployed bee

is the scout bees. These try to find new food sources randomly without using any

information from employed bees.

Below is a scheme about the elements of the ABC algorithm (see Figure 3.9). In

our implementation of ABC number of food sources, number of employed bees and

number of onlooker bees are equal. Outline of ABC is shown in Table 3.6 [29].

Figure 3.9: Elements of the Artificial Bee Colony Algorithm.

Table 3.6: Outline of the ABC used in the experiments.

Initialization Phase
REPEAT
 Employed Bees Phase
 Onlooker Bees Phase
 Scout Bees Phase
 Memorize the best solution achieved so far
UNTIL(Cycle=Maximum Cycle Number or a Maximum CPU time)

At initialization phase random solutions are created. At employed bees phase

fitness values of the sources are evaluated. At onlooker bees phase quality of the

sources are tried to be improved according to Equation (3.11):

25

 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘)

(3.11)

Where only one parameter namely j of the solution 𝑥𝑥𝑖𝑖 is changed and the rest are

remains unchanged. 𝜑𝜑𝑖𝑖𝑖𝑖 is a random number in [−1,1]. 𝑥𝑥𝑘𝑘𝑘𝑘 is the jth parameter of

solution 𝑥𝑥𝑘𝑘 which is a randomly chosen solution from the solution set. 𝑣𝑣𝑖𝑖 is the

newly created solution by changing only the jth parameter of solution 𝑥𝑥𝑖𝑖 .

At scout bees phase source that cannot be improved after a number of tries are

abandoned and new sources are created instead of those. At the end of each iteration,

the best solution is saved. Pseudo-code of ABC is shown in Table 3.7 [28].

Table 3.7: Pseudo-code of the ABC algorithm used in the experiments.

A set of random solutions is created
SN=size of solution set
Failure counters are initialized to 0
while stopping condition not satisfied:
 for i=1 to SN:
 create a new solution v_i for solution x_i according to equation (3.11)
 calculate fitness value of v_i
 if fitness(v_i) better than fitness(x_i):
 x_i=v_i
 failure_counter_of_x_i=0
 else:
 failure_counter_of_x_i+=1
 Compute the probabilistic values of the sources p_i which will
 be used by onlooker bees when making a choice of source
 t,i=0,0
 while t<SN:
 if rand()<p_i:
 create a new solution v_i for solution x_i according to equation
(3.11)
 calculate fitness value of v_i
 if fitness(v_i) better than fitness(x_i):
 x_i=v_i
 failure_counter_of_x_i=0
 else:
 failure_counter_of_x_i+=1
 t+=1
 if max{failure_i}>limit:
 x_i=create a random solution for x_i
 Memorize the best solution

3.2.3.1. A Variation of ABC (ABC1)

In this variation a different improvement function, Equation (3.12), is used at the

employed bees stage instead of Equation (3.11) above.

26

 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜑𝜑𝑖𝑖𝑖𝑖 (3.12)

Here 𝑥𝑥𝑖𝑖 is the ith solution of the solution set. 𝑥𝑥𝑖𝑖𝑖𝑖 is the jth parameter of solution i.

For parameters that are related to distances 𝜑𝜑𝑖𝑖𝑖𝑖 is a is a random number in [-1,1] and

for parameters that are related to angles 𝜑𝜑𝑖𝑖𝑖𝑖 is a random number in [-0.1,0.1]. Here

we have changed all parameters of the solution 𝑥𝑥𝑖𝑖 according to Equation (3.12) not

only one parameter.

3.2.4. Run Time Analysis of the Method

Let a=numberOfVoxels, m=numberOfCameras and n=numberOfObstacles.

Running time of isInFOV function is constant so isInFOV = Θ(c1). Checking if a

voxel is occluded by an obstacle takes 𝛰𝛰(𝑐𝑐2) time. So running time of the cost

function is Equation (3.13).

Θ(𝑚𝑚𝑚𝑚𝑚𝑚)Θ(c1)𝛰𝛰(𝑐𝑐2) = Θ(𝑚𝑚𝑚𝑚𝑚𝑚) (3.13)

Running time of GD is Equation (3.14).

𝛰𝛰(𝑚𝑚)Θ(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝛰𝛰(𝑚𝑚2𝑛𝑛𝑛𝑛)

(3.14)

Running time of PSO will increase relative to the increase in the run time of the cost

function but same number of iterations will not be enough if the number of cameras

increases. The same condition is valid for ABC.

27

4. EXPERIMENTS

The algorithms described in the previous section have been implemented and

tested on four different scenarios. These scenarios represent difficulty levels ranging

from a simple rectangular room to more complex environments with obstacles. The

visible volume of a given configuration is calculated by counting the visible voxels

and normalizing by the number of voxels such that ‘1’ means a total visibility. The

run-time performance of this volume calculation depends on the number of voxels, or

the grid size. We use GPU to make this calculation faster. Figure 4.6 shows the

performance of a CUDA implementation (running on ZOTAC GTX 780 with 2304

cores and 3GBmemory) compared against a C++ implementation (running on a 3.50

GHz CPU with 16GB memory). As expected the GPU implementation clearly

outperforms the GPU implementation. The cameras used in these experiments have

60˚ horizontal and 45˚ vertical field-of-view (FOV). We have implemented and

tested 6 different algorithms. Using the same set of random initializations, we let

each algorithm run and converge to a state and record the calculated volume. All of

the graphs and values below are the average values of many tests.

4.1. Test Scenarios

Tests were conducted using four different test scenarios as seen below. At the

left, there is the 2D shape of the test scenario and at the right, there is the 3D shape of

the test scenario. First scenario, scenario A, is a simple shape with no obstacles in the

room but the surrounding walls. The dimensions of the room in scenario A is

14m×4m×3m.

28

Figure 4.1: Test Scenario A for the optimization algorithms, a) 2D version, b) 3D
version.

The second one, scenario B, is a more complex shape which is obtained from a

real situation where up to four clerks are serving several hundred people a day. The

camera planning result for this case is used in an application where customer

satisfaction is measured using a multi-camera system. The dimensions of the room in

scenario B is 14m×7m×3m.

Figure 4.2: Test Scenario B for the optimization algorithms, a) 2D version, b) 3D
version.

The third scenario, scenario C, is a more complex one than the previous ones.

The dimensions of the room in scenario C is 20m×16m×3m. This scenario has a

complex shape when compared to the others. Cameras need to be carefully placed to

observe some parts of this scenario.

a)

a)

b)

b)

29

Figure 4.3: Test Scenario C for the optimization algorithms, a) 2D version, b) 3D
version.

The last test scenario, scenario D is a square shaped room with many obstacles

in it. The dimensions of the room in scenario D is 20m×20m×3m. This scenario is

created to see the effect of many obstacles in the scene when running our algorithms.

Figure 4.4: Test Scenario D for the optimization algorithms, a) 2D version, b) 3D
version.

4.2. CUDA and CPU Speed Comparison

In Figure 4.5 running times of CPU and GPU are compared for different number

of voxels for 58 obstacles in total. Y axis shows the running time in terms of

milliseconds. At each case CPU and GPU based cost functions computed the

coverage for 100 different camera configurations. The results at the Y-axis are the

average of those 100 test results. The numbers at the axes are logarithmic numbers.

For example, 15 at the x axis means 215 ≈ 30000 voxels and 8 at the y axis means

a)

a)

b)

b)

30

28 ≈ 128 ms. As clearly can be seen from the graph as the number of voxels

increase the ratio of CPU and GPU running times increases. That is for small number

of voxels CPU and GPU based cost functions run in closer times where as the

number of voxels increases GPU based one runs much faster than CPU based one.

Figure 4.5: Speed comparison of CPU and GPU versions of the cost function we use
at the experiments at scenario C for four cameras. Numbers at both axes logarithmic.

Figure 4.6 is the running time graphics of the CPU and GPU based cost

functions for the case we mostly used at the experiments. That is for roughly

2000000 voxels. For 1000 different camera configurations –where each camera

configuration includes 4 camera locations and angles- CPU and GPU based cost

functions were run and average of the test results are used at the graphics. Our

experiments show that GPU based cost function runs 17.3 times faster than the CPU

based one.

Figure 4.6: CPU and GPU speed comparison of the cost function for 2000000 voxels
at scenario C for four cameras.

0
5

10
15

10 11 12 13 14 15 16 17 18 19 20 21 22

Ti
m

e
(m

s)

Number of Voxels

GPU and CPU Speed Comparison

GPU CPU

0
200
400
600
800

1000
1200

CPU GPU

Ti
m

e
(m

s)

CPU and GPU Speed Comparison

31

Figure 4.7: Speed ratios of GPU and CPU as the number of voxels increases for
Figure 4.5.

As the number of voxels increases, the ratio between the GPU and CPU based

versions increases. We can expect that this ratio will eventually converge to a limit.

4.3. Random Initialization and a Better Initialization

In this section random and a better then random camera initialization techniques

are compared. When initializing a camera randomly a random point inside the test

room is chosen. Next the angles of the camera are initialized randomly where

horizontal angle is a random number in [0,2π] and vertical angle is random number

in [-π/2, π/2]. At the second Not-Random initialization technique we chose the x, y

coordinates randomly, set z coordinate equal to 3 and directed the cameras to the

center of the 3D scene. Second technique produced better initial values for the

algorithms. Because that decreases the probability of a newly initialized camera

looking at a wall. At scenario B some walls have the height of 1.5m. In such a case, a

randomly created camera location at the bottom of the room will have less good

coverage than a camera location at the top of the room. Table 4.1 shows the

comparison of the results of the two initialization techniques for different scenarios

and different number of cameras. The second technique, Not-Random one yields

much better results than the random initialization technique.

0

5

10

15

20

10 11 12 13 14 15 16 17 18 19 20 21 22

Sp
ee

d
Ra

tio

Number of Voxels (logarithmic)

GPU and CPU Speed Ratio

32

Table 4.1: Comparison of random initialization and a Not-Random initialization
technique for different scenarios and different number of cameras.

Scenario
Number of
 Cameras Random Not Random

A 1 0.05 0.40
A 2 0.08 0.61
B 2 0.05 0.42
B 3 0.09 0.54
C 3 0.07 0.29
C 4 0.09 0.35
C 5 0.12 0.41

4.4. Tests with Different Scenarios

In this section, there are visibility graphics for different scenarios and for

different number of cameras. We have implemented six algorithms and run those

algorithms equal amounts of times at different test scenarios. We made convergence

graphics of those algorithms. We used the same set of initial solutions for each of the

algorithm. PSO and ABC needs a set of initial solutions for working but GD needs

one solution. Figure 4.8 shows the results of running six algorithms at scenario A for

one camera. We run each test equal amount of times. In this test, time period is 30

seconds. We see that algorithms start from a quite good initial point and converge to

a limit in 10 seconds. We see that ABC and PSO1 are best and the second best

respectively.

Figure 4.8: Results of running six different algorithms for scenario A with one
camera for 30 seconds. Figure 4.9 shows results of running six algorithms at scenario

0,77

0,78

0,79

0,8

0,81

0,82

0,83

0,84

0,85

0,86

0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

vi
si

bi
lit

y

Time (ms)
GD GD1 ABC ABC1 PSO PSO1

33

A for 2 cameras for 90 seconds. Although four algorithms converged to visibility
ratio 1 in very short amount of times we see that PSO1 converged first. The tests at

Figure 4.9 and Figure 4.10 are trivial.

Figure 4.9: Results of running 6 different algorithms for scenario A with 2 cameras
for 90 seconds. Figure 4.10 shows the results of running six algorithms at scenario B
for 2 cameras for 150 seconds. We see that ABC and PSO1 are the best and second

best algorithms for this test respectively.

Figure 4.10: Results of running 6 different algorithms for scenario B with 2 cameras
for 150 seconds. Figure 4.11 shows the results of running six algorithms at scenario

B for 3 cameras for 240 seconds. We see that ABC and PSO1 are the best and second
best algorithms for this test respectively.

0,95

0,96

0,97

0,98

0,99

1

0 15000 30000 45000 60000 75000 90000

vi
si

bi
lit

y

Time (ms)

GD GD1 ABC ABC1 PSO PSO1

0,75

0,77

0,79

0,81

0,83

0,85

0,87

0,89

0 15000 30000 45000 60000 75000 90000 105000 120000 135000 150000

vi
si

bi
lit

y

Time (ms)GD GD1 ABC ABC1 PSO PSO1

34

Figure 4.11: Results of running six different algorithms for scenario B with 3
cameras for 240 seconds. Figure 4.12 shows the results of running six algorithms at
scenario C for 3 cameras for 600 seconds. We see that ABC and PSO1 are the best

and second best algorithms for this test respectively.

Figure 4.12: Results of running six different algorithms for scenario C with 3
cameras for 6000 seconds. Figure 4.13 Shows the results of running six algorithms at

scenario C for 4 cameras for 900 seconds. We see that ABC and PSO1 are the best
and second best algorithms for this test respectively.

0,75

0,8

0,85

0,9

0,95

1

0 30000 60000 90000 120000 150000 180000 210000 240000

vi
si

bi
lit

y

Time (ms)GD GD1 ABC ABC1 PSO PSO1

0,45

0,55

0,65

0,75

0,85

0,95

0 60000 120000 180000 240000 300000 360000 420000 480000 540000 600000

vi
si

bi
lit

y

Time (ms)

GD GD1 ABC ABC1 PSO PSO1

35

Figure 4.13: Results of running six different algorithms for scenario C with 4
cameras for 900 seconds. Figure 4.14 shows the results of running six algorithms at
scenario C for 5 cameras for 900 seconds. We see that ABC and GD1 are the best

and second best algorithms for this test respectively.

Figure 4.14: Results of running six different algorithms for scenario C with 5
cameras for 1400 seconds.

Table 4.2 shows the standard deviations of the results of the above algorithms

for different scenarios and for different number of cameras. We see that the standard

deviation of ABC algorithm is nearly always the smallest of the six algorithms.

0,5
0,55

0,6
0,65

0,7
0,75

0,8
0,85

0,9
0,95

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

vi
si

bi
lit

y

Time (ms)

GD GD1 ABC ABC1 PSO PSO1

0,55

0,65

0,75

0,85

0,95

1,05

0 200000 400000 600000 800000 1000000 1200000 1400000

vi
si

bi
lit

y

Time (ms)

GD GD1 ABC ABC1 PSO PSO1

36

Table 4.2: Standard Deviation of the Results of Algorithms for different scenarios
and for different number of cameras.

Scenario

Number
of
Cameras GD GD1 ABC ABC1 PSO PSO1

A 1 0.012 0.006 0.001 0.003 0.005 0.004
A 2 0.024 0.008 0.0 0.0 0.0 0.0
B 2 0.012 0.011 0.012 0.006 0.014 0.016
B 3 0.027 0.024 0.010 0.012 0.040 0.030
C 3 0.076 0.067 0.012 0.027 0.051 0.069
C 4 0.071 0.051 0.015 0.037 0.054 0.073

C 5 0.042 0.047 0.009 0.024 0.046 0.056

4.4.1. Different Voxel Sizes

Figure 4.15 shows the result of testing the same algorithms with different voxel

sizes. We used the same set of random numbers for more comparable results. Here

also we used the same number of algorithm steps not same amount of times because

when the number of voxels increases algorithm requires more time to complete a

step. Results are expected they are mostly similar. However precision increases as

the number of voxels increases.

Figure 4.15: Same tests with different voxel sizes. Number of voxels are logarithmic.

4.4.2. w Parameter of PSO Algorithm

We tested two different approaches for the value of the w parameter at PSO.

First approach is a constant w, where we chose w=0.7. Second approach is gradually

0,6

0,65

0,7

0,75

0,8

0,85

0,9

GD GD1 ABC ABC1 PSO PSO1

vi
si

bi
lit

y

19 20 21 22 23

37

decreasing the value of w. We started with w=1 and at each iteration updated the

value of w before using it by multiplying it with a number k. That is at each iteration

w=w*k. Figure 4.16 compares constant w and 7 different k values ranging from 0.65

to 0.95. We figured out that w=0.7 gives better results than dynamic w parameter.

However, as the value of k increases algorithms gave better results. Therefore, we

made one more test where the value of k ranges from 0.96 to 0.99. Figure 4.17 shows

the result of the second test. Constant w=0.7 gives still better results than the

dynamic w.

Figure 4.16: Constant and dynamic w parameter at PSO.

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 50000 100000 150000 200000 250000 300000

vi
si

bi
lit

yt

Time (ms)

w Parameter at PSO

constant 0,95 0,9 0,85

0,8 0,75 0,7 0,65

38

Figure 4.17: Constant and dynamic w parameter at PSO.

Figure 4.18 shows the change of the w parameter during the tests at Figure 4.17.

w starts with 1 and at each iteration it is multiplied with a k value except the constant

one.

Figure 4.18: Value of the w parameter during the tests at Figure 4.17.

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0 50000 100000 150000 200000 250000 300000

vi
si

bi
lit

y

Time (ms)

w Parameter at PSO

constant 0,99 0,98 0,97 0,96

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 50000 100000 150000 200000 250000 300000

w

Time (ms)

Value of the w Parameter

constant k=0.99 k=0.98 k=0.97 k=0.96

39

4.4.3. Mixture of Algorithms

Although some algorithms give better results than some other in the long run,

some poor resulting algorithms gives better results in short amount of times.

Therefore, we decided to combine those algorithms to get better results. We applied

GD1 to ABC and PSO after running them for some time and compare the result with

a pure ABC algorithm. We did the same thing for PSO as well.

Below are the graphs of ABC and ABC+GD1 comparison and PSO and

PSO+GD1 comparisons for two different test scenarios and for different number of

cameras. We applied ABC and PSO 3x amount times and at the hybrid algorithm

applied ABC and PSO 2x amount of time and applied GD1 x amount of time.

Figure 4.19 shows the results of running ABC and ABC+GD1 and PSO and

PSO+GD1 for 300 seconds at scenario C for 3 cameras. Hybrid algorithms performs

better than their pure counterparts in both cases.

Figure 4.19: Shows 2 hybrid algorithms compared to their pure counterparts at
scenario C for 3 cameras for 300 seconds. Figure 4.20 shows the results of running

ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds at scenario C. Hybrid
algorithms performs better than the pure counterparts.

0,48

0,53

0,58

0,63

0,68

0,73

0,78

0,83

0,88

0 60000 120000 180000 240000 300000

vi
si

bi
lit

y

Time (ms)

Mixture of Algorithms

ABC+GD1 ABC PSO+GD1 PSO

40

Figure 4.20: Shows 2 hybrid algorithms compared to their pure counterparts at
scenario C for 4 cameras for 500 seconds. Figure 4.21 shows the results of running
ABC and ABC+GD1 and PSO and PSO+GD1 for 300 seconds at scenario D for 3

cameras. Hybrid algorithms performs better than the pure counterparts.

Figure 4.21: Shows 2 hybrid algorithms compared to their pure counterparts at
scenario D for 3 cameras for 300 seconds. Figure 4.22 shows the results of running
ABC and ABC+GD1 and PSO and PSO+GD1 for 500 seconds at scenario D for 4

cameras. Hybrid algorithms performs better than the pure counterparts.

0,5

0,6

0,7

0,8

0,9

1

0 100000 200000 300000 400000 500000

vi
si

bi
lit

y

Time (ms)

Mixture of Algorithms

ABC+GD1 ABC PSO+GD1 PSO

0,46

0,51

0,56

0,61

0,66

0,71

0,76

0 60000 120000 180000 240000 300000

vi
si

bi
lit

y

Time (ms)

Mixture of Algorithms

ABC+GD1 ABC PSO+GD1 PSO

41

Figure 4.22: Shows 2 hybrid algorithms compared to their pure counterparts at
scenario D for 4 cameras for 500 seconds.

At all of the tests hybrid algorithms performed better than their pure

counterparts. The reason of this is some algorithms perform well in short times and

perform bad in long times and vice versa. Combining the true algorithms give better

results than all the other algorithms.

4.4.4. Different Field of Views

Figure 4.23 shows the results of applying same algorithms at different FOVs to

the same solution set. FOVs are 45-60, 60-90 and 90-120 degrees. As expected as

FOV increases algorithms give better results.

Figure 4.23: Results of running same algorithms at different FOVs.

0,5
0,55

0,6
0,65

0,7
0,75

0,8
0,85

0,9

0 100000 200000 300000 400000 500000

vi
si

bi
lit

y

Time (ms)

Mixture of Algorithms

ABC+GD1 ABC PSO+GD1 PSO

0

0,5

1

GD GD1 ABC ABC1 PSO PSO1

vi
si

bi
lit

y

Different FOVs

45-60 60-90 90-120

42

4.5. 2D Visualization of the Results

Figure 4.24, Figure 4.25 and Figure 4.26 show the results of camera planning for

the first scenarios A, B and C respectively. The left drawing shows the visibility of

the volume (cross section at height 1m) before applying GD. The camera

configurations are of the randomly chosen configurations. The visible areas are

shown in dark gray. The right drawing illustrates the visible volume after the GD

algorithm is run. As it can be seen, the visibility is increased after the optimization.

Figure 4.24: 2D visualization of applying GD to the scenario A for 2 cameras a) At

the left, there is the initial coverage of the cameras, b) At the right there is the
coverage of the cameras after applying GD.

Figure 4.25: 2D visualization of applying GD to the scenario B for 2 cameras a) At
the left, there is the initial coverage of the cameras, b) At the right there is the

coverage of the cameras after applying GD.

Figure 4.26: 2D visualization of applying GD to the scenario C for four cameras a)
At the left, there is the initial coverage of the cameras, b) At the right there is the

coverage of the cameras after applying GD.

a) b)

b)

b)

a)

a)

43

4.6. Discussion about Experiments

We tested 6 algorithms on 4 different test scenarios. For more comparable

results we gave equal amounts of times to the algorithms and the same initial

solution sets. We tested the effect of GPU usage on the cost function and saw that the

GPU version of the same cost functions works 20 times faster than the CPU version

of the function in our test cases. Same GPU and CPU comparison tests were done

with different voxel sizes as well. As the voxel size decreases and as the number of

voxels inreases the ratio between the GPU and CPU running times increases. We

made some tests about the ideal voxel size and ideal number of voxels. We checked

the precison of the results. It is figured out that 6cm voxel size is both fast and

precise enough and for our hardware and problem type. Recall that dimensions of the

rooms are 14m×4m×3m, 14m×7m×3m, 20m×16m×3m and 20m×20m×3m. We used

6cm voxel size at the rest of the tests.

It is figured out that in the long run ABC gives better results than the rest of the

algorithms. PSO1 is the second best algorithm in the long run. PSO1 is better than

PSO. PSO keeps global best and personal best values but PSO1 keeps global best and

global second best values as well as personal best values. So keeping glabal second

best gave better results.

PSO gets somewhat an average of the personal best, global best and velocity.

But this does not always guarantee a good solution for our problem type. However

ABC tries to imrove more promising solutions most and less promising least and

gives better results. ABC seems a better choice if there are more than one good

points or good solutions in the problem domain.

ABC constantly tries to improve the current solutions it has. It randomly changes

one of the parameters of the solution and keeps the new solution if it is better. Instead

of changing only one parameter, ABC1 makes a perturbation around the solution.

That changes all of the parameters slightly. But ABC still gave better results than

ABC1. Maybe some further studies can be made to improve the improvement

function of ABC.

We used to different approaches at the w parameter of the PSO algorithm. First

approach is to use a constant w value. We chose w=0.7 after triying many possible

values in a loop. Other approach is to decrease w gradually by multiyplying it with a

number k. We tried many k values but the first approach gave better results.

44

Some algorithms run good in the short and and some run good in the long run.

This lead us to mix some algorithms which gave better results than their pure

counterparts. ABC+GD1 performed better than ABC and PSO+GD1 performed

better than PSO. Because GD1 performs better in short run. Therefore, before ABC

and PSO finish running we applied GD1 to the best solution in the solution set of

ABC and PSO. Hybrid approach gave better results than their pure counterparts..

45

5. CONCLUSION

In this study camera placement problem is converted to an optimization

problem. A cost function for evaluating the visibility of a 3D space for the given

camera configuration is defined. The cost function returns a value between 0 and 1

which symbolizes the visibility ratio for the given camera configuration. Next by

using several optimization algorithms, the cost function is optimized.

Parallel computing using CUDA helped us to run our tests much faster. Without

CUDA programming it would be really hard to make this study because of too long

running times of the algorithms. CUDA made our calculations roughly 20 times

faster. A fast and practical solution to the camera placement problem is proposed and

a system for evaluating the visibility of a given configuration and some methods for

automatically proposing camera location is implemented.

We tried a bunch of algorithms for optimizing the cost function. These

algorithms are ABC and a variant of it, PSO and a variant of it and Gradient Descent

and a variant of it. Gradient Descent performs well in the short run but not long. PSO

variant gives better result than PSO. ABC algorithm yields better results than the

other algorithms. We also tried some hybrid algorithms. ABC+GD1 algorithm

performed better than a pure ABC.

Some addition constraints to the system can be added at the future studies. These

could be:

• Some points in the surveillance area can be more important than other points.

An importance factor can be added to the points in the surveillance area.

• Effective range of a camera constraint can be added so that a point will not be

considered observed by a camera if it is in the field of view of the camera and if

it is not in the effective range of the camera.

• For some applications user of the system may want any point is visible by at

least k cameras. Such a constraint can easily be added to the system if needed.

Results obtained during the study seem promising. Because in reasonable

amounts of time (like 5, 10 or 15 minutes) we obtained quite good practical

solutions.

46

REFERENCES

[1] Aggarwal A., (1984), “The art gallery theorem: Its variations, applications and
algorithmic aspects”, Unpublished Doctoral Dissertation, The Johns Hopkins
University.

[2] Web 1, (2016), https://en.wikipedia.org/wiki/Art_gallery_problem, (Erişim Tarihi:
17/06/2016).

[3] Avriel M., (2003), “Nonlinear programming: analysis and methods.”, 1 st Edition,
Courier Corporation.

[4] Bárány I., (1987), “Computing the volume is difficult.”, Discrete &
Computational Geometry, 2(4), 319-326.

[5] Chvatal V., (1975), “A combinatorial theorem in plane geometry.”, Journal of
Combinatorial Theory, Series B, 18(1), 39-41.

[6] Conci N., (2009), “Camera placement using particle swarm optimization in visual
surveillance applications”, 16th IEEE International Conference on Image
Processing, 3485-3488, Cairo, Egypt, October.

[7] Eberhart R. C., (2001), Swarm intelligence, 1 st. Edition, Elsevier.

[8] Web 2, (2016), https://en.wikipedia.org/wiki/Finite_difference, (Erişim Tarihi:
21/06/2016).

[9] Fisk S., (1978), “A short proof of Chvátal's watchman theorem”, Journal of
Combinatorial Theory, Series B, 24(3), 374.

[10] González-Baños H., (2001), “A randomized art-gallery algorithm for sensor
placement”, 232-240, New York, USA, June.

[11] Gonzalez-Barbosa J. J., (2009), “Optimal camera placement for total coverage”,
IEEE international conference on Robotics and Automation, 3672-3676,
Kobe/Japan, May.

[12] Web 3, (2016), https://en.wikipedia.org/wiki/Gradient_descent, (Erişim Tarihi:
21/06/2016).

[13] Horster E., (2006), “Approximating optimal visual sensor placement”, IEEE
International Conference on Multimedia and Expo, 1257-1260, Toronto, Canada,
July.

[14] Hörster E., (2006), “On the optimal placement of multiple visual sensors”, ACM
international workshop on Video surveillance and sensor networks, 111-120, New
York, USA, November.

[15] Web 4, (2016), http://www.swarmintelligence.org/tutorials.php, (Erişim Tarihi:
23/06/2016).

47

[16] Kahn J. K., (1983), “Traditional galleries require fewer watchmen”, SIAM Journal
on Algebraic Discrete Methods, 4 (2), 194-206.

[17] Web 5, (2016), http://www.scholarpedia.org/article/Artificial_bee_colony_
algorithm, (Erişim Tarihi: 2016/6/23).

[18] Karaboga D., (2007), “A Powerful and Efficient Algorithm for Numerical
Function Optimization: Artificial Bee Colony (ABC) Algorithm”, J. of Global
Optimization, 39(3), 459-471.

[19] Karaboğa D., (2011), “Yapay Zeka Optimizasyon Algoritmaları”, 2. Baskı, Nobel
Yayın.

[20] Kennedy J., (1995), “Particle swarm optimization”, 1942-1948, New York,USA,
1995(11).

[21] Marzal J., (2012), ”The three-dimensional art gallery problem and its solutions”,
Doctoral Dissertation, Murdoch University.

[22] Michael T. S., (2009), “How to guard an art gallery and other discrete
mathematical adventures”, 1 st Edition, JHU Press.

[23] Michael, T. S., (2011), “Guards, Galleries, Fortresses, and the Octoplex”, The
College Mathematics Journal, 42(3), 191-200.

[24] Mittal A., (2004), ”Visibility analysis and sensor planning in dynamic
environments”, Prague ,Czech Republic, 2004(5).

[25] Pålsson J. M., (2008), “The Camera Placement Problem--An art gallery problem
variation”, Master Thesis, Lund University.

[26] Web 6, (2016), https://en.wikipedia.org/wiki/Rotation_matrix, (Erişim Tarihi:
2016/6/15).

[27] Sclaroff U. M., (2004), “Optimal placement of cameras in floorplans to satisfy
task requirements and cost constraints”, Prague/ Czech Republic, May.

[28] Shi Y., (1998), “A modified particle swarm optimizer”, IEEE World Congress on
Computational Intelligence, Alaska/USA, May.

[29] Sinha S., (2006), “GPU-based video feature tracking and matching”, Workshop on
Edge Computing Using New Commodity Architectures, Chapel Hill/North
Carolina/USA, May.

[30] Snyman J. A., (2005), “Practical Mathematical Optimization”, 1 st Edition,
Springer.

[31] Web 7, (2016), https://en.wikipedia.org/wiki/Spherical_coordinate_system,
(Erişim Tarihi: 15/06/2016).

[32] Web 8, (2016), http://geomalgorithms.com/a06-_intersect-2.html, (Erişim Tarihi:
15/06/2016).

48

[33] Zhao J., (2009), ”Optimal visual sensor planning”, IEEE International Symposium
on Circuits and Systems, 165-168, Taipei, Taiwan, May.

[34] Zhu G., (2010), ”Gbest-guided artificial bee colony algorithm for numerical
function optimization”, Applied Mathematics and Computation, 217(7), 3166-
3173.

49

BIOGRAPHY

Mehmet Arif Şekercioğlu was born in 1986 in Afyon, Turkey. He graduated

from Middle East Technical University Mathematics Department at 2010. He has

been a M.S. student and a research assistant at Computer Engineering Department of

Gebze Technical University Graduate School of Natural and Applied Sciences since

2013. His research interests include computer vision and optimization.

	SUMMARY
	ÖZET
	ACKNOWLEDGEMENTS
	TABLE of CONTENTS
	LIST of ABBREVIATIONS and ACRONYMS
	LIST of FIGURES
	LIST of TABLES
	1. INTRODUCTION
	1.1. Camera Planning

	2. BACKGROUND
	2.1. Art Gallery Problem
	2.1.1. Art-Gallery Problem in Three Dimensions

	2.2. 2D Version of the Camera Placement Problem
	2.3. Sensor Planning

	3. METHOD
	3.1. Details of the Computation
	3.1.1. Parallelization via CUDA

	3.2. Algorithms Used for Optimizing the Cost Function
	3.2.1. Gradient Descent
	3.2.1.1. A Modified GD (GD1)

	3.2.2. Particle Swarm Optimization
	3.2.2.1. PSO Parameter Selection
	3.2.2.2. A Variation of PSO (PSO1)

	3.2.3. Artificial Bee Colony
	3.2.3.1. A Variation of ABC (ABC1)

	3.2.4. Run Time Analysis of the Method

	4. EXPERIMENTS
	4.1. Test Scenarios
	4.2. CUDA and CPU Speed Comparison
	4.3. Random Initialization and a Better Initialization
	4.4. Tests with Different Scenarios
	4.4.1. Different Voxel Sizes
	4.4.2. w Parameter of PSO Algorithm
	4.4.3. Mixture of Algorithms
	4.4.4. Different Field of Views

	4.5. 2D Visualization of the Results
	4.6. Discussion about Experiments

	5. CONCLUSION
	REFERENCES
	BIOGRAPHY

